
Feasibility Study of Scaling an XMT Many-Core

Sean O’Brien∗†, Uzi Vishkin∗†, James Edwards∗†, Edo Waks†, Bao Yang‡
∗ University of Maryland Institute for Advanced Computer Studies (UMIACS), and

† Electrical and Computer Engineering Department
‡ Mechanical Engineering Department

College Park, Maryland, USA
seobrien@umd.edu, vishkin@umd.edu, jedward5@umd.edu, edowaks@umd.edu, baoyang@umd.edu

Abstract—The reason for recent focus on communication avoidance
is that high rates of data movement become infeasible due to excessive
power dissipation. However, shifting the responsibility of minimizing
data movement to the parallel algorithm designer comes at significant
costs to programmer’s productivity, as well as: (i) reduced speedups
and (ii) the risk of repelling application developers from adopting
parallelism.

The UMD Explicit Multi-Threading (XMT) framework has demon-
strated advantages on ease of parallel programming through its
support of PRAM-like programming, combined with strong, often
unprecedented speedups. Such programming and speedups involve
considerable data movement between processors and shared memory.
Another reason that XMT is a good test case for a study of data
movement is that XMT permits isolation and direct study of most of
its data movement (and its power dissipation).

Our new results demonstrate that an XMT single-chip many-core
processor with tens of thousands of cores and a high throughput
network on chip is thermally feasible, though at some cost. This leads
to a perhaps game-changing outcome: instead of imposing upfront
strict restrictions on data movement, as advocated in a recent report
from the National Academies, opt for due diligence that accounts for
the full impact on cost. For example, does the increased cost due
to communication avoidance (including programmer’s productivity,
reduced speedups and desertion risk) indeed offset the cost of the
solution we present?

More specifically, we investigate in this paper the design of an XMT
many-core for 3D VLSI with microfluidic cooling. We used state-of-
the-art simulation tools to model the power and thermal properties
of such an architecture with 8k to 64k lightweight cores, requiring
between 2 and 8 silicon layers. Inter-chip communication using silicon
compatible photonics is also considered. We found that, with the use
of microfluidic cooling, power dissipation becomes a cost issue rather
than a feasibility constraint.

Robustness of the results is also discussed.

Keywords-data movement, parallel algorithms, PRAM, parallel ar-
chitecture, many-core, 3D VLSI, microfluidic cooling

I. INTRODUCTION

Approaching the end of the so-called Dennard scaling is an
important concern as it implies decreasing improvement in power
consumption of computers. This concern has led to a remarkable
consensus: communication avoidance must drive both the design
of computer systems and their programming. Salient examples of
this consensus include the report [25], and the extensive work
done by Jim Demmel’s group at UC-Berkeley [10] initially on
communication avoidance upper bounds, and later also on lower
bounds.

The impact of this consensus has been quite dramatic. The
viewpoint article [35] argued that it has led industry to prioritize
energy saving over programmer’s productivity to the point of de-
railing the promise of shifting the general-purpose serial computing

paradigm to a general-purpose parallel computing based on many-
core hardware. While current-day parallel architectures allow good
speedups on some regular applications that can be programmed
to use limited communication bandwidth, such as dense-matrix
type programs, these architectures are mostly handicapped on other
programs: high communication-bandwidth programs, “irregular”
programs, or when seeking “strong scaling.” Strong scaling is the
ability to translate an increase in the number of cores to faster
run time for problems of fixed input size. Overall, the use of
multicore parallelism for speeding up completion time of a single
computational task has been quite limited. On a more principled
level, this consensus seems to “go against history.” Much of the
progress attributed to the Industrial Revolution is due to using more
power for reducing human effort. The consensus seems to seek
progress in computing by using human programmer effort in order
to save power.

The current paper makes two main contributions: a technical
insight and a higher-level one.

The technical insight: Even for an architecture example that does
not seek to save on data movement (henceforth, data movement
would often mean the opposite of communication avoidance), it
would be feasible to accommodate the thermal behavior of highly
parallel programs that require much data movement, assuming the
use of modern 3D-VLSI technology and microfluidic cooling. The
conclusion is that a more balanced approach than categorically
avoiding data movement at all costs is feasible. Namely,

A reality of trade-offs among different costs: Each of the follow-
ing resources involves cost: 1. Power consumption. 2. Integration of
cooling for mitigating power consumption and dissipation. 3. Low-
ering programmer’s productivity for communication avoidance. 4.
Lower performance due to communication avoidance. Thus, putting
communication avoidance ahead of other cost considerations has
been an arbitrary decision. It will be prudent for all players in the
many-core space to consider various alternatives for both costs and
benefit, and, in particular, feel free to question the above consensus
since contrary to prior understanding, our paper demonstrates that
other alternatives are also feasible. Hence, the choice among the
various alternatives should be based on cost and benefit.

A. Literature (Summary)

For background on the cooling technology discussed in this
paper, see [5]. The use of cooling for alleviating heat dissipation
is, of course, not new. More specifically, the use of microfluidic
cooling for 3D-VLSI co-design of multicore architectures has been
the topic of recent work [36]. However, the current paper appears to
be the first to draw a direct connection of such cooling for enabling



data movement, and, in particular, for overcoming the stifling of
parallel programming due to communication avoidance.

Some broader perspective follows. The approaching end of
Dennard scaling brought about the recognition that to maintain
high levels of performance growth something must change in the
reliance on traditional VLSI technologies. Photonics provides an
appealing advantage, as it can move enormous amounts of data
across a great distance using low power. Indeed, the advantage of
silicon photonics for communication across distances that are not
too small (e.g., one meter) is already well recognized. Recent work,
summarized in [6], has suggested drastic conversions to silicon
photonic technologies, where even communication on chip will be
photonics-based. However: given 1. the large investment in current
VLSI methods, 2. the advantage electronics has over photonics for
switching, 3. the rather immature state of using photonics for on-
chip communication, and, last, but not least, 4. our parallel (PRAM)
algorithms motivation to enable high-bandwidth low latency fine-
grained irregular communication on-chip and off-chip; it is only
natural that we are looking for a proper hybrid of technologies
that will allow mitigating the data movement problem for parallel
algorithms. Our most modest objective was already quite ambitious:
to at least demonstrate that such mitigation is feasible contrary
to common wisdom. Towards that end, our main insight is that
microfluidic cooling allowed us to pull together the remaining
pieces of the puzzle.

Using silicon photonics for power-efficient scaling of multi-chip
systems has also received attention, e.g., [22]. However, they do
not use microfluidic cooling and 3D-VLSI, which when coupled
with silicon photonics yield improved bandwidth and latency that,
in turn, facilitate scaling of PRAM-like programming.

II. BACKGROUND

A. XMT Architecture

The Explicit Multi-Threading (XMT1) general-purpose archi-
tecture [37] is a many-core architecture which aims to improve
single-task completion time and ease-of-programming for parallel
applications by supporting Parallel Random Access Model (PRAM)
programming [18], [21]. For some advantages of XMT, see sec-
tion V-B.

The XMT processor includes a master thread control unit
(MTCU); processing clusters, each comprising several light-weight
thread-control units (TCUs); a high-bandwidth low-latency inter-
connection network; memory modules (MM), each comprising on-
chip cache and off-chip memory; prefix-sum (PS) unit(s); and
global registers. The shared-memory-modules block (bottom left
of fig. 1) suppresses the sharing of a memory controller by several
MMs. The processor alternates between serial mode (in which only
the MTCU is active) and parallel mode. The MTCU has a standard
private data cache (used in serial mode) and a standard instruction
cache. The TCUs, which lack a write data cache, share the MMs
with the MTCU.

The overall XMT design is guided by a general design ideal we
call no-busy-wait finite-state-machines, or NBW FSM, meaning the
FSMs, including processors, memories, functional units, and inter-
connection networks comprising the parallel machine, never cause

1XMT at the University of Maryland, not to be confused with the Cray
XMT

Figure 1. Block Diagram of the XMT Architecture

one another to busy-wait. It is ideal because no parallel machine
can operate that way. Nontrivial parallel processing demands the
exchange of results among FSMs. The NBW FSM ideal represents
our aspiration to minimize busy-waits among the various FSMs
comprising a machine.

We cite the example of how the MTCU orchestrates the TCUs
to demonstrate the NBW FSM ideal. The MTCU is an advanced
serial microprocessor that also executes XMT instructions (such as
spawn and join). Typical program execution flow can also be ex-
tended through nesting of sspawn commands. The MTCU uses the
following XMT extension to the standard von Neumann apparatus
of the program counters and stored program. Upon encountering
a spawn command the MTCU broadcasts the instructions in the
parallel section starting with that spawn command and ending with
a join command on a bus connecting to all TCU clusters. The
largest ID number of a thread the current spawn command must
execute (Y) is also broadcast to all TCUs. The largest ID (index)
of the executing threads is stored in a global register X. In parallel
mode, a TCU executes one thread at a time. Executing a thread
to completion (upon reaching a join command), the TCU does a
prefix-sum using the PS unit to increment global register X. In
response, the TCU gets the ID of the thread it could execute next;
if the ID is ≤Y, the TCU executes a thread with this ID. Otherwise,
the TCU reports to the MTCU that it finished executing. When all
TCUs report they have finished, the MTCU continues in serial
mode. The broadcast operation is essential to the XMT ability
to start all TCUs at once in the same time it takes to start one
TCU. The PS unit allows allocation of new threads to the TCUs
that just became available within the same time as allocating one
thread to one TCU. This dynamic allocation provides run-time
load-balancing of threads coming from an XMTC program.

We are now ready to connect with the NBW FSM ideal. From the
moment the MTCU starts executing a spawn command until each
TCU terminates the threads allocated to it, no TCU can cause any



Table I
XMT ARCHITECTURE CONFIGURATIONS

8k 16k 32k 64k

TCUs 8192 16384 32768 65536
Clusters 256 512 1024 2048

Memory Modules 256 512 1024 2048
NoC MoT Levels 16 12 10 8

NoC Butterfly Levels 0 3 5 7

TCUs per Cluster 32
ALUs per Cluser 32

MDUs per Cluster 1
FPUs per Cluster 1
LSUs per Cluster 1

other TCU to busy-wait for it. An unavoidable busy-wait ultimately
occurs when a TCU terminates and begins waiting for the next
spawn command.

TCUs, with their own local registers, are simple in-order
pipelines, including fetch, decode, execute/memory-access, and
write-back stages. A cluster includes functional units shared by
several TCUs and one load/store port to the interconnection net-
work shared by all its TCUs. In this paper, we consider XMT
configurations with 8k, 16k, 32k, and 64k TCUs, grouped into
clusters of 32 TCUs, with each cluster sharing a single load/store
unit (LSU), multiply/divide unit (MDU), floating point unit (FPU),
and read only cache. See table I for a summary of the XMT
configurations considered for this paper.

The global memory address space is evenly partitioned into the
MMs through a form of hashing. The XMT design eliminates the
cache-coherence problem, a challenge in terms of bandwidth and
scalability. In principle, there are no local caches at the TCUs.
Within each MM, the order of operations to the same memory
location is preserved.

Quite a few performance enhancements have been incorporated
into the XMT hardware, including compiler and run-time schedul-
ing methods for nested parallelism and prefetching methods.

B. NoC (Network on Chip)

The high-throughput interconnection network required for the
XMT architecture presents an implementation challenge. A unique
data path can be provided for each pair of clusters and cache
modules, such that there is no blocking in the network, using a
mesh of trees (MoT) network. However, the number of switches
required is proportional the product of the number of clusters and
the number of cache modules, which translates to a large silicon
area. For example, an XMT architecture in 22 nm technology
with 8k TCUs requires silicon area of 190 mm2 just for an MoT
NoC. The area required for an MoT NoC of an XMT architecture
with 16k TCUs is 760 mm2, and would not fit on a single
silicon layer. In order to reduce network area, a hybrid MoT and
butterfly network can be used, where the inner levels of the “pure”
MoT network are replaced with butterfly levels [2]. See fig. 2.
In this paper, we model a duplicated interconnection network, so
data traveling from clusters to caches will not interfere with data
traveling in the opposite direction. The interconnection network
is duplicated because we found that a single silicon layer could

XMT Configuration Benchmark Program

XMTsimMcPAT

Physical Layout

ActivityStatic PowerMax Dynamic Power

Total Power

3D-ICEColor Legend
Primary input
Data for each component
External software Temperature

Figure 3. Simulation workflow with temperature feedback loop

contain duplicated networks with the number of MoT levels chosen;
a single network did not offer more MoT levels or any other
advantage.

III. EXPERIMENTAL METHODOLOGY

Three software tools were used to simulate an XMT system on
a 3D integrated circuit (IC) (fig. 3).

• XMTSim [19], [20]: A cycle-accurate simulator of the XMT
architecture, which can simulate many configurations of XMT
and reports component activity data.

• McPAT [23]: A framework for modeling power, area, and
timing of many-core architectures. For this paper, we use it
to model power.

• 3D-ICE [30], [31]: Performs thermal modeling for 3D ICs
with microfluidic channels.

Because the leakage power for the XMT components depends
on temperature, and the temperature of components depends on the
dissipated power, the simulation workflow incorporates a feedback
loop. In the first iteration, some baseline temperature profile is
assumed and used in McPAT to determine the power dissipation
of the components. In later iterations, the temperature profile
generated by 3D-ICE is used, and the process is repeated as long
as the difference between the temperature profile of the final and
preceding iterations is larger than some threshold.

A. Activity

We model the activity of the XMT system using the cycle-
accurate simulator XMTSim. Given a description for an XMT
architecture and a benchmark program, XMTSim will report the
activity profile of all components. For the TCU clusters, we
consider the activity in the TCUs, register files, instruction caches,
ALUs, floating point units, multipy/divide units, read only caches,
and load/store units. For the memory modules, we consider the
activity of the caches and memory controllers.

A limitation of this study is that the activity level is not tracked
on a per-TCU basis. Instead, the average activity level across all
TCUs is recorded, and this is used as the activity level for each
individual TCU. Additionally, the activity levels are averaged over
intervals of 5000 clock cycles and the moment of peak activity



(a) (b) (c)

Figure 2. (a) 8-terminal MoT network. (b) 8-terminal butterfly network. (c) 8-terminal MoT / butterfly hybrid network, with one level of butterfly
switches.

is used as the basis for power and temperature calculations in the
later stages of the analysis pipeline. The load balancing used in
XMT, per section II-A, ensures that deviation from average levels
will be minimal when applications provide sufficient parallelism,
as in the benchmarks evaluated. Using the peak activity level over
5000 clock cycles provides a conservative estimate of the maximum
steady-state power dissipation.

B. Power Dissipation

Using McPAT (for Multicore Power, Area, and Timing), we
estimate the leakage and maximum dynamic power dissipation of
the XMT components, for temperatures between 27 °C and 127 °C.
For all configurations we use a 22 nm technology node, 3000 MHz
clock frequency, and 0.8 V gate voltage. McPAT cannot directly
estimate the power dissipation of the NoC in the MoT, butterfly,
or hybrid arrangements. Therefore, we use as a baseline the power
profile of a 90 nm ASIC prototype [4] for an 8-terminal pure MoT
network. We use the number of switch primitives to scale to the
larger NoC configurations, and account for the change in clock
frequency, voltage, and technology node using McPAT. Because
McPAT only estimates power at intervals of 10 °C, we interpolate
intermediate values.

Using the activity profile reported by XMTSim, we calculate the
total power of a component as:

P = Pdyn,max ∗ACT ∗ CF + Pdyn,max ∗ (1 − CF ) + Pleak

Pdyn,max and Pleak are the dynamic and leakage power values
reported by McPAT for each subcomponent of the TCUs, ACT
is the activity level reported by XMTsim for each subcomponent,
and CF is the activity correlation factor. In this paper we use an
activity correlation factor of 0.9, which is the value that Wattch
power simulator uses [8]. The activity correlation factor describes
the proportion of the maximum dynamic power which is dissipated
when the subcomponent is not in use.

C. Physical Model

We use an ASIC implementation of a 64-TCU XMT prototype
and an ASIC implementation of an 8-terminal MoT NoC [3],
fabricated in 90 nm technology, as the basis for area estimation.
The area used in these prototypes was scaled quadratically to 22

nm technology with a safety factor of 30%, yielding a final area
scaling factor of

(
22
90

)2 ∗ 1.3 = 0.078. The area of the NoC is
further scaled to account for the increased wire complexity and
register count using the equations in chapters 4.7 and 7.3 of [4].
For example, the register count of the hybrid MoT and butterfly
network is given by R = 6N(N/2h − 1) + (N/2h)2 ∗ 2h ∗ 2h,
where N is the number of terminals on either side of the network,
and h is the number of butterfly stages.

We limit the NoC to one silicon layer. This is necessary, at
least for MoT, because the central levels of the interconnection
network require hundreds of thousands of wire connections or
more, depending on the number of MoT levels. To allow a
multilevel NoC, these connections would need to cross silicon
layers by the use of Through Silicon Vias (TSVs). A practical limit
to the number of TSVs on a single layer may be ten thousand [34],
as beyond this point manufacturing cost quickly increases and total
TSV footprint becomes a significant percentage of silicon area.
Multiplexing signals across TSVs is possible, but this can only
increase the number of signals by a factor of 3 [33], not enough
to enable a useful multi-layer NoC.

We limited the silicon footprint of each layer to a maximum
of 400 mm2. Given this constraint, we fit each configuration into
as few silicon layers as possible. Then we reduce the length of
the silicon footprint, leaving the width at 20 mm. In this manner
we maximize the number of (cooling) microchannels per layer
and reduce their length. Reducing the length of the microchannels
provides two benefits: (1) it allows us to increase fluid velocity
while maintaining a constant pressure drop across the length of
the channel, and (2) it reduces the distance the fluid must travel
while being heated by the IC, reducing the maximum temperature
the fluid will reach, and allowing more efficient heat transfer.

D. Pressure and Pumping Power

The pressure drop from the inlet to the outlet of a microfluidic
channel is calculated as ∆p = 2γµLvD−2

h [29] where ∆p is the
pressure drop, γ is an empirical factor depending on the microchan-
nel aspect ratio, µ is the fluid viscosity, L is the microchannel
length, v is the microchannel velocity, and Dh is the hydraulic
diameter of the microchannel. We considered pressure drops in the
range of 0 to 200 kPa. Pressure is a measure of force per area, and



Table II
XMT PHYSICAL CONFIGURATIONS

8k 16k 32k 64k

Silicon Layers 2 3 5 8
Microchannel Layers 1 2 4 7

Silicon Area per Layer (mm2) 276 302 328 380
Total Silicon Area (mm2) 551 906 1641 3046

Microchannels per Layer 100

100 kPa is close to 1 atmosphere of pressure. Pressure is a limiting
factor in the design of microfluidic flow, as high pressure in the
microchannels can cause damage to the IC. In [27], pressure drops
as high as 1,000 kPa were considered. In this paper, we consider
pressure drops of up to 200 kPa. Beyond this point, we see only
minimal further temperature reduction.

Pumping power is calculated as Ppump = Nf∆p [29] where
Ppump is the pumping power, N is the total number of microchan-
nels, f is the fluid flow rate per microchannel, and ∆p is the fluid
pressure drop. The maximum pumping power for any configuration
considered was 25.6 W, and the highest ratio of pumping power to
power dissipated by the IC was 1.85%.

E. Thermal Model

3D-ICE (for 3D Interlayer Cooling Emulator) is a thermal
simulation tool for 3D ICs with microfluidic cooling [30], [31].
3D-ICE uses a thermal resistance approach, which is motivated
by an analogy between heat and electrical conduction. The 3D
stack is divided into thermal cells, which can be represented as an
electrical node connected to surrounding nodes with resistors. The
resistance of these resistors depends on the thermal conductance
of the material, the geometry of the cell, and the fluid flow in
the cell. Similar connections are made between heat capacity and
capacitance, heat sources and current sources, etc.

Figure 4 shows a representative cross-section view of the 3D
ICs as described to 3D-ICE. We modeled a heat sink connected
to an ambient temperature of 40 °C, and assumed a constant
microchannel inlet temperature of 50 °C, with water as the coolant.
Any configurations with no fluid flow were modeled without
microchannels, as in fig. 4a. Figure 4 also shows the thermal
conductivity of each layer in the 3D stack.

Figure 5 gives the flavor of the layout of the active silicon layers.
The interconnection network is confined to one silicon layer, which
it shares with some number of clusters and caches.

The power dissipated in each component depends on the activity
of that component and on the temperature calculated for that
component in the last iteration (or, in the first iteration, an assumed
temperature of 47 °C). The simulation is complete when the
temperature profile between two consecutive iterations is identical
to within 0.1 °C, the finest distinction reported by 3D-ICE.

F. Benchmarks

We used parallel implementations of breadth first search (BFS),
sparse matrix-vector multiplication (matvec), mergesort, and 3-
dimensional fast Fourier transform (FFT) as benchmark programs.

• BFS: We use a parallel version of breadth first search.

Active Silicon - 148 W/mK 

Metal Layer - 2.25 W/mK 

SiO2 - 1.40 W/mK 

Silicon - 148 W/mK 

Active Silicon - 148 W/mK 

Metal Layer - 2.25 W/mK 

255μm

Fluid Fluid 200μm

100μm100μm

Silicon - 148 W/mK 

Silicon - 148 W/mK 

Active Silicon - 148 W/mK 

Metal Layer - 2.25 W/mK 

SiO2 - 1.40 W/mK 

Silicon - 148 W/mK 

Active Silicon - 148 W/mK 

Metal Layer - 2.25 W/mK 

1055μm

5μm

5μm

5μm

55μm

5μm

5μm

(a) (b)

Figure 4. Cross-section view of the (a) uncooled and (b) cooled 3D IC
stack for the 8k XMT configuration. Figures are not to scale.

Figure 5. Representative floorplan for the active silicon layers with and
without the NoC. Red blocks represent TCU clusters, green blocks represent
memory modules, and the blue block represents the NoC. The NoC is
confined to one layer, which it shares with some TCU clusters and memory
modules.

• matvec: All entries in the result vector are computed in parallel
with each other. However, the work of calculating each result
is done serially.

• mergesort: All merges of the same size are done in parallel,
requiring logn rounds. In the early rounds, when the merge
size is small, the merges are done with a serial algorithm.
After a defined crossover point, the merges are done with a
parallel merging algorithm.

• FFT: The FFT is computed using a radix-8 decimation-in-
frequency form of the Cooley-Tukey algorithm. An input of
size n × n × n is processed in 3 log8 n rounds. In each
round, the input is divided into n3/8 subproblems of size
8. The subproblems are solved in parallel by applying a serial
algorithm to each subproblem.

IV. RESULTS

Because McPAT can only determine the power dissipation for
components with temperatures between 27 °C and 127 °C, if any



M
a
x
im

u
m

T
em

p
er

a
tu
r
e
(°
C
)

0 50 100 150 200

60
70
80
90

100
110
120
130

BFS

matvec

mergesort

FFT

(a)

0 50 100 150 200

60
70
80
90

100
110
120
130

(b)

0 50 100 150 200

60
70
80
90

100
110
120
130

(c)

0 50 100 150 200

60
70
80
90

100
110
120
130

(d)
Pressure (kPa)

Figure 6. Maximum temperature reached while running various bench-
marks on (a) 8k TCU, (b) 16k TCU, (c) 32k TCU, and (d) 64k TCU
configurations. Dotted lines represent temperature values which exceed 127
°C, beyond which McPAT cannot accurately model power consumption.
Results with a pressure drop of 0 kPa represent configurations which
employ only air-cooling, not microfluidic cooling.

component exceeded 127 °C then simulations were halted. In figs. 6
and 7, therefore, some data points are excluded for simulations
where the maximum temperature exceeded 127 °C. In fact, the
temperature of some of the omitted data points exceeded 400 °C,
even ignoring any increase in leakage power. So, it is safe to assume
that many of the omitted data points and their configurations are
infeasible.

Figure 6 shows the maximum temperatures reached in each
architecture for fluid pressure between 0 and 200 kPa, for the four
benchmark programs, with a pressure drop of 0 kPa representing
a configuration with no micro-fluidic channels, only air cooling.
There is a dramatic decrease in maximum temperature as fluid
pressure increases from 0 to 100 kPa. At 100 kPa fluid pressure,
the maximum temperature reached for any benchmark is 65.3 °C on
the 8k TCU configuration, 74.8 °C on the 16k TCU configuration,
81.4 °C on the 32k TCU configuration, and 87.4 °C on the 64k
TCU configuration. As fluid pressure increases from 100 to 200
kPa, further reduction in maximum temperature is small.

An IC temperature of 125 °C is considered the upper limit in
military specification [17]. For the 16k TCU and larger XMT
configurations, 3D-ICs which employ air cooling only and no
microfluidic cooling exceed this threshold, and adding microfluidic
cooling brings the maximum temperature well below the threshold.

See fig. 7 for a comparison of the power dissipated in various
configurations. At 100 kPa fluid pressure, the maximum power dis-
sipated for any benchmark is 395 W on the 8k TCU configuration,
641 W on the 16k TCU configuration, 1562 W on the 32k TCU
configuration, and 2786 W on the 64k TCU configuration. The
8k TCU configuration is the only one for which air-cooling alone
would be sufficient to keep the 3DIC at a low enough temperature

T
o
ta
l
P
o
w
er

(W
)

0 50 100 150 200
0

1,000

2,000

3,000

BFS

matvec

mergesort

FFT

(a)

0 50 100 150 200
0

1,000

2,000

3,000

(b)

0 50 100 150 200
0

1,000

2,000

3,000

(c)

0 50 100 150 200
0

1,000

2,000

3,000

(d)
Pressure (kPa)

Figure 7. Maximum power dissipated while running various benchmarks
on (a) 8k TCU, (b) 16k TCU, (c) 32k TCU, and (d) 64k TCU configurations.
Total power presented only for cases where maximum temperature is
feasible, namely under 127 °C, see fig. 6.

for McPAT to model its power dissipation.
An additional benefit of microfluidic cooling is that by reducing

temperature, one also reduces the leakage power dissipated by
the processor (and, in turn, its snow balling effect on increasing
temperature). In fact, for all configurations and all benchmarks with
a pressure drop of 125 kPa or less, the leakage power is reduced by
an amount greater than the pumping power required for the cooling
fluid. Figure 8 shows a comparison of the leakage power saved by
microfluidic cooling and the pumping power required for the 8k
TCU configuration.

V. DISCUSSION

A. Robustness of Results

The results presented in this paper are specific to the XMT
architecture. However, it can be argued that any parallel architecture
which is capable of the same performance will require silicon
area and power consumption that are not very different. The
main architectural element specific to XMT is the interconnection
network. In Figure 9, we see that the total power consumption by
the interconnection network is less than 18% for all configurations
with 16k TCUs or more. Figure 10 shows a similar trend in the
silicon area taken by the interconnection network choices in this
paper. Driven by the need to keep the interconnection network in a
single layer and at the same time not compromising performance,
these were not arbitrary choices.

In this paper we present architectures in the 22 nm technology
node. However, we believe the claim that microfluidic cooling
can enable large many-core architectures remains valid in smaller
technology nodes. Intel claims that logic area in their 14 nm
process will be 0.54 times the logic area in their 22 nm process.
They likewise claim ∼0.54 scaling in power consumption between
the two technology nodes [7]. Thus, the power density of an



W
a
tt
s

0 50 100 150 200
0

2

4

6

8

10

12

BFS

matvec

mergesort

FFT

pumping power

Pressure (kPa)

Figure 8. BFS, matvec, mergesort, FFT: Reduction in leakage power used
by the 8k TCU configuration (versus air-cooled only). Dotted line: The
pumping power required by the 8k TCU configuration for a given pressure.

P
er

ce
n
ta
g
e
o
f
T
o
ta
l
P
o
w
er

in
N
o
C

8k 16k 32k 64k
0

5

10

15

20

25

30

35

BFS

matvec

mergesort

FFT

XMT Configuration

Figure 9. Percentage of total power used in the interconnection network
for with 100 kPa cooling fluid pressure.

architecture implementation in both nodes would be roughly equal.
Our 64k TCU configuration, which we estimate to require 3046
mm2 and 2786 W in 22 nm would require around 1645 mm2

and 1504 W in 14 nm (for the mergesort benchmark with 100
kPa cooling fluid pressure). These are a close approximation to
the area and power estimates for the same benchmark, but with
32k TCU in 22 nm (1641 mm2 and 1562 W). This means that
we would expect to draw the same conclusions for a 64k TCU
configuration in 14 nm as for a 32k TCU configuration in 22 nm—
that it is thermally infeasible with air-cooling only, but that adding
microfluidic cooling makes it feasible.

P
er

ce
n
ta
g
e
o
f
S
il
ic
o
n
A
r
ea

in
N
o
C

8k 16k 32k 64k
0

5

10

15

20

25

30

35

XMT Configuration

Figure 10. Percentage of total area used by the interconnection network.

B. Summary of Relevant Advantages of the XMT Architecture

To keep this presentation short, we summarize below the main
nuggets from numerous publications listed on the XMT home page
www.umiacs.umd.edu/users/vishkin/XMT:

1) Speedups. PRAM is that the main theory of parallel algo-
rithms. A ”proof-of-performance” with respect to PRAM
algorithms demonstrated speedups between 1 and 2 orders
of magnitude (up to 129X) on the most advanced parallel
algorithms in the literature relative to the best known results
on any machine (e.g., on GPUs) for any algorithms for
the same problem. See table III. Other published speedups
include 20.4X on a 64-TCU XMT versus 4X on a 16-core
AMD (using the same silicon area) for FFT [28] and 100X
on a gate-level simulation benchmark suite [14].

2) Ability to achieve “strong scaling”, defined as getting larger
speedups with more processors and the same problem size;
and, the less rigorous, but very important:

3) Programmer’s productivity. Evidence on ease of program-
ming includes:

a) Direct comparison with other platforms, supervised by
third party software engineering experts, done in collab-
oration with: (i) UC Santa Barbara: 50% development
time on XMT over MPI [15]; and (ii) U. Illinois: strong
speedups by all 42 joint students on XMT versus no
speedups on OpenMP [26]

b) 370 high-school students who have already pro-
grammed XMT. 2014 update to [32].

c) A national award winner high-school teacher described
XMT as the one platform that strips away industrial
accident from the parallel computing student’s mind and
published a paper in SIGCSE’10 supporting that. [32]

d) In a graduate theory class on parallel algorithms, stu-
dents submit 5-6 programming assignments delivering
(in a 2-week project) significant speedups over best
serial even on problems that are research level on cur-

www.umiacs.umd.edu/users/vishkin/XMT


Table III
XMT SPEEDUPS

XMT GPU/CPU Factor

Graph Biconnectivity [11] 33X 4X, but only on random graphs �8
Graph Triconnectivity [13] 129X Only serial result 129

Max Flow [9] 108X 2.5X 43
Burrows Wheeler Compression [12] 25X X/2.5 on GPU 70

Transform - bzip2 Decompression [12] 13X 1.1X 11

Table IV
FFT SPEEDUPS

Configuration 8k 16k 32k 64k

No photonics 41X 79X 129X 225X
With photonics 53X 106X 207X 381X

rent commercial platforms (e.g., for finding biconnected
components in graphs).

e) A Department of Defense employee was able to solve
in an MS scholarly paper (a 2-month effort, which is
order of magnitude less than an MS thesis) problems
that would be the basis for at least one PhD on other
platforms.

C. Extending the Work Beyond the Chip Boundary

Overall, bandwidth and latency matter at all levels (DRAM
as well as cache) though they may matter in different ways
for different applications. To that end, it would seem natural to
incorporate photonic transceivers to the architecture, allowing high
speed and high bandwidth access to main memory. Simulations
with XMTSim show that increasing bandwidth to main memory
can improve the execution speed of the FFT benchmark program
by a factor of up to 1.69X, as shown in table IV. FFT was a natural
here as it is known to under-perform when problem size does not
fit into cache and bandwidth to main memory is limited [16].

Papers such as [24] and [39] show that high bandwidth, low
power silicon photonic transceivers are possible. Using the ANSYS
[1] simulation tool, companion work in progress with Mechanical
Engineering Professor Bao Yang simulated a photonic structure
of 10x10x2 µm3 capable of sending and receiving at a rate of 25
Gb/s. The simulations, see fig. 11, showed the temperature reached
by the photonic transceiver under a range of assumptions about
the power required to send and receive messages. The simulations
assumed that a substrate of 50x50x50 µm3 comprises the photonic
structure coupled with standard high thermal conductivity material
for connecting the transceiver to a microfluidic channel. We found
that if the transceiver uses less than 1.1 pJ/b it can be cooled with
a microfluidic channel and remain below 100 °C.

A rough calculation (20X20 per mm2 times 400 mm2) indicates
that one could fit on the order of 100,000 such transceivers on
20x20 mm of silicon. An interesting avenue of future study is to
determine what bandwidth to main memory is feasible with pho-
tonic transceivers, and how this increased bandwidth can improve
the performance of a parallel architecture. However, what matters
for the current paper, and the reason for citing this companion
work, is that there are feasible ways to extend mitigation of data

T
em

p
er

a
tu
r
e
(°
C
)

pJ/b (at 25Gb/s)

Figure 11. Temperature reached by a photonic device operating at 25
Gb/s, with a range of assumptions on power usage.

movement beyond the chip boundary.

D. Work in Progress on Extensions Beyond the Scope of This Paper

We believe that the ideas in the current paper are quite powerful.
We briefly point out their potential for several other significant
applications. We start with further scaling of XMT, but then take
the basic ideas to a rather different domain: an upgraded switch
for connecting modules of (current) high-performance computing
systems.

1) Further scaling of XMT: The following idea can help scale
XMT further. Consider an XMT system in which a separate
chip comprises the cluster-memory interconnection network. Other
XMT components could either form a separate chip each, or form
together joint chips in any of many possible combinations.

The current idea is to implement the interconnection network
chip (and possibly other chips) using 3D-VLSI, microfluidic cool-
ing and silicon photonics, along the lines presented earlier in
this paper. Since TCUs could be spread over many chips, the
XMT design could be much larger than even the enlarged version
discussed in prior chapters of this paper.

2) Upgraded switch: more ports, larger bandwidth and lower
latency: The above cluster-memory interconnection network chip
actually provides a flexible all-to-all switch that enables routing
in parallel data from every incoming port to every outgoing port.
Per [38], the number of ports on a chip is a bottleneck in state-of-
the-art switches. That paper explains that to reduce the number of
switches, the topology of an interconnection network should utilize



all the available switch ports. Our approach of greatly increasing
the number of switch ports would improve the overall bandwidth
and latency of the topology.

VI. CONCLUSION

In this paper, we considered the thermal feasibility of many-
core architectures that do not attempt to avoid data movement.
For the test case we studied, we found that standard air cooling
was insufficient but that on-chip temperatures can be reduced from
levels in excess of 400 °C with standard air cooling to below 90 °C
with microfluidic cooling, using pumping power less than 2% of the
power dissipated by the processor. In fact, the pumping power used
to drive the cooling fluid is lower than the leakage power saved
by reducing on-chip temperature. This advances the argument that
data movement in particular and power dissipation in general are
not feasibility constraints, but a trade-off to be considered among
other trade-offs, such as manufacturing cost, ease-of-programming,
and performance.

This work represents non-standard outreach of parallel algo-
rithms. Efforts such as the SB-PRAM project in Germany and the
“PRAM-On-Chip” XMT stood out in reaching architecture, as well
as compiler and run-time. This work, however, transcends computer
science, deep into enabling technologies benefiting from a breadth
of areas, beyond SPAA, covered by the authors. Sean O’Brien is
a mechanical engineer by training, and UMD faculty Edo Waks
specializes in photonics and Bao Yang in cooling. The work itself
makes an original contribution by combining three technologies
(3D-VLSI, microfluidic cooling and silicon photonics) in new ways
for support of parallel algorithms, which is more scalable and more
effective, making parallel algorithms both the driver behind this
work and its primary beneficiary.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from DARPA, NIH and
NSF. We also acknowledge discussions with Avram Bar-Cohen
(DARPA) on microfluidic cooling, Fuat Keceli (Intel) on power,
and Caleb Serafy on 3D-VLSI.

REFERENCES

[1] ANSYS, Inc. [Online]. Available: http://www.ansys.com

[2] A. O. Balkan, G. Qu, and U. Vishkin, “An area-efficient high-
throughput hybrid interconnection network for single-chip parallel
processing,” in Proceedings of the 45th annual Design Automa-
tion Conference, 2008, pp. 435–440.

[3] A. O. Balkan, G. Qu, and U. Vishkin, “Mesh-of-trees and alterna-
tive interconnection networks for single-chip parallelism,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 17, no. 10, pp. 1419–1432, 2009.

[4] A. O. Balkan, “Mesh-of-trees interconnection network for an
explicitly multi-threaded parallel computer architecture,” Ph.D.
dissertation, Electrical and Computer Engineering, University of
Maryland, 2008.

[5] A. Bar-Cohen, J. J. Maurer, and J. G. Felbinger, “DARPA’s
Intra/Interchip Enhanced Cooling (ICECool) Program,” CS MAN-
TECH, pp. 171–172, 2013.

[6] K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry,
Photonic Network-on-chip Design. Springer, 2014.

[7] R. Borkar, M. Bohr, and S. Jourdan, “Advancing Moore’s
Law on 2014,” Intel, Aug. 2014. [Online]. Available:
http://www.intel.com/content/dam/www/public/us/en/documents/
presentation/advancing-moores-law-in-2014-presentation.pdf

[8] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,” in
Proceedings of the 27th Annual International Symposium on
Computer Architecture, 2000.

[9] G. C. Caragea and U. Vishkin, “Brief Announcement: Better
Speedups for Parallel Max-flow,” in Proceedings of the Twenty-
third Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2011, pp. 131–134.

[10] J. Demmel, “Communication-avoiding algorithms for linear al-
gebra and beyond,” in IEEE 27th International Symposium on
Parallel Distributed Processing (IPDPS), May 2013, pp. 585–
585.

[11] J. A. Edwards and U. Vishkin, “Better Speedups Using Simpler
Parallel Programming for Graph Connectivity and Biconnectiv-
ity,” in Proceedings of the International Workshop on Program-
ming Models and Applications for Multicores and Manycores
(PMAM), 2012, pp. 103–114.

[12] J. A. Edwards and U. Vishkin, “Empirical speedup study of truly
parallel data compression,” University of Maryland, Tech. Rep.,
2013. [Online]. Available: http://hdl.handle.net/1903/13890

[13] J. A. Edwards and U. Vishkin, “Brief Announcement: Speedups
for Parallel Graph Triconnectivity,” in Proceedings of the Twenty-
fourth Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2012, pp. 190–192.

[14] P. Gu and U. Vishkin, “Case study of gate-level logic simulation
on an extremely fine-grained chip multiprocessor,” Journal of
Embedded Computing, vol. 2, no. 2, pp. 181–190, 2006.

[15] L. Hochstein, V. R. Basili, U. Vishkin, and J. Gilbert, “A pilot
study to compare programming effort for two parallel program-
ming models,” Journal of Systems and Software, vol. 81, no. 11,
pp. 1920–1930, 2008.

[16] J.-W. Hong and H. T. Kung, “I/O complexity: The red-blue pebble
game,” in Proceedings of the thirteenth annual ACM Symposium
on Theory of Computing (STOC), 1981, pp. 326–333.

[17] B. Hunt and A. Tooke, “High temperature electronics for harsh
environments,” in 18th European Microelectronics and Packaging
Conference (EMPC), Sept 2011, pp. 1–5.

[18] J. JáJá, An introduction to parallel algorithms. Addison-Wesley
Reading, 1992, vol. 17.

[19] F. Keceli, A. Tzannes, G. C. Caragea, R. Barua, and U. Vishkin,
“Toolchain for Programming, Simulating and Studying the XMT
Many-Core Architecture,” in Proc. 16th International Workshop
on High-Level Parallel Programming Models and Supportive
Environments (HIPS), in conjunction with IPDPS, 2011.

http://www.ansys.com
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/advancing-moores-law-in-2014-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/advancing-moores-law-in-2014-presentation.pdf
http://hdl.handle.net/1903/13890


[20] F. Keceli and U. Vishkin, “XMTSim: A Simulator of the XMT
Many-core Architecture,” University of Maryland, Tech. Rep.,
2011. [Online]. Available: http://hdl.handle.net/1903/13893

[21] J. Keller, C. Kessler, and J. Träff, Practical PRAM programming.
Wiley-Interscience, J. Wiley & Sons, Inc., 2001.

[22] P. Koka, M. McCracken, H. Schwetman, X. Zheng, R. Ho, and
A. Krishnamoorthy, “Silicon Photonic Network Architectures for
Scalable, Power-Efficient Multi-Chip Systems,” in Proceedings
of the 37th ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2010.

[23] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: an integrated power, area, and timing
modeling framework for multicore and manycore architectures,”
in 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO-42), 2009, pp. 469–480.

[24] F. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley,
H. Moghadam, X. Zheng, J. Cunningham, A. Krishnamoorthy,
E. Alon, and R. Ho, “10 Gbps, 530 fJ/b optical transceiver circuits
in 40 nm CMOS,” in Symposium on VLSI Circuits (VLSIC), June
2011, pp. 290–291.

[25] L. I. Millett, S. H. Fuller et al., The Future of Computing
Performance: Game Over or Next Level? National Academies
Press, 2011.

[26] D. Padua, U. Vishkin, and J. C. Carver, “Joint UIUC/UMD
parallel algorithms/programming course,” Proc. EduPar, 2011.

[27] M. Sabry, A. Sridhar, and D. Atienza, “Thermal balancing of
liquid-cooled 3D-MPSoCs using channel modulation,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2012,
March 2012, pp. 599–604.

[28] A. B. Saybasili, A. Tzannes, B. R. Brooks, and U. Vishkin,
“Highly Parallel Multi-Dimensional Fast Fourier Transform on
Fine-and Coarse-Grained Many-Core Approaches,” in Proceed-
ings of the 21st IASTED International Conference, vol. 668, no.
018, 2009, p. 107.

[29] B. Shi, A. Srivastava, and P. Wang, “Non-uniform micro-channel
design for stacked 3D-ICs,” in Proceedings of the 48th Design
Automation Conference, 2011, pp. 658–663.

[30] A. Sridhar, A. Vincenzi, D. Atienza, and T. Brunschwiler, “3D-
ICE: A Compact Thermal Model for Early-Stage Design of
Liquid-Cooled ICs,” IEEE Transactions on Computers, vol. 63,
no. 10, pp. 2576–2589, Oct 2014.

[31] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and
D. Atienza, “3D-ICE: Fast compact transient thermal modeling
for 3D ICs with inter-tier liquid cooling,” in IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), Nov
2010, pp. 463–470.

[32] S. Torbert, U. Vishkin, R. Tzur, and D. J. Ellison, “Is Teaching
Parallel Algorithmic Thinking to High School Students Possible?
One Teacher’s Experience,” in Proceedings of the 41st ACM
Technical Symposium on Computer Science Education. ACM,
2010, pp. 290–294.

[33] W.-P. Tu, Y.-H. Lee, and S.-H. Huang, “TSV sharing through
multiplexing for TSV count minimization in high-level synthesis,”
in IEEE International SOC Conference (SOCC), 2011, pp. 156–
159.

[34] D. Velenis, M. Stucchi, E. J. Marinissen, B. Swinnen, and
E. Beyne, “Impact of 3D design choices on manufacturing cost,”
in IEEE International Conference on 3D System Integration
(3DIC), 2009, pp. 1–5.

[35] U. Vishkin, “Is Multicore Hardware for General-purpose Parallel
Processing Broken?” Commun. ACM, vol. 57, no. 4, pp. 35–39,
Apr. 2014.

[36] Z. Wan, H. Xiao, Y. Joshi, and S. Yalamanchili, “Co-design of
multicore architectures and microfluidic cooling for 3D stacked
ICs,” in 19th International Workshop on Thermal Investigations
of ICs and Systems (THERMINIC). IEEE, 2013, pp. 237–242.

[37] X. Wen and U. Vishkin, “FPGA-based prototype of a PRAM-
on-chip processor,” in Proceedings of the 5th conference on
Computing frontiers, 2008, pp. 55–66.

[38] E. Zahavi, I. Keslassy, and A. Kolodny, “Quasi Fat Trees for HPC
Clouds and Their Fault-Resilient Closed-Form Routing,” in IEEE
22nd Annual Symposium on High-Performance Interconnects
(HOTI), 2014, pp. 41–48.

[39] X. Zheng, F. Y. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. D.
Thacker, I. Shubin, J. Yao, K. Raj et al., “Ultralow power 80 Gb/s
arrayed CMOS silicon photonic transceivers for WDM optical
links,” Journal of Lightwave Technology, vol. 30, no. 4, pp. 641–
650, 2012.

http://hdl.handle.net/1903/13893

	Introduction
	Literature (Summary)

	Background
	XMT Architecture
	NoC (Network on Chip)

	Experimental Methodology
	Activity
	Power Dissipation
	Physical Model
	Pressure and Pumping Power
	Thermal Model
	Benchmarks

	Results
	Discussion
	Robustness of Results
	Summary of Relevant Advantages of the XMT Architecture
	Extending the Work Beyond the Chip Boundary
	Work in Progress on Extensions Beyond the Scope of This Paper
	Further scaling of XMT
	Upgraded switch: more ports, larger bandwidth and lower latency


	Conclusion
	References

