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Abstract

This paper presents classes of rate-compatible trellis codes designed for channels with
flat, slow Rayleigh fading. The codes thus described are “multiple” TCM (MTCM) codes
as proposed by Divsalar and Simon - i.e., codes in which multiple symbols are associated
with each transition through the trellis; by applying appropriate puncturing tables to
low-rate MTCM codes, we obtain families of MTCM codes, all of which can be decoded
with (essentially) the same decoder.

By means of computer search, several such families are designed so that each family
member is at least as good as any comparable code in the literature. (“Good” here is
defined in terms of minimum time diversity and minimum squared product distance, the
most important parameters for performance over Rayleigh fading channels.)

A protocol to implement these rate-compatible trellis codes in a type-II hybrid ARQ
format with only a low-rate feedback channel is described. Upper bounds on the resulting
bit error rate are developed and the results are used to select the best adaptive code from
several possibilities. Simulation results comparing the proposed scheme with fixed-rate
codes of the same throughput show substantial coding gain. Finally, a protocol modifica-
tion limiting the variability of the code rate over a frame is described; this modification
eliminates the need for excessive buffering, with a very small effect on performance.

Key Words: Trellis-coded modulation, fading channels, Rayleigh channels, automatic repeat
request, type-1I hybrid ARQ.
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1 Introduction and Background

Trellis coded modulation (TCM) is a combined strategy for channel coding and modulation
that can provide significant gain for bandlimited channels. Although TCM was originally in-
troduced for additive white Gaussian noise (AWGN) channels, there has been considerable
interest recently in applying TCM to the fading channels that characterize wireless communi-
cation systems.

Consider a lowpass-equivalent channel in which the complex-valued output sequence {y;} is

related to the complex-valued input {z;} as follows:

Yi = Pi%i + M. (1)

Here n; is a zero-mean complex Gaussian vector, with independent real and complex parts, each
with variance Ny/2. The random variable p; is the fading associated with the %" transmitted
symbol; for channels with no line-of-sight between transmitter and receiver — e.g., land mobile
radio channels — {p;} is well modeled by a sequence of Rayleigh random variables. With
sufficient interleaving, successive fading values may be assumed to be independent.

It has been shown [1] that, at high SNR, the most important design parameters for trellis
codes over a channel with independent Rayleigh fading are the minimum time diversity L
and the minimum squared product distance df,. The minimum time diversity of a code is the
minimum Hamming distance (in channel symbols) between two distinct encoded sequences; if
C is the set of channel input sequences corresponding to valid trellis paths, and if d(:, ) denotes

Hamming distance, then

L = min{d(c,c') : ¢,c’ € C,c # c'}.

The corresponding minimum squared product distance is given by

@ =min{ [[ e —c*:d(c,c)=L}.
{iic,#c}
Note that this is unlike AWGN channels, where the most important design parameter is the

minimum squared Euclidean distance between valid paths.
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Divsalar and Simon [2] proposed multiple trellis-coded modulation (MTCM) for fading chan-
nels; MTCM codes have k£ > 2 transmitted symbols associated with each trellis branch, thus
permitting a time diversity of k£ between parallel branches.

Although trellis codes with large L and df, can yield coding gains over fading channels,
they do not exploit the channel’s time varying nature; adapting the code to changing channel
conditions may provide even more gain. Various researchers [6]—[8] have used this idea of
adaptive code selection — in which “incremental redundancy” is requested via a feedback channel
when the channel is sufficiently noisy — to increase robustness. Some have used punctured codes
[9] in this framework; puncturing a code means deleting some redundant symbols, thereby
increasing the rate and decreasing its robustness. Such codes can be used in an automatic
repeat request (ARQ) format by using a high-rate (punctured) code when the channel is good
and using the lower-rate (unpunctured) code when the channel is bad. Hagenauer [8] proposed
using a whole family of “rate-compatible” punctured convolutional codes in this way. A family
of codes is said to be rate-compatible if each code in the family is a punctured version of all the
lower-rate codes in the family; rate-compatible punctured codes provides the system designer
with a family of codes with different rate/performance profiles — each of which can be decoded
using (essentially) the same Viterbi decoder.

This paper extends the idea of rate-compatibility to MTCM codes. This is done by finding
families of rate-compatible MTCM codes that are optimal for Rayleigh fading channels —
i.e., with L and dg maximized. We then propose a protocol for these codes that allows the
transmission of incremental redundancy while achieving a specified average rate.

In Section 2, we review the Divsalar/Simon design procedure for MTCM codes; we then
use this procedure to design families of rate-compatible MTCM codes. In Section 3, we use the
codes in an ARQ format and derive upper bounds on their performance. We then show how to
use these bounds to select parameters of the adaptive code. Finally, we modify the protocol to

limit the variability of the rate, thereby lessening the buffer requirements.



2 Rate Compatible TCM for Fading Channels

Our goal is to design a family of rate-compatible trellis codes for the Rayleigh fading channel

using the multiple TCM design approach of [2]. We begin by reviewing that approach.

2.1 Multiple TCM for Fading Channels

The modulation is M-ary phase-shift keying (M-PSK), with signal set S = {so,51,-..,Sm-1},
where s; = cos(i2w /M) + jsin(i27 /M).

First consider codes with fully-connected trellises and M parallel branches; M different
branches (with M different branch labels) connect every pair of states. Let k£ denote a code’s
multiplicity — i.e., each branch label consists of £ channel symbols, denoting the k£ transmitted
symbols associated with that transition. The rate (or throughput) of such a code is determined
by the number of states; if there are 2" trellis states, then there are M - 2¥ outgoing edges in
each state, meaning a rate of [v + log,(M)]/k bits per symbol.

Associated with each “bundle” of M parallel branches is a set of M branch labels - M
different k-tuples over S. Let A; denote the i set of branch labels; then, generalizing slightly

the notation in {2], we express A; as follows:

A = {(sjv Snijdes1s sn216c1.2"‘Snk—lj®cz,k—l) :j=0,1,..M— l}v (2)

where the subscript operations are performed modulo M. We assign such a set of branch labels
to each bundle of parallel branches between every pair of states; thus, for each state we need 2
sets — one for each outgoing bundle. We will require two such collections of sets — one associated
with the even-numbered states and the other associated with the odd-numbered states. (See
Figure 1.) As a result, we require 2! sets of labels {4; : i = 0,1,...,2"" — 1}.

The choice of the multiplicative constants {n,} and the additive constants {c;,} determine

the distance properties of the resulting codes:

e The same k — 1 multiplicative constants {n, : 1 < £ < k — 1} are used in all the A;’s.

Thus the choice of the n,’s affects the distance properties within each A; but does not
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affect those between two different A;’s — i.e., the n,’s affect the distances associated with

parallel branches.

e The additive constants {c;p: 0 < i < 2" — 1,1 < ¢ < k — 1} do not vary (for a given
coordinate) within each A;; thus they have no effect on the distance properties within
each set but instead control the distances between them —i.e., the ¢;’s affect the distance

properties associated with non-parallel paths through the trellis.

Note that, because the multiplicative constants control only distance properties associated
with parallel paths and the additive constants control only distance properties associated with
non-parallel paths, we may search for the optimal values independently.

Divsalar and Simon showed that the multiplicative constants in Table 1(a) for the case k = 2
are optimal. (More than one entry in the table means that any such entry is optimal.) The

optimal multiplicative constants for £ = 3 and k = 4 are given in Tables 1(b) and 1(c).

2.2 Rate-Compatible TCM for Fading Channels

Examination of Table 1 reveals that, for each M, the optimal multiplicative constant nj for
k = 2 also appears as one of the optimal constants (n}n}) for £ = 3 — and that these are,
in fact, two of the optimal constants (n}njnj) for £ = 4. So, at least for these values of &
and M, we can find a family of rate-compatible MTCM codes where each code has optimal
multiplicative constants. The procedure for choosing the additive constants will be made clear
later in the section, but let us first give an example of a rate-compatible MTCM code.
Example 1: Figure 1 shows the trellis for a ¥ = 3 code using 8-PSK modulation. (In
this trellis diagram, the signal s; is represented by i.) For each transition there are M = 8
parallel branches; each set of eight 3-tuples next to a state contains the labels for the corre-
sponding “bundle” of parallel branches. (For example: The eight branches from state “0”
to state “1” are labeled with {s¢s9s7, 518580, ...,578756}). This code is obtained by con-
structing the sets A; for ¢ = 1,2,...,8 according to equation (2) with the optimal multi-

plicative coefficients (nynz) = (31) and appropriate additive constants; for example, Ay =
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{503080,815331,828682,838183,348484,858785,868286,878587} is constructed using ¢y = co2 =
0 while A; = {s05287, 81580, $28081, 839382, 548653, 55154, 565485, 575756} is constructed using
¢y = 2 and ¢;5, = 7. If we now puncture the last symbol on each branch, the result is an
optimal £ = 2 code with multiplicative coefficient n, = 3. O

Table 1(d) contains the optimal multiplicative constants for £ = 5. For M > 16, none of the
optimal constants from Table 1(c) appear as a subset of the corresponding entry in Table 1(d).
So if the signal constellation has cardinality M > 16 then one cannot find a pair of optimal rate-
compatible MTCM codes (of this design) of multiplicities four and five. For M < 8, however —
for BPSK, QPSK, and octal PSK modulation — our search results indicate that one can always
find optimal multiplicative constants at every multiplicity & < 10.

Now consider the additive constants — {c;¢: £ = 1,...,k — 1} for each set A;. Recall that
the additive constants are the same in each coordinate within a set A;, and they thus control
the distance properties between different A;’s; recall also that the additive constants may be
optimized without regard to the multiplicative constants.

We choose the additive constants to maximize the following distances (in decreasing order

of importance) between any pair of signals diverging from or remerging into the same state:
e minimum diversity;
e minimum squared product distance;

e minimum squared Euclidean distance.

In all of the codes that we have searched, we were able to find additive constants such that the
diversity between any pair of k-tuples that diverge from or remerge into a common state is at
least k — 1, the best that can be achieved. After optimizing the minimum diversity between
such branches, we then maximized the minimum squared product distance; for codes with
multiplicity £ > 3, this maximization does not affect the minimum squared product distance

of the code since the minimum diversity (and hence the minimum squared product distance) of



the code is determined by parallel branches. Our motivation for this and the squared Euclidean
distance optimization was mainly to enhance performance at low-to-moderate SNR.

This search for optimum additive constants may be computationally intensive. For an
MTCM code of multiplicity & that makes use of v different sets (A;,i = 0,1,...,v — 1), we
must search for v(k — 1) different additive constants, each of which can take any value between
0 and M — 1. Moreover for each combination of these constants, we are required to examine
all possible pairs of k-tuples that diverge from or remerge into a common state. However, the
search effort can be simplified by noting that, for a given k-tuple c € A; generated by equation
(2), the set of distances between ¢ and all the elements of Ay (¢ # i) does not depend on which
element of A; is selected. (For details, see [12].)

The results of our search through five families of rate-compatible trellis codes are given in
Table 2. The trellis structures we assume are shown in Figure 2; in each case there are 2” states
in the fully-connected trellis and 2“*! sets of branch labels, indicated by {Bg, By, ..., Bav+1_1}.

The B;’s are generated as follows:

e For codes in which there are M parallel branches, where M is the alphabet size - i.e.,
codes for which the throughput is v + logy (M) bits per symbol — each of the 2**! B;’s

contain M labels and are the same as the A;’s as defined in equation (2).

e For codes in which there are M/2 parallel branches - i.e., codes for which the throughput
is v +log,(M) — 1 bits per symbol — each of the B;’s contain M/2 labels and are obtained
by generating 2" different A;’s according to equation (2) and then “splitting” each A;
into two. The even entries of A; become Bsy; and the odd entries of A; become By;,, for

i=0,1,...,2¢ — 1.

Table 2 contains the multiplicative and additive constants necessary to construct the A;’s
(and thus the B;’s). The first digit in each triple of constants corresponds to the k = 2 code;
the first two digits correspond to the & = 3 code, and all three digits correspond to the k = 4

code. For the multiplicative constants, only one such triple is necessary; while for the additive



constants we require one triple for each A; — 2*! triples when there are M parallel branches
and 2¥ triples when there are M /2 parallel branches.

Although each code in Table 2 is rate-compatible with the other codes in the same family,
each code has distance properties at least as good as any code in the literature with the same
number of states, throughput, and multiplicity; the rate-compatibility property “costs” nothing
in terms of performance for these codes over Rayleigh fading channels. Some comparisons are

made in Table 3.

3 A Hybrid-ARQ System

When the transmission characteristics of a communication channel change over time, a fixed-
rate error control code might not provide consistently acceptable performance. Under such
circumstances, adapting the power of the code to changing channel conditions may be necessary;
the rate compatible MTCM codes described in Section 2 are well-suited to this use. In this
section we describe a protocol in which these codes are used in a type-II hybrid ARQ format,

with incremental redundancy used as needed when the fading becomes excessive.

3.1 Description of the Protocol

The communication system that we consider is shown in Figure 3. The demodulator and Viterbi
decoder are assumed to have perfect channel state information (CSI) — i.e., the fading values
{p;} in equation (1); techniques such as pilot symbol insertion [4] or decision feedback coupled
with adaptive linear prediction [5] can be employed to recover the CSI. We also assume that
the demodulator achieves coherent detection.

As shown in the figure, the feedback comes from the demodulator rather than an error
detection device after the Viterbi decoder, as it would in a “typical” ARQ scheme. The decision
to ask for additional redundancy is based on the perceived channel state rather than any
detected errors. When the received symbols are sufficiently faded, a decoder error is anticipated;

so instead of wasting time trying to decode and (most likely) detecting an error, the receiver



asks for more redundancy as soon as the fade is perceived.

Example 2: The mother code is described by the trellis in Figure 1. Since each state has
2¥ = 32 outgoing branches and each branch is associated with £ = 3 channel symbols, the
bandwidth efficiency of this code is log,(32)/3 = 1.67 bits/symbol.

When the fading conditions for the first two symbols of a branch are unfavorable, the encoder
sends the third symbol; when the fading conditions are favorable, the encoder does not send
the third symbol — i.e., the third symbol is “punctured” — thereby in effect creating a code with
rate 5/2 = 2.5 bits/symbol. The receiver declares that the fading conditions are unfavorable if
the fade value falls below a threshold for at least one of the first two symbols; otherwise the
channel conditions are considered favorable.

As an example, suppose the encoder passes through the state sequence
0-1-52-33=>1->0->0.
Suppose further that the signal 3-tuples associated with the encoded sequence is given by
805287 SgS1S4 515753 S0S3S4 S18655 S05050

The transmitter — depending on the feedback from the receiver — sometimes sends all three
symbols on a branch and sometimes only the first two symbols. We now explain how to
implement this using a low capacity feedback channel.

In a typical communication system for fading channels, symbols are interleaved prior to
transmission and de-interleaved prior to decoding at the receiver; this is done to “break up”
the fades and make them appear independent at the decoder. To illustrate, assume a 3 X 6
interleaver array, placing the above symbols in the array as shown.

So 8¢ 82 81 St 84
8) So 87 S3 83 84
81 So S¢ Sg S5 So

Our strategy for reading the encoded sequence into the interleaver array is as follows:

e Each row of the array contains two branch labels.
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e The first two symbols in each label — the ones that are always transmitted — are placed
in the rows “round robin” style. For instance, the first row of the array contains the first
symbol from the first label (sq), followed by the first symbol from the second label (sg),
followed by the second symbol from the first label (s3), followed by the second symbol

from the second label (s;).

e Once all the “required” symbols are placed in the row, we next place the “optional”
symbols — i.e., the third symbols from the labels, the ones that may be punctured. For
instance, the first row of the array finishes with the third symbol from the first label (s7)

and the third symbol from the second label (sq4).

The symbols are transmitted column-by-column. All the symbols in the first four columns are
always sent, while some of the symbols from the last two columns may be punctured. For
instance, if the receiver observes that one or both of the first two symbols from the first branch
were severely faded —1i.e., sg and s, — then the receiver tells the transmitter that the last symbol
(s7 in this case) should be transmitted; otherwise the last symbol is punctured. Note that this
feedback channel requires relatively low capacity — for this example, six bits of feedback for
each frame of data in the forward channel. Moreover, substantial delay is acceptable in this
protocol; between the time the receiver knows if it needs the third symbol from a label and the
time the transmitter must send (or not send) that symbol, there are approximately N signaling
intervals, where NV is the interleaver depth (i.e., the number of rows in the array). If necessary,
the delay can be increased by delaying the optional symbols one or more frames — e.g., in this
example, the third symbol on each branch is sent (or not sent) F' frames after the first two
symbols from that branch.

The average throughput R, is uniquely determined by the fading threshold T;; that triggers
the request for incremental redundancy. By varying Ty, we can achieve any throughput between
that of the mother code and that of the punctured code. Assuming that two consecutive symbaols

on a branch are subject to independent fading, and letting p(Ty) = P(p > Ty) be the probability
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that a particular fading value exceeds Ty, then

1 1 1
2 —n2 I
yZ (Td)_Rp -+ (1 Y4 (Td))Rm Ravg.

If p is Rayleigh-distributed normalized so that E[p?] = 1, then p(Ty) = e~T4 and so

Ra.v —Rm
T, = \/(1/2)111—51&'—1&(3&%_%)

If we choose R, = 1.67, R, = 2.5, and R,yz = 2 bits/symbol then Ty = \/ln_(2)_/5 ~ 0.589.

To compare the coding gain of our adaptive code with that of a fixed-rate TCM scheme
optimized for fading channels, we take an eight—state, 8-PSK code with a throughput of 2
bits/symbol and distance parameters, L = 2, d2 = 8 [1]. This code requires the same number
of comparisons to decode one information bit as the adaptive code [12].

In Figure 4, we give simulation results for both adaptive and fixed-rate codes over a Rayleigh
fading channel with normalized bandwith BpT, = 0.01; this corresponds to a vehicle speed of
60 MPH, a carrier frequency of 900 MHz, and a symbol rate of 8000 symbols/sec. A 50 x 15
block interleaver is used. The results show that the adaptive code provides a coding gain of

more than 3 dB over the fixed-rate code at a BER of 107°.

Example 3: The trellis of the mother code is given in Figure 5. This code has a multiplicity
of k = 4, a throughput of R, = 0.75 bits/symbol, and a time diversity of L, = 4; if the last
symbol on each branch is punctured, the result is a multiplicity-three code with rate B3 = 1.0
bits/symbol and diversity Lz = 3. If the last two symbols on each branch are punctured, the
result is a multiplicity-two code with a throughput of R = 1.5 bits/symbol and a diversity of
Lo = 2. All these codes are two-state codes with QPSK modulation, and, taken together, form
the first family of codes in Table 2. Our protocol will use all three codes.

The transmitter sends the first two symbols per branch regardless of the channel conditions.
If there is no deep fade on either of these two transmitted symbols —i.e., both of the fade values
are above a threshold T; — then the transmitter sends no more symbols from that branch; if
either of the first two symbols are faded below T}, then the third symbol is sent. A similar

process occurs after the third symbol is received: if all three received fade amplitudes are above
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a threshold T, the transmitter punctures the fourth symbol; otherwise the fourth (and last)
symbol is sent. (Obviously, T > T».) The values of T} and T, determine the average rate of
the system. However, now the average rate does not uniquely determine T} and 7. Any values
of T1 and T satisfying the “average throughput equation” achieves the desired throughput. To
determine which operating point minimizes the bit-error rate, we develop, in the next section,

upper bounds on the bit error rate of these rate-compatible MTCM schemes.

3.2 Performance of Rate-Compatible MTCM Codes in a Hybrid-
ARQ Environment

In this section, we develop upper bounds in the bit error rate of a rate-compatible trellis struc-
ture consisting of three nested codes of multiplicities two, three, and four. The generalization
to larger families of codes is straightforward.

We first briefly review Chernoff bounding techniques applied to the bit error rate of fixed-
rate TCM over fading channels. In Section 3.2.2, we extend this analysis to our rate-compatible
MTCM structure. In Section 3.2.3, we discuss how to choose the thresholds to minimize BER
while maintaining a specified average throughput. Finally simulation results are provided to

check the tightness of the bounds and to assess the resulting coding gain.
3.2.1 An Upper Bound to the Bit Error Rate of TCM Over Fading Channels

To establish notation, we briefly review the Chernoff bound on the BER of a coherent fixed-rate
TCM system in Rayleigh fading. The approach is the one in Biglieri et al [3].

Recall that the received complex baseband signal y, at time k is given by y, = przi + 1
where z; and n; are the complex baseband representations of the transmitted signal and the
noise (respectively), and p; is the magnitude of the fade. Since coherent detection is assumed,
Pk is real-valued; moreover, we assume the sequence {px} can be perfectly estimated at the

receiver. For a land mobile radio channel, p; is Rayleigh distributed, with pdf

2pexp(—p*); ifp>0
=45 e
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Over an observation window of L signal intervals, a maximum likelihood decoder chooses
as its estimate of the transmitted sequence that sequence X; = (z1,2s,..., 1) minimizing

Yk | |yi — pizi|®. Then the conditional pairwise error probability is given by
2 L 2
P(Xy— Xy |p) = Z lys — pizil” > 3 lyi — pidillpy)

where X, = (%1, &2, ..-Z) and p = (p1, p2---p1). Using the Chernoff bound, this conditional

pairwise error probability can be upper bounded as [3]

L
P(Xy — Xplp) < ] exp(———pilz; — 2:f°)
=1

where N;/2 is the variance of the real and imaginary components of ny.
For fixed-rate TCM, assuming independent consecutive fades, the unconditioned pairwise

error probability can be computed as follows:

2oy - 34|

) 1
P(Xy — Xy) < HEl[exp( »
L 1

- 11

il ﬁll'i — ;]2

This can be used to upper bound the error event probability via the union bound:

8

P(e) S EZ Z XL—)XL)

L=1Xp X #X,,
o0 KL L 1
< E E E 2RV
T LAiXox '1;111+411\r|zi_§7i!2
L#Xy ¢ °

where 2¥ is the number of trellis states and K is the number of information bits per branch.

This upper bound on the error event probability can be expressed as
Pe) <T==1T¢1,

where, 1 is the 1 x 2¥ all-1 vector and G is the (averaged) transfer function matrix, a 2 x 2¥

matrix given by



where E;, = (e, ey, ...e1) represents an error label sequence,
G’(EL) = I:I(el) .ﬁ(eg) ...H(eL),

and the (p, q)* entry of H(e;) is given by

_ 1 1
[H(ei)]p,q = 2_Kc§—:->q 1+ 471\15|f(c) — f(c+e)|2'

Here, ¢ takes on all values of the binary labels associated with a transition from state p to state
g; the summation accounts for parallel transitions. The function f(-) maps the binary labels to
the channel symbols.

This error event probability bound can be used to bound the bit error probability [3].

3.2.2 Upper Bound to Bit Error Rate of a Rate-Compatible TCM Structure over
Fading Channels

Recall the protocol described in Example 3: For each trellis branch, either two, three, or four
symbols are transmitted; let {p; : 1 <4 < 4} denote the fading values imposed by the channel
during the (at most) four transmissions. Then the protocol uses the values of the p;’s to

determine how many symbols are sent. Specifically:
e If p; > T} and py; > T3, then no more symbols are transmitted.
o If p; < Ty or po <Tj (or both), then the third symbol is transmitted.

e Once the third symbol is transmitted, the values of p;, p; and ps are compared with
a second threshold T, (T, < T3); if min(py, p2, p3) > T2, then no more symbols are
transmitted — i.e., the multiplicity-three code is used. If min(py, ps, p3) < T3, then the

fourth branch symbol is transmitted — i.e., the multiplicity-four code is used.

One can characterize the code used during a branch in terms of several disjoint events

involving the fading values:

e The multiplicity-two code is used if and only (p; > T3) and (p2 > T1);
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e The multiplicity-three code is used if and only if one of three disjoint events occurs:

= (p > T1) and (T3 < pz < T}) and (p3 > T3);

- (T2 <p< Tl) and (pz > Tl) and (p3 > Tg);

- (T2 <p1 < Tl) and (T2 < p2 < Tl) and (p3 > T2)

e The multiplicity-four code is used if and only if one of four disjoint events occurs:

- (; < T3);

— (m > T3) and (p2 < T3);

- (T < p1 < Tq) and (po > T3) and (p3 < Tp);

- (p1 > Tl) and (Tz < p < TI) and (p3 < T2)

It will be useful to refer to these events by the intervals associated with the corresponding

fading values; to this end, define the following sets:

621

’

O3,

’

932

’

@33

’

Oy,
Oy40
Oy43

64,4

{(T1, 00), (T1, 00)}

{(T1, ), (T3, Th), (T3, 00) }

{(T2, Th), (T1, 0), (T3, 00) }

{(T2, 1h), (T2, Th), (T2, 00) }
{(0,T2), (0,00), (0, 00), (0,00) }
{(T2,00), (0, T3), (0, 00), (0,00)}
{(T2, T1), (T2, 0), (0, T2), (0, 00) }

{(Tl, OO), (TQ, Tl), (O, Tg), (0, OO)}

Our analysis will be similar to that for the fixed-rate case, but the time-varying trellis

complicates things. Consider a single stage of the trellis; during that stage the transmitter will

send two, three, or four symbols to convey a fixed number of information bits. Moreover, we
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assume an error free feedback channel so that both transmitter and receiver agree on how many
symbols are transmitted on each branch.

When the receiver makes an error in decoding a particular branch, there is an associated
error in the binary label; let E denote such an error - i.e., the signals associated with (say)
binary label C were transmitted, but the decoder chooses as its estimate the signals associated
with binary label C + E. We compute H(FE), a 2V x 2 matrix whose (p,q)*" element is an
upper bound on the probability that a transition from state p to state ¢ is incorrectly decoded,
yielding a label error E. Because the number of symbols transmitted per branch varies, the
number of bits needed to describe E varies; for QPSK, for instance, F is represented by four,
six, or eight bits.

Let E@ = (e;,e3), E® = (e1,es,e3), and E® = (e}, ez, e3,e4) denote the specific error

labels of multiplicity two, three, and four corresponding to the “generic” error label E. Then
H(E) = Hy(E®) + Hy(E®) + Hy(EW),

where each element of FIj(E(j)) is an upper bound obtained by averaging over those fading
values that result in the use of the multiplicity-j code — i.e., the fading values lying in the

intervals described by the ©’s above; for instance

[Ho(E®)]pg = = Z Z1,,00(f(c1), fe1+€1)) - Zry,00(f(C2), fc2 + €2)).
(01 cz)
p—r
Here,
B
Zas(@,8) = [ (2pexp(=p) exp(——|x — ¢[%)dp,

and (cy, c;) takes on all possible label values associated with a transition from state p to state

g in the multiplicity-two code. In a similar fashion,

FHoEpa =55 % 2 11 Za o0, (F(@0), £les +25)),

(c1,e2,03): =1 j:1
p—q

where (Ay;, By;) is the j% element of O3, and
. 1 4 4
[Hy(ED)]pq = o8 2 2 Zacme, (f(ci), £ej + e5),

(cl ,c2,c3,t:4)' Z:l J:1
p—q

16



where (A, By;) is now the j* element of ©y4.
Now let E; = (Ey, E,, ..., Ej) denote a sequence of error labels corresponding to an error

event lasting I branches (not symbols). Then
G(Ey) = A(B)H(E,)... H(E)

is a 2 x 2 matrix whose (p, q)** element is an upper bound on the probability that the error
event E; begins in state p at any time ¢ and ends in state g, L branches later. From this, we

can proceed as before, yielding an upper bound on the error event probability:
1 = = X =
Ple) < FITGI where G=)> G(E;).

Example 4: Consider the simple mother code of multiplicity four in Figure 6. Our adaptive
scheme is composed of three codes of multiplicity £ = 2,3, and 4. It is easily seen that only

three binary label errors are possible during each transition:
e When two paths diverge, a label error £ = [01,01, 01,01} occurs.
e When two paths remerge, a label error & = [10, 10, 10, 10] occurs.
e For every other branch in an error event, a label error §; = [11,11, 11, 11] occurs.

The averaged transfer function is given by

= H(&) [ Laxe — H(&)] T H(&).

We now give an explicit expression for H(&;). (H(&) and H(&;) are derived similarly.) H(¢;) =
Hy(e?) + Hy(6P) + H4(£§4)), where

) = L[ Zheel7(00), F(00+01) Z8 L (F(O1), f(01+01)
' ZTloo( £(10), (10+01)) Z}, oo (f(11), f(11 + 01))

— [ T1 oo( 8) T1 oo( )

T1 oo( 5) T1 oo( )

Here, E, is the symbol energy; here also we have used the (somewhat abusive) notation,

Zap(a) £ Z4 5(a,0) for any real number a.
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The fact that all the entries of Hy( P) ) are identical suggests that the transfer function can
be computed with scalar branch gains — which is indeed the case for any QPSK code.

All of the entries of H3(¢{”) and Hy(¢{Y) are similarly identical. The (0, 0)* entry of H3(£{)
is given by:

3 3
[Hs (& (3) Voo = Zl:[ Au;.Be, (F(c5), f(c; + €5))

=1j
where (c;, ¢y, c3) = (00,00, 00), (e;,eq,e3) = (01,01,01), and (A, Be;) is the j* element of

l\Dll—l

93,¢. Then,

_ 1
[H3( %3))]0,0 = E[ZTl,OO@ES)ZTz,Tx (2ES)ZT2,00(2E8) + ZTz,Tl (2E8) ZT1,°°(2E8)ZT2>00(2E5)

+Z'%2,T1 (2E3)ZT2y00(2E3)]
Similarly, each element of FI4(§§4)) is given by

1
[H4( (4))]0,0 = E[ZO,T2(2ES)Z(:)5,00(2E8)+ZTz,oo(2E8)Z0,T2(2E6)Zg,oo(2ES)
+Z1, 1, (2F5) Z1,,00(2E5) Zo 1, (2E5) Zo,00 (2 E)

+ZT1,00(2E8)ZT2,T1 (2ES)ZO,T2 (2ES)Z0,00(2E8)]
3.2.3 Determination of Thresholds

Given three rate-compatible trellis codes of multiplicity two, three and four with rates Ry, I3
and R, respectively, our goal is to determine the thresholds 7 and T that minimize the BER
while maintaining a specified average rate Ravg (R4 < Ravg < Ry).

Let P; be the probability that ¢ symbols are sent during a given branch. Then
P, = P(p,>Ty)P(p > Ty) / 2p exp(—p?) dp)? = e 7.

Py = Ppy>T)P(Tz < ps <Th) P(ps >Tp) + P(T; < p1 <T1) P(pa > T1) P(ps > T3)

+P(T2 < Mm <T1)P(T2 < P2 <T1)P(,03 >T2)

— e——T22 (6—2T§ _ e—2Tf)

P, = 1-P,- P
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The average throughput is then specified by

B P P_ 1
R2 R3 R4 Ravg .

This equation has infinite solutions in 7 and 75. We therefore select several valid values, plot
the BER upper bound for each choice, and pick the best one.

Consider now the mother code of Example 3. For this code R; = 1.5 bit/symbol, R; = 1.0
bit/symbol and R4 = 0.75 bit/symbol and the throughput equation is then,

I C + —e ) 1
1.5 1.0 0.75 " Rayg

— 2 T2 _ 2 - 2 _ 2 . 4 _ 2
o211 T3 (=23 — ¢~2T7) 1— e — ¢T3 (e~ 203

Suppose the desired average rate is R,y = 1 bit/symbol. Then the above simplifies to

%e—m (e T =Tty _ 2pm _ 1

3 3
In Table 4(a), we give some values of T} and T; that satisfy this equality, and the resulting
probability of using each nested code on a given branch.

The upper bound on bit error-rate for each choice is depicted in Figure 7(a). The same

analysis is repeated for R,,, = 1.25 bit/symbol in Table 4(b) and Figure 7(b).

3.2.4 Simulation Results

In this section, simulation is used to check the tightness of the bounds from Section 3.2.3 and to
assess the adaptive codes’ coding gain over some fixed rate codes from [10]. The trellis diagrams
from [10] are given in Figure 8; for both codes, L = 2 and d? = 16.

Figure 7(a) and 7(b) show the upper bounds for each of the adaptive codes. Figure 7(c)
compares the rate R = 1 bit/symbol adaptive codes; simulations indicate that the best adaptive
code — Code 1, transmitting two, three, or four symbols with equal probability — out-performs
the worst with a coding gain of about 4 dB at a BER of 1073. Figure 7(d) compares the 1
bit/symbol adaptive Code 1 with a fixed-rate code from [10]; the resulting coding gain is about
7 dB. In Figures 7(e) and 7(f), we provide analogous results for rate R = 1.25 bit/symbol codes.
The gains of the best adaptive code (Code 1) over the worst adaptive code (Code 5) and over

a fixed-rate 1.25 bits/symbol code from [10] are about 2 dB and 8 dB respectively.
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3.3 Limiting the Variability of the Code Rate

The above protocol places no restriction on the number of punctured symbols in a frame; thus
some buffering capability is necessary.

Consider the scheme in Example 1. Recall that this code represents five information bits
per branch with either two or three channel symbols, and the targeted average rate is Rayg = 2
bits/symbol. If we want a fized rate for each frame, then we would puncture exactly 125 symbols
out of 750 — i.e., 250 branches (representing 1250 information bits) would be conveyed, with
half the branches represented with two symbols and half with three symbols. If, however, we
puncture symbols based on the algorithm in Section 3.1, the number of punctured symbols
can vary from less than 40 to more than 200; Figure 9 is a histogram indicating the relative
frequency of punctured symbols when variable puncturing is used.

To limit this variability, we alter the protocol so that exactly 125 symbols are punctured in
each frame. The transmitter first sends 500 symbols of the frame — i.e., the first two symbols
from each branch. The remaining 125 transmitted symbols are the third symbols from those
branches most corrupted by the fading. Note that the thresholds of the previous protocol play
no role here.

Figure 10 compares this fixed-rate approach with the variable-rate approach of Section 3.1.

We see that the cost of eliminating the buffer variability is less than 0.5 dB at a BER of 1075.

4 Summary

This paper applied the notion of rate-compatibility to multiple TCM codes to construct “nested”
trellis codes for channels with flat, slow Rayleigh fading. It showed that the codes in our rate-
compatible families are at least as good as (and in some cases better than) corresponding
codes from the literature. We then described a protocol that uses these codes in an adaptive
hybrid-ARQ scheme with a low capacity feedback channel. We developed upper bounds on
the performance of such a scheme and used these bounds to select the best code from several

possibilities with the same average rate. Simulation results against fixed-rate codes from the
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literature demonstrated a substantial coding gain with no sacrifice of throughput. Finally, we

described how to limit the variability of the code rate of such a scheme, thereby minimizing

potential buffer problems. Simulation results in a particular case indicate that the loss incurred

as a result of this rate-fixing is less than 0.5 dB.
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* * * M (n* n* ng) |
M (n}) M (nf n3) | L2
2 () 2 D) 2 8 : 3
4 (1) 4 (11) . L33
s (3) 8 (13), (3 3) 3 (123)
R | PG | E R ¢
64 (19), 27) | | 64 (11 27), (15 29), (17 19) || | 4 ((11{,) 1277 12%)) ((113 22"; 222))’
(a.) k=2 (b.) k=3 (c) k=4
M (n} n% n%nk)
2 (I1l1
4 (1111)
§ (1133),(1333)
16 (1377),(1577),(3355)
32 (351115), (371315), (3913 15), (579 11), (5 11 13 15)
64 (3232527), (517 19 23), (7 9 15 31), (79 17 23, (7 11 19 27),
(7 15 23 25,(9 13 21 29), (9 15 17 25), (11 15 25 29)

(d) k=5

Table 1: Optimal multiplicative constants for £ = 2, 3,4, 5.

22



No. of Mod. Bits/ Mult. Additive Throughput L 2 dfee
States Branch Constants Constants (bits/symb.) (= k)
2 4- 3 111 000 213 123 332 1.5 2 4 4
PSK 1.0 3 8 6
0.75 4 16 8
4 4- 3 111 000 213 132 301 1.5 2 8 6
PSK 1.0 3 64 10
0.75 4 256 16
2 8- 4 313 000 642 246 404 2.0 2 2 2.34
PSK 1.33 3 1.17 4.59
1.0 4 4 8
4 8- ) 313 000 274 421 615 2.5 2 1.17 1.76
PSK 347 533 760 154 1.67 3 1.17 4.34
1.25 4 4 6.93
8 8- ) 313 000 612 271 427 2.5 2 1.17 1.76
PSK 173 364 705 512 1.67 3 8 2.93
1.25 4 16 6.34
Table 2: Some rate-compatible trellis codes
Our codes Other codes
States  Throughput  Multiplicity | Const. L d2  d%,, | Const. L d2  d7.,
2 2 bits/symbol 2 8-PSK 2 2 2.343 [ 8-PSK 2 0.343 [10]
4 2.5 bits/symbol 2 8-PSK 2 1.172 1.757| 8PSK 2 0.343 [10]
2 1 bit/symbol 4 8PSK 4 4 8 | 8PSK 4 4 4686 [2]
) 1 bit/symbol 4 8PSK 4 4 8 |16-PSK 4 4 8 (11
2 1.5 bit/symbol 2 4PSK 2 4 4 | 8PSK 2 4 4 [11]

Table 3: Comparison of some nested codes from Table 2 against fixed-rate codes.
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Code number P, P P, T T
1 1/3 1/3 1/3 0.74 0.40
1/2 0 1/2 059 0.59
1/4 1/2 1/4 0.83 0.32
1/5 3/5 1/5 0.90 0.30
0.1 08 0.1 1.07 0.20
0 1 0 (%) 0

(a)

O Ot v N

" Code number P2 P3 P4 Tl T2 l

1 0.75 0.1 0.15 0.38 0.28
2 07 02 01 042 0.21
3 08 0 02 033 033
4 065 0.3 0.05 046 0.15
3 06 04 0 051 O

(b)
Table 4: Some thresholds that achieve (a) Rag = 1 bit/symbol (b) Ravg = 1.25 bit/symbol.
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Figure 2: Trellis structures (a) two-state code (b) four-state code (c) eight-state code.
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Figure 3: Block diagram of a communication system with feedback.
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Figure 6: Trellis diagram of the mother code and signal constellation, Example 4.
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Figure 7: y-axis: Bit error rate, x-axis: Average bit SNR
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Figure 8: Trellis diagram of a fixed-rate code, R = 1 bit/symbol [10]
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29

250



]
IFixed framel rate TCM. |
Average ratg’ 2 bits/s/H2

BIT ERROR PROBABILITY

i
T~ TFixed fate TCM ™
b

o
A

Figure 10: Comparison of bit error rate performances including “fixed”-rate modified system

30



