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Many introductory, algebra-based physics students perform poorly on mathematical 

problem solving tasks in physics.  There are at least two possible, distinct reasons for this 

poor performance:  (1) students simply lack the mathematical skills needed to solve 

problems in physics, or (2) students do not know how to apply the mathematical skills 

they have to particular problem situations in physics.   While many students do lack the 

requisite mathematical skills, a major finding from this work is that the majority of 

students possess the requisite mathematical skills, yet fail to use or interpret them in the 

context of physics.   

In this thesis I propose a theoretical framework to analyze and describe students’ 

mathematical thinking in physics.  In particular, I attempt to answer two questions.  What 

are the cognitive tools involved in formal mathematical thinking in physics?  And, why 

do students make the kinds of mistakes they do when using mathematics in physics? 



According to the proposed theoretical framework there are three major theoretical 

constructs:  mathematical resources, which are the knowledge elements that are activated 

in mathematical thinking and problem solving; epistemic games, which are patterns of 

activities that use particular kinds of knowledge to create new knowledge or solve a 

problem; and frames, which are structures of expectations that determine how individuals 

interpret situations or events.   

The empirical basis for this study comes from videotaped sessions of college students 

solving homework problems.  The students are enrolled in an algebra-based introductory 

physics course.  The videotapes were transcribed and analyzed using the aforementioned 

theoretical framework. 

Two important results from this work are:  (1) the construction of a theoretical 

framework that offers researchers a vocabulary (ontological classification of cognitive 

structures) and grammar (relationship between the cognitive structures) for understanding 

the nature and origin of mathematical use in the context physics, and (2) a detailed 

understanding, in terms of the proposed theoretical framework, of the errors that students 

make when using mathematics in the context of physics. 
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Chapter 1: Framing the Issue 

 

Introduction 

Galileo wrote that “the book of nature is written in the language of mathematics.”  

Over the 400 years since Galileo wrote these words, the mathematical language needed to 

read the book of nature has become increasingly complex – so complex that it led 

Einstein to say, “Do not worry about your difficulties in Mathematics. I can assure you 

mine are still greater.”   

Since mathematics is the language of physics, a complete understanding of the 

concepts in physics requires fluency in the mathematical language in which these 

concepts are couched.  However, most instructors of physics would agree that 

mathematical problem solving tasks in physics are, in general, a struggle for students.   

Among most physics faculty and instructors, there exist two common interpretations 

for students’ poor performance on mathematical problem solving in physics. One 

interpretation is that students lack the requisite mathematical knowledge to solve 

mathematical problems in physics.  An alternative interpretation is that students do not 

know how to apply the mathematical knowledge they have learned in mathematics 

classes to the context of physics.  Fleshing out exactly why students perform poorly on 

mathematical problem solving tasks in physics could have important implications for 

physics curriculum and instruction.   
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Implications for physics curriculum   

Students’ poor performance on mathematical problem solving tasks in physics has led 

many physics departments and instructors to adopt conceptual physics courses, which 

remove explicit use of equations from the curriculum.  If students do not possess the 

requisite mathematical knowledge, these conceptual physics courses provide students 

with exposure to many important physics concepts to which they would otherwise not 

have access.  However, if students do have the relevant mathematical knowledge, then 

the dilution or removal of mathematical problem solving tasks in physics does not help 

the students learn to appropriately apply their mathematical knowledge in the context of 

physics; rather, it deprives them of the opportunity to do so.  

Implications for physics instruction  

An instructor’s (tacit or explicit) interpretation for why students perform poorly on 

mathematical problem solving tasks can have implications for physics instruction.  To 

illustrate this point, consider the following example of a student (pseudonym Mary) 

working on a homework problem.   

The particular problem that Mary is working on states:  

You are driving on the New Jersey Turnpike at 65 mi/hr. You pass a 
sign that says "Lane ends 500 feet." How much time do you have in 
order to change lanes? 

 
Mary has difficulty, so she discusses her approach with an instructor: 

 …all right if I convert 65 mph to feet per second, which is the other thing 
that's given in feet… So then I got 95 feet per second is what you're 
moving, so in 500 feet like how long?  So, I was trying to do a 
proportion, but that doesn't work.  I was like 95 feet per second...oh 
wait...yeah in 500 feet, like, x would be like the time...that doesn't—I 
get like this huge number and that doesn't make any sense. 
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Mary correctly identifies that using a proportion could help her solve this problem, 

but has trouble implementing this strategy.   

One interpretation for Mary’s difficulties is that she lacks the mathematical 

sophistication to solve this problem.  That is, she doesn’t know how to set up the 

proportion correctly, or, worse, she doesn’t know how to perform division reliably!  If 

this interpretation is correct, a legitimate pedagogical approach is to assign many 

mathematical exercises, in the hope that Mary’s problem solving skills will improve 

through inculcation on proportion and/or division problems.   

However, there is an alternative interpretation: it may be that Mary has the relevant 

mathematical knowledge, but has difficulty using it.  Mary’s difficulty in using her 

mathematics knowledge may stem from one of three reasons: (1) she doesn’t know how 

to use her knowledge in the context of physics to arrive at an answer, (2) her strategy for 

solving this problem precludes her from using the appropriate mathematics knowledge, or 

(3) the mathematics knowledge that she is remembering and using precludes her from 

using the appropriate strategies to solve this problem. 

If this alternative interpretation is correct (i.e. Mary has the knowledge, but doesn’t 

use it) then Mary might not benefit from inculcation on proportion problems, and, indeed, 

that might make things worse!  Rather, she needs guidance on how to activate and 

effectively apply the relevant mathematics knowledge she learned in her mathematics 

classes to the context of physics. 

We have no compelling reason to favor one interpretation over the other without a 

theoretical framework and supporting empirical evidence for analyzing and interpreting 

how students use mathematics in physics.  
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Research Questions  

In this dissertation I propose a theoretical framework to analyze and describe 

students’ mathematical thinking in physics.  In particular, this theoretical framework is 

my attempt to answer two research questions:   

• What are the cognitive tools involved in formal mathematical thinking in physics?   

• Why do students make the kinds of mistakes they do when using mathematics in 

physics? 

Main Contributions of this Dissertation 

Constructivism is the dominant paradigm in modern educational theory.   Redish 

(2004) defines constructivism as follows: 

The belief, common among educational researchers today, that new 
knowledge must be constructed out of existing knowledge, by 
establishment of new associations, transformation, and processing. 

The educator’s role in the constructivist paradigm is to help students construct new 

knowledge.  In order to assist the students the educator needs to be able to determine 

what the students are thinking and why they make the mistakes that they do.   That is, 

educators and researchers need to be able to describe and understand how students 

construct new knowledge. 

The major contribution of this dissertation is a theoretical, cognitive framework for 

analyzing and describing how students use and understand mathematics in the context of 

physics.  The theoretical framework in this dissertation offers educators and researchers a 

technical language capable of describing students’ (correct and incorrect) use of 

mathematics in physics.  That is, this theoretical framework offers a vocabulary 

(definition of the relevant cognitive structures) and grammar (relationship between the 
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cognitive structures) for analyzing and describing students’ mathematical thinking and 

problem solving in the context physics.   It is useful to researchers and educators in three 

important ways: it synthesizes previous research into one coherent framework, it can be 

used as a diagnostic tool during instruction, and it can be used as a guide for future 

instruction and curriculum development. 

Theoretical framework as a synthesis of previous research  

Cognitive scientists, sociolinguists, and education researchers have posited the 

existence of many different cognitive structures and frameworks to explain how students 

parse, interpret, and understand the myriad of stimuli that inundate them in all learning 

environments.  The proposed cognitive structures vary in their grain-size, ranging from 

small cognitive building blocks (diSessa, 1993; Minsky, 1985; Minstrell, 1992; Sherin, 

2001) to large cognitive structures that describe how students interpret the world 

(Rumelhart, 1975; Tannen, 1993).  Despite the efforts of a few (Redish, 2004), these 

theoretical constructs exist as isolated ideas, without consensus about their range of 

applicability and relationship to each other. 

The theoretical framework presented in this dissertation attempts to synthesize the 

isolated theoretical constructs into one coherent framework.  This framework 

incorporates the ideas of phenomenological primitives (diSessa, 1993), symbolic forms 

and interpretive devices (Sherin, 1996), epistemic games (Collins and Ferguson, 1993), 

and frames (Fillmore, 1985; Goffman, 1974; Tannen, 1993) into one coherent theoretical 

framework for describing how students understand and use mathematics in physics.   
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The theoretical framework as a diagnostic tool 

The technical language developed in this theoretical framework can help educators 

and researchers diagnose students’ mathematical difficulties, on a case by case basis, and 

offer instructional interventions to help students utilize the mathematical knowledge that 

they already possess.  Simply stated, this framework makes sense of introductory physics 

students’ seemingly bizarre use of mathematics in the context of physics.  That is, 

students sometimes use mathematics in physics in a manner that is in stark contrast to 

how an expert would use the same mathematics. This theoretical framework can help 

experts understand students’ use of mathematics. 

The theoretical framework as a guide for instruction  

Many pedagogical attempts to improve mathematical problem solving focuses on 

teaching a systematic, step-by-step method that could be applied to all problem solving 

tasks (Pólya, 1945; Schoenfeld, 1978; Reif & Heller, 1982).  While instruction based on 

these types of prescriptive methods can produce improvements in students’ abilities to 

solve mathematical problems, exactly why these approaches work in not very well 

understood.  That is, it is not clear how these instructional methods help students use the 

mathematical knowledge they already possess – in the constructivists’ paradigm of 

learning. 

The theoretical framework developed in this dissertation offers instructors and 

curriculum developers a more thorough understanding of the cognitive building blocks 

and processes involved in mathematical thinking and problem solving in the context of 
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physics.  With this improved understanding perhaps more effective and efficient 

instructional strategies can be developed.1 

Brief introduction to the theoretical framework 

My theoretical framework identifies three levels of cognitive structures relevant to 

mathematical thinking and problem solving in the context of physics:   

• Mathematical Resources – the basic knowledge elements that are activated in 

mathematical thinking and problem solving;  

• Epistemic Games – coherent activities that use particular kinds of knowledge and 

processes associated with that knowledge to create knowledge or solve a problem; 

and  

• Frames – structures of expectations that determine how individuals interpret 

situations or events.   

Each of these types of cognitive structures is described in more detail below.    

Mathematical Resources 

Mathematical resources are abstract knowledge elements – the cognitive tools 

involved in mathematical thinking and problem solving.  Within the category of 

mathematical resources there are  

o Intuitive Mathematics Knowledge – knowledge of mathematics that is learned 

at a very early age; examples are counting and subitizing.  Subitizing is the 

ability that humans have to immediately differentiate sets of one, two, and 

three objects from each other (Fuson, 1992). 

                                                 
1 I will offer more speculations and anecdotal evidence for this in chapter 8. 
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o Reasoning Primitives – abstract knowledge elements which describe students’ 

intuitive sense of physical mechanism.  Reasoning primitives are a 

generalization of diSessa’s phenomenological primitives (diSessa, 1993). 

o Symbolic Forms – combination of the conceptual knowledge of reasoning 

primitives and syntactic knowledge of mathematical symbolism into one 

single knowledge element (Sherin, 1996, 2001).  Symbolic forms consist of a 

symbol template and conceptual schema.  The symbol template is an element 

of knowledge that gives structure to mathematical expressions; e.g. � = � or � 

+ � + �...  (where the boxes can contain any type of mathematical expression).  

The conceptual schema is a simple structure associated with the symbolic 

form that offers a conceptualization of the knowledge contained in the 

mathematical expression; this part of the symbolic form is similar to the 

reasoning primitives discussed in the previous section. 

o Interpretive Devices – interpretive strategies used to extract information from 

a physics equation (Sherin, 1996). 

Resources can exist in three states of activation: inactive, primed, and active.  Inactive 

and primed resources are abstract knowledge elements that can potentially be used in 

different problem situations; as such they are neither right nor wrong.  Facets are 

resources that are active and mapped into specific problem situations – in accordance 

with Redish’s (2004) refinement of Minstrell’s (1992) term.  As such, facets can be right 

or wrong depending on how they are used.  Whereas there are small numbers of 

mathematical resources, there are countless numbers of facets corresponding to the 

myriad different situations into which mathematical resources can be mapped. 
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Epistemic Games 

During mathematical thinking and problem solving in the context of physics, students 

appear to engage in activities that are associated with each other.  Epistemic games, 

which were first proposed by Collins and Ferguson (1993), are used to describe these 

associated activities.  The epistemic games that Collins and Ferguson identify are 

normative; their games are used to describe expert scientific inquiry across all scientific 

disciplines.  I extend their idea of epistemic games to include an observational 

categorization of what students actually do.  My identification of epistemic games is 

descriptive, rather than normative, and specific to physics rather than common to all 

scientific disciplines. I identify six different epistemic games that can be used to describe 

how students actually use and understand mathematics in the context of physics.  I follow 

Redish (2004) and define epistemic games as coherent activities that use particular kinds 

of knowledge and processes associated with that knowledge to create knowledge or solve 

a problem.   

Epistemic games can be distinguished from each other by their ontology2 and 

structure.  There are two components that make up the ontology of an epistemic game: 

the knowledge base and the epistemic form.  The knowledge base is the set of 

mathematical resources that are activated during the playing of the epistemic game.  The 

epistemic form is a target structure that guides the inquiry.  The structure of an epistemic 

game also consists of two components: the entry conditions and the moves.  The entry 

conditions are determined by an individual’s expectations about the particular situation or 

                                                 
2 Ontology – the description of a system in terms of the kinds of objects relevant for its 
description and their characteristics (Redish, 2004). 
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problem.  To describe students’ expectations I introduce the concept of frames, which are 

discussed in the next section.  The moves of an epistemic game are the collections of 

activities that occur during the course of the problem solving activity. 

To understand the different components of an epistemic game, consider the epistemic 

game that Collins and Ferguson call list making.  All lists are inherently the attempt to 

answer a question.  Such as: “What do I need from the grocery store?”; “What were the 

causes of the American Civil War?”: Or, “What are the constituents of matter?”  The 

knowledge that one uses to answer anyone of these questions is the knowledge base.  The 

epistemic form in list making is the list itself; the list is the target structure that guides the 

inquiry.  The condition for entering the list making game is the expectation that a list can 

help answer the initial question.  Legitimate moves in list making are adding a new item, 

combining two or more items into one, changing an item, splitting an item into two or 

more items, or deleting an item.    

Frames and Framing 

The concepts of frames and framing help us understand how or why students 

“choose” to play a particular epistemic game in a particular context.  (I put the word 

“choose” in quotes, because I don’t mean a conscious choice, but rather a tacit decision.)  

Frames and framing have a long history in the linguistics and cognitive science 

communities (Goffman, 1974; Fillmore, 1985; Tannen, 1993).   

As a working definition of a frame, an individual’s frame helps her answer the 

question “What kind of activity is this?”  A frame is the definition of a situation that 

guides interpretation.  One’s expectations about a situation or event determine how the 



 11 

situation or event is interpreted.  The moment-by-moment interpretation of the situation 

is the frame. 

Overview of Dissertation 

Chapter 2 offers a review of previous research on mathematical problem solving.  In 

chapter 3, I discuss the data and the methodologies I employ to analyze the data.  

Chapters 4 and 5 are the major theoretical chapter.  In chapter 4, I introduce the 

mathematical resources that describe the cognitive tools involved in mathematical 

thinking and problem solving.  In particular, I discuss four different kinds of 

mathematical resources: intuitive mathematics knowledge, reasoning primitives, 

symbolic forms, and interpretive devices. 

In chapter 5, I discuss epistemic games and frames.  Students play six different 

epistemic games during mathematical thinking and problem solving in the context of 

physics:  Mapping Meaning to Mathematics, Mapping Mathematics to Meaning, Physical 

Mechanism Game, Pictorial Analysis, Recursive Plug-and-Chug, and Transliteration to 

Mathematics.  In addition, there are three different frames in which these games are 

couched:  quantitative sense-making, qualitative sense-making, and rote equation 

chasing. 

In chapter 6, I use this framework to analyze, in depth, a particular problem solving 

episode involving four students.  In particular, I show how this framework allows 

educators and researchers to ‘see’ and examine all the knowledge and reasoning that is 

involved in mathematical thinking and problem solving. In chapter 7, I show how this 

framework can be used to interpret the kinds of mathematical errors that students make 

when using mathematics in the context of physics.  In particular, I show how this 
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framework helps make sense of students’ semantic mathematics errors in physics.  That 

is, this framework helps make sense of some of our students’ seemingly bizarre use of 

mathematics.  Lastly, in chapter 8, I summarize the theoretical framework and results, 

and discuss some instructional implications and possible future research that arise from 

this theoretical framework.
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Chapter 2: Review of previous research  

on students’ use of mathematics 

 

Introduction 

In my dissertation research I am interested in the cognitive tools involved in 

mathematical thinking and problem solving in the context of physics, and why students 

make the kinds of mathematical mistakes that they do.  There is ample research in the 

literature that can shed light on these issues.  In this chapter I summarize the work of a 

few key researchers and discuss how their work relates to my own research. 

Previous research on mathematical thinking and problem solving can be divided into 

two major categories: empirical research on student mathematics use and theoretical 

approaches to student mathematics use.  In the next section I discuss empirical research 

on student mathematics use.  In particular, I discuss research of students’ use of 

mathematics in the context of mathematics courses and physics courses.  I focus more on 

the latter, since I am interested in how students’ use mathematics in physics.  In the third 

section, I discuss theoretical approaches to understanding students’ use of mathematics.  

First, I describe some general theories of knowledge structures, and then I discuss some 

specific theories of the structure of students’ mathematical knowledge. 



 14 

The final section offers a brief discussion about how these different approaches fit 

together in a coherent whole, and how I use and build upon these approaches in my own 

research. 

Empirical research on student mathematics use 

The necessary first step in understanding students’ use of mathematics in physics is 

observing what students do with math.  It cannot be assumed that students necessarily use 

mathematics in the manner that they are instructed to by their teachers.  There is 

empirical research of students’ use of mathematics in the context of mathematics and the 

context of physics.   

Empirical research in mathematics context 

The mathematics education and mathematical psychology research communities have 

made significant progress on understanding students’ use of mathematics in the context 

of mathematics courses.  (Stephen Reed (1998) offers a review of research on problem 

solving in mathematics.)  Research has focused on students’ understanding of addition 

and subtraction (Carpenter and Moser, 1983; Riley, Greeno, and Heller, 1983; Kintsch 

and Greeno, 1985; Fuson, 1992), multiplication and division (Greer, 1992; Vergnaud, 

1983, 1988; Schwartz, 1988), and understanding and describing student mathematical 

errors in mathematics courses (Ben-Zeev, 1996, 1998; Matz, 1982; VanLehn, 1986).  In 

addition, researchers in the mathematics education research community have pushed to 

incorporate the results and methods of cognitive science in their pursuits of understanding 

students’ use of mathematics (Schoenfeld, 1992; Silver, 1987).  In this vein, Lakoff and 
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Núñez (2000) offer cognitive mechanisms by which humans can make sense of abstract 

mathematical concepts. 

These results in the mathematics education community are very useful, however a 

coherent and meaningful description of a highly context dependent phenomenon – like 

mathematics achievement in the context of physics – can only be achieved if the 

phenomenon is studied in its’ original setting.  Therefore, although the results from the 

mathematics education community have colored my own interpretations of my data, the 

bulk of my attention has focused on previous research on mathematics use in the context 

of physics.  Hence, the remainder of this chapter will focus on research on mathematics 

in the context of physics.  

Empirical research in physics context 

Previous empirical research on the role of mathematics in physics can be classified by 

the various methods employed by researchers to probe how students use mathematics in 

physics.  Two approaches have emerged:  the observational approach and modeling 

approach.  In the observational approach, researchers observe students’ use of 

mathematics in physics and attempt to explain these observations without explicit 

reference to the students’ knowledge structure or cognitive state.  The modeling approach 

generally starts by observing differences between experts and novices when using 

mathematics in physics, and then proceeds by constructing computer models that mimic 

the respective performances of the two groups.    
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Observational Approach 

The observational approach is a relatively straightforward approach used to probe 

students’ use of mathematics in physics.  This approach tacitly assumes that students are 

rational thinkers who make mistakes when using mathematics in physics because of a 

small number of inappropriate interpretations.  It is the presence of these inappropriate 

interpretations that explain student errors when using mathematics in physics.   

Every algebraic equation has two main structural features: an equal symbol and 

variables.  From the arrangement of these structures, the relationship between the 

variables can be deduced.  So, in order to understand an algebraic equation one must 

successfully interpret at least three different things: the equal symbol, the variables, and 

the relationship between the variables.  This section is broken up into three subsections 

that focus on students’ misinterpretations of the equal symbol, the nature of a variable in 

an algebraic equation, and the relationship between the variables (in the context of 

thermodynamics). 

The equal symbol.  As a first attempt to understand students’ use of mathematics in 

physics it is natural to assess their interpretation of what an equation really means.  

Herscovics and Kieran (1980), and later Kieran (1981), attempt to understand students’ 

interpretations of the equals symbol.  By examining previous research on a range of 

students from elementary school to early college students, Kieran concludes that students 

view the equal symbol as a “do something” symbol.  These students’ interpretation of the 

equal symbol is not necessarily harmful to their learning; it simply is illustrative of how 

students interpret one aspect of equations.    
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Elementary students when reading arithmetic equations like “3 + 5 = 8” would say “3 

and 5 make 8.”  This reading of the arithmetic equation “3 + 5 = 8” was interpreted by 

Kieran to indicate that the students view the equal symbol as a symbolic prompt to add 

the first two numbers together.  The following example supports this interpretation about 

how students view the equal symbol.  First and second grade students when asked to read 

expressions like “� = 3 + 4,” would say, “blank equals 3 plus 4,” but they would also 

include that “it’s backwards!  Am I supposed to read it backwards?”  The students read 

the equations from left to right, like English sentences, in which case the result appears 

before the two numbers are added together.  However, to these students three and four 

must be added together before a result can be computed.   

The previous examples lend credence to the interpretation that elementary school 

students view the equal symbol as a “do something” symbol.  Kieran argues, however, 

that this interpretation of the equal symbol is not specific to elementary school students.  

Kieran cites the following example, from a high school student’s written solution, to 

argue that high school students also see the equal symbol as a do something symbol or an 

operator symbol:   

Solve for x: (Byers and Herscovics, 1977) 

4
37

73
 -  

   x 

=
=
=+

 

Examining this example it is seen that both sides of the equations are not always 

equal.  The equal symbol is traditionally used in algebraic equations to indicate a 

numerical equivalence between two mathematical expressions.  That is, the equal symbol 

separates two mathematical expressions that represent the same numerical value.  

However, the student does not use the equal symbol in that way in the above example. 
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Kieran cites an example from Clement (1980), in which early college students 

enrolled in a calculus course use the equal symbol as a “do something” symbol.  The 

student sees an equals symbol and spontaneously attempts to differentiate the function. 

(Clement, 1980): 
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In this example it’s as if the student sees the equal symbol as an arrow that leads to 

the next step in the problem solution.  In the first line the student writes down what the 

function is.  In the third line, which the student’s solution implies is equal to the first line, 

the student is calculating the derivative of that function.  The student connects these lines 

in the derivation by an equal symbol, which suggests that the student is using the equal 

symbol as an arrow or “do something” symbol and not as an equivalence symbol.   

It’s not clear from this research whether the interpretation of the equal symbol as a 

“do something” symbol is harmful to the students or not.  That is, there are no direct 

instructional implications that can be drawn from this work.  Rather, this research only 

gives insight about how students understand one aspect of equations: the equal symbol.   

Variables in Algebraic Equations.  Clement, Lochhead, and Monk (1981) 

videotaped college science students solving simple word problems.  The students were 

instructed to talk aloud throughout the process of solving the problem.  The observed 

students experienced great difficulty in translating the English words from the problem 
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statement into algebraic expressions.  Leery that the problem was “simply one of 

misunderstanding English,” Clement et al developed a set of written questions to further 

probe this issue.  One such question read:  

Write an equation for the following statement: “There are six times as 
many students as professors at this university.”  Use S for the number 
of students and P for the numbers of professors. 
 

This question was given to 150 calculus-level and 47 non-science major students. The 

correct answer to this question is S = 6P; however, 37 percent of the calculus students 

and 57 percent of the non-science majors answered this question incorrectly, with the 

most common mistake being 6S = P. 

Clement et al offered two possible explanations for the students’ mistakes.  The first 

explanation, which they called word order matching, is direct mapping of the English 

words into algebraic symbols.  So the sentence “there are six times as many students as 

professors” becomes 6S = P, simply because that’s the order in which the words “six,” 

“student,” and “professor” appear in the statement of the problem.  However, they offer a 

second, more interesting explanation for the students’ mistakes, which they call static 

comparison.  According to this explanation students misinterpreted the very meaning of 

the variables.  The variable S, to students using the static comparison interpretation, does 

not represent the number of students, but rather is a label or unit associated with the 

number six.  Some students even drew figures like the one below (see Figure 1), which 

indicates that they recognized that there are more students than professors. 

  S S S S S S P  
Figure 1.  Figure that a student produced to assist in constructing an equation for the 

following statement: “There are six times as many students as professors at this 

university.” 
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Relationship between variables.  Research by Rozier and Viennot (1991) shows 

that, in the context of thermodynamics, some students have trouble parsing the 

relationship between variables in multivariable problems.  Rozier and Viennot analyzed 

written responses to questions about thermodynamic processes on ideal gases, which 

could be understood using the equation of state for ideal gases nRTpV = .  They found 

that students made two mistakes when interpreting multivariable processes.3   

First, the students would chunk the variables by mentally reducing the number of 

variables they would consider in a given process.  For example, Rozier and Viennot 

examined student responses to the following question: 

In an adiabatic compression of an ideal gas, pressure increases.  Can 
you explain why in terms of particles? 
 

The correct response involves the following string of reasoning:  

volume goes down → number of particles per unit volume goes up and the 

average velocity of each particle goes up → number of collisions goes up 

and the average velocity of each particle goes up → the pressure goes up.  

However, a typical student response dropped any consideration about the velocity of the 

gas particles increasing and would only focus on the number of particles per unit volume 

increasing.  The student response can be represented in the following way:  

volume goes down → number of particles per unit volume goes up → 

number of collisions goes up → pressure goes up.   

                                                 
3 Loverude et al (2001) find results that are consist with Rozier and Viennot’s results, but 
conclude that “general reasoning difficulties could not be completely separated from 
difficulties with specific concepts” (p. 141).  That is, Loverude et al conclude that the 
difficulties are not only with the variables but also with the concepts the variables 
represent.   
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By only considering the effect that the increase in the number of particles per unit volume 

had, the students reduced the number of variables that influence this process, and thereby 

resorted to what Rozier and Viennot refer to as linear reasoning.  The student’s response, 

in this example, is not necessarily wrong—that is, it doesn’t lead to an incorrect 

conclusion—rather, it demonstrates that students may use a simplified reasoning track to 

reach the correct conclusion.  This example serves only to give insight about the 

reasoning processes that students use when reasoning about the relationship between 

variables in multivariable causation. 

The second mistake that Rozier and Viennot observed students making when 

interpreting multivariable causation was the unwarranted incorporation of a chronological 

interpretation to certain thermodynamic processes.  An example of a student response 

helps bring this point out.  When asked to explain why the volume would increase for an 

ideal gas that is being heated at constant pressure, a student responded: 

The temperature of the gas increases.  Knowing that in a perfect gas 
nRTpV = , therefore at constant volume, pressure increases: the 

piston is free to slide, therefore it moves and volume increases. 
 

In this example the student’s response is wrong.  It is clear that by allowing the 

pressure to increase in the solution the student has contradicted the statement of the 

problem; i.e. that the gas is heated at constant pressure.  Rozier and Viennot argue that 

this contradiction disappears if the stipulation of constant pressure is only temporary, so 

that the interpretation by the student is understood to progress in time.  That is, if the 

word “therefore” in the student’s solution is interpreted to mean “later,” the student’s 

solution is no longer contradictory.  However, the chronological interpretation present in 

the student’s solution does not come from the equation of state for an ideal gas.  The 
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equation nRTpV =  represents simultaneous changes in the variables, whereas the 

student interprets the multivariable causation as being temporal. 

The research presented here does not have any direct instructional implications; 

rather, it serves as a “jumping-off-point” to help us understand how students interpret the 

different features of an equation.  This section focused on student interpretations and 

student reasoning about equations.  The next section will focus on student (and expert) 

performance while using equations during problem solving. 

Modeling Approach 

There are two basic components to what I call the modeling approach.  First, one 

observes the difference between the problem solving skills of the novice and the expert 

through talk aloud problem solving sessions, or written questionnaires, or both.  The 

second component of the modeling approach is the reason for the name ‘modeling 

approach.’   Computer programs are developed with the intent of modeling the 

performance of either the novice or the expert on similar problem solving tasks.  

Larkin, McDermott, Simon, and Simon (1980) articulated four novice/expert 

differences when solving problems; (i) speed of solution, (ii) backward vs. forward 

chaining, (iii) uncompiled vs. compiled knowledge, and (iv) syntax vs. semantic 

interpretations of English statements.  The speed of the solution is an obvious difference 

between novice and expert problem solvers; experts solve problems faster than novices. 

A difference that was articulated by Larkin et. al is that novices tend to “backward 

chain,” whereas experts tend to “forward chain” when solving problems.  This means that 

novices tend to attack the problem by determining what the end goal is and then working 

backwards from the end goal toward the initial conditions that are given in the problem 
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statement.  In contrast, the expert tends to starts with the initial conditions given in the 

problem statement and work toward the end goal.  This is surprising because backward 

chaining is generally thought to be a sophisticated problem solving technique.   

The third novice/expert difference mentioned above is not a result from direct 

observations; rather it is a theoretical conjecture about how knowledge is structured for 

the novice and the expert.  Larkin et. al. argue that the novice’s knowledge must be 

processed “on the spot” in order to arrive at the problem solution; that is, the novice’s 

knowledge exists in what Redish (2004) calls an uncompiled form (much like a computer 

program that is uncompiled).  However, the expert may have portions of the problem 

solution compiled from experience in solving similar problems.  Because of these chunks 

of compiled knowledge, not all of the expert’s knowledge must be processed “on the 

spot” to generate the problem solution; i.e. some of the expert’s knowledge exists in 

compiled form.  The difference in the speed of solution for the expert and novice may be 

accounted for by this difference in knowledge structure; procedures using compiled 

knowledge can be executed much faster than procedures relying on uncompiled 

knowledge.   

The fourth novice/expert difference concerns the manner in which English statements 

are translated into algebraic notation.  The novice tends to write algebraic expressions 

that correspond with the syntax of the English statements (this is similar to Clement’s 

word order matching discussed above).   The expert, on the other hand, tends to translate 

the English statements semantically—that is, in terms of the physics knowledge relevant 

to the problem—in order to construct algebraic expressions. 
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Larkin et. al. discuss the computer program developed in 1968, called STUDENT, 

which translates English problem statements into algebraic expressions using the same 

syntax mapping that is generally associated with students.  Larkin et. al. use the 

following problem to discuss how STUDENT works: 

A board was sawed into two pieces.  One piece was one-third as long 
as the whole board.  It was exceeded in length by the second piece by 
4 feet.  How long was the board before it was cut? 
 

To solve the problem STUDENT starts by assigning a variable name (x) to the “length of 

the board.”  The first piece mentioned then becomes x/3 and the next piece becomes    

(x/3 + 4); therefore, the algebraic expression to be solved is x = x/3 + (x/3 +4).   

It was mentioned above that experts use their knowledge of physics to translate 

English statements into algebraic expressions.  The program ISAAC was developed to 

model this type of expert performance.  ISAAC uses schemata to understand ordinary 

language in terms of idealized levers, fulcrum, ropes, frictionless surfaces, etc.; i.e. it uses 

its physics knowledge to generate equations from the English statements.  For example, 

ISAAC will recognize a ladder leaning up against a wall as a lever, and associate with 

that lever the specific properties mentioned in the problem. 

What can be concluded from these computer programs?  Research by Hinsley and 

Hayes (1977) suggests that students can quickly (within the first few words of the 

problem statement) categorize mathematics word problems.  If these categorizations 

match with known problem solving strategies, then the students tend to employ these 

strategies – in much the same way that ISAAC attempts to solve algebraic word 

problems.  However, if the problem statement does not match with a known problem 

strategy, the students tend to employ a line by line translation of the text into 
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mathematical expressions – in much the same way as STUDENT does.  Because of the 

correspondence of student performance and computer programs like STUDENT and 

ISAAC, Larkin et al argue that intuition and problem solving “need no longer to be 

considered mysterious and inexplicable”; with our increased understanding of the 

expert’s knowledge will come new avenues by which to understand the learning 

processes involved in the acquisition of such knowledge.   

Theoretical approaches to student mathematics use 

Theoretical approaches to understand students’ use of mathematics establish 

principles for understanding reasoning in general and in mathematics in particular.  First, 

I discuss general theories of knowledge structures.  In particular, I describe two different 

frameworks that have emerged for describing the general structure of knowledge.  

Second, I discuss specific theories of the structure of mathematics knowledge – in 

particular, the types of scientific knowledge and the ontological structure of mathematical 

entities.  

General theories of knowledge structure 

The general theories of  knowledge structure method posits the existence of various 

kinds of cognitive constructs to understand the structure of concepts in general, not 

restricting the focus to simply concepts in mathematics.  A cognitive mechanism that 

explains the use of concepts in learning can be constructed from the theoretical cognitive 

structures. 

Two ostensibly distinct frameworks have emerged in the debate about the structure of 

student knowledge; (i) the unitary, misconceptions, or alternative theories framework 
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(Chi, 1992; Clement, 1983; Carey, 1986; McCloskey, 1983) and (ii) the manifold or 

knowledge-in-pieces framework (diSessa, 1993; Minsky, 1985; Minstrell, 1992).  In 

short, the unitary story of knowledge is that students possess robust cognitive structures, 

or misconceptions, that need to be torn down, so the correct conception can be erected in 

its stead.   The manifold framework claims that students possess small pieces of 

knowledge that have developed through everyday reasoning about the world.  These 

small pieces of knowledge are activated by different contexts, and can be built upon to 

foster learning during formal instruction (diSessa, 1993; Smith et al, 1993; Hammer, 

1996).   

More recently, researchers have attempted to combine these two theoretical 

perspectives into one coherent framework.  Scherr (2002a, 2002b, 2003) shows how 

some aspects of student reasoning within the context of special relativity fall within the 

misconceptions framework, whereas, other aspects of their reasoning are better 

understood in terms of a knowledge-in-pieces framework.  Redish (2004) proposes a 

theoretical superstructure that subsumes the unitary and knowledge-in-pieces framework 

into one overarching framework and argues that both unitary and knowledge-in-pieces 

frameworks have explanatory power in different contexts.  

The remainder of this section discusses two representative theories about concepts 

that emerge from the unitary and knowledge-in-pieces frameworks. 

Unitary Knowledge Structure 

Chi’s (1992) central claim is that concepts exist within ontological categories, and the 

ontological categories admit an intrinsic and a psychological reality.  The intrinsic reality 

is “a distinct set of constraints [that] govern the behavior and properties of entities in each 
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ontological category.”  The psychological reality is “a distinct set of predicates [that] 

modify concepts in one ontological category versus another, based on sensibility 

judgment task.”  So, the intrinsic reality is an objective reality that is imposed by a 

“sensible” (scientific) community; whereas, the psychological reality is a subjective 

reality created by the individual.  Chi argues that there should be an isomorphism 

between these two realities in order for learning to occur.  Figure 2 shows what an 

idealized ontology might look like, where an idealized ontology is “based on certain 

scientific disciplinary standards.”  

Solids

  Level 1  

Level 5   

Level 4   

Level 2   

Level 3   

All Entities

Matter Events Abstractions 
  

Natural 
Kind 

  
  Artifacts Intentional  Constraint-

based 

Living    
occurring 

Plants   

Emotional   Mental  

Artificially 
constructed 

Liquids  Animals 

Naturally Nonliving

 
Figure 2.  Idealized ontology (Chi, 1992). 

Students do not start out knowing everything; they must change their mental state, i.e. 

undergo conceptual change, in order to learn.  To understand conceptual change in Chi’s 

ontological categories model, the details of Figure 2 must be discussed.  The six entries 

along level 3—namely, the ovals entitled Natural Kind, Artifacts, Intentional, Constraint-

based, Emotional, and Mental—are six different branches or ontological categories.  The 
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ontological tree refers to the collection of branches or ontological categories that are 

linked across different levels by arrows (in the figure the ontological tree associated with 

Matter is in blue).  The ontological structure permits two kinds of conceptual change: 

conceptual change within an ontological category and conceptual change across 

ontological categories.  Chi argues that the latter is more difficult and requires different 

cognitive processes to occur; therefore, it would better be classified as the acquisition of 

new conceptions rather than conceptual change.  

The theory asserts that conceptual change across ontological categories—henceforth 

called radical conceptual change—requires two independent processes.  First, the new 

category must be learned and understood.  An example from physics would be the 

acquisition of the scientific notion of Force as a new ontological category. Secondly, 

radical conceptual change requires the realization that the original assignment of the 

concept to a particular category is inconsistent with the properties of that category; 

therefore, the concept must be reassigned to a different category.  Staying with the same 

example from physics, one must realize that the concept of Impetus, as articulated by 

McCloskey (1983), does not belong in the ontological category of Force. 

The first requirement for radical conceptual change—stated in the previous 

paragraph—is achieved by learning the new ontological category’s properties and 

learning the meaning of the individual concepts contained within this ontological 

category.  The second requirement for radical conceptual change—reassignment of a 

concept to a new ontological category—can be achieved in one of three ways.   
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Firstly, one can “actively abandon the concept’s original meaning and replace it with 

a new meaning.”  For example, actively realizing that a thrown ball does not posses a 

quality like Impetus, rather the ball simply interacts with other objects via Forces.   

The second method to reassign a concept to a new ontological category is to allow 

both meanings of the concept to coexist, in different ontological categories, with either 

meaning being accessible depending on context.  Chi argues that this is probably the most 

common type of change since many professional “physicists will occasionally revert back 

and use naive notions to make predictions of everyday events.”  (It should be noted that 

some authors see this same example as evidence for knowledge fragments, like p-prims, 

instead of unitary knowledge structures like ontological categories.)   

Third, the coherence and strength of the new meaning can be so robust that the 

replacement of the concept is automatic. 

To summarize this subsection, Chi proposes a theoretical framework to understand 

conceptual change that occurs in learning science.  In this framework, concepts exist 

within a rigid hierarchical structure.  In the next subsection the very concept of a 

scientific concept is brought into question. 

Manifold Knowledge Structure 

diSessa and Sherin (1998) espouse a theory of one kind of concept4 that is based on 

the linkage of fragmented knowledge structures, which they call a coordination class.  

The word “coordinate” is used in two different senses in the definition of a coordination 

class.  The first is the integration of a particular situation into a whole, and the second is 

                                                 
4 They argue that the word ‘concept’ is used rather broadly in the research literature.  The 
theory of coordination classes only refers to a narrowly defined type of concept.  
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the invariance of the interpretation across contexts.  Along with the two uses of 

coordination, there are two structural components that make up a coordination class: the 

read-out strategies and the causal net. The information that one uses to construct a 

coordination class is gathered through various read-out strategies.  Read-out strategies 

refer to the methods one employs to extract information in various contexts and 

situations. The causal net is the set of implications associated with the coordination class.  

For example, the existence of a force ‘causes’ an acceleration, which is essentially 

captured in Newton’s Second Law: amF rr
= .  The meaning of these abstract definitions 

will be extracted from an example found in the literature.   

Wittmann (2002) applies diSessa and Sherin’s theory to interpret students’ 

understanding of wave pulses.  This work will serve as a concrete example of how the 

theory of coordination classes may be used by researchers in education research.  

Wittmann’s central claim is that students understand waves as object-like things instead 

of event-like things.  One example that Wittmann discusses involves students’ beliefs 

about pulses traveling on a string.  Flicking a taut string with one’s hand will generate a 

wave pulse that travels down the string.  The students in Wittmann’s study believe the 

pulse will travel faster if the string is flicked faster.  If one is thinking of the wave as 

being like an object, for example a ball, this interpretation would be true.  This is 

consistent with a common phenomenological primitive associated with objects, namely 

faster means faster.  (See chapter 4 for more on phenomenological primitives and 

mathematical resources.)  For example, throwing a ball is accurately described by the 

faster means faster p-prim, since moving one’s hand faster when throwing a ball will 

cause the ball to move faster.   
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However, in the case of waves—which Wittmann describes as event-like—the faster 

means faster p-prim can be misleading.  That is, the faster means faster p-prim does not 

apply to the transverse velocity of the wave, which is how the students are using it.  So, 

in this example the p-prim is simply mapped incorrectly onto the physical situation.  The 

speed of the pulse is only dependent on the properties of the media in which it travels, in 

this case the string.  The relative speed at which the hand is moved to generate the pulse 

has no effect on the relative speed at which the pulse travels down the string.   

Wittmann’s conclusion is that students coordinate wave around the idea of objects; 

i.e. the students coordinate waves around the Object coordination class, whereas waves 

would be coordinated by an expert around the Event coordination class.  This 

coordination, according to Wittmann, occurs along three dimensions.  First, the students 

use their read-out strategies to associate wave as solid and object as point.  Second, the 

students’ motion resources, like faster means faster point to wave as object.  Third, from 

examples that are not discussed in this review, the students’ interaction resources, like 

adding and bouncing, point to wave as object.  The motion resources, interaction 

resources, and read-out strategies all coordinate around wave as object.  Figure 3 

(Wittmann, 2002) summarizes this conclusion. 
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Figure 3.  Possible schematic showing reasoning resources that describe an object-like 

model of waves. 

Specific theories of the structure of students’ mathematics knowledge 

In the mathematics knowledge structure approach, researchers posit various 

theoretical cognitive structures.  A cognitive mechanism, which explains the observed 

phenomena of the novice and/or the expert using mathematics, can then be constructed 

from the theoretical cognitive structures.  This section will be divided into three 

subsections entitled Types of Scientific Knowledge, Symbolic Forms, and Ontological 

Structure of Mathematical Entities.  These three subsections will focus on work by Reif 

and Allen (1992), Sherin (2001), and Sfard (1991), respectively. 

Types of Scientific Knowledge 

Reif and Allen (1992) developed a cognitive model of “ideally good scientific 

concept interpretation,” which they used to understand the difference between 5 experts 

and 5 novices solving problems about acceleration.  Reif and Allen’s model starts by 

proposing knowledge that falls in three different categories (see Figure 4): 
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(i) main interpretation knowledge,  

(ii) ancillary knowledge, and  

(iii) form of knowledge. 

Main interpretation knowledge, as the name suggests, is the primary structure 

implicated in interpreting a scientific concept.  Main interpretation knowledge has two 

major components:  

1. General knowledge. General knowledge about a scientific concept is divided into 

three parts. 

a. A precise definition is important for any scientific concept and makes 

up the first part of general knowledge.  

b. Entailed knowledge is derivable from the definition, but is not 

explicitly articulated in the definition.  

c. Lastly, supplementary knowledge is related to, but not derivable from 

the definition.  

2. Case-specific knowledge.  This is knowledge that is applicable in a narrow 

domain of phenomena.  As an example, consider an object moving with constant 

speed on an oval path.  Many students say that the acceleration of the object is 

directed toward the center of the oval.  Although this is true for a circular path, 

this result is not true for a generic oval path.  
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Figure 4. Kinds of knowledge facilitating interpretation of a scientific concept. 

(Reif and Allen, 1992, p. 10) 

The second type of knowledge in Reif and Allen’s framework is ancillary knowledge.  

Like main interpretation knowledge, there are two major components that make up 

ancillary knowledge.  First, interpreting a scientific concept requires one to know when to 

use their knowledge; i.e. when is it applicable [validity] and when is it useful [utility].  

Second, interpreting a scientific concept requires one to know how to use their 

knowledge; i.e. knowing the rules for applying one’s knowledge. 

The form of knowledge is the third type of knowledge that Reif and Allen proposed, 

which deals with the organization of the individual’s knowledge.  The following three 

components are contained in the form of knowledge:  

1. Description.  An individual’s knowledge can have a very precise description or it 

could be described in vague terms.  Either description will affect how the 

knowledge is applied.  
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2. Coherence.  Individual knowledge elements may fit together into a coherent 

structure or they may be loosely connected fragments. 

3. Confidence.  Confidence in one’s knowledge can affect how that knowledge is 

applied.  Over-confidence in one’s knowledge may lead to careless mistakes or 

“incorrect application of the knowledge,” whereas under-confidence in one’s 

knowledge may prevent the application of appropriate knowledge. 

Reif and Allen attempt to categorize the different types of knowledge implicated in 

the understanding of a scientific concept – in this case, acceleration.  However, Reif and 

Allen’s model does not offer a constructivist’s account of how students develop expertise 

based on their intuitive ideas.  If a hypothetical group of students’ were asked questions 

about acceleration, even before they were formally taught about the concept, they would 

have intuitive ideas about it.  (See diSessa, 1993, for an account of students’ intuitive 

reasoning in physics.)  However, Reif and Allen’s model has difficulty explaining 

students’ intuitive ideas about scientific concepts.   

Symbolic Forms 

Sherin (2001) tries to gain insight as to “how students understand physics equations.”  

He starts by collecting data on how students used equations.  His data consists of 

videotaped sessions in which engineering students solved problems in pairs at a 

whiteboard.  They are fairly advanced and do not make structural math errors.  From this 

data Sherin developes a framework, called symbolic forms, to interpret how students 

understand physics equations. 

Symbolic forms consist of two parts.  The symbol template is an element of 

knowledge that gives structure to mathematical expressions; e.g. � = � or � + � + �...  



 36 

(where the boxes can contain any type of mathematical expression).  The conceptual 

schema is a simple structure associated with the symbolic form that offers a 

conceptualization of the knowledge contained in the mathematical expression; this part of 

the symbolic form is similar to diSessa’s p-prims (diSessa, 1993). 

  Examples of the difference between the symbol template and conceptual schema 

may serve to clarify these definitions (Table 1).  A student would use the symbol 

template, � = �, when invoking the conceptual schema of balancing.  For instance, the 

utterance, “the normal force of a table on a block is balancing the gravitational force of 

the earth on the block,” corresponds with the algebraic expression BonEWBonTN = , a 

clear use of the symbol template � = �.  The student also utilizes the same symbol 

template, � = �, in association with the conceptual schema same amount.  For instance, 

the mathematical expression associated with the utterance, “the velocity of block A is the 

same as the velocity of block B,” is BvAv = ; this, again, is a clear use of the symbol 

template � = �.  To summarize, although the symbol templates were the same for both 

cases, the conceptual schemata associated with the symbol templates were different; 

therefore, different symbolic forms are implicated in the two cases.   

Utterance Conceptual 
Schema 

Symbol 
template 

Mathematical 
expression 

“The normal force of a table on 
a block is balancing the 
gravitational force of the earth 
on the block”  
 

Balancing � = � BonEWBonTN =

 “The velocity of block A is the 
same as the velocity of block B” 

Same 
amount 

� = � BvAv =  

Table 1.  Different conceptual schema associated with the same symbol template. 
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Sherin’s framework was developed to accommodate algebraic equations for 

structureless quantities.  That is, his framework does not discuss the nature of the 

structure of physics equations.  For example, in physics there are algebraic equations, 

vector equations, operator equations, and matrix equations.  It’s unclear whether Sherin’s 

framework would accommodate different types of equations—like vector equations and 

operator equations—or, if this framework needs to be extended in some way to handle 

equations that are not simply algebraic equations containing structureless quantities.  It 

may be that different mathematical entities—like vector equations and operator 

equations—are conceptualized in different ways by the students.  The next section 

discusses two different ways in which mathematical entities can be conceptualized. 

Ontological Structure of Mathematical Entities 

There is no explicit mention of any ontological structure in Sherin’s symbolic forms, 

however Sfard (1991) argues there is an ontological structure to all abstract mathematical 

notions.  According to Sfard, these abstract mathematical notions can be viewed 

“structurally—as objects, and operationally—as processes,” and that these two views are 

complementary.   For example, a circle can be viewed structurally as the locus of all 

points equidistance from a given point.  Or, a circle can be viewed operationally as the 

figure obtained by rotating a compass about a fixed point.  Sfard gives various examples 

of mathematical notions viewed structurally and operationally (these are summarized in 

Table 2). 
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 Operational Structural 
Function Computational process 

   or 
Well defined method of getting 
from one system to another 
(Skemp, 1971) 
 

Set of ordered pairs (Bourbaki, 
1934) 

Symmetry  [Invariance under] 
transformation of a geometrical 
shape 

Property of a geometrical 
shape 
 

Natural 
number 

0 or any number obtained from 
another natural number by 
adding one ([the result of] 
counting) 

Property of a set 
   or 
The class of all sets of the 
same finite cardinality 
 

Rational 
number 

[the result of] division of 
integers 

Pair of integers (a member of a 
specially defined set of pairs) 
 

Circle [a curve obtained by] rotating a 
compass around a fixed point 

The locus of all points 
equidistant from a given point 

Table 2.  Operational and structural descriptions of mathematical notions (Sfard, p5). 

Note: At some level these maybe formally the same, i.e. to identify a property of a shape 

one may have to transform the object in their mind—but may not be aware of this mental 

transformation.  That is, the operational and structural interpretations are cognitive not 

formal differences. 

Sfard argues that from a historical point of view a structural understanding of a 

mathematical notion is conceptually more difficult to achieve than an operational 

understanding.  The transition from an operational to a structural understanding involves 

the following three-stage process:  

1. Interiorization:  At this stage, in order for the mathematical notion “to be 

considered, analyzed and compared it needs no longer to be actually performed” 

(p. 18).   
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2. Condensation:  This phase involves a greater familiarity with the process as a 

whole, without the need of going through all the details of the process to 

understand it.  That is, “it is like turning a recurrent part of a computer program 

into an autonomous procedure.”  

3. Reification:  This stage is characterized by an ontological shift in how the 

mathematical notion is viewed, from process to object.  This is a sudden and 

radical shift that offers the “ability to see something familiar in a totally new 

light.” 

Sfard summarizes the difference between an operational and structural conception of 

a mathematical notion along four dimensions (see Table 3): (1) the general 

characteristics, (2) the internal representation, (3) its place in concept development, and 

(4) its role in cognitive processes.  Sfard concludes that the operational and structural 

conceptions of a mathematical entity are complementary and are both useful in problem 

solving. 
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 Operational Conception Structural Conception 
General Characteristics Mathematical entity is 

conceived as a product of 
a certain process or is 
identified with the 
process itself 
 

A mathematical entity is 
conceived as a static 
structure as if it was a 
real object 

Internal Representation Is supported by verbal 
representations 
 

Is supported by visual 
imagery 

Its place in concept 
development 

Develops at the first 
stages of concept 
formation 
 

Evolves from the 
operational conception 

Its role in cognitive 
processes 

Is necessary, but not 
sufficient, for effective 
problem-solving learning 

Facilitates all the 
cognitive processes 
(learning, problem-
solving) 

Table 3.  Differences between an operational and structural  

conception of a mathematical notion. 

Although, the structural conception comes later than the operational conception of a 

mathematical notion in Sfard’s story, she claims they are two “sides of the same coin.”  

Both conceptions of a mathematical notion are important for understanding and for 

problem solving.  

Discussion 

The chapter looks fairly closely at empirical and theoretical attempts to understand 

how students use mathematics in physics.  Can one distill a common thread between 

these approaches?  There appears to be a logical flow that leads one approach into the 

next.  The first step to understand how students use mathematics in physics is to 

systematically observe situations in which students use mathematics or simply document 

the problems students have when using mathematics in physics.  This is the crux of the 



 41 

program in the observational approach.  The second step in this logical flow—the 

modeling approach—attempts to model the performance or behavior of the students by 

creating runnable programs.  The third step—the general and mathematical knowledge 

structures approaches—attempts to understand the internal cognitive structures that are 

responsible for the students’ performance.     

My own dissertation research is an attempt to construct a cognitive model for 

describing how students understand and use mathematics in the context of physics.  The 

observational approach offers the necessary first step, lending insight into what students 

do with mathematics in physics, and where they have difficulties.  The general 

knowledge structures approach has established general principles for describing the 

cognitive mechanisms involved in understanding scientific concepts – principles that can 

be applied to describing the cognitive mechanisms involved in mathematical thinking in 

the context of physics.  I use Sherin’s (1996, 2001) cognitive description of how students’ 

understand physics equations (in terms of symbolic forms and interpretive devices), and 

extend his work to include a description of how students actually use mathematics in the 

course of solving problems in physics (in terms of epistemic games).  Lastly, I show how 

one can use the cognitive framework that I have developed to understand student 

mathematical errors in physics. 

I do not create a runnable, computational model of the mind in my own research.  To 

date, I have only identified the cognitive structures and mechanisms to describe and 

analyze students’ use of mathematics in physics.  Future work could involve developing 

computer models, based on the cognitive model outlined in this current work, to model 

students’ use of mathematics in physics.  I have more to say about this in chapter 8. 
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Chapter 3: Data and research methodology 

 

Introduction 

Researchers have studied human problem solving in different contexts: problem 

solving associated with games such as chess (Newell and Simon, 1972), problem solving 

in mathematics (Kintsch & Greeno, 1985; Schoenfeld, 1992), and mathematical problem 

solving in the context of physics (Chi et al, 1981; Clement, 1987; Clement, 1988; Larkin, 

1979; Larkin et. al., 1980; Trowbridge & McDermott, 1980; Viennot & Rozier, 1991).  

My own research is not per se about mathematical problem solving; rather, it’s about 

how students use mathematics in the context of physics.  In particular, my research goal 

is to construct a theoretical framework for describing how students – correctly and 

incorrectly – understand and utilize mathematics in physics; i.e. what are the cognitive 

tools and processes they employ to understand mathematics in physics?  From a detailed 

understanding of how students use and understand the mathematics I can then interpret 

the students’ mathematical errors.  Eventually, this work may lead to new instructional 

strategies and environments that improve students’ use of mathematics in physics.   

However, before I can outline a solution (a theoretical framework for analyzing and 

describing students use of mathematics in physics) I must clearly articulate the problem 

(what is it that students do with mathematics in physics).  In this chapter I describe the 

empirical basis for this study.  In the first section I discuss how math in math courses is 
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different than math in physics courses.  The second section gives some background into 

the existing cognitive theory of mathematical thinking and problem solving.  In the third 

section I give a brief preview of the theoretical framework and how it incorporates 

existing ideas from cognitive theory.  In the fourth and fifth sections I describe the 

reformed physics course in which the data was taken for this study and the actual data set.  

In the penultimate section I discuss the research methodologies employed in this study.      

Math in physics courses is different than math in math courses 

The first thing to note is that students use mathematics in physics courses differently 

than they do in mathematics course.  My support for this claim rests on three non-

orthogonal dimensions:  (1) students have difficulty mapping concepts from mathematics 

courses to concepts in physics, (2) there are ontological differences between the 

mathematics taught in mathematics courses and that used in physics courses, and (3) 

students think there is a difference between the mathematics in math courses and the 

mathematics in physics courses. 

Difficulties mapping concepts from mathematics courses 

Mathematics is required in physics; algebra is a prerequisite for almost all physics 

courses (with the exception of some conceptual physics courses).  In fact, many students 

have already taken two semesters of calculus by the time they enroll in a college level 

physics course.  (In this study, greater than 95% of the students enrolled in the algebra-

based physics course had taken two semesters of calculus.)   However, research by 

Steinberg, Saul, Wittmann, and Redish (1996) indicates that introductory physics 

students don’t apply what is learned in math classes to problems in physics – a reality that 
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many physics professors have observed first hand.  Students have had repeated exposure 

to mathematics in their previous course work, and yet they continue to perform poorly on 

mathematical problem solving tasks in physics. 

We could simply require more mathematical preparation.  However, our students are 

already very busy; requiring more course work does not seem like the answer.  Even if 

we did require more course work, it is not likely to success if we do not understand why 

the students are not applying what they have learned in mathematics classes to problem 

solving in physics.  With a detailed understanding of why students don’t apply their 

mathematics knowledge to physics courses (or when they do) we can begin to develop 

instructional strategies and environments to help them apply their previous knowledge – 

i.e. we can help our students learn more efficiently.  The only way this can be done is by 

investigating students’ use of mathematics in the context of physics. 

Ontological discord between math used in physics and math taught in mathematics 

There is an ontological discord between the mathematics taught in introductory, 

college-level math courses and introductory, college-level physics courses.5  By an 

ontological discord, I simply mean that the mathematical objects used in introductory, 

college-level physics courses are often more complex than the mathematical objects used 

in introductory, college-level math courses.  Open a standard textbook used for an 

introductory college-level (or calculus) math course and you will see mostly single 

                                                 
5 The ontological discord between math courses and physics courses is not simply 
relegated to introductory courses.  This discord has led many physics departments across 
the country (including the one at the University of Maryland) to adopt mathematical 
physics courses for advanced undergraduates (at UMd it is labeled PHYS 374 
“Intermediate Theoretical Methods”).   Future research could involve using the 
theoretical framework developed in this dissertation to study advanced physics 
undergraduate and graduate students’ mathematical difficulties.  
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variable equations and relationships.6  Redish et al (1996) notice that a standard 

introductory physics course contains many different mathematical entities that students 

must successfully interpret: 

1. numbers: 2, e, 5/7  

2. universal constants: c, G, h, k (Boltzmann)  

3. experimental parameters: m, R, T, k (spring)  

4. initial conditions: x0, v0  

5. independent variables: x, y, z, t  

6. dependent variables: x, y, v 

7. quantities and net quantities: netF ,  appliedF , frictionf  

Students in a typical introductory mathematics course are not asked to discern a 

difference between a quantity and a net quantity (like F and Fnet).  This issue may seem 

relatively subtle or simply unimportant – one might think that students would have no 

trouble distinguishing force and net force.  In fact, the opposite is true.  Students have a 

great deal of trouble with the mathematical differences between force and net force, 

velocity and change in velocity, momentum and change in momentum, etc.  Since these 

distinctions are not generally emphasized in mathematics – and since they are particularly 

important distinctions in physics – the obvious place to study students’ difficulties with 

these distinctions is in the context of physics and not mathematics. 

Students think there is a difference between math in physics and math in math     

A third reason that indicates that the mathematics in math course is different from that 

in physics courses is that students think and act as if there is a difference.  A conversation 
                                                 
6 Multi-variable relationships are usually not taught until 3rd semester calculus. 



 46 

between two students working on the Fuel Efficiency Problem (Appendix A, #8) 

illustrates this point.  The students find the relationship between the European fuel 

efficiency e (measured in liters/100 km) and the American fuel efficiency f (measured in 

miles/gallon) to be 227=fe .  In order to interpret what this equation means the students 

must translate it into “a regular math example”: 

 S4:  So, let's say, e is equal to x, e is the thing that you don't know, and f is 
equal to 2.  That's, that's given in the equation.  That's given in the 
example.  So when you have a regular math example like this, a 
number is equal to 2 x, what do you do? 

S1:  Divide. 
S4:  You just divide by 2.   
S1:  So, then that would give you e. 
  

The point of this quotation is to illustrate that the students do not immediately 

interpret an expression like 227=fe  as a “regular math example.”  It is not until e is 

mapped into x and f is mapped into 2 that the students are able to interpret the meaning of 

227=fe .  This is one example of a more general student belief that the mathematics in a 

physics course is different than the mathematics in a mathematics course.  If the students 

perceive a difference between the mathematics in a physics course and the mathematics 

in a mathematics course, they may use different knowledge elements and reasoning 

strategies when using mathematics in these two different settings.  To understand 

students’ use of mathematics in physics courses, we should observe students using 

mathematics in physics courses – observations of students using mathematics in math 

courses is not enough. 

The cognitive science of mathematical thinking and problem solving 

As I mentioned earlier, I am interested in the cognitive tools involved in formal 

mathematical thinking in physics and understanding students’ correct and incorrect use of 
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mathematics in physics.  However, before I explain the cognitive tools students bring to 

bear on problem solving in physics, I review some basic aspects from cognitive science. 

Basics of cognitive theory 

Research in cognitive science has reached a consensus on certain aspects of human 

memory.  Most cognitive scientists divide memory into working memory and long term 

memory.  Anderson (1983) further divides long term memory into declarative memory 

and production memory.   

I will use the schematic diagram of the structure of memory contained in Figure 5 to 

discuss the different aspects of memory articulated by cognitive scientists.  Working 

memory, or short-term memory, is where we encode and store input from the outside 

world.  However, the memory space in working memory is limited and fleeting.  For 

example, most of us cannot remember a ten digit phone number we just looked up in the 

phonebook between the time we read it and the time we dial unless we actively recite the 

digits in the phone number.  Information that is elevated from working memory to 

permanent knowledge is stored in declarative memory.  In contrast to working memory, 

declarative memory appears to have unlimited capacity; however, there is an issue with 

retrieving information stored in declarative memory.  Production memory stores 

information about scripts and strategies for solving problems.  If the encoding of a 

situation in working memory matches a strategy that exists in production memory, then 

the strategy is called and executed in working memory.   
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Figure 5.  Schematic view of cognitive theorists’ view of the ontological structure of 

human memory (Anderson, 1983).  

Basics of cognitive theory applied to mathematical thinking and problem solving 

In light of the structure of human memory, articulated by cognitive scientists, 

mathematics education researchers have established five generally accepted aspects that 

are important for any inquiry into mathematical thinking and problem solving 

(Schoenfeld, 1992): 

1. The knowledge base – refers to the organization of and access to information stored 

in long term memory.   What do students know?  How is it organized?  How do 

they access what they know?       

2. Problem solving strategies – the strategies and heuristics that students employ 

during mathematical problem solving tasks.  The modern discussion of problem 

solving strategies and heuristics starts with Pólya’s book How to Solve It (1945). 
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3. Monitoring and control – human problem solvers awareness of and control over 

their progress during the problem solving process.  It has been observed that 

human problem solvers must limit their attention to certain aspects of the problem 

situation – humans cannot parse and interpret the myriad of stimuli inundating 

them every second due to limitations of working memory.   An umbrella term that 

encompasses monitoring and control is metacognition. 

4. Beliefs and affects – an individual’s beliefs about and feelings toward mathematics 

influences when and how she approaches and utilizes her knowledge about the 

subject.  

5. Practices – the environments in which mathematics is taught that affect what and 

how the mathematical information is learned.  It seems that some learning 

environments contribute to students developing a disconnect between “school 

mathematics” and “real mathematics.”  For these and other reasons, Schoenfeld 

(1992) espouses teaching mathematics as an “enculturation.”  In this view, 

students are immersed in the process and culture of thinking mathematically in the 

attempt to get the students to “[see] the world through the lens of the 

mathematician” (Schoenfeld, p. 341). 

To address the first four aspects listed above, I distinguish three different cognitive 

structures implicated in mathematical thinking: resources (the cognitive building blocks 

of student thinking), epistemic games (the collections of reasoning strategies employed 

during problem solving), and frames and framing (individuals’ interpretation of a 

situation or event based on their expectations of the situation or event).  Each of these 

structures will be discussed in turn.  
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Although I believe the study of the practices of mathematical education is very 

important, I do not address practices in my study.  However, the theoretical framework 

that I develop in this dissertation can be used as a guidepost for future work in developing 

learning environments and practices that enhance and improve students’ use of 

mathematics in physics. 

Theoretical Framework, in brief 

Resources as knowledge base  

The knowledge base refers to the organization of, and access to, information that is 

stored in long term memory.  Students’ mathematical knowledge consists of loosely 

organized bits of knowledge, or resources.7  The cognitive mechanism governing access 

to these resources is activation.  The following example helps illustrate the difference 

between resources and their activation. 

A student (pseudonym Mary) working on the Conversion Problem (Appendix A, #4) 

explains her method to the TA:  

Mary:  I'm trying to—this one seems like it should be not too bad. This one 
you're driving on the New Jersey turnpike at 65 mph...so I was 
thinking—all right if I convert 65 mph to feet per second which is the 
other thing that's given in feet. 

TA:  OK. 
Mary:  So then I got 95 feet per second is what you're moving, so in 500 feet 

like how long?  So, I was trying to do a proportion, but that doesn't 
work.  I was like 95 feet per second...oh wait...yeah in 500 feet, like, 
x would be like the time...that doesn't, I get like this huge number 
and that doesn't make any sense.  

 

                                                 
7 My own view of resources in based on the work of many researchers (diSessa, 1993; 
Hammer, 2000; Hammer and Elby, 2002; Minstrell, 1992; Minsky, 1985; Redish, 2004; 
Sherin, 2001).  I give a more thorough description of resources in chapter 4. 
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Mary realizes that a proportion could help her solve this problem, but has trouble 

implementing her strategy.  (I believe what she writes is an expression like this: 

second 1
feet 95

500
=

x .  When she cross-multiplies she gets a “huge number” that “doesn’t 

make any sense.”)  When the TA asks the same question with slightly different numbers 

the student immediately answers the question:  

TA: So what if I said something like… if I was traveling 4 feet per second 
and I moved 20 feet, how long did it take me? 

Mary:  Yeah, 5 seconds.  
 
Changing the numbers makes this question immediately transparent to Mary, but why 

is that?  The second quotation indicates that Mary has the appropriate mathematical 

resources to answer the original question, but she initially does not have access to those 

resources – that is, they are not activated.  Changing the numbers in the problem 

activated, these resources, giving Mary access to the appropriate knowledge.  (I have 

more to say about resources in chapter 4.)   

Epistemic games as problem solving strategies 

Students employ a variety of strategies during problem solving in physics.  As an 

example consider the following group of students thinking about the equation for 

conservation of momentum in the Colliding Gliders Problem (Appendix A, #3): 

 Arielle:  So then the Fnet for A, the Fnet for M.  This is a big mass and this 
is a little mass and these are equal, so this has got to be a big, what 
is it, a big velocity and this has got to be a small velocity.  So, p for 
A and p for m—the change in velocity here has got to be sort of 
bigger.  Big velocity little mass, big mass little velocity.  But these 
are equal. 

Betty:  Right. 
Tommy:  Right. 
Arielle:  So the momentums got to be the same, right? 
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Arielle seems to understand and draw valid conclusions from the expression for 

momentum.  However, she later processes this same expression in a very different 

manner:  

Arielle:  How could they be the same?  If the masses are different and the 
change in velocities are different the momentums can’t be the same.  

 
This quotation indicates that the student processes the information contained in the 

expression for momentum in a seemingly, completely different manner than she did in 

first quotation – she draws the conclusion that the “momentums can’t be the same.”  

From the first set of quotations it’s clear that the student possesses the requisite 

mathematical resources; however, the second set of quotations indicates that she uses a 

different strategy for processing and coordinating these resources to arrive at an answer.  

Any theoretical framework of mathematical thinking has to be able to explain how this 

can happen. 

According to the theoretical framework I propose, the various different problem 

solving strategies that students employ can be understood in terms of epistemic games.  

Collins and Ferguson (1992) introduced the idea of epistemic games to categorize the 

different methods that experts employ during scientific inquiry.  I extend the idea to 

novices creating new knowledge.  I follow Redish (2004) in defining an epistemic game 

as: 

A coherent activity that uses particular kinds of knowledge and processes 
associated with that knowledge to create knowledge or solve a 
problem.  

 
According to the idea of epistemic games, I interpret Arielle’s two different 

approaches to the Colliding Gliders Problem as the activation of two different 
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interpretive devices within the same epistemic game.  (I introduce interpretive devices in 

chapter 4.  I have more to say about epistemic games in chapters 5 and 6.) 

Frames and Framing as a mechanism for monitoring and control 

According to the theoretical framework I propose, students’ expectations govern what 

they monitor and control.  An example of Mary and Emma working on the Paper Towel 

Problem (Appendix A, #10) illustrates this point: 

Mary:  If you pull it with one hand, so all the force is concentrated in one 
area of the towel, so it causes it to rip.  You know.  But, if you pull it 
with both hands, it's going to be a more equal distribution, maybe.  
So, you could (?), that's what I was thinking.  But, if your hands are 
wet it makes the towel soggy, which makes it weak, so it's more likely 
to rip. 

Emma:  It might make it more likely to rip, but still that's better than pulling 
it with one hand. 

Mary:  Yeah, if both your hands--like (?) yeah. 
Emma:  Is that all we're supposed to do with that?  I feel like (?).  Like, I 

feel like it should have something to do with like not just force.  I feel 
like it should have something to do with what we've learned like 
recently.  Having to do with like water and pressure  (?). 

 
Mary offers an explanation for this problem, but Emma is not completely satisfied 

with this explanation.  Emma’s expectations about what this problem involves are the 

driving factor behind her dissatisfaction: “I feel like it should have something to do with 

like not just force.  I feel like it should have something to do with what we've learned like 

recently.”  This example typifies how students’ expectations govern what they pay 

attention to and how they evaluate their own performance. 

Frames and framing are the main theoretical constructs that I use for describing 

structures of expectations.  The ideas of frames and framing have a long history in the 

sociolinguistics community.  (See Tannen, 1993, for a review.)  Tannen explains that an 
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individual’s framing (i.e. structure of expectations) helps her answer the question, “What 

kind of activity is this?”  I discuss frames and framing in more detail in chapter 5.       

The setting of this study 

Student Population 

The students for this study come from an introductory, algebra-based physics course 

at the University of Maryland, College Park.  The students enrolled in this course are 

approximately 60% female; 70% are juniors and seniors, about 50% are biological 

science majors, and about 40% are pre-meds.   

A particularly interesting statistic for this study is that greater than 95% of the 

students have had two semester of calculus, yet they are enrolled in an algebra-based 

introductory physics course.  One possible reason that the students enroll in the algebra-

based course although they have the requisite calculus background may simply be that 

the calculus based-course is not required for their majors.  In general, these are ambitious 

and busy students, who are extremely concerned about getting “an A” in every course.  

Therefore, it is not in their best interest to take what they imagine to be more difficult 

courses that are not required for their majors.  However, related to the students’ desire to 

get an A, they may lack confidence in their mathematics skills, and therefore opt to take 

the algebra-based course because it requires less mathematical sophistication.  Calculus is 

usually taken by these students in the first year of college, and since 70% of these 

students are juniors and seniors many of these students probably haven’t taken any 

formal mathematics courses for two years (or more) by the time we see them in our 

physics class.  This long hiatus from formal mathematics suggests that lack of confidence 
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in their mathematics skills may be a secondary reason for enrolling in the algebra-based, 

introductory physics course. 

Structure of the modified, introductory, algebra-based course 

The students involved in this study were enrolled in the introductory, algebra-based 

physics course that was reformed by the Physics Education Research Group (PERG) at 

the University of Maryland (UMd).  This course had four major structural components 

that were all non-traditional in some fashion: a lecture, a discussion section, and a 

laboratory. 

The Lecture:  The lecture was taught by the instructor of the course and was given in 

a large lecture hall consisting of about 100-160 students.  The lecture met 3 times a week, 

with each meeting lasting 50 minutes.  Two modifications to this lecture significantly 

increased student participation during these lectures: (1) Each student was issued a 

Remote Answering Device (RAD) that they use to answer multiple choice questions in 

real-time (Mazur, 1997).  The instructor periodically asks a multiple-choice question 

during the lecture to which the students respond.  The students’ responses were collected 

electronically.  A computer program would automatically display a histogram of the 

student responses.  In this way the students and instructor could see the fractions of 

students choosing each answer.  This immediate feedback about the students’ thinking 

was valuable for both the instructor and the students.  (2) Most weeks the students 

participated in an Interactive Lecture Demonstration (ILD).  During an ILD the students 

received a worksheet outlining specific questions that would be discussed.  The instructor 

would lead the students through the worksheet and lead a class discussion about the 

issues raised in the worksheet.  The students were not graded on their answers to the ILD, 
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but they were given homework and test questions to assess their understanding of the 

material discussed during ILDs.  (See Sokoloff and Thornton, 2004, for more on ILDs.) 

The discussion and laboratory:  The students also attended a discussion and 

laboratory section taught by a teaching assistant.  These sections were limited to 20 

students per section and met once a week for three hours.  In the first hour the students 

worked in groups of four on worksheets, called tutorials, which lead the students through 

conceptual physics content.  Some of these tutorials were modified versions of the 

University of Washington’s Tutorials in Introductory Physics (McDermott et al, 2002).  

During the second and third hours the students worked on a physics laboratory, called 

Scientific Community Labs (Lippmann, 2003).  These laboratories were modified in many 

ways.  First, the students were not given a lab manual of lengthy instructions.  Rather, the 

students were given a brief description of a particular setting (for example, the pendulum 

of a grandfather clock) and were asked a question (for example, what properties of a 

pendulum affect the period).  The students were expected to design an experiment to 

answer the question.  A second major modification is that these laboratories focused on 

the process of doing science, rather than focusing on physics content.  Many of the 

questions focused on physics topics that the students hadn’t seen yet in lecture.  In this 

way, ideally, the students would focus on how to arrive at and evaluate an answer in a 

scientific manner, rather than focusing on the answer that is accepted by the scientific 

community.   

Description of the Course Center 

Since the discussion sections were modified, the students did not have time to discuss 

the problems on the homework set with a TA.  To mitigate this deficiency a room was set 
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up, called the course center, where students could gather to work on the homework 

problems together.  Most of the data for this study comes from video-taped sessions of 

students working on homework problems in the course center.  (The data will be 

discussed in more detail below.)   

The course center was staffed during specified hours of the week by a teaching 

assistant or instructor.  The TA or instructor was present to offer assistance but not to 

explicitly solve the problems for the students (as is often done in many traditional 

recitation sessions).  The special features of this room were its architecture, the white 

boards, and the audio-video set up. 

Architecture:  Many students expect recitation sessions in which a teaching assistant 

stands at the front of the room and solves problems, while the students frantically copy 

down the solutions.   The architecture of the course center was altered in the attempt to 

modify this expectation, by removing the ‘front’ of the room.  All the tables were 

removed from the room and replaced with five long work benches.  (See Figure 6 for a 

schematic lay out of the room.)  This seating arrangement did not direct the attention of 

the students to any one location in the room – as is the case in all lecture halls in which 

the seating is arranged to face the ‘front,’ directing attention to the lecturer.   

White boards:  As a second alteration to the course center, white boards were 

mounted on all the walls and the students were provided with dry erase markers.  The 

reason for this was twofold.  First, the white boards facilitate group problem solving.  

Research on expert and novice problem solving has show that external representations are 

a helpful – and sometimes necessary – tool in the problem solving process (Kintsch and 

Greeno, 1985; Larkin, 1979).  The white boards offered the students a medium to share 
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their external representations with each other.  Second, the white boards help me with my 

research agenda.  A video-taped record of the students’ writing during problem solving 

assisted me in my goal to understand how students use mathematics in the context of 

physics. 

Audio-video set-up:  The course center was equipped with a digital video camera and 

microphones.  The microphones were mounted in the middle of the tables to ensure 

quality audio reception.  

Closet 

Tables 

Students 

Microphones 

Video Camera

White Boards 

 

Figure 6.  Top-view of the lay-out of the course center. 

The video camera was mounted about seven feet above the floor on the wall of the 

closet across from the tables that were equipped with microphones.  The elevation of the 
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camera was ideal for three reasons.  First, students and staff members walking by the 

closet would not be in the camera’s field of vision.  Second, from this vantage point, the 

students sitting closer to the camera did not block the students who sat closer to the wall.  

Third, the location of the camera allowed a clear view of what the students wrote on the 

whiteboards, offering me a videotaped record of the students’ written work.   

Types of problems 

The students worked on problems assigned from their introductory, algebra-based 

physics course.  Because these problems were assigned as homework, this gave us an 

authentic look at how students attempt to solve their actual homework problems – as 

opposed to problems artificially posed to them in an interview environment.    

The problems that the students worked in the course center are also an important 

aspect of the modified, introductory course, because they were not standard end-of-the-

chapter problems or exercises.  The problems asked both quantitative and qualitative 

questions.  The instructor expected that each problem would take the students about an 

hour to complete.  In accordance with his expectation, the instructor only assigned about 

five problems each week.  (Some of the problems that the students worked on appear in 

Appendix A.  For more on these types of problems see Redish, 2003.) 

Data and analysis 

The data set 

The majority of the data for this study comes from about 60 hours of video-taped 

sessions of groups of students solving homework problems in the course center.  

Additional video-taped data comes from a tutorial session involving a discussion about 
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conservation of momentum.  In addition to the video data, all the homework and exams 

that the students turned in were electronically scanned and stored on compact disc.  The 

scanned homework data served to corroborate video data collected in the course center.     

Selecting episodes 

The complete data set consists of 60 hours of video-tapes of students working on 

homework problems.  All the video-tapes were watched, from which I selected 11 to 

analyze in more detail.  (Table 4 lists the problems and students that appear in the 11 

different episodes.)  In addition, I selected 18 clips of video, each about one minute long.  

A video-tape was selected for further detail based on two heuristic criteria:  

1. Rich in student thinking.  Since this is an ecological study, the students dictate how 

they choose to work on the problems.  Even students solving problems in group 

may go several minutes without speaking to each other.  So, if a video contained 

discussions rich in student thinking it was immediately flagged for further 

investigation.  

2. Explicit use of mathematics.  Since this is a study about the use of mathematics in 

physics, videos that contain students using and discussing mathematics were 

selected for transcription. 
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Problems Students 

Impulse discussion Adib, Marco 

Pulling Two Boxes
Alisa, Emma, Mary, 

Joe, Carrie  

Elevator Problem Mary, Lynn, Tony 

Ladder and friction on the wall 

problem

Lynn, Mary, Kristy, 

Sabrina 

Rotational kinetic energy
Lynn, Mary, Kristy, 

Sabrina 

Units and melting ice problem
Mary, Emma, Tony, 

Carrie, Liz 

PV=nRT Valerie and Sarah 

Conversion Problem
Mary, Emma, Kristy, 

Carrie 

First course center hours Mary 

Joe’s hours Monica, Mike 

Three-Charge Problem
Alisa, Bonnie, 

Darlene, Edgar 

Conservation of Momentum
Arielle, Tommy, 

Betty, Allen 

Table 4:  A list of the 11 episodes and the pseudonyms of the students that appear in the 

video. 

Transcribing the episodes 

The first step in analyzing any of the video episodes was to transcribe the episode into 

a written form.  This type of transcription is valuable for any type of fine-grained analysis 

of student thinking for two important reasons.  First, transcribing the video episodes 
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requires that the video be watched several times.  This allows me to see subtle details in 

the video episode that may otherwise be missed after only one viewing.  Second, the 

written transcribe facilitates comparison of key moments across episodes.  This sort of 

comparison would be much more difficult with only the video.  

Communication is more than a collection of words.  The reader has probably heard 

the following statement: “It’s not what you said.  It’s how you said it.”  A statement like 

this illustrates that there are cues other than the spoken words – like gestures, tone, and 

volume – that can contribute to the interpretation of verbal discourse.  In an attempt to 

capture the richness of the communication in the course center, these additional cues (e.g. 

gestures, tone, and volume) were also recorded in the transcript, set off in brackets. 

All the one-hour problem solving episodes contained in Table 4 were transcribed.  In 

addition, 18 shorter clips (each about 1 minute long) were transcribed.  In total over 11 

hours of video data were transcribed in detail.  

Parsing the video data 

Following the transcription of the video data, the next stage of the analysis is to parse 

the data according to various time scales.  I used the following list of time scales, adapted 

from Sherin (1996), to parse the video data: 

1. The thought time scale (~ 1 second).  This time scale is associated with the time it 

takes a student to look at an equation (or graph) and then say something about it. 

2. The problem heuristics time scale (~ 10 minutes).  As shown by Schoenfeld (1985), 

students (and experts) engage in different problem solving strategies, or 

heuristics, during the course of solving a single problem. 
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3. The problem solving time scale (~ 1 hour).  Students were expected to spend about 

an hour on the homework problems in this study.  In fact, it was often the case 

that students spent at least an hour on these problems. 

4. The learning time scale (~ 1 year).  During the course of a two semester course we 

would hope that some of our students would learn some physics. 

Roughly speaking, the thought time scale corresponds with the activation of 

mathematical resources, the problem heuristic time scale corresponds with epistemic 

games, and the problem solving time scale corresponds with frames. 

Identifying and coding Mathematical Resources 

I did not develop a strict set of rules for identifying and coding mathematical 

resources.  Instead, following diSessa (1993) and Sherin (1996), I used a list of heuristic 

principles. 

1. Verbal cues.  What the students say is one of the strongest pieces of evidence for 

identifying and coding mathematical resources.  In some cases the use of specific 

words can be indications of particular mathematical resources.  For example, 

phrases like “in the way” or “in the middle” can be an indication of the reasoning 

primitive of blocking.   

2. Non-verbal cues.  As mentioned above, there is more to communication than a 

collection of words.  Non-verbal cues can contribute in coding interpretive 

utterances – e.g. gestures, volume, and the pace of the speech. 

3. External representations.  The students’ use of external representations or lack 

thereof, can be used to identify mathematical resources.  For example, reasoning 

primitives do not involve explicit reference to physics equations, whereas 
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symbolic forms do.  So, one clue for distinguishing between reasoning primitives 

and symbolic forms is explicit reference to physics equations.   

4. Global as well as local evidence.  In addition to local evidence, global evidence can 

also be used to identify mathematical resources.  Isolated interpretive utterances 

are difficult to code.  Couching an individual student’s isolated utterances into a 

larger context can facilitate coding.  For example, sometimes a student will repeat 

a line of reasoning in a more articulate manner in a later episode.  This more 

articulate interpretive utterance can be used to help code the earlier utterance.   

Identifying and coding Epistemic Games 

Similar to identifying mathematical resources, I used a list of heuristic principles to 

identify and code epistemic games. 

1. Types of problem solving activities.  How the students use the mathematics in the 

context of solving a physics problem is the main source of evidence for 

identifying epistemic games.  In some cases, the order in which the problem 

solving activities occur is an indication of the game being played.  For example, 

Mapping Mathematics to Meaning starts with the identification of a mathematical 

relationship between entities in a particular problem and then progresses to a 

conceptual story, whereas Mapping Meaning to Mathematics starts with a 

conceptual story that is translated into a mathematical relationship.  

2. Coherence of problem solving activities.  Students’ problem solving behavior 

appears to consist of coherent units of activities.  The coherence of the students’ 

problem solving activities can serve to distinguish between different epistemic 
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games.  If a particular problem solving activity always follows another, then those 

two activities are probably part of the same epistemic game. 

3. Types of knowledge being used.  The type of knowledge that the students use during 

problem solving activities can serve to distinguish between different epistemic 

games.  In the previous section I discussed how mathematical resources are 

coded.  The mathematical resources that are active during the different problem 

solving activities help in the identification and coding of epistemic games.  For 

example, two problem solving activities may make reference to the same physics 

equation, but involve the activation of a different set of mathematical resources.  

Since the two activities involve different mathematical resources, they are coded 

as different epistemic games. 

4. Epistemic form.  The target structure that guides the students’ inquiry (i.e. the 

epistemic form) is a major piece of evidence for identifying and coding epistemic 

games.  In many cases, since the epistemic form is associated with a particular 

type of external representation, it can be used to identify an epistemic game.  For 

example, if a student draws a free-body diagram, then this is an indication that she 

is playing Pictorial Analysis. 

Identifying and coding Frames 

Frames are theoretical structures that can be used to describe longer time scales than 

epistemic games or mathematical resources.  To identify frames I use both local and 

global cues. 

1. Linguistic cues.  Tannen (1993) list sixteen linguistic cues that indicate 

expectations: omission, repetition, false starts, back tracks, hedges and other 
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qualifying words or expressions, negatives, contrastive connectives, modals, 

inexact statements, generalizations, inferences, evaluative language, 

interpretation, moral judgment, incorrect statements, and addition. 

2. Global as well as local evidence.  Global evidence must be used to compare 

interpretive utterances that occur at different times during a given episode.  In 

addition, episodes in a particular situation need to be compared to other situations.  

 

Checking the reliability of the coding 

During weekly researcher meetings, a group of researchers (Tuminaro, Redish, and 

Scherr) scrutinized the transcription and coding of the episodes.  During this process the 

transcript and coding were refined and polished.  In addition, two different coders 

(Tuminaro and Scherr) independently analyzed a sample episode in terms of epistemic 

games, with an inter-rater reliability of 80%.  After discussion, the two codings agreed at 

the 100% level.   

Summary 

In this chapter I describe the empirical basis for this study.  First, I outline some 

reasons why the mathematics in math courses is different from the mathematics in 

physics courses.  Second, since I am interested in developing a cognitive framework for 

analyzing and describing students’ use of mathematics in physics, I review some basic 

ideas from cognitive science and showed how they apply to inquiries into mathematical 

thinking and problem solving.  Third, I briefly mention how the theoretical framework I 

developed incorporates what has been learned from cognitive science and mathematics 

education.  Fourth, I described the setting from which the data is taken.  Finally, I 
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describe the data and analysis used in this dissertation, including how I identify and code 

Mathematical Resources, Epistemic Games, and Frames. 

In the next chapter I develop of the idea of resources and give examples of 

mathematical resources that introductory physics students’ employ while using 

mathematics in physics.
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Chapter 4: The cognitive building blocks students use to understand 

mathematics in physics: An introduction to Resources   

Introduction: Describing the knowledge base  

As I discussed in chapter 3, previous research established five generally accepted 

aspects that are important for any inquiry into mathematical thinking and problem 

solving: (i) knowledge base, (ii) problem solving strategies, (iii) monitoring and control, 

(iv) beliefs and affect, and (v) practices.  The first aspect dictates that any theoretical 

description of students’ use of mathematics in physics must begin with a model that 

describes the students’ existing knowledge. 

In this chapter I lay the groundwork for a theoretical framework to describe and 

analyze students’ use of mathematics in physics.  I begin by modeling the students’ 

mathematical knowledge base in terms of mathematical resources.  In particular, I 

identify four different kinds of mathematical resources: intuitive mathematics knowledge, 

reasoning primitives, symbolic forms, and interpretive devices (see Table 5).   

• Intuitive mathematics knowledge – knowledge of mathematics that is learned at a 

very early age; examples are counting and subitizing.  Subitizing is the ability 

that humans have to immediately differentiate sets of one, two, and three objects 

from each other (Fuson, 1992).   
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• Reasoning primitives – abstract knowledge elements which describe students’ 

intuitive sense of physical mechanism.  Reasoning primitives are abstractions of 

phenomenological primitives (diSessa, 1993).   

• Symbolic forms – combination of the conceptual knowledge of reasoning 

primitives and syntactic knowledge of mathematical symbolism into one single 

knowledge element (Sherin, 1996, 2001).  Symbolic forms consist of a symbol 

template and conceptual schema.  The symbol template is an element of 

knowledge that gives structure to mathematical expressions; e.g. � = � or � + � 

+ �...  (where the boxes can contain any type of mathematical expression).  The 

conceptual schema is a simple structure associated with the symbolic form that 

offers a conceptualization of the knowledge contained in the mathematical 

expression; this part of the symbolic form is similar to the reasoning primitives 

discussed in the previous section. 

• Interpretive devices – interpretive strategies used to extract information from a 

physics equation (Sherin, 1996). 

Before I describe the students’ knowledge base in terms of my theoretical framework, 

I discuss two different paradigms for modeling student thinking: the unitary (or 

misconception) framework and the manifold (or resource) framework.  In section 3, I 

describe some general characteristics of resources.  In section 4, I identify and discuss 

intuitive mathematics knowledge.  In section 5, I introduce p-prims and reasoning 

primitives.  In addition, I show how the idea of reasoning primitives reduces the huge 

number of p-prims and how it creates knowledge elements that exist at the same level of 

abstraction.  In section 6, I discuss symbolic forms and give some examples.  In addition, 
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I contrast the theory of symbolic forms with other theories of students’ conceptualization 

of physics equations.  In section 7, I discuss interpretive devices.  Sherin (1996) identifies 

three different classes of interpretive devices – Narrative, Static, and Specific Case – 

from his data corpus.  I identify a fourth class of interpretive devices, which I call the 

intuitive class.  Interpretive devices in the intuitive class are reasoning strategies 

abstracted from everyday experiences that are applied to physics equations. 

Mathematical Resources 

Intuitive Mathematics 

Knowledge

A collection of primitive cognitive capacities that 

are required for and involved in advanced and 

abstract mathematical thought. 

Reasoning Primitives8 
Abstract cognitive elements that describe students’ 

intuitive sense of physical mechanism. 

Symbolic Forms9 Abstract cognitive elements that describe students’ 

intuitive understanding of physics equations. 

Interpretive Devices10

Reasoning strategies that when activated determine 

how students interpret meaning in physics 

equations. 

Table 5.  List of students’ knowledge base in terms of Mathematical Resources. 

Unitary versus manifold models of student thinking 

The notion of the students’ knowledge base grew out of the idea of constructivism, 

the dominant paradigm in modern theories about student thinking and learning.  The 

major tenet of constructivism is that students construct new knowledge from their 
                                                 
8 Abstracted from diSessa’s (1993) phenomenological primitives. 
  
9 From Sherin’s (1996, 2001) work. 
 
10 Generalized from Sherin’s (1996) work. 
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existing knowledge.  They are not empty containers to be filled with vast quantities of 

school knowledge; they enter formal instruction with a wealth of existing knowledge and 

previous experiences from which they build their interpretations and understanding of 

concepts taught in a school setting. 

Two different models of student thinking have emerged in this constructivist 

paradigm, which I described in chapter 2 as the unitary and manifold frameworks of 

student thinking.  In the unitary framework – which includes misconceptions and 

alternative theories (Chi, 1992; Clement, 1983; McCloskey, Caramazza, and Green, 

1980; McCloskey, 1983; Whitaker, 1982) – researchers view students’ existing 

knowledge as robust, coherent cognitive structures that are resistant to formal instruction.  

From the unitary perspective students are not blank slates.  Rather, in this view, students 

enter formal instruction with a wealth of knowledge about physical phenomena that is 

often in opposition to the generally accepted scientific explanations.  Therefore, the 

students’ existing knowledge acts as an obstacle that the physics instructor must 

overcome, avoid, or eliminate in order for the student to achieve expert understanding. 

DiSessa (1983, 1993), Smith et al (1993), and later Hammer (1996) take issue with 

the unitary view that students’ existing knowledge obstructs formal education in science.  

“If students construct new understanding out of their current knowledge, then there must 

be aspects of their current knowledge that are useful for that construction” (Hammer, p. 

1319).  These researchers espouse a manifold, or knowledge-in-pieces, view of student 

thinking based on resources that if appropriately organized could contribute to expert 

reasoning.  Students’ existing resources are not seen as an obstruction that physics 
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instructors need to overcome during formal instruction; rather, students’ existing 

resources can be utilized by instructors during formal physics teaching.   

More recently, researchers have attempted to combine these two theoretical 

perspectives into one coherent framework.  Scherr (2002a, 2002b, 2003) shows how 

some aspects of student reasoning within the context of special relativity fall within the 

misconceptions framework, whereas other aspects of their reasoning are better 

understood in terms of a knowledge-in-pieces framework.  Redish (2004) proposes a 

theoretical superstructure that subsumes the unitary and knowledge-in-pieces framework 

in one overarching framework and argues that both unitary and knowledge-in-pieces 

frameworks have explanatory power in different contexts.  

I follow Redish (2004) and start from the manifold perspective of student knowledge 

in my goal to construct a theoretical framework for student mathematical thinking in 

physics.  The issue of whether student thinking is better modeled according to the unitary 

or fragmented view becomes an empirical question.  Where appropriate I contrast my 

own framework with the unitary perspective.   

According to the manifold or knowledge-in-pieces view of thinking and learning, 

students possess a wealth of previous knowledge and experiences that are stored in long 

term memory, which can be called upon, or activated, during the problem solving process 

(diSessa, 1993; diSessa and Sherin, 1998; Minsky, 1985; Minstrell, 1992; Redish, 2004).  

I use the generic term resources to describe all the previous knowledge and experiences 

that can potentially be used in understanding physical and mathematical phenomena.    

With this view of the mind, understanding any physical phenomenon or mathematical 

expression involves the activation of resources. 
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General discussion about resources  

Resources are cognitive structures – units of thought or reasoning with which 

cognitive scientists (and education researchers) describe and understand human thinking 

and learning.  Resources are not a physical structure within the brain; they are not 

neurons.  A probe of a student’s brain would not yield the location of any resources.  

However, neurons and their interactions can be used as a metaphor for understanding 

resources and their interactions (Redish, 2004).  In this section I discuss the different 

activation states and associational structure of resources.  In addition, I discuss whether 

some resources are inherently “correct” while others are inherently “incorrect.” 

Activation states of resources: inactive, primed, active 

Resources can exist at three different levels of activation: inactive, primed, and 

active.  Inactive resources exist in long term memory but are not cued for sense making 

in a given situation.  For example, a situation involving energy conservation (a block 

sliding down a frictionless incline) may, for a physicist, immediately cue the notion of 

balancing (the potential energy of the block at the top of the incline must equal or 

balance the kinetic energy of the block at the bottom).  However, the same situation may 

not cue balancing for a student.  The student has this resource and uses it frequently – but 

it is not turned on here. 

Resources can also exist in a primed state of activation – a sort of limbo state that is 

not active, but is more easily activated than a completely inactive resource.  For example, 

if you are asked to list four vegetables and then asked to list the names of four objects 

beginning with the letter ‘b,’ you are likely to include the names of some vegetables (like 

‘Brussels sprouts’ and ‘broccoli’) in your list.     
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When resources are active they are mapped into particular situations.  Such mapped 

and active resources I call facets, in accordance with Minstrell’s (1992) use of the term.  

When watching students, what we directly observe are facets, from which resources can 

be inferred. 

Associational structure of resources and spreading activation 

Resources exist within a loosely organized associational pattern (Sabella, 1999).  

Activating one leads automatically (depending on context) to activations of other 

associated resources.  All resources are connected to other resources – the strength of the 

connection between resources determines the cuing probability, which is highly context 

dependent.  For instance, you may have had the following experience:  everyday at work, 

you say hi to a colleague of yours.  One day you see that individual in a place other than 

work – perhaps the shopping mall.  You have the feeling that you know him, but you 

can’t place his name.  You easily remember his name when seeing him in a familiar 

context (at work), but when you see him out of context (at the shopping mall) it’s not so 

easy to remember.  The situation illustrates that the associational pattern of resources is 

highly context dependent: in one context, “Bob” is strongly associated with his face and 

in another it is not. 

In this chapter I focus on individual resources that are involved in mathematical 

thinking in physics.  In the next chapter I will focus on the organizational structure of 

resources and how they are used in concert during activities for constructing new 

knowledge. 
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Abstract and specific resources 

Resources are abstracted from everyday phenomena and exposure to mathematical 

formalism.  They are classes of different experiences and events.  For example, more is 

more may be abstracted from an array of experiences: from the experience that ‘lifting 

more boxes requires more effort’ to the experience that ‘adding more logs on a campfire 

results in a larger flame.’   

The last two examples lead to an important question about resources: are some 

resources ‘correct’ and others ‘incorrect’?  The answer to this question is that resources 

exist at a level of abstraction in which they are neither correct nor incorrect.  It is not until 

a resource is mapped into a particular situation that the correctness of its usage can be 

determined.  Asking if more is more is a correct resource is a meaningless question; 

however, asking whether more is more is used correctly in a particular situation is a 

meaningful question. Adding more logs to a campfire sometimes results in larger flames; 

in these cases, more is more results in a correct conclusion.  However, if the logs are too 

big (or, wet) adding more logs may smother the fire, making the flames smaller; mapping 

more is more in these situations yields an incorrect statement. 

Precursors to formal mathematical reasoning: Intuitive Mathematics Knowledge 

The mathematics utilized in physics is a formal, rigorous subject matter that takes 

years of schooling and practice to learn; however, many of the cognitive building blocks 

necessary to understand this subject are present in very young children – even infants.  I 

call these cognitive building blocks intuitive mathematics knowledge.  Research 

involving human infants demonstrates their ability to differentiate sets of one, two, and 

three objects from each other (Fuson, 1992).  This ability has been dubbed subitizing in 
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the research literature, and has also been observed in various species of primates and 

birds.  Another, more familiar, cognitive building block that is necessary to understand 

mathematics in physics is counting – a cognitive ability that should be familiar to all 

readers. 

The concepts of subitizing and counting are particularly important for understanding 

students’ use and understanding of mathematics in physics at the introductory college 

level.  I examine the episode of Mary discussing her approach to the Conversion 

Problem, which states (Appendix A, #4):  
 

You are driving on the New Jersey Turnpike at 65 mi/hr. You pass a sign that 
says "Lane ends 500 feet." How much time do you have in order to change lanes? 
 

Mary has difficulty, so she calls the TA over to explain her problem: 

 …all right if I convert 65 mph to feet per second, which is the other thing 
that's given in feet… So then I got 95 feet per second is what you're 
moving, so in 500 feet like how long?  So, I was trying to do a 
proportion, but that doesn't work.  I was like 95 feet per second...oh 
wait...yeah in 500 feet, like, x would be like the time...that doesn't—I 
get like this huge number and that doesn't make any sense. 

 
Mary correctly identifies that using a proportion could help her solve this problem, 

but has trouble implementing this strategy.  The TA attempts to redirect Mary: 

So what if I said something like...if you're traveling 8 feet per second and 
you go 16 feet, how long would that take you? 

  
The TA changes how Mary approaches this problem by replacing 95 feet per second 

and 500 feet with 8 feet per second and 16 feet, respectively.  With this replacement, 

Mary immediately responds “2 seconds.”  Her immediate response is an indication that 

the knowledge she uses to arrive at this answer is readily available to her – suggesting she 

is using intuitive mathematics knowledge.  In particular, she could be counting or 

subitizing.  That is, she could be counting up the number of seconds needed to make up 
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16 feet.  Alternatively, she could be visualizing the number of ‘8 feet per second’ blocks 

in ‘16 feet,’ then using her subitizing ability she arrives at the answer of 2 seconds.   

The evidence in this case does not distinguish between these interpretations.  

However, the evidence does indicate that changing the numbers in the problem cues 

Mary to use a new set of resources: intuitive mathematics knowledge.  In Mary’s initial 

approach she is attempting to use a formal, symbolic approach involving proportions.  By 

using “easier numbers,” Mary is able to tap into intuitive knowledge that she already has 

to eventually construct a general relationship between distance, speed, and time – a 

relationship she uses to get the answer to the problem as it was originally stated. 

This example episode illustrates that the use of intuitive mathematics knowledge can 

serve as a vehicle for students to the more sophisticated and formal mathematics used in 

college level physics.  I do not offer an exhaustive list of intuitive mathematics 

knowledge.  I am simply drawing attention to the fact that this aspect of students’ 

previous knowledge can be used by instructors during formal instruction that involves 

more advanced mathematics.  Lakoff and Núñez (2000) offer a more extensive list of 

primitive cognitive capacities – like counting, ordering, and pairing – that are required 

for and involved in advanced and abstract mathematical thought.  Table 6 lists some 

different forms of intuitive mathematics knowledge.   
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Intuitive Mathematics Knowledge 

Subitizing 
The ability to distinguish between sets of one, two, and three 

objects. 

Counting The ability to enumerate a series of objects. 

Pairing  The ability to group two objects for collective consideration. 

Ordering 
The ability to rank relative magnitudes of mathematical 

objects. 

Table 6.  List of Intuitive Mathematics Knowledge. 

Students’ sense of physical of mechanism: Abstract Reasoning Primitives 

In addition to intuitive mathematics knowledge, students use a form of intuitive 

knowledge about physical phenomena and processes, which they have learned in their 

everyday life experiences, to make sense of the physical world.  DiSessa (1993) proposes 

that students develop an intuitive sense of physical mechanism from abstractions of 

everyday experience.  This intuitive sense of physical mechanism arises from the 

interaction and activation of myriad of cognitive resources that he calls 

phenomenological primitives (p-prims).   

The name, phenomenological primitives, is used to convey several key aspects of 

these cognitive structures.  The word “phenomenological” is used to reflect the idea that 

these resources are abstracted from everyday phenomena.  (Closer is stronger could be 

abstracted from the phenomena that the closer one is to a fire the warmer it is.)  These 

resources are “primitive” in the sense that they are “irreducible and undetectable” to the 

user – they are often used as if they were self-explanatory.  (Asked why is it warmer 

closer to a fire, a student using closer is stronger may respond, “it just is.”) 
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Because of his focus on the irreducibility of p-prims with respect to the user diSessa 

identifies p-prims at differing levels of abstraction: for example, force as mover and 

abstract balancing.  Force as mover involves the very specific concept of force; whereas, 

abstract balancing involves the very general notion that two abstract influences can be in 

a state of equilibrium.  Because of the specific nature of p-prims like force as mover, 

diSessa proposes that there are thousands of p-prims corresponding to the myriad of 

physical experiences one may have in this complex world. 

To reduce the extremely large number of p-prims and propose cognitive structures 

that exist at the same level of abstraction, I follow Redish (2004) and abstract from p-

prims the notion of intuitive pieces of knowledge called reasoning primitives.  Reasoning 

primitives are abstractions of everyday experiences that involve generalizations of classes 

of objects and influences.  In this view a p-prim like force as mover results from mapping 

an abstract reasoning primitive like agent causes effect into a specific situation that 

involves forces and motion.  The specific agent, in this case, is a force and the effect it 

causes is movement.  Agent causes effect could also be mapped into force as spinner, 

another p-prim identified by diSessa.  This makes it clear how the notion of reasoning 

primitives compared to p-prims reduces the total number of resources necessary to 

describe students’ previous knowledge about physical phenomena.  In addition, agent 

causes effect and abstract balancing both reflect relationships between abstract 

influences, and therefore exist at the same level of abstraction. 

Examples of Abstract Reasoning Primitives from the data 

To illustrate the usefulness of reasoning primitives I discuss some of the reasoning 

primitives that are prevalent in my data.  I do not offer an exhaustive list of reasoning 
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primitives that students may use to describe and understand all the complex physical 

interactions they may encounter during formal physics instruction.  Rather, I offer a few 

examples of reasoning primitives that commonly occur. 

Abstract Reasoning Primitives 

Blocking∗ 
The abstract notion that inanimate objects are not active 

agents in any physical scenario. 

Overcoming* 

The abstract notion that two opposing influences attempt to 

achieve mutually exclusive results, with one of these 

influences beating out the other. 

Balancing*  
The abstract notion that two opposing influences exactly 

cancel each other out to produce no apparent result. 

More is more The abstract notion that more of one quantity implies more of 

a related quantity. 

Table 7.  List of Abstract Reasoning Primitives identified. 

Blocking   

Many introductory physics students view inanimate objects (such as tables or walls) 

as hindrances or obstacles for more active agents (such as people or cars).  The inanimate 

objects do not play active roles in determining the outcome of any physical situation; they 

are simply in the way.  For example, many introductory physics students do not think that 

a table can exert a normal force on a book placed on top of it.  Rather, these students 

think the book does not fall to the floor simply because the table is “in the way.”   

The following discussion between Alisa and Darlene illustrates the use of blocking. 

Alisa and Darlene are working on the Three Charge Problem (Appendix A, #15):  

                                                 
∗ Discussed below. 
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Alisa:   Like—q2 is—q2 is pushing this way, or attracting--whichever.  
There's a certain force between two Q, or q2 that's attracting.   

Darlene: q3. 
Alisa:  But at the same time you have q1 repelling q3. 
Darlene: How is it repelling when it's got this charge in the middle?  
 

The presence of q2, is seen by Darlene, to hinder the affect of q1 on q3, since q2 is “in the 

middle.”   

Overcoming 

Many physical situations may be perceived by students as involving two opposing 

influences attempting to achieve mutually exclusive results.  The reasoning primitive of 

overcoming may be activated if one of those influences is seen as overcoming the other.  

A student discussing her ideas about the Pulling Two Boxes Problem (Appendix A, #13) 

illustrate this: 

Alisa:  Well, if you pull with a small force it's not going to overcome the 
friction coefficient, necessarily.  So, they won't move, so nothing will 
happen.  And, you keep pulling then as soon as you overcome that 
that friction force it moves.  I don't know how else to answer. 

 
Alisa conceptualizes friction as an influence that her pull must “overcome” in order 

for the book to move.  Her concession that she doesn’t “know how else to answer” is 

another indication that the knowledge she uses seems self-explanatory to her – a sign that 

she is using a reasoning primitive. 
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Balancing11  

Balancing is often activated when it appears that two opposing influences exactly 

cancel each other out to produce no apparent result.  It appears that Alisa, Darlene, and 

Betty all utilize the reasoning primitive of balancing in their explanation of why q3 

remains in equilibrium in the Three Charge Problem (Appendix A, #15): 

Alisa:   Because this is in equilibrium, there's some force... 
Darlene: Pulling it that way and some force pulling ex--equally back on it. 
Bonnie:  Yeah. 
Alisa:   And, they’re equal. 
Bonnie:  Yes. 
  

These students state that the physical mechanism keeping the charge in equilibrium is 

the action of two forces pulling in opposite directions with equal magnitudes.  The two 

influences, in this case forces, are attempting to achieve mutually exclusive goals (i.e. 

pull the charge in opposite directions), but it happens to be the case that these two 

influences exactly balance to yield no net result. 

Resources involved in understanding physics equations: Symbolic Forms 

In the last section we saw how students can use an intuitive sense of physical 

mechanism to understand various physical situations.  Sherin (1996, 2001) was interested 

in the cognitive mechanisms and processes involved when students look at an equation 

and understand and interpret its meaning.  He argues that students use an intuitive sense 

of physical mechanism in concert with knowledge of mathematical symbolism and 

protocols to make sense of equations in physics.  In order to understand and describe how 

                                                 
11 diSessa makes a distinction between abstract balancing and dynamic balancing in the 
following way:  Abstract balancing is the tendency to believe that two influences must or 
should be equal; whereas, dynamic balancing occurs through the result of some accident 
or conspiracy.  I abstract both of these ideas into one single reasoning primitive: 
balancing. 
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students use and understand physics equations we need two cognitive constructs:  a 

symbol template and a conceptual schema.   

The symbol template is an element of knowledge that gives structure to mathematical 

expressions; e.g. � = � or � + � + �...  (where the boxes can contain any type of 

mathematical expression).  That is, the symbol template is a general symbol pattern in 

which specific quantities can be mapped.  The conceptual schema is a knowledge 

structure that offers a conceptualization of the knowledge contained in the mathematical 

expression; the conceptual schema is similar to diSessa’s p-prims.  A symbolic form is the 

combination of a symbol template and conceptual schema. 

An example of a student deriving an equation for air drag in the Air Drag Problem 

(Appendix A, #1) will facilitate this discussion about symbolic forms. 

 Amy:  So basically what you have to do- 
Monica: So like when you think about it, you can think that if you increase 

density, the air can - that - it would have to be directly proportional, 
cause you increase density, the resistance with the air has to also 
increase. 

Amy:  Yeah. So... 
Monica: And as you increase the radius, that also increases. So they're all 

directly proportional- 
Amy:  Right 
Monica: So you multiply them-  
Amy:  Right, so it's all multiplied- 
Monica: Instead of dividing them. 
  

Monica has more is more activated when she states that “if you increase density…the 

resistance with the air has to also increase”; i.e. more density is more resistance.  This 

conceptual idea is associated with the symbol template [ ]......x�= .  The left side of the 

equation is associated with the drag force.  The density appears on the right side of the 

equation; since it is directly proportional to the drag force it.  Therefore, the drag force 

and density are mapped into the symbol template, [ ]......x�= , resulting in the specific 
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expression, [ ]......ρ=D .  Monica goes on to identify that an increase in radius also results 

in an increase in air drag, which is also associated with the symbol template [ ]......x�= , 

i.e. ......rD = .  Since an increase in density and radius both result in an increase in 

resistance, Monica realizes that they both must appear in the numerator:  “So you 

multiply them.”  The association of the conceptual schema of more is more with the 

symbol template [ ]......x�=  occurs often in students’ interpretive utterances, and is given 

the name proportionality plus (prop+, for short). 

Sherin identifies collections of symbolic forms, which he organizes into clusters.  The 

symbolic forms within a given cluster tend to involve “entities of the same or similar 

ontological type.  For example, [symbolic] forms in the Competing Terms Cluster are 

primarily concerned with influences” (Sherin, 1996, p. 75).  That is, symbolic forms in 

the Competing Terms Cluster do not involve specific physics concepts (like force or 

velocity), rather they involve everyday concepts (like push or motion).  Table 8 lists the 

different clusters and symbolic forms that Sherin identifies.  I draw out examples of 

balancing and canceling from my data set and discuss them below.  
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Competing Terms Cluster Terms are Amounts Cluster 

Competing Terms � ± � ± � … Parts-of-a-Whole [� + � + � …] 

Opposition � - � Base ± Change [� ± ∆] 

Balancing∗ � = � Whole – Part [� - �] 

Canceling* � - � = 0 Same Amount � = � 

Dependence Cluster Coefficient Cluster 

Dependence […x…] Coefficient [x �] 

No Dependence […] Scaling [n �] 

Sole Dependence […x…] Other 

Multiplication Cluster Identity x = … 

Intensive•Extensive yx×  Dying Away ⎥⎦
⎤

⎢⎣
⎡ − ...xe  

Extensive•Extensive yx×    

Proportionality Cluster 

Prop+◊ ⎥⎦
⎤

⎢⎣
⎡

...
......x  Ratio ⎥

⎦

⎤
⎢
⎣

⎡
y
x  

Prop- ⎥⎦
⎤

⎢⎣
⎡

......
...
x

 Canceling(B) ⎥⎦
⎤

⎢⎣
⎡

......

......
x
x  

Table 8. List of symbolic forms identified by Sherin (1996, p. 75). 

Examples of symbolic forms in the data  

Balancing �=�  

The symbolic form of balancing results from the association of the reasoning 

primitive of balancing along with the symbol template of �=� .  Alisa’s explanation of 

her solution to the Three Charge Problem (Appendix A, #15) seems to involve the 
                                                 
∗ Discussed below. 
 
◊  Discussed above. 
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symbolic form of balancing.  Alisa writes the following two equations on the white 

board: 2
3

32 d
kQq

F qq =→  and 2
3

31 4d
kxQq

F qq =→ .  Then she proceeds to explain how she uses 

these two equations: 

Alisa:  Then, I set [the forces] equal to each other, and I crossed out like the 
q2 and the k and the d squared and that gave me q equals x q over 
four.   And, then x q equals four q, so x would have to be equal to 
four.  That's how you know it's four q. 

TA:   How did—why did you set it equal? 
Alisa:   Because, they're equal [forces].  Like these two have to cancel12 

each other out for this to be in that equilibrium.  
 

Alisa mentions that she set the two forces equal, which involves the symbol 

template�=� .  When asked why she set them equal, she replied they “have to” be “for 

the [system] to be in equilibrium.” 

The conceptual content contained in Alisa’s explanation above is similar to the 

conceptual contain of the example for the reasoning primitive of balancing (discussed on 

p. 82).  However, the above example is coded as the symbolic form of balancing, because 

Alisa makes explicit reference to an equation.  The symbolic form of balancing and the 

reasoning primitive of balancing are different in one fundamental aspect:  The symbolic 

form of balancing incorporates the symbol template, �=� .  Symbolic forms have two 

components: a symbol template and a conceptual schema.  As mentioned earlier, the 

conceptual schema is similar to a reasoning primitive, so it is natural that the symbolic 

form of balancing is conceptually similar to the reasoning primitive of balancing.  But 

Alisa’s explanation above involves explicit reference to an equation.  That is, Alisa 

associates one side of an equation with one force and the other side with another force, 

                                                 
12 Although the student uses the phrase ‘cancel each other out,’ it is associated with the 
symbol template �=� .  Also, terms like ‘equilibrium’ and ‘equal’ are explicit clues that 
the balancing symbolic form is activated, rather than the canceling symbolic form. 
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which she claims should be equal because the system is in “equilibrium.”  The conceptual 

idea of balancing is associated with the symbol template, �=� .  This suggests that Alisa 

is using the symbolic form of balancing in her explanation, rather than the reasoning 

primitive of balancing.  

Canceling  0�−�=  

The canceling symbolic form is viewed as a process of two influences acting toward 

mutually exclusive goals, yielding no resultant effect.  It is different from balancing in 

that canceling is view as the active process of one influence negated the effect of another, 

and is associated with the symbol template 0�−�= .  Monica uses canceling when 

explaining to Amy what it means to have the ‘ma term be negligible’ in the Paramecium 

Problem (Appendix A, #12):   

Amy: How can you have any – I'm just curious – how can you have any 
force at all if you don't have, if you don't have any ma? 

Monica: Well, they're just saying it's so small that when, if you bring one to 
the other, if you bring one of the forces to the other side it'll cancel 
[the other force] out.  

 
Monica’s explanation of what it means for ma to be ‘so small,’ i.e. nearly zero, seems 

to involve a process.  In this case, the process is to bring one of the forces to the other 

side of the equation; i.e. this process involves the symbol template �−� .  The result of 

this process is that the two forces will ‘cancel out,’ yielding a very small ma term. 

Comparing Symbolic Forms and the Principle-based Representation Model 

A different theory describing students’ understanding of physics equations was 

developed by Larkin (1983).  According to Larkin, students’ ability to understand and 

write physics equations involves the generation and interpretation of two different 
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representations: the naïve representation and the physical representation.  Below I 

contrast Larkin’s approach, which I call the principle-based representation model, with 

that of symbolic forms.  Although I ultimately argue in favor of symbolic forms, there are 

aspects of the principle-based representation model that are useful.  In fact, I believe a 

complete description of expert use and understanding of physics equations involves 

aspects of both symbolic forms and the principle-based representation model. 

Succinctly, the naïve representation is the student’s mental representation of the 

situation in terms of objects that are familiar from everyday life.  This representation 

involves the student’s “envisionment” (Larkin, 1983) of the process in question – the 

ability to visualize what will happen.  The processes governing this visualization are not 

based on any physical principles.   

In contrast, the physical representation involves physical principles (like Newton’s 

2nd Law and conservation of energy) and entities (like forces and energies).   Qualitative 

relationships between physical entities are developed based on physical principles.  From 

these qualitative relationships quantitative relations can be written.  So, according to 

Larkin, students’ generation and understanding of equations are strictly guided by physics 

principles and stems from their physical representation of the particular situation.  For 

these reasons I call Larkin’s approach a principle-based representation model of student 

understanding of physics equations.   

Sherin’s description of student understanding of physics equations is fundamentally 

different from Larkin’s: students’ generation of physics equations, in Sherin’s 

description, does not necessarily involve formal physics principles.  For example, the 

symbolic form of balancing involves reasoning primitive of balancing – two mutually 
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exclusive influences in equilibrium – and the symbol template of �=� .  It can be the case 

that a student may identify forces as influences that balance to write an equation like 

21 FF = , but the theory of symbolic forms does not require that the influences be forces.  

In contrast, according to Larkin, if a student writes an equation like 21 FF = , this action is 

necessarily guided by the student thinking about Newton’s second law: amF
i

i
rr

=∑ . 

Reexamining Alisa’s explanation for why she set the two forces equal in the Three 

Charge Problem (Appendix A, #15), she says:  

Because they're equal [forces].  Like these two have to cancel each other 
out for this to be in that equilibrium. 

 
The interpretation of Alisa’s equation, according to the principle-based representation 

model involves four steps.  First, Alisa identifies Newton’s 2nd Law as the relevant 

physics principle in this problem.  Second, she sums up all the forces acting on the 

charge, q3, and places that on the left side of the equation.  Third, the acceleration of q3 is 

set equal to zero, and therefore the right side of the equation is zero.  Fourth, she brings 

one of the forces that was on the left side of the equation over to the right side, to 

conclude that the forces are equal.   

According to the theory of symbolic forms, Alisa’s explanation can be understood as 

the activation and use of the symbolic form of balancing.  That is, Alisa associates two 

mutually exclusive influences that are in equilibrium with two sides of an equation.  In 

this particular case, the influences that Alisa identifies are forces. 

Looking back at Alisa’s explanation, she does not make explicit reference to 

Newton’s second law.  The principle-based representation model requires that the 

generation of a physics equation be guided by physics principles (like Newton’s 2nd 
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Law).  In contrast, according to the theory of symbolic forms, the generation of a physics 

equation is guided by the students’ intuitive sense of physical mechanism.  In addition, 

Alisa’s reason seems to be self-explanatory to her:  “these two have to cancel each other 

out for this to be in that equilibrium” (emphasis added).  As I mentioned earlier, 

reasoning primitives are used in a self-explanatory fashion (p. 78).  Since Alisa’s 

explanation does not involve explicit reference to physics principles and her reasoning 

seems to be self-explanatory to her, it seems that the generation of the equation is better 

understood in terms of symbolic forms, rather than Larkin’s principle-based 

representation model.   

Although I argue in favor of symbolic forms, there are two important aspects in the 

principle-based representation model that cannot be overlooked.  First, students (and 

experts) do use formal physics principles in their discussions about and interpretations of 

physics equations.  Aspects of students’ use and understanding of physics equations must 

be associated with physics principles.  So, symbolic forms cannot be the entire story for 

describing expert symbol use.  Second, constructivism teaches that students have a wealth 

of previous experience that they bring into the physics classroom. The connection 

between everyday experience and physics principles is often not emphasized in models of 

student thinking.  However, the principle-based representation model attempts to 

understand the mapping between everyday experience and physics principles.  In the next 

section I will describe how students apply “everyday” reasoning strategies to extract 

information from physics equations. 
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Reasoning strategies for interpreting physics equations: Interpretive Devices  

Symbolic forms cannot be the entire story for how students understand and interpret 

equations.  Students (and experts) appear to have compiled strategies for extracting 

information from physics equations.  I follow Sherin (1996, 2001) and call these 

compiled interpretive strategies interpretive devices.13  Sherin identifies three different 

classes of interpretive devices – Narrative, Static, and Specific Moment – that students in 

his data corpus use to interpret physics equations.  In addition to these three, I propose a 

fourth class of interpretive devices: intuitive interpretive devices.  (Table 9 lists the 

different interpretive devices according to class.)  The interpretive devices in the 

Narrative, Static, and Specific Moment classes all derive from and rely on the formal 

properties of equations.  Therefore, I will lump all of these classes into one class, which I 

call formal interpretive devices.  In contrast, intuitive interpretive devices are reasoning 

strategies that are abstracted from everyday reasoning and applied to physics equations. 

                                                 
13 In his dissertation, Sherin uses the term representational devices instead of interpretive 
devices. 
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Narrative Static 

Changing Parameters∗ Specific Moment 

Physical Change Generic Moment 

Changing Situation Steady State 

Special Case Static Forces 

Restricted Value Conservation 

Specific Value Accounting 

Limiting Case Intuitive14 

Relative Values Feature Analysis* 

 Ignoring* 

Table 9.  List of interpretive devices by class 

Formal versus intuitive interpretive devices 

Feature Analysis 

I use an example episode of four students working on the Colliding Gliders Problem 

(Appendix A, #3) to illustrate the difference between formal and intuitive interpretive 

devices.  In particular, in Arielle’s first attempt to solve this problem it appears that she 

actives the formal interpretive device of changing parameters to conclude the change in 

momenta must be the same.  However, she later uses the intuitive interpretive device of 

feature analysis to conclude that the momenta are different.   

The students’ first attempt seems correct: 

Arielle:  So then the Fnet for A, the Fnet for M.  This is a big mass and this 
is a little mass and [the ∆t] are equal, so this has got to be a big, 
what is it, a big velocity and this has got to be a small velocity.  So, p 

                                                 
∗ Discussed below. 
 
14 Class of interpretive devices not identified by Sherin. 
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for A and p for m – the change in velocity here has got to be sort of 
bigger.  Big velocity little mass. Big mass little velocity.  But [the net 
forces] are equal. 

Tommy:  Right. 
Betty:  Right. 
Arielle:  So the momentums got to be the same, right? 

 
It seems that Arielle is using prop+: the mass and the velocity are directly 

proportional to the net force.  In addition, it appears that she is using a particular strategy 

for extracting meaning from this equation – in this case, the formal interpretive device 

called changing parameters.  Changing parameters is an interpretive device in which “a 

quantity, usually corresponding to an individual symbol in the expression, is imagined to 

vary while other quantities are held fixed” (Sherin, 1996, p. 467).  Arielle imagines how 

changing a parameter on the right side of the equation (i.e. mass and change in velocity) 

will affect quantities on the left (i.e. the net forces).  Since glider A has a smaller mass 

than glider M she imagines changing the values of the change in the velocities to 

maintain the equality between the forces.  (Figure 7 shows this reasoning schematically.) 

 

MtMvMmM
netF ∆∆= /AtAvAmA

netF ∆∆= /

“big mass”
“little mass”

“big velocity”

“these are equal”

“little velocity” 

“these are equal”
 

Figure 7. Schematic view of interpretation of equation using the  

formal interpretive device of changing parameters. 
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At first glance Arielle’s reasoning appears to be very good.  However, she is not 

satisfied with the conclusion that the momenta should be the same, so she continues the 

discussion: 

Arielle:  I don’t know…  No, this is not right. 
Betty:  It’s right.  But—I think it’s right, but it’s like-- 
Tommy:  No, I think that’s correct. 
Betty:  ...but see you have the subset so you have the change—the change in 

momentum... 
Arielle:  But the change in velocities are not the same though. 
Betty:  The change—  
Tommy:  Yeah, the change in velocities aren’t the same.  And also— 
Arielle:  Yeah, that’s the problem, I was thinking they were the same. 
 

The first line in this set of quotations indicates that Arielle is uncertain about the 

conclusion that the momenta would be the same.  However, at first glance it appears that 

the last line in this set of quotations is in direct contradiction with what Arielle had said 

in the first set of quotations.  In the first set of quotations she had said that the change in 

velocity for glider A had to be large, while the change in velocity for glider M had to be 

small; now, however she’s stating that she was thinking the change in velocities were the 

same.  This seems like a contradiction; however, what she says later helps clear up this 

apparent contradiction. 

Tommy:  Momentum might—could be the same.  It could be. 
Arielle:  ...All right...they’re in opposite directions. 
Tommy:  Wait, wait, wait.  They’re in opposite directions but they could be 

the same. 
Arielle:  Opposite directions—how could they be the same?  If the masses 

are different and the change in velocities are different the 
momentums can’t be the same. 

 
It appears that Arielle is using a different interpretive device than she was before to 

conclude that the momenta cannot be the same.  I suggest that she’s using the intuitive 

interpretive device of feature analysis – a  form of pattern recognition in which the 
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features of a stimulus are evaluated individually.  That is, she is comparing the features of 

the individual momenta (the features of the momenta are the masses and change in 

velocities).  The more features that are different between the two momenta the easier it is 

to tell that the two momenta are different.  (See Figure 8 for a schematic of her 

reasoning.)  Feature analysis is an intuitive interpretive device that can be abstracted 

from such situations as determining if two faces are different (Figure 9).   

 

AvAmAp ∆=∆ MvMmMp ∆=∆

“change in velocities 
are different” 

“masses are different”

“the momentums can’t be the same”

 

Figure 8. Schematic view of interpretation of equation using the  

intuitive interpretive device of feature analysis. 

This interpretation of Arielle’s reasoning makes sense of her seemingly contradictory 

statement from the second set of quotations: “Yeah, that’s the problem, I was thinking 

they were the same.”  In the first line of that set of quotations she indicates that she is 

uncertain about the conclusion that the change in momenta would be the same.  I propose 

that at this time she started to search through her mind for different reasoning strategies 

that she could employ to corroborate the conclusion that the change in the momenta 

would be the same.  Feature analysis could be a possible reasoning strategy that was 

tacitly cued.  If one reasons with feature analysis the only way the momenta could be the 
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same is if the change in velocities were also the same.  This may be why she claims “I 

was thinking they were the same,” even though in the first set of quotes she says “the 

change in velocity [for A] has got to be sort of bigger.” 

 

Eyes are different Noses are different 

Faces can’t be the same

 

Figure 9.  Feature analysis is possibly abstracted from situations like determining if two 

faces are the same.  The more features that are different on the two faces the easier it is to 

determine that the faces are different. 

Ignoring 

In addition to feature analysis, I have identified another intuitive interpretive device 

that students use to extract information from physics equations: an intuitive interpretive 

device I call ignoring.  When using the intuitive interpretive device of ignoring, students 

simply neglect certain terms or symbols in an equation.  

It appears that Mary uses ignoring when working on part (b) of the Speed versus Pace 

Problem (Appendix A, #14).  Mary is attempting to find the speed, in miles per hour, of a 

person walking on a treadmill at a pace of 17 minutes per mile.  She explains her 

approach to me (I happened to be the teaching assistant in the course center at the time):  
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Mary: 'Cause you see if you have to end up with miles per hour, it has to be 
that way.  That's the only way you're going to get those units on top 
and those on the bottom.  Is by reversing [17 minutes per mile] at 
the beginning.   

 

So, Mary thought she had to “flip” 17 minutes per mile, i.e. write 
minutes17
mile 1 .  From 

Mary’s “flipping” procedure she had written the following expression: 

minutes 17
mile 1

hour 1
minutes 60

× .  Mary then described how she operationally interpreted this 

expression: 

TA:  How did you calculate this number 3.5?  What did you put into your 
calculator?   

Mary:  60 divided by that, 'cause the 1s just like aren't there.  60 divided by 
17.  And, then you're left over with miles per hour (emphasis added). 

 
From Mary’s words it appears that she simply ignores the presence of the ones.  She 

doesn’t say, “60 times 1 is just 60, so it’s like we can ignore the 1.”  She openly states, 

“the 1s just like aren’t there.” 

Summary 

In this chapter I discussed how the theoretical framework I propose describes 

students’ knowledge base.  According to my theoretical framework, students’ knowledge 

base is described in terms of mathematical resources.  I identify four different kinds of 

mathematical resources that contribute to students’ knowledge base: intuitive 

mathematics knowledge, reasoning primitives, symbolic forms, and interpretive devices.   

Intuitive mathematics knowledge is mathematics knowledge that is innate or learned 

at a very early age.  This aspect of students’ previous knowledge can be used by 

instructors to bridge the gap toward the more sophisticated and formal mathematics used 

in college level physics.  Reasoning primitives are knowledge elements about physical 
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phenomena that are abstracted from everyday experience.  These reasoning primitives if 

correctly coordinated and organized could help lead to expert understanding.  Symbolic 

forms offer a cognitive description of students’ conceptual understanding of equations in 

physics.  Lastly, there are both formal and intuitive interpretive devices, which are 

reasoning strategies that students employ to extract meaning from physics equations. 

This chapter focused only on the mathematical resources to describe how students 

understand mathematics in physics.  In the next chapter I focus on collections of 

mathematical resources to describe how students actually use mathematics in physics.
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Chapter 5: Understanding the process of students’  

mathematics use in physics:  An introduction to  

Epistemic Games and Frames 

 

Introduction and Motivation 

In the previous chapter I discussed the ontological component of mathematical 

problem solving in physics.  That is, I introduced the cognitive “stuff” that can be used to 

describe students’ mathematical thinking, which – in the theoretical framework that I 

propose – is made of resources (e.g. intuitive mathematics knowledge, reasoning 

primitives, symbolic forms, and interpretive devices).  In this chapter I discuss the 

process component of mathematical problem solving in physics – i.e. how the students 

actually activate, combine, and use these resources to solve problems in physics. 

Previous research tends not to focus on students’ different problem solving approaches  

The actual path that students follow during problem solving in physics varies from 

problem to problem and student to student, yet this fact is rarely addressed in two key 

areas of the research literature: (1) observational studies of students’ problem solving, 

and (2) cognitive models of mathematical problem solving.  Many of the observational 

studies of problem solving compare students to experts, not students to students – for the 

purpose of understanding students’ problem solving (Larkin et al, 1980; Reif & Allen, 
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1992).  For example, by observing students solving mathematics problems, Schoenfeld 

(1985) develops a representation depicting the amount of time students spend on different 

aspects of the problem solving process.  However, he uses this representation to compare 

the differences between students’ and experts’ problem solving approaches; he does not 

emphasize the various different approaches that students employ.   

Many of the cognitive models of problem solving and problem comprehension rely 

on idealizations of the problem solving process, not on the different approaches that 

students actually use during problem solving.  As discussed in chapter 4, Larkin develops 

a cognitive model of physics problem solving based on the coordination of different 

mental representations (the naïve representation and the physical representation).  In a 

similar vein, Nathan et al (1992) develops a model of algebra word-problem 

comprehension that is based on three components: an understanding of the problem 

statement, a qualitative understanding of the particular situation, and a quantitative 

understanding of the particular situation that “captures the algebraic problem structure.”  

I argue later in this chapter that these models are normative, not descriptive.  That is, they 

adequately model ideal student problem solving approaches, but they do not describe all 

the different approaches that students actually use during problem solving in physics. 

My attempt to describe the students’ different problem solving approaches  

   Through an observational categorization of students solving problems in physics, I 

identify two important aspects in their activities: (1) there seem to be collections of 

student activities that are associated, and (2) students’ expectations about physics 

problems and problem solving factor into how they use mathematics in physics.  To 
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describe the associations of activities I introduce epistemic games.15  To describe 

structures of student expectations I introduce frames.16  Epistemic games and frames, 

taken together, help us understand the process component of students’ mathematical 

thinking and problem solving in the context of physics.   

In the next section I give an introduction to epistemic games.  In the third section I 

discuss the epistemic games that account for the different problem solving approaches 

that appear in the data.  In section four I discuss how the epistemic games I identify are 

different from previous attempts at understanding mathematical thinking and problem 

solving.  The fifth section offers an introduction to frames and how they can be used to 

understand why students (usually tacitly) choose to play particular epistemic games.  I 

conclude with a summary and some closing remarks. 

Introduction to Epistemic Games 

Epistemic games (or, e-games, for short) were introduced by Collins and Ferguson 

(1993) to describe expert scientists’ approaches to scientific inquiry – expert scientists 

across all scientific disciplines.  According to Collins and Ferguson, each epistemic game 

has an accompanying epistemic form.  The epistemic game is the complex “set of rules 

and strategies the guide inquiry,” whereas the epistemic form is the “target structure that 

guides scientific inquiry.”  The difference between these two concepts is best articulated 

by Collins and Ferguson: 

                                                 
15 Adapted from Collins and Ferguson (1993). 
 
16 Adapted from a term proposed by psychoanalyst Gregory Bateson (1972) and 
anthropologist Irving Goffman (1997), and used by socio-linguist Deborah Tannen 
(1993). 



 102 

The difference between forms and games is like the difference between the 
squares that are filled out in tic-tac-toe and the game itself.  The 
game consists of rules, strategies, and different moves that players 
master over a period of time.  The squares form a target structure 
that is filled out as any particular game is played (Collins and 
Ferguson, 1993, p. 25). 

 
Epistemic games were introduced by Collins and Ferguson to describe expert 

scientific inquiry across all scientific disciplines.  The students in introductory physics 

courses are far from experts.  Using scientists’ approaches to inquiry as a norm by which 

to describe students’ inquiry would therefore be problematic.  For this reason, I 

generalize epistemic games to be descriptive rather than normative.  I use the main 

characteristics that Collins and Ferguson attribute to epistemic games to identify a set of 

games that introductory, algebra-based physics students play while solving problems in 

physics.  The epistemic games that I identify can be used to describe and analyze 

introductory students’ use of mathematics in physics.  

The definition I use for an epistemic game comes from Redish (2004): 

A coherent activity that uses particular kinds of knowledge and processes 
associated with that knowledge to create knowledge or solve a problem. 

 
The name ‘epistemic game’ is used to capture the most important aspects of the 

pattern of activities that it describes. The activities are ‘epistemic’ in the sense that 

students engage in these activities as a means to construct new knowledge.  I use the 

word ‘games’ in a very real sense; a particular game (like checkers or chess) is a coherent 

activity that has an ontology (players, pieces, and a playing board) and structure (a 

beginning and an end, rules), which makes it distinguishable from other activities or 

games.  In the same way, a particular epistemic game has an ontology and structure that 

makes it distinguishable from other activities or epistemic games.   
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In the next two subsections, in order to describe the ontology and structure of 

epistemic games, I use the simplest epistemic game identified by Collins and Ferguson:  

list making.  (Table 10 summarizes the ontological and structural components of all 

epistemic games.)  Every list is implicitly an answer to a question.  Some examples are: 

“What do I need from the grocery store?”; “What are the fundamental forces of nature?”; 

and, “What are the constituents of all matter?”   

Ontology of Epistemic Games 

Epistemic games have two ontological components: the knowledge base and the 

epistemic form.  An epistemic game is not simply a cognitive structure; it’s a pattern of 

activities that can be associated with a collection of resources.  The collection of 

resources that an individual draws on while playing a particular epistemic game 

constitutes the knowledge base.  To answer a question like, “What are the fundamental 

forces of nature?” one needs to have some requisite knowledge to list the forces.  The 

knowledge base for the epistemic games I identify below consists of all the resources that 

I introduced in chapter 4: intuitive mathematics knowledge, reasoning primitives, 

symbolic forms, and interpretive devices.   

The epistemic form is a target structure that helps guide the inquiry during an 

epistemic game.  For example, the epistemic form in the list making game is the list 

itself.  The list is an external representation that cues particular resources and guides the 

progression of the inquiry.   
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Structure of Epistemic Games 

Epistemic games have two structural components: the entry and ending condition, and 

the moves.  The entry and ending conditions specify the beginning and the ending of the 

game.  As I mentioned above, one may enter into the list making game as a means to 

answer a question.  When solving physics problems, students’ expectations about physics 

problems determine the entry and ending conditions.  These expectations can depend on 

real-time categorizations of physics problems and/or on preconceived notions about the 

nature of problem solving in physics. Research by Hinsley and Hayes (1977) indicates 

that students can quickly categorize large classes of physics problems very shortly after 

reading the statement of the problem – often these categorizations can be made after 

reading the first sentence!  The students’ ability to very quickly categorize physics 

problems may stem from their expectations about physics problem solving, and vice 

versa.  These expectations, and categorizations, of physics problems affect which 

epistemic game the students (tacitly) choose to play.  In contrast, students’ preconceived 

epistemological beliefs about problem solving in physics can affect their expectations.  If 

students believe that problem solving in physics involves rote memorization of physics 

equations, then that can affect what strategy they employ (i.e. epistemic game they play) 

and what they believe an answer in physics is (i.e. how they know they are done playing 

a particular game).  I say more about students’ expectations and epistemic games in the 

discussion about the interplay between epistemic games and frames later in this chapter. 

The second structural component of epistemic games is the moves.  The moves are 

the steps that occur in an epistemic game.  In the list making game the moves may be to 
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add a new item, combine two (or more) items, substitute an item, split an item, and 

remove an item. 

Ontological Components Structural Components 

Knowledge 

Base 

Cognitive resources 

associated with the 

game. 

Entry and 

ending 

conditions

Conditions for 

when to begin and 

end playing a 

particular game. 

Epistemic 

Form 

Target structure that 

guides inquiry. 
Moves

Activities that 

occur during the 

course of an e-

game. 

Table 10.  The ontological and structural components of all epistemic games. 

Epistemic games students play in introductory, algebra-based physics 

In this section I discuss all the epistemic games that are necessary to account for the 

different problem solving strategies seen in my data. From an observational 

categorization, I identify six different epistemic games that students play while using 

mathematics in the context of problem solving in physics (see Table 11).  These six 

games span the different problem solving approaches seen within the data.  I do not claim 

that this list spans all the possible problem solving approaches that could be employed 

during problem solving in physics.  If I had examined a different population of students 

or a different domain, the list of epistemic games would most certainly be different.  

However, the list contained below is sufficient for describing the problem solving 

approaches that introductory, algebra-based physics students employ in my data set.  

Each of these games is described in more detail below; however, I do not discuss the 

entry conditions for each game in the next subsections.  This subject is discussed in the 
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section on frames and framing.  For each epistemic game I give a brief introduction, 

discuss its ontology and structure, and then I give an example of students playing that 

game.   

List of epistemic games 

Mapping Meaning to Mathematics 

Mapping Mathematics to Meaning 

Physical Mechanism Game 

Pictorial Analysis 

Recursive Plug-and-Chug 

Transliteration to Mathematics 

Table 11. List of epistemic games identified in my data set. 

Mapping Meaning to Mathematics 

The most intellectually complex epistemic game that I identify is Mapping Meaning 

to Mathematics.  The name is derived from the structural nature of this game.  Students 

begin from a conceptual understanding of the physical situation described in the problem 

statement, and then progress to a quantitative solution.  There are five basic moves in 

Mapping Meaning to Mathematics (see Figure 10): (1) develop a story about the physical 

situation, (2) translate quantities in the physical story to mathematical entities, (3) relate 

the mathematical entities in accordance with the physical story, (4) manipulate symbols, 

and (5) evaluate solution.   

The knowledge base for this game (as with all the games I identify) comes from the 

set of physics and mathematics resources; however, in general, different resources are 
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activated during the different moves of the game.  During the development of the 

conceptual story (move 1), reasoning primitives are most often activated.  That is, 

students often rely on their own conceptual understanding to generate this story – not on 

fundamental physics principles.  Translating the conceptual story into mathematical 

entities (move 2) is one of the most difficult moves in the entire game for most students.  

Intuitive mathematics knowledge, symbolic forms, and interpretive devices are usually 

activated during this move.  Relating the mathematical entities to the physical story 

(move 3), again is difficult for students, and relies on intuitive mathematics knowledge, 

symbolic forms, and interpretive devices.  Once the physics equations are written, the 

symbolic manipulations (move 4) usually goes by without a hitch; most introductory 

physics students have had ample practice manipulating symbols.  The evaluation of the 

story (move 5) can occur in many different ways: checking the solution with a worked 

example (or solution in the back of the book), checking their quantitative answer with 

their conceptual story, or checking their solution against an iconic example. 

The epistemic form for Mapping Meaning to Mathematics is the collection of 

mathematical expressions that the students generate during moves (2) and (3).  These 

expressions lead the direction of the inquiry. 
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Evaluate story 

Manipulate symbols 

Develop story about physical situation 

Translate quantities in physical 
story to mathematical entities 

(mathematical ontology)

Relate mathematical entities in accordance with 
physical story (interpretive devices) 

 
Figure 10. Schematic diagram of students’ moves with Mapping Meaning to 

Mathematics. 

An example of Mapping Meaning to Mathematics: Three Charge Problem 

An example of a student playing Mapping Meaning to Mathematics comes from the 

Three Charge Problem (Appendix A, #15).  Alisa summarizes her solution to this 

problem as Bonnie and Darlene listen.  In move (1), Alisa develops a conceptual story: 

Alisa:  All right, so because [q3] isn't moving the two forces that are acting 
on it are equal.  The push and the pull.   

 
Alisa’s story for why q3 isn’t moving seems to rely on the reasoning primitive of 

balancing.  She identifies two influences (“the push and the pull”), which she correctly 

classifies as forces that are exactly “equal.” 

In move (2), Alisa translates the influences in the conceptual story into mathematical 

entities: 

So, the F--I don't know if this is the right F symbol—but, the F q2 on q3 is 
equal to this.  And, then the F q1 on q3 is equal to this, because the 
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distance is twice as much, so it would be four d squared instead of d 
squared.  

 
That is, Alisa uses the identity form, � = …, along with Coulomb’s Law to write the 

equations 24
3

31 d

kxQq
qqF =→  and 2

3
32 d

kQq
qqF =→ .  That is, she identifies the forces on 

the left side of the equation with the appropriate arrangement of charges and distance 

according to Coulomb’s Law.  She continues to explain why she wrote the equations the 

way she did.  She appears to use the symbolic form of scaling, x�,   

Alisa:  And, then I used x q like or you can even do—yeah—x q for the 
charge on q1, because we know in some way it's going to be related 
to q like the big q we just got to find the factor that relates to that. 

 
In move (3), Alisa relates the mathematical entities she derived in (2) with the 

conceptual story she developed in (1): 

Then, I set them equal to each other… 
 

In move (4), she manipulates her equation to arrive at a solution. 

…and I crossed out like the q2 and the k and the d squared and that gave me 
q equals x q over four.   And, then x q equals four q, so x would have 
to be equal to four.  That's how you it's four q. 

 
In move (5), Bonnie and Darlene critique Alisa’s approach; however, Alisa’s final 

comment makes it fairly clear that Alisa is confident in her conclusion. 

Bonnie:  Well, shouldn't it be--well equal and opposite, but... 
Alisa:  Yeah, you could stick the negative. 
Bonnie:  Yeah. 
Darlene:  I didn't use Coulomb's equation, I just--but it was similar to that. 
Bonnie:  That's a good way of proving it. 
Darlene:  Uh-huh. 
Bonnie:  Good explanation. 
Alisa:  Can I have my A now? 
 

Figure 11 is a schematic diagram that displays how Alisa’s activities match with the 

moves in Mapping Meaning to Mathematics.  
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“because this isn't moving the  
two forces that are acting on it 
are equal.”  

F1 = kxQq3/d2 
F2 = kQq3/(4d2) 

Evaluate story 

Manipulate symbols 

Develop story about physical situation

Translate quantities in physical story 
to mathematical entities 
(mathematical ontology) 

Relate mathematical entities in accordance 
with physical story  F1 = F2 

“…I set them equal to each other, 
and I crossed out like the… ”  

“Can I have my A 
now?” 

 

Figure 11.  Schematic map of Alisa’s moves within the Mapping Meaning to 

Mathematics epistemic game. 

An example of Mapping Meaning to Mathematics: Melting Ice Problem 

The previous example illustrates Alisa playing Mapping Meaning to Mathematics 

nearly flawlessly.  However, as I mentioned above, move (2) in this game presents the 

greatest difficulty for most introductory physics students.  Melissa’s approach to the 

Melting Ice Problem (Appendix A, #10) illustrates this point.  Melissa entered the course 

center because she was having trouble with this problem.  The explanation of her 

approach is consistent with the Mapping Meaning to Mathematics epistemic game (see 

Figure 12).  First, she develops a conceptual story. 

Melissa: I kind of look at it differently than the way [the professor] did it [in 
class].  I calculate the—I separated the components.  I put--I was 
thinking of it as where you put the ice in the cup and then you just 
pour the hot water in, and then finding the temperature of that.  And 
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then take that water after the ice melted and combine it with the 100 
grams of water and then find what the temperature is from that. 

Tuminaro:  I am not sure I follow everything there. 
Melissa:  So basically, instead of putting the—cause at that time he said the 

ice and the water are together and their both at zero degrees.  But, I 
separated that I put just the ice by itself.  And, add the hot water 
poured into it to melt it first.  And, then find out the temperature that 
it was after equiltherm—of the thermal equilibrium and then pour 
that water into the other water.  But then it was a totally different 
answer from what he did in class. 

 
Melissa’s conceptual story involves two steps: 

1. She pours the hot water (100o C) onto the ice cube “to melt it first,” and finds 

the temperature of that mixture. 

2. Then, she combines that mixture with the 100 grams of water that is at 0o C. 

Melissa combines the second and third move of Mapping Meaning to Mathematics in 

one statement. She translates influences in her conceptual story into mathematical entities 

by writing the equation TmcFmL ∆= on the whiteboard.  Her explanation for why she 

wrote this equation follows: 

Melissa:  It's M L F, that heat of fusion to melt the ice—the heat gained by 
the ice.  And then I took M C delta T was the—which is the energy 
that is lost by the hot water.   

 
In move (4), she then plugs the numbers given in the problem into her equation: using 

25 grams for the mass of ice, 50 grams for the mass of hot water, and “…the initial 

temperature is 100 degrees.”  Finally, she calculates the final temperature of the mixture 

(or, at least that’s what she thinks she is calculating):  

And then I found out what T F was, the final temperature.  Knowing that, 
um, T, the initial temperature is 100 degrees.  And I got nine point 
nine. 

 
The evaluation in move (5) occurs by her checking her answer against the solution, 

and realizing her answer is different. 
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“I separated that; I put just 
the ice by itself.  And, add the 
hot water poured into melt the 
ice first. And, then find out the 
temperature that it was 
after…thermal equilibrium.” 

Evaluate story 

Manipulate symbols 

Develop story about physical situation

Translate quantities in physical story 
to mathematical entities 
(mathematical ontology) 

Relate mathematical entities in accordance 
with physical story  mLF = mc∆T 

“…I found out what TF was, the 
final temperature.  Knowing that, 
T, the initial temperatiure, is 100 
degress.”… ”  

“But then it was a totally 
different answer from 
what he did in class.” 

mLF is the ”heat of fusion 
to melt the ice.” 
mc∆T  “is the energy that is 
lost by the hot water. 

 

Figure 12.  Schematic map of Melissa’s moves within the Mapping Meaning to 

Mathematics epistemic game. 

What went wrong with her approach?  As I mentioned earlier, many students have 

difficulties with the second and third moves in the Mapping Meaning to Mathematics e-

game; Melissa also has difficulties with moves (2) and (3).   

Melissa makes a few minor oversights in move (2) – she does not interpret the 

mathematical expressions in her equation with the appropriate measure of precision.  The 

term mLF, which appears on the left side of Melissa’s equation, is identified as the “heat 

gained by the ice”; but, more exactly, it is the amount of heat needed to melt the entire 25 
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grams of ice.  Mathematically, the amount of heat needed is 

( ) calories 2000gram
calories 80grams 25 =⎟

⎠
⎞⎜

⎝
⎛=FmL .   

Her interpretation of the right side of the equation also lacks the appropriate amount 

of clarity.  She states it is the “energy lost by the hot water.”  However, more exactly, 

each gram of water that contributes to the melting of the ice will necessarily lose 100 

calories.  That is, each drop of hot water that contributes to melting the ice will go from a 

temperature of 100 oC to 0 oC, which is written symbolically as 

( ) calories 100Co 100
Cog 

cal1gram 1 =⎟
⎠
⎞⎜

⎝
⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∆Tmc .  Therefore, the maximum amount 

of heat that the hot water can provide to the ice is 50 times that (5000 calories), since 

there are 50 grams of hot water. 

Melissa’s inappropriate interpretations from move (2) get her into trouble in move (3) 

of Mapping Meaning to Mathematics.  Melissa simply equates FmL to Tmc∆ .  

However, as I showed in the previous two paragraphs the maximum amount of heat 

needed to melt the ice is 2000 calories, whereas the maximum amount of heat that all the 

hot water can provide is 5000 calories.  Therefore, all the hot water is not needed to melt 

the ice – only 20 of the 50 grams are needed.  Melissa’s equation and subsequent 

interpretations do not capture that fact. 

This example is one indication that students’ mathematical difficulties may not be 

with the mathematics; rather, it lies in translation of their conceptual understanding into 

physics equations and expressions.  I discuss this point in more detail in chapter 7.    
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Mapping Mathematics to Meaning 

The ontological components of Mapping Mathematics to Meaning are exactly the 

same as those in Mapping Meaning to Mathematics.  Both games involve the same kind 

of knowledge base (resources) and epistemic form (physics equation).  However, the 

particular resources and physics equation that are used in each game will vary from 

problem to problem.    

In addition, the structural components of the two games are different.  In Mapping 

Mathematics to Meaning students begin with a physics equation, and then develop a 

conceptual story; whereas, in the Mapping Meaning to Mathematics students begin with a 

conceptual story, which is then translated into mathematical expressions.  The structural 

differences between these two games make them distinguishable from each other. 

There are four moves in this game (see Figure 13): (1) identify target “concept(s),” 

(2) find an equation relating target to other “concepts,” (3) tell a story using this 

relationship between “concepts,” and (4) evaluate story. 

Evaluate story 

Identify target “concept(s)” 

Find an equation relating 
target to other “concepts” 

Tell a story using this relationship 
between “concepts”

 
Figure 13. Schematic diagram of students’ moves with Mapping Mathematics to 

Meaning. 
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In the remainder of this subsection on Mapping Mathematics to Meaning I give two 

examples of students playing this epistemic game.  In the first example I discuss how 

Monica’s solution to the Jogger Problem (Appendix A, #9) fits the moves of Mapping 

Mathematics to Meaning.  In the second example I discuss how the resources that Arielle 

has active while playing Mapping Mathematics to Meaning leads her to two different 

solutions to the Colliding Gliders Problem (Appendix A, #3). 

The Jogger Problem 

Monica’s approach to the Jogger Problem (Appendix A, #9) follows the moves in 

Mapping Mathematics to Meaning (see Figure 14).  She discusses this problem with one 

of her classmates, named Mike.  In move (1), Monica identifies the target “concept”: 

Monica: So her average velocity going from A to C is...  
 

Next, consistent with move (2), she finds and equation (in this case she finds two 

equations) relating the target concept to other concepts:  

…both of these equations are going to figure out average velocity. Change 
in distance over change in time, or velocity final plus velocity initial 
divided by two, right? 
 

In move (3), she tells a story using the relationship between the “concepts”: 

Monica: They're both - so, here... you could do it either way, but, I think if 
you do it this way, like, if you look at her final velocity at C, we said 
was down four point seven. 

Mike: Oh, so that's negative? 
Monica: And, yeah, so it doesn't really matter. So we can say that's 

negative. And this one's up four point seven, divided by- 
Mike: It's going to be z-  
Monica: Two. 
Mike: It's going to be zero. 
Monica: It's going to be zero. So, average velocity, I think, is zero. Because 

the directions cancel each other out. 
 



 116 

Using the relationship in the equation 
2

ivfv
v

+
= , Monica concludes that the average 

velocity will be zero.  (In this case, choosing the equation 
2

ivfv
v

+
=  is incorrect 

because the acceleration is not constant; however, Monica’s problem solving approach is 

still consistent with Mapping Mathematics to Meaning.  It just happens to be the case that 

this particular instantiation of the epistemic game leads to an erroneous solution.  I 

discuss the association between students’ mathematical errors and epistemic games in 

more detail in chapter 7.)   

Lastly, in move (4), she evaluates17 her story: 

Monica: Velocity has to take into account direction. So speed, of course, is 
never changing.  

Mike: Ohhhh. 
Monica: Speed is immutable by direction. 
 

Her evaluation in this case is an acknowledgment that this conclusion seems to contradict 

her understanding of the notion of speed.  She knows the jogger never stops (i.e. “Speed 

is immutable by direction.”), so she simply justifies this apparent contradiction as a 

consequence of the physics concept of velocity. 

                                                 
17 I mean “evaluate” to be an umbrella term.  This evaluation can be carried out using 
several different methods.  See discussion of evaluation in Mapping Meaning to 
Mathematics on page 107 for more. 
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“So, her average velocity going from A to C…” 

“Both of these equations 
are going to figure out 
average velocity…” 

t
rv
∆
∆

=
v

v

“her final velocity at C, we said was 
down 4.7…and this one’s up 4.7” 

“Velocity has to take into account 
direction. So speed, of course, is 
never changing. ”  

Tell a story using this 
relationship between 

“concepts” 

Evaluate story 

Identify target “concept”

Find an equation relating 
target to other “concepts”  

2
ivfv

v
vv

v +
=

“So average velocity, I think, is 
going to be zero. ”  

 

Figure 14. Schematic diagram of Monica’s moves in the Mapping Mathematics to 

Meaning epistemic game. 

The moves in Mapping Mathematics to Meaning make it distinguishable from 

Mapping Meaning to Mathematics.  However, the moves only specify the general 

progression of activities; the moves do not specify exactly what the students do.  The 

particular resources that are activated during the game will dramatically affect the 

outcome of that game.  Arielle’s work on the Colliding Gliders Problem (Appendix A, 

#3) is an extreme example of this fact.  Arielle plays Mapping Mathematics to Meaning 

in two different ways for one single problem.  In her first attempt she arrives at the 

correct answer, whereas in her second attempt she does not. 

The Colliding Gliders Problem 

In the statement of the Colliding Gliders Problem the target “concepts” (force and 

momentum) and equations (Fnet = m∆v/∆t and ∆p = m∆v) are given.  That is, the first 
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two moves in Mapping Mathematics to Meaning are already completed for these 

students.  Arielle jumps into this game at move (3), and develops a story using the 

relationship between the “concepts”:  

Arielle:  So then the Fnet for A, the Fnet for M.  This is a big mass and this 
is a little mass and these are equal, so this has got to be a big, what 
is it, a big velocity and this has got to be a small velocity.  So, p for 
A and p for m – the change in velocity here has got to be sort of 
bigger.  Big velocity little mass. Big mass little velocity.  But these 
are equal. 

Tommy:  Right. 
Betty:  Right. 
Arielle:  So the momentums got to be the same, right?   
Betty:  Yeah, but the change in momentum from glider A— 
Arielle:  I don’t know.  No, this is not right. 
 

Move (4):  She doesn’t articulate her evaluation of her story; however her comments 

indicate that she at least internally evaluates her story: “I don’t know. No, this is not 

right.”   

Arielle “executes” all the moves in the Mapping Mathematics to Meaning game.  

What resources does Arielle draw on to generate this story?  In chapter 4 I introduced the 

idea of interpretive devices – reasoning strategies for extracting information from 

equations.  In the above example, Arielle draws on the interpretive device of changing 

parameters18 to develop her story from the equation.  That is, she images what will 

happened to the left side of the equation (the force), if a parameter on the right is changed 

(the mass).  (She also images what will happen to the force if the change in velocity is 

varied.) 

                                                 
18 See the end of chapter 4 (p. 93) for more on changing parameters. 
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“So, the Fnet for A and the Fnet for M…” 

These equations are given in 
the problem. 

t
vmnetF ∆

∆=

“This is a big mass and this is a little 
mass and [the Fnet’s] are equal, so this 
has got to be a big…velocity and this 
has got to be a small velocity.” 

“I don’t know.  No, this is not right.”  

Tell a story using this 
relationship between 

“concepts” 

Evaluate story 

Identify target “concept”

Find an equation relating 
target to other “concepts”  

vmp ∆=∆

 

Figure 15. Schematic diagram of Arielle’s moves in the Mapping Mathematics to 

Meaning epistemic game when using the interpretive device of changing parameters. 

Later on in the same discussion, Arielle again plays Mapping Mathematics to 

Meaning (beginning at move (3)), but she uses a different interpretive device (feature 

analysis19) to develop a different story: 

Arielle:  Opposite directions—how could [the momenta] be the same?  If the 
masses are different and the change in velocities are different the 
momentums can’t be the same. 

 
In this instance, because feature analysis is activated, she develops a different story, even 

though she is still playing Mapping Meaning to Mathematics.  That is, she realizes that 

the two features of the momenta, namely the mass and the change in velocity, are both 

different; therefore, she concludes the momenta must be different, as well. 

To sum up, in both cases Arielle is making the same moves (she identifies the target 

concept, finds an equation, develops a story, and evaluates the story) – i.e. she is playing 

                                                 
19 See the end of chapter 4 (p. 92) for a more complete discussion of feature analysis. 
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the same epistemic game.  However, in the first case, it appears that changing parameters 

is the resource that is activated during the development of the story; whereas feature 

analysis appears to be the resource activated in the development of the second story.  So, 

the moves of the epistemic game describe the general progression of Arielle’s problem 

solving strategy, but the particular resources that are active during the epistemic game 

dictate how she actually plays the game.  Said another way, the structure of Mapping 

Mathematics to Meaning is always the same (it always involves the same moves); 

however, the ontology (the resources that are active) may vary from problem to problem. 

“How could [the momenta] be the same?” 

This equation is given in the 
problem. 

“If the masses are different and the 
change in velocities are different the 
momentums can’t be the same.” 

Tell a story using this 
relationship between 

“concepts” 

Evaluate story 

Identify target “concept”

Find an equation relating 
target to other “concepts”  vmp ∆=∆

 

Figure 16. Schematic diagram of Arielle’s moves in the Mapping Mathematics to 

Meaning epistemic game when using the interpretive device of feature analysis. 

Physical Mechanism Game  

In the Physical Mechanism Game students attempt to construct a physically coherent 

and descriptive story based on their intuitive sense of physical mechanism.  The 
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knowledge base for this game consists of reasoning primitives.  In this game students do 

not make explicit reference to physics principles or equations.   

The ontology of the Physical Mechanism Game is different than in Mapping Meaning 

to Mathematics and Mapping Mathematics to Meaning.  The epistemic form in the latter 

two games explicitly involves physics equations; however the epistemic form in the 

Physical Mechanism Game does not.   Although the epistemic form is necessarily 

different, the same set of resources (intuitive mathematics knowledge, reasoning 

primitives, symbolic forms, and interpretive devices) may be active in this game as in the 

previous games.  

The structure of the Physical Mechanism Game is similar to the first move in 

Mapping Meaning to Mathematics – i.e. both involve the development of a conceptual 

story.  However, I set these two apart because the Physical Mechanism Game represents a 

separate, coherent unit of student activities; whereas, in Mapping Meaning to 

Mathematics, after move (1) students go on to move (2), then move (3), etc.  The 

conceptual story developed in the Physical Mechanism Game stands alone.  The activities 

that follow this game do not cohere with the conceptual story – in direct contrast with the 

activities that follow move (1) in Mapping Meaning to Mathematics.  There are only two 

moves in the Physical Mechanism Game: (1) develop conceptual story and (2) evaluate 

story (see Figure 17).  

Evaluate story 

Develop story about physical situation 

 
Figure 17. Schematic diagram of students’ moves within the Physical Mechanism Game. 
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 Now that I have given some background about the ontology and structure of this 

game I discuss an example.  In this example, Lynn and Mary discuss their approach to the 

Elevator Problem (Appendix A, #6), while Tony listens.  Lynn and Mary have already 

drawn the appropriate forces for the passenger and the scale when the elevator is at rest 

on the 33rd floor (see Figure 18).   

FScale on Person 

WEarth on Scale 

FElevator on Scale 

WEarth on Person 

 

Figure 18.  Lynn and Mary’s free-body diagram for the person and the scale in the 

Elevator Problem. 

Lynn and Mary are trying to determine which forces, if any, would change if the 

elevator begins to accelerate downward.  To do this they calculate the numeric value for 

the acceleration from the numbers given in the problem, and begin identifying all the 

numeric values of the other quantities given in the problem statement. 

Lynn:  Oh, no.  OK, so we know...they gave us the weights, so we know that 
the person is 80 kilograms and the scale is 7.  And, we determined 
the acceleration. 
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At this point Tony joins the discussion: 

Tony:  Do we even need to do all that calculation? 
Lynn:  I don't know. 
Tony:  I don't know if they're asking for it. 
Lynn:  They don't want numbers, but we couldn't really figure it out so we 

thought maybe numbers would help. 
 

Tony’s comments indicate that he does not expect that explicit calculations are 

necessary for this problem – conditions that are appropriate for the Physical Mechanism 

Game.  Tony continues along this line of reasoning: 

Tony:  Yeah.  Well, does um, let's see the the [normal force of the person on 
the scale] would—don't you think that'd decrease?  At--initially. 

Mary:  When we're accelerating downward.  The force of the... 
Tony:  Right. You know, it's almost likes you can look at it and like 

exaggerate it--like the elevator pulls away from the person.  And the 
person has to catch up to it. 

Lynn:  Oh.  That makes sense.  And that's why the person would weigh less. 
Tony:  Right. 
Lynn:  Which is what I remember from high school physics. 
 

An interesting feature about Tony’s explanation is the type of reasoning he uses.  

Formal physical laws and principles are conspicuously absent from his explanation.  He 

does not rely on arguments based on authoritative citations of abstruse physical laws.  

Rather, the support for his assertion rests on the other students “seeing” what he means: 

“Oh. That makes sense.”  This is evidence that he is relying on his intuitive sense of 

physical mechanism to generate this explanation.  In particular, it appears that he images 

the elevator at a specific moment: when the initially starts to accelerate. 

A second interesting feature about this exchange is that after Tony’s explanation this 

activity basically stops.  Lynn seems to think Tony’s explanation “makes sense,” and it 

confirms what she “remembers from high school physics.”  Therefore, there is nothing 

left to do.  Tony’s intuitive explanation answered their question.  That is, the Physical 
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Mechanism Game ends with Tony’s explanation.  There is no need to translate this 

conceptual story into mathematical entities.  The explanation in terms of Tony’s intuitive 

sense of physical mechanism represents a coherent unit of activity.   

Pictorial Analysis Game 

In the Pictorial Analysis Game students generate an external spatial, representation 

that specifies the relationship between influences in the problem statement.  Examples of 

students playing the Pictorial Analysis Game are familiar to most readers, even if the 

name is not.  For instance, students that make a cartoon drawing of a physical situation, a 

free-body diagram, or a circuit diagram are all playing the Pictorial Analysis Game.   

In this game, as with all the games previously discussed, the knowledge base consists 

of all the resources listed in chapter 4.  The epistemic form in this game is a 

distinguishing characteristic.  The epistemic form is the cartoon or diagram that the 

students generate.  For example, if the students draw a circuit diagram during their 

inquiry, then that diagram serves as an epistemic form which guides their inquiry; in the 

same way, a cartoon drawing or free-body diagram could both serve as target structures 

that guide inquiry. 

The moves in this game are largely determined by the particular external 

representation that the students choose to make.  For example, if the students choose to 

draw a free-body diagram, then one move is to determine the forces that act upon the 

object in question; whereas, if the students choose to draw a circuit diagram, then one 

move is to identify the active elements (e.g. resistors, capacitors, batteries, etc.).  So, the 

specific moves in this game vary depending on the external representation that the 

students choose.  There are three moves that are common to all instantiations of the 
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Pictorial Analysis Game (see Figure 19): (1) determine the target concept, (2) choose an 

external representation, (3) tell a conceptual story about the physical situation based on 

the spatial relation between the objects, and (4) fill in the slots in this representation.  

Below is an example of students that choose to draw a free-body diagram while playing 

the Pictorial Analysis Game. 

 

Determine the target concept 

Choose an external representation 

Fill in the “slots” in this representation 

Tell a conceptual story based the  
spatial relations between objects 

 

Figure 19.  Moves in the Pictorial Analysis Game. 

Alisa, Patty, Mary, and Emma play Pictorial Analysis while working on the Pulling 

Two Boxes Problem (Appendix A, #13).   They are working on part A, which explicitly 

talks about forces.  So, (1) Emma tacitly identifies force as the important concept, and 

then (2) decides that a free-body diagram is the appropriate external representation. 

Emma:  Like I think it would be a good idea to draw some free-body 
diagrams, but I don't know what—which ones we should draw. 

Alisa:  Well, they want to know the friction between the crate and the floor. 
 

Alisa confirms Emma’s tacit assumption that force is the important concept; in 

particular, Alisa notes that friction is what they ultimately need to determine.   
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Before the students can go to move (4) and begin to fill in the slots in the free-body 

diagram, they must decide what free-body diagram to draw.  In move (3), they decide 

they can treat the two crates on top of each other as one big crate. 

Emma:  Because, I would assume that you could look at these two crates as 
being one unit, and look at it as one thing, like we did in class -- and, 
like we used for an example today. 

Alisa:  OK. 
Emma:  I mean for this, for this particular question – because, it's like one 

big crate. 
Mary:  Um-huh, just think of it as like one big thing. 
Emma:  But, maybe not, since they're [pushing up with her hands] I mean 

like with the boxes that you're pushing they're next to each other.  
But, when they're kind of of like, you know like this [pushing down 
on each other], it doesn't matter if you're trying to pull it. 

Alisa:  I think it does, because it makes it heavier.  As long as that top box 
isn't stationary. 

Emma:  That's true. 
Alisa:  Or, is stationary, excuse me. 
Emma:  So, maybe it does matter when you're doing them liked stacked like 

that. 
Alisa:  Well, we can try it with both and then we could always ask, I guess. 
 

Now that the students have decided for what object to draw a free-body diagram, they 

begin filling in the slots of this diagram – i.e. they begin move (4) of Pictorial Analysis. 

Emma:  So.  OK, so like for the crates...they have... 
Alisa:  Well, they have weight. 
Emma:  They have weight from the earth on the crates.   
Alisa:  And, then they have that... 
Emma:  They have ground...acting on the—the normal force of the ground 

up against the, um, crates. 
Patty:  And, then we have the rope.  Does the rope count? 
Emma:  Yeah, the ropes going to be something, I think. 
Alisa:  So then you have friction going [to the left]. 
 

These students specify four different forces that act on the crates (the weight, the 

normal force of the ground, the pull of the rope, and friction), and after a lengthy 

discussion they decide on the directions of all these forces (see Figure 20).  Ultimately, 
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the students do not correctly identify the direction of the tension force from rope on the 

crate.  The students’ activities follow the moves in Pictorial Analysis.  

 

 
M + m 

WEarth on Crates 

TRope on Crates 

NFloor on Crates 

ffloor on Crates 

 
Figure 20.  Recreation of the free-body diagram that the students created  

while playing Pictorial Analysis. 

Recursive Plug-and-Chug 

In the Recursive Plug-and-Chug e-game students plug quantities into physics 

equations and churn out numeric answers, without conceptual understanding the physical 

implications of their calculations. 

Students do not generally draw on their intuitive knowledge base while playing this 

game; they simply identify quantities and plug them into an equation.  Therefore, 

students usually just rely on their syntactic understanding of physics symbols, without 

attempting to understand these symbols conceptually.  That is, their other cognitive 

resources (intuitive mathematics knowledge, reasoning primitives, symbolic forms, and 

interpretive devices) are usually not active during this game.   
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The epistemic form in Recursive Plug-and-Chug is similar to that in Mapping 

Meaning to Mathematics and Mapping Mathematics to Meaning: each game has physics 

equations as part of the epistemic form.  As I stated in the previous paragraph, the 

resources that are active (i.e. knowledge base) in Recursive Plug-and-Chug are different 

than in these other games.  Therefore, since the activated resources in Recursive Plug-

and-Chug are different, the rules and strategies that are employed during this game differ 

from those in Mapping Meaning to Mathematics and Mapping Mathematics to Meaning – 

even though the epistemic form (target structure that guides inquiry) is the same in all 

these games.  So, one of the distinguishing feature of Recursive Plug-and-Chug is the 

resources that are activated during this game. 

Because the epistemic forms are similar, the structure of Recursive Plug-and-Chug is 

similar to Mapping Mathematics to Meaning.  First, the students identify the target 

quantity.  This is similar to the first move in Mapping Mathematics to Meaning, but it 

differs in this game in that the students only identify the quantity and its corresponding 

symbol – they do not attempt to understand conceptually what this quantity is.  Second, 

the students identify an equation that relates the target quantity to other quantities.  Third, 

the students identify which quantities are known and which quantities are unknown.  If 

the target quantity is the only unknown, then they can proceed to calculate the answer.  

However, if there are additional unknowns, then they must choose a sub-goal and start 

this process over – herein lies the ‘recursive’ nature inherent in this game.  Figure 21 

shows a schematic depiction of the moves in this game. 
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Only the target quantity 
is unknown 

Calculate target quantity 

Identify target quantity 

Find an equation relating 
target to other quantities 

Determine which of the other 
quantities are known 

Some other quantities 
are unknown 

Choose a sub-target 
and start over 

 

Figure 21.  Schematic diagram of students’ moves within Recursive Plug-and-Chug. 

An example of students playing Recursive Plug-and-Chug occurs while Valerie and 

Sarah attempt to solve the Dorm Room Pressure Problem (Appendix A, #5).  Valerie 

identifies ‘pressure’ as the target quantity, and then finds an equation relating pressure to 

other quantities: 

Valerie: Pressure is equal to the radius, times the moles of the gas, times the 
temperature, divided by the volume. So what we need to do – we 
know the pressure…density is equal to… 

Sarah: Are you using PV=nRT? 
Valerie: Huh? 
Sarah: Are you using PV=nRT? 
Valerie: Yeah. Or…yeah. 
Sarah:  Or. 
Valerie:  Or P equals R times N T... 
Sarah:  Over V. 
Valerie:  Over V. 
 



 130 

Two points can be interpreted from this exchange: the equation Valerie has chosen 

will not help them calculate the difference in pressure between the floor and the ceiling, 

and Valerie is not concerned with the conceptual meaning of the symbols in this equation 

– she incorrectly identifies R as the radius!  The first point is an accidental feature of this 

particular instantiation of Recursive Plug-and-Chug.  Students can play this game and get 

the correct answer.  It just happens to be the case that Valerie chose an equation that 

won’t lead her to the correct answer when playing this game.  The second point, however, 

is an inherent feature of Recursive Plug-and-Chug.  Since the cognitive resources for 

understanding the equations (i.e. symbolic forms and interpretive devices) are not 

activated during this game, conceptual understanding of the equation is not a part of this 

game.  That is, the students need to be able to identify the symbols, but in this game the 

students do not need to understand the concepts that the symbols represent.  The fact that 

Valerie identified R as the radius is an indication that she is playing Recursive Plug-and-

Chug. 

Consistent with the third move in Recursive Plug-and-Chug, Valerie and Sarah 

identify the ‘knowns’ and ‘unknowns’:  

Sarah:  We know the pressure. 
Valerie:  We know the pressure.  But we need to take the density to volume.  

Density is equal to... 
Sarah:  Oh, we have the density. 
Valerie:  Yeah, yeah, but that doesn't matter.  We need the volume. 
Sarah:  Oh, what did I just say? 
Valerie:  Density is equal to volume over what mass, or something? 
Sarah:  Density equals mass over volume. 
 

If the target quantity (pressure) was the only unknown they could proceed to calculate 

the target quantity.  Since the target quantity is not the only unknown, they must choose a 
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sub-target (“we need the volume”) and return to the second move in this game (“Density 

equals mass over volume.”)  

To sum up, although there are some structural similarities (some of the moves are 

similar) between Recursive Plug-and-Chug and Mapping Mathematics to Meaning, the 

ontological components (the set of resources that are active) are different in the two 

games.  Therefore, Recursive Plug-and-Chug represents a distinct set of activities that are 

distinguishable from Mapping Mathematics to Meaning.  One of the distinguishing 

features is that in Recursive Plug-and-Chug, students use symbols without activating 

conceptual understanding. 

Transliteration to Mathematics  

Research on problem solving indicates that students often use worked examples to 

develop solutions to novel problems (Ben-Zeev, 1998).  Transliteration to Mathematics 

is an epistemic game in which students use worked examples to generate a solution, yet 

they do so without developing a conceptual understanding of the worked example.  The 

word ‘transliterate’ means “to represent (letters or words) in the corresponding characters 

of another alphabet.”20  In the Transliteration to Mathematics game students simply map 

the quantities from a target problem into the solution pattern of an example problem.   

Because students use the symbolism in this game without conceptual meaning, 

usually only resources associated with the syntactic structure of equations are active 

during this game.  The solution pattern of the target example serves as the epistemic form 

for the Transliteration to Mathematics game. 

                                                 
20 This definition comes from the The American Heritage® Dictionary of the English 
Language. 
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The moves in this game are simple: (1) identify target quantity, (2) find a solution 

pattern that relates to the current problem situation, (3) map quantities in current problem 

situation into that solution pattern, and (4) evaluate the mapping (see Figure 22).  Moves 

(2) and (3) are very tricky for many students.  Many times students may find a solution 

pattern that they think relates to the current problem, when in fact it does not. 

 

Evaluate mapping

Identify target quantity 

Find a solution pattern 
that relates to the current 

problem situation. 

Map quantities in the current 
problem situation into the 

solution pattern. 

 

Figure 22.  Schematic diagram of the moves in Transliteration to Mathematics. 

Darlene, Bonnie, and Alisa play Transliteration to Mathematics while working on the 

Three Charge Problem (Appendix A, #15).  (Figure 23 shows a schematic diagram of the 

students’ moves within Transliteration to Mathematics.)  First, Bonnie identifies the 

target quantities.   

Bonnie:  Yeah.  So, if you double the distance how does that affect the 
charge, like does it--do you have to have the charge twice as big or 
four times big? 

 
Then, Darlene attempts to map the quantities in the Three Charge Problem into the 

solution from the Force-Distance Two-Charge Problem (Appendix A, #7). 
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Darlene:  Where is that other problem [Force-Distance Two-Charge 
Problem]?  Three times as far apart as they were now what is the 
magnitude of the force? 

Bonnie:  I think it should be four times.   
Darlene:  If it's three times as far apart it's...you divide...uh!  I think it's q 

over two. 
Bonnie:  Q over two?  So, if you think of it as half the force of q2. 
Darlene:  Look at this one [the Force-Distance Two-Charge Problem]. 
Bonnie:  Is this one you're talking about? 
Darlene:  Uh-huh.  If you increase the distance that they are from each 

other it's decreasing by the same amount.  I thought it was four (?), 
but they said it was (?).  I don't know why.  Just three times...does it 
matter? I'm looking this one.  Number three, isn't that like the same 
thing? 

Alisa:  Three was an estimation problem. 
Darlene:  No, no with the q and four q and all that, you know how there was 

this question that asked when you move the charges three times 
further apart than they originally were, what the resulting force is. 

Alisa:  OK. 
Darlene:  And, you said it was—we said it was four (?)--the charge would 

be like q, or nine, but it would got three times as far apart.  Why it's 
not three I don't understand, but that’s all right.  So— 

Alisa:  Well, 'cause in the equation you square this—the distance between 
them.  Like if you're multiplying by three... 

Darlene:  Oh!  So, I would think this one would be q over four—negative q 
over four.  Cause it's twice as far away, opposite charge.  Does that 
make sense? 

Alisa:  But, then it's a smaller charge than this. 
Bonnie:  Yeah. 
Alisa:  So, I don't understand how it would be pushing three or pulling three 

whatever it's doing.  
 

Darlene identifies the Force-Distance Two-Charge Problem (FDTCP) as being 

similar to the Three Charge Problem (TCP): “isn't that like the same thing?”  The solution 

in the former problem has the epistemic form 
squared  distance

quantitytarget  , which becomes 
9
F  

because of the situation in the FDTCP.  Darlene attempts to use the same epistemic form 

as a target structure to guide her inquiry in the TCP.   She simply maps the ‘charge’ in as 

the ‘target quantity’ and uses the distance specified in the Three Charge Problem: “Oh!  
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So, I would think this one would be q over four—negative q over four.  Cause it's twice 

as far away, opposite charge.”   

 

Evaluate mapping

Identify target quantity 

Find a solution pattern 
that relates to the current 

problem situation. 

Map quantities in the current 
problem situation into the 

solution pattern. 

“double the distance 
how does that 
affect the charge” 

“Where is [the Force-
Distance Two-Charge 
Problem?” 

“I would think this one 
would be…negative q over 
four, because it's twice 
as far away, opposite 
charge.” 

“But, then it's a smaller 
charge than this.” 

 

Figure 23.  Darlene, Bonnie, and Alisa’ moves in Transliteration to Mathematics. 

An additional piece of evidence that indicates that Darlene is playing Transliteration 

to Mathematics comes from her admission that she doesn’t understand the solution in the 

FDTCP: “I don't understand how it would be pushing three or pulling three whatever it's 

doing.”  One of the distinguishing features of Transliteration to Mathematics is that 

students can play this game without conceptual understanding of the solutions patterns.  

Darlene admits she doesn’t understand the FDTCP, but according to her “that’s all right.” 

Why students (tacitly) choose to play a particular e-game: Introduction to Frames 

The introductory students in my study played six different epistemic games while 

using mathematics in physics.  But why would a student choose to play any one particular 
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e-game?  My answer to this question is that the (tacit) decision to play a particular 

epistemic game is determined by a student’s real-time and/or preconceived expectations 

about problem solving in physics.  To describe students’ expectations I introduce the 

concept of frames.  

Background and history of Frames 

The concept of frames has a long history across many different disciplines.  Frames 

were proposed by the psychoanalyst Gregory Bateson (1972) and the anthropologist 

Irving Goffman (1997), and used by socio-linguist Deborah Tannen (1993).  A frame is 

an individual’s interpretation of a situation or event based on her expectations of the 

situation or event.  The gerund, framing, is used to describe an individual’s moment to 

moment parsing of a particular situation. That is to say, an individual’s framing helps her 

answer the question, “what kind of activity is this?” 

An example of a frame (the restaurant frame) comes from Tannen’s (1993) 

discussion of a story by Schank and Abelson (1977), which reads: 

John went into the restaurant.  He ordered a hamburger and a coke.  He 
asked the waitress for the check and left. 

 
Tannen discusses how Schank and Abelson’s story illustrates the existence of frames 

in knowledge structures.  Schank and Abelson’s use of the term “script” in the following 

passage is synonymous with Tannen’s use of the term “frame”: 

One might ask how the story can refer to “the” waitress and “the” check 
“just as if these objects had been previously mentioned.”  The fact 
that they can is evidence of the existence of a script [or frame] which 
“has implicitly introduced them by virtue of its own introduction” 
(p.18). 
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That is, the waitress and the check don’t need to be formally introduced in the story, 

because the reader has the expectation that waitresses and checks are present in 

restaurants; i.e. waitresses and checks are part of the restaurant frame. 

So, if frames exist, then how do we know one when we ‘see’ it?  Tannen identifies16 

different linguistic cues that indicate an individual’s structures of expectations: (1) 

omission, (2) repetition, (3) false starts, (4) back tracks, (5) hedges and other qualifying 

words or expressions, (6) negatives, (7) contrastive connectives, (8) modals, (9) inexact 

statements, (10) generalizations, (11) inferences, (12) evaluative language, (13) 

interpretation, (14) moral judgment, (15) incorrect statements, and (16) addition.  I 

describe and use these cues in my categorization of the different frames involved in 

mathematical problem solving in introductory physics. 

Frames and students’ use of mathematics in physics 

As articulated by Redish (2004), an individual’s framing has many components: a 

social component (“Who will I interact with and how?”), a physical component (“What 

material will I be using?”), a skills component (“What will I actually be doing?”), an 

affect component (“How will I feel about what I’m going to be doing?”), and an 

epistemological component (“How will I learn / build new knowledge here?”).  I draw on 

the skills and epistemological components to categorize epistemic games into three 

different frames: rote equation chasing, qualitative sense-making, and quantitative sense-

making.   

The rote equation chasing frame is students’ expectations that problem solving in 

physics involves appropriately identifying a physics equation from a large memorized 

list, and then “plugging in” the corresponding quantities.  In contrast, the sense-making 
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frame is students’ expectations that problem solving in physics should progress through 

the systematic application of common sense or physical principles – i.e. problem solving 

in physics should “make sense.”  In the qualitative sense-making frame students expect 

that the solution does not require formal mathematics; whereas, in the quantitative sense-

making frame students expect that the solution does require formal mathematics.  Table 

12 shows the different epistemic games organized by frame.  In the next three 

subsections, I discuss each frame in more detail. 

Rote equation chasing frame Qualitative sense-making frame  

Recursive Plug-and-Chug Physical Mechanism Game 

Transliteration to Mathematics Pictorial Analysis 

 Quantitative sense-making frame  

 Mapping Mathematics to Meaning 

 Mapping Meaning to Mathematics 

Table 12.  Epistemic games organized by frame. 

Rote equation chasing frame 

I identify two epistemic games that fall into the rote equation chasing frame: 

recursive plug-and-chug and transliteration to mathematics.  As I alluded to earlier, 

students’ ‘decisions’ to enter into these games is based on their expectations.  These 

expectations can be based on real-time assessments of the problem statement (i.e. 

moment-to-moment activation of epistemological resources) and/or on preconceived 

epistemological beliefs about problem solving in physics (i.e. a particular epistemological 

frame).   
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Research by Hinsley and Hayes (1989) indicates that students tend to “use a line-by-

line procedure, especially in solving nonstandard problems” (p. 476).  This result 

suggests that if students’ real-time assessment of the problem statement does not cue the 

appropriate knowledge that would allow the students to make sense of the problem, then 

they may be nudged into the rote equation chasing frame.  That is, if the problem 

statement does not cue the appropriate mathematical resources for making sense of the 

problem, then students may resort to an equation hunting technique.  So, the students 

enter the rote equation chasing frame based on a moment-to-moment framing of the 

problem statement.   

Alternatively, if the students believe that problem solving in physics is simply picking 

the correct equation out of the book or a worked example, then they will likely be in the 

rote equation chasing frame.  That is, their preconceived notion about problem solving in 

physics puts them into the rote equation chasing frame.  

There is evidence that indicates that Recursive Plug-and-Chug occurs in a rote 

equation chasing frame.  In particular, there are three pieces of evidence that indicate 

while Sarah and Valerie are playing Recursive Plug-and-Chug to solve the Dorm Room 

Pressure Problem (Appendix A, # 5) they are in the rote equation chasing frame.  First, 

the question asks for the difference in pressure between the floor and the ceiling in a 

dorm room.  They simply identify the pressure as the target quantity and the equation that 

they find (“
V

nRTP = ”) cannot help them find the difference in pressure between the floor 

and the ceiling – a fact that they don’t seem to give a second thought.   

Second, Valerie identifies R in the equation as the “radius.”  When it is brought to her 

attention that R does not represent the ‘radius,’ she is not fazed at all, in fact this pleases 
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her: “Is it a constant?...Awesome, one less thing for us to find!”  Valerie is not concerned 

with the semantic content contained within the equation; she’s simply using the equation 

as a calculating tool, without thinking about what the equation or the symbols mean.   

The recursive nature of this game is the third indication that it occurs in a rote 

equation chasing frame.  Valerie realizes that in order to solve for the target quantity 

using the equation 
V

nRTP = , she needs to determine the volume.  The equation she finds 

to relate the volume to other quantities is 
V
mD = .  From this she realizes that the volume 

is unknown and the mass is unknown.  Therefore, she identifies the ‘mass’ as the new 

sub-target.  The equation she finds to relate the ‘mass’ to other quantities is 
V
mD = .  

However, the ‘volume’ is unknown and the ‘mass’ is unknown.  This leaves her in a 

recursive loop, because in order to find the ‘volume’ she needs the ‘mass,’ but in order to 

find the ‘mass’ she needs the ‘volume.’  The recursive nature of this game is inconsistent 

with sense making – another indication that Recursive Plug-and-Chug occurs in a rote 

equation chasing frame. 

In addition to Recursive Plug-and-Chug, Transliteration to Mathematics occurs in the 

rote equation chasing frame. As I discussed above, Darlene plays Transliteration to 

Mathematics in an attempt to solve the Three Charge Problem – she attempts to map the 

solution pattern from the Force-Distance Two-Charge Problem into the Three Charge 

Problem.  Darlene’s comments show that she does not have conceptual understanding of 

how the solution was obtained in the FDTCP: “Why it's not three I don't understand, but 

that’s all right” (emphasis added).  Her use of the contrastive connective ‘but’ is 

particular telling.  Tannen (1993) argues that “an oral narrative uses the word ‘but’ to 
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mark the denial of an expectation not only of the preceding clause but of an entire 

preceding set of statements or of narrative coherence in general” (p. 44).  So, Darlene’s 

use of the word ‘but’ in the above statement can be taken as evidence of her expectation 

that conceptual understanding is not at all necessary in her problem solving approach.  

Since I categorize her approach as Transliteration to Mathematics, then it follows that 

she expects that conceptual understanding is not necessary in Transliteration to 

Mathematics; i.e. this game occurs in the rote equation chasing frame.  

To sum up, in the rote equation chasing frame, students can play Recursive Plug-and-

Chug or Transliteration to Mathematics without conceptual understanding of the 

mathematics used in the problem solving process.  In these two games students simply 

use the syntactic structure of the mathematics as cues for how to generate an answer.   

Qualitative sense-making frame 

I identify two distinct epistemic games in the qualitative sense-making frame: 

physical mechanism game and pictorial analysis.  I use the qualifier ‘qualitative’ when 

describing this frame, because the games do not rely on formal mathematical procedures 

or equations.  However, these games may involve informal, intuitive mathematical 

reasoning. 

There is evidence from Tony’s comments on the Elevator Problem that the Physical 

Mechanism Game occurs in the qualitative sense-making frame.  Lynn and Mary’s initial 

approach to this problem involves numerous calculations and equations – they are not in 

a qualitative sense-making frame.  Tony makes many hedges and qualifying statements in 

an attempt to nudge them into a different frame.  Tannen (1993) states “by qualifying or 
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modifying a word or statement, hedges measure the word or idea against what is 

expected” (p. 43). 

Tony:  Do we even need to do all that calculation? 
Lynn:  I don't know. 
Tony:  I don't know if they're asking for it. 
Lynn:  They don't want numbers, but we couldn't really figure it out so we 

thought maybe numbers would help. 
 

Tony’s initial comment is an indication that he doesn’t expect that calculations are 

necessary for this problem – one indication that his approach to this problem (Physical 

Mechanism Game) occurs in the qualitative sense-making frame.  A second interesting 

feature about Tony’s comments is how he uses hedges to negotiate a frame shift with the 

other students. 

Tony:  Yeah.  Well, does um, let's see the the [normal force of the person on 
the scale] would—don't you think that'd decrease?  At--initially. 

Mary:  When we're accelerating downward.  The force of the... 
Tony:  Right. You know, it's almost likes you can look at it and like 

exaggerate it--like the elevator pulls away from the person.  And the 
person has to catch up to it. 

Lynn:  OH!  That makes sense.  And that's why the person would weigh less. 
Tony:  Right. 
Lynn:  Which is what I remember from high school physics. 
    

  Initially, Lynn and Mary attempt to use formal mathematics and physics principles 

(which they do not appear to understand) in their efforts to produce a solution.  Tony’s 

approach to this problem (the Physical Mechanism Game) stands in stark contrast to 

Lynn and Mary’s collective approach.  Lynn and Mary appear to have been in a rote 

equation chasing frame.  Tony wants to play the Physical Mechanism Game, which is in 

the qualitative sense making frame.  Tony’s many hedges serve to mitigate the transition 

between the two frames.  He makes many starts and stops and repetitions of words before 

offering his intuitive explanation: “Yeah.  Well, does um, let's see the the…”  These 
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linguistic hedges are an indication that Tony intends to shift frames from rote equation 

chasing, the frame Lynn and Mary are initially operating in, to the qualitative sense-

making frame. 

Quantitative sense-making frame  

I identify two different epistemic games in the quantitative sense-making frame: 

Mapping Mathematics to Meaning and Mapping Meaning to Mathematics.  I use the 

qualifier ‘quantitative’ when describing this frame, because the games in this frame rely 

on formal mathematical procedures or equations.  Students get nudged into this frame 

based on two expectations: the solution to the problem involves explicit calculations and 

the answer should make sense.   

Mary and Emma’s discussion while working on the Paper Towel Problem (Appendix 

A, #10) illustrates the point that Mapping Mathematics to Meaning occurs in the 

quantitative sense-making frame.  Mary and Emma are initially playing the Physical 

Mechanism Game in an attempt to solve this problem. 

Mary:  If you pull it with one hand, so all the force is concentrated in one 
area of the towel, so it causes it to rip.  You know.  But, if you pull it 
with both hands, it's going to be a more equal distribution, maybe.  
So, you could (?), that's what I was thinking.  But, if your hands are 
wet it makes the towel soggy, which makes it weak, so it's more likely 
to rip. 

Emma:  It might make it more likely to rip, but still that's better than pulling 
it with one hand. 

Mary:  Yeah, if both your hands--like (?) yeah. 
 

The students are attempting to develop a coherent, physical story without reference to 

formal physics principles or equations.  Then, Emma voices her expectation that this type 

of approach is insufficient. 
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Emma:  Is that all we're supposed to do with that?  I feel like (?).  Like, I 
feel like it should have something to do with like not just force.  I 
feel like it should have something to do with what we've learned like 
recently.  Having to do with like water and pressure  (?) 

 
The linguistic cues about Emma’s expectations come from her use of negative 

statements and modals.  Tannen (1993) states that “in general, a negative statement is 

made only when its affirmative was expected” (p. 44), and the modals “‘must’ and 

‘should’…reflect the speaker’s judgment according to her own standards and experience” 

(p. 45).  Emma’s comments indicate she has the expectation that they need to use a 

concept that they have “learned like recently.”  It’s not that Mary’s explanation doesn’t 

make sense; it’s just that Emma has that expectation that the explanation should involve 

the concept of “pressure.” 

Emma parlays this expectation into an opportunity to play Mapping Mathematics to 

Meaning.  (1) She identifies the target concept (‘pressure’), and (2) finds an equation 

relating the target to other concepts: 

Emma:  Well pressure was force over surface area or something, right? 
Mary:  Pressure equals F over A, yeah. 
 

Then, (3) she develops a story that uses the relationship between the target and the 

other concepts: 

Emma:  So like, you know, you could be exerting the same force but you’re 
doing it over like a larger area, so it's one (?), less pressure on the 
towel it doesn't rip. 

Mary:  That's true.  So, we could use that. So, what did you say, if you use 
the same amount of force each time, but over—you use a larger 
surface? 

Emma:  When you pull (?). 
Tony:  Fifty newtons of force and you apply it over five centimeters you have 

ten, ah, newtons or whatever in pressure.  But, if you had fifty and 
you apply it over ten then you have five thingamabobers of pressure. 

Mary:  Oh, OK.  
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Finally, (4) Emma evaluates her story by referring to a particular physical example: 

Mary: So, is that it?  I'm just going to add a thing that says... 
Emma:  Yeah, because if you have a paper towel and you want to see how 

strong they are (?), you hold it at the sink and it's all wet and you put 
like a thing of grapes like in the middle of it, it's going to rip through 
the middle.  But, if you put it over like all of it might not. 

Mary:  Uh-huh. 
Emma:  Spread out...  
 

The new explanation that Emma generates by playing Mapping Mathematics to 

Meaning still makes sense to her, and it also fulfills her expectation that the answer 

should involve concepts they had learned more recently. 

Discussion about epistemic games and frames 

The astute reader may have noticed that there is considerable overlap between the 

moves in some games.  For example, both Mapping Meaning to Mathematics and 

Recursive Plug-and-Chug involve mathematical manipulations.  For this reason, some 

readers may contend that Mapping Meaning to Mathematics ends after the conceptual 

story is translated into mathematical entities (i.e. after move (3)), and that the 

manipulation of symbols (i.e. move (4)) is a different epistemic game.  The basis for this 

contention is that mathematical manipulations are the essential component of the 

Recursive Plug-and-Chug game.   

However, my assertion is that simply because a move is in one game (e.g. 

mathematical manipulation occurs in Recursive Plug-and-Chug) it doesn’t mean that 

same move cannot appear in a different epistemic game (e.g. mathematical manipulations 

occur in Mapping Meaning to Mathematics).  My reasons for this assertion are threefold:  

1. Empirical.  Epistemic games are an observational categorization of coherent 

units of activity.  In order for two problem solving activities (epistemic 
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games) to be the same, they must contain all the same sub-activity (move), 

and the sub-activities must occur in the same order.  In Mapping Meaning to 

Mathematics, the mathematical manipulations occur after the conceptual story 

is translated into mathematics; whereas, in Recursive Plug-and-Chug the 

mathematical manipulations occur after all the ‘knowns’ and ‘unknowns’ are 

identified.  Although both games include mathematical manipulations, the 

moves before and after these manipulations are different in the two games.  

(See Figure 13 and Figure 21 to compare the moves in Mapping Mathematics 

to Meaning and Recursive Plug-and-Chug, respectively.) 

2. Pedagogical.  Allowing the same move to occur in different epistemic games 

can help educators and researchers distinguish between seemingly similar 

expert and novice problem solving behavior.  Students often use the symbols 

in a physics equation without conceptual understanding (e.g. Valerie identifies 

R as the radius in the equation PV = nRT, p. 138).  Experts’ often have 

conceptual understanding of the symbols that they manipulate.21 

3. Theoretical. Frames are a larger theoretical construct, than epistemic games – 

epistemic games occur within a particular frame.  The mathematical 

manipulations in Recursive Plug-and-Chug occurs in the rote equation 

chasing frame; whereas, the mathematical manipulations in Mapping Meaning 

to Mathematics occur in the quantitative sense-making frame. 

                                                 
21 There is additional discussion about how this framework helps distinguish between 
expert and novice problem solving behavior in Chapter 6. 
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Alternative frameworks that address process component  

Any observational study of the process component of students’ use of mathematics in 

physics leads to an obvious conclusion: the actual path that students follow during 

problem solving in physics varies from problem to problem and student to student.  This 

fact is largely overlooked in many cognitive models of student problem solving (Larkin, 

1983; Kintsch & Greeno, 1985; Nathan, Kintsch, & Young, 1992).  Many of these 

cognitive models of mathematical problem solving are normative, not descriptive.  That 

is, they adequately model ideal student problem solving approaches, but they do not 

describe all the different approaches that students actually use during problem solving in 

physics.  I discuss the model of algebra word problem comprehension introduced by 

Nathan, Kintsch, and Young (1992).  In particular, I show that the Nathan et al model can 

adequately model an ideal problem solving approach, but it can not be used to describe 

some non-ideal student problem solving activities. 

Nathan et al (1992) argue that any model of problem solving must include the aspect 

of language comprehension.  According to their model there are three components to 

algebra word problem comprehension: a textbase, a situation model, and a problem 

model.  The textbase consists of a network of propositions, generated by the problem 

solver, which captures the meaning of the problem statement.  The reader’s mental 

representation of the actions in the text, described in terms of everyday terms and objects, 

is called the situation model.  The problem model consists of quantitative algebraic 

relationships between entities, which are generated from “problem schema” or “templates 

for organizing problem-relevant information.”  According to Nathan et al, the “textbase is 
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organized into a (qualitative) situation model and mapped into a (quantitative) problem 

model that captures the algebraic problem structure” (p. 332).   

This model adequately describes an ideal student solution; however, students use 

mathematics in physics in ways that are less than ideal.  Epistemic games and frames 

offer more descriptive language for analyzing students’ actual use of mathematics in 

physics.  I explicitly identify six different approaches, or games, that students attempt 

during problem solving in physics.  Nathan et al acknowledge that there is not one path 

that students must follow during problem solving: “We do not propose a stage theory, 

however, in which situational understanding must precede the formation of the problem 

model” (p. 337).  The go on to say, “we find a mutually supporting relationship in which 

situational understanding helps students realize the episodic meaning of a formal problem 

model, and reciprocally, sensitivity to the requirements of a problem schema aids in the 

construction of a suitable situation model” (p. 337).  According to the language of 

epistemic games, this is simply the difference between Mapping Meaning to Mathematics 

and Mapping Mathematics to Meaning.  Additionally, however, epistemic games offer a 

language to describe students’ non-ideal use of mathematics – when they use 

mathematics without conceptual understanding. 

Summary 

Two theoretical constructs describe the process component of students’ use of 

mathematics in physics: epistemic games and frames.  Students play six different kinds of 

epistemic games while using mathematics in the context of physics: Mapping Meaning to 

Mathematics, Mapping Mathematics to Meaning, Physical Mechanism Game, Pictorial 

Analysis, Recursive Plug-and-Chug, and Transliteration to Mathematics.  Three different 
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frames correspond with students’ expectations about problems and problem solving in 

physics: quantitative sense-making, qualitative sense-making, and rote equation chasing.  
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Chapter 6: A case study illustrating the use of mathematical resources, 

epistemic games, and frames in the analysis of  

students’ mathematical thinking 

 

Introduction  

Constructivism (student construction of knowledge) is the dominant paradigm in 

modern educational theory.   The educator’s role in the constructivist paradigm is to help 

students construct new knowledge from their existing knowledge.  In order to assist the 

students, the educator needs to be able to determine what the students are thinking and 

why they make the mistakes that they do.   In chapters 4 and 5 I described the three major 

components used in my theoretical framework for analyzing and describing students’ use 

of mathematics in physics: mathematical resources, epistemic games, and frames.  In this 

chapter, through a detailed analysis of a one-hour student problem solving session, I 

show how my theoretical framework offers educators and researchers a technical 

language capable of describing students’ (correct and incorrect) use of mathematics in 

physics.  That is, this framework offers a vocabulary (definition of the relevant cognitive 

structures) and grammar (relationship between the cognitive structures) for understanding 

the nature and origin of students’ mathematical thinking in physics.   

In the next section I give the specific context in which the case study is derived: I 

describe the students, the time and setting in which the students worked, and the 
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particular homework problem under investigation.  In section three I discuss how the 

problem solving session is parsed for analysis.  In section four, I give detailed analysis of 

the problem solving session in terms of the theoretical framework that I have developed.  

Finally, in section five, I give a summary and some closing remarks. 

The context of this case study: Three Charge Problem 

The episode for this case study involves four students working on an electrostatics 

problem: The Three Charge Problem (Appendix A, #15).  Three of the students are 

female (pseudonyms, Alisa, Bonnie, and Darlene) and one of the students is male 

(pseudonym, Edgar).  Edgar very rarely speaks during the entire 60 minute video record 

of these students working on this problem.  In fact, in the excerpts of the problem solving 

session that follow, he does not speak at all.     

This episode occurs in the first week of the second semester in a two semester 

introductory, algebra-based physics course.  (A more complete description of the 

particular introductory physics course appears in chapter 3.)  All the students in the group 

had been in the reformed, non-traditional introductory course the first semester.  

Therefore, they were familiar with the ‘peculiarities’ of this course.  In particular, they 

were familiar with the typical interaction style between students and teaching assistants in 

the course center, and the type of homework problems that were typically assigned in this 

course.  Most importantly, they were cognizant of the fact that the instructor expected the 

students to spend about an hour on each homework problem – during which time they 

were expected to generate solutions to the questions that ‘made sense to them.’  The 

students’ familiarity with these aspects of the course will become particular important 

when I discuss their framing of the problem solving episode. 
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The particular problem that the students work on in this episode is the Three Charge 

Problem, which reads as follows: 

q1 q2 q3 

dd

 
In the figure above three charged particles lie on a straight line and are 

separated by distances d.  Charges q1 and q2 are held fixed.  Charge 
q3 is free to move but happens to be in equilibrium (no net 
electrostatic force acts on it).  If charge q2 has the value Q, what 
value must the charge q1 have? 

  An ideal solution to this problem involves straight-forward balancing of forces and 

Coulomb’s Law.  The parenthetic comment in the problem states there is “no net 

electrostatic force” acting on charge q3.  Symbolically, this becomes 

03132 =→+→ qqFqqF
rr

.  Manipulating this equation, and defining the positive 

î direction to be to the right, yields: 

i
d
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Canceling similar terms on both sides of the equation and setting q2 = Q yields the 

result: Qq 41 −= . 

I went through the details of the solution to illustrate that there are several inferences 

and steps involved in generating this solution.  However, in spite of the multiple steps 

involved, most readers would solve this problem in less than fifteen seconds.  An 

interesting aspect about the students’ problem solving approach is that it takes so long.  

The students work for nearly 60 minutes before arriving at a solution – 240 times longer 
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than the typical reader!  Does this mean that the typical reader is 240 times smarter than 

these students?  To boost my own ego, I’d like to say ‘yes’; however, I don’t believe this 

is the case.  Rather, according to the theoretical framework developed in this dissertation, 

the typical reader probably has a broader mathematical knowledge base (i.e. a larger 

collection of compiled mathematical resources) and richer collection of problem solving 

strategies (i.e. an assortment of epistemic games for solving problems in physics).  For 

the typical reader, the problem statement immediately cues the appropriate resources and 

epistemic game; whereas, the students’ mathematical resources do not exist in compiled 

form.  The difference in the reader and the students’ knowledge structure could account 

for the difference in the speed of the problem solution. 

Analysis of phenomena at different grain-sizes 

Often researchers distinguish between different scales in order to ‘chunk’ phenomena 

into manageable pieces.  I discuss an example from particle physics (mass scale of the 

unobserved right-handed neutrino) and an example from educational theory (time scales 

of interest for understanding mathematical thinking and problem solving).   

Mass scales of interest in explanation of neutrino mass 

In particle physics the heavy mass scale of the unobserved right-handed neutrino field 

is used to explain the light, but non-zero mass of the observed left-handed neutrino field.  

The conventional mechanism to explain the apparent lightness of the mass of the 

observed left-handed neutrino is the see-saw mechanism of SO(10) grand unified theories 

(GUTs). In these models there is a neutrino doublet, N , consisting of the left-handed 
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( Lν ) and right-handed (N) neutrino fields; i.e. ( )TNL ,ν=N  . The mass term for this 

neutrino doublet is of the form MNNT , with the mass matrix given by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Mm
m0

Μ . 

The entry m arises from the standard Yukawa coupling which appears due to the 

electroweak breaking, so ⎟
⎠
⎞⎜

⎝
⎛ GeV 210~m . However, M comes from the Majorana mass 

of the right-handed singlet N, and arises from the breaking of the SO(10) GUT symmetry. 

Due to the scale of the GUT symmetry breaking it is believed that M ~ 1016 GeV.  

Diagonalizing the mass matrix, the two mass eigenvalues are obtained 

.42
2
1

⎟
⎠
⎞

⎜
⎝
⎛ +±=± mMMλ   Since m << M the two mass eigenvalues can be written as 

.and
2

M
M
m

≈+−≈− λλ   The linear combination corresponding to the light mass 

eigenvalue, −λ , is taken to be the physical light neutrino. So the presence of the heavy 

mass scale M serves to explain the small but non-zero mass of the physical light neutrino. 

Time scales of interest in understanding students’ use of mathematics 

In education research distinguishing between different time scales can be instructive. 

Time scales of interest for understanding students’ use of mathematics are (adapted from 

Sherin, 1996): 

1. The learning time scale (~ 1 year).  During a two semester course we would hope 

that some of our students would learn some physics. 



  

 154 

2. The problem solving time scale (~ 1 hour).  Students were expected to spend 

about an hour on the homework problems in this study.  In fact, it was often the 

case that students spent at least an hour on these problems. 

3. The problem heuristics time scale (~ 10 minutes).  As shown by Schoenfeld 

(1985), students (and experts) engage in different problem solving strategies, or 

heuristics, during the course of solving a single problem. 

4. The thought time scale (~ 1 second).  This time scale is associated with the time it 

takes a student to look at an equation (or graph) and then say something about 

it. 

As discussed in chapter 3, I do not systematically examine the practices of 

mathematics use in physics across different classrooms, and I do not perform a 

longitudinal study of how students change during the course of the semester.  Therefore, I 

do not have anything to say about time scale (1).  However, time scales (2), (3), and (4) 

are nicely accommodated by the theoretical framework I have described.  A students’ 

frame (and moment to moment framing) will shape the problem solving process – i.e. 

time scale (2).  The particular epistemic games the students play will partially determine 

the problem solving heuristic the students employ – i.e. time scale (3).  Lastly, the 

particular mathematical resources that are activated at a given moment help us 

understand the students’ mathematical thinking – i.e. time scale (4).  So, the three 

different aspects of the theoretical framework can be seen as parsing the students’ use and 

understanding of mathematics at different time scales.  In the remainder of this chapter, I 

use the notion of these different time scales to parse the students’ problem solving 

process in the Three Charge Problem.  
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Analysis of the Three Charge Problem 

In my analysis that follows, I start with time scale (2): I examine how the students 

frame this problem solving process.  Then, I probe the students’ mathematics use on the 

problem heuristics time scale: I break the students’ problem solving process into different 

epistemic games.  Lastly, during my discussion of the different epistemic games that the 

students play, I examine the students’ mathematics use on the thoughts time scale. 

Analysis in terms of Frames 

Alisa, Bonnie, and Darlene had all been in the non-traditional, reformed introductory 

physics course in the first semester.  They were familiar with the types of homework 

problems, and the typical kinds of interactions between the students and the teaching 

assistant in the course center.   

I suggest that the students’ familiarity with these aspects of the course caused them to 

frame this problem solving session in a particular manner, which is evidenced by their 

behavior during the problem solving process.  First, the students spend nearly an hour 

working on this problem.  Many typical introductory students expect to spend less than 

10 minutes on a problem.  If they don’t find a solution in this time they either give up 

trying, or ask for assistance.  This leads into the second piece of evidence of the students’ 

framing of this problem solving session: Alisa, Bonnie, and Darlene proceed with very 

little guidance or assistance from me (the teaching assistant).  The majority of the work 

and progress comes from the students.  The only direction I offer these students is to 

draw a picture. 

These two points taken together suggest that the students seem to be in a sense 

making frame.  In particular, they start in a qualitative sense making frame and end in a 
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quantitative sense making frame.  This is not to say that at any one time that all the 

students are in the same frame.  For example, Darlene makes a digression at one point 

during the problem solving session and slips into a rote equation chasing frame. 

Analysis in terms of epistemic games and mathematical resources 

The students do not follow a straight forward approach to solving this problem.  

However, these students’ various problem solving approaches are easily understood in 

terms of epistemic games.  I identify five different epistemic games that are played 

during this problem solving session: Physical Mechanism Game, Pictorial Analysis, 

Mapping Mathematics to Meaning, Transliteration to Mathematics, and Mapping 

Meaning to Mathematics. 

Physical Mechanism Game 

The students’ initial attempt to solve this problem follows a less formal path than the 

ideal solution outlined above.  Throughout this entire clip the students are drawing on 

intuitive reasoning primitives to explain and support their conclusions.  The students do 

not draw on any formal mathematics or physics principles to support their claims.  They 

use reasoning that makes sense to them.  This first clip occurs about 7 minutes into the 

problem solving process. 

Darlene: I'm thinking that the charge q1 must have it's...negative Q. 
Alisa:   We thought it would be twice as much, because it can't repel q2, 

because they're fixed.  But, it's repelling in such a way that it's 
keeping q3 there. 

Bonnie:  Yeah.  It has to-- 
Darlene: Wait say that. 
Alisa:   Like— q2 is— q2 is pushing this way, or attracting—whichever.  

There's a certain force between two Q, or q2 that's attracting.   
Darlene: q3. 
Alisa:   But at the same time you have q1 repelling q3. 
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Darlene initiates the conversation by asserting that the charge on q1 must be ‘negative 

Q’; the negative sign in this case signifies that q1 will have the opposite effect on q3 than 

q2.  Alisa elaborates on this point by articulating that q2 exerts an influence on q3, which 

she identifies as a force, that is either repelling or attracting, and that q1 exerts the 

opposite influence on q3.  The semantic content contained in Alisa’s explanation can be 

summarized in the following facet: ‘the attractive effect of q2 on q3 cancels the repulsive 

effect of q1 on q3.’ The abstract reasoning primitive underlying this facet is canceling.  

That is, the influences in this problem get mapped onto the abstract reasoning primitive 

of canceling resulting in the facet articulated above.  In this case, canceling is an 

appropriately mapped primitive, because in fact the two forces acting on q3 do cancel, 

which results in there being no net force on q3. 

In addition, from Alisa’s initial cursory comment (“we thought [the charge on q1] 

would be twice as much [than the charge on q2]”) it appears that she has the reasoning 

primitives more is more and balancing activated.  That is, since the two influences acting 

on q3 balance, then q1 must have more charge because there is more distance between q1 

and q3 then there is between q2 and q3.   

It cannot be confirmed whether Alisa has more is more and balancing activated, 

because the direction of the conversation changes.  Darlene contends with the other 

students, because it appears she has a different reasoning primitive activated: blocking. 

 Darlene: How is it repelling when it's got this charge in the middle? 
Alisa:   Because it's still acting.  Like if it's bigger, than q2 it can still, 

because they're fixed.  This isn't going to move to its equilibrium 
point.  So, it could be being pushed this way.   

Darlene: Oh, I see what you're saying.  
Alisa:   Or, pulled.  You know, it could be being pulled more, but it's not 

moving. 
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Darlene: Um-huh. 
  

The orientation of the charges cues the reasoning primitive of blocking, because q2 is 

in between q1 and q3.  That is, the presence of q2 “blocks” the effect of q1 on q3.  From the 

superposition principle we know the effect of q1 on q3 does not get blocked by the 

presence of q2, so the activation of blocking is an unnecessary distraction for these 

students.  In contrast to the reasoning primitive of canceling that was activated earlier in 

this clip, blocking does not get mapped into a productive facet for solving this problem.  

This is not to say that blocking is ‘wrong’; rather, in this particular instance the activation 

of blocking does not lead to a productive facet.   

Bonnie continues Alisa’s line of reasoning by explaining why the value of q1 has to 

be twice as big as that of q2.  

Alisa:   So, we—we were thinking it was like negative two Q or something 
like that. 

Bonnie:   Yeah.  Cause it has to be like big enough to push away. 
Darlene: Push away q3. 
Bonnie:   Yeah, which we—which I figured out negative two. 
Darlene: Cause it's twice the distance away than q2 is? 
Bonnie:   Yeah. 
Darlene: I agree with that.  

 
It appears that Bonnie draws on overcoming when she explains that ‘[q1] has to be 

like big enough to push away [q3].’  That is, q1 has to have enough charge to overcome 

the influence of q2.  The tacit conclusion from this assertion is that the charge of q1 must 

have a larger magnitude than that of q2.  Bonnie and Darlene quantify this conclusion by 

using the reasoning primitives of more is more and dependence (which has the symbol 

template � = […x…]) to assert that the charge on q1 has to be twice the magnitude of q2.   

More is more and dependence get mapped into the facet twice the distance is twice the 

charge. 
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The students’ problem solving activities during this entire clip have the ontology of 

the Physical Mechanism epistemic game.  The ontological components of the Physical 

Mechanism Game are the knowledge base and the epistemic form.  While playing this 

game the students are drawing on an intuitive knowledge base rather than formal 

knowledge to support their claims.  There is evidence, as I tried to indicate above, that the 

students use various reasoning primitives during this clip.  And, at no point during their 

discussion do they mention any formal mathematics or physics principles.  The epistemic 

form in the Physical Mechanism Game involves a coherent, physical description that is 

either verbal or imagistic.  These students are actively seeking physical causes for the 

effects that are described in the problem. 

The structural aspects of the students’ problem solving activities are also consistent 

with the Physical Mechanism Game.  The fact that these students engage in this activity 

to solve a problem sets it apart from other “everyday” activities.  This discussion has a 

beginning and an end, which makes it distinguishable from everyday activities.  In 

addition, there are certain “moves” in this game.  For one, all assertion must be supported 

with reasons.  For example, Alisa makes the assertion that q1 is “like negative two Q.”  

The support for this assertion is that “it's twice the distance away than q2.” 

In this clip, the ontology and structure of the students’ problem solving activity 

suggest that they are playing the epistemic game of Physical Mechanism.  Playing this 

game helps the students become oriented to this problem, but the solution to this problem 

necessarily involves physics equations (in particular Coulomb’s Law).  Since Physical 

Mechanism does not include mathematical expressions or equations (like Coulomb’s 

Law), it cannot ultimately lead them to the correct answer.  In the next clip, I help them 
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reframe this problem, in an attempt to activate other resources they have and epistemic 

games they already know how to play. 

Pictorial Analysis 

In the last clip we saw the students making sense of the problem by using their 

intuitive reasoning primitives in the context of the Physical Mechanism epistemic game.  

It appears that the students have difficulty focusing their collective attention.  To assist 

the students I offer a suggestion.   

 Darlene:  I think they all have the same charge. 
Bonnie:   You think they all have the same charge?  Then they don't repel 

each other.   
Darlene:  Huh? 
Bonnie:   Then they would all repel each other. 
Darlene:  That's what I think is happening. 
Bonnie:   Yeah, but q3 is fixed.  If it was being repelled— 
Alisa:  No, it's not.  q3 is free to move. 
Bonnie:   I mean, q3 is not fixed.  That's what I meant. 
Darlene:  Right. 
Bonnie:   So, like... 
Darlene:  So, the force of q2 is pushing away with is only equal to d. 
Bonnie:   Yeah, but then... 
Darlene: These two aren't moving. 
Bonnie:   Wouldn't this push it somewhat? 
Alisa:  Just because they're not moving doesn't mean they're not exerting 

forces. 
Darlene:  I know. 
Alisa: What do you think? 
Tuminaro:  Can I make a suggestion?   
Darlene: Uh-huh. 
Tuminaro:  You guys are talking about like a lot of forces and stuff.  And, 

one thing I've suggested in previous semesters, if you write it down 
and say, what forces do you think are acting here, you can all talk 
about it. 

Darlene: Where did the marker go? 
Tuminaro:  That's a suggestion—a general suggestion—that I might make.  
 

In the first few lines above, it seems as though the students take a step back in terms 

of progress on this problem.  Earlier the students appeared to have established the major 
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aspect of the problem:  two influences act on q3, which exactly cancel each other. In this 

clip, the students restate the set up of the problem (“these two are moving”) and recite 

remembered facts (“just because they’re not moving doesn’t mean they’re not exerting 

forces”).  While these things are important to keep straight, this discussion does not 

appear to push the problem solving process forward.   

To assist the students I offer a suggestion, which has two effects.  First, it nudges the 

students into playing a different epistemic game: Pictorial Analysis.22  Second, the 

introduction of this new epistemic game reframes the students’ interactions and helps 

them focus their collective attention on one external representation.  

Alisa attempts to make an external representation of this problem on the white board 

while Bonnie and Darlene offer their assistance:  

Darlene:  You're trying to figure out what q1 is, right? 
Bonnie:  Oh, yeah. 
Alisa:  Because this is in equilibrium, there's some force... 
Darlene: Pulling it that way and some force pulling ex—equally back on it. 
Bonnie:   Yeah. 
Alisa:   And, they’re equal? 
Bonnie:   Yes.  
Darlene: Same with up and down.  Not that that matters, really. 
Bonnie:  We'll just stick with... 
Darlene: Horizontal. 
Bonnie:  Yeah, one dimension. 
  

In this clip the students are deciding which features mentioned in the problem should 

be included in their diagram.  That is, the students are playing the Pictorial Analysis 

epistemic game.  The structure of this game is similar to Physical Mechanism; however, 

the ontological components of Physical Mechanism and Pictorial Analysis are slightly 

                                                 
22 At the time of the instructional intervention, I was not consciously attempting to nudge 
“the students into playing a different epistemic game.”  It is only in the analysis, not in 
the actual event, that I used the concept of epistemic games to describe this episode.   
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different.  The epistemic form in Pictorial Analysis involves a coherent, physical 

description and an external representation; the epistemic form for Physical Mechanism 

only involves a coherent, physical description. 

The external representation generated in the Pictorial Analysis epistemic game cues 

additional resources in the students, which help them better understand this problem.  In 

particular, the students draw on the interpretive device of physical change to conclude 

that q1 and q2 have to have opposite charges.   

Alisa:   So, maybe this is pushing... 
Darlene: That's [q2] repelling and q1's attracting? 
Bonnie:  Yeah, it's just that whatever q2 is, q1 has to be the opposite.  Right? 
Alisa:   Not necessarily. 
Darlene: Yeah. 
Bonnie:  OK, like what if they were both positive? 
Alisa:   Well, I guess you're right, they do have to be different, because if 

they were both positive... 
Bonnie:  Then, they'd both push the same way. 
Alisa:   And, this were positive it would go zooming that way. 
Darlene: They would both push. 
Alisa:   And, if this were negative it would go there. 
Bonnie:  It would go zooming that way. 
Alisa:   And, if they were negative... 
Darlene: It would still—they'd all go that way. 
Alisa:   It would be the same thing.  
 

Bonnie makes a claim that the charge on q1 has to be the opposite of q2, but the others 

don’t initially agree.  Bonnie’s suggestion to verify, or falsify, her claim involves the 

interpretive strategy of physical change.  That is, she considers the affect of an actual 

physical alteration to the system (“OK, like what if they were both positive?”).  From this 

move the students almost immediately conclude that the charges on q1 and q2 must be 

different, or else q3 would go ‘zooming’ away.  

Switching to Pictorial Analysis turns out to be a very effective problem solving 

strategy.  By decomposing the forces in space and creating on external representation, the 
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students are able to physically justify why q1 and q2 have to have opposite charge.  This 

clip also illustrates that the students’ problem does not stem from lack of knowledge or 

skills; rather, the epistemic game the students play in their initial approach (Physical 

Mechanism) does not help adequately articulate the physical relationship between the 

charges.  The external representation they collectively generate in Pictorial Analysis cues 

resources they already possess (physical change), which helps them make progress on 

this problem (i.e. conclude that q1 and q2 have opposite charges). 

Although the students’ external representation and conclusion marks progress, they 

have yet to solve the problem.  In fact, they have not even identified the necessary 

physics principle: Coulomb’s Law.  That’s exactly what happens in the next clip. 

Mapping Mathematics to Meaning 

So far the students have drawn a diagram representing which forces act and in what 

direction, and they have concluded that q1 and q2 have opposite charges; however, they 

have not yet solved this problem.  In this clip we see Alisa spontaneously reframe the 

problem solving process by drawing on a new set of resources: formal mathematics 

knowledge. 

Alisa:  Are we going to go with that? 
Bonnie:  I think it makes sense. 
Darlene: That makes... 
Alisa:  Well, I don't know, because when you're covering a distance you're 

using it in the denominator as the square.  
Bonnie:  Oh!  Is that how it works? 
Alisa:  And (?) makes a difference. 
Bonnie:  Yeah, you're right. 
Tuminaro:  So, how do you know that? 
Darlene: From the Coulomb's Law. 
Bonnie:  So, it should actually be negative four q?  Or what?  Since it has… 
Alisa:  Cause we were getting into problems in the beginning of the problem 

with two A A, because I thought that like if you move this a little bit 
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to the right the decrease for this would make up for the increase for 
this.  But, then we decided it didn't.  So, that's how I know that I 
don't think it would just increase it by a factor of two. 

  
Alisa is not only attempting to introduce a new epistemic game, she is negotiating a 

frame shift.  All the previous reasoning relied on intuitive reasoning primitives, without 

any explicit reference to physics principles or equations.  The students played Physical 

Mechanism and Pictorial Analysis within the qualitative sense making frame. Alisa’s 

introduction of Coulomb’s Law is the first mention of a physics principle during this 

entire problem solving process.  In addition, it’s the first time any one explicitly makes 

reference to an equation (“when you cover a distance you use it in the denominator as the 

square”).   Alisa’s use of formal physics principles and explicit reference to equations is 

an attempt to nudge the other students into the quantitative sense making frame.  In 

particular, she is (tacitly) asking them to play Mapping Mathematics to Meaning.23 

Alisa’s discussion follows all the moves within Mapping Mathematics to Meaning (see  

Figure 24).  One, the distance and force are identified as the relevant concepts in this 

problem.  Two, she identifies Coulomb’s Law ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

2
21

r

qkq
F as an equation that relates 

the target concept to other concepts.  Third, she develops a story using this relationship 

between concepts: “When you’re covering a distance you’re using it in the denominator 

as the square.”  Fourth, she evaluates the validity of her story by referencing a previous 

problem.  She acknowledges that her intuitive reasoning had failed her on the previous 

problem, which justifies the need for Coulomb’s Law on this problem: “I thought that 

                                                 
23 Admittedly, Alisa would not describe her comments as an invitation to play Mapping 
Mathematics to Meaning.   
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like if you move this a little bit to the right the decrease for this would make up for the 

increase for this.  But, then we decided it didn't.”   

Evaluate story 

Identify target “concept” 

Find an equation relating target 
to other “concepts” 

Tell a story using this relationship 
between “concepts” 

Distance and Force 

F = kq1q2/r2 

“…when you're covering a 
distance you're using it in the 
denominator as the square. …” 

“Cause we were getting into getting 
into problems in the beginning of the 
problem with two A A, ” 

 

Figure 24.  Schematic map of Alisa’s moves within Mapping Mathematics to Meaning. 

Alisa’s use of Coulomb’s Law is significant progress on this problem, but all the 

other students don’t know how to apply this new piece of information.  In fact, the 

introduction of Coulomb’s Law cues Darlene to play a new epistemic game. 

Transliteration to Mathematics 

Although it appears the students are making progress on this problem, they take a 

detour and attempt to use another problem as a prototype for solving this problem.  Alisa 

has suggested that Coulomb’s Law is an important concept.  It appears that Darlene does 

not initially know how to apply this new information.  She attempts to find a different 

problem that uses Coulomb’s Law in its solution, and then map the solution pattern from 

the other problem to the Three Charge Problem.  The problem that Darlene identifies as 
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using Coulomb’s Law in the solution is the Force-Distance Two-Charge Problem 

(Appendix A, # 7). 

Darlene:  Where is that other problem?  Three times as far apart as they 
were now what is the magnitude of the force? 

Bonnie:   I think it should be four times.   
Darlene: If it's three times as far apart it's...you divide...uh!  I think it's q 

over two. 
Bonnie:  Q over two?  So, if you think of it as half the force of q2. 
Darlene: Look at this one. 
Bonnie:  Is this one you're talking about? 
Darlene: Uh-huh.  If you increase the distance that they are from each other 

it's decreasing by the same amount.  I thought it was four (?), but 
they said it was (?).  I don't know why.  Just three times...does it 
matter? I'm looking at this one.  Number three, isn't that like the 
same thing? 

Alisa:   Three was an estimation problem. 
Darlene: No, no with the q and four q and all that, you know how there was 

this question that asked when you move the charges three times 
further apart than they originally were, what the resulting force is. 

Alisa: OK. 
Darlene: And, you said it was—we said it was four—the charge would be 

like q, or nine, but it would get three times as far apart.  Why it's not 
three I don't understand, but that’s all right.  So—  

Alisa: Well, 'cause in the equation you square this—the distance between 
them.  Like if you're multiplying by three... 

Darlene: Oh!  So, I would think this one would be q over four—negative q 
over four.  Cause it's twice as far away, opposite charge.  Does that 
make sense? 

Alisa:  But, then it's a smaller charge than this. 
Bonnie:   Yeah. 
Alisa:  So, I don't understand how it would be pushing three or pulling three 

whatever it's doing. 
  

In the Force-Distance Two-Charge Problem, the students had found that if the force 

between two charges for a given distance is F, tripling the distance results in a force 

between the two charges that is decreased by a factor of nine (see Appendix A, #7), in 

compliance with Coulomb’s Law.  Darlene is attempting to match the quantities in the 

Three Charge Problem with quantities from the Force-Distance Charge Problem, so the 
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solution pattern can be transferred; i.e. she is playing the Transliteration to Mathematics 

epistemic game.  

Q Q

Q Q 

d 

3d 

9
F  

F F 

9
F  

 
Figure 25. Displays the difference between the forces on two charges  

when the distance between the charges is tripled. 

 
One obvious piece of evidence that Darlene is playing Transliteration to Mathematics 

comes when she says, “Why it’s not three I don’t understand, but that’s all right.”  

Darlene is explicitly meta-cognitive indicating that she doesn’t understand the previous 

problem, but conceptual understanding is not terribly important in the Transliteration to 

Mathematics epistemic game.  All that is important in this game is that the problems have 

enough similar features that the solution from one problem can be transferred to the 

other.   

Darlene’s metacognitive statement (“Why it’s not three I don’t understand, but that’s 

all right.”) stands in stark contrast to Alisa’s meta-cognitive statement (“I thought that 

like if you move this a little bit to the right the decrease for this would make up for the 

increase for this.”). Darlene simply admits she doesn’t understand and slavishly transfers 
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the solution pattern from the previous problem anyway.  Alisa’s metacognitive statement 

leads to her justification for using Coulomb’s Law.   

This difference between Darlene and Alisa’s metacognitive statements is an iconic 

example of the difference between the two frames in which these statements are couched.  

Darlene’s statement occurs while playing Transliteration to Mathematics in the rote 

equation chasing frame.  Conceptual understanding is not a necessary component of the 

rote equation chasing frame.  Alisa’s comment occurred while playing Mapping 

Mathematics to Meaning in the quantitative sense making frame.  Conceptual 

understanding is a necessary component of the quantitative sense making frame. 

Darlene’s Transliteration to Mathematics approach doesn’t help her with the Three 

Charge Problem.  She says, “If you increase the distance that they are from each other it's 

decreasing by the same amount.”  The problem with Darlene’s approach is that she is 

unaware of the two meanings that she attributes to the pronoun ‘it.’  In the previous 

problem the pronoun stands for ‘force,’ so that the statement would read, “If you increase 

the distance that they are from each other, then the force is decreasing by the same 

amount.”  However, Darlene tacitly maps this into the statement, “If you increase the 

distance that they are from each other, then the charge is decreasing by the same 

amount.”  The Transliteration to Mathematics game is not helpful in this case because 

force and charge are not related to distance in the same way in Coulomb’s Law.  This is 

not to say that the Transliteration to Mathematics game is wrong; it doesn’t work in this 

situation because of Darlene’s inappropriate mapping of force and charge. 
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Mapping Meaning to Mathematics 

In this clip the students finally come to the solution of the problem.  Alisa 

summarizes her final solution as the other students and I listen.   

Alisa’s problem solving activities follow the Mapping Meaning to Mathematics 

epistemic game (see Figure 11).  First, she develops a conceptual story describing the 

physical situation.  This conceptual story relies heavily on the reasoning primitives of 

balancing.     

Tuminaro:  What did you do there? 
Alisa:  What did I do there? 
Tuminaro:  Yeah, can I ask? 
Alisa:  All right, so because this isn't moving the two forces that are acting 

on it are equal:  the push and the pull.   
 

Alisa correctly maps ‘force’ as the two influences that balance in this physical situation. 

Second, Alisa uses the identity symbolic form, which has the symbol template � = …, 

to translate her conceptual story into mathematical expressions: 

So, the F—I don't know if this is the right F symbol—but, the F q2 on q3 is 
equal to this (see Equation 1).  And, then the F q1 on q3 is equal to 
this (see Equation 2), because the distance is twice as much, so it 
would be four d squared instead of d squared.  

 

2
3

32 d
kQq

F qq =→  

       Equation 1 

2
3

31 4d
kxQq

F qq =→  

       Equation 2  
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Alisa explains why she wrote the charge on q1 as ‘xQ,’ by drawing on the reasoning 

primitive of scaling, which has the syntax x�. 

And, then I used x Q like or you can even do—yeah—x Q for the charge on 
q1, because we know in some way it's going to be related to Q like 
the big Q we just got to find the factor that relates to that. 

  
The third step in the Mapping Meaning to Mathematics, Alisa relates the 

mathematical entities that she derived in step 2 with her conceptual story that she 

developed in step 1: 

Then, I set them equal to each other… 
 

Fourth, she manipulates the mathematical expression to arrive at the desired solution: 

… and I crossed out like the q2 and the k and the d squared and that gave 
me Q equals x Q over four.   And, then x Q equals four Q, so x would 
have to be equal to four.  That's how you know it's four Q. 

 
Fifth, the other students evaluate Alisa’s problem solving approach and conclusion. 

Bonnie:  Well, shouldn't it be—well equal and opposite, but... 
Alisa:  Yeah, you could stick the negative. 
Bonnie:  Yeah. 
Darlene:  I didn't use Coulomb's equation, I just—but it was similar to that. 
Bonnie:  That's a good way of proving it. 
Darlene:  Uh-huh. 
Bonnie:  Good explanation. 
Alisa:  Can I have my A now? 
 

Darlene admits that is not the way she arrived at a solution, but acknowledges that Alisa’s 

approach is consistent with her own.  Bonnie makes a single critique (“shouldn’t it 

be…equal and opposite”), yet admits Alisa’s approach is “a good way of proving it.”  In 

fact, Alisa must realize that this is a good way to prove this, since she audaciously asks 

for an “A now.”   
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“because this isn't moving the  
two forces that are acting on it 
are equal.”  

F1 = kxQq3/d2 
F2 = kQq3/(4d2) 

Evaluate story 

Manipulate symbols 

Develop story about physical situation

Translate quantities in physical story 
to mathematical entities 
(mathematical ontology) 

Relate mathematical entities in accordance 
with physical story  F1 = F2 

“…I set them equal to each 
other, and I crossed out 
like the… ”  

“Can I have my A 
now?” 

 

Figure 26.  Schematic map of Alisa’s moves within the Mapping Meaning to 

Mathematics epistemic game. 

Instructional implications 

Earlier in this chapter, I made the assertion that the typical reader would probably 

solve the Three Charge Problem in about fifteen seconds – 240 times faster than these 

students.  This lead to a slightly whimsical question: Does this mean that the typical 

reader is 240 times smarter than these students?  My answer to this question was, and 

still is, no.  I made the claim then that the difference in the reader and the students’ 

knowledge structure could account for the difference in the speed of the problem 

solution.  That is, the reader’s knowledge exists in compiled form; whereas, the students 

knowledge does not.  Therefore, it takes the student a longer amount of time to execute 

the same operations as the reader. 
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The typical reader may not be aware of all the knowledge and reasoning that goes 

into solving this problem, since the solution comes so easily and quickly.  Decomposing 

the students’ problem solving session in terms of frames, epistemic games, and resources 

allows us to ‘see’ and examine all the knowledge and reasoning that is involved in this 

problem.  With increased understanding of the knowledge and reasoning involved in such 

a seemingly simple problem, instructors and educators can begin to develop teaching 

environments and interventions that more effectively and efficiently cue the appropriate 

resources and epistemic games.  This in turn could help students become better and more 

efficient problem solvers.  

Conclusion 

 One can use the theoretical framework that I have developed in this dissertation to 

make sense of students’ use of mathematics in physics.  In particular, this framework 

introduces the relevant cognitive structures (mathematical resources) and the relationship 

between these structures (epistemic games and frames) for describing and analyzing 

mathematical thinking and problem solving.  Students’ use of mathematics in physics can 

be broken into the problem solving time scale (~ 1 hour), the problem heuristic time scale 

(~ 10 minutes), and the thought time scale (~ 1 second), which are described by frames, 

epistemic games, and mathematical resources, respectively.  
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Chapter 7: Understanding Student Mathematical Errors  

in Terms of Resources, Epistemic Games, and Frames 

 

Introduction 

Galileo wrote that “the book of nature is written in the language of mathematics.”  So, 

it seems natural that in order for students to understand physics they must be fluent in this 

mathematical language.  However, it’s often the case that students perform poorly on 

mathematical problem solving tasks in the context of physics.  There are at least two 

possible, distinct reasons for this poor performance:  (1) students simply lack the 

mathematical knowledge and skills needed to solve problems in physics, or (2) students 

do not know how to apply the mathematical skills they have to particular problem 

situations in physics.   While many students do lack the requisite mathematical skills, 

research in mathematics education suggests that many of students’ mathematics errors 

arise from erroneously learned rules – not simply lack of mathematics knowledge (Ben-

Zeev, 1996, 1998; Matz, 1982; Silver 1986; VanLehn, 1983, 1986).  Analyzing students’ 

mathematical errors in physics in terms of resources, epistemic games, and frames 

suggests that some students’ errors arise because they fail to use or interpret their 

mathematics knowledge and skills correctly in the context of physics – in accordance 

with reason (2).   
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In this chapter I discuss students’ mathematical errors in the context of physics.  First, 

I discuss Ben-Zeev’s taxonomy of rational mathematical errors that can be used to 

classify student mathematical errors in the context of mathematics.  In particular, Ben-

Zeev identifies three classes of rational errors: critic-related failures, syntactic errors, and 

semantic errors.  In section three I review previous research about student mathematical 

errors, and I discuss how this research can help make sense of students’ inappropriate use 

of mathematical symbolism.  That is, this previous research helps make sense of students’ 

critic-related failures and syntactic errors.  In section four I analyze students’ 

mathematical errors in physics in terms of resources, epistemic games, and frames.  In 

particular, I show that resources, epistemic games, and frames help make sense of 

students’ semantic math errors in the context of physics. 

A taxonomy of rational mathematical errors: REASON 

Erroneous symbolic manipulations are not the only types of errors that students 

produce while using mathematics.  To get a handle on the many different kinds of errors 

that students produce while using mathematics, Ben-Zeev (1996, 1998) developed a 

taxonomy of rational mathematical errors, which she calls Rational Errors As Sources Of 

Novelty (or REASON).  The word ‘rational’ indicates that these errors do not arise out of 

carelessness on the students’ parts; rather, these errors arise from (often times 

sophisticated) mathematical thinking that is applied in an inconsistent or inappropriate 

manner.  For example, the students that produce the error 
5
2

2
1

3
1

=+  are not simply being 

lazy or careless; they are systematically applying a rule in which they add the numerator 

and denominator (Silver, 1986). 
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Ben-Zeev identifies three major categories of rational errors: critic-related failures, 

syntactic induction, and semantic induction.  Critic-related failures and syntactic 

induction are errors associated with erroneous symbolic manipulations.  Semantic 

inductive errors arise from inappropriate conceptualization of the mathematical 

symbolism.  I discuss each of these classes of errors in turn.   

Critic-related failures in REASON 

A critic is a meta-cognitive knowledge structure.  Critic-related failures arise from a 

lack of meta-cognitive monitoring during the mathematical problem solving process.  An 

informal definition of a critic is that it is a metacognitive resource, which monitors the 

current problem state and fires when a violation occurs.  Ben-Zeev formally defines a 

critic in terms of production rules (see Anderson, 1983; Anderson and Thompson, 1989; 

Anderson, 1993).  In short, a production rule is an algorithm for solving problems.  A 

production rule has the form “If B, then A,” where B is a particular problem state and A is 

the algorithm that can be implemented to arrive at a solution for the problem in state B.  

Critics are associated with production rule that have the form “If C, then ?”.  If state C is 

reached a critic will fire, because there is no algorithm that can be implemented to arrive 

at a solution for problem state C.   

Ben-Zeev articulates three mechanisms by which this class of error can occur: absent 

critic, weak critic, and constraint satisfaction.  An absent critic is a critic that simply 

doesn’t exist.  A weak critic is a critic that is in competition with a previously learned 

rule.  Constraint satisfaction occurs if a ‘fix’ is spontaneously generated to stop the critic 

from firing.  One type of ‘fix’ involves altering the state C, so the critic associated with 

the production rule “if C, then ?” stops firing.  Ben-Zeev calls this type of fix a negation.  
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Figure 27 shows a schematic diagram showing the different kinds of critic-related 

failures. 

 

Critic-related failures 

Absent Critic Weak Critic Constraint 
Satisfaction 

Negation 
Competition 

 

Figure 27:  Schematic diagram of the kinds of critic-related failures  

(Ben-Zeev, 1996, p. 70). 

Absent critic  

Many introductory physics students don’t differentiate between symbols that look the 

same but represent different physical quantities.  For example, many students in my study 

did not distinguish between ∆v (the change in velocity) and v  (the average velocity) 

when solving problems, even though the symbols represent distinct physical quantities. 

According to Ben-Zeev, if the students simply ignore the difference between the symbols 

∆v and v  while solving problems, and if they are not immediately corrected, then they 

may fail to develop the appropriate critic to signal a difference between ∆v and v .  In 

this case the students would have an absent critic.   

Weak critic 

Alternatively the critic to distinguish between ∆v and v could present, but it is 

competition with a prior knowledge rule – i.e. it’s a weak critic.  That is, the critic to 
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signal a difference between ∆v and v  may not be strong enough to take precedence 

over a previously learned rule for manipulating symbols.  “The strength of the rule is 

primarily affected by how successfully the rule has performed in the past problem-

solving episodes” (Ben-Zeev, 1998, p.372).   

Constraint satisfaction 

A third mechanism for a critic-related error is that the students negate or alter the 

situation that caused the critic to fire in the first place.  Recall that a critic fires when a 

production rule of the form “if C, then ?” is reached.  If the situation C is negated to ~C 

or altered in some way, then the critic will stop firing and the algorithm associated with 

~C can be implemented.  Considering the example with ∆v and v  again, it may be the 

case that students have a critic that fires when they see the symbols ‘∆’ and ‘ .’  By a 

tacit mental removal of these symbols, the students may be able to adequately alter the 

situation so that the critic no longer fires.  Therefore, they don’t need to distinguish 

between ∆v and v  anymore, because they have tacitly removed  ‘∆’ and ‘ ’ – so, they 

are left with v and v, which are obviously the same.   

Syntactic Induction in REASON 

According to REASON, inductive failures arise when a student over-generalizes or 

over-specializes a rule or worked example.  Syntactic induction is a type of inductive 

error that arises from inappropriate use of mathematical symbolism. Figure 28 shows a 

schematic overview of the mechanisms by which students may generate inductive errors 
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when faced with an unfamiliar problem situation: partial matching, mis-specification, and 

spurious correlation.  Each of these mechanisms is discussed below.   

 

Syntactic Induction 

Mis-specification 
Spurious 

Correlation Partial 
Matching  

Figure 28: Schematic diagram showing the mechanisms by which syntactic inductive 

errors occur (Ben-Zeev, 1996, p.70). 

Partial Matching 

The partial matching mechanism arises when students focus on surface feature 

similarities between two examples.  Research by Hinsley and Hayes (1977) indicates that 

experts tend categorize physics problems according to the physics principles used to 

solve the problem, whereas students tend to categorize problems by the objects described 

in the problem statement.  Students’ attention to surface feature similarities can be 

translated into the language of production rules.  For a given production rule of the form 

“If C, then ?”, if C can be thought of as C = C1 and C2 and … and Cn, then the students 

may search for a Ci that partially matches the current problem state, C, and execute the 

production rule associated with Ci. 

Misspecification 

The misspecification of the constraints of the problem is the second mechanism by 

which syntactic rational errors occur.  In this case, students either use an under- or over-
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specialized schema for solving problems.  For example, students in my study made the 

following error: 

2
2

2 r

qk
r

qqkelF ⇒= . 

(The “⇒ ” symbol is used to denote an invalid equality statement.)  This error can be 

understood as the over-generalization of a schema.  Matz (1982) says that students 

generalize the distributive law of multiplication, ACABCBA +=+ )( , into the following 

schema: yxyx �∆=�∆� )( , where the symbol ∆ can stand for any binary operation.  If 

the students map  into � it leads to the error that BABA +=+ .  In the example 

given above, the students generalize the expression AAA 2=+  into AAA 2=∆ , and then 

map ∆→× yielding the incorrect conclusion that AAA 2=× . 

Spurious correlation 

The spurious correlation error occurs when students focus on a particular feature of a 

problem situation and correlate that feature with a specific algorithm.   

An example for the case of subtraction comes from Brown and VanLehn’s (1980) 

repair theory for describing students’ erroneous symbolic manipulations.  Brown and 

VanLehn argue that students do not quit when faced with a subtraction problem they 

don’t know how to solve; rather, students create algorithms that help them solve the 

problems.  Often times these algorithms are filled with “bugs” – i.e. the algorithms are 

spuriously correlated with a particular feature of a problem situation.  The 

implementation of these “buggy” algorithms results in erroneous solutions. 
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VanLehn (1986) identifies the bug N-N-Causes-Borrow, which can be used to explain 

the following subtraction error: 

012

23
261

5

−
/

 

In VanLehn’s explanation, a student that commits the N-N-Causes-Borrow bug has 

correctly learned to borrow when the top digit is less than the bottom digit, and not when 

the bottom is less than the top.  However, when the top and bottom are equal the student 

incorrectly implements the borrowing procedure, which results in the type of error 

illustrated above. 

Semantic Induction in REASON 

Critic-related failures and syntactic inductive errors are the result of erroneous 

symbolic manipulations.  In contrast, semantic inductive errors result from erroneous 

performance based on conceptual aspects of a problem situation.  Ben-Zeev offers two 

mechanisms by which semantic inductive failures occur (see Figure 29). 

Mis-specification 

Semantic Induction 

Analogy  

Figure 29: Schematic diagram showing the mechanism for semantic inductive errors  

(Ben-Zeev, 1996, p.70). 
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Analogical Breakdown Due to Linguistic Effects 

In analogical breakdown the analogy that the student uses to generate a solution may 

simply lack the necessary features to help the student arrive at the correct answer.  An 

example that Ben-Zeev offers comes from the following algebraic error: 

XmnmXn )( +⇒+ .  She claims that students may generate this error by making an 

analogy from linguistics statements, such as “three apples plus four gives seven apples.”  

In this case the analogy to the linguistic statement breaks down, and leads to an erroneous 

conclusion. 

Analogical Breakdown Generated from Real-World Situations 

A second mechanism that Ben-Zeev offers as a semantic inductive error arises from 

analogy from real-world situations.  A common error that students make in mathematics 

is to conclude that 00 =n .  One reason why students might make this conclusion is that 

they erroneously conceptualize 0n  as “n multiplied by itself zero times, so it has to be 

zero,” since doing nothing equals nothing.  Doing nothing equals nothing is a natural 

argument that stems from real-world experience, however it leads to erroneous 

conclusions when used in the conceptualization of 0n .  

Discussion about previous research and REASON 

Research on understanding students’ mathematical errors spans across many different 

domains of mathematics:  addition and subtraction (Carpenter and Moser, 1983; Riley, 

Greeno, and Heller, 1983; VanLehn, 1983, 1986; Kintsch and Greeno, 1985; Fuson, 

1992), multiplication and division (Greer, 1992; Vergnaud, 1983, 1988; Schwartz, 1988), 
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the equals symbol (Herscovics and Kieran, 1980; Kieran, 1981), and algebraic equations 

(Clement, Lochhead, and Monk, 1981; Matz, 1982; Nathan, Kintsch, and Young, 1992).   

In particular, there has been significant progress on understanding students’ errors 

associated with incorrect symbolic manipulations.  For instance, I have already discussed 

two examples from the literature that help us make sense of students’ syntactic 

mathematics errors: Brown and VanLehn’s (1980) repair theory for describing students’ 

subtraction errors in terms of “buggy” algorithms (e.g. the N-N-Causes-Borrow bug 

identified by VanLehn, 1986); and, Matz’s (1982) explanation of the square root error 

( )BABAei +=+..  in terms of an underspecified schema ( )yxyxei �∆=�∆� )(..  

that is incorrectly generalized from the distributive law of multiplication: 

ACABCBA +=+ )( .   

These two examples of symbolic mathematical errors are in no way an exhaustive list.  

I simply include them as representatives of the kinds of explanations that exist in the 

research literature for describing students’ syntactic mathematics errors.  For a more 

thorough review of research on symbolic mathematics errors see Ben-Zeev (1996), and 

for a general overview of mathematics education research see Reed (1998).  

Although there has been significant progress on understanding students’ syntactic 

mathematics errors (i.e. the critic-related and syntactic inductive errors in REASON), a 

comparable understanding of students’ conceptual mathematics errors has not been 

realized (i.e. semantic inductive errors in REASON).  More germane to the issue of 

mathematics in physics is the fact that the conceptual mathematics errors in the context of 

mathematics are different from those in the context of physics.  One virtue of the 

theoretical framework that I propose in this dissertation is that it helps make sense of 
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students’ conceptual mathematics errors in the context of physics.  In particular, 

analyzing students’ mathematics errors in physics in terms of resources, epistemic games, 

and frames suggests that most students’ errors arise because they fail to use or interpret 

their mathematics knowledge and skills correctly in the context of physics. 

Analysis of students’ mathematical errors in terms of Resources, Epistemic Games, 

and Frames 

The framework that I propose has three major theoretical components: resources, 

epistemic games, and frames.  Students’ conceptual-mathematical errors usually arise 

through a complex interplay of all these theoretical constructs.  I discuss each of these 

kinds of errors below. 

Errors associated with resources 

Students’ knowledge base for mathematical thinking and problem solving can be 

modeled as collections of resources (see chapter 4).  In particular, there are four classes 

of resources that are germane to the issue of mathematics in the context of physics: 

intuitive mathematics knowledge, reasoning primitives, symbolic forms, and interpretive 

devices.  There are two mechanisms by which errors associated with resources can arise: 

(1) the appropriate resource is cued, but the entities in the problem situation are 

inappropriately mapped into the problem situation; or, (2) an inappropriate resource is 

cued. 

Appropriate resource, but inappropriate mapping 

Resources are abstract cognitive structures that are neither right nor wrong.   It is not 

until a resource is mapped into a particular problem situation that the correctness of its 
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usage can be determined.  Therefore, errors can occur in which an appropriate resource is 

activated, yet it is inappropriately mapped into a particular problem situation.   

For example, the situation of an object in motion may cue the abstract reasoning 

primitive of agent causes effect.  If ‘agent’ is mapped onto ‘force’ and ‘effect’ is mapped 

onto ‘velocity,’ then the resulting facet is force causes velocity – which is incorrect.  

However, if ‘agent’ is mapped onto ‘force’ and ‘effect’ is mapped onto ‘change in 

velocity,’ then the resulting facet is force causes changes in velocity – which is correct.  

In this example the same abstract reasoning primitive can be mapped into an incorrect 

(force causes velocity) or a correct (force causes changes in velocity) facet (see Figure 

30).24   

agent causes effect

Force causes 
velocity 

Force causes 
change in velocity

Reasoning 
Primitive 

Facet 

incorrect correct 
 

Figure 30.  Two possible instantiations of the same abstract reasoning primitive  

(see Elby, 2001). 

An example of an appropriately cued resource, but an inappropriate mapping occurs 

while Alisa, Bonnie, and Darlene work on the Three Charge Problem (Appendix A, #15).  

These students correctly realize that the “effect” (force) of q1 on q3 must cancel the 

                                                 
24 The idea that one reasoning primitive can be mapped into a correct or incorrect facet 
can be used in instruction: Andy Elby uses this idea when developing curriculum (Elby, 
2001).  Redish calls two different facets that result from the same underlying reasoning 
primitive Elby-Pairs. 
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“effect” (force) of q2 on q3.  Therefore, they correctly conclude that since q1 is farther 

away that is must have more charge, but they quantify this conclusion incorrectly.   

Alisa:  So, we—we were thinking it was like negative two Q or something 
like that. 

Bonnie:  Yeah.  Cause it has to be like big enough to push away. 
Darlene:  Push away q3. 
Bonnie:  Yeah, which we—which I figured out negative two. 
Darlene:  Cause it's twice the distance away than q2 is? 
Bonnie:  Yeah. 
Darlene:  I agree with that.  
 

It seems these students use the abstract reasoning primitives of closer means stronger 

(or farther means weaker) and prop+, along with the fact that the distance between q1 

and q3 is twice as big as the distance between q2 and q3, to conclude that the charge on q1 

must be twice as big (and opposite in sign) as the charge on q2 .  Although this is a great 

piece of intuitive reasoning, this is an example of appropriately cued resources that are 

mapped incorrectly.  According to Coulomb’s Law ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

2
21

r

qkq
F there is not a linear 

relationship between distance and force.  Therefore, while farther means weaker and 

prop+ are appropriately cued resources in this case, the distance is inappropriately 

mapped into a linear relationship with the force leading the students to an incorrect (albeit 

intuitively appealing) conclusion.  

Inappropriate resource 

Students’ conceptual mathematics errors can also occur from an inappropriately cued 

resource.  That is, the resource that is cued cannot be mapped into a useful facet for the 

particular problem situation under investigation. 
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An example of an inappropriately cued resource occurs while Alisa and Darlene 

discuss the Three Charge Problem (Appendix A, #15).  Alisa is explaining to Darlene her 

interpretation of the physical situation, but the activation of the reasoning primitive of 

blocking distracts Darlene:  

Alisa:   Like—q2 is—q2 is pushing this way, or attracting--whichever.  
There's a certain force between two Q, or q2 that's attracting.   

Darlene: q3. 
Alisa:  But at the same time you have q1 repelling q3. 
Darlene: How is it repelling when it's got this charge in the middle? 
 

In this particular problem situation the activation of blocking does not help the 

students make progress on this problem.  The Coulomb force of q1 on q3 is not blocked 

by the presence of q2.  The resource of blocking is inappropriately cued.   Such an 

inappropriately cued resource can lead to an error. 

Errors associated with epistemic games and frames 

Epistemic games and frames can be used to model the process component of 

students’ use of mathematics in physics.  Therefore, I call errors associated with 

epistemic games and frames process errors.  There are two mechanisms by which 

process errors may occur: (1) students play the appropriate epistemic game, but make 

inappropriate move within that game; or, (2) students frame the problem situation 

inappropriately, and therefore play an inappropriate epistemic game.  

Appropriate epistemic game, but wrong move within that game 

The major structural component of an epistemic game is the moves.  The moves in a 

particular epistemic game are always the same.  For example, there are four moves in 

Mapping Mathematics to Meaning: (1) identify target concept(s), (2) find an equation 
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relating target to other concepts, (3) tell a story using this relationship between concepts, 

and (4) evaluate story.  Although the moves in a particular game are always the same, the 

particular problem situation and resources that are active can vary from problem to 

problem resulting different instantiations of a particular epistemic game.  Students can 

play an appropriate epistemic game, but make an inappropriate move along the way 

because of an inappropriately activated resource.  For instance, a student can play an 

epistemic game that is appropriate for solving a particular problem, but use an 

inappropriate interpretive device (i.e. make an inappropriate move within an epistemic 

game), resulting in a process error.   

An example of this type of error occurs while Arielle and Tommy work on the 

Colliding Blocks Problem (Appendix A, #3).   At first Arielle plays Mapping 

Mathematics to Meaning to arrive at the correct conclusion: 

 Arielle:  So then the Fnet for A, the Fnet for M.  This is a big mass and this 
is a little mass and [the forces] are equal, so this has got to be a big, 
what is it, a big velocity and this has got to be a small velocity.  So, p 
for A and p for m—the change in velocity here has got to be sort of 
bigger.  Big velocity little mass, big mass little velocity.  But these 
are equal. 

Tommy:  Right. 
Arielle:  So the momentums got to be the same right?  
 

In this case Arielle plays the Mapping Mathematics to Meaning epistemic game.  She 

(1) identifies the target concept (the momentum) and (2) finds an equation relating the 

target quantity to other concepts (
t
vmnetF

∆
∆

= ).  Then, (3) she tells the story that since 

block m has a larger mass it must have a smaller velocity.  In particular, it appears that 

Arielle uses the interpretive device of changing parameters by considering how the 

expression for the momenta would change if the velocity and the mass varied.  That is, 
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she has the mathematical expression BBAA vmvm ∆=∆ and she considers how changing 

the value of the parameters on the left will affect the value of the parameters on the right. 

Using the changing parameters interpretive device within the Mapping Mathematics 

to Meaning epistemic game Arielle correctly concludes that the momenta would have to 

be the same.  Consistent with the fourth move in Mapping Mathematics to Meaning, she 

evaluates her story and is not satisfied with its conclusion.  So, she continues to discuss 

this problem: 

How could [the momenta] be the same?  If the masses are different and the 
change in velocities are different the momentums can’t be the same. 

 
In this case Arielle is again playing the Mapping Mathematics to Meaning epistemic 

game, but this time it appears that she uses the interpretive device of feature analysis.  

That is, she considers the features of momentum (namely, the velocity and the mass) and 

concludes that if two momenta have different features than they can’t be the same (in 

much the same way that two faces with different features can’t be the same face).   

This example illustrates that in the context of an appropriate epistemic game 

(Mapping Mathematics to Meaning) the same student uses an inappropriate interpretive 

devices (feature analysis) leading to the incorrect conclusion (“…the momentums can’t 

be the same.”).  In the first instantiation of Mapping Mathematics to Meaning it appears 

that changing parameters is activated, which leads her to the correct conclusion that the 

momenta are the same.  However, in the second instantiation it appears that feature 

analysis is activated, which leads to the incorrect conclusion that the momenta are 

different.  The epistemic game does not lead to Arielle’s incorrect conclusion; it is the 

particular resource that is activated during that game that leads to the incorrect 

conclusion.   
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Inappropriate framing leading to an inappropriate epistemic game 

In chapter 5 I discussed how a students’ expectations, or framing, determine which 

epistemic game they tacitly choose to play.  That is, the entry conditions for a particular 

epistemic game are determined by how a student frames the particular problem situation.  

If the student inappropriately frames the problem situation, then it can lead him to play an 

inappropriate epistemic game. 

An example of this type of error occurs while Valerie and Sarah work on the Dorm-

Room Pressure Problem (Appendix A, #5). 

 Valerie:  Pressure's equal to the radius times the moles of the gas times the 
temperature divided by the volume.  So, what we need to do, we 
know the pressure find the volume from this.  Density is equal to... 

Sarah:  Are you using PV equals N R T? 
Valerie:  Huh? 
Sarah:  Are you using P V equals N R T? 
Valerie:  Yeah, or yeah. 
Sarah:  Or. 
Valerie:  Or P equals R times N T... 
Sarah:  Over V. 
Valerie:  Over V. 
Sarah:  We know the pressure. 
Valerie:  We know the pressure.  But we need to take the density to volume.  

Density is equal to... 
Sarah:  Oh, we have the density. 
Valerie:  Yeah, yeah, but that doesn't matter we need the volume. 
  

As I discussed in chapter 5, it appears that these students are playing the Recursive 

Plug-and-Chug epistemic game.  There are two errors that the students commit in solving 

this problem.  The first, and most obvious, error is that they choose an equation (or 

relationship) that simply cannot help them solve this problem.  The ideal gas law 

( nRTPV = ) could help them determine the pressure of the air in the dorm room, but not 

the difference in pressure between the floor and the ceiling.  So, we could say that these 

students are not playing the Recursive Plug-and-Chug game well, because they pick an 



  

 190 

inappropriate equation.  The second error is that this is the wrong epistemic game to be 

playing to solve this problem; slavishly playing this game will not lead to the correct 

answer.  Even if the students had chosen an appropriate equation ( )ghPPge ρ+= 01.. , 

they could not simply determine the unknowns and solve for the target quantity.  At some 

point the students need to estimate the height of a dorm room, which is not a move within 

the Recursive Plug-and-Chug game. 

It’s not just the case that the students chose the wrong equation; the problem is worse 

than that.  In fact, these students are stuck in the wrong process – they are playing the 

wrong epistemic game.  The only way these students can solve this problem is if they 

play a different epistemic game (like Mapping Mathematics to Meaning).  The reason 

these students are stuck is that they framed this problem situation inappropriately, which 

lead them to play an inappropriate epistemic game.  This is not to same that Recursive 

Plug-and-Chug is necessarily wrong; it just happens to be the case that in this instance 

this game does not lead the students to the correct answer. 

Conclusions 

In this chapter I discussed students’ mathematical errors in the context of physics.  I 

introduced Ben-Zeev’s taxonomy of mathematical errors, called REASON, and I showed 

how previous research on mathematical errors helps us understand students’ syntactic 

mathematics errors.  Then I showed how the theoretical framework that I propose in this 

dissertation helps us understand students’ semantic mathematics errors in the context of 

physics.  Semantic mathematics errors can be associated with resources, epistemic games, 

or frames.  In particular, I identify four different kinds of errors: (1) inappropriate 
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resource, (2) appropriate resource, but inappropriate mapping, (3) appropriate epistemic 

game, and (4) inappropriate framing leading to an inappropriate epistemic game.
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Chapter 8: Summary and speculations for future research 

Summary of cognitive framework 

Physics is a difficult subject.  Mathematical problem solving in the context of physics 

has proven to be a considerable challenge for students attempting to learn physics.  From 

this general notion that students do not perform well on mathematical problem solving 

tasks in physics, I attempt to answer two specific questions:  (1) What are the cognitive 

tools involved in formal mathematical thinking in physics?  And:  (2) why do students 

make the kinds of mistakes they do when using mathematics in physics?   

Through observation and analysis of students solving homework problems, I develop 

a cognitive framework that can be used to analyze and describe students’ use and 

understanding of mathematics in the context of physics.  In particular, this cognitive 

framework can be used to answer questions (1) and (2) from above.  That is, this 

framework helps us understand the ontological and process components of students’ use 

of mathematics in physics.   

The ontological component of students’ use of mathematics in physics 

Mathematical Resources 

In chapter 4 I introduce the notion of mathematical resources (e.g. intuitive 

mathematics knowledge, reasoning primitives, symbolic forms, and interpretive devices) 

to address the ontological component of students’ use and understanding of mathematics 
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in the context of physics.  Mathematical resources are the cognitive tools that are 

activated in formal mathematical thinking in physics.   

Intuitive mathematics knowledge: a collection of primitive cognitive capacities that 

are required for and involved in advanced and abstract mathematical thinking.  I identify 

four different pieces of intuitive mathematics knowledge from my data: subitizing, 

counting, pairing, and ordering.  Subitizing is the ability to distinguish between sets of 

one, two, and three objects.  Counting is the ability to enumerate a series of objects.  

Pairing is the ability to group two objects for collective consideration.  And lastly, 

ordering is the ability to rank relative magnitudes of mathematical objects. 

Reasoning primitives: abstract cognitive elements that describe students’ intuitive 

sense of physical mechanism.  Reasoning primitives are abstracted from the notion of 

phenomenological primitives (diSessa, 1993).    The appropriate coordination of these 

abstract cognitive elements can lead to expert understanding.  In my data set I identify 

and discuss four different abstract reasoning primitives: blocking, overcoming, balancing, 

and more is more.  Blocking is the abstract notion that inanimate objects are not active 

agents in any physical scenario.  Overcoming is the abstract notion that two opposing 

influences attempt to achieve mutually exclusive results, with one of these influences 

beating out the other.  Balancing is the abstract notion that two opposing influences 

exactly cancel each other out to produce no apparent result.  More is more is the abstract 

notion that more of one quantity implies more of a related quantity.  This is not an 

exhaustive list; it represents a sample of a large set of reasoning primitives.  There may 

be dozens of reasoning primitives, but not thousands. 
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Symbolic forms: are cognitive elements that describe students’ intuitive 

understanding of physics equations.  Symbolic forms were introduced by Bruce Sherin 

(1996).  In his dissertation, Sherin identifies 21 different symbolic forms; I discuss three 

of these symbolic forms that are prevalent in my data set: proportionality plus, balancing, 

and canceling.  Proportionality plus is the combination of the abstract notion more is 

more combined with the symbol template of [ ]......x�= .  The symbolic form of balancing 

combines the abstract notion that two opposing influences are exactly equal with the 

symbol template � = �.  Lastly, the symbolic form of canceling combines the abstract 

notion that two opposing influences exactly cancel out with the symbol template � = �. 

Interpretive devices:  resources that when activated determine how students interpret 

physics equations.  Interpretive devices were also introduced by Bruce Sherin (1996).    

He identifies three different classes of interpretive devices: narrative, static, and special 

case.  Interpretive devices in the narrative class project the physics equation in an 

imaginary process in which some type of change occurs.  The static class consists of 

interpretive devices that map the physics equation into a static situation.  Conclusions 

drawn from interpretive devices in the special case class are based on the values of the 

physics equations being somehow restricted.   

I identify a class of interpretive devices that Sherin did not: intuitive class.  

Interpretive devices in the intuitive class are reasoning strategies that are abstracted from 

everyday reasoning and applied to physics equations.  In particular, I identify feature 

analysis and ignoring as belonging to the class of intuitive interpretive devices.  Feature 

analysis is a reasoning strategy in which one analyzes the features  in a physics equation 

(e.g. symbols or terms) – in much the same way that one could analyze the features of 
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two faces (e.g. eyes or noses).  Ignoring is an interpretive strategy in which some aspects 

of the physics equation are simply ignored. 

These four classes of mathematical resources (intuitive mathematics knowledge, 

reasoning primitives, symbolic forms, and interpretive devices) represent the cognitive 

tools that students use during mathematical thinking and problem solving in physics.  

That is, mathematical resources are my answer to the first research question:  What are 

the cognitive tools involved in formal mathematical thinking in physics? 

The process component of students’ use of mathematics in physics 

In chapter 5 I introduce epistemic games and frames, which, taken together, help us 

understand the process component of students’ mathematical thinking and problem 

solving in the context of physics. 

Epistemic games 

Epistemic games were introduced by Collins and Ferguson (1993) to describe expert 

scientific inquiry across all scientific disciplines.  I generalize Collins’ and Ferguson’s 

notion of an epistemic game to be descriptive rather than normative; i.e. the epistemic 

games I identify describe how students actually use mathematics in physics, in contrast to 

how we would want them to use mathematics in physics.  I use the main characteristics 

that Collins and Ferguson attribute to epistemic games to identify a set of games that 

introductory, algebra-based physics students play while solving problems in physics.   

Epistemic games have ontological and structural components.  The ontological 

components are the knowledge base and the epistemic form.  The knowledge base is the 

collection of mathematical resources (e.g. intuitive mathematics knowledge, reasoning 
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primitives, symbolic forms, and interpretive devices) that students use during the 

epistemic game.  The epistemic form is a target structure that guides the inquiry in the 

epistemic game.  The structural components of an epistemic game are the entry 

conditions and the moves.  The entry conditions are the reasons and conditions that lead 

students to play a particular epistemic game.  (The entry conditions are based on the 

students’ frames and framing.)  The moves are the activities that occur during the course 

of an epistemic game. 

I identify six different epistemic games that introductory students play while using 

mathematics in the context of physics: Mapping Meaning to Mathematics, Mapping 

Mathematics to Meaning, Physical Mechanism Game, Pictorial Analysis, Recursive Plug-

and-Chug, and Transliteration to Mathematics.  Mapping Meaning to Mathematics is an 

epistemic game in which students start with a conceptual understanding of a physical 

situation that they then translate into physics equations.  In Mapping Mathematics to 

Meaning, students begin with a physics equation, which they use to make sense of a 

particular physical situation or physics problem.  In the Physical Mechanism Game 

students develop a physical sense of mechanism for a particular physical situation or 

physics problem based on their intuitive conceptual understanding.  Pictorial Analysis is 

an epistemic game in which students create an external representation that captures the 

spatial relationship between the various (relevant) entities in a physics problem.  

Recursive Plug-and-Chug is an epistemic game that does not involve conceptual 

understanding; rather, students simply plug numbers or symbols into physics equations, 

in a recursive manner, to calculate an answer.  And lastly, Transliteration to Mathematics 

is an epistemic game in which students use worked examples to generate a solution; 
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however, they do so without developing a conceptual understanding of the worked 

example.   

Frames 

It’s not just the elements of a student’s knowledge structure that are relevant to 

understanding their behavior; it’s how that knowledge is organized and accessed.  A 

useful structure in helping us understand these issues is framing.  A frame is an 

individual’s interpretation of a situation or event based on her expectations of the 

situation or event.  That is, frames help the individual answer the question, “what kind of 

activity is this?”   

Frames help us understand why a student plays a particular epistemic game in a 

particular situation.  A student’s real-time assessment of a particular problem and/or 

preconceived epistemological beliefs about physics problem solving in general determine 

how she interprets that problem – i.e. how she frames the problem.  For example, if a 

student reads a problem and determines that the problem is about forces, then she may 

decide to play Pictorial Analysis (i.e. draw a free-body diagram) based on her real-time 

assessment of the problem.  Alternatively, if the student has the epistemological belief 

that problem solving in physics involves plugging in numbers into memorized equations, 

then she may choose to play Recursive Plug-and-Chug – without attempting to 

understand the problem conceptually.     
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The ontological and process components help us understand students’ mathematical 

thinking and problem solving 

Mathematical resources, epistemic games, and frames, taken together, represent my 

attempt to answer the second research question:  Why do students make the kinds of 

mistakes they do when using mathematics in physics?  In chapter 6 I offer an in-depth 

analysis in terms of mathematical resources, epistemic games, and frames of a one-hour 

problem solving session.  This analysis shows how mathematical resources, epistemic 

games, and frames offer educators and researchers a technical language capable of 

describing students’ (correct and incorrect) use of mathematics in physics.   

In chapter 7 I show how this framework can be used to understand students’ semantic 

math errors in the context of physics.  In particular, I identify four different kinds of 

semantic math errors: (1) an appropriate resource with an inappropriate mapping, (2) an 

inappropriately cued resource, (3) an appropriate epistemic game with an inappropriate 

move within that game, and (4) an inappropriate framing leading to an inappropriate 

epistemic game.   

Results of this study 

The major result of this dissertation is the construction of a theoretical framework that 

offers educators and researchers a vocabulary (ontological classification of cognitive 

structures) and grammar (relationship between the cognitive structures) for understanding 

the nature and origin of students’ use of mathematics in the context physics.  The 

cognitive structures are mathematical resources, and epistemic games and frames 

describe how students associate and coordinate these mathematical resources when using 

mathematics in physics.   
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In addition to offering educators a more thorough understanding of students’ use of 

mathematics, this dissertation synthesizes previous research.  The theoretical framework 

presented here pulls together phenomenological primitives (diSessa, 1993), symbolic 

forms and interpretive devices (Sherin, 1996), epistemic games (Collins and Ferguson, 

1993), and frames (Goffman, 1974; Tannen, 1993) into one coherent theoretical 

framework for describing how students’ understand and use mathematics in physics.   

Instructional implications 

Since this theoretical framework offers researchers and educators a more thorough 

understanding of mathematical thinking and problem solving it has instructional 

implications.  In particular, this theoretical framework can be used as a diagnostic tool, a 

guide for instructional intervention, or a guide for curriculum development.   

A diagnostic tool 

One important result of this theoretical framework is that it can help researchers and 

educators distinguish between seemingly similar expert and novice problem solving 

behavior.  As an example, consider the similarities and differences between Mapping 

Mathematics to Meaning and Recursive Plug-and-Chug.  Experts often play Mapping 

Mathematics to Meaning while solving problems in the context of physics.  There are 

five moves in this epistemic game: (1) identify the target concept, (2) identify a physics 

equation relating the target concept to other concepts, (3) develop a conceptual story 

relating the physical objects in accordance with the physics equation, (4) manipulate the 

symbols in the equation and solve for the target, and then (5) evaluate the solution.  

Students often play Recursive Plug-and-Chug, which, at first glance, may appear to be 



  

 200 

the same as Mapping Mathematics to Meaning; but, there are some important, subtle 

differences between the two games.  Some of the moves in Recursive Plug-and-Chug are 

similar to the moves in Mapping Mathematics to Meaning:  (1) identify the target 

quantity, (2) identify an equation that relates the target quantity to other quantities, and 

then (3) identify which quantities are known and which quantities are unknown.  If the 

target is the only unknown quantity, then the student can proceed to calculate the target 

quantity; however, if there are other unknowns, then the student must choose a sub-target 

and loop back to move (2) mentioned above.   

Although some moves in the two games are similar (i.e. the structural components of 

the two games are similar), the mathematical resources activated in the two games are 

different (i.e. the ontological components of the two games are different).  While experts 

play Mapping Mathematics to Meaning there are conceptual and epistemological 

resources that are active that help the experts make sense of the symbolic equations – the 

experts use the equations to organize and coordinate their conceptual knowledge.  In 

contrast, while playing Recursive Plug-and-Chug, the students don’t have the conceptual 

and epistemological resources active that would help them make sense of the 

mathematical symbolism involved in the physics equations – the students use the 

equations without making sense of the mathematical symbolism.  So, while some of the 

moves are similar in Mapping Mathematics to Meaning and Recursive Plug-and-Chug 

(they both involve the identification of a target concept and an equation, and 

mathematical manipulations), the cognitive and epistemological resources that are active 

in the two games are different.   
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To summarize, the theoretical framework offers educators and researchers a language 

to help tease apart these seemingly similar behaviors. 

A guide for instructional interventions  

An investigation of the instructional practices used to teach mathematical problem 

solving in physics was not the central theme of my dissertation research; however, the 

cognitive framework that I have developed does have implications for instructional 

interventions. 

For example, since Recursive Plug-and-Chug and Mapping Mathematics to Meaning 

have similar structures, instructors of physics may mistake students’ novice behavior (e.g. 

playing Recursive Plug-and-Chug) with expert-like behavior (e.g. playing Mapping 

Mathematics to Meaning) – even though the two behaviors involve different underlying 

cognitive structures.  This mis-diagnosis can have negative ramifications for the students’ 

learning.   

If the instructors do not realize that the students are using the mathematical 

symbolism without conceptual understanding, then they may encourage the students’ rote 

problem solving behavior.  That is, research suggests that if students are not corrected 

early and often enough after making mathematical errors, then they might not develop the 

appropriate (internal) critics to adequately monitor their own problem solving behavior 

(Ben-Zeev, 1996).  If the instructors don’t realize that the students are engaging in rote 

problem solving behavior, then they won’t be able to correct the students appropriately.  

Without correction from the instructor, the students might not develop the appropriate 

monitoring skills (or critics) to distinguish between rote symbol manipulation and 
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mathematical problem solving that includes conceptual understanding.  Therefore, they 

may continue using mathematics in physics without conceptual understanding.   

Conversely, if an instructor is aware of the difference between these two problem 

solving behaviors, then she can potentially help those students who engage in rote 

symbolic manipulations (e.g. play Recursive Plug-and-Chug) shift to a more conceptually 

meaningful problem solving approach (e.g. Mapping Mathematics to Meaning).  Since, 

according to this theoretical framework, this two problem solving behaviors occur in 

different frames, the instructor must be able to affect the students’ expectations about 

problem solving in physics – i.e. shift the students from a rote equation chasing frame to 

a quantitative sense making frame.  Exactly how this can be accomplished becomes a 

research question for a future research project; however, this theoretical framework could 

serve as a guide for such a research project – which leads into a discussion about physics 

curriculum. 

A guide for physics curriculum 

As discussed in chapter 3, understanding the instructional and learning practices is 

important in any inquiry about mathematical thinking and problem solving.  The 

theoretical framework developed in this dissertation can be used as a guide for 

researchers and educators attempting to create physics curriculum that could improve 

students’ use of mathematics in physics. 

As discussed above, one possible approach to improve students’ use of mathematics 

in physics may be to nudge them from a rote equation chasing frame into a quantitative 

sense-making frame.  In attempts to achieve this frame shift, Professor Redish 

implemented two different instructional methods.  First, he used class time to model how 
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conceptual information can be interpreted from physics equations.  For example, he has 

written the equations in “idea form.”  That is, he replaced the algebraic symbols with the 

semantic content that they represent, so that an equation like 
t
xv

∆
∆

=  becomes 

( ) ( )
( )in time change

positionin  change velocityaverage = .  Second, he asks both conceptual and 

quantitative questions, about a given physical situation, in attempts to get the students to 

coordinate their conceptual and quantitative knowledge while solving physics problems – 

i.e. he attempts to nudge them into a quantitative sense-making frame.  Preliminary, 

anecdotal evidence suggests that these changes in the teaching style and curriculum have 

led to modest improvements.     

Future research 

Three possible research projects that could derive from this dissertation are 

extensions of this framework to larger populations, investigations of the cognitive 

ontology involved in understanding different mathematical objects, and the development 

of computer models based on this theoretical framework. 

Extensions to larger populations 

The theoretical framework derives from an investigation of how students in an 

introductory, algebra-based physics course use and understand mathematics in physics.  

If I had investigated a different population of students the cognitive structures would 

most certainly be different.  For example, many physics majors have trouble with the 

transition from introductory physics course, which are generally taken in the freshmen 

and sophomore years, to the more advanced physics courses that are take in the junior 
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and senior years.   A common belief held by many physics faculty is that the students’ 

difficulties stem from the level of mathematical sophistication required in the junior and 

senior level physics courses.  It is this belief that has led many physics departments to 

offer mathematical physics courses.  For example, the physics department at the 

University of Maryland offers PHYS 374 entitled “Intermediate Theoretical Methods.”  

Does the students’ problem solely lie in the mathematical formalism?  Or, could the 

problem stem from the students’ difficulty with mapping physical meaning onto 

sophisticated mathematics?  The work in this dissertation can serve as a potential starting 

point for investigations to improve the intermediate physics majors’ mathematical skills 

and understanding. 

Investigations of the cognitive ontology of different mathematical objects 

Physics is a subject matter that uses many different kinds of mathematical objects.  

There are numbers, variables, vectors, operators, tensors, and matrices to name a few.  I 

call these different mathematical objects the mathematical ontology of physics.  A 

possible extension of the theoretical framework developed in this dissertation could 

include the aspect of the many different mathematical objects used in physics.  Since 

most introductory, algebra-based physics courses only use numbers and variables (and 

sometimes vectors) this is not the ideal population for examining differences in 

mathematical ontology.  In fact, my data was not rich in student discussions about the 

mathematical ontology of physics; however, I imagine a quantum mechanics or 

theoretical dynamics course would have extensive discussions of such topics.  These 

courses could provide sufficient data to extend the theoretical framework I developed in 

this dissertation, so that it incorporates the mathematical ontology of physics.    
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Development of computer models based on theoretical framework 

In addition to the instructional implications, the cognitive framework developed in 

this dissertation can be used to create computer models, which could help us better 

understand students’ use of mathematics.  I have identified the relevant cognitive 

structures (mathematical resources) and how they associated and coordinated during 

mathematical problem solving in physics (epistemic games and frames).  My 

classification of the ontological and process component of mathematical thinking – in 

terms of mathematical resources, epistemic games, and frames – can be used as a 

blueprint in the construction of such computer models. 

In particular, these models could be programmed in an object-oriented programming 

language like C++.  The mathematical resources could be created as a class – one class 

for each kind of mathematical resources (intuitive mathematics knowledge, reasoning 

primitives, symbolic forms, and interpretive devices).  Then epistemic games and frames 

could become a derived class that inherits some of the characteristics of the base class of 

mathematical resources.  For example, Mapping Mathematics to Meaning is an epistemic 

game that should inherit all the different mathematical resources, whereas Recursive 

Plug-and-Chug should not inherit these mathematical resources – since this game doesn’t 

involve conceptual understanding as discussed above. 

These ideas for creating computer programs are in the preliminary stages, however 

the theoretical framework seems to be a promising place to start in the construction of 

such models. 
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Closing remarks 

In this dissertation I develop a cognitive framework consisting of three major 

theoretical constructs: mathematical resources, epistemic games, and frames.  I try to 

show that mathematical resources, epistemic games, and frames give educators and 

researchers a better understanding of the cognitive structures and processes involved in 

mathematical thinking and problem solving.  Hopefully this increased understanding can 

lead to instructional interventions, classroom environments, and curriculum that will 

improve introductory students’ use and understanding of mathematics in the context of 

physics.
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Appendix A: Homework Problems 

 

1. Air Drag Problem 

For the first part of the problem, let's figure out what the drag force has to look like as a 
function of the possible variables using dimensional analysis. Consider a sphere of radius 
R and mass m moving through the air at a speed v. Assume the air has a density ρ 
(measured in kg/m3) 

• The force the air exerts on the sphere is independent of the sphere's mass. Discuss 
why this is plausible. (Hint: consider the case of the sphere held fixed and the air 
blowing past it at a speed v.) 

• From the quantities R, ρ, and v use dimensional analysis to show that there is only 
one possible combination of these variables that produces a quantity with the 
dimension of force. 

 

2. Colliding Carts (Representation Translation) Problem 

Two identical carts labeled A and B are 
initially resting one thee air track.  The 
coordinate system for describing the system 
is shown.  The cart on the right, cart B is 
given a push to the left and is released.  The 
clock is then started.  At t = 0, cart B moves 
in the direction shown with a speed v0.  
They hit and stick to each other.  
 

The graphs below describe some of the variables associated with the motion as a 
function of time.  For the experiment described and for each item in the list below, 
identify which graph is possible display of the variable as a function of time assuming 
a proper scale.  “The system” refers to carts A and B together. 

1. the momentum of cart B ______ 
2. the force of cart A ______ 
3. the total momentum of the system ______ 
4. the kinetic energy of cart B ______ 
5. the total kinetic energy of the system ______ 
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3. Colliding Gliders (Algebraic) Problem 

The mass of glider A is one-half that of glider M (i.e. mM = 2mA).  Apply 
Newton’s second law (Fnet = m∆v/∆t) to each of the colliding gliders to 
compare the change in momentum (∆p=m∆v) of gliders A and M during the 
collision.  Discuss both magnitude and direction.  Explain. 

 
 

A 
M 

vAi 
vMi= 0  

                               
                                        vMf = ? 
  vAf  = 0        

A 

 

4. Conversion Problem 

Discuss the question: “Is 500 feet big or small?” Before you do so, carry out the 
following estimates. 
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a) You are on the top floor of a 500 ft tall building. A fire breaks out in the building 
and the elevator stops working. You have to walk down to the ground floor. 
Estimate how long this would take you. (Your stairwell is on the other side of the 
building from the fire.) 

b) You are hiking the Appalachian Trail on a beautiful Fall morning as part of a 10 
mile hike with a group of friends. You are walking along a well-tended, level part 
of the trail. Estimate how long it would take you to walk 500 feet. 

c) You are driving on the New Jersey Turnpike at 65 mi/hr. You pass a sign that 
says "Lane ends 500 feet." How much time do you have in order to change lanes? 

 

5. Dorm Room Pressure Problem 

Estimate the difference in pressure between the floor and the ceiling in your 
dorm room. 

6. Elevator Problem 

A passenger is standing on a scale in an elevator. The building has a 
height of 500 feet, the passenger has a mass of 80 kg, and the scale has a 
mass of 7 kg. The scale sits on the floor of the elevator. You may take g 
= 10 N/kg. 
 

(a) Draw free-body diagrams for the passenger and the scale while 
the elevator is sitting at rest on the 33rd floor. Be sure to identify: 

(1) the type of force, (2) the object causing the force, and (3) the object feeling the 
force somewhere in your diagram or labeling.  Indicate which (if any) two 
individual forces in these diagrams have the same magnitude. 
 

(b) The elevator now begins to descend. Starting from rest, it takes the elevator 6 
seconds to get up to its downward speed of 8 m/s. Assuming that it is accelerating 
downward at a uniform rate during these 6 seconds, which of the forces in your 
diagram for (a) will change? For each force that changes, specify whether it will 
become bigger or smaller.  
 

(c) While it is accelerating downward, which of the forces in your diagrams have the 
same magnitude? For each equality you claim, explain why you think they are 
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equal. 
 

(d) While it is accelerating downward, what does the scale read?  
 

7. Force-Distance Two-Charge Problem  

Two small objects each with a net charge of Q (where Q is a positive number) 
exert a force of magnitude F on each other.  We replace one of the objects with 
another whose net charge is 4Q.  If we move the Q and 4Q charges to be 3 times 
as far apart as they were. Now what is the magnitude of the force on the 4Q?  
  (a) F/9  (b) F/3  (c) 4F/9  (d) 4F/3  (e) other 
 

Q Q

4Q Q 

d 

3d 

F
9
4  

F F 

F
9
4  

  

8. Fuel Efficiency Problem 

In America, we measure fuel efficiency of our cars by citing the number of miles you can 
drive on one gallon of gas (mi/gal). In Europe, the same information is given by quoting 
how many liters of gas it takes to go 100 km (l/100 km).  

a. My current car gets 21 mi/gal in highway travel. What number (in li/100 km) 
should I give to my Swedish friend so that he can compare it to his Volvo?  

b. The car I drove in England last summer needed 6 liters of gas to go 100 km. How 
many mi/gal did it get?  

c. If my car has a fuel efficiency, f, in miles/gallon, what is its European efficiency, 
e, in liters/100 km? (Write an equation that would permit an easy conversion.) 

 



  

 211 

9. Jogger Problem 

A jogger runs around a circular track of 30 m radius shown 
in the figure at the right.  She runs at a constant speed in a 
clockwise direction and completes one lap in 40 seconds. 
What is her average velocity from A to C? 
 
 
 
 
 

10. Melting Ice Problem 

An experiment on the melting of ice is being done in an insulated calorimeter set up so no 
heat is exchanged with the outside environment. The calorimeter contains a mass m1 of 
water and a block of ice having a mass m2, is floating in the water. Both the ice and the 
water are at a temperature of 0 ºC. 

a) What mass of boiling water, m3, must be added to the system to produce only water at 
0 ºC?  Express your answer in terms of symbols, defining symbols for any heat capacities 
you require. 

b) Suppose m1 = 100 grams, m2 = 25 grams, and I add 50 grams of boiling water. When 
the system comes to thermal equilibrium, will there be any ice left? If there is none, what 
will the final temperature of the water be? 

The following numbers may be of some use:1 cal/gram-ºC, 80 cal/gram, 540 cal/gram. 

11. Paper Towel Problem 

In public restrooms there are often paper towel 
dispensers that require you to pull downward on 
the towel to extract it. If your hands are wet and 
you are pulling with one hand, the towel often 
rips. When you pull with both hands, the towel 
can be extracted without tearing. Explain why. 
 

12. Paramecium Problem 

Unicellular organisms such as bacteria and protists are small objects that live 
in dense fluids. As a result, the resistive force they feel is large and viscous. 
Since their masses are small their motion looks very different from motion 
in a medium with little resistance.  Paramecia move by pushing their cilia 
(little hairs on their surface) through the fluid. The fluid (of course) pushes 

y (m) 

x (m)A C 

B 
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back on them. We will call this back force of the fluid on the cilia of the paramecium "the 
applied force,” F (since it wouldn't happen if the paramecium didn't try to move its cilia). 

• Write Newton's second law for a paramecium feeling two forces: the applied force 
and the viscous force. 

• If the mass is small enough, for most of the time the term "ma" can be much 
smaller than the two forces, which are large and nearly cancel. Write what the 
equation for N2 turns into if we ignore the "ma" term. Describe what the motion 
would be like and how it would appear different from a low or no resistance 
example. 

 
Suppose the paramecium is starting from rest and starts to move, coming quickly to a 
constant velocity.  Describe how the three terms in the full N2 equation behave, 
illustrating your discussion with graphs of x, v, a, Fnet, F, and Fviscous. 
 

13. Pulling Two Boxes 

 

 

(a) A worker is pulling a pair of heavy crates along the floor with a rope. The rope is 
attached to the lower crate, which has a mass M. The upper crate has a mass m and the 
coefficient of friction between the crate and the floor is µ. If the rope is held at an angle 
θ, what is the maximum force F that can be exerted without the box beginning to slide?  

(b) The worker knows that the lower crate has a mass of 50 kg and the upper a mass of 10 
kg. She finds that if she pulls with a force of 120 N at an angle of 60º she can keep the 
crates sliding at a constant speed. Can you use this information to find the coefficient of 
friction between the lower crate and the floor? If you can, do it. If you can't, explain why 
not.  

(c) In a different situation, she finds that she can pull a lower crate of mass 30 kg and an 
upper crate of mass 7.5 kg with a constant velocity of 50 cm/s pulling at an angle of 45º. 
Can you use this information to find the coefficient of friction between the lower crate 
and the floor? If you can, do it. If you can't, explain why not.  
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14. Speed versus Pace Problem 

When we drive a car we usually describe our motion in terms of a speed or velocity. A 
speed limit, such as 60 miles/hr, is a speed. When runners or joggers describe their 
motion, they often do so in terms of a pace — how long it takes to go a given distance. A 
4-minute mile (or better, "4 minutes / mile") is an example of a pace. 

a) Express the speed 60 mi/hr as a pace in minutes/mile. 
b) I walk on my treadmill at a pace of 17 minutes/mile. What is my speed in 

miles/hour? 
c) If I travel at a speed, v, given in miles/hr, what is my pace, p, given in 

minutes/mile? (Write an equation that would permit easy conversion.) 
 
 

15. Three Charge Problem  

q1 q2 q3 

dd

 
In the figure above three charged particles lie on a straight line and are 
separated by distances d.  Charges q1 and q2 are held fixed.  Charge q3 is free to 
move but happens to be in equilibrium (no net electrostatic force acts on it).  If 
charge q2 has the value Q, what value must the charge q1 have? 
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Appendix B: List of Epistemic Games 

 

QUANTITATIVE SENSE MAKING FRAME 

Mapping Meaning to Mathematics (p. 106) 

Description:  Translation of conceptual understanding of a situation into rigorous, 
quantitative mathematical expression.  This game involves identifying and naming 
mathematical entities (numbers, constants, variables, etc.) and expressing their 
relations to each other mathematically. 
Identification:  Usually occurs after PICTORIAL ANALYSIS or PHYSICAL 
MECHANISM GAME, since the students need to have a conceptual understanding of 
the physical situation before they can play this game. 
Moves:  See Figure 31. 
Knowledge Base:  All mathematical resources. 
Epistemic form:   Mathematical expressions relating physical quantities. 
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Evaluate story 

Manipulate symbols 

Develop story about physical situation 

Translate quantities in physical 
story to mathematical entities 

(mathematical ontology)

Relate mathematical entities in accordance with 
physical story (interpretive devices) 

 
Figure 31. Schematic diagram of students’ moves with  

Mapping Meaning to Mathematics. 

 

Mapping Mathematics to Meaning (p. 114) 

Description:  Students begin with a physics equation, and then develop a conceptual 
story.  
Identification:  Analysis involves formal mathematical expressions.  The 
mathematical expression is usually written, however explicit verbal reference to a 
formal mathematical expression can occur.   
Moves:  See Figure 32. 
Knowledge Base:  All mathematical resources. 
Epistemic forms:  The equation, which is found in move (2), that relates the target to 
other concepts. 
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Evaluate story 

Identify target “concept(s)” 

Find an equation relating 
target to other “concepts” 

Tell a story using this relationship 
between “concepts”

 
Figure 32. Schematic diagram of students’ moves with  

Mapping Mathematics to Meaning. 

QUALITATIVE SENSE MAKING FRAME 

Physical Mechanism Game (p. 120) 

Description:  Analysis of physical phenomena involving only “common-sense” 
reasoning.  
Identification:  Utterances involve common speech, without any reference to formal 
mathematics/physics principles or reference to formal mathematical machinery to 
support conclusions. 
Moves:  See Figure 33. 
Knowledge Base:  Reasoning primitives and intuitive mathematics knowledge. 
Epistemic forms:  A coherent, physical description; verbal or imagistic. 

Evaluate story 

Develop story about physical situation 

 
Figure 33. Schematic diagram of students’ moves within the  

Physical Mechanism Game. 
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Pictorial Analysis Game (p. 124) 

Description:  Analysis of quantities or entities in a problem in terms of their spatial 
relation to each other, involving explicit generation or use of an external 
representation.  Similar to PHYSICAL MECHANISM, however the spatial relation 
of the quantities must be specified.  Physical situation must be simplified, resulting in 
some information being ignored.  This game does not include mathematical 
expressions.   
Identification:  Students will identify the entities, by either gesturing or making 
reference to an external representation, and then articulate how these entities are 
spatially related to each other.   
Moves:  See Error! Reference source not found.. 
Knowledge Elements: Reasoning primitives, intuitive mathematics knowledge, and 
syntactic knowledge. 
Epistemic forms:  The external representation that is generated or referenced (e.g. a 
free-body diagram, a circuit diagram, or a cartoon picture). 

 

Determine the target concept 

Choose an external representation 

Fill in the “slots” in this representation 

Tell a conceptual story based the  
spatial relations between objects 

 

Figure 34. Schematic diagram of the moves in Pictorial Analysis. 

ROTE EQUATION CHASING FRAME 

Recursive Plug-and-Chug (p. 127) 

Description:  Rote application of the “plug-and-chug” problem solving method. 
Identification:  Students use the mathematical machinery without understanding of 
concepts that the symbols represent.   
Moves:  See Figure 35. 
Knowledge Elements:  Intuitive mathematics knowledge and symbol template. 
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Epistemic form:  Standard solution form found at the back of most textbooks. 

Only the target quantity 
is unknown 

Calculate target quantity 

Identify target quantity 

Find an equation relating 
target to other quantities 

Determine which of the other 
quantities are known 

Some other quantities 
are unknown 

Choose a sub-target 
and start over 

 

Figure 35.  Schematic diagram of students’ moves within  

Recursive Plug-and-Chug. 

Transliteration to Mathematics (p. 131)  

Description:  Directly mapping solution from reference example to a target example.  
This game works very well when reference and target examples are isomorphic. 
Identification:  Often students will play this game without conceptual understanding; 
instead they focus attention on syntactic similarities between the reference and target 
examples. 
Moves:  See Figure 36. 
Knowledge Elements:  Intuitive mathematics knowledge and symbol template. 
Epistemic form:  The solution pattern from the reference example. 
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Evaluate mapping

Identify target quantity 

Find a solution pattern 
that relates to the current 

problem situation. 

Map quantities in the current 
problem situation into the 

solution pattern. 

 

Figure 36.  Schematic diagram of the moves in  

Transliteration to Mathematics. 
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