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ABSTRACT

We provide a short review of the literature on
design of decentralized control based on weak coupling
measures for transfer function models. The notion of
diagonal dominance for transfer functions has been
suggested as a measure of weak coupling for system de-
composition. Various generalizations of this notion
for partitioned transfer function matrices are dis-
cussed as they pertain to design of decentralized con-
trol.

Such weak coupling techniques permit a decentral-
ized design procedure based on an approximate de-
coupled model. The accuracy of these decoupled
approximations for control design is highlighted.

1.0 Introduction

Various methods for decentralized control design
have been suggested based on an assumption of subsys-
tem "weak coupling” of the input-output system res-
ponse which permit an approximate decoupled system
model to be wused for design. For 1linear design
problems, decomposition of system frequency domain mo-
dels can provide a natural way to construct decentral-
ized control. In this paper we will review
developments in the theory and application of weak
coupling measures in terms of transfer function models
and techniques for decentralized control., We remark
that in contrast to use of diagonal dominance and
other weak coupling techniques for state space models
these methods have received rather 1limited attention
in the control literature in recent years. Interest
in such methods may have suffered to some extent from
a lack of understanding of the physical significance
of weak coupling evidenced in the transfer function.
We refer the reader to the other papers in this ses-
sion for details of several applications. We hope
that by examining the issues relevant to a series of
applications from various problem areas that insight
can be gained as to the efficacy of these methods and
the significance of the various notions of weak cou~-
pling of the system input-output response.

2.0 Decomposition of Models and Weak Coupling

The utility of the state space framework for mo-
deling follows from the natural way in which time do-
main models are obtained for large systems, e.g.,
large network problems. This is in part due to the
inherent flexibility of state space modeling via iso-
morphism of the state space, Thus a state space model
can usually be obtained in which particular system
parameters can be made to appear in the elements of
the state space equation (matrix) operators in a sim-
ple (e.g. 1linear) manner, This fact makes it attrac-
tive to conduct perturbation analysis of various "weak
coupling" parameters in the state space model. Such a
notion of weak coupling is highlighted in the compre-~
hensive survey of Sandell, et al [24].
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The use of diagonal dominance and the related
concepts of M-matrices has been applied to state space
modeling and stability analysis for large scale sys-
tems by various researchers [14,25], In these studies
the stability of solutions to a set of coupled differ~
ential equations was studied by examining the domi-
nance properties of the matrix "generator", A, for the

state space model, x=Ax., A simple observation of Wil-
lems [28] is that for A:[aij] diagonally dominant with
aii<0 its eigenvalues can be shown to have strict ne-

gative real parts. The resulting system is of course
stable, Various constructive techniques have been de-
veloped for obtaining Lyapunov functions for systems
with such a composite "weakly" coupled structure
[14,25]. In this context the association between
diagonal dominance, spectral estimates of the Ger-
schgorin type, and the theory of M-matrices has been
exploited, Siljak employed these notions and the idea
of a vector Lyapunov function to obtain a method for
stability analysis and design of decentralized control
with state feedback. Various enhancements of such
methods including generalizations of diagonal domi-
nance and extensions to partitioned matrices have been
applied to this problem by Siljak [25].

The suggestion that feedback control could be
used to enhance weak coupling has been studied in the
context of the decoupling control problem. The objec~-
tive of decoupling being naturally interpreted as a
requirement to make the resulting closed loop system
have impulse response matrix which 1s diagonal (or
nearly so), In the frequency domain a simple way to
view weak coupling is via the notion of a diagonally
dominant transfer function matrix. The introduction
of diagonal dominance for transfer functions in the
control theoretic 1literature was due to Rosenbrock
{23]. Various interaction indices for composite sys-
tems based on time domain models have also been pro-
posed, but, by and large, the use of diagonal
dominance (and related notions) have dominated studies
based on input-output models. As a result the ques-
tion 1is often asked "what does diagonal dominance of
the transfer function mean in the state space model?"
This question remains largely unanswered although an
interaction index proposed by Aplevich[1] was shown to
satisfy particular bounds for stable systems with
diagonally dominant transfer functions. This result
was shown in the context of some work by Hutcheson
[11] on design of decoupling control. It is apparent
that there is no clear relationship between weak cou-
pling for state space models and for input-ocutput mo-
dels.

Refinements and

2.1 Diagonal Dominance Methods:

Extensions

The application of diagonal dominance to control
system design was popularized by Rosenbrock in the de-
velopment of the Inverse Nyquist Array (INA) method of
multivariable, loop-at-a-time design [23]. The suc-
cess of this method for decentralizing the design



process followed from two significant aspects of diag-
onally dominant transfer functions. First, the fact
that diagonally dominant matrices are nonsingular, is
exploited to provide a stability test for decentral-
ized feedback. Second, for design, one can use the
"decoupled” model with the accuracy of this approxima-
tion given in terms of the amount of dominance.

The stability result follows from an application
of a Nyquist test for square transfer functions. We
take D to be the usual closed contour in the complex
plane consisting of a relatively large portion of the
imaginary axis (with possible indentations for imagi-
nary poles) and a semicircular arc in the right half
plane,

Throughout this paper we will consider the multi-~
variable feedback equations:
y(s) = G(s) e(s) 2.1
e(s) = u(s) = F(3s) y(s)

with y(s) a p-vector and e(s),y(s) m-vectros,
which lead to the closed loop transfer function from
u(s) to y(s);

HG,F,s) = G(s)(I_ + FG(s)]7". (2.2)
Let the matrix return difference be
R(s) = Im + F(s)G(s). (2.3)

With respect to a given nXn partition of R:[Rij) we
designate the splitting of the matrix using the

notation; R = RD + RC ! with
D

R™ = diag { R R «esy R P

11 “22? nn

2.1 Theorem (decentralized stabilization):
following .assumptions:

Under the

(1) FoeP

the closed right half plane (CRP)

and FG have the same number of poles in

(ii) H(GD,FD) is an asymptotically stable transfer
function

(ii1) detfR® + orC1 # 0
all 0¢f0,1],

for all se¢ D, and for

Then the closed loop transfer function H(G,F) is also

asymptotically stable,

Remark: Theorem 2.1 has been stated (and proven) ex-—
plicitly in [3,18]. The result has been proven impli=~
citly in [12,17].

The objective of various weak coupling results
(which have been proposed as extensions of INA meth-
ods) for stabilizing decentralized control is to pro-
vide sufficient conditions for assumption (iii) in
theorem 2.1, This amounts to a homotopical equi-
valence between a pair of Nyquist curves; viz. one
for the decoupled approximate system and one for the
true coupled system. Rosenbrock used the trivial mXm
partitioning and the classical Gerschgorin results to
guarantee assumption (iii). We view assumption (iii)
as a kind of weak coupling result which 1s appropriate
to stability considerations.

It will be convenient to define diagonal domi-
nance in the following manner.

T From now on we will supress the argument s in the
statement of transfer functions whenever convenient.

2.2 Definition: Given an mXm matrix, Z(s), rational

in s we construct a pair of mXm test matrices B=[b, .1,
i]
C=[°ij] as follows:
B = diag { Iz11l, 5222?,.... izmmi } (2.5)
) 0, for izj
gy = | 2451, for 14 . (2.6)

Let the real wm-vector 1 = (1,...,1)t. Then we say

that the matrix Z is diagonally dominant by rows if:

(r, - B™1C] 1> 0 (element wise) (2.7
and by columns if:
[r, -cs'11%. (2.8)

The major problem with the INA method for design
of general multivariable control systems is that often
G(s) 1is not diagonally dominant. 1In this case, the
method as developed by Rosenbrock, requires the con-
struction of pre- (and/or post-) series compensators
such that Q(s) = L(s)G(s)K(s) can be made diagonally
dominant. Available techniques for the synthesis of
K(s) and L(s) which represent relatively 1low order,
realizable, and stable multivariable plants are ad hoc
at best [231],

We take the viewpoint that synthesis of K(s) and
L(s) may not be of fundamental interest for two rea-
sons. There is an available theory for the construc-
tion of optimal estimates of the c¢lass of transfer
functions which are weakly coupled in a more general
sense (in that they satisfy (iii) of theorem 2.1) and
which may provide the necessary estimates when the
plant is not diagonally dominant in the usual sense
[3-6,12,15=17], Second, for large scale systems, we
are interested in identifying the structural aspects
of the plant which admit a decentralized control solu-
tion embodying more general partitioning of the infor-
mation pattern imposed on the controller. (Note that
in general use of pre- (and/or post-) compensation is
not consistent with constraints on the information
pattern for decentralized control,)

2.1.1 Optimally Sharp Stability Estimates for Weakly
Coupled Systems

It can be readily seen that, with respect to the
usual definition of diagonal dominance of a transfer
function, the weak coupling measure does not include
an obvious class of weakly coupled systems; viz.,
systems with transfer function matrix which is upper
(resp. lower) triangular but not diagonally dominant.
Limebeer [12], recognizing this deficiency suggested a
refined definition of dominance. Independently,
Nwokah [15-17] applied the theory of M-matrices to the

test matrix [Im - B—1C] appearing in (7) to develop a
sharper stability estimate. Both efforts led to es-

sentially the same notion of generalized diagonal dom-
inance (GDD) which we summarize in the following
theorem,

2.4 Theorem (GDD): Given an mXm rational matrix Z we
construct the test matrices B and C as in (2.5)-(2.6).
Then Z is generalized diagonally dominant (GDD) if any
of the following equivalent conditions hold:

(i) there exists a real m-vector x>0 such that
[Im -8 c1x>o0

(ii) there exists an m-vector y>0 such that
-1
[Im - CB 1ly>0



(iii) the test matrix (I, - c8™'1 is an Mematrix °

(iv) if the test matrix [Im + CB_1J (a strictly

nonnegative matrix) has a dominant Perron ei-

3
genvalue APF>2.

If Z is GDD then Z is nonsingular on D.

The work of Fiedler and Ptak [10] provides the
basis for the consistency of this definition of GDD.
More significantly, Varga [26] has shown that the re-
sulting Gerschgorin disks i=1,...,m

X,
\ m j
= . - ! ! [
Gi(X) = {w C: W ziil S_ /_j:TIaij| xi }
are optimally sharp with respect to the information in
the test matrices B and C. To make this precise con=-

sider the class of all mXm matrices which generate the
same m Gerschgorin sets Gi(x). Varga showed that the
boundary of the union of the m Gi(x) is composed of

spectra from matrices in this class. Thus for the in-
formation contained in the test matrices B and C the
scaling x>0 (or equivalently y>0) is optimal.

2.1.2 Block Diagonal Dominance
Stabilization

and Decentralized

In references [9-10,27-28] results are provided
which generalize the Gershgorin theories to the case
of partitioned matrices in several ways. In [3] these
ideas are applied to the problem of decentralized
feedback control by appropriately generalizing the Ny~
quist array ideas of Rosenbrock. Unlike in
Rosenbrock's loop-at-a-time INA method, the resulting
design approach involves a sequence of multivariable
designs.

Let Z=[Z,.] be an nXn complex matrix partitioned

) \ m
ij /_j=1
block diagonal dominance (BDD) is de-

in mXm submatrices, where Z

ki=n. In [9]

fined analogously with the previous definition

for the construction of the test matrices B and C,
Given an nXn matrix, Z(s), rational in s, and parti-
tioned as above we construct a pair of mXm test ma-

is kiij; and

except

trices B:[bij}, C=[cij] as follows:

-1 -1, 1

B = diagliiz]) 1, o, een, HZT ) (2.9)
cij - 0, for i=j
Hz, i, for 143 . (2.10)

Then [3] we say that the rational matrix Z is block
diagonally dominant (BDD) if either (2.7) or (2.8) is
satisfied (with m replaced by n). We remark that in
contrast to the previous definition of diagonal domi-
nance there 1is considerable flexibility in this de~
finition in terms of the choice of norms on individual
subspaces and the choice of partitioning. Indeed,
considerations for the optimality of the partitioned
stability estimates are much more delicate than the
situation discussed in section 2.1.1 [27].

2 Recall that a matrix with nonpositive off-diagonal
elements is an M-matrix if all its principal minors
are strictly positive.

3 The Perron Frobenius root of an irreducible nonnega-
tive matrix is the unique eigenvalue of maximum mo-
dulus.

Limebeer suggested the notion of generalized
block diagonal dominance (GBDD) by applying these same
test matrices to the four conditions of theorem 2.4,
Limebeer preferred (for obvious computational reasons)
the evaluation of GBDD based on condition (iv) of this
theorem since this reduces to computing an eigenvalue

of maximum modulus. In the case that the matrix

[T + CB_1] is irreducible (in the sense of the
Perron-Frobenius theory of nonnegative matrices) this
eigenvalue is unique, Moreover, the associated eigen-
vector gives the optimal scaling for GBDD used in the
vectors x and y of theorem 2.4 (where in this case
x=y).

More recently, Ohta et al [18] have applied a re-
sult of Okuguchi [20] on partitioned matrices. They

suggest to form instead the test matrix B = (bij)

where
- 11 1
bij = IIYijll (2.11)
C D,-1 A .
with Y = Z (Z7) ' partitioned conformally with Z.
Here Z is split as Z = ZD + ZC Wwith

D

Z° = block diagi{z Z 1.

117 Zagreees Zyy
2.5 Theorem (QBDD): An mXm matrix Z=[Zij] partitioned

said to be guasi-block

diagonal dominant (QBDD) if any of the following con-
ditions hold:

as above into mXm blocks is

(i) there exists aa.real m-vector x>0 such that
[In -Bl x>0

(ii) the test matrix [In - Bl is an M-matrix

(iii) if B has a dominant Perron eigenvalue then
XPF<1'

Note also that any such Z is nonsingular on D,

We remark that a partitioned matrix Z is QBDD if
it is GBDD (as long as the same matrix norms are used
in forming the test matrices B, C, and B.) This fol-
lows from the fact that for any matrix norm
{1AB}1 < 11A{} }iIBii. Thus in general QBDD is a less
conservative measure of weak coupling for transfer
functions than either BDD or GBDD.

It should be noted that QBDD as discussed in Oku-
guchi [20] is a slightly more general notion of BDD
than considered in Feingold and Varga [9] also because
of consideration for applying any valid matrix norm
for the individual subblocks. By comparison in [9]
matrix norms for individual blocks are subordinate to
vector norms on corresponding subspaces; thus QBDD
allows for example the use of trace class norms such
as the Frobenius norm to be employed.

3.0 Decentralized Control

Stability tests of the form of theorem 2.1 to-
gether with BDD (GBDD or QBDD) provide qualitative in-
formation about candidate designs. They do not,
however, provide sufficient information in most cases
to determine either: (i) whether a candidate stabil-
izing decentralized control exists or, (ii) given a
nominal stabilizing decentralized control what design
freedom is left to allow satisfying additional design
criteria. In short these stability results alone do
not provide sufficient quantitative information to
suggest a unified method for design of decentralized
control. The natural viewpoint in decentralized de-
sign based on weak coupling assumptions is that the



design process itself becomes decentralized. That 1is
the individual compensator terms Fi(S) in

F(s)=block diag{Fi} can each be chosen individually

subject to a nominal decoupled system model, The ac-

curacy of this approximation must be known rather pre-
cisely for such methods to be effective, Indeed, in
the case of general partitions of G(s), the goal of
decentralizing the design process suggests the poten-
tial for different design techniques appropriate to
the local control objectives to be used. An appro-
priate measure of weak coupling such as BDD must quan-
tify the accuracy of the decoupled model approximation
in a manner consistent with the partition employed.
Estimates for the accuracy of decoupled transfer func-
tion models are discussed in section 3.2,

3.1 Stability

The  application of diagonal dominance for
transfer functions as first suggested by Rosenbrock
was to provide sufficient conditions for condition
(iii) of theorem 2.1 to hold thus permitting decen-
tralization of the design process. The various exten-
sions to this method primarily sought to extend the
application of this method to a larger class of sys=
tems by application of the refined measures discussed
in the previous section and by including the possibil-
ity of more general partitions of the transfer func-
tion matrices involved. These tests can be applied in
several ways which we summarize in a theorem,

3.1 Theorem: With G(s) and H(s) each mXm as defined
in (2.1)-(2.2) (resp. G and H are partitioned confor-
mally) then if either of the following conditions

hold:
(i) H and G are both (resp. block) diagonally
dominant
(ii) H_1 and ¢! are both (resp. block) diago-

nally dominant

(iii) for F ?oth asymtotically stable and minimum
phase F-' + G is (resp. block) diagonally
dominant

(iv) F both,asymtotically stable and minimum phase

F + G~ 1is (resp. block) diagonally dominant

(v) R =1+ FG is (resp. block) diagonally domi-
nant

on the closed contour D then condition (iii) of theo-
rem 2.1 holds. From now on (unless otherwise specif-
ied) when we refer to block diagonal dominance (BDD)

we will mean the collection of techniques discussed in
section 2.

3.2 Accuracy of the Decoupled Model Approximation for
Weakly Coupled Systems

The practical design of decoupled feedback con-
trol in INA methods is possible due to a classical re-
sult of Ostrowski [23] which provides a bound on the
distance between the inverse of the diagonal elements
of a complex-valued matrix which is diagonally domi-
nant and the diagonal elements of the matrix inverse
(which are, of course, usually different). Let

H(G’Fk) be the closed loop transfer function resulting
from the decoupled feedback
Fk=diag{f1,...,fk_1,0,fk+1,...,fm}

which is the transfer function from input u, to output

k

Yy with the kth loop open . Using Ostrowski's result

Remark:

it is possible to show if condition (i) of theorem 3.1
holds that

:hkk(G,Fk) - gkk: < ddy < dps (3.1
for k = 1,...,m where
-m
dk = /_j#k:gkj(S):’ (3.2)
d.
o, = max -——7—4L——~——. (3.3

j#k :r; + gjj:

Inequality (3.1) provides an example of how the
accuracy of the nominal decoupled model can be quan-~
tified. Moreover, the factors ¢, suggest how the ac-
curacy of some local models can %e effected by the
choice of the other controllers. This suggests, for
example, that local designs with more restrictive con-
trol objectives (i.e. requiring more accuarcy in the
approximate decoupled model) should be considered last
in the sequence of designs as long as ¢, <<1 can be
maintained over a significant frequency banﬁ. Alter-

nately, as suggested by Rosenbrock, the use of the in-
verse transfer function model for design leads to an
expression for the factors ¢, of the form (3.3) (in
the case that (ii) of theorem 371 holds) but for which
the denominator term is proportional to the loop gains

fj for moderately large gains. (This is the primary

reason for Rosenbrock's preference for the inverse

transfer function formulation.) The resulting bounds
can be seen to strictly improve as the loop gains are
chosen, In INA design the improved bounds can be ap=-
plied directly to the relevant Nyquist locus for each
individual loop to estimate the local stability mar-
gins,

Improved estimates for these bounds using GDD of
theorem 2.4 were first suggested by Araki and Nwokah
(2], Later Nwokah [15] provided the construction of
optimally sharp bounds as follows.

3.2 Theorem: With B and C defined as in (2.5), (2.6)
assume C is irreducible. Then let X PF be the Perron
root of [I + ¢8™'1. Then the matrix A - B + C will
be a "locally minimal" semi M-matrix where A is a
diagonal matrix formed as A = XPF B.

Recall that a semi M-matrix is a generaliza-
tion of M-matrices with principal minors nonnegative.
A semi M-matrix is said to be "locally minimal" [15]

if M = D is not even a semi M-matrix for any diagonal
D>0,

Application of the above result provides a bound
of the form (3.1) (by substitution of B:diag{bi} with

1

- e | $
bi z 'fi + 8y and C as in (2.6))
¢ - ] ] 1
'hkk(G’Fk) gkk. < ak .gkkn (3.4
with A = diag{ai} as computed as in theorem 3.2.

Clearly the inequality akigkkisdk is guaranteed by GDD

in theorem 2.4, This bound is however independent of
the choice of the individual loop gains and provides
therefore no guidance as to the relative importance of
thelr selection.

For the case of more general partitioning of the
transfer functions, bounds of this type have been pro-
vided by several authors. The present authors [3]

derived a bound on the matrix infimum

<::A"::'1=;§g:mx::/::?m as

i
l'[Hkk(G’Fk) - Gkk



where
O =/ 5k "%
¢, = max B..
K g
Limebeer provided a sharper bound for this quantity by

using GBDD, More recently Ohta et al gave a bound of
the form

P (GUF ) = Gt <y 4G, 1 (3.6)

using the QBDD results and by appropriate generaliza-
tion of the method of Araki and Nwokah [2]. They gave

considerations for obtaining the factors Yy in a

manner which provide bounds irrespective of the choice
of the compensators Fk’

It is worth emphasizing the utility of the bounds
(3.5) and (3.6) in practical application of decentral-
ized design. First, the bounds suggest that decen-
tralization of the design process can be successful if
the design methods used for each local design are ro-
bust with respect to the accuracy of the decoupled ap-
proximation. The modern application of multivariable
design provides various ways to evaluate the robust-
ness of control design with respect to uncertainty of
the model input-output response. Thus for example,
bounds of the form (3.5) and (3.6) can be translated
into specifications on the minimum singular values of
the matrix return difference associated with the indi-
vidual decoupled designs [8]. Furthermore, resulting
performance of the decentralized control can be read-
ily estimated with an accuracy which represents the
effect of the individual controllers on the weak cou-
pling measure by the refined bounds given in (3.1) and
(3.5). It 1is worthwhile noting that refined bounds
for the metric in (3.6) but representing the effect of
the other controllers have apparently not appeared in
the literature.

It 1is also worth remarking that for general par-
titions and the resulting sequential (or decentral=
ized) set of multivariable designs the choice of
matrix norms in the definition of BDD and the bounds
as discussed here 1is a non-trivial extension of the
cases considered orginally by Rosenbrock [23] and

later by Araki and Nwokah [2].
1,,-1

For instance the ma-

trix infimum }{A” ||~ (used in BDD and GBDD) makes
sense only (for A a square matrix) as an induced ma-
trix norm subordinate to some vector norm }}.!}| on the

vip=t=?

appropriate subspace. Computation of |} it for

general 1 vector norms may be numerically illcondi-

tioned (depending on the conditioning of A with res-
pect to inversion), As a result practical application
of many of these results may be limited to euclidean
vector norms on all subspaces. The resulting singular
value analysis of the matrix blocks can be performed
by well known algorithms with robust numerical proper-
ties. However in the definition of QBDD no such res-
triction on matrix norms appears necessary, Thus
permitting more general interpretation of decoupled
model accuracy and weak coupling via (3.6).

3.3 Design Methods and Discussion

The strength of the INA design method for multi-
variable design comes from its graphical interpreta-
tion which can be adequately supported by computer
generated graphies. For the trivial matrix partition-
ing the Gerschgorin disks are inclusion regions for
the matrix spectrum. Thus it is natural to suggest
extending the method of characteristic loci design

[21] to decentralized control using general Gerschgo-
rin sets for partitioned matrices to generate inclu=-
sion regions for the system eigenloci. This approach
was suggested by Nwokah [17] using GBDD and employing
the structure of M-matrices. Subsequently, Limebeer
suggested a similar generalization but focusing on
graphical representation of these inclusion regions
for design. In this section we will discuss alterna=-
tives for design methods for arbitrary partitions and
highlight some limitations of the obvious choices.

In our opinion the successful use of block Ger-
schgorin estimates for the spectrum of a matrix in de-
centralized design based on the characteristic loci
methods will be considerably limited in practice. Al-
though application of the results of BDD to provide
inclusion regions for the eigenloci of the composite
model in terms of the eigenloci of the diagonal blocks
is perhaps the most natural generalization of INA
methods there are several deficiencies in this
generalization;

(i) Generally the inclusion regions for parti-
tioned matrices block Gerschgroin sets for a

complex matrix Z=[Zij]; viz., for each
iz1,...,0, —
=1,,~1 '
Gy = {seC: 1itsI =23 117 ¢ >_j21”zij" )
=1,,-1 _\ n
| - P - t1 [N i
Gi = {seC: |I(sI Zii) ] < /_jiill jill }

(which of course coallesce in the case of
GBDD or QBDD) are not disks except in the

rather special case when the Zii are normal

and the matrix norm employed 1is axis or-
iented. The more general shape of these sets
may be difficult to determine.

(ii) The sets Gi and G{ may be covered by disks

for the purposes of graphical presentation as

proposed by Limebeer [13]. However, such
bounds (which depend on the eigenvectors of

the blocks Zi.) are not at all sharp and can
be totally useiess when there are near con-
fluences 1in the eigenloei of the Zii as s
varies over D,

(iii) As discussed in detail by Doyle and Stein [8]
and by Postlethwaite et al [22] it is not
possible to provide a useful notion of multi-
variable stability margin from characteristic
loci plots .without additional information
(such as minimum and/or maximum singular va-
lues of certain transfer functions.) Thus the
robustness question must be evaluated separ-
ately. The discussion of the last section
being relevant.

Ohta et al [18] have recently extended a parametriza-
tion of a loop-at-a-time design procedure of Araki and
Nwokah [2] to decentralized design. Their method ex-
ploits the natural ordering of strict positive and
M-matrices together with a useful parametrization of
the control structure, We will summarize these re-
sults in terms of the generalization of [18] for arbi-
trary transfer function partitioning using  QBDD
concepts (see [18] for a detailed comparison with the
other BDD methods.) As stated the results reduce to
the original method [2] for the case of the trivial
partitioning of all transfer functions involved.



Application of the test for QBDD (as given in
theorem 2,5) to the matrix Z=R, the matrix return
difference of (2.3), may indicate stability via (v) of

theorem 3,1, The test matrix B = (bij) of (2.11) |is
given in this case as,
B 0, for izj
T Iijo(R?j)_1li, for i#j . 31
The theory of M-matrices suggests alternate test
matrices C:(cij),

0 zj
. = L Oy for =) (3.8)
ij G, . G..ii, for i#j .
1 3 c D .1
-4 -] [}
and D-dlag{d],...,dn} with di"'Rij(Rjj) it be formed

so that B<CD [18, eqn (3.20)]

well known [10] M-matrices can be partially ordered
which can be exploited in this case in the following
way. Given a real nXn diagonal matrix F:diag{yi}

(elementwise). As is

with Yi>0 for i=1,...,n it can be seen if T-C is a

semi M-matrix then for any diagonal matrix D<I’-1 that

p>' - Cand I - D are both M-matrices. Thus stabil-

ity can be guaranteed (via theorem 3.1) for all decen-
tralized controllers which satisfy the individual
bounds for k=1,...,n
dk <1/Yk
where d, = |G F  [I

k kk kk m,

‘1“
* G Frd

To provide maximal design freedom here a choice
of v, = A -T{C}, the Perron root of C, is suggested for
k™ “pF

C an irreducible nonnegative matrix [12,17,18]. These
bounds provide sufficient conditions for the return
difference to be QBDD. We remark that if C is reduci-
ble in the sense of the Perron-Frobenius theory of
nonnegative matrices then a reordering strategy is
available which provides the appropriate estimates

after a decomposition into irreducible submatrices
(181,

A useful parametrization of the controller struc-
ture for decentralized design which exploits this pro-
perty 1is suggested by Ohta et al. Let the diagonal

block F be r, Xr

kk k™ k

Fre = %Py

for k=1,...,n with
. k k k
Pk = d1ag{p1,p2,...,pr }.
Ohta et al [18] consider thée idea of applying charc-
teristic loci design in a decentralized fashion and

standard INA method for the choice of the individual
loop gains p? sequentially for each kth decentralized
controller., Their formulas suggest the limitations we

discussed earlier of decentralizing the characteristic
loci method via block Gerschgorin estimates in terms
of the required eigendecomposition of the diagonal

blocks viz., the condition number of this ei-

Sk
gendecomposition is readiliy apparent in the estimates
obtained,

One final note on the application of INA methods
for the local feedback designs Fk' The choice of the

factor K suggested by Ohta may involve products of
elementary types of controllers including PI and
transformations, however considerations for choosing

the Kk to enhance diagonal dominance of the individual

terms Kkak remains incomplete. In [3] a design of

this type was considered in order to demonstrate that
BDD used in conjunction with diagonal dominance esti-
mates for the diagonal partitions can lead to enhanced
estimates of stability.

3.4 Information=Sharing
Decentralized Design

Control Structures and

Techniques for decentralized design based on weak
coupling of partitioned input-output models provide
naturally the decentralized information patterns for
control consistent with the partition chosen,
However, as suggested by Ohta et al, the notion of
overlapping decompositions (which was orginally popu-
larized by Siljak for construction of vector Lyapunov
functions) can be applied to the system transfer func-
tion matrix. The resulting design methods can provide
a decoupled approach to design for a control system in
which controllers are allowed to share information ac-
cording to some restricted information pattern.

Previous application of overlapping decompostion
has been focused on tranformations which expand and
contract the state space for a given system model in
order to provide constructive methods for Lyapunov
stability tests for decentralized control. In the
context of the present notion of weak coupling of the
system input-output response Ohta et al suggested the
possiblity for expansion and contraction of the space
of system inputs and outputs [19]. We briefly summar-
ize this circle of ideas in the following.

Given the feedback equations of (2.1) with G(s)
(F(s)) a pXm (resp. mXp) transfer function we con-

sider an expanded version of this system in terms of

pXm (resp. mXp) transfer function G(s) (resp. F(s))

where wm>m, p>p. In order to preserve stability pro-
perties of the original system in the expanded
input-output space Ohta has restricted the expanding
transformations to be of the form:

(i) GU=VQG, FVv=UF

(ii) or V utF = F Vv*

where V' (resp. U¥) is the left inverse of the pXp

(resp. mXm) rational matrix V (resp. U), Equi-
valently such a system can be represented in the "con-
tracted" or original system input-output space as

G=V'GU+M (3.9
F=U"FV+K
where the rational matrices M and K must satisfy
either:

(1) MUt =0, Rk VY =0

(ii) or VM = 0, UK = 0,

That QBDD transfer functions can be generated in
the expanded input-output space is demonstrated by ex-
ample in Ohta et al [19]. It is easily demonstrated
how more general restrictions on the information pat-
tern for control can be included as additional con-
straints in the choice of the expanding
transformations U and V. An interesting example is
included which highlights the possibility for enhanced
decoupling of the input-output response of the closed
loop system with decentralized control by employing an
overlapping control structure designed by the above



method; viz., 1) expand the input-output model con-
sistent with the overlapping control structure, 2)
perform decentralized design using QBDD methods in the
expanded space, and 3) construct the overlapping con-
trol by contraction of the resulting decentralized
control law to the original space of m inputs and p
outputs,

Obviously the increased flexibility of these
methods offer possibilities for improved performance
and application in an expanded array of decentralized
design problems. However caution should be exercised
in the choice of transformations U and V satisfying
the above equations so that illconditioning of the re-
sulting estimates does not result. It is apparent
that the successful application of these methods de-
pends upon adequate consideration for resulting ro=-
bustness and sensitivity properties [81].

3.5 Considerations for
Coupled Systems

Approximation of Weakly

It 1is clear from the development of Rosenbrock's
work and the various extensions considered here for
decentralized design that the central theme in provid-
ing a unified design methodology based on weakly
coupled models is approximation of frequency response
data (or equivalently the transfer functions in-
volved,) Appropriate considerations for stability and
robustness properties of feedback systems based on ap-
proximate transfer function models are made available
via the Nyquist stability theory and the principle of
the argument from complex analysis. We support the
view in [4] based on the geometric ideas in [7] that a
particularly appropriate form of Nyquist stability
theory for such approximation questions involves na-
tural topological considerations for transfer func-
tions.

An alternate form of weak coupling which provides
sufficient conditions for (iii) of theorem 2,1 was in-
troduced in [#4]. The idea here is to consider di-
rectly the question of approximation of transfer
functions wusing a gap metric. This approach has also
the potential advantage of including certain relative
phase information between subsystem transfer function
blocks which is lost through the use of the various
matrix norms introduced in diagonal dominance tests.
Moreover, this metric 1includes immediate considera-
tions for robustness in terms of a new geometric sta-
bility margin for (possibly multivariable) transfer
function models [6]1. Since this new stability margin
is discussed in detail in this proceedings [6] we will
only highlight the significance for providing weak
coupling estimates here,

Natural topological considerations for transfer
functions with regard to stability can be provided
from an abstract Nyquist locus for possibly multivari-
able plants introduced by Brockett and Byrnes [7].
The Nyquist locus considered here is a curve in a com-
plex Grassmanian arising from consideration of the
feedback equations (2.1) which we can write in the
form

Py i 0
1 ] 1 1 1
1 o= o
) 1 1 t 1
i ! 1 I )

e u

The abstract Nyquist contour is the image of the usual
closed contour D under the map ker[Ip, G(s)] which can

be thought of as a locus of m-dimensional subspaces of
a p+m complex space. In this regard one can consider

the subspace ker[F, -Im] as representing the "critical

point" for Nyquist stability testing. Metrics can be
constructed from the notion of principal angles
between subspaces which measure both the distance and

nearness of intersection between pairs of subspaces
[4-6]. In this setting "weak coupling" can be deter-
mined 1in terms of the distance betwesn the abstract
Nyquist curve for G(s) and one for G (s), the de-
coupled approximate system. With the following nota-
tion we can state the weak coupling condition of
[4-61. Let G be the subspace ker[Ip, G] and

F = ker(F, ~I 1. Let p (4,B) (resp. §(.,.)) be the
minimum (resp. maximum) principal angle between the
pair of subspaces A and B. Then [4-6] the condition

5620 > g @, 6 (3.10)

for all s on D is sufficient for the "weak coupling"
assumption (iii) of theorem 2.1 [5]. Inequality
(3.10) provides the same quantitative information as
for example (3.6) but in terms of the new angle
metric.

We believe that this metric can offer consider-
able flexibility in various areas where approximation
of transfer function models for feedback control syn-
thesis is required., In particular their application
to decentralization via weak coupling arguments is
quite natural.

4,0 Conclusions

In this paper we have attempted to review the
available theory and techniques for decentralized con-
trol system design based on transfer function models.
The methods considered here employ a requirement for a
Wweak coupling condition between subsystem models to
hold. For the most part, available methods have been
developed along the lines of the INA method of Rosen-
brock, Various methods of testing for weak coupling
in a frequency dependent setting have been reviewed.
The utility of this assumption, should it be seen to
hold, follows from several facts; (1) a decoupled mo-
del approximation can be used for design, (2) the re-
sulting decentralized control employs an information
pattern consistent with a natural weak coupling of the
plant, and (3) the weak coupling measures permit a
quantitative evaluation (in terms of transfer function
models) of the resulting control system performance
and robustness properties.

In contrast to weak coupling of state space mo-
dels, design methods based on system frequency res-
ponse have not gained wide acceptance due in part to a
lack of understanding of the physical significance of
the weak coupling notions employed. However, we sug-
gest that considerations for the control of informa-
tion flow between individual control computers and the
system under control (i.e. decentralization) is na-
turally considered in terms of input-output models.
We believe these methods are potentially wuseful for
control because of several factors: (1) the unique-
ness of input-output models (vs, state space models),
(2) the significance of these measures for robust con-
trol synthesis.

Certain open questions remain in the application
of these theoretical results to decentralized design.
A major element in application of these methods for
decentralized design is the choice of partitions for
transfer functions. Theoretical considerations for
optimal choice of disjoint partitions is discussed in
Varga [271, but his considerations are for spectral
estimates in terms of minimal Gerschgorin sets whereas
for transfer function models other considerations may
arise. Ohta et al [28] consider more general overlap-
ping partitions by introducing "expanding and con-
tracting" transformations on the space of inputs and
outputs, It 1is also possible to consider recursive
application of weak coupling tests for various parti-
tions. In particular an example discussed in [3]



indicated that a transfer function not diagonally dom-
inant in the sense of the trivial parition was seen to

be block diagonally dominant according to a

certain

partition for which the diagonal blocks where found to
be diagonally dominant in the usual sense. As a re-

sult a

completely decoupled stabilizing feedback was

constructed for the transfer function based on a model
which was "recursively" partitioned [31.

The remaining papers in this session serve to il-

lustrate by example

comparison of these and other

methods for decentralized control.
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