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Abstract

In this paper, we use merely continuous feedback to robustly stabilize a class of
parameterized family of linear systems in the plane. We introduce a new interpolation
method that enables us to construct a robust stabilizer for the entire family of systems,
by using two feedback laws that robustly stabilize two particular sub-families.
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1 Introduction

Robust control of linear systems has been a long standing and challenging problem in
control theory [3, 4]. In the last twenty five years, research on that matter has evolved
along two principal axis: The Ho, theory has reached maturity in the design of robust
linear controllers [6, 16, 17], while the so-called parametric approach (which originated
from Kharitonov theorem [11]) provides criteria to decide whether or not a family of
linear plants is robustly stable [1]. [Here by robust stability of a family of systems, we
mean that each system of the family is locally asymptotically stable.] Other methods
of robust stabilization of linear systems typically rely on obtaining linear controllers
(12, 15]. There exist other approaches, e.g., nonlinear Ho, theory [14] and Lyapunov
methods [5], that use nonlinear feedback laws. However, they do not provide stabiliza-
tion of each one of the systems of the family.

Because the methods mentioned above are of little help in robustly stabilizing fam-
ilies of linear systems that are not robustly stabilized by linear feedback, it is necessary
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to investigate the use of other type of feedback.

Inspired by the surprisingly general results obtained in the context of nonlinear
stabilization by continuous feedback [2, 9, 13], we discuss here the use of merely con-
tinuous feedback for robustly stabilizing (around v = 0) the parameterized family of
systems in the plane

1 = a(y)z1 +b(y)zs
S { (a1 + b

:i72=’u

where v is a real parameter, a(-) and b(-) are real-valued functions, v is a scalar control
and b(0) = 0. Specifically, in case the family {S(v)} cannot be robustly stabilized by
linear feedback, either we find a continuous robust stabilizer, or we prove that such a
stabilizer does not exist. In particular, under some mild assumptions on a(-) and b(-),
if the family {S()} contains the following pair of systems

o = u o = u ’

{ 1 = o171+ (1T { T1 = o171 — P2
for some positive reals a;, a9, B, and By, then, by introducing a new interpolation
method between two feedback laws that robustly stabilize two specific sub-families, we

find a continuous feedback law that robustly stabilizes the entire family of systems.

The paper is organized as follows. We introduce some definitions and state the
problem under consideration in Section 2. The robust control problem is solved in the
subsequent sections. The situation where the sign of b(-) is constant around v = 0 is
discussed in Section 3, while that where the sign of b(-) changes is considered in Section
4. The remaining cases are reviewed in Section 5. After some concluding remarks in

Section 6, we present in Section 7 the technical lemmas used in the proofs of the main
theorems.

2 Statement of the problem

We consider a parameterized family of systems in the plane

:i?2=’u ’

S(’Y) . { T = 0(7)x1 + b(’7)$2
where « is a real parameter, a(-) and b(-) are real-valued functions and u is a scalar
control. We assume that the functions a(-) and b(-) are well-defined and smooth on
some interval [—(p, (1] where (o and (; are positive reals. We let I' denote the set
[—C0,0) U (0,¢1] and we assume that b(0) = 0, a(y) # 0 and b(y) # 0 for all y in I".

We investigate here the existence of a static feedback law u that robustly stabilizes
the family of systems {S(v), v € I'} in the following sense. For a given system, let
z(-, o) denote its trajectory that starts from zo at time ¢t = 0, and let | - || denote the
Euclidean norm in IR".



Definition 2.1 The static feedback law u robustly stabilizes the family {S(v), v € I'}
if it locally asymptotically stabilizes the system S(7y) at the origin for each v in T', and
if it is independent of the parameter .

Definition 2.2 The system & = f(z) where f : R™ = IR™ is continuous and f(0) = 0,
is locally asymptotically stable at the origin if the following holds:

i) For each € > 0, there exists § > 0 such that for each t > 0 and each solution
z(-, o) of the system starting from xy, we have ||z(t, zo)| < € whenever ||zo|| < d.

ii) There exists o > 0 such that z(t,zo) — 0 as t — oo whenever ||zo| < do.

We require that u be at least continuous on a neighborhood of the origin and
that «(0) = 0. In that case continuity of u implies that of the vector-field [a(vy)z; +
b(y)z2, u(x)]!, which ensures the existence of a solution to the resulting closed-loop
system [8, p. 10].

We complete this section with a few words about the notation and terminology used
in this paper. A mapping is said to be almost smooth if it is smooth on a neighborhood
of the origin except at the origin.

For z in R?, we denote by z; and x; its coordinates, and we define the mapping
fy: R > R by fy(z) = a(y)z1+b(7)z2. For any subset I of R, we denote respectively
by I~ and I*,thesets I- 2 {pel: p<0} and I*2{pel: p>0}. Fora
subset ¥ of R2, we let ¥ denote its symmetric with respect to the origin and Y* its
symmetric with respect to the z;-axis, i.e,

Y & {—y: yeY} and Y 2 {(y1,—y2) € R?: (y1,12) € Y}

Finally, for each positive reals a and 3, we define

Qo = {zeR?: z; = (z)'®, 25 >0}

, 14+o
JAVS = {.’L‘ € ]R,2 L= (.’122)2 , T > 0}
g L2 [2eR?: zo=m2 ln(%), z1 > B}

In order to discuss the robust stabilization of the family {S(y), v € T'}, we distin-
guish several cases based on the sign of a(-) and b(-). Recall that a(-) and b(.) take
nonzero values on I' so that, by continuity, both have a constant sign on '™ and I'*.

In each section, without further reference, we omit the cases a(-) < 0 on I, as in

that case any feedback law u(z) = —kxo, where k is a positive real, robustly stabilizes
the family {S(v), vy € T'}.

3 Robust stabilization when the sign of b(.) is
constant on [’

In this section, we assume that b(-) is either negative on I' or positive on I'. Moreover,
we assume that a(-) is either positive on the entire set I', or negative on I'™ and positive
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on I'". We restrict our discussion to these two cases as the remaining case a(-) positive
on I'” and negative on I'" is obtained from the latter by replacing I'" by I'* and vice
versa.

Under these assumptions, because the mappings a(-) and b(-) are smooth on I'U {0}
and do not vanish on I, it is easily checked by using elementary linear algebra, that the
family {S(v), v € I'} is robustly stabilizable by smooth (linear) feedback if and only

. b(y b(v)
if =% does not converge to 0 as oes to 0. If converges to 0 as oes to 0,
(Z("Y) (0] no onverg v g a(_’}'j g Y g

a linear feedback law with an “infinite gain” would be necessary in order to robustly
stabilize the family {S(v), v € I'}. As we shall see below, it turns out that the family
{S(~), v € T'} is robustly stabilizable by continuous, almost smooth feedback. Our

approach is based on a technique introduced in [2] to establish stabilizability of a class
of nonlinear systems in the plane.

In the following theorem we establish robust stabilizability of the family {S(v), v € I'}:
We first construct a feedback law uy, based on some C* partition of unity. Next, we
introduce a base at the origin {Wp}gso which is independent of the parameter y. We
show that for each parameter value vy in the set I', there exists a positive real 3,
such that for each 3 in (0, 3,] the set Wy is invariant with respect to the vector field
[f,uko]t. This enables us to conclude stability of the corresponding closed-loop system.
Furthermore, by proving that the only positive limit set in Wﬂ is the origin, we deduce
that ug, locally asymptotically stabilizes the system S(v).

Theorem 3.1 Assume that either a(7y) is positive on the entire set I, or a(y) is negy-
ative on I'" and positive on I'". Furthermore, assume that b(7y) is either negative on

T, or positive on I'. Suppose that % converges to 0 as v tends to 0. Then, there
exists a continuous and almost smooth feedback law that robustly stabilizes the family
of systems {S(vy), v € T'}.

Proof: We distinguish three cases.
a) a(-)>0onTt, a(-)<O0Oonl~ and b(-)<Oon T :

Recall that a(-) and b(-) are smooth on I" and that a(-) does not vanish on I'. Thus,

because % — 0 as v — 0, there exists § > 0 such that |2%%| < @ forall yinT.

Therefore, for each v in I't, the half-line {x € R? : z; = —gﬁ(:yy—%m, zo > 0} (resp.

{zeR?: z, = —27(;;—)):32, za < 0}) is above the half-line {z € R?: 2, = 0z, 5 > 0}
(resp. below the half-line {z € R? : z; = 8z, 22 < 0}).

Let a be a constant in (0, 1), and consider Fig. 1: For each g > 0, let Wj denote the
neighborhood of the origin bounded by the closed curve in bold. Because the curves

U4 and Q, intersect for each 5 > 0 (Lemma 7.1), the neighborhood Wj is well-defined
for each 8 > 0.



Figure 1: Wy

Besides, as {2, is tangent to the xs-axis at the origin, Q4 is above the half-line
{z € R? : 21 = Oz, x5 > 0} for 2 small enough. Moreover, by Lemma, 7.1, the
unique point [h(8), h(B) ln(ﬂﬂ@)] at which the sets {z € R? : z; = 0z, 75 > 0}
and Uy intersect is such that h(8) — 0 as B — 0. Thus, there exists 8 > 0 such
that for each 8 in (0, 5], the point [h(8), h(6) ln(i(ﬁ@-l)] is below Q,. Furthermore, as

h(B8) = 0 as B — 0, it is easily seen from the definition of W, that {Wﬂ}ﬂe(O,B] is a
base at the origin.

In view of the comments made above, we can now define the following open subsets
of ng\{O}

>

Ry
Ry
R3

region in W5 between the curves {z € R2?: 21 = —20z9, 3 > 0} and Q,,

1>

region in Wz between the curves Ay and {z € R?: 21 = 2029, 75 > 0},

i

region in Wﬂ- between the half-lines {z € R?: z1 = 0z9, 9 > 0}
and {z € R?: ) = —0z,, 2o <0},

>

Qs region delimited by Qq4, A4 and the segment [(v, ¢), (v, w)].

We note that {R1, Rg, R3, Ry, Ro, Rg} [where R; is the symmetric of R; with respect
to the origin for each ¢ = 1,2,3] is an open cover of Wz\{0}, so that there exists a
C® partition of unity {p1,p2,ps, D1, D2, 3} subordinate to it [7, p. 52]. Without loss
of generality, for each ¢ = 1,2, 3, we take p; (resp. §;) such that its support is included
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in R; (resp. R;).
For each k > 0, we now define the feedback law u; : W5 — IR by setting

0 ifz=0
up(z) = ¢ k [—(z2)® ( ) + (@1 + z2)pa(x) + z1p3(x)
+(—22)7P1(2) + (21 + 22)P2(2) + z1P3(x)]  otherwise.

We note that the regions R; and R do not contain any point of the form (x1,0), and
that the support of p; and 71 are included in Ry and ﬁl, respectively. Therefore, it
follows from the smoothness of the mapping p; and p; on W3\ {0} for each ¢ =1,2,3,
that uy is smooth on W5\ {0}, for each k > 0. Furthermore, the mappings of a partition
of unity summing up to 1, it is readily seen from the definition of u; that

lup(z)] < k max (|zo]'~% |21 + 22|, |71]), =€ W;,

and continuity of u; at the origin follows for each k& > 0.
The following claim is the key argument to establish robust stability.

Claim 1:  There exists ko > 0, and for each vy in I there exists By in (0, 8] such that
the sets Wg and Qg are invariant with respect to the vector field [fys uko |t for each B
in (0, By].

We note that the invariance of —W—ﬁ will be proved if for each z in the boundary
dWp, the vector [f,(z),uk, ()]’ points inside the set Wj.

By applying Lemmas 7.3 and 7.4 (with I =T, u = 1, and 6, 3, « as given here), we
obtain two positive reals k) and ko. We set ko = max (k1, ko), so that the assertions of
both lemmas hold with k& = kg.

For each v in I'", we set 3, £ B and for each v in Tt we define 8, through
Lemma 7.1: Indeed, because the curves 1, and ﬁa are tangent to the x,-axis at the
origin, Lemma 7.1 yields the existence of 8, in (0, B] such that for each 8 in (0, By]
the segments [(v,¢), (v,w)] and [(—v, —¢), (—v, —w)] of W} are respectively above

{zreR?: 2, = —g%%wz,xz > 0}, and below {z ¢ R?: z; = —ZJ(%))-:LQ, z9 < 0}

Next, we fix v in I" and S in (0, 8,]. From the definition of 3, it is easily checked
that for each z in the segment [(v, ), (v,w)] (resp. [(—v, —p), (—v, —w)]) of OWp, we
have fy(z) <0 (resp. f,(z) > 0), so that [f,(z),uk,(z)]* points into Wj.

Further, recall that for each 7 = 1,2, 3, the support of the mappings p; (resp. 5;)
is included in R; (resp. RL) and note that the intersection of more than two sets of
the family {R]_,RQ,R3,R1, R2,R3} is empty. Thus, for each z in Wy, the vector
[fy (), ke (z)]* either reduces to one of the vectors listed in the different assertions of
Lemmas 7.3 and 7.4, and therefore points inside Wg, or is a convex combination of
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two of them. In the latter case, the result follows either from the fact that we have a
convex combination or from the fact that we have f,(z) < 0 (resp. f,(z) > 0) on the
segments [(v, ), (v,w)] (resp. [(—v, —¢), (—v, —w)]) of OWj.

Finally, for each = in Q, N Wp, because ug,(z) is positive and f,(z) is negative, the
vector [f(z), uk, (z)]* points into Qg. This, combined with the assertion of Lemma 7.3
(ii) and the fact that 8 > 3,, implies that Qﬂ is an invariant set with respect to the
vector-field [f, uk,)*. The proof of Claim 1 is completed upon noting that the previous
results hold for each v in I and each § in (0, 5,).

Robust stability:

We now prove that the feedback law ug,, where kg is as given in Claim 1, robustly
asymptotically stabilizes the family {S(v), ¥ € T'}. Fix v in I and let S(y) denote the
system obtained once uy, is fed back into S(-y). Let 3, be as defined in Claim 1, let 8
be in (0, 3,], and let Ty be in Wg. In view of the definition of 3,, we have ug,(z) # 0
for all z in W4\ {0} with f,(z) = 0, so that the origin is the unique equilibrium point
of 5(y) in Wp. Thus, by the invariance with respect to S(y) of the compact set W
(Claim 1) and the Poincaré-Bendixson Theorem [8], the positive limit set P(zg) of zg
in Wy is either equal to {0} or to a nontrivial periodic orbit O.

If we assume that P(z¢) = O, then by Theorem 3.1 in [8, p. 150], O encircles the
origin. This contradicts the invariance of the set Q4 and we conclude that P(zo) = {0}.
Therefore, each trajectory of S(y) starting in W 5 converges to the origin [8, Corollary
1.1 p. 146].

As {Wps}o<p<p, is a base at the origin, we easily obtain that the feedback law wuy,
locally asymptotically stabilizes the system S(v) for each 7 in I'. In short, ug, robustly
stabilizes the family {S(y), vy € T'}.

b)a(-)>0onT*",a()<0onT~ and b(:) >0on I :
We consider the family {S(7), ¥ € I'} of systems

S(7) : {2;: fﬂm—mwm

Because —b(7) is negative on I', by (a), there exists a feedback laws uy, which
robustly stabilize {S(v), v € I'}. In other words, the system

{¢1= a(7)z1 — b(7)z2 (1)

Ty = ugy(z1,22)

is asymptotically stable for each « in I'. By the change of variable (21, z3) — (21, —22),
the system (1) is transformed into the asymptotically stable system

1 = a(y)z1 +b(y)ze
j;2 - _uko(xla _"E2)



and we conclude that the feedback law vy, given by vk, (z1,22) = —ug, (21, —12), ro-
bustly stabilizes the family {S(y), v € I'}.

c) a(-) >0 on I, and b(-) is either positive or negative on I :

In that case, the result follows easily from the arguments given in (a) and (b) by
replacing I't by I and '~ by 0. [ |

It is easily seen from the proof of Theorem 3.1 that each one of the feedback law of
the collection {ug, k € [ko,00)} robustly stabilizes the family {S(vy), v € T'}.

4 Robust stabilization when a(-) is positive and
the sign of b(-) changes

In this section, we only consider the case b(-) negative on I'™ and positive on I'". The
symmetric case b(-) positive on I'~ and negative on 't is obtained from the former
by replacing I't by I'" and vice versa. By using elementary linear algebra, it is easily
checked that there exists no smooth feedback law that simultaneously stabilizes any two
systems S(y_) and S(vy4), with y_ < 0 and v+ > 0, so that the family {S(vy), v € T'} is
clearly not robustly stabilizable by smooth feedback. However, as we shall see below,
this family is robustly stabilizable by means of continuous feedback.

This result is proved in the following theorem. The general line of the proof is to
construct two mappings ufc'o and uy that robustly stabilize the family {S(v), v € I'"}
and {S(v), v € I'"} respectively, by using a first partition of unity similar to that in-
troduced in the proof of Theorem 3.1. In order to obtain a feedback law that robustly
stabilizes the entire family {S(vy), v € I'}, we then “piece” together u,fo and uy by
using a second partition of unity subordinate to a family of open sets that encircles
the origin. Robust stability is shown through an argument similar to that used in the
proof of Theorem 3.1.

Theorem 4.1 Assume that a(-) is positive on I', and that b(-) is respectively negative
on I'" and positive on I'". Then, there exzists a continuous and almost smooth feedback
law that robustly stabilizes the family of systems {S(v), v € I'}.

For the sake of clarity we divide the proof of the theorem into several cases.

o

Lemma 4.1 Theorem 4.1 holds if %)5 —0 as y— 0.

]

Proof:

Construction of u; and uf :



B

Y

Ad-(B.0)

Figure 2: Wy in the case % —+0as vy—0

In that case, the assumptions on a(-) and b(-) yield the existence of § > 0 such that

lfz(T?)ll)Fl < @ for all v in T'. Let a be a constant in (0,1) and consider Fig. 2 and Fig. 3:
For each 8 > 0, we let Wﬂ_ and Wg’ be the open subsets of IR? bounded by the closed
curves in bold, in Fig. 2 and Fig. 3 respectively. The neighborhood Wg is obtained
by rotating W5 around the z;-axis by 180 degrees. In Fig. 2, the segments [A\G,Al]
and [Ag, Aj] are respectively horizontal and vertical, while the segments [Ag, A5] and

[A4, As] have respective slopes %% = —¢ and %% = 11 where p and § are fixed positive
reals such that § > 26. Combining this last inequality with the fact that the curves ¥y
and (), intersect for each 8 > 0 (Lemma 7.1), we obtain that the neighborhoods Wy
and WE are well-defined for each 8 > 0.

Besides, because the curve , is tangent to the zs-axis at the origin, it is above
the half-line {z € R? : z; = 0z, x2 > 0} for x5 small enough. Furthermore, Lemma
7.1 yields the existence of 3 > 0 such that for each 3 in (0, 0], the intersection of
{z € R?: x; = 03, 25 > 0} with Vg is below ,. Finally, it is easily checked that B
can be chosen such that for each 3 in (0, 3], both As and the intersection of [Ag, As]
with {z € R? : 77 = —fz2, T2 < 0} are above Q3. We now define the set W by

A

A 1 +
W = Wﬂ— UWﬁ.

In view of the comments made above and the symmetry of the neighborhoods Wj and
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Figure 3: W in the case %’fy_}% —0as v—0

W, we can define the following open subsets of W\{0}:

R; £ region in W between the curves Qg and Q,,
Ry 2 region in W between the curves A, and {z : z; = 20z2, z2 > 0},
R3 = region in W between the half-lines {z : z; = 0za, zo > 0} and
{z: z1 = —0z3, 2 < 0},
Ry = region in W between the half-line {z : z; = —20z5, z5 < 0}
and the curve A},
Qs £ region delimited by A,, Q, and the segment [Aa, A3],

Ts = region delimited by Q5, A3 and the segment [By, Bs],

Because {Ry,.., R4, Ry,.., R4} is an open cover of W\{0}, there exists a partition of
unity {p1,..,p4,p1,.., P4} subordinate to it [7, p. 52]. Without loss of generality, we
choose this partition of unity such that for each ¢ = 1,...,4, the support of p; (resp:
;) is included in R; (resp. R;).
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For each k > 0, we now define the mappings u; ,u,c W — R, by setting

0 fz=0
up (z) = —k(z2)'p1(2) + k(21 + 22)p2(z) + kz1 p3(z) — (21)% pa(z)

+k(—22)' 2Py () + k(z1 + 72)P2(2) + k71 P3(2) + (2 ) ps(x) otherwise,
and

0 ifz=0
uf(z) = —k(z2)' " p1(z) + (21)? p2(z) — kz1 p3(x) + k(—z1 + 22)p4(x)

+k(—22)' %P1 (z) — (x ) Da(z) — k1 p3(z) + k(—2z1 + z2)Pa(z) otherwise.

The argument given in the proof of Theorem 3.1 to show the smoothness of uy trans-
poses easily here, and for each k£ > 0, both mappings v, and u;: are smooth on W\ {0}
and continuous at the origin.

Using u; and u,‘:, we now construct the desired stabilizing feedback law uy.

Construction of uy :

It is not hard to see from Lemma 7.2 that both families {Wj5 } 5¢ g, 3) and {W5 } 50,5,
are bases at the origin with

W; CW; and WF§ CW; whenever 8<f. (2)

Thus, there exists a sequence of positive reals {8;}52, included in (0, 5] such that

Wi CW;, 5=0,1,2,.... (3)
and
Bi =0 as j— o0 (4)
where we have set
Wa & Wi, n=0,1,2,...,

Wontr & W5, ., n=0,12,....

Combining the inclusions (3) with the fact that {W;}52, is a base at the origin [which
follows from (4)], it is not hard to check that {W,_1\W;;1}$2; is an open cover of
Wo\{0}. Let {g;}52, be a partition of unity subordinate to the cover {W;_1\W;1}52,
such that the support of ¢; is included in W;_{\W ., for each j = 1,2,... [8].

For each k£ > 0, we now define the feedback law u; : Wy — IR by setting

0 ifz=20
uk(z) = e
¥ u;(m) Z @on () + uy (z Z gon+1(z) otherwise.
n=1

Next, we fix k > 0 and we show that uy is smooth on Wy\{0} and continuous at the
origin. Let z be in W\{0}. It is easily checked that there exists a neighborhood U, of
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x such that U, intersects with at most three sets of the collection {W;_1\W;41}32;.

Because the support of each mapping g; is included in Wj_l\Wj+1, the infinite sums in
the expressions of uy reduce to the sum of at most three fixed terms on U,. Therefore,

the smoothness of uy, on W\ {0} follows from that of the mappings u;, uj and g;, Jj=
1,2,....

Furthermore the mappings of a partition of unity summing up to 1, it is readily
seen from the definition of u; that

lug(z)| < max(|uf (2)]; lug (2)]), = € Wo\{0},

and for each k > 0, continuity of u;, at the origin follows from that of u; and u;:

The key argument for proving robust stabilizability lies in the following claim.

Invariance of the sets W :

Claim 1: There exzists kg > 0, and for each v in T~ (resp. in I't) there exists an
integer ny such that the sets Wony1 and Qg, ., (resp. W, and ngn ) are invariant
with respect to the vector field [f,u,|* for each n =n,,ny +1,....

The invariance of Wj will be proved if for each z in the boundary W, the vector
[fy(z), uk, (z)]* points inside the set W;.

By definition of the partition of unity {g;}32;, we have
gm(z) = 1 and g;(z)=0, j#m, (5)

for each z in some set Wm—1\Wm+1 which does not belong to any other set of the family
{W;-1\W ;+1}32;. Therefore, because for each m = 1,2, ..., the boundary 0Wy, of the

neighborhood W,, is included in Wm_l\Wm+1 and does not intersect with any other
set W;_1\W j11,j # m, the definition of uy yields

ug(z) = uf(z), z€Ws, n=12,..., (6)

and
up(z) = ug(z), z€ Wiy, n=0,1,.... (7

Recall that for each j = 1,2,... we have W; C Wy. Because uj (z) and uf (z) are both
equal to —k(z2)! " if z is in As NWo and to k(—z2)' =% if 2 is in A N W, , we get

ug(x) = —k(iL'Q)l_a, € Ay ﬂWj, i=12... (8)

and
ur(z) = k(—z2)t™®, =z € A2 OW]‘, i=12,.... (9)

Furthermore, by definition of u; we have

up(z) >0, z€QNW,;, j=12,... (10)
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and
ug(z) <0, zeQNW,, j=12.... (11)

From Lemmas 7.6 (with I = I'", and 6, § as given here) and 7.7 (with I = ', and
0, § as given here), we obtain for each v in I'~ (resp. in I'"), a neighborhood U, such
that the assertions of Lemma 7.6 (resp. Lemma 7.7) hold. Fix v in I'" (resp. in I't).
Because the curves €, and ), (resp. ¥}, and Qg) are tangent to the zo-axis at the
origin, Lemma 7.1 yields the existence of 3, in (0, ] such that for each 8 in (0, 5,],
the vertical segments of the boundary OWj (resp. GWJ ) are as follows: [Ag, A3] (resp.

[§4,§5]) is above the half-line {z € R? : ; = —Z :)3 Z2, T3 > 0} and the segment

[Ag,ﬁg] (resp. [By, Bs)) is below the half-line {z € R? : z; = —% T2, To < 0}, as
shown in Fig. 2 (resp. Fig. 3).

Because (3; — 0 as j — oo, the family {W;}22, is a base at the origin, and for
each 7 in T, there exists an integer n, such that

Bi < By, J=2ny2n,+1,... (12)

and
W; c Uy, j=2n,2n,+1,.... (13)

It follows from (12) and the inclusions (2) that for each n = n,,n, +1,..., the neigh-
borhood Wy, . (resp. Wg; ) is included in Wy (resp. W[;: ). In other words, for each
n = ny,ny+1,..., the neighborhood Wan41 (resp. Way) is included in Wy (resp. Wg; ).
Thus, the definition of 8, implies that for each = on the vertical segments of OWay, 41
(resp. OWap), we have f,(z) < 0 for z in [As, As] (resp. [By, Bs]) while fy(z) > 0 for
z in [A2, A3] (resp. [B4, Bs)).

We now apply Lemmas 7.3 and 7.4 (with I =I'", and 0, u, 8 and « as given here)
and Lemma 7.5 (with I = I'", and 6, u, o as given here): we obtain positive reals &y, k2
and k3. We set kg 2 max (K1, k2, k3), so that the assertions of those three lemmas hold
with &k = kg. Fix v in '™ and n in {n,,n, + 1,...}. Recall that for each i = 1,2,3,4,
the support of the mappings p; (resp. p;) is included in R; (resp. IA%Z) Further, note
that the intersection of more than two sets of the family {Ry,..., R4, Ri,... ,R4} is
empty. Thus, for each z in 8Wan .1, the vector [fy(z),uy, (2)]* either reduces to one of
the vectors listed in the different assertions of Lemmas 7.3, 7.4 and 7.6, and therefore
points inside Wo, 1, or is a convex combination of two of them. In the latter case,
[fo (), uy, (z)]* points inside Wy, either because we have a convex combination, or

because we have f,(z) < 0 (resp. fy(z) > 0) on the vertical segments [A3, A3] (resp.
[Ag, Ag]) of 6W2n+1.

By (7), ug, = u, on 8Wapt1 and it follows that the vector [fy(x), uk, (x)]* points
inside Wo, 1, for each x in OWap41.

Because we have ug,(z) > 0 [by (10)} and f(z) < 0 for each z in Q4 N Wyp1, the
vector [fy(z), uk,(z)]® points inside Qg,,,,. Further, (8) combined with the assertions
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of Lemma 7.3 (ii) imply that the vector [f,(z),u,()]* points inside Qg,,,, for each
z in Ay N Wayy1. Thus, as fong1 < By, it follows from the definition of 3, that the
vector [f,(z), uk,()]* points inside Qg,,,, for each z in 8Qg,, ., .

Therefore, for each n in {n,,n, + 1,...}, the sets Wap 41 and 6,(32” ., are invariant
with respect to the vector-field [f., uk, "

Similarly, (6), (9), (11), (12) and (13), together with the assertions of Lemmas 7.5
and 7.7 yield the invariance with respect to the vector-field [fy,uk,]* of the sets W,

and Qg, , for each v in I'* and for each n in {n,,n, +1,...}. The proof of Claim 1 is
now complete.

Robust stability :

Let ko be as defined in Claim 1. Fix v in I'". Let n, be as given in Claim 1 and
let n = ny,ny +1,.... In view of (12) and the definition of G, we have ug,(z) # 0
for all £ in Wop1\{0} with f,(z) = 0, so that the origin is the unique equilibrium
point in Wayy; of the system S(7y) obtained once uy, is fed back into S(y). Thus,
by the invariance with respect to S(7) of the compact set Wapy1 (Claim 1) and the
Poincaré-Bendixson Theorem [8], the positive limit set P(zq) of zo in Way, 1 is either
equal to {0} or to a nontrivial periodic orbit O.

If we assume that P(zp) = O, then by Theorem 3.1 in [8, p. 150], O encircles
the origin. This contradicts the invariance of the set _Q_,H2'n, ., and we conclude that
P(z0) = {0}. Therefore, each trajectory of S(v) starting in Wap41 remains in Wop41
and converges to the origin [8, Corollary 1.1 p. 146].

As {Want1}72,, is a base at the origin, we obtain that the feedback law uy, locally
asymptotically stabilizes the system S(y) for each y in I'".

Similarly, by using the invariance of the sets W, and Tg,,., we get that ug, locally
asymptotically stabilizes S(v) for each v in I'*'. Hence the lemma. [ |

Using this lemma, we now prove Theorem 4.1.

Proof of Theorem 4.1:

If %}% — 0 as v — 0, the claim of the theorem follows from Lemma 4.1.

Thus, we now assume that % does not converge to 0 as 7y tends to 0. In this case, be-

cause a(-) and b(-) are smooth and do not vanish on I', we have [%((:%| — 400 as vy — 0.
Therefore, there exists & > 0 such that |g%%[ > 0, v € I'. The result is now obtained

through the same arguments as those in the proof of Lemma 4.1 with 6 as defined
above. |

We note that each one of the feedback law of the collection {ug, k& € [ko,00)}
robustly stabilizes the family {S(vy), v € I'}. To complete our study, we now investigate
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the case when the sign of both a(-) and b(-) change as  takes the value 0.

5 Robust stabilization when the sign of a(:) and
b(-) changes

The next theorem yields a necessary and sufficient condition for robust stabilizability
of the family {S(v), v € '}, in case a(-) is negative on I'" and positive on I't. The

companion case a(-) positive on ['™ and negative on I'" is easily deduced by replacing
I'" by I't and vice versa.

Theorem 5.1 Assume that a(-) is negative on I'™ and positive on I'", and that b(-) is
negative (resp. positive) on '™ and positive (resp. negative) on T't. Then the family
{S(v), v € '} is robustly stabilizable using continuous (smooth) feedback if and only if

b(y-) _ b(vq) b(yy)  b(y-)
a0) “at P aly) San)’

(14)

for all y_ in T~ and all v4 in T'T.

Proof: We only consider the case b(-) negative on '~ and positive on I't, as the ar-
guments presented below carry over to the case b(-) positive on I'™ and negative on I't.

We first show that under (14), the family {S(y), v € I'} is robustly stabilizable by

smooth feedback. Under the assumptions made on a(-) and b(:), 27(%)5 converges either
to 0, to +o0, or to a positive real 7. Because 2—((% is positive on I, it is easily checked

that % converges to some positive real 7 whenever (14) holds.

Note that under (14), there does not exist any - in I'” and 74 in I'" such that

Z((';:; _ %’/;’i)) = 7. Let £ < —sup{a(y):v €T} and define the feedback law

u:R? = R as follows: If 27(%))— = 7 for some v in I'", set u(z) = k[%ml + 3] + 23, If

aly) =" for some vy in I'*, set u(z) = k(321 + z2] — 3. Finally, if a(y) # 7 for all

in T, set u(z) = k[%.—:vl + z9]. By adapting Example 3.8 in [10, p. 118] to our setup, it
is not hard to check that u robustly stabilizes the family {S(v), v € T'}.

Conversely, we prove by contradiction that if {S(y), v € I'} is robustly stabilizable
by means of continuous feedback, then (14) holds.

To this end, assume that there exists a continuous feedback law u that robustly
stabilizes the family {S(7), v € '} and that there exist v_ in I'” and 4 in I'" such
that (14) is violated. Define the sets £,_ and %,, by setting

b(vy_
P é{avE]Rzz x1=—a((:); )).’122, zg > 0}
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and b
Sy E{zeR?: 3 = —LH—):Ez, z2 > 0}.

a(v+)
Because the feedback law u stabilizes S(y-) and S(v4), the origin is an isolated equi-
librium of the corresponding closed-loop systems. Note that f,_(z) is negative for all
« in the region above £,  that is between ¥, and {(0,z2) € R? : z, > 0}. Fur-
thermore, f, () is negative of all z in the region below %, that is between X, and

{(0,z2) € R?: z3 < 0}. Thus, there exists a ball B;(0) of radius ¢ centered at the
origin such that

“u(z) <0, z€X,_ NB0) and  u(z) >0, z€X,, NBA0). (15)
In view of the assumption that (14) is violated, we have either b(y-) = b(y) , Or

a(y-) — alv+)
b(y-) > blys) . In the former case, we obtain ¥(y_) = X(y4+), a contradiction with

a(y-) ~ alvs)
(15).
Assume now that b(y-) > b(v+) so that ¥, is below X, . Let S be the
a(v-) 7 aly4)

region of B,(0) below ¥,_ that is between ¥, and {(0,22) € R? : z5 < 0}. Be-
cause, f,, is negative on S, the stability of the system associated with the vector-field
[/, u] implies that each trajectory z(-,zo) of this system starting in S leaves S.
Hence, it follows from the negativeness of f,, and u on X, , together with that of
fry on {(0,z2) € R? : 2z, < 0}, that z(-,zo) cannot leave S, neither through %,_,
nor through the z-axis. We therefore conclude that z(-,z¢) leaves S through the
boundary of B¢(0). In short z(-,z¢) leaves B.(0) whenever zg lies in S, a contradic-
tion with the fact that u stabilizes S(4). The proof of the theorem is now complete. B

6 Concluding Remarks

We have addressed and solved the robust stabilization problem of a general class of
parameterized families of systems in the plane that are not robustly stabilized by
smooth feedback. Our solution encompasses the study of two main cases. We approach
the first one by adapting a technique introduced in (2], in the context of nonlinear
stabilization. The second one is solved through a new method that enables us to
construct a robust stabilizer for the entire family of systems, using two feedback laws
that robustly stabilize two particular sub-families.

We have completed a first step towards the understanding of non-smooth robust
stabilization and we believe that the techniques developed in this paper will be useful
for solving more involved robust stabilization problems.

7 Appendix

We present here several technical lemmas that were used in the proofs of Theorems 3.1
and 4.1.
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The first one can be easily derived using Lemma 3.1 of [2, p. 1328] and the second
one is elementary.

Lemma 7.1 Let n > 0 and « in [0,1). Then, for each § > 0, the intersection
of the sets {z € R? : z; = n(z2)'®, 22 > 0} and Vg contains a unique point
[h(ﬂ),h(ﬂ)log(ﬂﬂgl)]. Moreover, we have h(8) — 0 as 8 — 0.

Lemma 7.2 For each positive reals B and [3', the curve Ug is on the left of ¥ when-
ever B < (.

The next two lemmas were needed in establishing Claim 1 in the proof of Theorem
3.1.

Lemma 7.3 Let I be some subset of R. Assume that b(-) is negative on I and a(-) is
either positive on I or negative on I. Suppose that a(-) and b(-) are bounded on I. Let
8, 1 and B be positive reals and let a be in (0,1). Then, there exists k1 > 0 such that
for each k in [k1,+00) and each v in I the following holds:

i) a) For each B > 0 and each = in Ug, the vector [f(z), k(z1 + z2)]' points towards
the left of Wg,

b) For each B > 0 and each z in Vg, the vector [f(z), kz1]* points towards the left
of Ug if z is below the half-line {x € R*: z; = Oz5, z2 > 0}.
ii) For each z in Aq, the vector [f,(z), —k(z2)1~%]" points into the region below A,
if T is above the half-line {z € R?: z; = 0zq, 3 > 0}.

iii) For each B in (0,8) and each x in the segment Dg = {x € R? : pzy — x1 =
-8, z1 €0,0] }, we have:

a) If z is above the line {x € R? : z; = —Oxy, x2 < 0}, then the vector
[fy(z), kz1]* points into the region above Dg.
b) If z is below the line {x € R? : z; = —20z,, x5 < 0}, then the vector

[fy(2), k(—=32)1 7]t points into the region above Dg.

Proof:
(i) Let 8> 0 and = in ¥g. The tangent to Ug at z is given by g% = 101_33}52_

If fy(z) <0, (a) and (b) are immediate. Assume now that f,(z) > 0. As b(y)zs is
negative, we get

B@)  _ al)_o .
k(wl +:I?2) ~— k z1+29 kry, — Kk

The first inequality combined with the boundedness of a(-) on I, yields claim (a).
Furthermore, if z is below the line {x € R?: z; = 29, 3 > 0}, then the tangent to
Ug at z is greater than % and claim (b) follows from the second inequality upon

recalling that a(-) is bounded on I.
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(ii) Let z be in A,. If f,(z) > 0, then the claim clearly holds. On the other hand,
if f,(x) <0, it is then easily checked that

_—Fz) —b(7) —8a(7) =b(M, , \a
agyie < max{— "} (@2), (16)

and the desired result follows, once it is seen that for k large enough, the right-hand
side of (16) is smaller than (1 + «) (z2)*.

(iii) Let = be in Dg: Because both claims clearly hold if f,(z) < 0, we assume that
fy(z) > 0. If z is above the line {z € R? : 71 = —0z3, o < 0}, then —z2 < %l and

we get
fy(z) _ Ba(y) —b(y) 1
< —. 17
kxy — 0 k ( )
Also, if z is below the half-line {zx € R? : z; = —20z,, 2o < 0}, then it is easily
checked that i () 3 by) 2a(y) — b(r)
— Iy a —b(y) 20aly) - bly
St A2 g 1
k(~x2)1—a — (/J') ma.x{ k ’ k }7 ( 8)
so that for k large enough, by boundedness of a(-) and b(-) on I, the right-hand sides
of (17) and (18) are smaller than u. Hence claims (a) and (b). [ |

The proof of the following Lemma is similar to that of Lemma 7.3 and is therefore
omitted.

Lemma 7.4 Let I be some subset of R. Assume that b(-) is negative on I and a(-) is
either positive on I or negative on I. Suppose that a(-) and b(-) are bounded on I. Let
0, 1 and B be positive reals and let a be in (0,1). Then, there exists ky > 0 such that
for each k in [ka, +00) and each v in I the following holds:

i) a) For each B > 0 and each x in \flﬁ, the vector [f(z), k(z1 + z2)]* points towards
the right of Ug.

b) For each B > 0 and each z in \i/ﬁ, the vector (fy(z), kz1]® points towards the
right of W3 if x is above the line {z € R?: 21 =0z, 22 < 0}.

ii) For each © in Ag, the vector [fy(z), k(—z2)1~2]t points into the region above Aq
if x is below the half-line {x € R?: z; = z,, 25 < 0}.

iii) For each 8 in (0,8] and each z in the segment ﬁﬁ 2 {t e R?: pzy — 71 =
B, z1 € [—3,0]}, we have:

a) If z is below the line {z € R? : x; = —0z9, zo > 0}, then the vector
[fy(z), kz1]* points into the region below Dg.
b) If = is above the line {x € R? : z; = —20zo, T2 > 0}, then the wvector

[fy(z), —k(—z2)1 =] points into the region below Dpg.

When b(-) is positive on some subset I of IR, the assertions (i), (ii) and (iii) (a)
of Lemmas 7.3 and 7.4 translate to the following lemma.
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Lemma 7.5 Let I be some subset of R. Assume that b(-) is positive on I and a(-) is
either positive on I or negative on I. Suppose that a(-) and b(-) are bounded on I. Let
6 and p are positive reals let « be in (0,1). Then, there exists k3 > 0 such that for
each k in [ks, +00) and each vy in I the following holds.

i) a) For each 8 > 0 and each x in U$;, the vector [f(z), k(—z1 +x2)]" points towards
the left of 5.
b) For each 8 > 0 and each z in U, the vector [fy(z), —kz:1]t points towards the
left of \I!f, if T is above the half-line {x € R? : 2, = —0zy, 2 < 0}.

ii) For each x in A}, the vector [f,(z), k(—z2)!~*]t points into the region above A,
if T is below the half-line {z € R?: z; = —0z,, 25 < 0}.

iii) For each B in (0,0] and each z in the segment Dg = {x € R? : pzy+ 21 =
B, z1 € [0,8]}, the vector [f,(x), —kx1]* points into the region below Dg if = is
below the half-line {z € R?: zy = Ox3, z5 > 0}.

iv) a) For each B > 0 and each z in @%, the vector [f,(z),k(—z1 + z2)]* points
towards the right of @f,

b) For each 8> 0 and each T in VS, the vector [fy(z), —kz1] points towards the
right of @‘Z; if © is below the half-line {x € R? : z; = —0xy, 22 > 0}.

v) For each z in A%, the vector [£+(z), —k(—22) =2 points into the region below A,
if = is above the half-line {x € R? : 2y = —0xy, x5 > 0}.

vi) For each (3 in (0,8] and each z in the segment ﬁﬂ 2 {r e R?: pzy+ 2, =
—B, z1 € [-B,0]}, the vector [f.,(z), —kz1]' points into the region above Dy if z
is above the half-line {x € R?: z; = Oy, 2o < 0}.

Finally the last two lemmas are used in the proof of Theorem 4.1.

Lemma 7.6 Assume that a(-) is positive on some subset I of R and that b(-) is neg-
ative on I. Let 6 and § be fized positive reals with 20 < §. Then, for each «y in I, there
erists a neighborhood U, of the origin such that for each 7 > 0 the following holds:

i) For each z in U, and in the half-line D; = {x € R? : z; = -0z — 7, 2, > 0}
the vector [f(z), —(z1)?]t points into the region above D, if z is below the half-line
{z € R?: 2, = —201, x» < 0}.

ii) For each z in U, and in the half-line D, 2 {z EA]R2 P 3 = =622+ 7, 21 < 0}
the vector [fy(x),(z1)%]" points into the region below D,, if = is above the half-line
{z € R?: 21 = —20z9, 25 > 0}.

Proof: We prove only (i) as the proof of (ii) is similar. Fix v in I, and let 7 > 0 and =

in D;. Under the assumptions of the lemma, f,(z) is positive and —zo > %, so that

(181)2 < 20 "
F1(@) = 20a(y) —b(y) "
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(1131)2 1 ;
’lI‘hus, for 1 > 0 small enough, we have [N E) <5, for all 7 > 0 and the claim fol-
OwWS. -

Lemma 7.7 Assume that a(-) is positive on some subset I of R and that b(-) is positive
on I. Let 8 and & be positive reals with 20 < §. Then, for each <y in I, there exists a
neighborhood U, of the origin such that for each T > 0 the following holds.

i) For each z in U, and in the half-line D, = {z € R?: 2y = pzo — 7, 21 > 0},
the vector [fy(z), (z1)?]' points into the region below D, if = is above the half-line
{r €R?: z; = 2025, x5 > 0},.

ii) For each x in U, and in the half-line ﬁ, 2 {z € R?: 2y =pzo+ 7,21 < 0},
the vector [f(z), —(z1)%])" points into the region above D, if z is below the half-line
{:I) € R? : 1 =201, 22 < 0},
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