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The nonlinear stability of the ideal magnetohydrodynamic interchange mode,

at marginal conditions, is studied. The interchange mode is made to be at marginal

conditions by providing a constant magnetic field that is just sufficiently strong

enough to balance the mode growth. How nonlinearity affects the stability of the

interchange mode is analyzed for three different systems. We first consider intro-

ducing small amplitude perturbations on a two-dimensional system. We show that

if the fractional deviation from marginality is given by a small parameter b, then

perturbation amplitudes of order b1/2 can cause the system to become nonlinearly

unstable. The analysis is corroborated by a nonlinear, compressible, magnetohy-

drodynamic simulation that shows excellent agreement with the result, including

the amplitude scaling. We then extend the analysis to a three-dimensional system

where, we show that, the perturbations separate into two different modes. The

first mode is shown to be isomorphic to the two-dimensional case and, thus, has the

same dynamics, i.e. nonlinearly unstable; however, we show that the second mode is

nonlinearly stable. The latter modes are shown to satisfy line-tied boundary condi-



tions. The third system we consider is a two-dimensional system with perturbations

introduced as deformations of the boundaries. We show that these small distortions

can penetrate deep in the magnetized plasma and become globally amplified. The

amplification is shown to be inversely proportional to b. Additionally, we show that

nonlinearities can cause the system to become unstable for distortions of order b3/2.
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Chapter 1

Overview: The Big Picture

1.1 Introduction

Creating a star in a reactor using controlled thermonuclear fusion can be ac-

complished by a simple sounding process. First, a mix of deuterium and tritium

gas is injected into the reactor’s vacuum vessel. Next, the gas is ionized to create

plasma. Finally, the plasma is heated to a high temperature while maintaining a

high density confined for a long enough time for the ions to fuse together. The neces-

sary balance of number density, n, and confinement time, τE, to have thermonuclear

fusion in a reactor at a temperature, T , is given by the Lawson parameter, nτE. At

T ≈ 15 keV, it’s required that nτE & 3× 1014 cm−3s.[1, 2, 3]

The inherent challenge in this process is in coming up with a way to stably

confine the plasma in order to meet the Lawson criterion. The high temperature

means that the plasma must be confined in such a way that it does not touch the

walls of the vacuum vessel. Specifically, the heat transport rate from the core to

the edge must be low in order to not damage the vessel. Since the plasma is made

of particles with electric charge, one possibility would be to use magnetic fields

to contain them. The question of plasma confinement then becomes a question of

maintaining a high enough β – the ratio of plasma pressure to magnetic pressure.
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Figure 1.1: The motion of an ion in the presence of a strong magnetic field is shown

for (a) a straight magnetic field and (b) a closed magnetic field. For a strong enough

magnetic field, the ion Larmor radius is small enough that the motion of the ion is

confined to one dimension – parallel to the magnetic field.
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1.2 Magnetic Confinement

In order to understand how magnetic fields can be used to confine plasma,

we argue as follows. Suppose we have an ion in a vacuum, initially it is able to

move freely in three dimensions. If a uniform magnetic field is introduced, then the

ion will move in a circular orbit in the plane perpendicular to the direction of the

magnetic field. The radius of the circular motion, known as the ion Larmor radius,

is inversely proportional to the strength of the magnetic field.[4] So, for a strong

enough magnetic field the ion could be effectively confined to one dimension, along

the direction of the magnetic field (see Fig. 1.1a). As can be seen in Fig. 1.1b,

confinement can be improved further by closing the magnetic field into a loop.

Even though this method would be insufficient due to electromagnetic effects, this

heuristic discussion, nonetheless, introduces the concept of magnetic confinement of

plasma in a simple way.

The next step would be to increase the number of ions in the system so that

the density is high enough to meet the Lawson criterion. However, the dynamics of

the system changes dramatically as the density is increased and the plasma interacts

with the magnetic field. The academic discipline of magnetohydrodynamics (MHD)

concerns the study of these dynamics. Using MHD, we can determine different

magnetic field configurations that results in an equilibrium. These MHD equilibrium

configurations could then be used as a basis in designing a containment device.

Finding an equilibrium is an important step towards fusion, however, it is

not sufficient because its stability to small perturbations needs to be determined.
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It would not be a very useful containment device if its equilibrium breaks down

from small distortions. A lot of work has been done in finding MHD equilibria and

analyzing their stability to small perturbations, e.g. Refs. [5, 6, 7]. The result of

past findings have led to different containment devices, like tokamaks, reversed field

pinches, and stellarators.[2] However, due to the complicated dynamics, stability can

only be determined to a certain degree, usually by making some approximations in

the system. The idea would be to start the stability analysis with a simple system

and then to slowly increase the complexity until the analysis resembles the physical

system.

To answer the question of stability, and other questions in MHD, it is necessary

to introduce some equations that could be used to model these systems.

1.3 Ideal Magnetohydrodynamics Equations

One set of important equations are the ideal MHD equations. In its entirety,

it consists of the continuity equation,

∂tρ+∇ · ρu = 0, (1.1)

the momentum equation,

ρ
d

dt
u = −∇p+ J×B, (1.2)

the equation of state,

d

dt
p+ γp∇ · u = 0, (1.3)

the ideal Ohm’s law,

E + u×B = 0, (1.4)
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and the following Maxwell’s equations,

∇× E = −∂tB, (1.5)

∇×B = µ0J, (1.6)

∇ ·B = 0, (1.7)

where we have

d

dt
≡ ∂t + u · ∇, (1.8)

and γ = 5/3 is the ratio of specific heats. The derivation of Eqs. (1.1)-(1.7) is of

considerable length, so it will not be presented here; the derivation can be found in

Refs. [2, 8]. We will, however, briefly discuss the applicability of the equations and,

in the next chapter, we will derive a fundamental result of ideal MHD.

Due to the assumptions required to derive the ideal MHD equations from basic

principles, the equations are restricted in their applicability. In general, the ideal

MHD equations are valid as long as:

1. The plasma is highly collisional, such that the time scale of collisions is shorter

than the characteristic time scales of the system.

2. The ion Larmor radius is much shorter than the characteristic length scales of

the system.

3. The resistivity due to collisions is small.

It turns out that despite these limitations, the ideal MHD equations are applicable

to a large number of different plasma systems so it is a very useful tool for analysis.
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If we are only interested in a specific system (or set of systems) then we can make

some further assumptions to simplify the equations.

1.4 Reduced Magnetohydrodynamics Equations

One such simplification is the reduced MHD equations derived by Strauss.[9,

10] The reduced equations consists of the continuity equation,

∂tρ+ u · ∇⊥ρ = 0, (1.9)

the momentum equation (with “gravity” term),

ẑ · ∇⊥ × (ρ
d

dt
u) = B · ∇∇2

⊥ψ + g∂yρ, (1.10)

and the flux equation

∂tψ −B · ∇ϕ = 0, (1.11)

where Bz is a constant and ϕ and ψ define the perpedicular flow and magnetic field,

respectively, through the following definitions

u = ẑ×∇⊥ϕ, (1.12)

B⊥ = ẑ×∇⊥ψ. (1.13)

The above equations are derived from the ideal MHD equations in the limit of a

large aspect ratio tokamak. In this limit, it is assumed that Bz � B⊥, k⊥ � kz, and

VAz � u, where u is the typical speed of the plasma and VAz is the Alfvén speed.

The “gravity” term models the effect of field line curvature, as will be explained in

the next chapter.
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In Ref. [9], Strauss took the limit with low β to derive the equations, but

the follow-up paper, Ref. [10], extends the derivation to include the case of high β.

Remarkably, the two sets of equations are almost identical except for the inclusion

of pressure variations in the high β case. In both derivations, the final equations

were simplified by taking the case of constant density, however, if density variations

are included then we would get Eqs. (1.9)-(1.11). With the use of some hydrody-

namic equations, to relate the density and pressure, the reduced equations given by

Eqs. (1.9)-(1.11) are applicable to both low and high β cases.

The majority of the analysis in this dissertation will be done using the reduced

MHD equations.

1.5 Summary

We gave an overview of the challenge of confining plasma for fusion. We

argued, heuristically, that it was possible to accomplish this using magnetic fields

but there was a question of stability. The ideal and reduced MHD equations were

then presented; these equations could be used to describe the dynamics of plasma in

a magnetic field. Analyzing the stability of a certain magnetic configuration using

these equations would then be the key to determining its feasibility as a confinement

scheme. The validity of the sets of equations were also briefly discussed.

Having established the big picture, we will now focus on analyzing a specific

ideal MHD instability – the interchange mode. In Chapter 2, we will give an intro-

duction to the interchange mode and explain how it relates to plasma confinement.
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The introduction will be facilitated by a brief analysis with the established linear

theory.

In Chapters 3-5 we present our study of the dynamics of the interchange mode

near marginal stability. Fusion devices are limited in how intense a magnetic field

can be technologically employed. Thus, a system must be designed to operate as

close to marginal stability, near a B-threshold, as possible. This is set by stability to

the interchange mode. Our initial motivation was that the interchange mode would

be weakly convecting when the B-field was slightly below the marginal stability

threshold. If this were the case, then it might be acceptable for stellators to be

designed for the plasma beta to be slightly above critical as long as the convection

was within some tolerance. This could reduce some of the precision tolerances in the

design from ideal MHD stability results. Our findings are summarized as follows:

1. First, in Chapter 3, we consider a two-dimensional initial value problem where

the plasma is at marginal interchange stability due to a transverse, constant

component of the magnetic field. We find that, even in this simple marginal

problem, the result was not as expected; instead of weak convection, we find

a nonlinearly unstable and explosive solution when the transverse B-field was

slightly above the marginal stability threshold.

2. Next, in Chapter 4, we extend our analysis to a three-dimensional system. The

extension is motivated by the fact that the nonlinear instability we found is

similar to the “detonation” result of Cowley, et al[11] for a three-dimensional

system with line-tying. Our analysis reveals that the three-dimensional sys-

8



tem can be nonlinearly unstable, but not in the case of line-tied boundary

conditions.

3. Finally, in Chapter 5, we return to the two-dimensional case but we look into

the effects of boundary perturbations on the nonlinear instability. We study

this problem because of a previous result by Adler, et al[12] which found ampli-

fication of the marginally stable interchange mode in a system with asymmetric

sourcing. We show that the boundary perturbations indeed become amplified

in the plasma but that this could induce the nonlinear instability found earlier.

This result has the implication that tolerances in magnetic design are likely

to be highly sensitive to boundary distortions.

The results of Chapters 3 and 5 are summarized in the publications Refs. [13] and

[14], respectively. The results of Chapter 4 are in preparation for submission to the

Physics of Plasmas.
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Chapter 2

The Interchange Mode

2.1 Introduction

The interchange mode belongs to a class of ideal magnetohydrodynamic insta-

bilities, known as pressure-driven modes – modes driven by the pressure gradient

term in the momentum equation. The interchange mode is characterized by the

interchange of magnetic flux tubes so that the overall free energy of the system is

lowered.[15] The instability occurs when the equilibrium has a density gradient un-

favorable to the direction of a “gravitational” force. In systems with curvature, this

force comes from a centrifugal force generated by thermal motion along regions of

unfavorable curvature. Because of this, the instability is important in fusion devices

such as reversed field pinches, stellarators, and tokamaks.[2, 5, 16, 17]

In order to understand how the instability develops it is important to be

familiar with a fundamental result of ideal MHD.

2.2 The Frozen-In Theorem

Ohm’s law in the ideal MHD equations assumes perfect conductivity for the

plasma. As a result of this, a conservation law can be derived for the magnetic

flux. This conservation law states that the magnetic flux passing through any open

10



surface moving with the plasma remains a constant.[2, 18] Explicitly this means

that

d

dt
Φ = 0, (2.1)

where the flux, Φ, is defined as

Φ =

∫
S

B · n dS (2.2)

for an open surface S moving at the plasma velocity u.

To show Eq. (2.1) we consider the time derivative of Eq. (2.2) for an open

surface moving at velocity v. This is given by

d

dt
Φ =

∫
S

∂B

∂t
· n̂ dS +

∮
∂S

B · v × dl, (2.3)

where the first term is the change in flux due to the change in the local magnetic

field in S and the second term is the change in flux due to motion of S. The latter

can be thought of as the flux through the area swept by an infinitesimal line element

dl moving at velocity v. Using the vector identity A ·B×C = A×B ·C allows us

to write Eq. (2.3) in the form

d

dt
Φ =

∫
S

∂B

∂t
· n̂ dS −

∮
∂S

v ×B · dl, (2.4)

where we get the minus sign from flipping the cross product. Using Stokes’ theorem

we can write everything in terms of a surface integral to get

d

dt
Φ =

∫
S

(
∂B

∂t
−∇× (v ×B)

)
· n̂ dS. (2.5)

Combining Faraday’s law, Eq. (1.5), and the ideal Ohm’s law, Eq. (1.4), implies that

Eq. (2.1) follows from Eq. (2.5) if the surface is moving with the plasma, i.e. v = u.

11



The means that flux is locally conserved in ideal MHD plasma and, by extension,

since the result is for an arbitrary surface, it also implies a global conservation of

flux.

A more interesting implication of the result occurs when we consider a “flux

tube” – a thin, cylindrical surface with no flux through it, i.e. the magnetic field

lines are wrapped as shown in Fig. 2.1. Since all the flux is contained within the

surface it drags the magnetic field line with it as it moves with the plasma. Fluid

motion can be directly translated to motion of the flux tube which lets us deduce

the resulting configuration of the magnetic field lines. This implication gives us

an intuitive picture of ideal MHD; the plasma is “frozen in” with the flux tubes.

As the plasma flows in the system, the associated magnetic field lines in the flux

tube adjust accordingly to conserve the local flux. Since the plasma is a physical

object, the frozen-in theorem allows us to treat the magnetic field lines physically,

in discussion, by considering the flux tube wrapping them.

For instance, the frozen-in theorem leads to a statement regarding the conser-

vation of magnetic topology in ideal MHD. Inside a flux tube is a connected set of

fluid elements that must remain connected for any physically allowable motion of

the plasma. That is to say, neighboring fluid elements must remain adjacent to each

other. This means that two flux tubes are not allowed to penetrate each other as

the ideal MHD system is evolved in time since that involves breaking up adjacent

fluid elements. As shown in Fig. 2.2, the resulting state of an initial condition with

sheared or crossed flux tubes moving towards each other is the flux tubes getting

physically entangled. In ideal MHD theory magnetic topology must be preserved

12



Figure 2.1: Cartoon of a flux tube. The magnetic field lines are contained within

or wrapped around the open surface so that there is no component of the magnetic

field threading through the surface. The flux tube and magnetic field lines move

with the plasma inside the surface.
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Figure 2.2: Cartoon of the time evolution of two crossed flux tubes, moving towards

each other, under ideal MHD. The initial condition shown on the left will evolve,

after some time t, to the configuration on the right. The flux tubes do not pass

through each other, they are instead tangled together due to the frozen-in theorem.

and the assumptions of ideal MHD need to be broken first before configurations that

break topology are allowed.

It is worth noting that this topological constraint can make ideal MHD seem

more restrictive because certain configurations that might lower the overall energy

of the system are not accessible within the confines of the theory. For instance,

reconnection of magnetic field lines is energetically favorable in some MHD systems

with magnetic fields in opposing directions, but the only way for reconnection to

occur is by introducing a non-ideal term in the theory, e.g. resistivity. Even a

small resistivity (to break the ideal Ohm’s law) is enough to allow reconnection and

dramatically change the overall behaviour of the system.[19, 20] However, these non-

ideal effects are usually at a much slower rate that we can still learn some details
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about magnetically confined systems in the ideal MHD setting.

Having developed a physical interpretation of the ideal MHD plasma we are

now ready to discuss the ideal interchange mode.

2.3 A Physical Description

Consider a heavy (high density) fluid resting “atop” a lighter (less dense)

fluid, as shown in Fig. 2.3a. By “atop” we mean that there is a gravitational force

acting in the opposite direction of the density gradient. This sets up the well-known

Rayleigh-Taylor instability. If the density gradient is steep enough and we create

a small perturbation, like in Fig. 2.3b, then the heavier fluid element is going to

fall, and continue falling, while the lighter fluid element will rise.[21, 22] Eventually

the “bubble” will expand and a convection cell will form that mixes the heavier

and lighter fluid elements, as in Fig. 2.3c-d. The signature of this instability is the

development of this “mushroom”. We introduce this instability as the unmagnetized

analog to the interchange instability.

If the fluid were a plasma and we introduced a magnetic field in a direction

perpendicular to the density gradient, then the magnetic pressure could support the

density gradient. However, this system would still be unstable to the same pertur-

bations because of the frozen-in theorem. As shown in Fig. 2.4, when the heavier

plasma falls the flux tube also falls with it, along with the associated magnetic

field lines. Since the flux tubes cannot penetrate each other, the flux tube with

less density slips aside and interchanges with the falling flux tube; hence the name
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Figure 2.3: Evolution of the Rayleigh-Taylor instability. An unstable equilibrium,

(a), is given a small perturbation, (b). The perturbation causes the denser fluid

to continue falling, and expands outwards, creating a “mushroom” shape, (c). In

linear theory the mode continues to generate convection cells, (d). The plots were

created from simulation data.

16



B

g
∆
p

Figure 2.4: Cartoon of a magnetized, Rayleigh-Taylor unstable system. A pertur-

bation on the unstable equilibrium, as denoted by the dashed arrows, results in the

interchange mode.
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Figure 2.5: Cartoon of a possible flux tube configuration in a toroidal device. Ion

thermal motion parallel to the magnetic field, v‖, create an outward centrifugal

force. In regions of unfavorable curvature, the pressure gradient is opposite that of

the centrifugal force, i.e. p1 > p2 > p3, and can be unstable to interchanges.

“interchange” mode. The interchange happens because “lighter” flux tube will fill

in the space evacuated by the falling plasma. The interchanges can continue, driven

by the inertia of the plasma, to create a convection cell like the Rayleigh-Taylor

instability in the unmagnetized fluid case.

In magnetically confined plasma systems, the interchange mode can occur due

to the curvature in the magnetic field. With a cross-field pressure gradient, as is

likely in these systems, the interchange can go unstable due to forces created by the

field line curvature. The average parallel thermal speed (parallel to the magnetic

field) causes an outward centrifugal acceleration that can act like the gravitational

force in the simplified case. In Fig. 2.5, we can see that if the inner flux tube has

a higher pressure than the other flux tubes, i.e. p1 > p2 > p3, then an interchange
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can occur to lower the overall energy of the system. This instability can destroy the

containment of the plasma so it is problematic for magnetic confinement systems.

The interchange mode can be stabilized by introducing a component of the

magnetic field transverse to the mode symmetry. This breaks the symmetry of the

system and makes it so that the perturbation direction is no longer parallel to the

magnetic field. As discussed earlier, because of the frozen-in theorem, sheared flux

tubes are not able to penetrate each other and since the flux tubes are no longer

aligned they are not able to slip past each other and complete the interchange. The

stabilization happens as long as the shear is large enough, i.e. the transverse field

is strong enough. Explicitly, the transverse field is required to be large enough that

the frequency of the field line bending is greater than the Rayleigh-Taylor growth

rate. In other words, magnetic tension is the important parameter in determining

the stability of the interchange mode. So, even without a transverse field, the

interchange mode can still be stabilized if magnetic tension could be introduced

in some other way. One way to do this is to “tie down” the magnetic field lines

to some boundary so that an interchange of flux tubes cannot be completed, in

much the same way that you cannot interchange two guitar strings. Physically

this is accomplished by having hard, conducting plates to create line-tied boundary

conditions in the sytem.

With some physical intuition on the behaviour of the interchange mode we

will now proceed to discuss exactly what this means in the framework of the ideal

MHD theory.
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2.4 Mathematical Description: Linear Theory

To fully describe the interchange mode in the context of magnetic confinement

requires including the toroidal geometry and shear effects. However, for simplicity,

we will be using slab geometry with a constant transverse field. The nonlinear

results presented in later chapters were analyzed using this simplified model so we

will calculate the linear problem in the same model to appropriately compare them

later. While linear theory can be solved in the more complicated system (still not

completely though), the nonlinear problem is significantly more difficult to make

progress. As is usually the case in physics, the hope is that we can gain some

insight in this simpler problem that can be used to help solve the more complete

problem.

We will first briefly derive the linear result using the full set of ideal MHD

equations. This allows us to then show that the result can be recovered in the

context of reduced MHD. For brevity, both derivations will be sparse on details;

they are only included for completeness in introducing the interchange mode and

not meant to be a full description of linear theory. A more complete description can

be found elsewhere, e.g. Ref. [2, 8].

2.4.1 Using full ideal MHD equations

Consider an equilibrium with

p = p0(x), ρ = ρ0(x), B = Bz0(x)ẑ +By0ŷ, u = 0. (2.6)
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As mentioned earlier, the driving force in the interchange instability is the centrifugal

force from field curvature. In slab geometry we model this effect by a gravitational

field, g = −gx̂ (g ∼ v2thi/R, where R is the radius of curvature), that acts on the

density. Adding this gravitational force in Eq. (1.2), we get

∂x(p0 +
1

2µ0

B2
z0) = −gρ0 (2.7)

as the equilibrium condition.

Linearizing the ideal MHD equations about the equilibrium given in Eq. (2.6)

yields the following relevant equations for the perturbed quantities:

∂tρ̃+ ρ′0ũx + ρ0∇ · ũ = 0, (2.8)

ẑ · ∇ × (ρ0∂tũ) =
1

µ0

By0ẑ · ∇ × ∂yB̃ + g∂yρ̃, (2.9)

ẑ · ∇ × ∂tB̃ = By0ẑ · ∇ × ∂yũ−By0(∇ · ũ)′, (2.10)

∂tB̃z = By0∂yũz −Bz0∇ · ũ−B′z0ũx, (2.11)

∂tp̃+ p′0ũx + γp0∇ · ũ = 0, (2.12)

where the primes denote a derivative in x. In order to show clearly the stabilization

by a transverse field,1 variations in z are suppressed, i.e. ∂z = 0. Since parallel

wavenumbers are stabilizing, we can just deduce the effect of reintroducing variations

in z to the final result. An advantage of doing this is that it allows us to use the

operators ẑ · ∇× and ẑ· to simplify some of the equations.

1Henceforth, we will take the ẑ and ŷ directions to be the “parallel” and “transverse” direction,

respectively.
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In order to make some progress, we assume that the system is incompressible

so that

∇ · ũ = 0. (2.13)

This assumption of incompressibility is actually a result that can be shown explicitly

by combining Eqs. (2.11) and (2.12) and going through some rigorous asymptotics

with the ansatz that

ω(p̃+
1

µ0

Bz0B̃z)� gρ0ũx. (2.14)

Equation (2.13) follows from taking the low β and large radius of curvature limits

in addition to the limit with By0 � Bz0. The ansatz is found to be self-consistent

in the short wavelength limit with sub-magnetosonic frequencies. More details on

this calculation can be found in Ref. [8].

Substituting Eq. (2.13) into Eqs. (2.8)-(2.10), and taking the limit of short

wavelength and localized perturbations, yields the eigenvalue problem

ρ0∂
2
t ∂yũx =

1

µ0

B2
y0∂

3
y ũx + gρ0∂yũx (2.15)

for ũx. After writing ũx = ux(x) exp(ikyy− iωt), we arrive at the short wavelength,

low β, local dispersion relation

ω2 = V 2
Ayk

2
y − γ2g , (2.16)

where

VAy =
B2
y0

µ0ρ0
(2.17)

is the Alfvén speed and

γ2g = gρ′0/ρ0 (2.18)
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is the local Rayleigh-Taylor growth rate. As we expected in the discussion in Sec. 2.3

the interchange mode is stabilized (ω2 > 0) when the transverse field (By0) is strong

enough that the restoring frequency from field line bending (kyVAy) can overcome

the Rayleigh-Taylor growth rate. Stabilization by parallel wavenumbers will result

in

ω2 = V 2
Azk

2
z − γ2g , (2.19)

instead. This completes the derivation of the linear interchange mode dispersion

relation using the full ideal MHD equations.

2.4.2 Using reduced MHD equations

In arriving at Eq. (2.16) it was necessary to make several assumptions in

order to arrive at a complete set of equations that can lead to a solution. The

process can be simplified greatly if we instead start with the reduced MHD equations

given by Eqs. (1.9)-(1.11) where, as we showed in the previous chapter, some of the

assumptions are already incorporated in the equations, e.g. large aspect ratio.

The equilibrium, in the context of reduced MHD equations, is given by

ρ = ρ0(x), B = B0ẑ +By0ŷ, ϕ = 0, (2.20)

which means ψ0 = By0x. We linearize the reduced MHD equations about this

equilibrium to get

∂tρ̃− ρ′0∂yϕ̃ = 0, (2.21)

∂t(ρ
′
0ϕ̃
′ + ρ0∇2

⊥ϕ̃) = (B0∂z +By0∂y)∇2
⊥ψ̃ + g∂yρ̃, (2.22)
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∂tψ̃ = (B0∂z +By0∂y)ϕ̃, (2.23)

Combining the above equations and taking the short wavelength and local limits

yields

ρ0∂
2
t ϕ̃ = (B0∂z +By0∂y)

2ψ̃ + gρ′0ϕ̃. (2.24)

Finally, a Fourier transform on ϕ̃ leads to the dispersion relations given in Eqs. (2.16)

and (2.19) for kz = 0, By0 6= 0 and kz 6= 0, By0 = 0, respectively.

2.5 Summary

An overview of the linear theory of the ideal MHD interchange mode was

given. We first showed that the ideal Ohm’s law assumption of ideal MHD results

in a conservation law for the magnetic flux, called the frozen-in theorem. This

fundamental result of ideal MHD allowed us to develop a physical intuition for the

behaviour of magnetic field in a magnetized plasma system; the most important

of which is the idea of flux tubes and conservation of magnetic topology. This

result meant that the introduction of a straight magnetic field perpendicular to

the gravitational force does not alter the Rayleigh-Taylor instability because the

flux tubes will just interchange. However, because magnetic topology is conserved,

transverse magnetic fields can stabilize the interchange of flux tubes. We finished

the physical description discussion of the interchange mode by claiming that the

key feature of the interchange mode is the interplay of the stabilization due to the

magnetic tension and the unstable growth due to the Rayleigh-Taylor instability.

After learning what to expect from the physical behaviour of the interchange
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mode, we proved how this comes about from a mathematical standpoint using two

sets of equations: the full ideal MHD equations and the reduced MHD equations.

A few assumptions had to be invoked in order to arrive at a solution using the full

ideal MHD equations, the most useful of which is the incompressibility assumption.

The final result was an agreement with the physical analysis – the growth rate of

the interchange mode was driven by the Rayleigh-Taylor growth rate and stabilized

by the Alfvénic wave frequency. We learned that the calculation could be made

considerably easier by using the reduced equations, since they are already simplified

by the same assumptions.

In this dissertation, we study systems where the interchange mode is stabi-

lized with a transverse field or line-tied boundary conditions. However, it should

be noted that stabilization can be achieved by other means. In particular, one such

mechanism comes from the Rayleigh-Taylor growth rate that drives the destabiliza-

tion of the interchange mode. We showed that γ2g = gρ′0/ρ0; however, this result

assumes that p′0/γp0 � ρ′0/ρ0, that is to say, it assumes that the scale size of of the

density is much shorter than the scale size of the pressure. If this was not the case

then the growth rate is given by γ2g = g(ρ′0/ρ0− p′0/γp0).[8] Thus, even if ρ′0/ρ0 > 0,

the system could still be stable to interchange modes if the pressure profile was

such that p′0/γp0 > ρ′0/ρ0. In general, this mechanism has importance in solar and

astrophysical systems, but not so much in conventional laboratory fusion plasma

systems that we are studying. Other stabilizing effects worth mentioning, that are

not included in this study, are the previously mentioned magnetic shear and velocity

shear.
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Now that we have an understanding of the linear theory of interchange modes,

we will now focus our attention on nonlinear analysis. We start with a two-

dimensional initial value problem.
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Chapter 3

Two-Dimensional Nonlinear Instability

3.1 Introduction

We learned, in the previous chapter, that it is well-known that the MHD

magnetized plasma interchange instability can be stabilized by a transverse mag-

netic field. For a given wavenumber, allowing a magnetic field component in the

direction of the wavenumber introduces Alfvénic stabilizing tension such that be-

yond a critical transverse field (transverse to the direction of mode symmetry) that

wavenumber is linearly stable.[2] The nonlinear evolution of the magnetized plasma

interchange instability is less well understood. In particular, the state of the sys-

tem for when the transverse B-field is marginally subcritical (or, equivalently, the

plasma beta is slightly above critical) is an important question for magnetized fu-

sion energy applications: does the mode saturate at low amplitude and how does

the marginal convection and resulting transport scale with deviation from marginal-

ity? The question is an important consideration for stellarators, for example, since

these fusion devices are engineered for very high precision magnetic fields and one

of the precision constraints arises from ideal MHD linear stability results.[17] If the

nonlinear consequence of a slightly subcritical B-field were better understood, it

may be possible to optimize over the MHD design constraints. It was also recently

shown that the linear growth rate of ideal interchanges in a reversed-field pinch
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for a slightly subcritical B-field is weaker than expected and may be overcome by

nonlinear effects.[23]

There have been a few studies done on nonlinear growth of interchange instabil-

ities at marginal stability in tokamaks.[24, 25, 26, 11, 27, 28] Although a Lagrangian

approach has been attempted,[29] the general approach is to expand the equation

of motions of the unstable mode about marginal stability and thus the nonlinear

terms in the system can be evaluated.[25, 26] We can determine the overall stabil-

ity of the system by comparing the behaviour of the nonlinear effects to the linear

driving term. In Ref. [25] the author found that, for the profiles investigated, the

nonlinear effects were stabilizing. Similarly, in Ref. [26] the author showed nonlinear

saturation at marginal stability. Both authors considered a system with a sheared

magnetic field. In studying the line-tied g mode, the authors in Ref. [11] showed

that near the marginally stable point the system was nonlinearly unstable. However,

Refs. [27, 28] showed that the nonlinear growth transitions through an initial regime

where the nonlinear growth dominates the linear response, as shown in Ref. [11],

but a secondary regime takes over when the amplitude is sufficiently large and so

the mode amplitude remains bounded.

We simplify our system to a slab geometry where we use an effective gravi-

tational field, g, to model centrifugal force due to field line curvature[15] and we

assume a constant transverse field. This reduces the complexity of the system so

that the focus of the analysis can be on how nonlinear terms get introduced into

the equations of motion. The idealized system is described in Sec. 3.2 along with

the derivation of nonlinear time evolution equation. The goal is to have a simpler
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methodology in a simple system that can be generalized into more complicated sys-

tems, e.g. sheared field[30], ballooning[31, 32], etc. In Sec. 3.3 we verify our result

using a dissipative numerical simulation. The results are summarized in Sec. 3.4.

3.2 Analytic Theory

As we showed in Chapter 1, if we consider a slab system with constant gravity

g = −gx̂ and very strong magnetic field in the z direction such that B⊥ � Bz and

VAz is much larger than the typical flow in the system then this system is found

to be incompressible and can be described by the two-dimensional MHD reduced

equations. We rewrite them here for convenience:

∂tρ+ u · ∇⊥ρ = 0, (3.1)

ẑ · ∇⊥ × (ρ
d

dt
u) = B⊥ · ∇⊥∇2

⊥ψ + g∂yρ, (3.2)

∂tψ −B⊥ · ∇⊥ϕ = 0, (3.3)

where u = ẑ×∇⊥ϕ and B⊥ = ẑ×∇⊥ψ and we have defined, in the usual way,

d

dt
≡ ∂

∂t
+ u · ∇⊥.

Variations in z are suppressed since the fastest interchange has ∂/∂z = 0. The

nonlinear system of equations given by Eqs. (3.1)-(3.3) can be solved for the variables

ρ, the density, and ϕ and ψ, the flow and magnetic streamfunctions, respectively.

We consider a static equilibrium with a density gradient that’s unstable to

interchange and a constant, transverse magnetic field. More explicitly, we have

ρ′0(x) > 0, B⊥ = B0ŷ, ϕ0 = 0, (3.4)
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where henceforth the primes denote differentiation with respect to x. We also add

the assumption that ρ′0 → 0 at the boundaries and has even parity.

As shown in the previous chapter, small perturbations about this equilibrium

yield the WKB dispersion relation

ω2 = k2V 2
Ay − γ2g (3.5)

where γg = |gρ′/ρ|1/2 is the Rayleigh-Taylor growth rate and k is the wavenumber

in the y direction. In this chapter, we consider the dynamics of the magnetized

interchange mode when the magnetic field strength is strong enough to just stabilize

interchanges, i.e., the system is near marginal stability. In particular, for a given

k, suppose ω2 > 0 everywhere in x except for a single small region where it is very

close to zero, positive or negative. In that case, weakly growing perturbations are

possible in the vicinity of where k2V 2
Ay−γ2g is close to zero. The time rate of change

of the perturbations will be very small compared to the local γg. Thus, we order

∂t/γg ∼ ε� 1. (3.6)

This implies that any deviations in B0 away from criticality must be small. In

particular, if

B0 = Bc + b2 (3.7)

then, according to Eq. (3.5), b2/Bc must be of O(ε2).

We allow small perturbations about this marginal point such that the ampli-

tude of the magnetic perturbation, A, while small, is large enough that the nonlinear

magnetic tension forces can influence the growth time. This results in the optimal
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ordering

A/ψ0 ∼ ε. (3.8)

We represent the perturbation by expanding ψ and ϕ in a series

ψ = ψ0 + ψ1 + ψ2 + ψ3 + · · · (3.9)

ϕ = ϕ1 + ϕ2 + ϕ3 + · · · (3.10)

where the order in ε is denoted by the subscript. The continuity equation, Eq. (3.1),

can be satisfied by letting ρ = ρ(ψ) and using Eq. (3.3). With this change of variable

we can expand ρ in terms of δψ = ψ − ψ0 to get

ρ(ψ) = ρ0 +
ρ′0
B0

δψ +
1

2

ρ′′0
B2

0

δψ2 +
1

6

ρ′′′0
B3

0

δψ3 + · · · . (3.11)

Substituting the expansions given by Eqs. (3.9)-(3.11) into Eqs. (3.2) and (3.3) we

can solve for the nonlinear evolution of the perturbations order by order.

3.2.1 First order equations

Matching terms to lowest, non-vanishing order, we obtain from Eqs. (3.2) and

(3.3) the equations

0 = Bc∂y∇2
⊥ψ1 + g∂yρ1, (3.12)

−Bc∂yϕ1 = 0, (3.13)

where Eq. (3.11) gives

ρ1 = ρ′0ψ1/Bc. (3.14)

Substituting ρ1 into Eq. (3.12) the equation becomes

L(ψ1) = 0 (3.15)
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where we have defined the operator

L(f) ≡ (∇2
⊥ +

g

B2
c

ρ′0)∂yf.

Writing ψ1 as

ψ1(x, y, t) = A(t)ζ1(x) cos(ky), (3.16)

we obtain the eigenvalue equation

ζ ′′1 (x)− k2ζ1(x) +
g

B2
c

ρ′0ζ1(x) = 0 (3.17)

that can be solved to get an eigenvalue for Bc. The boundary condition for ρ0

implies that ζ1 decays exponentially close to the boundary.

In writing Eq. (3.16) we assumed a cosine perturbation in the density which

implies ψ1 ∼ cos(ky) from Eq. (3.11). If we also assume that this initial perturbation

results in a pure mode for the lowest order flow then

ϕ1(x, y, t) = 0 (3.18)

is the solution to Eq. (3.13).

To the lowest order we have found that given the mode of the density pertur-

bation, k, and the equilibrium density gradient profile, ρ′0(x), then the marginally

stable field strength Bc can be solved for using Eq. (3.17). This result is consistent

with the prediction from linear theory for the existence of the marginally stable

value.
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3.2.2 Second order equations

In order to solve for the time evolution of ψ1, it is necessary to proceed to

higher order in the expansion. We now match O(ε2) terms in Eqs. (3.2) and (3.3)

to get

Bc∂y∇2
⊥ψ2 + g∂yρ2 + B1 · ∇⊥∇2

⊥ψ1 = 0, (3.19)

∂tψ1 = Bc∂yϕ2, (3.20)

where Eq. (3.11) to the same order gives

ρ2 =
ρ′0
Bc

ψ2 +
1

2

ρ′′0
B2
c

ψ2
1. (3.21)

Using ψ1 from Eq. (3.16), ϕ2 can be solved for in Eq. (3.20) to obtain

ϕ2(x, y, t) =
1

kBc

dA(t)

dt
ζ1(x) sin(ky) + ϕ̄2(x, t), (3.22)

where ϕ̄2(x, t) is a constant of integration.

Substituting Eq. (3.21) into Eq. (3.19) results in an equation for ψ2,

L(ψ2) = − g

B3
c

ρ′′0∂y(ψ
2
1), (3.23)

where we have used Eq. (3.15) to simplify the Laplacian. This has a solution of the

form

ψ2(x, y, t) = A(t)2ζ2(x) cos(2ky) + ψ̄2(x, t), (3.24)

where ψ̄2(x, t) is the homogeneous solution to Eq. (3.23). Substituting Eq. (3.24)

into Eq. (3.23), we find ζ2(x) satisfies

ζ ′′2 (x)− 4k2ζ2(x) +
g

B2
c

ρ′0ζ2(x) = −1

2

g

B3
c

ρ′′0ζ1(x)2. (3.25)
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To fully analyze the stability of our system we still have to resolve the time

evolution of ψ1. It is also important to solve for ψ̄2 and ϕ̄2 to make sure that those

terms are well-behaved.

3.2.3 Third order equations

As was done previously in lower orders, we match terms of O(ε3) in Eqs. (3.2)

and (3.3). The resulting higher order equations are

∂t(ρ0∇2
⊥ϕ2 + ρ′0ϕ

′
2) = Bc∂y∇2

⊥ψ3 + b2∂y∇2
⊥ψ1

+ g∂yρ3 + B1 · ∇⊥∇2
⊥ψ2 + B2 · ∇⊥∇2

⊥ψ1 (3.26)

∂tψ2 = Bc∂yϕ3 + B1 · ∇⊥ϕ2 (3.27)

along with

ρ3 =
ρ′0
Bc

ψ3 −
ρ′0b2
B2
c

ψ1 +
ρ′′0
B2
c

ψ1ψ2 +
1

6

ρ′′′0
B3
c

ψ3
1 (3.28)

from Eq. (3.11).

Integrating Eq. (3.26) over one period in y we find that ϕ̄2 is not driven by ψ1

so we can set

ϕ̄2(x, t) = 0 (3.29)

without loss of generality. No zonal flows are generated in the system when creating

a periodic perturbation in the density. However, averaging Eq. (3.27) over y we find

that zonal fields are generated according to

ψ̄2(x, t) =
1

2

1

Bc

A(t)2ζ1(x)ζ ′1(x). (3.30)
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For a given k and ρ0 the system is now solved up to second order with the excep-

tion of the time evolution of A(t). The variables ψ1, ϕ1, ψ2, and ϕ2 are defined

by Eqs. (3.16), (3.18), (3.24), and (3.22), respectively. We can solve for ζ1 using

Eq. (3.17) and then for ζ2 using Eq. (3.25). The y-independent terms ϕ̄2 and ψ̄2 are

given by Eqs. (3.29) and (3.30).

To solve for A(t) we need to simplify Eq. (3.26) by making use of Eqs. (3.15),

(3.20), and (3.28). After some algebra Eq. (3.26) takes the form

1

k2Bc

∂2t (
g

B2
c

ρ0ρ
′
0∂yψ1 − ρ′0∂yψ′1) =

BcL(ψ3)− 2
g

B2
c

b2ρ
′
0∂yψ1 + F [ψ1, ψ2], (3.31)

where exact details of the functional F is suppressed here for clarity but is shown in

Appendix A. We can extract a time evolution equation by substituting Eqs. (3.16),

(3.24), and (3.30) into the above equation and applying the operator
∫
dx ζ1(x)

∫
d(cos(ky))

evaluated over all space. This operation will annihilate the ψ3 term and any higher

order harmonics.

After simplification (see Appendix A), we arrive at the equation for A(t)

1

k2Bc

〈ρ0ρ′0ζ21 〉
d2

dt2
A(t) = −2b2〈ρ′0ζ21 〉A(t)

+

(
〈ρ′′0ζ21ζ2〉 −

1

4

1

Bc

〈ρ′0ζ21 (ζ21 )′′〉 − 1

4

Bc

g
〈ζ21 (ζ21 )′′′′〉

)
A(t)3, (3.32)

where the angled brackets are defined as

〈f〉 ≡ 1

Lρ

∫
dx f(x)
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with L−1ρ ≡ ρ′0/ρ0 evaluated at x = 0. We can simplify this further by letting

x→ χLρ,

ρ0(x)→ ρ0(0)ρ(χ),

ζ1(x)→ Z1(χ),

ζ2(x)→ Z2(χ)/(BcLρ),

in order to introduce dimensionless versions of the variables x and ρ0, and have A

with dimensions of ψ. Applying this normalization to Eq. (3.32) we get

1

k2V 2
Ac

d2

dt2
A(t) = −2

b2
Bc

c1A(t) +
c3

B2
cL

2
ρ

A(t)3 (3.33)

where V 2
Ac ≡ B2

c/ρ0(0) and

c1 =
〈ρ′Z2

1〉
〈ρρ′Z2

1〉
, (3.34)

c3 =
〈ρ′′Z2

1Z2〉
〈ρρ′Z2

1〉
− 1

4

〈ρ′Z2
1(Z2

1)′′〉
〈ρρ′Z2

1〉

− 1

4

V 2
Ac

gLρ

〈Z2
1(Z2

1)′′′′〉
〈ρρ′Z2

1〉
, (3.35)

where the primes and brackets now denote derivatives and integrals in χ. Using the

same normalization on Eqs. (3.17) and (3.25) we get the following equations,

Z ′′1 − k2L2
ρZ1 +

gLρ
V 2
Ac

ρ′Z1 = 0, (3.36)

Z ′′2 − 4k2L2
ρZ2 +

gLρ
V 2
Ac

ρ′Z2 = −1

2

gLρ
V 2
Ac

ρ′′Z2
1 , (3.37)

for the dimension-free Z1 and Z2.

The equation for the time evolution given by Eq. (3.33) closes the system and

we can fully determine the first and second order perturbations, ψ1 and ψ2 defined
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by Eqs. (3.16) and (3.24), for a given k, ρ0, and b2. This is achieved by first solving

the eigenvalue problem Eq. (3.36) and using the solution for Z1 and Bc to solve for

Z2 using Eq. (3.37), and finally determining the coefficients defined by Eqs. (3.34)

and (3.35), and solving for A(t) in Eq. (3.33).

The coefficient c1 is a positive number for ρ′ > 0, and so the linear stability of

the system is determined by the sign of b2. This result agrees with the linear theory.

However, the overall nonlinear stability of the system is going to be determined

largely from the sign of c3 compared to the sign of b2.

3.2.4 Short wavelength limit

We can analytically solve Eq. (3.36) for the case kLρ � 1 in which regime the

cells are elongated in x direction but still shorter than the scale of the gradient, i.e.,

kLρ � χ−1 � 1.

With this scaling we can approximate ρ′(χ) to be

ρ′(χ) ≈ 1− χ2

2
. (3.38)

Assuming that gLρ/V
2
Ac ∼ k2L2

ρ, then from scaling arguments we find that Eq. (3.36)

has the familiar form of a quantum harmonic oscillator. This has the well-known

solution

Z1(χ) = Ẑ1 exp

(
− kLρ

2
√

2
χ2

)
, (3.39)

k2L2
ρ =

gLρ
V 2
Ac

(
1− 1√

2

1

kLρ

)
, (3.40)
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for the ground state. This solution is correct only for kLρ � 1 and the solution

for the “energy” adds a small correction to the initial assumption. Using the same

scaling, to lowest order, Eq. (3.37) has the solution

Z2(χ) = −1

6
χZ1(χ)2. (3.41)

The time evolution equation given by Eq. (3.33) can be simplified in the kLρ �

1 limit by substituting the solutions Eqs. (3.39)-(3.41) in the coefficients given by

Eqs. (3.34) and (3.35). After simplification we arrive at the following values for the

coefficients

c1 = 1, c3 =
1

8
kLρ (3.42)

where we only kept the largest terms and have assumed that Ẑ1 = 1.

The above result implies that even if b2 > 0, if the initial amplitude A0 ≡ A(0)

is such that

A0

BcLρ
> 4

√
b2
Bc

1

kLρ
, (3.43)

then the system will be nonlinearly unstable and the amplitude will increase with-

out bound. Furthermore, for b2 < 0 the instability grows faster than predicted

from linear theory and any small perturbation will continue to grow larger without

saturation.

With the solution for the eigenmode we can check the ratio between the spatial

scale of the perturbation, characterized by the displacement in the x direction ξx,

and the width of the eigenmode

∆ ∼
√
Lρ
k
, (3.44)
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given by Eq. (3.39). The displacement is related to the velocity by ∂tξx ∼ ux, and

from Eq. (3.20) we get that ∂tA ∼ Bcux2, which implies that A ∼ Bcξx. Substituting

for A using Eq. (3.43) gives us a scale for the displacement,

ξx ∼
√
b2
Bc

Lρ
k

(3.45)

which yields

ξx
∆
∼
√
b2
Bc

(3.46)

for the ratio of the two scale lengths. As should be expected, the spatial size of the

amplitude required to be nonlinearly unstable is much smaller than the width of the

eigenmode.

3.3 Numerical Simulation

To confirm this result, we used a two-dimensional code that solves the fully

compressional equations. A short description of the code and the equations solved

are shown in Appendix B. The variables ρ, ρu, ψ, and Bz are solved numerically

and stepped in time. We set Bz � |B⊥| so the equations are effectively reduced.

The code is dissipative so we introduced source terms in the density in order to

maintain a steady state profile suitable for our model. The sourcing, although weak,

results in a profile for By(x). To compare with analytic theory, we wish to keep By

approximately constant. Thus, we allowed Bz to resistively relax at a somewhat

slower rate than By in the equilibrium.

The system is normalized so that initially VAz = 1 and Lx = 1, where Lx

is the height of the box. We used hardwall, free-slip boundary conditions for the
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top and bottom walls and periodic boundary conditions for the sides. The periodic

boundary conditions discretize the system so that the only wavenumbers allowed

are integer multiples of 2π/Ly, where Ly is the width of the box. From Eq. (3.5)

we know that the lower modes are the most unstable, so to study the case with

kLρ � 1, i.e. short wavelength, we selected Ly such that the minimum value for

kLρ satisfies this condition. By choosing k = 2π/Ly we can satisfy the marginality

condition by adjusting B0 and/or g such that kVAy ≈ γg for the minimum mode.

We set Ly = 0.5, and from the density profile we have Lρ = ρ0/ρ
′
0 ≈ 0.4 and so we

satisfy the condition

kLρ ≈ 5.03� 1

which is necessary to compare with the analytical result from Sec. 3.2.4. We at-

tempted to run tests with a larger value of k by decreasing Ly, but the code was

numerically unstable for smaller box widths.

To generate the equilibrium we initialize ψ to B0x and let the system reach an

equilibrium which is steady state. The density source term results in a weak flow in

the x direction. This flow scales with the diffusion, so a minimal, numerically-stable

value for the diffusion is chosen to minimize its effect. The equilibrium profiles

for the density and the background field generated are shown in Fig. 3.1. It is

important to note that the equilibrium profile for the density does not have ρ′0 → 0

at the boundaries. The boundary conditions imply that ρ′0 → −gρ0 at the wall.

After the equilibrium is made, a density perturbation is introduced with

ρ̃(x, y) = a0 cos(ky). From Eq. (3.14) we can relate the density perturbation ampli-
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Figure 3.1: The equilibrium profiles for the background field Bz, the density ρ, and

the magnetic streamfunction ψ along with the difference from constant field.
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Figure 3.2: The linear growth of an unstable localized mode cut at y ≈ 0.26 and

for t ≤ 60τA. Time traces separated by t ≈ 6τA are shown.
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tude, a(t), to the perturbation amplitude of ψ, i.e. a = ρ′0A/Bc. In Fig. 3.2 we show

the resulting unstable eigenmode developing for the density. For tests done with B0

far away from marginality, i.e. |b2/Bc| ≈ 50%, there was excellent agreement for the

growth rate/frequency in the simulation with Eq. (3.5). The theory predicts that

there will be nonlinear coupling to the mode with wavenumber 2k, so it is important

that this mode and higher modes are allowed. Since the diffusivity is weak, it is

ensured that this is the case.

Since we can adjust both B0 and g to achieve marginal stability, we decided

to fix the value of g at 0.15, and adjust B0. With this value of g we expect that

Bc ≈ 0.05 based on Eq. (3.40). However, we found that an equilibrium with B0 =

0.05 is stable to perturbations as large as a0 = 10−1 in the simulation. We decreased

the strength of the transverse field until it became unstable to perturbations with

a0 = 10−4. This value was at B0 ≈ 0.0438 and we took this to be the critical value

of the transverse field for the numerical simulation. Since the critical amplitude

scales like the square root of the deviation from marginality, we are limited to

perturbations only as small as 10−4 otherwise smaller perturbations would have

meant having deviations that are close to the limits of our computational power.

We created multiple equilibria with different transverse field strength within

10% of the numerical critical field strength. These equilibria were then perturbed

with a0 of different orders of magnitude. The result of the test is shown in Fig. 3.3

where circles and crosses mark stable and unstable points, respectively, and the

solid line is for a0 = 4ρ′0
√

(b2/Bc)(Lρ/k), from our theory, using the parameters

from the numerical simulation. The slope of the theory line seems consistent with
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Figure 3.3: Result of stability test for a range of deviations from Bc and magnitude

of perturbation, a0. Stable and unstable results are denoted by a circle or a cross,

respectively. The solid line is the theoretical boundary.
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the numerical data, however, the theory requires larger a0 for nonlinear instability.

This inconsistency could be due to the diffusion in the code and, in particular, the

resistivity may allow for slippage in the magnetic field lines which can shift the

stability boundary at marginal stability. We can calculate the scale size of this shift

based on the values used in the simulation (see Appendix B),

η/∆2

kVAy
≈ 2.5%. (3.47)

This implies that there could be a shift in Bc of order
√
b2/Bc. At marginal stabil-

ity, even small diffusion can cause significant shifts in stable-unstable boundaries.

However, this implies a shift in Bc; it is harder to explain why resistivity results in a

nonlinear instability at large amplitude of perturbation. It is possible that diffusive

effects may affect the critical amplitude for nonlinear instability, but the existence

of a nonlinear instability phenomenon is harder to explain as a diffusive effect.

In addition to checking the perturbations for a growing linear mode, we also

check the time trace of the amplitude for nonlinear effects. In Fig. 3.4 we show a

time trace of the amplitude of ρ̃, a(t), for the same B0 but different a0. We can see

that the behaviours are different for the two cases. In the unstable case, Fig. 3.4a,

the density perturbations become very large quickly and eventually dissipate after

it hits the boundaries (t . 100τA). The time trace of ρ′ shows that the density

profile flattens out (ρ′ → 0) after reaching a peak. So, even though our analysis in

Sec. 3.2 is only valid as long as A . ε we can see from the trace that it continues

beyond this limit until the profile collapses. The stable case, Fig. 3.4b, has an initial

growth eventually hitting a peak and then has stable oscillations. Even though the
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Figure 3.4: Time trace of the amplitude of density perturbations ρ̃ (solid line) and

x derivative of the density ρ′ (dashed line) for b2/Bc ≈ 0.04% with (a) a0 = 10−2

and (b) a0 = 10−4.
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Figure 3.5: Time trace of the amplitude of density perturbations ρ̃ (solid line) and

x derivative of the density ρ′ (dashed line) for b2/Bc ≈ 10% with a0 = 10−4.
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amplitude increases some, it is still small and the density profile holds. This can be

seen from the fact that ρ′ is staying constant the entire time. We can see in Fig. 3.5

that as we increase b2/Bc further from marginality, this initial growth decreases in

magnitude. It also develops faster and has more noise that is indicative of a transient

oscillatory mode.

3.4 Summary and Conclusions

In this chapter, we studied the nonlinear behaviour of a marginally stable

interchange system. We used the reduced equations to find an analytic solution

near marginality given a density profile, ρ0(x), deviation from marginality, b2, and

wavenumber of perturbation, k, of the B-field. The result is a nonlinear differential

equation for the amplitude of the density perturbations as a function of time. The

threshold for nonlinear instability is dependent on the above quantities, along with

g. The principal finding is that marginally stable interchange modes in a magne-

tized plasma can be nonlinearly unstable for large enough initial perturbations. We

arrived at this result from a systematic asymptotic expansion about marginality

in the smallness parameter, |b2/Bc|1/2, carried out to third order. The first order

solution can be found using the linear eigenvalue problem. This solution is then

used as a source for the second order problem. The third order analysis yields the

equation for the time dependence of the perturbation. We found that the stability of

the solution can be determined by calculating the coefficient of the nonlinear term

in the differential equation. This is a nontrivial task for a general perturbation,
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but we could analytically solve this in the short wavelength limit. In this limit we

found that the nonlinear coefficient had a positive sign. This meant that in the

linearly stable case (b2 > 0) it was possible to be nonlinearly unstable if the initial

perturbation was large enough. We found the critical amplitude to be proportional

to
√
b2.

A nonlinear numerical MHD simulation fully confirms the analytic result. We

have used a numerical simulation of the nonlinear, full, compressible, MHD equa-

tions with small dissipation to verify our analytical result. We showed very good

agreement between the simulation and the theory for deviations, b2, from Bc of up

to 10%. The numerical results show that in the short wavelength limit the system

is nonlinearly unstable. There is some disagreement in the time evolution of the

density with the analytical result, but this is possible since the analytic calculation

is for an ideal system with no dissipation. We also discussed why a shift in Bc for

the linear instability threshold, due to dissipation, is possible at marginal stability

and how it is harder to explain why the nonlinear result has an amplitude dependent

stability. Furthermore, the dependence is cubic so the mode grows without bound

once it is unstable. This is even harder to explain as a resistive effect.

It should be noted that the fully analytic calculation is facilitated by using

a very simple form (a constant) for the transverse stabilizing magnetic field. So,

while the conclusions seem to be on solid ground, the application of these findings

to various systems, to the extent that the transverse B-field of this analysis is very

special, must be appropriately qualified. For example, in tokamaks and stellarators,

the interchange mode arises on rational surfaces which corresponds to a slab model
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with a sheared magnetic field vanishing at x = 0. In the solar coronal case, line-

tying is an important characteristic absent in our simple case. Nonetheless, the

conclusions are sufficiently dissimilar as to indicate further investigation. Thus,

for example, a neighboring nonlinear saturated state for the interchange mode was

found in Refs. [25, 26] – whereas the corresponding result in our case, for b2 < 0,

indicates a robustly growing mode with no nonlinear saturation. Of course, the

transverse magnetic field in these papers was a sheared field with a rational surface

for the unstable wave mode. Attempting a marginal stability analysis for sheared

field, similar to that used in this analysis, is not straightforward. The fact that

the sheared field goes to zero as x goes to zero means that a new inner ordering is

required, which makes the calculation more involved.

Our results are more consistent with the nonlinear instability found in Ref. [11]

where the authors were also in the parameter range with k⊥ � 1, ∆x ∼ k
−1/2
⊥ , and

ξx � ∆x. It should be noted that their analysis was for the three-dimensional line-

tied g mode with no transverse field at marginal stability. Even so, the suprising

result is that in both cases the system takes off once it becomes nonlinearly unsta-

ble. This occurs even when the linear term is stabilizing. The primary difference

between the results is the amplitude dependence of the nonlinear term. In Ref. [11]

the nonlinear term has a quadratic dependence, while our analysis yields a cubic

dependence on amplitude. If we construct an effective potential, we observe that

the result from Ref. [11] indicates a dependence on the sign of the perturbation at

the metastable boundary, while our potential is symmetric in A. Another difference

is that the result in Ref. [11] was somewhat mitigated by Refs. [27, 28] in that the
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latter papers argued that the ordering giving nonlinear growth would break down

at small amplitudes before the instability fully takes off. In our case, our numerical

simulations seem to show, in agreement with analytic constraints, that the nonlinear

instability growth continues without bound and the theory only fails when A ∼ O(1)

(as saturation is reached).

Our results could also be relevant to tokamak ballooning modes to the extent

that these modes are stabilized by an “average minimum-B well” and thus always

have some parallel wavenumber. Work is in progress to quantify this better. Fi-

nally, our results also indicate a closer look at interchange stability in stellarators,

presumably in average minimum-B stabilized systems.

Further investigation is necessary to answer some questions regarding the re-

sults found. The transient initial growth in the time traces, mentioned in Sec. 3.3,

needs to be explained. The change in the growth rate as the system gets closer to

marginal stability, with b2 < 0, needs to be investigated and compared to the results

from Ref. [23]. However, since the natural extension to this analysis is to include

variations in z we will continue our investigation with that analysis. The analy-

sis in the next chapter will attempt to resolve the line-tied boundary stabilization

established by Refs. [11, 27, 28].
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Chapter 4

Three-Dimensional Nonlinear Instability

4.1 Introduction

In the previous chapter, we showed that the two-dimensional (2D) interchange

mode near marginal stability can exhibit nonlinearly unstable behaviour. The anal-

ysis was done using reduced equations where the parallel wavenumbers were disal-

lowed, i.e. ∂/∂z = 0, and the growth of the interchange was marginally stabilized

by a weak B-field transverse to the mode symmetry. In that simplified, 2D system

we found that if the initial perturbation was large enough then it would continue

to grow without bound, even when the system was linearly stable to interchanges.

In this chapter, we extend the analysis to a three-dimensional (3D) system, where

stabilization is achieved by allowing for finite wavelength in the z direction.

We consider two boundary conditions in the z direction: periodic and line-

tied. The line-tied boundary condition for the interchange mode is a variant of the

ballooning instability but with simpler geometry.[27] This is relevant to us since the

ballooning mode is a type of interchange mode that can develop in tokamaks, in

the regions with curvature unfavorable to the interchange instability.[2] The simpler

geometry of the line-tied interchange mode allows us to analyze the nonlinear in-

stabilities that might otherwise not be doable on the complicated geometry of the

ballooning mode. We can use this simpler geometry to gain some insight on the
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stability of the ballooning mode. In order to bridge the gap from the 2D analysis

to a 3D system, we start by considering periodic boundary conditions.

The nonlinear instability result found in the previous chapter is similar to the

instability found by Cowley, et al for the line-tied g mode.[11] In that paper, the

authors found that the nonlinear line-tied g mode had a regime where the growth

became singular at a finite time. Since the nonlinear growth is associated with a

release of energy in finite time, the “explosive” growth has been used to explain

the onset of magnetospheric substorms[33] and disruptions in tokamak plasmas[34].

Our previous analysis was done in 2D and, therefore, an effective comparison can

only be established by extending the method to a 3D system with similar boundary

conditions. The goal is to reconcile the differences in our result and the results of

Refs. [11] and [27].

In this chapter also, we will do the analysis using slab geometry with an

effective gravitational force to model the effects of field line curvature.[15] We begin

the analysis by explaining the marginal stability assumption for a 3D system in

Sec. 4.2. We then revisit the 2D system with a constant density gradient assumption

in Sec. 4.3. In Sec. 4.4 we extend the analysis to a 3D system. Finally, the results

are summarized in Sec. 4.5.

4.2 Marginally Stable System

In the analysis that follows, we will once again use the reduced MHD equations,

however, we now wish to include variations in z, so the full equations are needed,
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which we show here for convenience:

∂tρ+ {ϕ, ρ} = 0, (4.1)

ẑ·∇⊥×ρ(∂tu + {ϕ,u}) = Bz∂z∇2
⊥ψ + {ψ,∇2

⊥ψ}+ g∂yρ, (4.2)

∂tψ −Bz∂zϕ− {ψ, ϕ} = 0, (4.3)

u ≡ ẑ×∇⊥ϕ, (4.4)

B ≡ Bzẑ + ẑ×∇⊥ψ, (4.5)

where Bz is a constant, g is the magnitude of a constant force in the x direction,

and the curly braces denote a Poisson bracket,

{f, h} ≡ ∂xf∂yh− ∂yf∂xh. (4.6)

Since Bz is a constant, these equations describe the nonlinear evolution of the den-

sity, ρ, the perpendicular flow, derived from ϕ, and the perpendicular field, derived

from the magnetic flux ψ.

Suppose we have a static equilibrium with a constant density gradient, ρ′0,

opposite the gravitational force, and a constant magnetic field, B0, in the y and z

direction. We perturb about this equilibrium by letting

ρ = ρ0 + ρ̃, ψ = ψ0 + ψ̃, and ϕ = ϕ̃, (4.7)

where the variables with a tilde are a factor of ε � 1 smaller than the equilibrium

quantities. This yields the set of nonlinear equations,

∂tρ̃ = ρ′0∂yϕ̃+ {ρ̃, ϕ̃}, (4.8)
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∂tψ̃ = B0 ·∇ϕ̃+ {ψ̃, ϕ̃}, (4.9)

∂t(ρ
′
0∂xϕ̃+ ρ0∇2

⊥ϕ̃) = B0 ·∇∇2
⊥ψ̃ + g∂yρ̃+O(ε2), (4.10)

for the perturbed quantities ρ̃, ψ̃, and ϕ̃. For our analysis, we will consider periodic

boundary conditions in the y direction and hard, conducting boundaries in the x

direction, i.e. ρ̃, ψ̃, ϕ̃ = 0 at x = 0, Lx. As mentioned earlier, for the 3D problem,

we will consider both periodic and line-tied boundary conditions in the z direction.

The boundary conditions and constant ρ′0 allows us to Fourier transform all

three directions without having to take the short wavelength and local limits. If we

assume small perturbations, so that we can ignore the nonlinear terms, then we get

the linear dispersion relation

ω2 = (k·VA)2 − γ2g
k2y

k2x + k2y
(4.11)

where γ2g = gρ′0/ρ0 is the Rayleigh-Taylor growth rate driving the instability and

k·VA is the frequency of the Alfvénic restoring force due to the equilibrium field. In

the short wavelength limit, Eq. (4.11) matches the linear result found in Chapter 2.

For ω2 > 0 field line bending provides enough magnetic tension to stabilize the

linear growth of the interchange mode. Similar to the 2D system in the previous

chapter we study the dynamics of a marginally stable system, i.e. ω2 ≈ 0, so that

∂t/γg ∼ ε. (4.12)

Equation (4.11) implies that deviations, in B0, away from the critical field Bc where

(k·VAc)
2 − γ2g

k2y
k2x + k2y

= 0, (4.13)
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must be of O(ε2).

In order to investigate the nonlinear dynamics at marginal conditions, we once

again expand the perturbed quantities in a series. For optimal ordering, we scale

each successive term smaller by a factor of ε. More explicitly, we let

ρ̃ = ρ1 + ρ2 + ρ3 + · · · , (4.14)

ψ̃ = ψ1 + ψ2 + ψ3 + · · · , (4.15)

ϕ̃ = ϕ1 + ϕ2 + ϕ3 + · · · , (4.16)

where the subscript denotes order in ε, e.g. ρ1/ρ0 ∼ ε. Furthermore, we again allow

for deviations from marginality in the equilibrium field by letting

B0 = Bc + b2, (4.17)

where |b2|/|Bc| ∼ ε2.

4.3 Two-Dimensional System Revisited: ∂z → 0,B0 = B0ŷ

We start by showing that we recover the nonlinear instability result in the

previous chapter for a system with constant density gradient, i.e. ρ′′0 = 0. The

mathematical method and technique will be similar, so we will be brief on the

details. In 2D, Eqs. (4.8) and (4.9) are related by letting

ρ̃ =
ρ′0
B0

ψ̃, (4.18)

so we can eliminate ρ̃ as a variable by substituting Eq. (4.18) into Eq. (4.10). By

solving for Eqs. (4.9) and (4.10) order by order, we can also satisfy Eq. (4.8).
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Matching terms in Eqs. (4.9) and (4.10) to first order in ε we get

Bc∂yϕ1 = 0, (4.19)

L2D(ψ1) ≡ (B2
c∇2
⊥ + gρ′0)∂yψ1 (4.20)

= 0. (4.21)

Therefore, we have a quasistatic, neighboring equilibrium solution

ϕ1 = 0, (4.22)

ψ1 = A(t) sin(kxx) cos(kyy), (4.23)

where the phases are chosen to take into account the boundary conditions. Substi-

tuting this solution into Eq. (4.21) yields the equation

B2
c (k

2
x + k2y) = gρ′0, (4.24)

for the critical field in the zero frequency mode, given k, g, and ρ′0. This result is

consistent with our assumption in Eq. (4.13).

To second order in ε we obtain

∂tψ1 = Bc∂yϕ2, (4.25)

L2D(ψ2) = 0. (4.26)

Equation (4.25) yields a relationship between the lowest order flow, ϕ2, and the

lowest order flux, ψ1. From Eq. (4.26) we find that there is only an averaged field

to second order, i.e.

ψ2 = ψ̄2(t, x). (4.27)

57



In order to solve for ψ̄2, and A(t), it is necessary to take Eqs. (4.9) and (4.10) up to

third order in ε.

So, to third order in ε we get

∂tψ2 = Bc∂yϕ3 + {ψ1, ϕ2}, (4.28)

∂t(ρ
′
0∂xϕ2 +ρ0∇2

⊥ϕ2) = 1
Bc
L2D(ψ3) + 2b2∇2

⊥∂yψ1

+{ψ1,∇2
⊥ψ2}+ {ψ2,∇2

⊥ψ1}. (4.29)

In writing Eq. (4.29) we take into account corrections to Eq. (4.18) due to b2, i.e.

ρ3 =
ρ′0
Bc

(ψ3 −
b2
Bc

ψ1), (4.30)

and we used Eq. (4.21) to combine the terms proportional to b2. Averaging Eq. (4.28)

in y and simplifying gives us an equation for ψ̄2 in terms of ψ1,

ψ̄2 =
1

2

1

Bc

∂x(ψ2
1) (4.31)

=
1

4

kx
Bc

A2 sin(2kxx). (4.32)

To simplify Eq. (4.29) we first resolve the Poisson brackets by using Eqs. (4.23) and

(4.32) then apply ∂y to get

∂2t (ρ
′
0∂xψ1 − ρ0(k2x + k2y)ψ1) = L2D(∂yψ3)

+ 2b2Bck
2
y(k

2
x + k2y)ψ1 +Bck

2
y(k

2
y − 3k2x)∂xψ̄2ψ1, (4.33)

where we used Eqs. (4.23) and (4.32) to simplify the second derivatives.

Equation (4.33) is now in the form where we can get a time evolution equation

for the amplitude A(t). To do this, we annihilate ψ3 by projecting the equation onto
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ψ1, using the operator
∫
dx
∫
dy ψ1, and using integration by parts. The projection

yields the time evolution equation

1

k2yV
2
Ac

d2

dt2
A = −2

b2
Bc

A+
1

4

k2y − 3k2x
k2x + k2y

A3

B2
c/k

2
x

. (4.34)

In the limit where ky � kx we find that the system is still nonlinearly unstable

even with the simplification of taking the density gradient to be constant. This

constitutes our motivation to assume constant ρ′0 for the 3D case. We now extend

our analysis to a 3D system where we allow for ∂z variations.

4.4 Three-Dimensional System: ∂z 6= 0,B0 = B0ẑ

Consider the magnetic configuration of the 2D case in the y-z plane, shown in

Fig. 4.1a. If we have periodic boundary conditions in the z direction then the 2D

case can be considered to be a 3D system with a weakly transverse magnetic field but

with a perturbation that is a purely perpendicular mode, i.e. By/Bz � 1 and kz = 0.

So now consider a straight magnetic field with a weakly transverse perturbation, as

shown in Fig. 4.1b. It’s easy to see that there should be an isomorphism between

this 3D periodic system and the 2D case if k · B0 is the same in both cases. This

isomorphism can be realized by a change of coordinates where

∂z
kz
→ ∂y

ky
. (4.35)

Substituting the above into Eqs. (4.8)-(4.10) we find that the equations are the same

as the ones used in Sec. 4.3 if we let

By0 =
kz
ky
Bz0, (4.36)
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Figure 4.1: Cartoon of the equilibrium magnetic field lines and contours of the

first order density perturbation for: (a) 2D problem with kz = 0, By 6= 0 and (b)

isomorphic 3D problem with kz 6= 0, By = 0.
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which is the expected condition to have an isomorphism. So, this means that the

isomorphic problem yields the nonlinear time evolution equation

1

k2zV
2
Ac

d2

dt2
A = −2

b2
Bc

A+
1

4

k2y − 3k2x
k2x + k2y

k2y
k2z

A3

B2
c/k

2
x

, (4.37)

which is just Eq. (4.34) but substituting Eq. (4.36).

Equation (4.37) can be arrived at, more explicitly, by using the solution

ψ1 = A(t) sin(kxx) cos(kyy + kzz) (4.38)

and following a similar process as in the 2D case. However, since this problem is

fully 3D, Eq. (4.18) is no longer a valid substitution and, thus, it is necessary to

solve Eqs. (4.8)-(4.10) simultaneously order by order. This explicit calculation is

shown in Appendix C.

The periodic solution given in Eq. (4.38) is a linear combination of modes where

the y and z dependences are decoupled from each other. These modes, shown in

Fig. 4.2a, have a “blob”-like structure and, depending on the phase and wavenumber

of the solution, can be applied to a system with line-tied boundary conditions, as in

Fig. 4.2b. Because of this similarity we can treat both of these problems at the same

time. We will use the same approach as in the 2D case and solve Eqs. (4.8)-(4.10)

order by order by matching terms in powers of ε.

To first order in ε, Eqs. (4.8) and (4.9) give

ρ′0∂yϕ1 = 0, (4.39)

Bc∂zϕ1 = 0. (4.40)
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Figure 4.2: Cartoon of the equilibrium magnetic field lines and contours of the

first order density perturbation for a 3D problem with (a) periodic and (b) line-tied

boundary conditions in the z direction.
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We take the solution to be quasistatic with ϕ1 = 0, which means that we have to

rescale the flow to be of at least order ε2. So, to lowest significant order we now get

∂tρ1 = ρ′0∂yϕ2, (4.41)

∂tψ1 = Bc∂zϕ2, (4.42)

Bc∂z∇2
⊥ψ1 + g∂yρ1 = 0. (4.43)

Taking ∂t of Eq. (4.43) and substituting for ρ1 and ψ1 we get

L3D(ϕ2) ≡ (B2
c∂

2
z∇2
⊥ + gρ′0∂

2
y)ϕ2 (4.44)

= 0, (4.45)

which is an eigenvalue problem for ϕ2 andBc, and is the 3D counterpart to Eq. (4.21).

As mentioned earlier, we are interested in solutions where the y and z dependence

are decoupled from each other. We write the solution of Eq. (4.45) in the form

ϕ2 =
1

kzBc

Ȧ(t) sin(kzz)ζ(x, y) (4.46)

where

ζ(x, y) = sin(kxx) cos(kyy). (4.47)

Substituting this solution into Eqs. (4.41) and (4.42) gives the rest of the lowest

order solutions

ρ1 =
ρ′0
kzBc

A(t) sin(kzz)∂yζ(x, y), (4.48)

ψ1 = A(t) cos(kzz)ζ(x, y), (4.49)

and substituting into Eq. (4.45) yields the equation

B2
ck

2
z(k

2
x + k2y) = gρ′0k

2
y, (4.50)
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for Bc given g, ρ′0 and k.

Matching terms to next significant order yields

∂tρ2 = ρ′0∂yϕ3 + {ρ1, ϕ2}, (4.51)

∂tψ2 = Bc∂zϕ3 + {ψ1, ϕ2}, (4.52)

Bc∂z∇2
⊥ψ2 + g∂yρ2 + {ψ1,∇2

⊥ψ1} = 0. (4.53)

Using Eqs. (4.46)-(4.49) to simplify the Poisson brackets, we find that

{ψ1, ϕ2} ∝ {ζ, ζ} (4.54)

= 0, (4.55)

{ψ1,∇2
⊥ψ1} ∝ −(k2x + k2y){ζ, ζ} (4.56)

= 0. (4.57)

After taking the ∂t of Eq. (4.53) and substituting for ρ2 and ψ2 using Eqs. (4.51)

and (4.52) we obtain a simple equation for ϕ3

L3D(ϕ3) = 0, (4.58)

since

∂y{ρ1, ϕ2} ∝ ∂y{∂yζ, ζ} (4.59)

= {∂yζ, ∂yζ}+ {∂2yζ, ζ} (4.60)

= −k2y{ζ, ζ} (4.61)

= 0. (4.62)
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There are a family of solutions that satisfy Eq. (4.58) and (4.50). Of these

solutions, we can take the simplest one with

ϕ3 = 0, (4.63)

without loss of generality. The nonzero solutions do not contribute to the time

evolution equation since the projection method to annihilate ϕ4, applied to these

terms, evaluates to zero. This is due to the fact that the z dependence of the

solutions has to be the same mode number as the lowest order solutions, i.e. ϕ3 ∼

sin(kzz) or cos(kzz), and only the zeroth and second order harmonics of the second

order solutions contribute to the final equation. Equation (4.63) then implies that

ρ2 =
1

4

ρ′0
B2
c

k2y
k2z
kxA

2 sin(kzz)2 sin(2kxx), (4.64)

ψ2 = 0, (4.65)

are the solutions to the second order perturbation.

Carrying on with the analysis, we take Eqs. (4.8) and (4.9) to fourth order in

ε,

∂tρ3 = ρ′0∂yϕ4 + {ρ2, ϕ2}, (4.66)

∂tψ3 = Bc∂zϕ4 + b2∂zϕ2, (4.67)

and Eq. (4.10) to third order,

∂t(ρ
′
0∂xϕ2 + ρ0∇2

⊥ϕ2) = Bc∂z∇2
⊥ψ3 + g∂yρ3 + b2∂z∇2

⊥ψ1. (4.68)

We can combine all three equations by once again taking ∂t of Eq. (4.68) and sub-

stituting for ρ3 and ψ3 using Eqs. (4.66) and (4.67). After simplification, this sub-
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stitution yields

∂2t (ρ
′
0∂xϕ2 − (k2x + k2y)ρ0ϕ2) = L3D(ϕ4) + 2b2Bck

2
z(k

2
x + k2y)ϕ2

− gk2y∂xρ2ϕ2, (4.69)

where we made use of the fact that ρ2 does not depend on y to get the last term.

We are now ready to apply an annihilator to eliminate ϕ4 and arrive at a time

evolution equation for A(t). Projecting Eq. (4.69) onto ϕ2 by applying
∫
dx
∫
dy
∫
dz ϕ2

to the equation results in

1

k2zV
2
Ac

d2

dt2
A = −2

b2
Bc

A− 1

16

k2y
k2z

A3

B2
c/k

2
x

(4.70)

as the nonlinear time evolution equation for the 3D interchange problem with de-

coupled initial conditions.

Comparing Eqs. (4.37) and (4.70), we can see that the nonlinear term in the

blob-like modes differ from the isomorphic mode, in the large ky limit. This implies

that the nonlinear stability of the 3D interchange mode problem is dependent on

the choice of the initial state of the perturbation. The isomorphic problem with

perturbation given by Eq. (4.38), and mode structure shown in Fig. 4.1b, yields

the expected nonlinear instability found in the previous chapter for the 2D case.

However, perturbations of the form given by Eq. (4.49), and mode structure shown

in Fig. 4.2, have maximum amplitudes that can saturate over time. Since kz is not

specified in the problem, we can pick it in such a way that ϕ̃ and ρ̃ are zero at the

boundaries on the z direction, i.e. the boundary conditions for a line-tied system.

Therefore, our results have shown that the perturbation amplitude of the marginally
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stable, line-tied interchange mode is bounded and nonlinear growth is suppressed.

In both cases, linear theory predicts that the amplitude will remain bounded with

oscillatory solutions when |B0| > |Bc|, i.e. b2 > 0. If the system was marginally

unstable, i.e. b2 < 0, then the line-tied interchange mode can exhibit some weak

nonlinear suppression.

4.5 Summary and Conclusions

In this chapter, we extended the analysis of the nonlinear interchange mode

to a 3D system, using the reduced equations. We first showed that we could sim-

plify the system further by assuming that we have a flat density gradient, i.e. ρ′0

constant. Having a constant density gradient meant that the eigenvalue problem for

the form factor, i.e. x dependence, of the first order perturbation can be solved for

by introducing a wavenumber in the x direction. It was found that, even with this

assumption, the simplified calculation still recovers the nonlinear instability result

found in the 2D system, thus, this assumption is suitable for the extension of our

analysis. We then showed, by considering B·k, that the 2D system with a transverse

magnetic field and no ∂z variation is isomorphic to a 3D system with only straight

field lines and kz 6= 0. This would mean that the 3D system with periodic boundary

conditions and initial condition given by Eq. (4.38) would result in the same nonlin-

ear instability for large enough initial perturbations. The only difference is that the

linear term is now proportional to kzBz, instead of kyBy, and the nonlinear term has

a dependence on the ratio ky/kz. Finally, we showed that the y and z dependence
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can be decoupled to create a different set of initial conditions with blob-like mode

structure similar to ballooning modes. With the appropriate choice of wavenumber,

these modes can satisfy periodic or line-tied boundary conditions. It was found that

the nonlinear term of these modes had the opposite sign compared to the 2D and

isomorphic modes, which implies that these modes are nonlinearly stable when close

to marginal conditions.

The result of the nonlinear analysis for the line-tied interchange mode system

is similar to the ones found in Ref. [27] for the line-tied g mode. In the paper, the

authors also found that when revisiting the result of Cowley, et al in Ref. [11] they

were only able to recover the nonlinear instability in the line-tied g mode in the

regime where the perturbations remained small (what they refer to as the “Cowley-

Artun regime”). When the perturbation is sufficiently large they find that there

exists an “intermediate regime” that alters the nonlinear behaviour and suppresses

the nonlinear growth. They conclude that the latter phase is the more relevant

nonlinear result since it is realized in a larger set of initial conditions than the

Cowley-Artun regime.[28]

Even though the findings are similar, the mechanisms that controls the nonlin-

ear mode growth are different. Zhu, et al found that, when transitioning between the

two regimes, compressibility starts becoming much more important.[28] Since our

analysis was done using the reduced equations, incompressibility is inherently as-

sumed and, thus, cannot appear in the analysis without starting with the full MHD

equations. We can determine the cause of the nonlinear instability in the isomorphic

system by comparing the calculations in Appendix C and Sec. 4.4. Comparing the
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second order solutions for the magnetic flux (Eqs. (4.65) and (C.19)) we can see that

the isomorphic modes generate an averaged flux unlike the blob-like modes. This

term is what drives the nonlinear instability.

The analysis presented in this chapter was completed using a simple model

system so it does not contain the details of a more realistic ballooning mode system.

However, the result is in very close agreement to the ones found by Zhu, et al in

their more comprehensive analysis of the line-tied g mode. Additionally, nonlinear

simulations of a more realistic system have found similar results to the ones found

in this chapter.[28, 35] This is remarkable in that, comparatively, our methodology

is much more simple than the ones carried out by Refs. [11] and [27].

It is possible to apply our method using the full MHD equations to gain some

insight in the question of compressibility, but it is unclear how much more insight

we can gain from doing this. It is more fruitful to apply the analysis to a different

question regarding stability. Up to now we have been using an initial perturbation

that affects the system globally and attempting to determine the time evolution of

this perturbation. However, one can also ask the question of what happens if we

have a local perturbation. For instance, what happens if the boundary of the system

was perturbed? In the next chapter, we will apply our method to try and answer

this question.
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Chapter 5

Boundary Induced Instability

5.1 Introduction

As has been discussed, magnetically confined plasmas for fusion are limited

in how much pressure can be contained, by the so-called β limit – the critical ratio

of pressure to magnetic energy density.[2] This limitation generally comes from in-

terchange instabilities, wherein flux tubes of high pressure plasma can interchange

with outer, lower pressure flux tubes.[2, 15, 17] Such energy release can be stabilized

if the flux tube interchange is disallowed by topology (on account of the frozen-in

condition for strongly magnetized plasmas), that is to say, if the “transverse” field is

strong enough.[15] For maximum efficiency, one wants to operate close to marginal

stability, β → βc.

In this chapter, we look into two different results pertaining to operating near

marginal stability. Let ∆β = βc − β and let the system size be a. Then, (1) we

establish the general idea that a small perturbation of δ/a on the boundary ampli-

fies interchange displacements in the core of the plasma, by an amplification factor

βc/∆β; (2) we show that the system is nonlinearly unstable, so that a critical bound-

ary perturbation will destabilize the interchange mode even for systems below the

linear β stability limit. Upon combining these two findings, we find that the amplifi-

cation phenomenon leads to a nonlinear instability criterion which is highly sensitive
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to boundary perturbations, namely the fractional critical size is even smaller than

the fractional deviation from marginality, i.e., (δ/a) > |∆β/βc|3/2. This has the

implication that magnetic configurations designed to confine plasma close to the β

limit within a tolerance of ε would necessitate that the design be more sensitive

to boundary perturbations; specifically, boundary tolerances need to be better than

ε3/2. Such considerations are of significant importance in the design of axisymmetric

tolerances for advanced tokamaks as well as in the fully 3D design of stellarators for

fusion.

Field amplification near marginal stability has been shown to also occur in

tokamak plasmas, for kinklike[36] and tearing[37, 38] modes. It was reported in

Ref. [37] that external perturbations would be amplified if the equilibrium profile is

close to marginal stability for tearing. In Refs. [36, 38], it was shown that error fields

at the plasma edge are amplified in the core by a factor that is inversely propor-

tional to the marginal stability parameter. It has also been shown that the effect of

plasma response in the bulk could be important in explaining the effects of bound-

ary perturbations.[39] Our present result shows that the amplification phenomenon

extends also to interchange modes (as also found in a related case in Ref. [12]). We

include nonlinear perturbations in our methodology to show that the amplification

precipitates an already dormant nonlinear instability.

We again use a model system to illustrate the basic phenomena. The calcu-

lation is done in slab geometry with an effective gravitational field to model field

line curvature. Boundary perturbations are treated as a ripple on the boundary

conditions, similar to the Kulsrud-Hahm problem.[40]
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5.2 Linear Boundary Perturbation Problem

We begin with a simple-minded linear calculation to first demonstrate the

amplification phenomenon. Consider an incompressible system describable by the

two-dimensional, reduced MHD equations, rewritten here:

∂tψ = {ψ, ϕ}, (5.1)

ẑ·∇⊥×ρ(∂tu + {ϕ,u}) = {ψ,∇2
⊥ψ}+ g∂yρ, (5.2)

u = ẑ×∇⊥ϕ, B⊥ = ẑ×∇⊥ψ, (5.3)

where, in general, ρ = ρ(ψ) and the curly braces are a Poisson bracket defined by,

{f, h} ≡ ∂xf∂yh− ∂yf∂xh. (5.4)

The problem of interest is illustrated in Fig. 5.1 with ρ′0 and B0 constant, and

such that we are stable to the ideal MHD interchange mode. The system is taken

to be periodic in the y direction, and

∂yψ = −k sin(ky)δ∂xψ (5.5)

at x = ±a − δ cos(ky) provides the rippled boundary condition in the x direction.

The x boundary condition is derived from insisting that B · n̂ = 0, where n̂ is the

direction normal to the surface, since we’re assuming conducting plates. For δ = 0

this system is in static equilibrium.

We now perturb the boundaries at x = ±a by adiabatically introducing δ/a�

1 and allowing for a quasistatic equilibrium, ψ = B0x + ψ̃, to form. In general, ψ̃
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Figure 5.1: The conducting plate boundaries, at x = ±a, of a system with ~∇ρ = ρ′0x̂

opposite a gravitational force ~g = −gx̂ balanced by a transverse field ~B0 = B0ŷ are

perturbed by a ripple of amplitude δ.
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satisfies the nonlinear equation

(B2
0∇2
⊥ + gρ′0)∂yψ̃ = −B0{ψ̃,∇2

⊥ψ̃}, (5.6)

and the boundary condition, Eq. (5.5). In writing the above equation we made use

of the fact that ρ = ρ(ψ) and substituted for ρ̃ using the equation

ρ̃ =
ρ′0
B0

ψ̃. (5.7)

The solution

ψ̃ =
δB0

cos(kxa)
cos(kxx) cos(ky), (5.8)

where

k2x =
gρ′0
B2

0

− k2, (5.9)

satisfies Eq. (5.6) and Eq. (5.5) to lowest (linear) order in δ/a. From Eq. (5.8), we

note that as kxa approaches π/2, the perturbation gets amplified. In fact, as we will

confirm later, kxa = π/2 corresponds precisely to the linear stability criterion for

the ideal interchange mode, where the critical transverse field for marginal stability,

B0 = Bc, is obtained from Eq. (5.9) at kx = kc ≡ π/2a.

We can determine the scaling of this amplification by letting B0 = Bc + b and

kx = kc −∆kx, where b/Bc ∼ ∆kx/kc � 1. To lowest order in b/Bc

∆kx =
b

Bc

k2⊥
kc
, (5.10)

where k2⊥ ≡ k2c + k2, and Eq. (5.8) yields

ψ̃ ≈ δ/a

b/Bc

kc
k2⊥
Bc cos(kxx) cos(ky). (5.11)
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Therefore, as we approach criticality by letting b → 0, a small perturbation at the

boundary of O(δ/a) can induce a large response in the bulk of the plasma, scaling

like Bcδ/ba. At exactly B0 = Bc the solution becomes ill-defined away from the

boundary.

From Eq. (5.11) we can also see that the amplification is global, i.e. it occurs

everywhere away from the boundary, despite the fact that the perturbation is only

on the boundary. This raises an interesting question regarding the penetration depth

of the perturbation. What if the the system was only marginal in a narrow region

near the origin and was stable, and far from marginal, everywhere else? Putting

this in context of the problem, consider the situation with

ρ′0(x) = ρ′0aδ(x), (5.12)

where δ(x) is the Dirac delta function (not to be confused with the boundary per-

turbation). In what conditions, if there are any, is there an amplification?

To lowest order in δ/a we can satisfy Eqs. (5.6) and (5.5), using the density

gradient given by Eq. (5.12), by letting ψ̃ = F (x) cos(ky), where F (x) is the solution

to

F ′′(x) = k2F (x), (5.13)

F (±a) = B0δ, (5.14)

and the jump condition

2F ′(0) = −gρ
′
0

B2
0

aF (0) (5.15)

≡ −κ2aF (0), (5.16)
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along with the requirement that F (x) be continuous at x = 0. From this, we find

that

F (x) = B0δ
ka cosh(kx)∓ 1

2
κ2a2 sinh(kx)

ka cosh(ka)− 1
2
κ2a2 sinh(ka)

, (5.17)

where the minus and plus refer to the x > 0 and x < 0 solutions, respectively. It is

easy to show that, for the case with δ = 0, there exists a nontrivial solution when

the following condition

ka cosh(ka) =
1

2
κ2a2 sinh(ka) (5.18)

is satisfied. Similar to the previous case with amplification as kxa approached π/2,

when the above critical condition is approached, the solution given by Eq. (5.17)

gets amplified. This means that despite only having an extremely narrow region

where an instability could occur, amplification from boundary perturbations is still

possible in the bulk of the plasma.

The details of the penetration of the boundary perturbations can be established

better by considering the short and long wavelength limits. In the limit where

ka� 1, we find that

F (x) = 2B0δe
−ka cosh(kx), (5.19)

which means that it is not possible to induce this amplification phenomenon. How-

ever, in the limit with ka� 1, we find that

F (x) = B0δ
1− 1

2
κ2a|x|

1− 1
2
κ2a2

, (5.20)

and the system can become amplified. What this implies is that, in the short wave-

length limit, the perturbations decay exponentially away from the boundary and
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are unable to induce the amplification, but long wavelength perturbations are able

to penetrate to the core and induce a global amplification. For a general k and ρ′0,

the boundary perturbation will remain flat or decay away from the boundary until

it reaches, if possible, the region where amplification is possible. When marginality

is approached the amplification can be induced and spread out globally, beyond the

initial region, all the way to the boundary.

It should be noted that if we consider Bcδ ∼ ba then ideal MHD is insufficient

to describe the amplification phenomena. At y = 0

B ≈ Bc(1−
δ/a

b/Bc

k2c
k2⊥

sin(kxx))ŷ, (5.21)

therefore away from the boundary at

x =
2a

π
sin−1(

b/Bc

δ/a

k2⊥
k2c

) (5.22)

the total magnetic field goes to zero and an X-point is created in the magnetic

configuration. This change in magnetic field geometry is not allowed in ideal MHD

since it requires a change in magnetic topology.

The analysis with density gradient given by Eq. (5.12) and the solution given

by Eq. (5.8) is valid as long as δ/a is small, such that Bcδ � ba. However, this

clearly establishes the phenomenon of amplification. We show in what follows that

nonlinear effects arise at even smaller boundary amplitudes, significantly modify-

ing our understanding of the effect of boundary perturbations on stability. In the

following analysis, we will again take ρ′0 to be constant everywhere.

77



5.3 Nonlinear Evolution

For a system that is marginally stable to the ideal MHD interchange mode,

we previously showed in Chapter 3 that small homogeneous perturbations in the

plasma can result in nonlinear, explosive growth. The nonlinear instability result

showed that the optimal scaling of magnetic perturbations was given as |ψ̃/ψ0| ∼

ε ≡ (b/Bc)
1/2. This realization prompts us to apply this nonlinear stability scaling as

optimal ordering for nonlinearities in the present amplification calculation. Thus,

optimally, we should have δ/a ∼ ε3, using Eq. (5.11). With this scaling, we will

show that δ on the boundary can introduce a nonlinear instability in the plasma.

It is important to note that even though we order the parameters as described,

the boundary perturbation amplitude, δ/a, and marginality condition, b/Bc, are

independent, small parameters.

Using the marginality condition as a smallness parameter we expand ψ in a

series, i.e. let

ψ = ψ0 + ψ1 + ψ2 + ψ3 + · · · , (5.23)

where each successive term is smaller by a factor of ε and ψ0 = (Bc + b)x. By

matching terms order by order, we solve Eq. (5.6), where ψ̃ = ψ − ψ0, using the

boundary condition given by Eq. (5.5).

To order ε, Eq. (5.6) yields

B2
c (∇2

⊥ + k2⊥)∂yψ1 = 0, (5.24)

where we have substituted for gρ′0 using Eq. (5.9) with B0 = Bc and kx = kc. Taking
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Eq. (5.5) to lowest order implies that

∂yψ1|x=±a = 0. (5.25)

Including the lowest order (in ε) term in the solution given by Eq. (5.8), we find

that

ψ1 =

[
A+

δ/a

b/Bc

kc
k2⊥
Bc

]
cos(kcx) cos(ky), (5.26)

where, for convenience, A is introduced as a free parameter in this particular manner

to represent the plasma response. We are interested in how δ in the boundary induces

A in the plasma. We use the scaling kcA/Bc ∼ ε for the plasma perturbation, but

it will be treated as a separate small parameter.

The lowest order equation, given by Eq. (5.24), can also be arrived at by solving

the linear, ideal MHD, interchange mode problem and insisting that ω = 0. This

results in a zero frequency state, given by Eq. (5.26) with δ = 0, where Alfvénic

restoring forces exactly balances the Rayleigh-Taylor growth rate, i.e. k2⊥V
2
Ac −

gρ′0/ρ0 = 0. From this, we can conclude that Bc is the critical field strength needed

to be at marginal conditions. Allowing for b > 0 means that the system is marginally

stable to the ideal MHD interchange mode. This calculation is similar to the lowest

order calculation for the two-dimensional case in the previous chapter, but using an

even solution in |x| ≤ a.

Continuing to order ε2, we find that ψ2 satisfies the equation

B2
c (∇2

⊥ + k2⊥)∂yψ2 = −Bc{ψ1,∇2
⊥ψ1} (5.27)

= 0 (5.28)
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and the boundary condition

∂yψ2|x=±a = 0. (5.29)

This implies that ψ2 is only a function of x. We can solve for ψ2 by taking Eq. (5.1)

to second order and averaging over y to get

∂tψ2 = ∂x(∂yϕ̃ψ1), (5.30)

where the bar denotes an average over y. Equation (5.1) to lowest order implies

that

∂tψ1 = Bc∂yϕ̃, (5.31)

and so we find that

ψ2 = −1

4

kc
Bc

[
A+

δ/a

b/Bc

kc
k2⊥
Bc

]2
sin(2kcx). (5.32)

This term represents the flattening of the perturbed field lines (zonal field) to second

order, driven by the first order perturbation. The term also generates quasi-linear

flattening of the density profile since the density and flux are related by Eq. (5.7).

In order to find how δ drives the amplitude A we extend our analysis to order

ε3 where Eq. (5.6) yields

B2
c (∇2

⊥ + k2⊥)∂yψ3 + 2Bcb∇2
⊥∂yψ1 =

−Bc({ψ1,∇2
⊥ψ2}+ {ψ2,∇2

⊥ψ1}), (5.33)

with the boundary condition

∂yψ3|x=±a = −δBck sin(ky). (5.34)
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The above equations imply that ψ3 = ψ3(x) cos(ky) where ψ3(x) is a linear com-

bination of kc and 3kc harmonic terms. The 3kc harmonic is straightforward and

uninteresting; however, the kc harmonic is secular, so we will focus on obviating this

secularity. Expanding the solution given by Eq. (5.8) in a series in ε yields the third

order solution

ψ3 = Bc
δ

a
x sin(kcx) cos(ky). (5.35)

Substituting Eqs. (5.26), (5.32), and (5.35) into Eq. (5.33) and insisting that the

secular terms go to zero yields

−2BcbA+
k2c
4

k2 − 3k2c
k2⊥

[
A+

δ/a

b/Bc

kc
k2⊥
Bc

]3
= 0, (5.36)

after simplification. The above result gives the sought-after relationship between

the boundary perturbation amplitude and the amplitude of the plasma response.

To discuss this result we now consider allowing for the plasma response to

evolve in time, at a rate slower than Alfvén time, τA = (kcVAc)
−1, as we distort the

boundary at an even slower rate. Explicitly, we let A = A(t) with τA∂t ∼ ε but

we keep δ̇ small. It is easy to show that doing this results in the nonlinear time

evolution of A(t) given by

1

k2
Ä = −2bA+

1

4

k2 − 3

k2 + 1

[
A+

2

π

δ

b

1

k2 + 1

]3
, (5.37)

where we normalize the variables by setting kc, Bc, and VAc equal to 1, for simplicity.

Multiplying Eq. (5.37) by Ȧ and integrating once yields the “energy” integral E0 =

Ȧ2/2k2 + U(A; δ), where

U(A; δ) = bA2 − 1

16

k2 − 3

k2 + 1

[
A+

2

π

δ

b

1

k2 + 1

]4
. (5.38)
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U HA;∆=0L HaL

U HA;∆<∆cL HbL

U HA;∆>∆cL HcL

Figure 5.2: Plot of the potential energy U(A; δ) as a function of amplitude, A, for:

(a) δ = 0; (b) δ < δc; and (c) δ > δc. The dotted box shows the shrinking boundaries

of the stable well (shaded region).

The above equation represents a potential energy as a function of A, given k, b and

δ, and determines the overall stability of the system. We have chosen b > 0, to

be marginally stable, and so, for k2 < 3 the system is stable to all perturbations.

However, for k2 > 3 and fixed b the stability of the system is dependent on the size

of δ and A0 = A(t = 0).

The potential, with k2 > 3 and fixed b, is shown in Fig. 5.2 for different values
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of δ. For δ = 0 (Fig. 5.2a), there is a stable well for |A0| < Ac, where

Ac = 2
√

2

√
k2 + 1

k2 − 3
× b1/2. (5.39)

This result is the same as the one found in Chapter 3 where nonlinear stability was

noted and simulated for large enough A. As δ is increased the stable well shrinks

as the two positive roots of U ′(A; δ) merge. From Fig. 5.2b we can see that the

symmetry of the potential is broken and one side of the stable well drops so that the

critical A0 to stay nonlinearly stable is less than the one given in Eq. (5.39). When

δ = δc, where

δc =
π

2

√
32

27

(k2 + 1)3

k2 − 3
× b3/2, (5.40)

the positive roots of U ′(A; δ) become degenerate and the stable well becomes a

point. When δ > δc (Fig. 5.2c) the system is always unstable for any A0. This

means that, even though the system is linearly stable, a boundary perturbation of

order (b/Bc)
3/2 can precipitate a response in the plasma of much larger amplitude,

of order (b/Bc)
1/2, accompanied by explosive growth.

We remark that, in this calculation, we have assumed the density gradient,

ρ′0, to be constant. This is done for simplicity, to illustrate the two phenomena

of amplification and nonlinear instability in a transparent manner. We showed

in the previous chapter that ρ′0 constant is a reasonable simplification, and that

keeping a general ρ0(x) (Chapter 3) did not result in new phenomena or mitigate

the appearance of the foregoing phenomena.
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5.4 Summary and Conclusions

We have shown that for systems operating close to marginal stability for the

interchange mode, a small perturbation on the boundary can induce a large response

in the core of the plasma. A simple linear analysis shows that a secondary equi-

librium, with amplitude inversely proportional to the marginal stability parameter,

can exist as boundary perturbations are added adiabatically. In addition, we showed

that the boundary perturbations can penetrate deep inside the plasma to induce a

global amplification. This suggests that the system would need to be far enough

away from criticality so as to stay well-defined. We accordingly extend this analysis

nonlinearly to show that, even if the perturbation were scaled much smaller than

the marginal stability parameter, the system can become nonlinearly unstable for

boundary perturbations larger than a critical value.

These results have implications in the stability analysis and corresponding

design of magnetic confinement devices operating close to marginal conditions. With

∆β > 0, a linear stability analysis would show that the system is stable to all

perturbations; however, relatively much smaller boundary perturbations, of order

(∆β/βc)
3/2, can destabilize the system nonlinearly, with subsequent perturbations

growing without small amplitude saturation. The results show that it is important

to take into account these field perturbations in the stability analysis if one were

to continue operating close to marginal conditions. Additionally, the strength and

precision of the coils would have to be balanced in order to have stable system with

large enough b to stabilize possible δ perturbations.
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Chapter 6

Concluding Remarks

6.1 Summary of Results

We have shown that the interchange mode, near marginal stability, can exhibit

different, nonlinear behaviour depending on the form of the perturbation. Much of

what was known and established is in the confines of linear theory, away from

marginal stability. It was well-known that there existed a sharp boundary to deter-

mine when perturbations would be stable or unstable – the β limit, βc. We showed

that the boundary is not as sharp as previously thought and that the question of

stability is not as straightforward when ∆β = 1− β/βc is small. More importantly,

the behaviour is different if the system is marginally stable, i.e. ∆β & 0, when linear

theory predicts that the system is stable to all small perturbations. The analyses

were done using reduced MHD equations in an idealized system with slab geometry

and a gravitational term modelling the force due to magnetic curvature.

First we showed that with two-dimensional, marginally stable systems it was

possible to become nonlinearly unstable when the initial perturbation was large

enough. Stabilization of the interchange mode was achieved by introducing a trans-

verse magnetic field that created field line bending to balance the linear Rayleigh-

Taylor destabilization. The perturbation was introduced as an initial value that

were allowed to evolve in time. It was found that perturbations of order ∆β1/2 were
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large enough to nonlinearly destabilize the system. The result was supported by a

nonlinear numerical MHD simulation where good agreement was found for ∆β of

up to 10%.

We then showed that three-dimensional, marginally stable systems exhibited

two different behaviours depending on the form of the perturbation used. Like the

2D case, perturbations were introduced as an initial value that was allowed to evolve

in time, but unlike the 2D case, stabilization was accomplished by boundary condi-

tions in the z direction that allowed for finite parallel wavenumber. Two different

forms of the perburbations, called isomorphic and blob-like modes, were analyzed.

It was found that the isomorphic modes exhibited the same nonlinear instability

as the 2D case; however, the blob-like modes did not have the same nonlinear be-

haviour and remained stable. Because the blob-like modes could also satisfy line-tied

boundary conditions, this meant that the line-tied interchange mode did not become

nonlinearly unstable when marginality was approached.

Finally, we showed that the two-dimensional system exhibited a different be-

haviour when the boundary was perturbed instead of the plasma itself. It was found

that as ∆β approached zero, small distortions on the boundary became amplified in

the bulk of the plasma. We showed that this amplification was inversely proportional

to ∆β and that it was a global phenomenon. Additionally, it was found that the

combination of the amplification and nonlinearity resulted in a nonlinear instability.

We showed that the induced instability was highly sensitive to boundary distortions

and the system could go unstable to boundary perturbations of order ∆β3/2.
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6.2 Significance of Results

This nonlinear instability result implies that there could be an issue with

magnetic confinement systems designed to operate close to the β limit. Even if the

system was designed to be linearly stable, relatively small perturbations can still

cause a destabilization through this nonlinear effect. Even worse, the nonlinear re-

sult using boundary perturbations place an even stricter constraint on the maximum

β. The amplitude of the boundary distortion required to induce the nonlinear insta-

bility is significantly smaller than the amplitude of perturbations required. These

nonlinear effects would have to be considered in the design of magnetic confinement

systems for fusion.

These results could also be used to explain the onset of disruptions in certain

astrophysical systems. However, because these systems are usually stabilized by

line-tying, it is less likely that this is the case. Even though this type of nonlinear

instability could explain such an onset, it was found that it does not occur in the

instance of line-tied boundary conditions.

6.3 Limitations of Analyses and Future Work

We reiterate that because the analyses were done using a model system, a

number of key effects that are relevant to the stability of the interchange mode are

excluded. For example, the effects of magnetic shear are not taken into account and

it is likely that this could take a significant role in determining the overall stability of

the system. Also missing from the analyses is the effect of curvature in the magnetic
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geometry, the details of which are important in more complicated instabilities, e.g.

ballooning modes. Finally, because the analyses were done with reduced equations,

effects of compressibility and variations in the parallel magnetic field could not be

included. Both of these effects might alter the nonlinear behaviour, but it is unclear

as to exactly how it’ll be affected. Overall this means that the analyses lacked the

details of realistic geometry.

Despite these limitations, the analytical methods used produced some results

that have not been seen in the interchange mode literature and, in some cases, were

able to reproduce similar results from more complicated analyses. In this way, it

is worthwhile to expand the analysis to account for some of these limitations or to

investigate new problems. The results suggest consideration of extending the MHD

Energy Principle to include boundary induced perturbations and ideal nonlinearities

when close to marginal stability. Having a generalized energy principle that included

these effects would prove useful in determining the stability of a specific magnetic

confinement design. In general, the stability of an equilibrium for the purposes of

designing a containment device is determined using an energy principle calculation.

Outside of magnetic confinement, it would also be worthwhile to determine the

applicability of the results to astrophysical systems.
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Appendix A

Additional Calculations

This Appendix shows the details of how to derive Eqs. (3.33)-(3.35).

In simplifying Eq. (3.31), we found the functional, F [ψ1, ψ2], to be

F [ψ1, ψ2] =
g

B2
c

ρ′′0∂y(ψ1ψ2) +
1

6

g

B3
c

ρ′′′0 ∂y(ψ
3
1)

+ B1 · ∇⊥∇2
⊥ψ2 + B2 · ∇⊥∇2

⊥ψ1. (A.1)

The above equation can be simplified by writing ψ1 and ψ2 a certain way. From

Eq. (3.24) we can write

ψ2 = ψ̃2 + ψ̄2 (A.2)

where

ψ̃2 = A(t)2ζ2(x) cos(2ky). (A.3)

Writing ψ2 in this way, we get the following results

∂yψ2 = ∂yψ̃2, (A.4)

∇2
⊥ψ̃2 = − g

B2
c

ρ′0ψ̃2 −
g

B3
c

ρ′′0ψ̃
2
1, (A.5)

where we have written ψ2
1 = ψ̃2

1 + ψ2
1 and

ψ̃2
1 =

1

2
A(t)2ζ1(x)2 cos(2ky), (A.6)

ψ2
1 =

1

2
A(t)2ζ1(x)2. (A.7)
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The result given by Eq. (A.5) can be derived by multiplying Eq. (3.25) withA(t)2 cos(2ky)

and recombining the terms. Similarly, if we multiply Eq. (3.17) by A(t) cos(ky), we

find that

∇2
⊥ψ1 = − g

B2
c

ρ′0ψ1. (A.8)

Since B · ∇⊥ψ = 0 for all orders, we get that

B1 · ∇⊥ψ2
1 = 2ψ1(B1 · ∇⊥ψ1)

= 0

= B1 · ∇⊥(ψ̃2
1 + ψ2

1), (A.9)

and therefore

B1 · ∇⊥ψ̃2
1 = −B1 · ∇⊥ψ2

1

= ∂yψ1ψ2
1
′, (A.10)

Similarly, since

B1 · ∇⊥ψ2 + B2 · ∇⊥ψ1 = 0

= B1 · ∇⊥(ψ̃2 + ψ̄2)

+ B2 · ∇⊥ψ1 (A.11)

then it follows that

B1 · ∇⊥ψ̃2 + B2 · ∇⊥ψ1 = −B1 · ∇⊥ψ̄2

= ∂yψ1ψ̄
′
2. (A.12)
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We can now simplify the last two terms in Eq. (A.1). Using Eq. (A.2) we have

B1 · ∇⊥∇2
⊥ψ2 = B1 · ∇⊥∇2

⊥(ψ̃2 + ψ̄2)

= B1 · ∇⊥(− g

B2
c

ρ′0ψ̃2 −
g

B3
c

ρ′′0ψ̃
2
1)

+ B1 · ∇⊥ψ̄2
′′

= − g

B2
c

ρ′0B1 · ∇⊥ψ̃2 +
g

B2
c

ρ′′0∂yψ1ψ̃2

− g

B3
c

ρ′′0B1 · ∇⊥ψ̃2
1 +

g

B3
c

ρ′′′0 ∂yψ1ψ̃2
1

− ∂yψ1ψ̄
′′′
2 , (A.13)

where we used Eq. (A.5), and took advantage of the fact that ψ̄2 has no y depen-

dence, to remove the Laplacians. Similarly, we use Eq. (A.8) to get

B2 · ∇⊥∇2
⊥ψ1 = B2 · ∇⊥(− g

B2
c

ρ′0ψ1)

= − g

B2
c

ρ′0B2 · ∇⊥ψ1 +
g

B2
c

ρ′′0∂yψ̃2ψ1, (A.14)

where we used Eq. (A.4) to get the second term.

Combining Eqs. (A.13) and (A.14) we can use Eqs. (A.10) and (A.12) to further

simplify the terms with a gradient operator. So finally we get

B1 · ∇⊥∇2
⊥ψ2+B2 · ∇⊥∇2

⊥ψ1 = − g

B2
c

ρ′0∂yψ1ψ̄
′
2

− g

B3
c

ρ′′0∂yψ1ψ2
1
′ +

g

B2
c

ρ′′0∂y(ψ1ψ̃2)

+
g

B3
c

ρ′′′0 ∂yψ1ψ̃2
1 − ∂yψ1ψ̄

′′′
2 . (A.15)

We can also rewrite the first term of Eq. (A.1),

g

B2
c

ρ′′0∂y(ψ1ψ2) =
g

B2
c

ρ′′0∂y(ψ1ψ̃2) +
g

B2
c

ρ′′0ψ̄2∂yψ1. (A.16)
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We can now substitute for ψ1, ψ̄2, ψ̃2, ψ̃2
1 and ψ2

1 using Eqs. (3.16), (3.30), (A.3),

(A.6), and (A.7). As described in Sec. 3.2.3, we use the operator
∫
dx ζ1(x)

∫
d(cos(ky))

on Eq. (3.31) in order to extract the terms that have a sin(ky) dependence. The

other terms will be irrelevant since the integration will evaluate to zero if the de-

pendence does not match. And so we find that∫
d(cos(ky))F [ψ1, ψ2] = πkA(t)3

{
g

B2
c

ρ′′0ζ1ζ2

− 1

4

g

B3
c

(
ρ′0ζ1(ζ

2
1 )′′ + ρ′′0ζ1(ζ

2
1 )′ +

1

2
ρ′′′0 ζ

3
1

)
− 1

4

1

Bc

ζ1(ζ
2
1 )′′′′

}
(A.17)

Finally, we use the operator
∫
dx ζ1(x) on the above equation to get∫

dx ζ1(x)

∫
d(cos(ky))F [ψ1, ψ2] = πkLρA(t)3×(
g

B2
c

〈ρ′′0ζ21ζ2〉 −
1

4

g

B3
c

〈ρ′0ζ21 (ζ21 )′′〉

−1

4

1

Bc

〈ζ21 (ζ21 )′′′′〉
)
. (A.18)

We made use of the fact that ζ1(x) decays exponentially at the boundaries to combine

the three terms proportional to g/B3
c in Eq. (A.17) into one term through integration

by parts.

To complete the derivation of Eqs. (3.33)-(3.35) we still need to simplify the

rest of the terms. It is easy to see that after using the annihilation operator then

we get ∫
dx ζ1(x)

∫
d(cos(ky))(−2

g

B2
c

b2ρ
′
0∂yψ1) =

− 2πkLρA(t)
g

B2
c

b2〈ρ′0ζ21 〉. (A.19)
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Applying the same operator, we find that

∫
dx ζ1(x)

∫
d(cos(ky))BcL(ψ3)

= −kBc

∫
dy

∫
dx ζ1 sin(ky)

(
∇2
⊥ψ3 +

g

B2
c

ρ′0ψ3

)
= −kBc

∫
dy

∫
dx

(
ζ ′′1 sin(ky)ψ3

+ ζ1(−k2 sin(ky))ψ3 + ζ1 sin(ky)
g

B2
c

ρ′0ψ3

)
= −kBc

∫
dy

∫
dx sin(ky)ψ3×

(
ζ ′′ − k2ζ1 +

g

B2
c

ρ′0ζ1
)
, (A.20)

and therefore, using Eq. (3.17),

∫
dx ζ1(x)

∫
d(cos(ky))BcL(ψ3) = 0. (A.21)

We, once again, took advantage of the boundary conditions to perform some inte-

gration by parts to arrive at the above result. Lastly, the operator on the left-hand

side of Eq. (3.31) gives

∫
dx ζ1(x)

∫
d(cos(ky))(

g

B2
c

ρ0ρ
′
0∂yψ1 − ρ′0∂yψ′1)

= πkLρA(t)(
g

B2
c

〈ρ0ρ′0ζ21 〉 − 〈ρ′0ζ1ζ ′1〉)

= πkLρA(t)
g

B2
c

〈ρ0ρ′0ζ21 〉, (A.22)

where the second term was thrown away since it evaluates to zero due to the parity

of the equilibrium density.

Collecting the terms given by Eqs. (A.18), (A.19), (A.21) and (A.22) together,

we arrive at Eq. (3.32).
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Appendix B

Description of Numerical Simulation

This Appendix presents the equations solved by the numerical simulation used in

Chapter 3.

The two-dimensional numerical simulation solves the following equations:

∂tρ+∇⊥ · (ρu⊥)−Dρ∇2
⊥ρ = S, (B.1)

∂t(ρu⊥) +∇⊥ · (ρu⊥u⊥)− µ∇2
⊥(ρu⊥) = F⊥, (B.2)

∂t(ρuz) +∇⊥ · (ρuzu⊥)− µ∇2
⊥(ρuz) = [Bz, ψ], (B.3)

∂tBz +∇⊥ · (Bzu⊥)− η⊥∇2
⊥Bz = [ψ, uz], (B.4)

∂tψ + u⊥ · ∇⊥ψ − η∇2
⊥ψ = 0, (B.5)

where [f, h] ≡ ∂xf∂yh− ∂xh∂yf and

F⊥ = −∇⊥
(
T0
M
ρ+

B2
z

2

)
−∇⊥ψ∇2

⊥ψ − ρgx̂, (B.6)

S = η⊥S0

(
e−(x−x1)

2/2σ2 − e−(x−x2)2/2σ2
)
. (B.7)

The system is initialized with ρ = 1 and Bz = 1. We use T0/M = 0.3 for the

temperature and g = 0.15 for the gravitational acceleration. The Gaussian function

sources have amplitude S0 = 4.5, width σ2 = 6.25 × 10−4 and are centered around

x1 = 0.7 and x2 = 0.38 (where Lx = 1). The values are chosen by trial and error to
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create a good ρ′0(x) profile for the simulation. The relative strength of the dissipation

terms are as follows:

µ = η = 5× 10−4,

η⊥ = 10−1η,

Dρ = 10−3µ.

The dissipation in the density, Dρ, is for numerical stability and is made orders of

magnitude smaller than the viscosity µ. As mentioned in Sec. 3.3 the Bz resistivity,

η⊥, is made smaller than η and µ in order to keep By approximately constant.

The crossfield particle diffusion is set by η⊥. Since the time and space scales are

normalized to the Alfvén speed, VAz, and the box size, Lx, the above coefficients

imply a viscous magnetic Reynolds number of ' 2 × 103 and a Lundquist number

(for magnetic diffusion) of ' 2× 104.

For a detailed description of the algorithm see Ref. [41].
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Appendix C

Isomorphic Calculation

This Appendix shows the explicit derivation of Eq. (4.37).

The equations for the isomorphic system are similar to the ones derived in

Sec. 4.4 except using a different set of solutions for the lowest order equations.

From Sec. 4.4, we found that the nonzero terms to lowest order satisfy the following

equations

∂tρ1 = ρ′0∂yϕ2, (C.1)

∂tψ1 = Bc∂zϕ2, (C.2)

Bc∂z∇2
⊥ψ1 + g∂yρ1 = 0, (C.3)

which, when combined, yield the eigenvalue equation

L3D(ϕ2) ≡ (B2
c∂

2
z∇2
⊥ + gρ′0∂

2
y)ϕ2 (C.4)

= 0, (C.5)

for ϕ2. The modes we are interested in are the ones that have a structure given by

Fig. 4.1b, i.e. we use the solution

ϕ2 =
1

kzBc

Ȧ(t) sin(kxx) sin(kyy + kzz). (C.6)

Substituting this solution into Eq. (C.5) gives the same condition for the critical

magnetic field as given by Eq. (4.50), i.e.

B2
ck

2
z(k

2
x + k2y) = gρ′0k

2
y. (C.7)
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Solving for ρ1 and ψ1 by substituting Eq. (C.6) into Eqs. (C.1) and (C.2) yields

ρ1 =
ρ′0
Bc

ky
kz
A(t) sin(kxx) cos(kyy + kzz), (C.8)

ψ1 = A(t) sin(kxx) cos(kyy + kzz). (C.9)

Since this is a linear result and the solution for ϕ2 given by Eq. (C.6) is just a linear

combination of the solution used in Sec. 4.4 (Eq. (4.46)) it’s not surprising that

both calculations yield the same condition for Bc. The variation will enter when we

introduce nonlinear terms.

From Sec. 4.4 we found that matching terms to next order yielded the following

equations

∂tρ2 = ρ′0∂yϕ3 + {ρ1, ϕ2}, (C.10)

∂tψ2 = Bc∂zϕ3 + {ψ1, ϕ2}, (C.11)

Bc∂z∇2
⊥ψ2 + g∂yρ2 + {ψ1,∇2

⊥ψ1} = 0. (C.12)

We now simplify the nonlinear terms by substituting Eqs. (C.6), (C.8), and (C.9)

in the Poisson brackets. With this substitution, we find that

{ρ1, ϕ2} =
1

4

k2y
k2z

kxρ
′
0

B2
c

∂t(A(t)2) sin(2kxx), (C.13)

{ψ1, ϕ2} =
1

4

ky
kz

kx
Bc

∂t(A(t)2) sin(2kxx), (C.14)

{ψ1,∇2
⊥ψ1} = 0. (C.15)

Combining Eqs. (C.10)-(C.12) and the above equations yields the same equation for

ϕ3 as the one found in Sec. 4.4, i.e.

L3D(ϕ3) = 0. (C.16)
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We can once again take

ϕ3 = 0, (C.17)

without loss of generality, and so we find that, like the 2D system, there is a second

order average density and flux given by

ρ2 = ρ̄2(t, x) =
1

4

k2y
k2z

kxρ
′
0

B2
c

A(t)2 sin(2kxx), (C.18)

ψ2 = ψ̄2(t, x) =
1

4

ky
kz

kx
Bc

A(t)2 sin(2kxx). (C.19)

These second order solutions match the 2D solutions found in Sec. 4.3, e.g. Eq. (4.32),

using the condition for an isomorphism given by Eq. (4.36).

Continuing with the expansion, we get the same equations as Eqs. (4.66)-

(4.68); however, there are extra terms because the isomorphic calculation has a

nonzero second order flux. Keeping these terms, we get

∂tρ3 = ρ′0∂yϕ4 + {ρ2, ϕ2}, (C.20)

∂tψ3 = Bc∂zϕ4 + b2∂zϕ2 + {ψ2, ϕ2}, (C.21)

and

∂t(ρ
′
0∂xϕ2 + ρ0∇2

⊥ϕ2) = Bc∂z∇2
⊥ψ3 + g∂yρ3 + b2∂z∇2

⊥ψ1

+ {ψ1,∇2
⊥ψ2}+ {ψ2,∇2

⊥ψ1}, (C.22)

as the full set of equations for the isomorphic case. To simplify the above equations,

we start by applying ∂t to Eq. (C.22) and substituting Eqs. (C.20) and (C.21) for
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ψ3 and ρ3, respectively. After making some simplifications we get

∂2t (ρ
′
0ϕ
′
2 + ρ0∇2

⊥ϕ2) = L3D(ϕ4) + 2b2Bc∂
2
z∇2
⊥ϕ2 + (3k2x − k2y)∂t{ψ̄2, ψ1}

+Bc∇2
⊥{ψ̄2, ∂zϕ2}+ g{ρ̄2, ∂yϕ2}. (C.23)

We annihilate ϕ4 in the usual way of projecting Eq. (C.23) onto ϕ2. The effect

of this projection on the other terms is that only the components proportional to

sin(kxx) sin(kyy+ kzz) will remain after the operation. This is trivial since we have

solutions for all the variables and so we can simplify easily to get

1

k2zV
2
Ac

d2

dt2
A = −2

b2
Bc

A+
1

4

k2y − 3k2x
k2x + k2y

k2y
k2z

A3

B2
c/k

2
x

(C.24)

as the final nonlinear time evolution equation. This equation matches Eq. (4.37)

from Sec. 4.4.
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