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This dissertation studies the link between global commodity price cycles, firm

reallocation, and productivity dynamics. In Chapter 1, I document how commod-

ity price fluctuations trigger a reallocation process that endogenously generates a

decline in manufacturing productivity. I build a model in which firms with heteroge-

neous productivity decide between two technologies with different capital intensities

and choose whether to become exporters. During a commodity boom, exporters lose

market share due to exchange rate appreciation. Moreover, a commodity boom in-

creases the relative cost of capital, which is used intensively in resource production,

leading to additional reallocation from more capital intensive to less capital-intensive

manufacturing firms. I calibrate the model to the Chilean economy and show that

it can match the relevant micro and macro moments. When fed with a realistic

commodity price cycle, the baseline model generates about half of the productivity

decline observed in the data, a figure that is three times larger than in a counter-

factual economy with no technology decision.



In Chapter 2, I study quantitatively the role of financial frictions in the U.S.

business cycle. I augment an otherwise standard real business cycle model with fi-

nancial intermediaries that face an occasionally binding leverage constraint. I show

that the baseline model with a micro-founded friction is equivalent to a prototype

economy with an exogenous intertemporal wedge. Consistent with previous lit-

erature, the results suggest that financial frictions that manifest as intertemporal

wedges are relatively unimportant to understand the U.S. business cycles over the

last five decades. More surprisingly, the irrelevance of intertemporal investment

wedges is robust to (a) the extension to the financial crisis, (b) the introduction of a

nonlinear framework able to switch between “tranquil times” and “financial crises”,

(c) the solution and filtering of structural shocks using nonlinear techniques, and

(d) the introduction of spread data to inform the model about the severity of the

friction.
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Chapter 1: Efficient Reallocation and Productivity during Commod-

ity Price Cycles

1.1 Introduction

This chapter revisits the link between commodity price cycles, sectoral alloca-

tions and measured productivity in resource-rich countries. Traditional narratives

on the so-called Dutch disease emphasize how commodity price booms reallocate

resources away from tradable sectors into both domestic services and the booming

natural resource sector (see Corden and Neary 1982 [33]). This literature typi-

cally argues that such reallocation is inefficient and reduces long-run growth due

to forgone productivity spillover externalities concentrated in the (non-commodity)

tradable/manufacturing sector of the economy (e.g. Krugman 1987 [75], Alberola

and Benigno 2017 [4], Alcott and Keniston 2018 [5]). In this dissertation, I pro-

pose an alternative framework with heterogeneous firms, that even in the absence of

market failures, delivers an endogenous decline in measured productivity. The key

intuition of the chapter is that commodity price booms are associated with a firm

composition effect in which relatively productive firms lose market share against

relatively unproductive firms, thereby rationalizing the decline in productivity typ-
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ically observed during these episodes.

Why relatively productive firms lose market share during a commodity price

boom? Two market-based mechanisms are key to understand this behavior. On

the one hand, as the commodity producing economy becomes richer during the

boom, domestic absorption increases and the real exchange rate appreciates. Within

manufacturing industries, exporter firms lose market share vis à vis nonexporters,

as real exchange rate appreciation reduces their competitiveness abroad and hurts

their revenues from export sales. Because in the data exporters are significantly

more productive than nonexporters, this exchange rate channel induce a composition

effect consistent with a decline in the average efficiency of operating firms.

On the other hand, resource booms in resource-rich economies are often associ-

ated with upward pressure on input prices, as they seek to scale up aggregate supply

and demand. Because commodity production uses physical capital intensively, re-

source booms are associated with an increase in the relative cost of capital, thereby

imposing a cost disadvantage to capital-intensive firms within manufacturing sec-

tors. Because in the data capital-intensive firms are on average more productive

than labor-intensive firms, the cost of capital channel interacts with the exchange

rate channel to reinforce the overall decline in average productivity.

The extent of firm-level heterogeneity in capital intensities and export inten-

sities determines the relative importance of each channel. If all plants produce with

the same capital intensity, within-firm substitution plays no role as everyone faces

the same increase in their unit costs. Likewise, if all firms were equally export-

intensive, exchange rate dynamics would affect all plants symmetrically and there
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is no room for Dutch disease-like reallocation dynamics within sectors, in which

exporters shrink relative to non-exporters. Using manufacturing firm-level data for

Chile, the largest copper producer in the world, I document large within-sector

variation of capital intensity in the cross-section of plants, suggesting that heteroge-

neous technologies with different exposures to changes in the cost of capital coexist

even within narrowly-defined manufacturing industries. Moreover, only about 22%

of manufacturing firms engage in exporting activities, thereby being exposed to the

exchange rate channel.1

Motivated by this evidence, I study the differential effects of commodity price

booms on the relative performance of exporters versus non-exporters and more

capital-intensive versus less capital-intensive firms, within Chilean manufacturing

industries during the period 1995-2013. The sample period analyzed includes the

commodity price super-cycle that started around 2003, which provides a unique

quasi-natural experiment to test the predictions of the theory proposed in this arti-

cle. I find, first, that pre-boom exporters and capital-intensive firms exhibit shrink-

ing profits relative to their non-exporting and labor-intensive counterparts during

the boom period 2003-2013. Second, I document a “missing generation of exporters”,

as firms’ probability of continuing to export declines significantly during the boom.

Third, firms with relatively high capital-labor ratios in the pre-boom period down-

size their capital intensities significantly during the boom. Overall, as relatively

1 Chilean copper mine production accounts for 27% of worldwide production in 2017
(Cochilco, 2018). Considering pre-boom averages, the country’s mining sector accounts
for roughly 10% of GDP, 50% of total exports, 21% of the economy-wide stock of physical
capital, and less than 5% of the labor force.
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productive exporters and capital-intensive firms shrink, exit from exporting activi-

ties and downsize their reliance on capital, the weighted average productivity of the

pool of operating firms decline.

To formalize my empirical findings and quantify the relevance of the proposed

channels in determining allocations and average productivity, I build a two-sector

(commodity and exportable) model of a small and financially open commodity-

exporting economy. The commodity sector is modeled as a representative firm

that combines labor and capital to produce commodity output. The main actors

in this economy are a continuum of firms with heterogeneous productivity aiming

to represent the exportable/manufacturing sector. To deal with the differential

effects that commodity shocks have on profits of exporters vs non-exporters (within

manufacturing industries), I borrow the framework introduced by Melitz (2003) [5],

in which firms trade off a fixed exporting cost against the possibility of serving the

foreign market. In turn, to deal with the significant cross-sectional heterogeneity

and time variation observed in capital intensities across firms within manufacturing

industries, I introduce a technology choice that allows firms to adjust their capital

intensity in response to changes in relative input prices (along the lines of Bustos

(2011) [20], Arayavechkit, Saffie and Shin (ASS14) [5], and Limão and Xu (2018)

[77]). When choosing their technology, firms trade off larger fixed costs against a

reduction in their variable costs (or equivalently, a productivity boost).

As is well known, this type of framework leads to self-selection, in the sense

that only the most productive firm types find it profitable to pay the exporting and

adoption fixed costs. Intuitively, the profitability of becoming an exporter and/or

4



adopting the capital-intensive technology is increasing in the firm’s productivity

type, while the costs of those choices are fixed and type-independent. This ensures

there are always threshold productivity levels above which exporting and upgrading

technology are worthwhile for the most productive firms in the economy.

The model is calibrated to reproduce selected key macro and micro-level fea-

tures of the Chilean economy, and is used to study the economy’s dynamic response

to a realistic commodity price cycle. In particular, to calibrate the parameters re-

lated to the exporting and capital intensity choices, I use the observed cross-sectional

variation in export and capital intensities across firms within (3-digit) manufacturing

industries.

When fed with an exogenously-given commodity price boom-bust cycle, the

calibrated model generates reallocation dynamics reminiscent of traditional Dutch

disease narratives, but in a context in which reallocation is efficient. First, the re-

source sector crowds out labor and especially capital from manufacturing, consistent

with the fact that mining production in Chile is substantially more capital-intensive

than the typical manufacturing industry. Second, within the manufacturing sec-

tor, reallocation is shaped by firms’ initial export and capital intensities. More

specifically, using a model-simulated panel of firms, I show that exporters contract

significantly relative to non-exporters during the boom, while the profits of capital-

intensive firms fall disproportionately, findings consistent with the microdata. Third,

entry/exit and upgrade/downgrade dynamics induce a composition effect that ex-

plains about half of the decline in measured manufacturing productivity between

the pre-boom period 1995-2002 and the so called super-cycle of 2003-2013. Fourth,
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the amplification effect generated by the cost of capital channel via the technol-

ogy decision is quantitatively relevant. I find that the baseline model generates a

productivity decline two times larger relative to a counterfactual economy with no

capital intensity decision.

Related literature. There are two closely related articles studying Dutch

disease-like reallocation dynamics using micro data to uncover the transmission

channels from commodity booms to the macroeconomy. First, Benguria, Saffie,

and Urzua (2018) [11] exploit Brazilian regional variation in exposure to commodity

price shocks and administrative firm-level data to disentangle similar channels as

the ones studied here. While their emphasis is on labor markets and the role of

changes in the skill premium in shaping sectoral reallocation, I focus on substitution

between labor and capital. These are natural choices as commodity production in

Brazil (mainly agriculture) is unskilled labor-intensive, while mining production in

Chile is capital-intensive. More importantly, by introducing a technology choice, I

allow for an additional margin of adjustment that takes place within establishments,

as I study how firms react to input price fluctuations by adjusting their optimal mix

of labor and capital.

Second, Alcott and Keniston (2018) [5] combine U.S. data on oil endowments

at the county level with Census of Manufactures to estimate how oil booms affect

local manufacturing firms. They find that manufacturing as a whole is not crowded

out during oil booms, because negative effects on some tradables firms are offset by

positive effects on upstream and locally-traded subsectors. By studying reallocation

within the U.S. economy and focusing only on labor input, they abstract from the
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two key mechanisms emphasized in the present chapter. On the one hand, they pro-

pose a “within-country” model of Dutch disease reallocation, thereby eliminating

the differential effects of exchange rate fluctuations on the relative performance of

exporters versus non-exporters. Interestingly, they do find that “tradable” manu-

facturing firms (those that sell outside the limits of their own county) do contract

during resource booms. Their intuition for “tradable” U.S. firms has the same flavor

as my results for exporters: they suffer from higher wages but do not benefit that

much from the oil boom and its associated increase in local demand. On the other

hand, they abstract from the capital input in the production function, which I argue

is a key element to consider given the high capital intensity of oil- and metal-related

extraction and production processes.

The technology choice set up introduced in this chapter blends elements from

Bustos (2011) [20], Arayavechkit, Saffie, and Shin (2014) [7], and Limão and Xu

(2018) [77]. Bustos (2011) [20] considers a single-input production function, in which

firms can choose to reduce their marginal cost of production by paying a fixed cost.

In my case, firms decide the capital share in a constant returns to scale Cobb-

Douglas production function that combines labor and capital, as in Arayavechkit et

al (2014) [7]. I discipline the fixed cost of adoption, its associated cost advantage,

and the capital shares using the empirically observed differences in productivity

between capital- versus labor-intensive manufacturing firms. In addition, I study

the technology adoption margin in a quantitative dynamic model, and in the context

of a small and open resource-dependent economy subject to persistent global cycles

in commodity prices.
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By studying the effects of resource booms on sectoral allocations and produc-

tivity, this article is tightly linked to the long-standing literature about the Dutch

disease or “Resource Curse” (see Corden and Neary (1982) [33], Krugman (1987)

[75], Sach and Warner (1997) [97], van der Ploeg (2011) [105], Frankel (2012) [45],

Rodrik (2013) [95]). Alberola and Benigno (2017) [4] propose a representative-firm

three-sector commodity-exporter economy model to study the effects of commodity

booms on long-run growth. They show theoretically that, when dynamic productiv-

ity spillovers are concentrated in the non-resource tradable sector, the commodity

boom delays convergence to the world technology frontier, and may even lead to

a growth trap. While I do not consider spillover effects or endogenous growth, I

extend the analysis in other important dimensions. First, I emphasize reallocation

at the firm-level within the manufacturing sector, which requires a framework with

firm heterogeneity and an explicit distinction between exporters and non-exporters.

Second, given the importance of relative input intensities in shaping reallocation, I

allow for labor and capital in the production function, and discipline their shares

directly using firm-level data. I am not aware of other articles studying the capital

intensity dimension in shaping reallocation dynamics during a commodity boom. Fi-

nally, this dissertation also contributes to the literature by providing an alternative

explanation for persistent downturns in measured productivity during commodity

price booms without relying on inefficient reallocation due to reduced-form frictions

or ad-hoc spillover effects.

This chapter is also linked to the literature studying the effects of terms of trade

shocks in the macroeconomy (see Mendoza (1995) [83], Kose (2002) [74], and Vegh
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(2013) [107] for a textbook discussion). Motivated by the recent commodity super-

cycle, several articles have focused specifically on the effects of commodity price

shocks in emerging economies (Schmitt-Grohe and Uribe (2015) [98], Shousha (2016)

[100], Fernandez, Schmitt-Grohe and Uribe (2017) [41]). Unlike these articles, which

focus on the effects of global price fluctuations at business cycle frequencies, this

dissertation seeks to understand the low-frequency dynamic effects that persistent

commodity cycles have on resource allocation and productivity. This is a relevant

distinction because, as emphasized by Erten and Ocampo (2013) [38] and Reinhart

et al (2016) [91], commodity prices are characterized by much longer cycles (of

around thirty years) than standard business cycle fluctuations, which puts significant

pressure on sectoral allocations in commodity-dependent countries.

The remainder of this chapter is organized as follows. Section 1.2 presents

sector-level and firm-level empirical regularities observed before and after the com-

modity boom that started in 2003. Section 1.3 describes the quantitative model

designed to disentangle the transmission channels from commodity cycles to man-

ufacturing productivity. Section 1.4 tests the ability of the model to replicate the

empirical facts, and studies whether the model’s transitional dynamics can repro-

duce the most recent commodity super-cycle, and its effects on factor allocations

and measured productivity. Section 1.5 concludes.
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1.2 Empirical Analysis

1.2.1 Commodity Cycles and the Macroeconomy

Figure 1.1 illustrates the relationship between the recent commodity price

“super-cycle”, sectoral allocations and measured productivity, using aggregate data

for Chile. Panel (a) shows the time paths of the real price of copper -by far the

country’s main produced and exported commodity- and the country’s manufactur-

ing share in total output. The crowding-out effect of commodity prices on manu-

facturing is especially marked during the persistent boom that started in 2003.

Panel (b), in turn, illustrates the relationship between aggregate TFP and the

real exchange rate. During the nineties, high productivity growth led to currency

appreciation, as predicted by the Balassa-Samuelson hypothesis. However, the re-

lationship breaks down during the commodity boom period (2003-2016), when pro-

tracted exchange rate appreciation (30% between 2003 and 2017) coexisted with

a medium-run slowdown in aggregate productivity growth (0% between 2003 and

2017).

How can persistent commodity booms generate productivity slowdowns in

resource-rich economies? Several channels may be at play. First, the positive

wealth effect raises consumption of all types of goods, which all else equal bene-

fits domestic sales relative to export sales. Second, larger local demand induces

exchange rate appreciation, which disproportionately affects exporters relative to

non-exporter firms. Overall, firms face a double incentive to switch productive re-
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Figure 1.1: Commodity Price Boom and Sectoral Allocations.
Notes: Author’s calculations based on data from the Central Bank of Chile. The
gray area indicates the commodity boom period 2003-2017. Panel (a) reports the
nominal manufacturing share in total nominal output, while the real commodity
price is PPI-deflated. Panel (b) reports economy-wide measured TFP and the real
exchange rate (RER). Panels (c) and (d) report real investment and real output by
sector.
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sources towards the domestic market as well as the booming resource-based sector.

Panel (c) of Figure 1.1 illustrates this pattern. New investment flows during the

commodity boom were mostly directed to the resource sector and domestic ser-

vices, at the expense of the prototypical (non-commodity) tradable sector, namely

manufacturing. Panel (d) confirms that while domestic services boomed and led

output growth during 2003-2017, the manufacturing sector tended to lag behind. It

is also noteworthy that, despite the large mining investment boom, real commodity

production stayed flat during this period, partly as a consequence of a significant

decrease in the quality (ore grade) of the natural resource being mined. See Ap-

pendix A.1 for a cross-country documentation of the fall in mining productivity in

the period under analysis.

In this dissertation, I argue that the “between sector” reallocation dynam-

ics illustrated in Figure 1.1 are just part of the story. There are also pervasive

reallocation dynamics that take place within the manufacturing sector. On the

one hand, currency appreciation shrinks exporters’ revenue, while non-exporters or

“purely-domestic” firms enjoy booming local demand. I use microdata on export

sales versus total sales to directly measure the exposure to exchange rate risk at the

firm-year level. I argue that distinguishing between exporters and non-exporters is

quantitatively important for two reasons. First, only 22% of manufacturing firms,

on average, actually sell their varieties abroad, thereby being vulnerable to exchange

rate risk.2

2 Due to a lack of suitable data, traditional studies have focused on “tradable sectors”,
relying on the strong assumption that all “tradable” producers operate in foreign markets.
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Second, exporters overwhelmingly outperform non-exporters in several out-

come variables such as value added, revenue productivity and capital intensity

(Bernard and Jensen, 1999 [15]; De Loecker and Warzynski, 2012 [35]). More im-

portantly for the purpose of this dissertation, I show below (both in the data and in

the model simulations) that it is precisely exporters who shrink more and eventually

exit from export activities during the protracted commodity price cycle illustrated

in Panel (a) Figure 1.1.

On the other hand, resource booms raise the marginal products (and hence the

cost) of mobile productive resources, particularly for inputs used intensively in com-

modity extraction and production. As emphasized by Corden and Neary (1982) [33],

if the commodity sector uses relatively few resources that can be drawn from else-

where in the economy, the crowding out or “resource movement” effect is negligible.

However, commodity (mining) production in Chile uses physical capital dispropor-

tionately: while the mining sector represents about 10% of aggregate output, it uses

21% of the economy-wide capital and less than 5% of the labor force. The relative

scarcity of capital induces a cost disadvantage to capital-intensive manufacturing

firms. I exploit firm-level variation in capital-labor ratios within manufacturing

industries in order to infer their exposure to the “cost of capital channel”.

1.2.2 Data

The data used in the present chapter comes from the Encuesta Nacional Indus-

trial Anual (ENIA) (Annual National Industrial Survey) conducted by the Instituto

13



Nacional de Estadistica (INE), the Chilean government statistical agency. The sur-

vey contains yearly information on establishments with more than ten employees

in the period 1995-2013.3 It includes 5,000 observations per year and provides

information on establishments’ characteristics such as industry, value added, do-

mestic sales, exports sales, employment, intermediates spending, and the value of

the capital stock.

Firm-level revenue total factor productivity is estimated using the method of

Wooldridge (2009) [109] and, under the assumption of constant returns to scale,

using cost shares (of total costs) as in Foster, Haltiwanger, and Krizan (2001) [44].

Aggregating the micro-level data, ENIA accounts for 86% of aggregate manu-

facturing value added reported by the Central Bank, and 50% of total manufacturing

labor recorded by the country’s statistical office.

1.2.3 Firm characteristics and estimated productivity

In this subsection, I document several empirical regularities that are rele-

vant for the analysis. First, I show significant heterogeneity in capital intensity

across firms within 3-digit manufacturing industries. Capital-intensive firms are

bigger and more productive than their labor-intensive counterparts. Second, I show

that exporters are bigger, more productive, and more capital-intensive than non-

exporter firms, findings that are consistent with the literature (see Bernard and

Jensen, 1999 [15]).

3 Most firms in Chile are single-establishment.
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Figure 1.2: Capital Intensity Moments.

Notes: Capital intensity of firm f is computed as Kint
f =

Kf/Lf∑
i
Ki/

∑
i
Li

, pooling all

years in the sample 1995-2013. The summation is done (3-digit) industry-wise. The
vertical line in panel (a) shows the frequency of firms that are as capital-intensive
as their own industry average.

Fact 1: There is substantial cross-sectional heterogeneity in capital intensities

within manufacturing industries.

The left panel of Figure 1.2 displays the distribution of capital intensities across

manufacturing firms pooling all years in the sample. Each firm’s capital intensity

is computed as their capital-labor ratio relative to their own (3-digit) industry av-

erage. I define as “High-K” (“Low-K”) the firms with a capital-labor ratio above

(below) their industry-level average, that is, firms to the right (left) of the vertical

line in the left panel. The right panel shows that exporters are significantly more

capital-intensive than non-exporters.

Fact 2: Exporters and capital-intensive firms outperform non-exporters and labor-

intensive firms.
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Figure 1.3 documents the estimated productivity (revenue TFP) distribution

across firm-year pairs grouped according to exporting and capital intensity status.

On average, exporters outperform non-exporters, and High-K firms outperform Low-

K firms. Naturally, the very selected group of High-K exporters (6% of the sample)

is substantially more productive than the remaining groups, especially relative to

the most numerous group of Low-K non-exporters (74% of the sample). A simi-

lar sorting pattern holds when estimating productivity using pre-boom years only.

Appendix A.2 presents panel regressions documenting systematically how exporters

and capital-intensive firms display significantly higher revenue TFP relative to other

groups in the economy, even after controlling by sector-year fixed-effects. The quan-

titative model developed in the next section is calibrated to approximately replicate

the average productivity levels implied by the distributions in Figure 1.3.

1.2.4 Firm-Level Implications of a Commodity Boom

In this subsection, I present evidence that commodity booms disproportion-

ately affect the profitability of export-oriented and capital-intensive firms.4

Second, they induce a large decline in net entry rates into exporting, as well

as a significant increase in the probability of exit from exporting during periods of

high commodity prices. Similarly, the probability of using capital-intensive tech-

nologies also shrink during commodity price booms, suggesting that firms do react

4 To ease exposition, I use High-K vs Low-K and capital-intensive vs labor in-
tensive interchangeably.
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to changes in relative input prices and substitute towards labor.

Fact 3: Exporters and capital-intensive firms lose market share during a commod-

ity boom (intensive margin).

In order to document how firm characteristics shape the intensive margin of

adjustment during commodity booms, I estimate the following specification:

ln(Yft) = αXf0 · P̃Co
t−1 + βKint

f0 · P̃Co
t−1 + γXf0 ·Kint

f0 · P̃Co
t−1 + δ′Zft + ϕf + ϕst + εft(1.1)

where Yft denotes an outcome variable (such as real value added or real profits) for

firm f in year t, Xf0 is a dummy variable that takes the value 1 if firm f exports

in its first period t = 0 in the sample (conditional on t = 0 being in the pre-boom

period 1995-2003), Kint
f0 denotes the capital intensity of firm f in period t = 0, and

P̃Co
t = PCo

t − P
Co

is the demeaned real commodity price shock. Finally, the vector

variable Zft collects firm-level controls, while ϕst and ϕf represent (3-digit) sector-

year and firm fixed effects, respectively. The coefficient α in 1.1 measures the relative

effect of commodity shocks on the subsample of exporting firms. Similarly, β is the

relative effect of commodity price fluctuations on the subsample of capital-intensive

firms. Finally, γ is the incremental relative effect of commodity price shocks on

High-K exporters relative to Low-K non-exporter firms.5

Table 1.1 presents the results. Columns (1) and (2) report the results for the

period 1995-2007, to avoid concerns about the Great Recession being a potential

5 Note that the baseline impact of commodity price shocks on Low-K non-
exporters is absorbed by the sector-year fixed effects.
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confounding factor. Columns (3) and (4) report the baseline results for the full

sample 1995-2013. It is clear from the table that exporters and capital-intensive

firms shrink significantly during periods of high commodity prices. The double in-

teraction is also negative (and significant for the full sample 1995-2013), suggesting

that High-K exporters, the most productive firms in the economy, suffer a double

hit in the form of decreasing revenues due to currency appreciation and dispropor-

tionately larger variable costs through the cost of capital channel. Overall, they face

a 13% = 100 · (0.079 + 0.023 + 0.031) larger decrease in their real profits relative

to Low-K non-exporter firms. A potential concern is the possibility that financial

frictions are partly driving these patterns. Appendix A.3 presents robustness analy-

sis which shows that my main results survive even after controlling by that channel

using firm-level size measures interacted with the commodity price shock.

Fact 4: Exporters and capital-intensive firms are more likely to exit from foreign

markets and downsize their capital-labor ratios during a commodity boom (extensive

margin).

This subsection documents the extensive margin of adjustment. More specif-

ically, when the commodity shock is persistent enough, the protracted real appre-

ciation of the exchange rate induces some pre-boom exporters to exit from foreign

markets. Similarly, some pre-boom capital-intensive firms are not able to bear the

increase in the cost of capital and are forced to downsize to less capital-intensive

technologies. Figure 1.4 illustrates these patterns. Panel (a) presents net entry
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Dependent Variable: ln (Real VA or Profits)

VA Profits VA Profits

Sample: 1995-2007 Sample: 1995-2013

Xf0 · P̃Co
t−1 -0.122*** -0.130*** -0.092*** -0.079***

(0.0331) (0.0347) (0.0291) (0.0292)

Kint
f0 · P̃Co

t−1 -0.015* -0.017** -0.021*** -0.024***

(0.0077) (0.0077) (0.0073) (0.0074)

Xf0 ·Kint
f0 · P̃Co

t−1 -0.017 -0.032* -0.032** -0.031**

(0.0180) (0.0184) (0.0157) (0.0152)

Firm FE yes yes yes yes
Sector×Year FE yes yes yes yes
Adj. R2 0.139 0.127 0.176 0.169
N. obs. 49,178 48,634 59,945 59,281

Table 1.1: Panel Regressions: Commodity Booms and Outcome Variables.
Notes: Results for regression 1.1. ***: p < 0.01, **: p < 0.05, *: p < 0.1. Columns
(1) and (2) present results for the sample 1995-2007, while columns (3) and (4) for
1995-2013. Columns (1) and (3) use real value added as dependent variable, while
columns (2) and (4) use real profits. All specifications include controls for firm size.

rates into foreign markets, while Panel (b) displays analogous net entry rates into

the capital-intensive technology as defined in Figure 1.2. Panel (a) shows a pro-

tracted decline in net entry into foreign markets that coincides with the commodity

price super-cycle period. Overall, it is noteworthy the positive correlation between

the exchange rate appreciation induced by the commodity boom and the plummet-

ing of net entry rates, as predicted by the exchange rate channel. In turn, Panel

(b) illustrates how manufacturing firms massively switch away from physical capital

during the period in which the real commodity price skyrocketed.

To document systematically the effects of commodity booms on firms’ decisions

to exit from exporting and downsize their capital-labor ratios, I follow the literature
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Figure 1.4: Net Entry Rates.
Notes: Net entry rates are defined as the difference between entry rates and exit
rates. Panel (a): Entry into the foreign market is defined as the number of firms
exporting in year t that did not export in year t − 1 divided by the total number
firms that export in year t− 1. The exit rate is defined as the number of firms that
export in year t but do not export in year t + 1 relative to the number of firms
exporting in year t. Panel (b): The entry rate into the capital-intensive technology
is defined as the number of firms with Kint

ft > 1 and Kint
ft−1 < 1 divided by the total

number firms with Kint
ft−1 > 1. The exit rate from the Capital-Intensive technology is

defined as the number of firms with Kint
ft > 1 and Kint

ft+1 < 1 relative to the number
of firms with Kint

ft > 1.
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and specify a dynamic linear probability model.6 I estimate:

Yft = α1Yft−1 + α2Yft−2 + β1Yft−1 · Zt + β2Yft−2 · Zt + ϕst + ϕf + εft (1.2)

where Yft can take the form of an export dummy Yft = Xft = 1 if firm f exports

in year t or a capital intensity dummy Yft = Kft = 1 if firm f classify as High-K in

year t (according to the definition in Figure 1.2), Zt is a commodity cycle measure,

and ϕst and ϕf are sector-year and firm fixed effects. I use two alternative measures

for the commodity cycle. First, I use a “boom” dummy variable that takes the

value Zt = 1 in years 2004-2013 and zero otherwise. Second, I use a continuous

variable given by the demeaned real commodity price Zt ≡ P̃Co
t = PCo

t − P
Co

. The

regression also includes controls for firm-level size and productivity (not shown in

equation 1.2). The lagged dependent variable is included as fixed costs induce state-

dependence in the exporting and capital-intensity decisions. I interact lags of the

dependent variable with the commodity cycle measure in order to understand to

what extent the probabilities of continuing to export and using the capital-intensive

technology are affected by commodity price fluctuations. I introduce two lags in

order to capture the idea that the negative effects of persistent commodity booms

take some time to build up.

Table 1.2 reports the results. The coefficient on Yft−j is the marginal increase

in the probability of exporting in period t if firm f exported in t−j. The interaction

terms are interpreted as the incremental/detrimental effect of the commodity boom

on the probability of continuing to export. For instance, from column (1) we have

6 See Lincoln, McCallum, and Siemer (2017) [78].
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Yft = Xft = {0, 1} Yft = Kft = {0, 1}

Zt = {0, 1} Zt = P̃Co
t Zt = {0, 1} Zt = P̃Co

t

(1) (2) (3) (4)

Yft−1 0.330*** 0.343*** 0.234*** 0.258***
(0.0148) (0.0120) (0.0124) (0.0096)

Yft−2 0.077*** 0.054*** 0.1030*** 0.0627***
(0.0137) (0.0104) (0.0118) (0.0085)

Yft−1 · Zt 0.023 0.038** 0.0443*** 0.0524***
(0.0181) (0.0184) (0.0142) (0.0141)

Yft−2 · Zt -0.043** -0.046** -0.0757** -0.0805***
(0.0182) (0.0184) (0.0144) (0.0138)

Firm FE yes yes yes yes
Sector×Year FE yes yes yes yes
Adj. R2 0.150 0.150 0.140 0.140
N. obs. 49,439 49,439 49,439 49,439

Table 1.2: Panel Analysis: Dynamic Linear Probability Model.
Notes: Results for regression 1.2. ***: p < 0.01, **: p < 0.05, *: p < 0.1. The
dependent variable Xft = {0, 1} is a dummy equal to 1 if firm f exports in year t.
Columns (1) and (3) use a binary commodity price cycle variable, Zt = {0, 1}, that
takes the value 1 in 2004-2013 and 0 in 1995-2003. Alternatively, columns (2) and
(4) use the continuous real commodity price (demeaned). All specifications include
controls for firm size and revenue TFP (not reported).

that an exporter in t − 1 has a 30% higher probability of being an exporter in

period t; if the firm also exported in t − 2, the probability increases by about 5%.

Regarding the interactions, for firms that exported last year, the commodity boom

has a positive (sometimes not significant) effect on the probability of exporting

today. But the negative effects are significant for firms that exported two years ago.

Moreover, across specifications, the negative effect on t − 2 dominates the positive

effect on t−1 in absolute value and significance. Similar correlations hold in columns

(3) and (4) for the probability of using capital-intensive technologies.
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1.3 A Trade Model with Capital Intensity Choice

Consider a small and financially-open commodity-exporting economy with

three goods: exportables (X), importables (M), and commodity (Co) goods. House-

holds only consume exportables and importables. Commodity production is sold

abroad at international price pCo, the only exogenous driving force in the model.

Exportable varieties are produced by a continuum of firms with heterogeneous pro-

ductivity using labor and capital, while commodity goods are produced by a rep-

resentative firm, using labor, capital, and a fixed natural resource. For simplicity,

investment goods are fully imported. Capital accumulation is subject to quadratic

adjustment costs.

1.3.1 Household

Time is discrete and indexed by t. There is an infinitely-lived representative

household that maximizes lifetime utility given by:

U =
∞∑
t=0

βt

[
Ct − ϕLζt

ζ

]1−υ

1− υ
, (1.3)

where C and L are consumption and labor supply, while the parameters β, υ, ζ, and

ϕ govern time discounting, the intertemporal elasticity of substitution, the Frisch

elasticity of labor supply, and the marginal rate of substitution between consumption

and leisure. The consumption bundle C is defined as a CES aggregator of exportable

CX and importable CM goods:

Ct =
[
χ

1
ε

(
CX
t

) ε−1
ε + (1− χ)

1
ε

(
CM
t

) ε−1
ε

] ε
ε−1

, (1.4)
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where χ and ε control the weights and the elasticity of substitution between goods.

Exportable consumption is, in turn, a bundle over a continuum of manufacturing

varieties indexed by ω:

CX
t =

[∫
ω

(qdt(ω))ρ dω
] 1
ρ

, (1.5)

where σ = 1/(1− ρ) > 1 is the elasticity of substitution among varieties.

The household supplies labor, accumulates capital, smooths consumption via

foreign borrowing, and owns firms. The budget constraint can be written as:

ptCt + It +Bt+1 = wtLt + rktKt + (1 + r∗)Bt + Πt, (1.6)

where p is the price of the consumption bundle, which is also a model-based proxy

for the real exchange rate (RER); B is the country’s net foreign asset position that

pays exogenous interest rate r∗, w is the wage, I and K are investment and capital

with rental rate rk, and Π = ΠX +ΠCo collects profits from the ownership of firms in

both sectors. Investment goods are fully imported at price pMt = 1 (the numeraire).

The aggregate stock of capital evolves according to:

Kt+1 = (1− δk)Kt + It −
φ

2

(Kt+1

Kt

− 1
)2
Kt. (1.7)

where δk is the depreciation rate and φ governs the capital adjustment cost. The

price of the exportable bundle consumed domestically is given by:

pXt =
[∫
ω

(pdt(ω))1−σ dω
] 1

1−σ
. (1.8)

The household’s cost minimization determines the following demands for each com-

posite good:
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CX
t = χ

(
pt
pXt

)ε
Ct (1.9)

CM
t = (1− χ)

(
pt
pMt

)ε
Ct (1.10)

Note that plugging demands 1.9-1.10 in 1.4 yields an expression for the domestic

basket price or real exchange rate (RER):

pt =
[
χ
(
pXt
)1−ε

+ (1− χ)
] 1

1−ε
.

The domestic demand for each variety in the exportable sector is given by:

qdt(ω) =

[
pdt(ω)

pXt

]−σ
CX
t . (1.11)

Household’s optimal behavior is characterized by demands (1.9)-(1.11), the flow

budget constraint (1.6) (with Lagrange multiplier βtλt), and the following optimality

conditions:

1

(1 + r∗)
= β

λt+1

λt
= β

 Ct − ϕLζt
ζ

Ct+1 − ϕ
Lζt+1

ζ


υ (

pt
pt+1

)
(1.12)

1 + φ
(
Kt+1

Kt

− 1
)

= β
λt+1

λt

[
rkt+1 + 1− δk + adjt+1

]
(1.13)

adjt ≡ φ
(
Kt+1

Kt

)(
Kt+1

Kt

− 1
)
− φ

2

(
Kt+1

Kt

− 1
)2

ϕLζ−1
t =

wt
pt
. (1.14)

1.3.2 Exportable Sector

This subsection augments the model of Melitz (2003) [82] with physical capital

and technology choice. There is an infinite pool of forward-looking potential entrants

that consider making an initial investment, modeled as a one-time sunk entry cost

fe, in order to draw a permanent productivity type z from a distribution g(z) with
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positive support over (0,∞) and continuous cumulative distribution G(z). After

observing z, firms with sufficiently low draws optimally decide to exit and never

produce. In turn, successful entrants decide (i) between two constant-returns-to-

scale technologies that combine labor and capital but differ in their capital share α,

and (ii) whether to serve the foreign market and become an exporter. The market

structure is monopolistic competition. To ease notation, I drop time subscripts in

this subsection.

Technology choice. The basic technology with low capital intensity (αl)

entails a (per-period) fixed operational cost fd, while adopting the capital-intensive

technology (αh > αl) requires a larger fixed cost fd+fa. Henceforth, I refer to these

as “Low-K” and “High-K” technologies. For each j = {l, h}, the unit cost function

is given by cj(z) = φj
z

where φj =
(
rk

αj

)αj ( w
1−αj

)1−αj
is the weighted average price of

the composite input. In essence, firms trade off lower variable cost (via the distance

between αh and αl) with larger fixed operation cost (via fa).

Exporting choice. Firms serving only the domestic market pays fixed (per-

period) cost fd and face residual demand given by (1.11). To serve the foreign

market firms have to pay an additional fixed (per-period) exporting cost fx. For-

eign demand is given by qx(z) = γ (px(z))−σ, where γ controls the size of the foreign

market. Firms trade off a larger market (via γ) with a larger fixed cost (via fx).
7

7 I assume the same price elasticity for domestic and foreign demand.
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Pricing rule. Each firm charges a constant markup (1/ρ) over unit cost.

Then, for any s = {d, x} and j = {l, h}, we have psj(z) = φj
ρz

.

Profits. All fixed costs are valued in units of the numeraire. Depending

on their productivity type, firms self-select into one of the following four groups:

(a) purely domestic Low-K firms, (b) purely domestic High-K firms, (c) Low-K ex-

porters, and (d) High-K exporters. After some manipulation, profits can be written

as follows:

πsj(z) =

1
σ
pσC

[
φl
ρz

]1−σ
− fd if s = d and j = l

1
σ
pσC

[
φh
ρz

]1−σ
− fd − fa if s = d and j = h

1
σ
pσC

[
φl
ρz

]1−σ
+ 1

σ
γ
[
φl
ρz

]1−σ
− fd − fx if s = x and j = l

1
σ
pσC

[
φh
ρz

]1−σ
+ 1

σ
γ
[
φh
ρz

]1−σ
− fd − fa − fx if s = x and j = h

(1.15)

where I use the convention that adoption fixed costs are assigned to domestic profits.

Note that, for any j = {l, h}, the total profits of exporters are the sum of domestic

and foreign profits (πdj(z) + πxj(z)).

Value functions. Regardless of their productivity type, all operating firms

are subject to a constant probability δ of a bad shock that forces them to exit the

market. Firms can also exit endogenously when their present discounted value be-

comes negative. Type-z firm chooses the technology and exporting decisions yielding

the largest present dicounted value:

V (z) = max{Vdl(z), Vdh(z), Vxl(z), Vxh(z)}, (1.16)
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Vdj(z) = max

{
0, πdj(z) +

(1− δ)
(1 + r∗)

V ′(z)

}
, j = l, h

Vxj(z) = max

{
0, πdj(z) + πxj(z) +

(1− δ)
(1 + r∗)

V ′(z)

}
, j = l, h.

Cutoffs. This well-known environment gives rise to productivity cutoff rules

that determine firms’ entry/exit into domestic (zd) and foreign markets (zx) as

well as adoption of the capital-intensive technology (za). The least productive but

successful entrants (zd ≤ z < zx) serve the domestic market using the Low-K

technology. Then, the marginal condition to pin down the domestic cutoff is given

by:

Vdl(zd) = 0. (1.17)

If za < zx (case 1), the marginal type that optimally chooses to upgrade technology is

a purely domestic firm, while the marginal exporter uses the high-capital technology.

Conversely, if zx < za (case 2), the marginal exporter uses the low-capital technology,

while the marginal adopter is an exporter type. As in Bustos (2011) [20] and Limão

and Xu (2018) [77], I calibrate the model to be consistent with case 2, because it is

closer to the data. The cutoffs for the case zx < za are pinned down by:

Vdl(zx) = Vxl(zx) (1.18)

Vxl(za) = Vxh(za).

Distribution. Let µ(z), M, and Me denote the distribution of types, the

mass of incumbent firms, and the mass of entrants firms in the current period. The
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distribution of types evolves as follows:

M′µ′(z) =
(1− δ)Mµ(z) +M′

eg(z) if z ≥ z′d

0 otherwise

. (1.19)

Equation 1.19 tells us that the number of firms of each type tomorrow equals the

number of firms that survive both exogenous exit (δ) and endogenous exit (z ≥ zd)

today plus the number of new entrants of each type. By the law of large numbers,

the latter is simply given by the unconditional distribution g(z). Note also that suc-

cessful entrants are allowed to produce immediately upon entry. Finally, integrating

over all active types, the law of motion for the mass of producers can be written as:

M′ = (1− δ)M
∫ ∞
z′d

µ(z)dz +M′
e

∫ ∞
z′d

g(z)dz. (1.20)

Free entry. Sunk entry costs are valued in terms of the numeraire. They

combine a fixed with a convex component that captures congestion effects in firm

creation, help to match the empirical entry rate, and are computationally convenient.

The assumed functional form is:

fe (Me) = fe + φe
[
exp

(
Me −Me

)
− 1

]
(1.21)

where fe is the fixed component, Me is the mass of entrants (with steady state

value Me) and φe controls the degree of congestion effects. Because firms learn z

after paying the sunk entry cost, prospective entrants consider the expected present

value of entering net of entry cost:

∫ ∞
zd

V (z)g(z)dz = fe (Me) . (1.22)
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Optimal input demands. With this production structure, we can derive

the cost function that combines labor and capital spending used both directly in

production and to cover the fixed operational costs:

TCsj(z) =
qsj(z)

z
φj + F , s = d, x, j = l, h (1.23)

where F = [fd + fa1 (α = αh)] 1 (s = d) + fx1 (s = x) collect fixed costs for any sj

pair. By Sheppard’s Lemma, demands for labor and capital by a type-z firm are:

lsj(z) =
∂TCsj(z)

∂w
=

(1−αj)φj
w

·
[(
pX
)σ
CX

(
ρ
φj

)σ
(z)σ−1

]
if s = d

(1−αj)φj
w

·
[
γ
(
ρ
φj

)σ
zσ−1

]
if s = x

, (1.24)

and

ksj(z) =
∂TCsj(z)

∂rk
=

αjφj
rk
·
[(
pX
)σ
CX

(
ρ
φj

)σ
(z)σ−1

]
if s = d

αjφj
rk
·
[
γ
(
ρ
φj

)σ
zσ−1

]
if s = x

. (1.25)

Aggregation. Aggregate labor and capital used in the exportable sector

(both for domestic and foreign sales) can be computed as follows:

LX = M
[∫ za

zd

ldl(z) +
∫ ∞
za

ldh(z) +
∫ za

zx
lxl(z) +

∫ ∞
za

lxh(z)

]
µ(z)dz

KX = M
[∫ ∞

zd

kdl(z) +
∫ ∞
za

kdh(z) +
∫ za

zx
kxl(z) +

∫ ∞
za

kxh(z)

]
µ(z)dz

Aggregate exportable output sold in the domestic market is:

Y X =

[
M

(∫ za

zd

(qdl(z))ρ µ(z)dz +
∫ ∞
za

(qdh(z))ρ µ(z)dz

)] 1
ρ

.

Similarly, the total value of exported varieties is:

XX =M
[∫ za

zx
pxl(z)qxl(z)µ(z)dz +

∫ ∞
za

pxh(z)qxh(z)µ(z)dz

]
. (1.26)
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1.3.3 Commodity Production

There is a representative firm in the commodity sector that hires labor and

rents capital from the representative household in order to maximize profits. The

technology is given by:

Y C
t = R

[(
KC
t

)αC (
LCt
)1−αC

]η
.

where η < 1 induces decreasing returns to scale, and the constant R is set to target

the empirical share of commodity output in total GDP.

1.3.4 Market Clearing

In equilibrium, the domestic market for exportable varieties clear:

CX
t =

[
Mt

(∫ ∞
zdt

(qdt(z))ρ µt(z)dz
)] 1

ρ

≡ Y X
t

Labor and capital market clearing require:

Lt = LXt + LCt

Kt = KX
t +KC

t

See Appendix A.4 for details about these aggregation terms. Finally, plugging sev-

eral equilibrium conditions into the household’s budget constraint, the balance of

payments condition can be written as follows:

Bt+1 = (1 + r∗)Bt + TBt,
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where the following definitions for the trade balance, total exports, manufacturing

exports and total imports apply:

TBt ≡ Xt −Mt

Xt ≡ pCot Y C
t +XX

t

Mt ≡ CM
t + I t + Φt + Ft

where XX
t denotes the value of manufacturing exports given by (1.26), and Φt =

φ
2

(
Kt+1

Kt
− 1

)2
Kt and Ft =Mtfd +Mtpxtfx +Mtpatfa +Metfe (Met) collect cap-

ital adjustment and fixed costs, respectively. Variables pxt =
[

1−G(zxt)
1−G(zdt)

]
and pat =[

1−G(zat)
1−G(zdt)

]
denote the fraction of exporters and the fraction of capital-intensive firms,

respectively. Appendices A.4, A.5 and A.6 contain details including the full set of

dynamic and static equilibrium conditions as well as computational algorithms.

1.4 Quantitative Analysis

In this section, I present the calibration strategy designed to match certain key

macro- and micro-level features of the Chilean economy. Next, I assess the model

fit along both targeted and untargeted moments. Finally, I test the model’s ability

to reproduce the pattern of reallocation observed during the commodity super-cycle

that started in 2003, and examine how the composition dynamics affect the average

measured productivity in the manufacturing sector.
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Symbol Value Description Source/Target

β 0.96 discount r = 4%
υ 1 Inverse IES log utility
ζ 2.4 Frisch elasticity literature
ε 0.75 subst. CX - CM literature
σ 4 subst. varieties literature
δk 0.08 depreciation macrodata
δ 0.08 exit shock microdata

Table 1.3: Externally Calibrated Parameters.

1.4.1 Calibration

Table 1.3 reports a set of parameters set a priori either using standard values

in the literature or based on direct firm-level data. All data moments used in the

calibration are averages over the pre-commodity boom period 1995-2003. The model

period is one year. I set the time preference parameter β = 0.96 to target a long-run

interest rate of 4%. I set the inverse of the intertemporal elasticity of substitution

equal to υ = 1 (log utility), and the Frisch elasticity equal to the baseline value

documented by Rios-Rull et al (2011) [93], which is 0.72 (ζ = 1 + 1/0.72 = 2.4).

The elasticities of substitution between CX and CM goods (ε) and among exportable

varieties (σ) are set to standard values used in the literature. Capital depreciation

is set at δk = 0.08, while the exogenous exit shock probability is set to δ = 0.08, so

that the model’s steady state reproduces the average between entry and exit rates

observed in the data.

The remaining parameters, listed in Table 1.4, are chosen to match several

key data moments. Certain parameters are set to match selected macroeconomic

targets. I normalize the initial state of the economy to have a zero net-foreign asset
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position, B = 0. I set the fixed resource parameter R in the commodity sector to

match the share of mining in total output in Chile, pCoY C/Y = 0.1. The scale

parameter of labor supply is chosen to normalize the initial steady state nominal

output Y = 1.

The middle block of Table 1.4 composed by parameters {χ, µz, σz, γ, fd, fx, fa, αl, αh, αC}

is jointly estimated by minimizing a loss function given by the sum of squared resid-

uals associated with the following set of moments: (a) nontraded share in total

output Y X/Y , (b) the (log) value-added ratio between percentiles 50th and 25th,

(c) 75th and 50th, (d) 90th and 10th, (e) 95th and 5th, (f) 99th and 1th, (g) fraction

of exporters, (h) fraction of High-K firms, (i) capital cost share for High-K firms,

(j) capital cost share for Low-K firms, (k) labor in commodity sector (% of total L),

(l) capital in commodity sector (% of total K). Note that I estimate 10 parameters

targeting 12 moments so the system is over-identified.

Finally, the last block of Table 1.4 composed by parameters {η, φ, φe} is cal-

ibrated to match moments from the transition dynamic equilibrium. The level of

decreasing returns in commodity production η is set to match the peak-to-through

change in the share of commodity output during the commodity boom (∆Y C/Y ).

The capital adjustment cost parameter φ is set to target the economy-wide invest-

ment boom in the data, measured as the ratio between average investment in the

pre-boom 1995-2003 and the commodity boom 2004-2013. The congestion cost at

entry parameter φe is set to match the observed entry rate volatility in the manu-

facturing sector.
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Symbol Value Description Target Data Model

B 0 SS NFA TB/Y 0 0

R 0.34 fixed resource Y C/Y 0.10 0.10
ϕ 69.3 labor supply Y 1 1

χ 0.83 share CX in C Y X/Y 0.55 0.56
µz 0.35 ln z ∼ N(µz, σz) ln(VA50/VA25) 0.93 0.93
σz 0.58 ln z ∼ N(µz, σz) ln(VA75/VA50) 1.23 1.05
γ 1.04 foreign size ln(VA90/VA10) 4.26 4.12

ln(VA95/VA05) 5.61 6.44
fd 0.0023 operational cost ln(VA99/VA01) 8.63 7.54
fx 0.0452 exporting cost fraction exporters 0.22 0.22
fa 1.3842 adoption cost fraction High-K 0.06 0.06
αl 0.12 K share Low-K cost share Low-K 0.12 0.12
αh 0.33 K share High-K cost share High-K 0.33 0.33
αC 0.76 K share C sector KC/K 0.21 0.16

LC/L 0.04 0.02

η 0.49 DRS C sector ∆ Y C/Y 0.15 0.25
φ 20 K adjustment cost ∆ I 1.23 1.22
φe 10 congestion cost entry volatility 0.04 0.03

Table 1.4: Internally Calibrated Parameters.
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1.4.2 Transition Dynamics during Commodity Cycles

In this section, I solve for a perfect foresight transition equilibrium in which

the commodity-producing economy is subject to an exogenously given global cycle

in commodity prices. The economy is assumed to be in the steady state (with a

zero initial net foreign asset position) up until period t = 0, assumed to be the year

2003 in the data. In period t = 1 (2004 in the data), the exogenous commodity

price cycle illustrated in Panel (a) of Figure 1.5 is revealed once-and-for-all to all

the agents. I feed the model with a commodity price boom-bust cycle similar to the

one observed in the period 2003-2013.

Panels (b)-(d) of Figure 1.5 report the dynamic response of the endogenous

prices directly related with the two key channels emphasized in this chapter. Each

panel display the time paths for the baseline model (solid lines), a counterfactual

simulation without technology choice, and data counterparts when available. Panel

(b) shows that the real exchange rate p appreciates by about 15% from through

to peak (panel (b)), thereby hurting exporters’ revenues relative to non-exporters.

Similarly, the cost of capital relative to the cost of labor rk/w increases (panel (c)),

inducing a cost disadvantage to the High-K types in the sense that their variable

costs increase relatively more than for Low-K types during the boom phase (φh/φl

increases in panel (d)).
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Figure 1.5: Exogenous trigger and endogenous price responses.
Notes: The solid lines depict the time series in the baseline model, while the dotted
lines correspond to a counterfactual without technology decision. The dark and light
gray shades represent the exogenous boom and bust cycle path fed to the model,
illustrated in panel (a). Panels (b)-(d) are endogenous prices responses.
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Dependent Variable: ln(Real VA or Real Profits)

Value Added Profits
Data Model Data Model

Xf0 · P̃Co
t−1 -0.0699*** -0.0947*** -0.0548** -0.0200***

(0.0266) (0.0018) (0.0251) (0.0036)

Kf0 · P̃Co
t−1 -0.0715** -0.156*** -0.0912*** -0.0966***

(0.0350) (0.0065) (0.0341) (0.0092)

Firm FE yes yes yes yes
Adj. R2 0.171 0.761 0.165 0.270
N. obs. 63,297 62,916 62,592 62,916

Table 1.5: Panel Regressions on Model-Simulated Data.
Notes: Results for regression 1.1. ***: p < 0.01, **: p < 0.05, *: p < 0.1. For
comparability with the model, I replace the continuous capital-intensity variable
from the data with a dummy equal to one when the firm classifies as “High-K” as
defined in Figure 1.2. Moreover, because in the model-based panel all High-K firms
are exporters, the triple interaction in 1.1 is removed from the specification.

1.4.2.1 Firm-Level Implications of Commodity Booms

To validate the model’s ability to reproduce the micro-level empirical regular-

ities, I simulate a panel of artificial firms based on the transition equilibrium, and

then I re-estimate the panel regressions reported in Section 1.2. Table 1.5 shows

that the model does a good job in reproducing the untargeted correlations between

export status and capital intensity with firm-level performance measures during the

commodity boom.

Figure 1.6 illustrates how the main channels of the model operate at the firm

level. Column (a) in the figure displays the evolution of total profits for different

key productivity types in the economy. Columns (b) and (c) break down total

profits among domestic and foreign components. In turn, the first row in the figure
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compares profits for the average exporter (z̃x) versus the average purely-domestic

type (z̃d). The second row compares the average Low-K firm (z̃l) with the average

High-K type (z̃h), while the third row compares the average exporter with Low-K

(z̃xl) against the average exporter with High-K technology (z̃xh).

The first row confirm that relatively low productivity firms (represented here

by the average purely-domestic type z̃d) enjoy high domestic demand, which more

than compensates them for the economy-wide increase in input costs. The average

exporter (z̃x), in turn, exhibits a similar increase in its profits from domestic markets,

but because the value of their export sales plummet, they approximately break-even

when regarding aggregate profits. The second row shows that the average Low-K

type (z̃l) experience a similar pattern than the average purely-domestic firm (z̃d).
8

However, the average High-K firm, which is also an exporter, exhibits a strong

decline in its total profits as a consequence of their plummeting export sales and

large increase in variable costs. The third row illustrates that within exporters,

those using capital-intensive technologies are worst-off, as predicted by the model.

Regarding the extensive margin, Figure 1.7 display the change in the cutoffs

that determine the exporting and technology decisions. As emphasized above, the

commodity boom induces a composition effect by shifting the aggregate productiv-

ity thresholds that determine firm selection into exporting and the capital-intensive

technology. In particular, the cutoff that determines entry/exit into the domestic

market shifts to the left (panel (b) of Figure 1.7), allowing some previously un-

profitable low-type firms to enter and enjoy an environment with richer households.

8 Note that the average Low-K firm is a purely-domestic type, so that Πx(z̃l) = 0.
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Figure 1.6: Profit Responses for average group types.
Notes: The columns report total profits and its break down. The first row compares
profits for the average exporter (z̃x) versus the average purely-domestic type (z̃d).
The second row compares the average Low-K firm (z̃l) with the average High-K firm
(z̃h). The third row compares the average exporter with Low-K (z̃xl) against the
average exporter with High-K technology (z̃xh). The dark and light gray shades
represent the boom and bust cycle path fed to the model. All series are in percent
deviation from the initial steady state.
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Figure 1.7: Self Selection: Cutoff Dynamics.
Notes: The solid lines depict the time series in the baseline model, while the dotted
lines correspond to a counterfactual without technology decision. The dark and light
gray shades represent the exogenous boom and bust cycle path fed to the model,
illustrated in panel (a).
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Yft = Xft = {0, 1} Yft = Kft = {0, 1}
Data Model Data Model
(1) (2) (3) (4)

Yf,t−1 0.343*** 0.372*** 0.258*** 0.0794***
(0.0120) (0.0294) (0.0096) (0.0303)

Yf,t−2 0.0547*** 0.0281*** 0.0627*** 0.115***
(0.0104) (0.0038) (0.0085) (0.0258)

Yf,t−1 · P̃Co
t 0.0384** 0.203*** 0.0524*** 0.409***

(0.0184) (0.0333) (0.0141) (0.0916)

Yf,t−2 · P̃Co
t -0.0457** -0.222*** -0.0805*** -0.390***

(0.0184) (0.0320) (0.0138) (0.0906)

Firm FE yes yes yes yes
Sector×Year FE yes yes yes yes
Adj. R2 0.150 0.370 0.140 0.692
N. obs. 49,439 54,871 49,439 54,871

Table 1.6: Panel Regressions on Model-Simulated Data.
Notes: Results for regression 1.2. ***: p < 0.01, **: p < 0.05, *: p < 0.1. Sample:
1995-2013. Columns (1) and (2) present results for the exporting dummy, while
columns (3) and (4) for the capital-intensive dummy. All specifications include
controls for firm size and revenue TFP (not reported).

In turn, both the exporting and adoption cutoffs shift to the right (panels (c) and

(d)), forcing some exporters to exit the foreign markets as well as some adopters

to downgrade their technology. While there are not data analogs for these cutoofs,

Table 1.6 shows that the model also does a good job in replicating the untargeted

coefficients related to the dynamic linear probability model presented in Section 1.2.

1.4.2.2 Productivity Measures

I follow Foster, Haltiwanger, and Krizan (2001) [44] (FHK henceforth) in com-

puting the model-based average productivity using employment weights:

Zt =
∑
f

ωftzf (1.27)

43



(a) Z (L-weight)

5 10 15 20 25

-1.5

-1

-0.5

0

%
d
ev

.
S
S

Baseline
,l = ,h

(b) Z (VA-weight)

5 10 15 20 25

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

%
d
ev

.
S
S

(c) AX (model)

5 10 15 20 25

-4

-2

0

2

4

%
d
ev

.
S
S

(d) AX (chained)

5 10 15 20 25

-8

-6

-4

-2

0

2

4

%
d
ev

.
S
S

Figure 1.8: Productivity Measures: Composition Effect.
Notes: The solid lines depict the time series in the baseline model, while the dotted
lines correspond to a counterfactual without technology decision. The dark and light
gray shades represent the exogenous boom and bust cycle path fed to the model.

where ωft is the time-varying (employment- or value-added-based) weight for firm

f in year t, and zf is the model-based time-invariant productivity of firm f . Alter-

natively, I construct a Solow residual-based productivity measure as follows:

AXt =
pXY X

t +XX
t

(KX
t )α

X

(LXt )1−αX (1.28)

where αX is the average capital-intensity of the manufacturing sector as a whole.

The first row of Figure 1.8 presents the FHK measures while the second row dis-

plays the Solow Residual measures. All figures compare the baseline model against

the counterfactual economy without the technology choice. While the distance be-

tween the zero line and the dotted line reflects the exchange rate channel and its
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impact on export exit, the distance between the dotted line and the solid line iso-

lates the pure additional amplification effect given by the cost of capital channel

and its impact on capital downsizing. Panels (a)-(d) of Figure 1.8 illustrate how

both channels induce composition dynamics that combine to generate a decline in

average productivity in the exportable/manufacturing sector. The baseline model

generates about half of the productivity decline observed in the data, a figure that

is two times larger than in a counterfactual economy with no technology decision.

1.5 Concluding Remarks

This dissertation uses Chilean manufacturing firm-level data to study the ef-

fects of commodity price cycles on factor reallocation across heterogeneous firms,

and their consequences for measured productivity. I argue that in heterogeneous

firm models that are consistent with the observed micro-level variation in firms

capital intensity and exporting decisions, the symptoms of the old-fashioned Dutch

disease, including a decline in manufacturing productivity, emerge endogenously in

a context of purely efficient reallocation.

In addition to the usual channel that hurts exporters due to the apprecia-

tion of the exchange rate, I conjecture that the commodity boom might crowd out

capital from manufacturing, given that copper extraction is a capital-intensive ac-

tivity. The data confirms both effects. Interestingly, I document large variations of

firm-level capital intensity within manufacturing industries, suggesting that different

technologies coexist even within narrowly-defined sectors.
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I provide a dynamic general equilibrium model in which firms with heteroge-

neous productivity decide whether to enter the domestic market, whether to become

an exporter, and whether to adopt a (more productive) capital-intensive technology.

Thereby, three productivity thresholds arise endogenously, the first one determining

endogenous entry/exit, the second one governing the choice of a capital-intensive

technology, and the third one governing the exporting decision. These thresholds

change endogenously during the boom. Less productive firm enter the domestic

market, while the thresholds for technology adoption and exporting become more

stringent, thereby implying exit from exporting and capital downsizing.

These composition dynamics are able to rationalize a decrease in measured

average productivity of the manufacturing sector, consistent with firm-level data

during the commodity boom started in 2003. Notably, unlike most of the literature

that opens the door to inefficient reallocation through reduced-form market fail-

ures, my model generates Dutch disease-like chain of events, including crowding-out

of exporters and productivity declines in manufacturing, in a framework in which

reallocation is purely efficient and welfare-improving.
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Chapter 2: Quantifying the Role of Financial Factors during the

Great Recession

2.1 Introduction

There is a long debate in macroeconomics about the ultimate drivers of busi-

ness cycles. Under the lens of stochastic general equilibrium frameworks, economic

fluctuations arise from disturbances to the model’s equilibrium conditions, which

can be interpreted as structural shifts in preferences and technology (e.g. Smets and

Wouters (2007) [101]), as reduced-form representations of frictions that manifest as

time-varying wedges (e.g. Chari, Kehoe, and McGrattan (2007) [23]), or simply as

convenient representations of model misspecification (e.g. Primiceri, Schaumburg,

and Tambalotti (2006) [89]).

The Real Business Cycle literature pioneered by Kydland and Prescott (1982)

[76] and Long and Plosser (1983) [79] strikingly illustrated that economic fluctua-

tions can be largely accounted for by random technology shocks to the production

function (King and Rebelo (1999) [70]). On the downside, the neoclassical growth

model predicts that the (tax-adjusted) household’s marginal rate of substitution

(MRS) between consumption and leisure should equal the marginal product of la-
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bor (MPL), an equilibrium condition that fails miserably in the U.S. post-war data.

The resulting labor wedge, the gap between MRS and MPL, varies significantly

over the business cycle in a countercyclical way (Shimer (2009) [99], Karabarbounis

(2014) [68]), and is one of the key driving forces to explain U.S. business cycles

(Chari, Kehoe, and McGrattan (2007) [23]). Hall (1997) [55] decomposes the labor

wedge, emphasizing the distinction between intratemporal and intertemporal chan-

nels, finding that most of the movements in employment over the business cycle are

due to intratemporal preference shocks.

On the other hand, Primiceri, Schaumburg, and Tambalotti (2006) [89], and

Justiniano, Primiceri, and Tambalotti (2010, 2011) [66] [67] find that intertemporal

disturbances are the key source of macroeconomic fluctuations. They reach this con-

clusion using a New Keynesian setup with a rich set of real and nominal frictions. In

recent years, motivated by the arguably prominent role of explicit financial frictions

during the Great Recession episode of 2007-2009, there has been a renewed interest

on the role of intertemporal disturbances in shaping business cycles. In fact, most

prominent models with microfounded financial frictions used to study the recent

financial crisis can be mapped into prototype economies with intertemporal wedges.

For instance, in the present chapter I show that a real version of the Gertler and

Karadi (2011) [48] model is equivalent to an economy with intertemporal invest-

ment shocks. Likewise, Chari, Kehoe, and McGrattan (2007) [23] show that an

economy with the type of credit market frictions considered in Bernanke, Gertler,

and Gilchrist (1999) [14] is equivalent to a growth model in which there is a wedge in

the Euler equation for capital. More recently, Ajello (2016) [2] sets up a model with
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Kiyotaki and Moore’s (2012) [72] type of friction, in which financial intermediation

disturbances act as intertemporal wedges. He finds that these financial shocks were

a key business cycle driver not only at the onset of the Great Recession but also

during most of the Great Moderation period.

This chapter contributes to this literature by assessing quantitatively the im-

portance played by financial frictions and financial shocks in the U.S. business cycle,

with a particular focus on the Great Recession. The financial crisis of 2007-2009

is a particularly relevant episode to study the role of intertemporal disturbances,

because as mentioned above, most financial frictions emphasized in the literature

manifest themselves as intertemporal investment wedges. At the core of the analysis

is a real business cycle model augmented to include financial intermediaries (banks,

for short) facing endogenously determined balance sheet constraints. Banks take

deposits from households and combine them with their own net worth to produce

state-contingent loans to firms. Following Gertler and Kiyotaki (2011) [50] and

Gertler and Karadi (2011) [48] (GK henceforth), the relationship between banks

and households is characterized by a moral hazard problem, which ultimately lim-

its banks’ ability to raise funds (borrow), and hence to acquire assets (lend). In

equilibrium, a contraction of banks’ net worth may activate a financial accelerator

effect, in which banks delever through fire sales of assets, credit spreads rise, invest-

ment plummets, and the economy may face a protracted recession. Following much

of the RBC literature, the competing shocks include standard productivity, labor

wedge and government spending shocks, as well as a less standard disturbance to

the quality of capital held by the banking sector. The latter shock is often used
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in the literature to trigger asset price dynamics, and is also interpreted here as a

financial shock that mimics the significant losses from toxic assets observed in the

U.S. banking sector during the Great Recession.

In the spirit of Chari, Kehoe, and McGrattan (2007) [23] (CKM henceforth), I

show that the baseline RBC model with GK frictions maps into a prototype economy

with labor and investment wedges. Unlike that paper, however, and given the size of

the shocks hitting the economy during the financial crisis, I use nonlinear techniques

not only to solve the model but also to uncover the structural driving forces behind

economic fluctuations. Moreover, in order to capture the intrinsic nonlinear nature

of this type of crises, I allow the balance sheet constraint associated with the GK

friction to bind only occasionally, typically when banks’ leverage is sufficiently high.

In the spirit of Mendoza (2010) [84], occasionally binding constraints can potentially

capture the idea of infrequent financial crises nested within typical business cycles.

In a nutshell, the model has the ability to generate conditional amplification,

giving rise to an asymmetry in the relationship between the net worth of the bank-

ing sector and economic activity. During tranquil times, when the balance sheet

constraint is slack, credit spreads are low and the economy (conditional on the re-

alization of other relatively benign shocks) is booming. I show that under a fully

nonlinear solution the economy spends most of the time in the slack regime, because

banks have the incentive to act cautiously and hold precautionary equity capital.

In other words, forward-looking banks anticipate the possibility that future shocks

may push them into a vulnerable zone (dangerously near the constraint), leading

to precautionary deleveraging, a mission that is accomplished by cutting lending
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to firms. In this environment, the sensitivity of the financial system to shocks is

relatively small and the economy behaves like a frictionless neoclassical benchmark.

However, in some states (say, a 2007-2009 scenario), an unlikely but possible combi-

nation of bad shocks can push the banks to hit the leverage limit, and the economy

shifts into a financial crisis regime. Credit spreads rise sharply, and non-financial

firms respond by borrowing less, so the equilibrium amount of credit drops. Along

the way, the financial accelerator mechanism embedded in the model amplifies the

initial shock. Less borrowing translates into less investment, which in turn leads

to a fall in output, consumption, and the price of capital. The fall in the return

to capital feeds back into the balance sheets of banks, propagating the effects even

after the initial shock has dissipated.

Related literature. The present chapter is related to the literature that

explores quantitatively the main driving forces behind macroeconomic fluctuations.

Stochastic general equilibrium models imply three broad classes of equilibrium con-

ditions: intratemporal first-order conditions, intertemporal first-order conditions,

and accounting relationships between inputs and outputs. Business cycles originate

from disturbances hitting these equilibrium relationships.

Chari, Kehoe, and McGrattan (2007) [23] use their so-called Business Cycle

Accounting method to conclude that neutral technology shocks (efficiency wedges

in their nomenclature) and intratemporal preference shocks (labor wedges) together

account for essentially all of the economic fluctuations during the Great Depres-

sion and the 1982 recession in the United States. More recently, Brinca, Chari,

Kehoe, and McGrattan (2016) [18] apply the same CKM method to update their
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results including the Great Recession, obtaining similar results: the intratemporal

labor wedge played the dominant role during the recent financial crisis, while the

intertemporal investment wedge played a decidedly tertiary role. These conclusions

are reminiscent of classic results in the real business cycle literature emphasizing the

role of productivity and preference shocks (e.g. King and Rebelo (1999) [70], Hall

(1997) [55]).

Primiceri, Schaumburg, and Tambalotti (2006) [89] (PST henceforth) empha-

size two main problems about the studies mentioned above emphasizing the role

of the labor wedge: first, they study environments in which physical capital is the

only asset; second, they disregard asset market returns data to inform the model.

Therefore, the only Euler equation implies very smooth dynamics on both the re-

turn to capital in the economy (as a function of the stable output-to-capital ratio)

and the stochastic discount factor (measured through consumption growth), thus

fitting very small intertemporal disturbances. By considering an economy in which

a short-term nominal bond is traded along with physical capital, and by exploiting

the bond pricing implications of an estimated state-of-the-art business cycle model,

they obtain a prominent role for intertemporal disturbances. Similarly, Christiano,

Eichenbaum, and Trabandt (2015) [28] find that the vast bulk of movements in ag-

gregate real activity during the Great Recession were due to intertemporal wedges

introduced in the households’ Euler equations associated with both nominal risk-free

bonds and capital accumulation.

This dissertation borrows insights from both strands of the literature. First, in

the spirit of CKM, I build a detailed economy with microfounded financial frictions
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that is observationally equivalent to a prototype economy with investment wedges.

I allow for the financial constraint to bind only occasionally, and show that the

associated intertemporal wedge in the prototype model is a function of the multiplier

on the bankers’ inequality constraint. Intuitively, if the financial constraint in the

baseline model never binds, then the investment wedge is always zero, and both

models behave like a frictionless RBC benchmark. Unlike CKM, who allow for

correlated shocks, I assume that the model’s exogenous innovations are independent,

a necessary condition for a meaningful structural interpretation of the shocks.

Second, following PST’s advice, I build a model in which a risk-free government

bond is traded along with physical capital, giving rise to two intertemporal Euler

equations, and inform them with data on credit spreads. Unlike PST, and given the

focus on the Great Recession, I filter the structural innovations using a nonlinear

filter that enforces the occasionally binding constraint.

This chapter also builds on the growing body of literature that studies the role

of financial frictions and financial shocks for business cycles. Much of the earlier

research about financial frictions emphasized the role of non-financial firms’ balance

sheets in the propagation of shocks. Seminal articles by Bernanke and Gertler

(1989) [13], Carlstrom and Fuerst (1997) [22], and Bernanke, Gertler, and Gilchrist

(BGG) (1999) [14] state that credit-market imperfections may significantly amplify

shocks and hinder investment by worsening the terms at which firms can borrow.

As asset values typically fall during downturns, the initial shock may be further

amplified in subsequent periods through tightening collateral constraints (Kiyotaki

and Moore (1997) [71]). Recently, Christiano, Motto, and Rostagno (2014) [30] use
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a BGG framework in which the volatility of cross-sectional idiosyncratic uncertainty

fluctuates stochastically over time, and show that fluctuations in risk are the most

important shock driving the cycle, including during the 2008 financial crisis.

On the other hand, the Great Recession gave rise to renewed research empha-

sizing frictions and shocks that originate directly in the financial sector (see Gertler

and Kiyotaki (2011) [50], Christiano, Motto, and Rostagno (2010) [29], Del Negro

et al. (2010) [36], Gertler and Karadi (2011, 2012) [48] [49], Jermann and Quadrini

(2012) [63], Kiyotaki and Moore (2012) [72], Iacoviello (2015) [61], Bigio (2015) [16],

among others). For recent surveys on financial frictions, see Brunnermeir, Eisen-

bach, and Sannikov (2012) [19] and Quadrini (2011) [90]. In the presence of financial

frictions, fluctuations in credit spreads and overall lending standards may reflect

shifts in the effective supply of funds offered to firms, with important spillovers to

the real economy (Gilchrist and Zakrajsek (2012) [52]). The so-called bank lending

channel states that banks’ losses from toxic assets during the financial crisis forced

them to delever by fire-selling securities and reducing lending, therefore shrinking

the effective supply of credit available to non-financial firms. This chapter builds on

the insights of the latter articles, but allowing for an occasionally binding financial

constraint. By doing so, I attempt to explain the mechanisms that caused small

losses in the mortgage market (relative to the size of the economy) to amplify into

such large dislocations in the financial markets as the ones observed in the summer

of 2008.

By building a model with an occasionally binding constraint, this chapter is

also related to the new body of literature studying nonlinear models with endoge-
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nous switching between normal times and financial crisis regimes, as in Mendoza

(2010) [84]. Unlike the latter paper, the occasionally binding constraint is derived

from a micro-founded moral hazard problem and is imposed on the banking sector

rather than the entrepreneurial sector, as in Akinci and Queralto (2014) [3] and

Bocola (2016) [17]. Unlike the present chapter, Akinci and Queralto (2014) [3] use

a small open economy setup in which the interest rate evolves mechanically as an

autoregressive process with debt-elastic feedback from the country’s international

debt-to-output ratio. In the present dissertation, the interest rates (and hence the

lending-deposit spread) are fully determined in the general equilibrium. In that

sense, this chapter is closer to He and Krishnamurthy (2014) [58], who also build a

model with an occasionally binding constraint on the banks’ equity capital, but us-

ing a setup similar to the one proposed by Holmstrom and Tirole (1997) [60]. They

calibrate the model for the U.S. economy and use it to characterize the transition

from a normal state to what they label as a systemic risk state that apparently took

place during the Great Recession episode. In turn, Bocola (2016) [17] focuses on the

effects of a sovereign default risk shock on financial intermediation, in the context

of the Italian debt crisis of 2011.

The remainder of this chapter is organized as follows. Section 2.2 describes the

baseline model with an occasionally binding GK friction. Section 2.3 presents an al-

ternative model with exogenous wedges. Section 2.4 shows the mapping between the

baseline model and a prototype economy with an intertemporal investment wedge.

Section 2.5 discusses the main results of the chapter and Section 2.6 concludes.
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2.2 The Model

I consider a real business cycle model augmented with a financial friction that

limits the ability of the banking sector to acquire funds from savers, in the spirit

of Gertler and Kiyotaki (2011) [50] and Gertler and Karadi (2011) [48]. Such a

friction ultimately gives rise to an endogenous limit on banks’ leverage ratio that

may restrict their ability to channel funds efficiently from savers to bank-dependent

agents. Unlike the above mentioned articles, the bank’s constraint binds only oc-

casionally, typically when a sequence of bad shocks hits a relatively vulnerable and

highly leveraged banking sector. I assume there is no friction in the relationship

between banks and the corporate sector.

The economy is populated by four types of private agents: households, banks,

capital goods producers, and final goods producers. There is also a government

that finances its purchases of the final goods by levying lump-sum taxes and by

issuing bonds. Regarding households, I use the “large family” metaphor in order

to maintain the tractability of the representative agent approach. More specifically,

there are constant fractions of workers and bankers within each household. Workers

supply labor and return the wages they earn to the household. Bankers manage

financial intermediaries and transfer any earnings back to their household. Within

the family there is perfect consumption insurance. Final good producers combine

labor and capital in order to produce the single final good in the economy. They need

external finance from banks in order to buy physical capital from capital producers,

which in turn combine old left-over capital with investment in order to produce new
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capital. Both types of firms are owned by households.

2.2.1 Households

Households consume, supply labor, and save. Households do not hold capital

directly. Rather, they save by making deposits in competitive financial intermedi-

aries or by purchasing government bonds.1 Both bank deposits and government

debt are non-state-contingent, one-period real bonds that pay the gross return Rt

from t−1 to t. In the equilibrium considered here, both instruments are riskless and

thus perfect substitutes. Therefore, I impose this condition in the budget constraint

from the outset. The typical household solves the following problem:2

max
{CtHt,Dt}

E0

∞∑
t=0

βt
[
C1−γ
t

1− γ
− ϕtχ

H1+ζ
t

1 + ζ

]

subject to Ct +Dt + Tt = WtHt +Rt−1Dt−1 + Σt (2.1)

where Ct is consumption, Ht is hours worked, Dt is total savings, Wt is the

real wage, Tt is lump-sum taxes, Σt is real dividends from the ownership of firms

and banks (net of start-up transfers that households give to its members entering

banking activities, as described below), and ϕt is an exogenous preference (labor

wedge) shock. Parameters β, γ, ζ, and χ are the discount factor, the risk aversion,

1 It is best to think of them as making deposits in banks other than the ones
they own. The implicit assumption is that banks are specialists at evaluating,
monitoring and enforcing loan contracts, which is why firms rely exclusively on
banks to obtain funds. Gertler and Kiyotaki (2015) [51] consider a model in which
banks and households may extend loans to firms, but the latter are less efficient in
doing so.

2 Since all households solve an identical problem I omit household subscripts.
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the inverse of the Frisch elasticity of labor supply, and a scale parameter that affects

the marginal rate of substitution between consumption and leisure, respectively.

The first-order conditions are fairly standard:

ϕtχH
ζ
t = C−γt Wt (2.2)

1 = Et [Λt,t+1Rt] (2.3)

where Λt,t+i ≡ βi
(
Ct+i
Ct

)−γ
is the household’s marginal rate of substitution.

2.2.2 Banks

Banks use their own net worth together with one-period deposits from house-

holds to provide equity finance to the final goods producers. In particular, they buy

claims on the returns of physical capital that final goods producers purchase, period

by period, from capital goods producers. Let Njt be the end-of-period t net worth

in the hands of bank j, Djt be deposits received from households, and Sjt be the

number of claims purchased from firms at market price Qt. The balance sheet of

bank j at the end of period t is given by

QtSjt = Djt +Njt. (2.4)

Financial intermediaries accumulate net worth through retained earnings. Banks’

liabilities pay the non-state-contingent real gross return Rt, and its assets earn the

state-contingent real gross rate RK
t+1. Accordingly, banks’ net worth evolves as fol-

lows:
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Nj,t+1 = RK
t+1QtSjt −RtDjt = (RK

t+1 −Rt)QtSjt +RtNjt (2.5)

where the second equality follows from equation (2.4). Intuitively, any increase

in net worth above the riskless return is a function of the spread (RK
t+1 − Rt) and

the market value of the securities purchased from firms. Under frictionless financial

markets, as in the standard neoclassical model, banks always have enough funds to

arbitrage away differences between the risk-adjusted lending and deposit rates:

EtΛt,t+1+iR
K
t+1+i = EtΛt,t+1Rt+i, i ≥ 0.

The key to the notion of financial factors affecting real activity is the existence

of limits to this arbitrage, so that credit spreads may arise. Following Gertler and

Kiyotaki (2011) [50] and Gertler and Karadi (2011) [48], I assume limited enforce-

ment of contracts in the relationship between savers (households) and bankers. In

particular, in each period, after portfolio decisions but before financial payouts are

made, the banker can choose to divert a fraction µ of total assets QtSjt. The cost

is that depositors can then force the intermediary into bankruptcy and recover the

remaining fraction (1− µ) of the assets. Because rational households recognize the

bank’s option to divert assets, they will only be willing to supply funds conditional

on an incentive compatibility constraint: the continuation value of operating the

bank, Vjt, cannot be less than the outside option:

Vjt ≥ µQtSjt. (2.6)

Because bankers may face a binding financial constraint in their ability to obtain
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deposits from households (that is, when (2.6) holds with equality), they will retain

earnings in order to accumulate net worth until escaping the constraint indefinitely.

To allow financial frictions to remain a relevant threat over time, I assume that

bankers have finite lifetimes. Specifically, each period a banker continues operat-

ing with exogenous i.i.d. probability θ which is independent of history.3 This

mechanism motivates dividend payouts upon exit, while the financial constraint is

still binding or (with some positive probability) expected to be binding in the near

future. Then, a mass (1 − θ) of bankers exit each period (and become workers),

and are replaced by an equal mass of workers that become new bankers, keeping the

mass of agents in each occupation constant over time.4

Therefore, given that the bank pays dividends only upon exit, the objective of

bank j at the end of period t is to maximize the expected present value of terminal

wealth:

Vjt = Et
{ ∞∑
i=1

(1− θ)θi−1Λt,t+iNj,t+i

}
. (2.7)

where Λt,t+i is the appropriate stochastic discount factor because the banker

is ultimately a member of the household.

Switching to a recursive formulation, the bank problem can be written as

3 This implies an average survival time equal to 1
1−θ .

4 The retained capital of exiting bankers (1 − θ)
[
(RK

t+1 −Rt)QtAjt +RtNjt

]
is

transferred back to households (as “dividends”), which in turn use part of it to
provide new bankers with small start-up funds. These transactions are accounted
for in the households’ budget constraint through the term Σt. See Appendix B.1 for
more details on these transactions and how they wash out in deriving the aggregate
resource constraint of the economy.
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follows:

Vjt = max
{Sjt,Djt}

{EtΛt,t+1 [(1− θ)Nj,t+1 + θVj,t+1(Nj,t+1)]}

subject to Vjt ≥ µQtSjt (2.8)

QtSjt = Djt +Njt (2.9)

Nj,t+1 = RK
t+1QtSjt −RtDjt (2.10)

In order to solve the dynamic program, we guess (and then verify) that the

value function is linear in net worth, Vjt(Njt) = ψtNjt.
5 Combining (2.9) and (2.10)

to eliminate deposits Djt, and given the conjectured value function, the problem can

be conveniently written as follows:

Vjt(Njt) = ψtNjt = max
{Sjt}
{µK,tQtSjt + µN,tNjt}

subject to ψtNjt ≥ µQtSjt

where

5 Gertler and Kiyotaki (2015) [51], Akinci and Queralto (2014) [3], and Bocola
(2016) [17] follow a similar strategy. Ultimately, this linearity result implies that
banks’ heterogeneity does not affect aggregate dynamics, and therefore, we do not
need to keep track of the wealth distribution. This feature of the model helps to
maintain tractability in the numerical analysis below.
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µK,t = EtΛt,t+1Ωt+1(RK
t+1 −Rt) (2.11)

µN,t = EtΛt,t+1Ωt+1Rt (2.12)

Ωt = (1− θ) + θψt (2.13)

Note that ψt = Vjt
Njt

corresponds to bank’s j value per unit of net worth and can

be interpreted as the “Tobin’s Q” ratio of the franchise. The variable Ωt represents

the value to the bank of an extra unit of net worth in period t, which equals ψt if

the bank survives (with probability θ), and one otherwise (probability 1−θ). Given

the financial constraint, the Tobin’s Q ratio ψt will always exceed unity (see Gertler

and Kiyotaki (2015) [51]). We can think of µN,t and µK,t as the expected discounted

marginal cost of funds, and the excess marginal return on assets over liabilities,

respectively.

Letting ξt be the multiplier on the incentive compatibility (IC) constraint, the

first-order and slackness conditions are:

µK,t = µξt (2.14)

ξt[ψtNjt − µQtSjt] = 0 (2.15)

Combining equations (2.11)-(2.14) it can be shown that:

ψt =
µN,t

1− ξt
=
Et [Λt,t+1] [1− θ + θψt+1]Rt

1− ξt
(2.16)
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From equations (2.14) and (2.15), when the IC constraint binds, ξt > 0 and:

φt ≡
QtSjt
Njt


= ψt

µ
=

µN,t
µ(1−ξt) ≡ φt if constraint is binding, ξt > 0

< ψt
µ

=
µN,t
µ

if constraint is slack, ξt = 0.

 (2.17)

The above expressions lie at the heart of the GK financial accelerator. Equa-

tion (2.16) tells us that the marginal value of wealth (ψt) is increasing in the IC

multiplier (ξt). Furthermore, even when the constraint is slack (ξt = 0), we have

ψt > 1 because the bank recognizes the possibility of a binding constraint in subse-

quent periods and would like to hold “precautionary capital”.

From equation (2.17), when the IC constraint binds there is an endogenous

upper bound φt on the bank’s leverage ratio φt. Notice that from the linearity

property of (2.17), we can easily aggregate to get QtSt ≤ φtNt: total credit provided

by the banking sector depends positively on aggregate net worth. A negative shock

to banks’ wealth triggers an endogenous decline in their lending capacity, which

reinforces itself in subsequent periods through fire-sale asset price declines and the

law of motion for aggregate net worth (equation (2.20), to be described below).

Also note that combining (2.11) and (2.14) we can write an Euler equation of

the form:

Et
[
Λt,t+1Ωt+1R

K
t+1

]
= Et [Λt,t+1Ωt+1Rt] + µξt. (2.18)

Two features are noteworthy in equation (2.18). First, a binding leverage

constraint introduces a wedge between the expected discounted return on loans and

the risk-free rate on deposits. The tighter the constraint binds (the higher ξt), the
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more financial distress in the economy (the higher µK,t) and the higher the lending-

deposit spread (via (2.11)). Second, the bank’s stochastic discount factor (SDF)

is “augmented” by the factor Ωt+1, which is ultimately a function of the bank’s

leverage ratio. Intuitively, if the leverage constraint was never to bind in the future,

we would have ξt+i = 0 and ψt+i = Ωt+i = 1 for all i ≥ 0, and equation (2.18) would

collapse to the neoclassical benchmark.

Defining the augmented SDF of banks as Λ̂t,t+1 = Λt,t+1Ωt+1 we obtain an

intuitive expression for the risk and liquidity premium required by banks as com-

pensation for holding the claims issued by the corporate sector:

Et
[
RK
t+1 −Rt

]
=

µξt

Et
[
Λ̂t,t+1

] − COVt(Λ̂t,t+1, R
K
t+1)

Et
[
Λ̂t,t+1

] . (2.19)

Expected excess returns on capital may arise for two reasons. First, as in

canonical equity premium models, high excess returns reflect a fair compensation

that bankers demand for holding assets whose payouts covary negatively with the

(augmented) SDF. Second, positive spreads may reflect the inability of bankers to

increase their portfolio of assets (raise new profitable lending) due to the leverage

constraint (ξt > 0).

The financial intermediaries characterization is closed with the law of motion

for bankers’ net worth. Aggregate net worth in each period is the sum of the net

worth of “surviving” bankers (N s
t ) and the net worth of “new” bankers (Nn

t ). Since

the fraction of surviving bankers from t− 1 to t is θ, we have:

N s
t ≡ θNt = θ

[
(RK

t −Rt−1)Qt−1St−1 +Rt−1Nt−1

]
.
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As noted earlier, new bankers receive a start-up transfer of funds from house-

holds, corresponding to a small share ι of the value of the assets that bankers have

intermediated in the previous period:

Nn
t ≡ ι(1− θ)Qt−1St−1.

Accordingly, the aggregate net worth of banks evolves according to:

Nt = N s
t +Nn

t =
{
θ
[
(RK

t −Rt−1)Qt−1St−1 +Rt−1Nt−1

]
+ ι(1− θ)Qt−1St−1

}
.

(2.20)

Equation (2.20) can be conveniently rewritten as:

Nt = θRK
t Qt−1St−1 + Pt−1 (2.21)

Pt = θ [Rt(Nt −QtSt)] + ι(1− θ)QtSt (2.22)

where the state variable Pt−1 measures the interest on deposits that bankers

pay to households at the beginning of the period (net of startup transfers), and is

sufficient to keep track of the evolution of aggregate net worth.

2.2.3 Final Goods Producers

There is a large set of competitive final goods producers that combine labor

and capital to produce the single final good in the economy, using a constant returns-

to-scale Cobb-Douglas technology. I introduce two relatively non-standard features

on these agents. First, they need external financing from banks (described above)
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to purchase new physical capital from capital producers (to be described below).

At the beginning of each period, they issue perfectly state-contingent claims to

bankers in exchange for funds, which are used to purchase the capital to be used in

production in the current period. A no-arbitrage condition implies that the latter

two transactions are made at the capital market price Qt. That is, in equilibrium,

final goods firms pay Qt for each unit of physical capital to capital producers. In

turn, for each security, bankers also pay Qt to final goods firms. Second, after

purchasing the capital stock, the realization of the (aggregate) “quality of capital”

shock Ψt determines the effective amount of physical capital available for production.

Therefore, the realized return on the securities issued by firms and purchased by

banks is given by:

RK
t+1 =

[
Zt+1 + (1− δ)Qt+1

Qt

]
Ψt+1 (2.23)

where Zt denotes the net revenue from production per unit of effective capital.

Anticipating the labor market clearing condition, profit maximization gives rise to

the following first-order conditions:

Wt = (1− α)
Yt
Ht

(2.24)

Zt = α
Yt

ΨtKt−1

. (2.25)

with

Yt = At (ΨtKt−1)αH1−α
t . (2.26)
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where At is a standard technology shock. Note that in the aggregate, QtKt

is the total value of capital acquired and QtSt is the total value of claims against

this capital (total credit in the economy). Then, by arbitrage, the capital market

clearing condition implies Kt = St.

2.2.4 Capital Producers

There is an arbitrarily large set of competitive capital producers that oper-

ate the technology to increase the economy-wide stock of capital. At the end of

each period t, capital producers purchase from final goods producers the stock of

undepreciated capital already used in production (1− δ)ΨtKt−1, repair it, and then

combine it with new investment It to produce new capital Kt. The latter will be

available for production next period. The newly produced capital is then sold to

firms and any profit is transferred back to the households. Since the marginal rate

of transformation (the repair stage) from previously used capital to new capital is

unity, the market price of new and used capital are both equal to Qt. Accordingly,

the period t profit of capital producers is given by:

ΠK
t = QtKt −Qt(1− δ)ΨtKt−1 − It (2.27)

where the market price of capital Qt is taken as given. The implied law of

motion for capital is given by:

Kt = (1− δ)ΨtKt−1 + Γ

(
It

ΨtKt−1

)
ΨtKt−1 (2.28)
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where the function Γ(.) is of the form:

Γ(x) = a1x
1−% + a2. (2.29)

The constants a1 and a2 are set in order to ensure that in the steady state

Γ(δ) = δ and Γ′(δ) = 1 (so that Q = 1).The parameter % ∈ [0, 1] governs the amount

of adjustment costs in the economy through the elasticity of Tobin’s Q with respect

to the investment-capital ratio, as in Bernanke, Gertler, and Gilchrist (1999) [14].

Capital producers choose It in order to maximize (2.27) subject to (2.28). The

first-order condition is:6

Qt =

[
Γ′
(

It
ΨtKt−1

)]−1

=

[
It

δΨtKt−1

]%
. (2.30)

2.2.5 Government

The government finances its purchases of the final good (Gt) by levying lump-

sum taxes (Tt), and by issuing one-period risk-free bonds (Bt). Lump-sum taxes

adjust every period to compensate any difference between spending and net bond

issuance. The budget constraint is of the form:

Gt +Rt−1Bt−1 = Tt +Bt. (2.31)

The ratio of government spending-to-output evolves exogenously as follows:

6 The required constants in (2.29) are a1 = δ%

1−% and a2 = − δ%
1−% , expressions that

are used to obtain the second equality in (2.30).
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Gt =

(
1− 1

gt

)
Yt (2.32)

where the spending shock gt follows an AR(1) process.

2.2.6 Market Clearing and Driving Forces

Appendix B.1 shows that the aggregate resource constraint can be written as

follows:

Yt = Ct + It +Gt. (2.33)

The labor market clearing condition requires that hours supplied by households

equal hours demanded by final producers. In turn, the capital market clearing

condition states that:

Kt = St.

The driving forces in the model are the TFP shock At, the labor wedge shock

ϕt, the government-spending shock gt, and the quality of capital shock Ψt. These

variables follow stationary AR(1) processes in logs. The competitive equilibrium

and the full system of equilibrium conditions are described in Appendix B.2.

2.3 Prototype RBC Model with Wedges

In the spirit of Chari, Kehoe, and McGrattan’s (2007) [23] business cycle ac-

counting method, in what follows I show that the GK financial friction described
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above maps into an agnostic intertemporal wedge distorting the capital Euler equa-

tion in a prototype RBC model. In turn, as is well-known, the preference shock to

the disutility of work maps into a labor wedge distorting the intratemporal optimal-

ity condition between the household’s marginal rate of substitution and the firm’s

marginal product of labor.

The productive sector in the prototype economy with wedges is the same

as in the baseline model. The difference is that there are no financial interme-

diaries. Rather, households provide loans directly to final goods producers. As

before, households can also save by purchasing government securities. Therefore,

the representative household solves the following problem:

max
{Ct,Ht,Lt,Bt}

E0

∞∑
t=0

βt
[
C1−γ
t

1− γ
− χH

1+ζ
t

1 + ζ

]

subject to Ct +Lt +Bt = (1− τHt )WtHt + (1− τKt )RK
t Lt−1 +Rt−1Bt−1 + Σt + Tt

(2.34)

where Ct is consumption, Ht is hours worked that earn the real wage Wt, Lt is loans

to final goods producers that earn the state-contingent real gross rate RK
t+1, Bt is

savings in government bonds that pay the non-state-contingent real gross return Rt,

Σt are real dividends from the ownership of firms, and Tt are lump-sum transfers

received from the government. τHt and τKt are exogenous processes that resemble

taxes on labor and capital income, and play the role of labor and investment wedges,

respectively. Redefining the wedges as ηHt = 1−τHt and ηKt = 1−τKt , the first-order

conditions are:
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χHζ
t = ηHt C

−γ
t Wt (2.35)

1 = EtΛt,t+1Rt (2.36)

1 = EtΛt,t+1η
K
t+1R

K
t+1 (2.37)

where Λt,t+i ≡ βi
(
Ct+i
Ct

)−γ
as in the baseline model. In equilibrium, total credit

from households to final goods producers are Lt = QtKt.

The government finances its purchases of the final good (Gt) by levying capital

(τKt ) and labor (τHt ) income taxes, and by issuing one-period risk-free bonds (Bt).

Any difference between spending, tax revenues, and net bonds issuance is rebated

back to households in a lump-sum fashion via Tt. The budget constraint is of the

form:

Gt + Tt +Rt−1Bt−1 = τHt WtHt + τKt R
K
t Lt−1 +Bt. (2.38)

Tax rates τKt and τHt follow exogenous AR(1) processes. Public spending

evolves as described in equation (2.32).

2.4 Mapping from frictions to wedges

Comparing equation (2.2) in the baseline model with microfounded frictions

with equation (2.35) in the prototype RBC model, it is clear that the labor wedge

maps as follows:
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ηHt = 1− τHt =
1

ϕt
. (2.39)

Combining equations (2.11)-(2.14) in the baseline model, we can write:

1 = Et
[
Λt,t+1

(
1− θ + θψt+1

µξt + ψt(1− ξt)

)
RK
t+1

]
. (2.40)

Comparing the resulting Euler equation for capital in the baseline model (2.40)

with equation (2.37) in the prototype RBC model, the investment wedge maps into

the financial friction as follows:

ηKt+1 = 1− τKt+1 =

(
1− θ + θψt+1

µξt + ψt(1− ξt)

)
. (2.41)

The agnostic intertemporal investment wedge in the prototype model is a

function of the banks’ Tobin’s Q ratio and the multiplier on the occasionally binding

constraint. Intuitively, if the leverage constraint in the model with explicit financial

frictions never binds (so that the multiplier on the incentive constraint ξt = 0 ∀t,

and the banks’ marginal utility of net worth ψt = 1 ∀t ), then ηKt = 1 (and τKt = 0)

∀t. In other words, both models converge to the frictionless RBC benchmark, in

which the expected discounted returns on all assets in the economy are equalized:

1 = Et [Λt,t+1Rt] = Et
[
Λt,t+1R

K
t+1

]
.

This result will be used in the quantitative section below, in order to provide

a direct structural estimate of the impact of the financial friction on business cycle

fluctuations.
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2.5 Quantitative Results

This section presents a series of numerical experiments that shed light on the

main features of the model dynamics, its ability to account for U.S. business cycles,

and the role of financial factors (the “financial shock” Ψt and the GK-type financial

friction itself) during the Great Recession. The first subsection briefly describes the

computational strategy. The second subsection presents the calibration/estimation

strategy and results. Next, I present several experiments to illustrate the dynamics

of the model. Finally, the last subsection reports the main results of the chapter.

2.5.1 Computational Strategy

The empirical strategy combines both calibrated and estimated parameters.

Some parameters are calibrated before the estimation step because the likelihood

function is not informative about their value. On the other hand, estimating the

fully nonlinear model subject to the occasionally binding financial constraint is com-

putationally challenging because it requires the solution of the nonlinear model to

be computed for a large number of parameter vectors. Instead I estimate the param-

eters using a log-linearized approximation of the model equilibrium conditions, and

characterize the posterior distribution using a Random Walk Metropolis-Hastings

algorithm, as described in An and Schorfheide (2007) [6]. Conditional on the esti-

mated parameter vector, I solve the model and extract the underlying states and

structural shocks enforcing the occassionally binding constraint by means of fully

nonlinear methods.
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In particular, the model is solved using a global method based on Chebyshev

approximations of the decision rules along the lines of Judd (1992) [64]. Given the

minimum set of state variables associated with the DSGE model, St, the solution

algorithm requires choosing a grid of points G = {S1, ...,SM} in the model’s state-

space and determining the coefficients on the Chebyshev polynomials by minimizing

the unweighted sum of squared residuals associated with the Euler equations of the

model. Following Aruoba, Cuba-Borda, and Schorfheide (2018) [8], the solution

algorithm involves two non-standard tools. First, because the occassionally binding

constraint potentialy introduces kinks in the policy functions, I use a piecewise

smooth representation of the approximated decision rules. Second, the solution

grid G is chosen using an iterative procedure based on a simulation-based clustered-

grid-algorithm (CGA) first proposed by Judd, Maliar, and Maliar (2010) [65]. The

solution algorithm and the accuracy of the numerical approximations are described

in detail in Appendix B.3. Given the model solution, I uncover the hidden states

and disturbances that best fit the data over the sample using the Bootstrap Particle

Filter, as described in Herbst and Schorfheide (2016) [59].

2.5.2 Model Estimation

Table 2.1 reports the parameters and targeted steady state values used in

the experiments. The model includes four conventional parameters (β, γ, α, δ), for

which I choose standard values and steady state targets used in related studies. I

target a steady state risk-free annual interest rate of 4%. I set the inverse of the

74



intertemporal elasticity of substitution γ equal to one, which implies log utility. I set

the capital share α = 0.33 and the quarterly depreciation rate of capital δ = 0.025,

as in GK. I set g to target the empirically observed share of government consumption

in total output. There are three parameters that are specific to bankers. First, the

divertable share µ is calibrated to generate a frequency of financial crises of about

0.5% (two systemic financial crises every 100 years). Second, the start-up share ι

is set to target an ergodic mean leverage ratio of four, which is the typical value

used in the literature (Gertler and Karadi (2011) [48]). Finally, a value of θ = 0.96

for the banks’ survival probability is used, following Bocola (2016) [17] who uses a

similar GK model subject to an occasionally binding constraint.

The remaining parameters which govern the dynamics of the model are esti-

mated using Bayesian techniques. Namely, I estimate the Frisch elasticity of labor

supply, the adjustment costs, and the persistence and standard deviations of all

exogenous AR(1) processes. The sample period is 1954:I-2015:IV. The observables

used are real output, real investment, hours worked, and a measure of the credit

spread. Real variables are in per capita terms, and are constructed scaling nom-

inal variables by the GDP deflator. Consumption includes nondurable goods and

services, while investment includes durable consumption and gross private domes-

tic investment. Because I work with a closed economy model, the data on output

excludes net exports. The spread measure is the difference between the Moody’s

seasoned Baa and Aaa corporate bond yields.7 All observables are HP-filtered, and

7 Similar results can be found using the spread between the Baa corporate bond
yield and the yield on long-term Treasury bonds, or using the Gilchrist and Za-
krajsek’s (2012) [52] excess bond premium. I choose to use the Baa-Aaa spread
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Calibrated Description Source or Target Value

β Disc. factor R = 4% annual 0.99
γ Risk aversion Gertler and Karadi (2011) 1
δ Depreciation Gertler and Karadi (2011) 0.025
α Capital share Gertler and Karadi (2011) 0.33
g Steady State G/Y G/Y Avg. 1955-2015 0.22
µ Diversion share Freq. Fin. Crises 0.5% 0.256

ι Start-up share LEV = 4. 0.007
θ Survival rate Bocola (2016) 0.96

Estimated Prior Posterior [5% 95%]

ζ Inverse Frisch Gamma(1.4, 1) 2.40 [1.20-3.50]
% Adjustment Cost Beta(0.25, 0.1) 0.03 [0.01-0.05]
ρA AR TFP Beta(0.5, 0.2) 0.75 [0.68-0.83]
ρϕ AR Labor Wedge Beta(0.5, 0.2) 0.85 [0.81-0.89]
ρg AR Gov. Spending Beta(0.5, 0.2) 0.78 [0.64-0.92]
ρΨ AR Quality K Beta(0.5, 0.2) 0.16 [0.03-0.29]

100σA Std. TFP InvGamma(1, 2) 0.52 [0.46-0.58]
100ση Std. Labor Wedge InvGamma(1, 2) 2.27 [1.27-3.21]
100σg Std. Gov. Spending InvGamma(1, 2) 0.213 [0.15-0.28]
100σΨ Std. Quality K InvGamma(1, 2) 0.211 [0.19-0.23]

Table 2.1: DSGE Model Parameters.
Notes: Priors and posteriors based on 100,000 draws from the Metropolis-Hastings
algorithm (discarding the first 50,000) applied to the log-linearized model in which
the constraint always binds. Sample period: 1954:I-2015:IV.

the associated HP-cycle time series are matched with the model-implied variables

expressed as percentage deviations in percent deviation from their respective ergodic

means.

I adopt fairly agnostic priors for the autoregressive processes. I assume a

Beta distribution with mean 0.5 and standard deviation 0.2 for the autoregressive

coefficients. The prior for the inverse Frisch elasticity is a Gamma distribution

centered at 1.4 (≈ 1/0.72), which is the baseline figure used by Rios-Rull et al

(2012) [93], who extensively study appropriate values for this parameter using U.S.

because it allows me to extend the data until 1947 (the beginning of the NIPA sam-
ple), and have several years of pre-sample data that is useful to train the filters in
the experiments below. The effective sample used is 1954:I-2015:IV.
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data in the context of DSGE models. The prior for the elasticity of Tobin’s Q

with respect to the investment-to-capital ratio (the adjustment cost parameter) is

assumed to be a Beta distribution centered at 0.25, which is the value calibrated

by Bernanke, Gertler, and Gilchrist (1999) [14]. Overall the data proved to contain

significant information about the estimated parameters, which is reflected in the

considerably different posterior densities relative to the chosen priors.

2.5.3 Model Dynamics

2.5.3.1 Goodness of fit

Table 2.2 compare some selected model-implied second moments with their

analogs in the data over the sample period 1954:I-2015:IV. Overall, the model is able

to reproduce several key volatilities and correlations observed in U.S. business cycles.

The model slightly underpredicts the absolute volatility of output (1.5%) relative

to the data (1.7%), because it generates less volatility in investment. However,

the relative standard deviation of output over investment is reasonably well-aligned

around three in both the model and the data, consistent with standard results in the

business cycle literature. The model also does a fair job in capturing the moments

of the financial variable included in the estimation (the Aaa-Baa spread), and also

those for consumption which is not observable. As expected, the model is able to

produce countercyclical spreads, but the absolute level of the correlation is only half

the size observed in the data. As explained above, positive spreads may arise in the

model (and in the data) because of two reasons: first, a standard countercyclical
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σ(X) σ(X)/σ(Y ) corr(X, Y ) corr(X,X−1)

Data Model Data Model Data Model Data Model

Output (Y ) 1.73 1.53 1 1 1 1 0.87 0.83
Consumption 0.85 0.91 0.49 0.60 0.80 0.67 0.84 0.99
Investment 5.79 4.14 3.34 2.71 0.94 0.90 0.86 0.76
Hours 1.88 1.49 1.08 0.98 0.85 0.78 0.92 0.83
Spread 0.07 0.05 0.04 0.03 -0.58 -0.29 0.75 0.63

Table 2.2: Second Moments.
Notes: Model-implied moments compared to data. Sample period: 1954:I-2014:IV.

risk-premium, and second, the financial constraint. As will become clear below, the

model presented here displays a very low risk premium (a canonical result in Euler-

equation based macro frameworks), preventing the model from generating the full

countercyclicality of spreads observed in the data.

2.5.3.2 Sample Decision Rules

In order to illustrate how the occasionally binding constraint drives an asym-

metry in the economy, this subsection presents decision rules for selected variables

and the three most important shocks analysed in the model, the technology shock,

the labor wedge shock, and the disturbance to the quality of capital.

Figure 2.1 show the results for slices of the decision rules in which only one ex-

ogenous state variable varies along a fine grid. The range of the grids is wide enough

(+ and - three standard deviations) to cover cases in which the IC constraint is both

slack and binding. Each column of the figure moves along the corresponding exoge-

nous state variable (TFP, labor wedge, quality of capital), while keeping all other

states at their ergodic means. Each row contains the decision rules for investment
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(It), the bank Tobin’s Q ratio (ψt = Vt/Nt), and the spread (Et
[
RK
t+1 −Rt

]
).

Each panel includes the policy functions for three different solution methods.

“Nonlinear” corresponds to the piecewise nonlinear solution algorithm described in

detail in Appendix B.3. “OccBin” is the piecewise linear solution using the OccBin

toolkit described in Guerrieri and Iacoviello (2015) [54].8 “Linear” corresponds to

a first-order perturbation solution which does not respect the occasionally binding

constraint. The comparison with the other solution methods commonly used in

the literature sheds light on the importance of the nonlinear solution method in

capturing both the kinks in the policy functions (not captured in the linear solution)

and precautionary motives (not captured in the piecewise linear solution).

Figure 2.1 shows that the economy experiences a binding financial constraint

after large negative (positive) TFP (labor wedge) shocks. Not surprisingly, the econ-

omy tends to switch into a “financial crisis” regime after relatively small negative

quality of capital shocks, given the fact that these disturbances directly affect the

net worth of the banking sector, thereby increasing the leverage ratio and activating

8 Guerrieri and Iacoviello (2015) [54] provide a fast an efficient Dynare-based
toolkit (OccBin) to solve dynamic models with occasionally binding constraints.
They adapt a first-order perturbation approach and applies it in a piecewise fash-
ion. Importantly, the piecewise solution is not just linear - with two different set of
policy functions depending on whether the constraint is binding or not - but rather,
it can be highly nonlinear. The dynamics in each regime depends on how long
one expects to be in that regime, which in turn depends on the state vector. This
interaction produces the high nonlinearity, and allows to capture the kinks in the
decision rules accurately. However, there is a limitation of such a method. Just as
any linear approximation method, the algorithm discards all information regarding
the realization of future shocks. Therefore, the algorithm is not able to capture
precautionary behaviour linked to the possibility that a constraint become bind-
ing in the future, as a result of shocks yet unrealized. I use the piecewise linear
solution in order to find a reasonable initial guess for my fully nonlinear algorithm.
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Figure 2.1: Policy Functions for Selected Variables. Pooling years.
Notes: In each panel, only one exogenous state variable varies on the horizontal axis.
The other state variables are fixed at their ergodic means. “Nonlinear” corresponds
to the piecewise nonlinear solution algorithm described in detail in Appendix B.3.
“OccBin” is the piecewise linear solution using the OccBin toolkit described in Guer-
rieri and Iacoviello (2015) [54]. “Linear” corresponds to a first-order perturbation
solution which does not respect the occasionally binding constraint.

80



the GK financial accelerator. Likewise, for high positive values of both TFP and

quality of capital shocks (or negative values for the labor wedge shock) the economy

is in a slack regime. In this regime, the level of banks’ net worth is high, and the

leverage ratio tends to be low relative to the mean of the ergodic distribution and

relative to the leverage limit imposed by the financial friction (φt in equation (2.17)).

Because the multiplier of the incentive compatibility constraint is equal to zero and

the model generates a small risk premium when the constraint is not binding, the

lending-deposit interest rate spread is around zero (see equation (2.19)). Cheap

credit fuels a rise in both investment and asset prices, and the economy booms.

Notice that the marginal value of wealth in the slack regime is always lower

than in the binding regime. Intuitively, due to the bank’s financial constraint, the

bankers’ marginal value of an extra unit of net worth is higher during periods of

financial distress. It is also noteworthy that the bank’s Tobin’s Q ratio in the fully

nonlinear decision rule is always greater than (or equal to) the values under the

piecewise linear (OccBin) solution in both regimes. This is precisely the “precau-

tionary capital” motive embedded in the model: under the fully nonlinear solution,

even under a slack regime, banks realize that future shocks might push them into

the leverage limit. Hence, the marginal value of net worth is higher in every state of

the economy. This is an important mechanism because it implies the economy will

spend less time under the binding regime, as is clear in the last row of the figure

that shows a wider range of shocks in which the spread (a direct function of the

multiplier on the IC constraint, see equation (2.19)) is near zero. Therefore, the

model has the potential to capture the idea of financial crises being relatively rare
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events nested within typical business cycles.

2.5.3.3 Crisis Experiments: Impulse Responses

This section presents several experiments to show how the model dynamics

work. Figure 2.2 shows the responses of key variables in the model to the three

main disturbances: the TFP shock, the labor wedge shock, and the “financial”

(capital quality) shock. In each case, the direction of the shock is designed to

generate a recession, and the size of the impulse is two standard deviations, which

is consistent with the size of the filtered innovations uncovered during the Great

Recession (see below). The rows in the figure present the responses of output,

consumption, investment, the banking sector’s leverage ratio, and the spread.

The negative shocks generate an immediate increase in the leverage ratio until

the point at which the financial constraint is activated in every case. Therefore the

multiplier on the incentive compatibility constraint becomes increasingly positive,

implying an increase in the spread between the lending and the risk-free deposit

interest rate. In a context of severe financial distress, banks are forced to delever

through a protracted cut in lending to the corporate sector in order to escape from

the binding constraint, which in turn translates into a significant investment slump

at impact. Consumption also falls persistently in all cases but in a much smoother

fashion. While the initial recession is much smaller under the quality of capital

shock, the economy tends to stay below trend for a larger period. As expected, the

financial shock has the largest impact on financial variables (such as leverage and
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Figure 2.2: Impulse Responses
Notes: Responses to negative 2-standard deviation shocks. All variables are in
percent deviation from the baseline unshocked path.
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spread) as well as smaller impacts on real variables.

2.5.4 Inference of Unobserved States from a Nonlinear Filter

2.5.4.1 Quantifying the role of the financial shock

In this section I use a nonlinear filter to back out the hidden states and struc-

tural innovations that best fit the U.S. data over the sample 1954:I-2015:IV, under

the lens of the model subject to the occasionally binding financial constraint. The

DSGE model has a nonlinear state-space representation of the form

yt = Ψ(st) + ut, ut ∼ N(0,Σu) (2.42)

st = Φ(st−1, εt), εt ∼ N(0,Σε), (2.43)

where yt is the vector of observables in period t, st stacks the hidden state

vector, εt is the vector of structural shocks, while ut are measurement errors. (2.42)

is the measurement equation that links the model state variables with the observable

time series used to inform the model. (2.43) is the transition equation given by the

piecewise nonlinear solution of the model represented here by the nonlinear function

Φ(.). I use the bootstrap particle filter to conduct inference about the unobserved

state (st) and shocks (εt) over the sample. The details of the algorithm can be found

in Herbst and Schorfheide (2016) [59].

Figure 2.3 presents the filtered i.i.d. innovations (εt) uncovered from the fil-

ter, using the same observable variables as in the estimation step (real output, real
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investment, per capita hours, and the spread). By construction, feeding these struc-

tural shocks back to the nonlinear state-space system recovers the observable data

used to inform the model (up to a small measurement error assumed to be 10%

of the sample variance of the respective observable time series). Likewise, counter-

factual experiments can be run by turning on and off one or more of these driving

forces at a time.

In general, the sequence of shocks extracted from the filter are consistent with

historical accounts and previous findings: productivity shocks are procyclical (Basu

and Fernald (2002) [9]), while labor wedge shocks are highly countercyclical (Hall

(1997) [55], Shimer (2009) [99], Karabarbounis (2014) [68]), and government spend-

ing shocks tend to be less important for business cycle fluctuations in the U.S.

(Chari, Kehoe, and McGrattan (2007) [23]). As expected, the quality of capital or

“financial” shock seems to be especially relevant during the Great Recession, and

also during previous recessions arguably caused by other unmodeled disturbances

(e.g. the oil price shocks during the seventies). With the exception of some spikes

around particular recession episodes, all the innovations tend to be within two stan-

dard deviations.

One way to externally validate the results of the filter is to compare some

of the extracted states to analogous objects in the data. Figure 2.4 compares the

underlying autoregressive processes for TFP and the labor wedge implied by the

filter, with available empirical counterparts provided by Fernald (2012) [39] and

Karabarbounis (2014) [68], respectively. For both TFP and the labor wedge the

comovement between the model-implied states and their external data counterparts
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Figure 2.3: Structural Innovations (in number of standard deviations)
Notes: Structural innovations scaled by the standard deviation of each shock. The
gray areas indicate NBER recession dates. .
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is striking (correlation of 0.88 and 0.91, respectively), despite the fact of being

obtained through completely different methodologies and using different observable

time series.

What were the main driving forces behind the Great Recession? Figure 2.5

presents the evolution of output, investment, hours, and the spread in the data and

decomposes each quarterly observed realization into the positive (above the x axis)

and negative (below the x axis) contributions of the structural shocks in the model.

To focus attention on the Great Recession episode, the figures show a zoom of the

period 2000-2015. The long-run analogs starting at the beginning of the sample are

available in Appendix B.4.

According to the structural model, the economic downturn during the Great

Recession was mainly a result of negative productivity and labor wedge shocks. On

the one hand, TFP shocks and to a lesser extent the quality of capital or “financial”

shock were key to explaining the investment slump at the very onset of the crisis.

Interestingly, the impact of previous positive productivity shocks on output was

fading a couple of quarters before the recession began, when the economy was already

showing significant signals of distress. On the other hand, the labor wedge was key

to explaining the slow recovery of output and investment. In fact, the long-run shock

decompositions reported in Appendix B.4 are consistent with this same pattern: the

TFP process tends to lead the cycle while the labor wedge tends to lag the cycle, a

result reminiscent of the findings by CKM in the context of the 1982 crisis.

Not surprisingly, hours worked are overwhelmingly explained by the labor

wedge shock, while around half of the spike in the spread in 2008-2009 was due to
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Figure 2.4: Selected Filtered States: Model vs Data
Notes: Model-implied filtered states extracted from the Particle Filter are in percent
deviation from their steady state values. The TFP data is from Fernald (2012) [39],
while the labor wedge data is from Karabarbounis (2014) [68]. Both data series are
in percent deviation from a Hodrick-Prescott trend. The gray areas indicate NBER
recession dates.
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the effects of the financial shock. However, the incidence of the financial shock in

the spread does not translate into a significant effect of this structural force into

output and investment, a result that is in part due to the quick mean reversion of

the observable spread time series.

2.5.4.2 Assessing the role of the financial friction

What was the role of the GK financial friction itself during the Great Reces-

sion? The relatively small role of the financial shock does not mean that the effects

of the financial friction were not important. In fact, the GK financial constraint was

binding during the crisis, likely triggered by the full combination of disturbances

reported in Figure 2.3. One way to estimate the direct effect of the friction in the

economy is to use the prototype RBC model with wedges and the equivalence result

presented in Section 4. In that model, we find that all the endogenous effect of the

friction (captured in the baseline model by the marginal value of wealth ψt, and

the multiplier on the occasionally binding constraint ξt) can be structurally cap-

tured by an agnostic exogenous wedge in the spirit of CKM. In contrast to CKM

whose shocks are allowed to be correlated, I use the particle filter to uncover the

model’s independent innovations, a necessary condition for a meaningful structural

interpretation of the shocks.

Figure 2.6 presents the results. Overall, the results are consistent with the

baseline model. Productivity and labor wedge shocks are still the main drivers of

the economy during the boom-bust cycle. However, the financial forces appear to
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Figure 2.5: Baseline Model: Historical Decomposition: Real Variables and Spread
Notes: Output, investment, and hours worked are in quarterly terms, expressed
in percent deviations from their ergodic means (solid line). Spread is expressed in
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observable variables, which are up to a small measurement error equal to the data
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Figure 2.6: Pure RBC Model: Historical Decomposition: Real Variables and Spread
Notes: See notes from Figure 2.5.

91



be more important under this metric, explaining around one third of the slump in

investment by the end of 2008 and the beginning of 2009.

Another difference in the RBC model with exogenous frictions is that now the

investment wedge absorbs the full effect not only of the financial friction but also

the financial shock. This result can be better explained by combining equations

(2.36) and (2.37):

1 = EtΛt,t+1Rt = EtΛt,t+1η
K
t+1R

K
t+1.

Whenever there is a difference between the risky and the riskless return in

the economy, the model can explain it directly through the investment wedge ηKt+1

or through the financial shock embedded in RK
t+1. In the prototype RBC model,

the data tend to favor the direct investment wedge effect because the financial

shock implies a sudden decrease in the supply of capital in the economy, causing a

counterfactual increase in the price of capital (Qt) during the recession.

2.6 Conclusions

This chapter studies quantitatively the role of financial factors in U.S. busi-

ness cycles, with a particular focus on the Great Recession. To do so, I augment

an otherwise standard real business cycle model with a non-trivial banking sector,

in which financial intermediaries face an occasionally binding endogenous limit on

their leverage ratio. The asymmetry induced by the occasionally binding constraint

generates non-monotone dynamics, therefore capturing the idea of infrequent finan-

cial crises nested within typical business cycles. At the same time, the framework
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is still tractable enough to allow for the introduction of several standard features

typically used in the DSGE literature.

In the spirit of Chari, Kehoe, and McGrattan (2007) [23], I show that the

baseline model with the GK friction is equivalent to a prototype economy with an

intertemporal investment wedge that distorts the Euler equation for capital. More-

over, the investment wedge is shown to be a function of the key endogenous variables

associated with the friction in the microfounded model: that is, the multiplier as-

sociated with the ocassionally binding constraint, and the marginal value of net

worth (a measure of the “precautionary capital” motive that arises in the nonlinear

solution). Unlike that paper, however, I back out the structural economic shocks

that drove the economy into the Great Recession using the bootstrap particle filter.

Consistent with previous literature, the results suggest that financial frictions

that manifest as intertemporal wedges are relatively unimportant to understanding

U.S. business cycles over the five decades previous to the crisis. More surprisingly,

while the GK friction (or investment wedge) was indeed quantitatively more relevant

during the Great Recession, its effects are still of second-order importance relative

to other driving forces such as productivity or labor wedge shocks.
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Appendix A: Appendices for Chapter 1

A.1 Cross-country decline in mining productivity

Table A.1 compares labor productivity growth in the mining sector, before and

after the commodity super cycle started in 2003, across countries with 5% or higher

mining share in total output. With the exception of Chin, all countries experience a

significant decline in real value added per worker, thereby suggesting some inefficient

rent-seeking behavior.

Mining Share in Labor Productivity Mining Difference

Total Output (a) 1990-2003 (b) 2004-2012 (b) - (a)

Argentina 6.8 2.0 -6.8 -8.8
Brazil 6.4 4.6 1.2 -3.4
Chile 17.8 7.8 -3.9 -11.7
Colombia 10.0 0.0 -7.8 -7.8
Mexico 12.5 5.2 0.0 -5.2
Peru 11.2 4.3 -2.1 -6.4
Indonesia 17.6 2.5 -4.7 -7.2
Malaysia 19.5 5.2 -11.7 -16.8
Russia 13.4 4.3 1.4 -2.9
SouthAfrica 13.0 5.9 2.7 -3.3
Australia 10.1 3.8 -3.4 -7.2
Canada 13.1 1.8 -2.6 -4.4
USA 5.0 1.8 -2.0 -3.8
China 7.8 9.2 9.9 0.7

Table A.1: Mining Countries: Labor Productivity.
Notes: Author’s calculations based on National Accounts data by economic sector
from United Nations, combined with information on employment by sector from the
10-Sector-Database..
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A.2 Firm Characteristics and Estimated Revenue TFP

To document in a systematic fashion how exporters and capital-intensive firms

outperform their non-exporters and labor-intensive counterparts, I run the following

panel regression:

ln(Yft) = αXf0 + βKint
f0 + δXf0 ·Kint

f0 + γ′Zft + ϕst + εft (A.1)

where Yft denotes a productivity measure for firm f in year t, Xf0 is a dummy

variable that takes de value of 1 if firm f exports in its first period t = 0 in the

sample (conditional on t = 0 being in the pre-boom period 1995-2003), Kint
f0 denotes

firm f period t = 0 capital intensity, Zft are firm-level controls, and ϕst represents

sector-year fixed effects. Firm-level multi-factor productivity is estimated using the

method of Wooldridge (2011) and, under the assumption of constant returns to

scale, using cost shares as in Foster, Haltiwanger, and Krizan (2001).

Table A.2 presents the results. Pre-boom exporters and capital-intensive

firms are significantly more revenue-productive than their non-exporters and labor-

intensive analogs. Similar results emerge when using alternative firm-level outcome

variables such as real value added and real profits.
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Dependent Variable: ln(Productivity)

CRS WLP CRS WLP

Sample: 1995-2007 Sample: 1995-2013

Xf0 0.569*** 0.691*** 0.611*** 0.657***
(0.0258) (0.0281) (0.0253) (0.0281)

Kint
f0 0.084*** 0.108*** 0.098*** 0.111***

(0.0061) (0.0066) (0.0060) (0.0066)
Xf0 ·Kint

f0 0.155*** 0.159*** 0.149*** 0.172***

(0.0142) (0.0155) (0.0140) (0.0157)

Firm FE no no no no
Sector×Year FE yes yes yes yes
Adj. R2 0.080 0.030 0.116 0.066
N. obs. 52,138 52,138 63,687 63,687

Table A.2: Panel Regressions: Firm Characteristics and Productivity.
Notes: Results for regression A.1. ***: p < 0.01, **: p < 0.05, *: p < 0.1.
Control by size included (not reported). CRS: Elasticities obtained using cost shares
(constant returns to scale). WLP: Wooldridge (2011) estimation (decreasing returns
to scale).

A.3 Robustness

Table A.3 augments the baseline panel regressions presented in Section 1.2 with

an interaction between firm-level size and the commodity price shock. The purpose

of this interaction is to check the robustness of my main results to a financial friction

channel that affects differentially firms with different sizes. Column (1) in Table A.3

displays the baseline result. Columns (2)-(4) shows that the results survives to the

introduction of these interactions.
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Dependent Variable: ln (Real Profits)

(1) (2) (3) (4)

Xf0 · P̃Co
t−1 -0.079*** -0.082*** -0.059*** -0.062***

(0.0292) (0.0291) (0.0302) (0.0302)

Kint
f0 · P̃Co

t−1 -0.024*** -0.026** -0.019*** -0.022***

(0.0074) (0.0076) (0.0076) (0.0077)

Xf0 ·Kint
f0 · P̃Co

t−1 -0.032** -0.031* -0.033** -0.033**

(0.0152) (0.0152) (0.0152) (0.0152)

TFPf0 · P̃Co
t−1 -0.033* -0.036**

(0.0181) (0.0182)

SIZEf0 · P̃Co
t−1 -0.018** -0.019**

(0.0074) (0.0074)

Firm FE yes yes yes yes
Sector×Year FE yes yes yes yes
Adj. R2 0.169 0.169 0.169 0.169
N. obs. 59,281 59,281 59,281 59,281

Dependent Variable: ln (Real Value Added)

(1) (2) (3) (4)

Xf0 · P̃Co
t−1 -0.092*** -0.095*** -0.077*** -0.079***

(0.0291) (0.0292) (0.0300) (0.0300)

Kint
f0 · P̃Co

t−1 -0.021*** -0.023** -0.018*** -0.020***

(0.0073) (0.0074) (0.0075) (0.0075)

Xf0 ·Kint
f0 · P̃Co

t−1 -0.032** -0.031* -0.033** -0.032**

(0.0157) (0.0156) (0.0157) (0.0157)

TFPf0 · P̃Co
t−1 -0.027* -0.029

(0.0190) (0.0190)

SIZEf0 · P̃Co
t−1 -0.014** -0.015**

(0.0075) (0.0075)

Firm FE yes yes yes yes
Sector×Year FE yes yes yes yes
Adj. R2 0.169 0.169 0.169 0.169
N. obs. 59,281 59,281 59,281 59,281

Table A.3: Panel Regressions: Commodity Booms and Outcome Variables.
Notes: Results for regression ?? with additional controls. ***: p < 0.01, **: p <
0.05, *: p < 0.1. The variables SIZEf0 and TFPf0 are constructed as firm f
quintile in the size and productivity distributions in its first period t = 0 in the
sample. Size is measured as the number of workers, while firm-level productivity is
estimated using the method of Wooldridge (2009).
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A.4 General Equilibrium System

Endogenous (34) =
{
C,CX , CM , Y X , Y C , rk, w, p, pX , pR

}
= 10

=
{
LX , LC , L,KX , KC , K, I,XX , X,M, TB,B

}
= 12

= {V (z), Vdj(z), Vxj(z), µ(z), zd, za, zx,M,Me, φ(.),Φ(.),F} = 12

A.4.1 Household

pt =
[
χ
(
pXt
)1−ε

+ (1− χ)
(
pMt
)1−ε

] 1
1−ε

(A.2)

ϕLζt = C−υt wt (A.3)

CX
t = χ

(
pt
pXt

)ε
Ct (A.4)

CM
t = (1− χ)

(
pt
pMt

)ε
Ct (A.5)

Ct+1 =

(
pt
pt+1

)1/ν

Ct (A.6)

1 + φ
(
Kt+1

Kt

− 1
)

= β
[
rkt+1 + 1− δk + adjt+1

]
(A.7)

adjt = φ
(
Kt+1

Kt

)(
Kt+1

Kt

− 1
)
− φ

2

(
Kt+1

Kt

− 1
)2

Kt+1 = (1− δk)Kt + It (A.8)

A.4.2 Exportable Goods

φjt =

(
rkt
αj

)αj ( wt
1− αj

)1−αj
, j = l, h (A.9)
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Vt(z) = max{Vdlt(z), Vdht(z), Vxlt(z), Vxht(z)} (A.10)

Vdjt(z) = max {0, πdt(z;α) + (1− δ)βVt+1(z)} , j = l, h (A.11)

Vxjt(z) = max {0, πdjt(z) + πxjt(z) + (1− δ)βVt+1(z)} , j = l, h(A.12)

Vdlt(zdt) = 0 (A.13)

Vdlt(zxt) = Vxlt(zxt) (A.14)

Vxlt(zat) = Vxht(zat) (A.15)∫ ∞
zdt

Vt(z)g(z)dz = fe + φe
[
exp

(
Met −Me

)
− 1

]
(A.16)

Mt+1µt+1(z) =


(1− δ)Mtµt(z) +Met+1g(z), if z ≥ z′dt+1

0, otherwise

 (A.17)

Mt+1 = (1− δ)Mt

∫ ∞
zdt+1

µt(z)dz +Met+1

∫ ∞
zdt+1

g(z)dz (A.18)

Y X
t =

[
Mt

(∫ zat

zdt

(qdlt(z))ρ µt(z)dz +
∫ ∞
zat

(qdht(z))ρ µt(z)dz

)] 1
ρ

(A.19)

XX
t = Mt

[∫ zat

zxt
pxlt(z)qxlt(z)µt(z)dz +

∫ ∞
zat

pxht(z)qxht(z)µt(z)dz

]
(A.20)

LXt = LXdlt + LXdht + LXxlt + LXxht (A.21)

KX
t = KX

dlt +KX
dht +KX

xlt +KX
xht (A.22)

A.4.3 Commodity Goods

wt = pCot (1− αR − αC)
Y C
t

LCt
(A.23)

rkt = pCot αC
Y C
t

KC
t

(A.24)
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pRt = pCot αR
Y C
t

R
(A.25)

Y C
t =

[(
R
)αR (

KC
t

)αC (
LCt
)1−αR−αC

]η
(A.26)

A.4.4 Aggregation

Lt = LXt + LCt (A.27)

Kt = KX
t +KC

t (A.28)

Y X
t = CX

t (A.29)

Bt+1 = (1 + r∗)Bt + TBt (A.30)

TBt = Xt −Mt (A.31)

Xt = pCot Y C
t +XX

t (A.32)

Mt = CM
t + I t + Φt + Ft (A.33)

Φt =
φ

2

(
Kt+1

Kt

− 1
)2

Kt (A.34)

Ft = Mtfd +Mtpxtfx +Mtpatfa +Metfe (Met) (A.35)

A.4.5 Transition Algorithm

• Setup: Economy is in steady state until t = 0. Boom-bust cycle {pCot }Tt=1 is

revealed in t = 1.

• Initial State: {B1, K1,M1, µ1(z)} is given.

• Outer Loop: Guess C1. Bisection update using transversality condition.
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• Inner Loop: Guess {wt, pXt , Kt+1}Tt=1.

– Households:

∗ Get {pt}Tt=1 using (A.2).

∗ Get {Lt}Tt=1 using (A.3).

∗ Get {Ct+1}Tt=1 using (A.6).

∗ Get {CX
t , C

M
t }Tt=1 using (A.4), (A.5).

∗ Get {rkt+1}Tt=1 using (A.7).

∗ Get {It}Tt=1 using (A.8).

– Get {φt(α)}Tt=1, α = αl, αh ,using (A.9).

– Set period t = T (final steady state) value function vector VT (z).

– Iterate Backward: For t = T − 1 : −1 : 1

∗ Compute value functions and cutoffs via (A.10)-(A.15).

∗ Use (A.16) to get the mass of entrants Met.

– Iterate Forward: For t = 1 : T

∗ Get mass Mt and distribution µt(z) using (A.17)-(A.18).

– Aggregation:

∗ Get {XX
t , K

X
t , L

X
t , Y

X
t }Tt=1 using (A.20), (A.21), (A.22), and (A.29).

∗ Get {pRt , LCt , KC
t , Y

C
t }Tt=1 using (A.23)-(A.26).

– Model-Implieds:

∗ {wt}Tt=1 using (A.27). (Solver)
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∗ {pXt }Tt=1 using (A.19). (Analytic)

∗ {Kt+1}Tt=1 using(A.28). (Analytic)

– Iterate over {wt, pXt , Kt+1}Tt=1 until convergence.

• Fixed Costs: Get {Φt,Ft}Tt=1 using (A.34), (A.35).

• Trade Balance: Get {Xt,Mt, TBt}Tt=1 using (A.32), (A.33), (A.31), respec-

tively.

• NFA: Get {Bt+1}Tt=1 from (A.30).

• Iterate: over C1 until {Bt+1}Tt=1 is stable in the long run.

A.5 Steady State System

Endogenous (35) =
{
C,CX , CM , Y X , Y C , Y, rk, w, p, pX , pR

}
= 11

=
{
LX , LC , L,KX , KC , K, I,XX , X,M, TB, Y CY, TBY

}
= 13

= {V (z), Vd(z;α), Vx(z;α), µ(z), zd, za, zx,M,Me, φ(α),F} = 11

Given r∗, β = 1
(1+r∗)

from Euler. Solve given B.

A.5.1 Household

p =
[
χ
(
pX
)1−ε

+ (1− χ)
(
pM
)1−ε

] 1
1−ε

(A.36)
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CX = χ

(
p

pX

)ε
C (A.37)

CM = (1− χ)

(
p

pM

)ε
C (A.38)

ϕLζ = C−υw (A.39)

rk = r∗ + δ (A.40)

I = δkK (A.41)

A.5.2 Exportable Goods

φj =

(
rk

αj

)αj ( w

1− αj

)1−αj
, j = l, h (A.42)

V (z) = max{Vdl(z), Vdh(z), Vxl(z), Vxh(z)} (A.43)

Vdj(z) = max

{
0,

(1 + r∗)

(δ + r∗)
πdj(z)

}
, j = l, h (A.44)

Vxj(z) = max

{
0,

(1 + r∗)

(δ + r∗)
[πdj(z) + πxj(z)]

}
, j = l, h (A.45)

Vdl(zd) = 0 (A.46)

Vdl(zx) = Vxl(zx) (A.47)

Vxl(za) = Vxh(za) (A.48)∫ ∞
zd

V (z)g(z)dz = fe + φe
[
exp

(
Me −Me

)
− 1

]
(A.49)

µ(z) =


g(z)

1−G(zd)
, if z ≥ zd

0, otherwise

 (A.50)

δM = [1−G(zd)]Me (A.51)
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Y X =

[
M

(∫ za

zd

(qdl(z))ρ µ(z)dz +
∫ ∞
za

(qdh(z))ρ µ(z)dz

)] 1
ρ

↔ (A.52)

pX =
1

ρ

φ1−σ
l ·

(
M

∫ za

zd

zσ−1µ(z)dz

)
+

(
φh
κ

)1−σ

·
(
M

∫ ∞
za

zσ−1µ(z)dz
) 1

1−σ

XX = M
[∫ za

zx
pxl(z)qxl(z)µ(z)dz +

∫ ∞
za

pxh(z)qxh(z)µ(z)dz

]
(A.53)

LX = LXdl + LXdh + LXxl + LXxh (A.54)

KX = KX
dl +KX

dh +KX
xl +KX

xh (A.55)

A.5.3 Commodity Goods

w = pCo(1− αR − αC)
Y C

LC
(A.56)

rk = pCoαC
Y C

KC
(A.57)

pR = pCoαR
Y C

R
(A.58)

Y C =
[(
R
)αR (

KC
)αC (

LC
)1−αR−αC

]η
(A.59)

A.5.4 Aggregation

L = LX + LC (A.60)

K = KX +KC (A.61)

Y X = CX (A.62)

TB = −r∗ ·B (A.63)
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TB = X −M (A.64)

X = pCoY C +XX (A.65)

M = CM + I + F (A.66)

F = Mfd +Mpxfx +Mpafa +Mefe (Me) (A.67)

Y = pXY X +XX + pCoY C −F (A.68)

Y CY =
pCoY C

Y
(A.69)

TBY =
TB

Y
(A.70)

A.5.5 Steady State Solution Algorithm

Targets = {r∗, TBY, Y CY, L}

Parameters = {β,B,R, ϕ}

• pCo is exogenously given.

• Assumption: No congestion cost in this steady state.

• Given r∗, β = 1
(1+r∗)

from Euler equation (not listed).

• Guess (w, pX , C).

• Residuals: Free entry condition in X sector (A.49), GDP definition (A.68),

and balance of payments (A.64).

• Get implied (rk) directly from (A.40).
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• Get (Y C , TB) from (A.69) and (A.70). Get B from (A.63).

• Get (LC , KC) from (A.57) and (A.56), respectively.

• Get R from (A.59) and pR from (A.58).

• Get (p, CX , CM , Y X) from (A.36), (A.37), (A.38), and (A.62).

• Get (φ(α) from (A.42).

• Get values and cutoffs from (A.43)-(A.48).

• Get distribution from (A.50).

• Get (M,Me) from (A.52), (A.51).

• Get (XX , LX , KX) from (A.53), (A.54), (A.55).

• Get K from (A.61).

• Get L from (A.60).

• Get implied ψ from (A.39).

• Get I from (A.41)

• Get (F) from (A.67).

• Get (X,M) from (A.65), (A.66).

• Residuals: Free entry condition in X sector (A.49), GDP definition (A.68),

and balance of payments (A.64).

• Iterate over (w, pX , C) until convergence.
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A.6 Analytical Cutoffs

Combining the static versions of equations 1.15-?? in the main text, we can

obtain anaytical expressions for the long-run productivity thresholds that determine

self-selection into the capital-intensive technology and into exporting. The domestic

cutoff can be written as:

zd =

[
σfd
pσ · C

] 1
σ−1

(
φl
ρ

)
. (A.71)

Given the proposed sorting pattern zd < zx < za, the marginal exporter uses

the Low-K technology. The condition that determines the exporting cutoffs is given

by πdl(zx) = πxl(zx), which implies:

zx =

[
σfx
τ 1−σγ

] 1
σ−1

(
φl
ρ

)
. (A.72)

Finally, the lowest productivity type that is able (and willing) to use to the

High-K technology is an exporter. Thereby, the adoption cutoff satisfies πxl(za) =

πxh(za). Solving for za yields:

za =

[
σfa

pσC + τ 1−σγ

] 1
σ−1

[(
φh
κ

)1−σ
− φ1−σ

l

] 1
1−σ

ρ
. (A.73)

Testable Predictions. Positive commodity price (windfall) shocks induce

higher consumption ( ∂C
∂pCo

> 0), currency appreciation ( ∂p
∂pCo

> 0), and an increase

in the rental rate of capital relative to the cost of labor ∂(rk/w)
∂pCo

> 0. These are, the
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wealth or demand channel, the substitution or exchange rate channel, and the cost

of capital channel, respectively. These well-known basic correlations can be easily

shown in the full general equilibrium model presented in Section 1.3. In this section,

I take them as given.

Prediction 1 (Intensive margin). For any given exporting type, export

sales shrink relative to domestic sales after a positive windfall shock.

From equation 1.15, it can be seen that, for any given exporting type (either

Low-K or High-K), the ratio of export sales to domestic sales, Rxd, is given by:

Rxd =
γτ 1−σ

(p)σC
(A.74)

Given that ∂C
∂pCo

> 0 and ∂p
∂pCo

> 0, then it must be the case that ∂Rxd
∂pCo

< 0.

Note that the shrinking of exporters relative to non-exporters is a combination

of both demand and exchange rate channels. The intuition is as follows. First,

the economy is richer, so the household increases demand immediately to smooth

consumption (income effect). Second, higher demand pushes domestic prices up

(currency appreciation), thereby leading to further adjustments in favor of purely-

domestic producers and at the expense of exporters (substitution effect).1

Prediction 2 (Extensive margin: Exporters vs Non-exporters). The

exporting cutoff increases after a positive windfall shock.

From equation A.72 it is direct that higher costs during the boom (↑ φl) unam-

1 See Corden and Neary (1982) and Vegh (2013).
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biguously leads to a one-to-one increase in the exporting cutoff zx, therefore inducing

some previously profitable exporter types to stop selling their varieties abroad. No-

tice that, under monopolistic competition, increasing composite costs are passed

through to consumers via the pricing rule ??, ultimately raising the average basket

price p =
[∫
z (pd(z))1−σ dz

] 1
1−σ , that is, a real appreciation of the domestic currency.

In essence, firm exit from exporting is associated with the exchange rate channel.

Prediction 3 (Extensive margin: High-K vs Low-K). The adoption

cutoff increases after a positive windfall shock.

From equation A.73 it is direct that both larger aggregate demand (↑ C)

and currency appreciation (↑ p) push za down. Then, the overall effect depends

crucially on the cost of capital channel, that is, on the term Ω ≡
[(

φh
κ

)1−σ
− φ1−σ

l

]
in

equation A.73. It can be shown that ∆Ω is proportional to
(
αh − αl

) (
∆rk −∆w

)
,

which is positive as long as ∆rk > ∆w. Intuitively, if the cost of capital increases

more than the cost of labor, then capital-intensive firms face a cost disadvantage,

and some of them will be forced to downgrade into the less profitable technology.

If the cost channel is large enough, that is, if (αh − αl) is large, it may offset the

effects of wealth and substitution channels, leading to an increase in za.
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Appendix B: Appendices for Chapter 2

B.1 Aggregate Resource Constraint

In the aggregate, QtKt is the total value of capital acquired by final goods

producers in period t, while QtSt is the total value of claims issued against that

capital (total credit in the economy). By arbitrage, the capital market clearing

condition implies:

Kt = St (B.1)

To get the economy-wide resource constraint, we start with the budget con-

straint of the households:

Ct +Dt + Tt = WtHt +Rt−1Dt−1 + Σt (B.2)

where Σt includes the profits from the ownership of productive firms (final

good producers, ΠC
t , and capital goods producers ΠK

t ) and the net transfers between

households and banks (exiting and new). Therefore, we have:

Σt = ΠC
t + ΠK

t + (1− θ)
[
RK
t Qt−1Kt−1 −Rt−1Dt−1

]
− (1− θ)ιQt−1Kt−1(B.3)
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ΠC
t = Yt −WtHt − ZtΨtKt−1

ΠK
t = QtKt −Qt(1− δ)ΨtKt−1 − It.

Next, combining the balance sheet and the law of motion for net worth of the

aggregated banking sector, and imposing the capital market clearing (B.1), we have:

QtKt = Dt +Nt = Dt + θ
[
RK
t Qt−1Kt−1 −Rt−1Dt−1

]
+ (1− θ)ιQt−1Kt−1(B.4)

where RK
t =

[
Zt+(1−δ)Qt

Qt−1

]
Ψt. Combining (B.2), (B.4), the budget constraint of

the government (2.31), and (B.3) yields:

Ct + It +Gt = [Zt + (1− δ)Qt] ΨtKt−1 + Yt − ZtΨtKt−1 −Qt(1− δ)ΨtKt−1

which implies:

Ct + It +Gt = Yt. (B.5)

B.2 Competitive Equilibrium

The rational expectations equilibrium of the model is a set of sequences for

the 17 endogenous variables

{
Ct, It, Yt, Ht, Kt, Nt, Pt, Rt, R

K
t , Qt, φt, ψt, ξt, SPRt, Gt,Wt, Zt

}∞
t=0

such that for given initial conditions and exogenous sequences

{At, ϕt, gt,Ψt}∞t=0
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the following conditions are satisfied:

• Households maximize utility subject to their budget constraint, that is, the

following equations hold:

1 = Et
[
β
(
Ct+1

Ct

)−γ
Rt

]
(B.6)

ϕtχH
ζ
t = C−γt Wt (B.7)

• Banks maximize their expected terminal wealth subject to the IC constraint,

that is, the following equations hold:

φt =
QtKt

Nt

(B.8)

ψt =
Et
[
β
(
Ct+1

Ct

)−γ
Rt

]
[1− θ + θψt+1]

1− ξt
(B.9)

µξt = Et
[
β
(
Ct+1

Ct

)−γ]
[1− θ + θψt+1]

[
RK
t+1 −Rt

]
(B.10)

0 = [ψt − µφt] ξt (B.11)

Nt = θRK
t Qt−1Kt−1 + Pt−1 (B.12)

Pt = θ [Rt(Nt −QtKt)] + (1− θ)ιQtKt (B.13)

• Capital producers maximizes profits subject to their technology, that is, the

following equations hold:

Kt = (1− δ)ΨtKt−1 +

a1

(
It

ΨtKt−1

)1−%

+ a2

ΨtKt−1 (B.14)

Qt =

[
It

δΨtKt−1

]%
(B.15)

• Final good producers maximizes profits subject to their technology, and mar-

kets clear, that is:
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RK
t ≡

[
Zt + (1− δ)Qt

Qt−1

]
Ψt (B.16)

Yt = At (ΨtKt−1)αH1−α
t (B.17)

Wt = (1− α)
Yt
Ht

(B.18)

Zt = α
Yt

ΨtKt−1

(B.19)

Yt = Ct + It +Gt (B.20)

Gt ≡
(

1− 1

gt

)
Yt (B.21)

SPRt ≡ EtRK
t+1 −Rt (B.22)

B.3 Solution Algorithm

I solve the model using a global approximation method based on Chebyshev

approximations of decision rules along the lines of Judd (1992) [64]. Following

Aruoba, Cuba-Borda, and Schorfheide (2018) [8], the solution algorithm involves

two non-standard tools: (i) a piecewise smooth representation of the approximated

decision rules, and (ii) an iterative procedure of choosing grid points based on a

clustered-grid-algorithm (CGA) proposed by Judd, Maliar, and Maliar (2010) [65].

The set of equilibrium conditions for {Ct, It, Yt, Ht, Kt, Nt, Pt, Rt, Qt, φt, ψt, ξt}

can be written as follows:

1 = Et
[
β
(
Ct+1

Ct

)−γ
Rt

]
(B.23)

ψt =
Et
[
β
(
Ct+1

Ct

)−γ
Rt

]
[1− θ + θψt+1]

1− ξt
(B.24)
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µξt = Et
[
β
(
Ct+1

Ct

)−γ]
[1− θ + θψt+1]

α Yt+1

Ψt+1Kt
+ (1− δ)Qt+1

Qt

Ψt+1 −Rt

(B.25)

0 = [ψt − µφt] ξt (B.26)

Ht =

[
(1− α)At(ΨtKt−1)α

χϕtC
γ
t

] 1
α+ζ

(B.27)

φt =
QtKt

Nt

(B.28)

Nt = θRK
t Qt−1Kt−1 + Pt−1 (B.29)

Pt = θ [Rt(Nt −QtKt)] + (1− θ)ιQtKt (B.30)

Kt = (1− δ)ΨtKt−1 +

a1

(
It

ΨtKt−1

)1−%

+ a2

ΨtKt−1 (B.31)

Qt =

[
It

δΨtKt−1

]%
(B.32)

Yt = At (ΨtKt−1)αH1−α
t (B.33)

Yt = Ct + It +

(
1− 1

gt

)
Yt (B.34)

The model has two endogenous and four exogenous state variables: St =

{Kt−1, Pt−1;At, ηt, gt,Ψt}. I approximate the decision rules for consumption Ct, the

risk-free interest rate Rt, and the banking sector Tobin’s q ratio ψt, in a piecewise

fashion as follows. Define the set of approximated control variables in period t as

Xt = {Ct, Rt, ψt}. The piecewise smooth functions are parametrized by the set

Θ = {ΘXs ,ΘXb } as follows:

Xt = (1− Ib) ·ΘXs T (St) + Ib ·ΘXb T (St)

where Ib is an indicator function that takes the value of one when the economy

is under the binding regime (ξt > 0) and zero otherwise, and T (.) is a vector

collecting complete combinations of Chebyshev polynomials. The controls Xt =
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{Ct, Rt, ψt} solve the set of residual functions given by:

R1t = Et
[
β
(
Ct+1

Ct

)−γ
Rt

]
− 1

R2t = Et
[
β
(
Ct+1

Ct

)−γ]
[1− θ + θψt+1]

α Yt+1

Ψt+1Kt
+ (1− δ)Qt+1

Qt

Ψt+1 −Rt

− µξt
R3t = Et

[
β
(
Ct+1

Ct

)−γ
Rt

]
[1− θ + θψt+1]− ψt

I assess the accuracy of the numerical solution by computing Euler equations

errors. Figure B.1 show a histogram of the three Euler equation residuals computed

over a CGA grid based on a long simulation of the model. I express the errors

in decimal log scale as is common in the literature. The Euler errors are small,

averaging -4.9, -4.8, and -4.5 for R1, R2, and R3, respectively.
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Figure B.1: Histogram of Euler Equation Errors (log10(abs(EE)) scale). Pooling
years.
Notes: he histograms report the Euler equation errors over a simulation of 10,000
periods in decimal log basis. The dotted vertical line corresponds to the mean of
the residuals over the simulation.
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B.4 Historical Decompositions 1965-2015
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Figure B.2: Baseline Model: Historical Decomposition: Real Variables and Spread
Notes: Output, investment, and hours worked are in quarterly terms, expressed
in percent deviations from their ergodic means (solid line). Spread is expressed in
annualized percent terms. The solid lines correspond to the model-implied filtered
observable variables, which are up to a small measurement error equal to the data
described above. The bars decompose each filtered variable into the contributions
of each structural shock. The gray areas indicate NBER recession dates.
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Figure B.3: Pure RBC Model: Historical Decomposition: Real Variables and Spread
Notes: See notes from Figure B.2.
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