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1 Introduction

The flow of traffic through airspace sectors and through airports is regulated

by air traffic flow managers to ensure that airspace components do not be-

come overloaded and that throughput is maintained. Many of the short-term

demand-capacity inequities in the NAS are smoothed out by FAA traffic flow

managers by tactics such as vectoring and miles-in-trail restrictions. Longer-

term demand-capacity inequities (on the order of several hours) are more

problematic. These usually occur when an airport acceptance rate is drasti-

cally reduced because of inclement weather, airport construction, or special

runway operations. In these instances, air traffic flow managers at the FAA

employ ground holding strategies in which aircraft bound for an afflicted

airport are held at their points of origin in lieu of costly and hazardous air-

borne holding that would occur if they were allowed to depart on schedule.

The most prominent of these strategies is the ground delay program (GDP),

which is an initiative taken by the FAA to lower the arrival rate to a level

that can be safely handled by airport controllers.

The increase in air traffic in the United States over the last 20 years has

necessitated more frequent use of traffic flow management initiatives. For

instance, in 1998, there were 187 ground delay programs run at San Francisco

airport alone [1]. As a result, there has been considerable interest both in

the aviation and research communities regarding traffic flow management

and its analysis. The issues of deepest concern have been the efficient use

of airport landing resources and the equitable distribution of arrival slots

among competing airlines [2]. Substantial efforts have been under way since

the mid 1990’s to revamp the manner in which traffic flow initiatives are
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planned and executed. Most notable is the joint industry-FAA Collaborative

Decision Making project (CDM), which has made major changes to GDP

procedures. See [3] for details on ground delay program enhancements.

One can see the need to assess the quality of traffic control actions. In

this paper, we provide practical solutions for three major aspects of post-

operative, traffic flow analysis. The first aspect is the need for a simple way

of contrasting aggregate traffic flow with desired traffic flow. We introduce

the rate control index (RCI), which gives a single performance value to the

flow of traffic into an airport or sector of space as compared to the planned

flow of traffic. The rate control index bears an intuitive relation to the events

that have lead to the deviation from the plan. In essence, the metric tracks

the aggregate flight movements that have caused the realized traffic flow

to differ from the planned traffic flow. Although the basic concept behind

the metric is easily understood, the normalization of the metric leads to an

interesting optimization problem.

The second aspect is the need to factor out from post analysis major

stochastic factors upon which a control action is based. Every traffic flow

initiative is based on forecasts of demand and resource capacities, which are

often not realized because they depend upon highly stochastic conditions.

Air traffic demand predictions, such as the number of arrivals to an airport,

are vulnerable to airline operational deviations while capacity predictions

for airspace sectors, runways, etc., are highly subject to weather conditions.

Direct measurement of traffic control actions is not always the best way to

judge the performance of a new program or initiative; naive or ill-chosen

metrics are heavily influenced by the quality of the forecasts upon which a
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plan of action was based. For instance, in a GDP, the objective is to deliver

a specified number of aircraft to the airport during a fixed time horizon.

The metric generally used by traffic flow managers for program evaluation is

landings-per-hour [4]. If runway conditions turn out to be more severe than

previously forecasted, then this metric will (correctly) reveal that the realized

landing rate does not match the desired landing rate. However, to a large

degree, the program performance was beyond the control of participating

parties and is being judged in part by the forecast upon which it was based.

For situations such as this, we show how to meter traffic flow into an airport

independently of the ability of the airport to land aircraft.

The third aspect of traffic flow analysis we address is the need for a metric

that rates the performance of a group of controlled flights on a more individ-

ual basis than aggregate metrics. Directives are given to individual flights

(altering flight paths, arrival times, etc.) in order to affect the aggregate flow

of traffic. Final success of these efforts is typically measured using aggregate

metering of traffic. When the desired traffic flow is achieved, the question

arises whether or not this was due to the adherence of aircraft to their con-

trolled arrival times or due to the fortuitous cancellation of early arrivals

with late arrivals. To address this issue, we present a nominal version of the

RCI metric that acts as a complement to the aggregate version of the metric.

Section 2 of this paper provides motivation for the metric and an in-

terpretation of its meaning. The rigorous formulation of the metric and

its normalization process are deferred to Section 3. Section 4 demonstrates

the application of both the nominal and aggregate versions of the metric to

Ground Delay Program analysis. Conclusions are in Section 5.
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2 The Core of the RCI Metric

The perspective taken in this paper is one of post-analysis. We view a traffic

flow initiative as a plan of action which is to be later analyzed for effective-

ness. We assume that a traffic flow manager has set a goal for each time

period t = 0, 1, ..., T of a time horizon, meaning the number of vehicles that

should be delivered to an airport (or more generally, pass through a region

of airspace). A plan is enacted to achieve these goals. Once the time horizon

has passed, the actual number of flights is recorded. This establishes two

distributions: the planned distribution P = (p0, p1, ...pT ) and the realized

distribution R = (r0, r1, ...rT ), where pt and rt are the planned and realized

number of flights during time period t, respectively. The question is how

to weigh the performance of the realized distribution against the planned

distribution.

We branch into two areas of concern, separated by a subtle but crucial

distinction. One is the desire to measure program performance. Once a GDP

is formulated, there are many factors that must fall into place in order for

the GDP to be executed as planned. It is the duty of the controllers in the

local traffic management units to hold flights at their departure airports until

their controlled times of departures. The airlines must notify passengers of

the imposed ground delay and yet have them boarded and ready to takeoff at

their controlled departure times without further delay. Pilots must maintain

an enroute airspeed commensurate with that was used in the forecast of their

enroute times. One can see that there are many entities that participate in

the execution of the plan other than the traffic flow specialists that have

formulated the plan. A great deal of effort has been spent by the CDM com-
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munity in improving GDP practices and performance. They have expressed

a need to measure the execution of GDPs independent of the quality of its

plan [5].

The other area of concern is the desire to measure program impact, mean-

ing the effect that program performance has had on the system. Ideally, we

would like a metric that produces a single, normalized value for the per-

formance or impact of a program, so that programs can be tracked over

long periods. This is especially valuable for discerning the effect of proposed

program changes. Moreover, the metric should have a natural, intuitive in-

terpretation to which cost benefits can be applied.

Given the planned and realized distributions, P and R, a straight forward

approach to distribution comparison is to form a distribution of errors

E = P −R = [p0 − r0, p1 − r1, ..., pT − rT ] (1)

by vector subtraction, then to analyze the variance of the errors by averaging

over the time periods or summing the squares of the deviations. Consider

the planned distribution P = (30, 30, 30, 30, 30) of airport arrivals, meaning

that 30 flights are intended to arrive in each of five hours. Suppose that the

actual number of arrivals per hour is given by R1 = (30, 30, 30, 31, 29). In

this case, average error per hour is a poor measure; the excess of one flight

in hour 4 cancels out with the shortage of one flight in hour 5 to produce a

zero average. A more viable alternative is to compute the average absolute

error, as below.

Avg. Abs. Error =
|0|+ |0|+ |0|+ |1|+ |−1|

5
(2)

=
2

5
= 0.40 flights per hour
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Although (2) correctly records an overdelivery in hour 4 and an underdelivery

in hour 5, it fails to capture the events that have lead to R1. Specifically,

since 31 flights have arrived in hour 4 and only 29 in hour 5, then there must

have been (in the aggregate) a migration of one flight from hour 4 to hour 5.

The alternative measure of variance that we propose is to record the

aggregate flight movement, or drift, that led to the deviation of R from P .

This is the same as the minimum amount of flight movement that would be

necessary to revert R to P . This can be viewed as an alternative way of

measuring the difference between two distributions.

This type of approach makes distinctions between realized distributions

that (1) does not. For instance, consider the flight movements necessary to

convert R2 = (31, 30, 30, 30, 29) into P . Since 31 flights arrived in the first

hour when only 30 were intended, one of the flights intended to arrive in a

later hour arrived in hour 1. Let’s credit the participants with the least errors

possible and say that this flight was intended to arrive in hour 2. Since 30

flights arrived in hour 2 instead of 30− 1 = 29, one of the flights intended to

arrive in hour 3 must have arrived in hour 2. Similarly, one flight intended

to arrive in hour 4 arrive in hour 3, and one flight intended to arrive in hour

5 arrived in hour 4. In all, we see that, as a minimum, there was a total

migration of five flight-hours. Note that if we computed average absolute

error, as in (2), then R2 would receive the same rating as R1, 0.40 flights

per hour. In contrast, the aggregate flight movement method recognizes that

four times as much movement has taken place in R2 as in R1.

The subtraction-based method (1) double-counts a single flight in hour

5. It can be argued that this correctly models the impact of the realized

7



distribution on the system, namely that the system is stressed in hour 4

and underutilized in hour 5. But this is based on the assumption that the

airport capacity in each hour is as predicted, 30 aircraft per hour. Since 31

aircraft were accommodated in hour 4, the capacity of the airport clearly was

not limited to 30 flights. Conversely, it is fairly common for an airport to

accept fewer flights than were planned because airport acceptance rates are

based not just on weather conditions and runway configurations, but also on

departure demand and the abilities of air traffic service providers. For this

reason, it can be difficult, if not impossible, to know what the actual airport

capacity was, based solely on realized arrival rates. If these rates are known,

metric (1) could be considered.

The approach described in this paper primarily compares the planned

distribution against the realized distribution, and not against the airport

acceptance rate distribution. The main idea is to assess how closely the plan

was followed. For a given planned distribution, P , and a realized distribution,

R, the method is based on shifting aircraft in the R distribution to transform

it to the P distribution. The rate control index (RCI) metric is the outcome

of this method. The following example shows how the RCI metric would be

computed in practice and how cost parameters can be applied. In Section

4, we show how to remove the effects that the air traffic service providers at

the airport may have had on the realized distribution. Section 3 covers the

more complex aspects of the mathematics involved.

Example: Suppose that a 4-hour GDP is planned and that the planned

arrival acceptance rate (PAAR) for each of those 4 hours is 30 flights. Then

the planned distribution is P = (30, 30, 30, 30) . Further suppose that the
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Figure 1: Flight movements necessary to transform R into P

actual number of flights that arrived at the airport (or the airport terminal

space) is given by R = (27, 32, 35, 24) . Then the rate control index for R

(relative to P ), denoted RCI(P,R), is computed via the following two-part

calculation.

Part 1: Compute the difference P −R. This is the minimum amount of

flight movement that is necessary to turn R into P . We sweep left to right

through R (increasing t), moving as many flights (say ft+1) as necessary from

rt to rt+1 to achieve r′t = rt − ft+1 = pt. Counting left-hand movements as

negative and right-hand movements as positive, we must move 3 flights from

hour 1 to hour 0 (f1 = −3), move 1 flight from hour 2 to hour 1 (f2 = −1),

and move 4 flights from hour 2 to hour 3 (f3 = 4). See Figure 1.
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Movement Notation Flight-hours

Hr 0 −→ Hr 1 f1 -3

Hr 1 −→ Hr 2 f2 -1

Hr 2 −→ Hr 3 f3 4

Hr 3 −→ Hr 4 f4 -2

Table 1: Summary of flight movements through time

So far, R has been transformed into the distribution, R′ = (30, 30, 30, 28). Note

that this is 2 flights short of the desired distribution, because
∑

pt −∑
rt =

120− 118 = 2. We create a “slush fund” of 2 flights at the end of R to com-

pensate for the lack of conservation of flights. Equivalently, we could have

started with an augmented distribution R′ = (27, 32, 35, 24, 2). Similarly, we

extend P to a five-hour distribution, P ′ = (30, 30, 30, 30, 0). To complete the

example, we move 2 flights from hour 4 to hour 3 (f4 = −2). The summary

of flight-movements is given in Table 1. We defer to Section 3 the formal

proof that this correctly computes the minimum cost transformation.

Now we can compute the cost of transforming R into P . Let c− be the

average cost (say, in dollars per hour) of delaying a flight for one unit of time

and let c+ be the average cost (say, in dollars per hour) of a flight arriving

early by one unit of time. Then we break the flight-movements into left-hand

movements M− = |−3|+|−1|+|−2| = 6 and right-hand movements M+ = 4,

corresponding to tardiness and earliness, respectively. The final cost is given

by

c−M− + c+M+ = 6c− + 4c+ . (3)

In this example, we opt to set c− = c+ = 1.0 to obtain pure units of 4 +
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6 = 10 flight-hours. In other words, R was off from P by 10 flight-hours.

Intuitively, this means that in order to turn R into P , one would have to

do the work equivalent to moving 1 flight 10 hours, or 2 flights 5 hours, etc.

One variation on the metric is to retain the positive and negative sums to

show the breakdown of this total.

Part 2: Normalize the distribution error P ′−R′. To compare GDPs of

differing lengths and number of flights, we normalize by dividing the distribu-

tion error by the cost of the worst-case scenario. This means we must find the

five-hour redistribution W of the 120 flights in P ′ with the highest cost dif-

ference, P ′−W . In general, this involves solving a max-min problem, which

is covered in Section 3. For now, we take as a given that W = (0, 0, 0, 0, 120)

with a cost of

P ′ −W = (|−4|+ |−3|+ |−2|+ |−1|)× 30 (4)

= (10)× 30 = 300 flight-hours.

(W corresponds to the scenario in which all the flights land in the final hour.)

Thus, the rate control index we assign to the distribution R is

10 flight-hours

300 flight-hours
= 0.033. (5)

Since we have kept pure cost parameters of 1.0, this is a pure ratio that

indicates the error of the realized distribution. In order to make the index

more palatable, we phrase the performance of the realized distribution in

terms of what was achieved rather than what was not achieved. Subtracting

from 1.0, we obtain a final rate control index (RCI) of

Since we have kept pure cost parameters of 1.0, this is a pure ratio that

indicates the error of the realized distribution. In order to make the index
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more palatable, we phrase the performance of the realized distribution in

terms of what was achieved rather than what was not achieved. Subtracting

from 1.0, we obtain a final rate control index (RCI) of

RCI (P ′, R) = 1.0− .0333 = 0.966 (6)

If preferred, this final index can be transformed into a percentage, 96.67%.

The interpretation of the index is that the realized distribution achieved

96.67% of the intended (planned) distribution. This number can then be

used for comparing GDP performance on different days and lends itself nicely

to trend analysis (see Section 4.

3 Formulation and Computation of the RCI

Metric

In Section 2, we provided motivation and intuition for the RCI metric. In

this section, we provide a more rigorous formulation of the RCI metric and

show how to correctly compute the cost of the worst-case distribution in the

normalization process. Also, we discuss the nuances behind normalization of

the metric with respect to distribution length and mass.

3.1 The Raw RCI Score: Comparing Two Distribu-

tions

We define a distribution to be a (T + 1)-tuple of nonnegative numbers and we

define its mass to be the sum of its entries. Let D and D′ be two distributions
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that we wish to compare using the RCI metric. Based on the motivation

provided in Section 2, we have chosen to represent the transformation of D

into D′ by a T -tuple, F = (f1, f2, ..., fT ), where ft is the amount of mass

necessary to move from dt−1 to dt. Specifically, dt receives an increment of

ft units from dt−1 and sends ft+1 units to dt+1. The net increment for period

t is ∆t = dt − d′t, as illustrated in Figure 2. Thus, in order to transform dt

into d′t the following condition must hold:

dt + ft − ft+1 = d′t (7)

Note that ft can be positive or negative. Given D and D′, F can by computed

by initializing f1 using

f1 = d0 − d′0 (8)

and then recursively applying,

ft = dt−1 − d′t−1 + ft−1 (9)

for t = 2 to T . Alternatively, we can compute F directly from

ft =
t∑

s=1

(ds−1 − d′s−1) for t = 1, 2, ..., T. (10)

If D and D′ do not have the same mass then, prior to computing F ,

their masses should be equalized by adding a (T + 2)nd component to each

distribution. This extra component should have zero mass in the larger of

the two masses and should have a mass equal to the nonnegative difference

of their masses in the smaller of the two distributions. T is then incremented

by one.

Intuitively,
∑T

t=1 |ft| is the amount of work necessary to transform D to

D′. If we multiply the positive and negative values of ft by cost parameters
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c+ and c−, respectively, then the cost of ft is given by

cst(ft) = c+ max {ft, 0}+ c− max {−ft, 0} (11)

and the total cost of the transformation is computed via

C (D,D′) =
T∑

t=1

cst(ft) (12)

which serves as the unnormalized, or raw, RCI score. Note that this expres-

sion is well-defined since for a given pair of distributions, D and D′, F is

unique. One can see from (12) that if C(D,D′) is given by ac+ + bc−, then

C(D′, D) is given by bc+ + ac−. This means that whenever c+ 6= c−, the cost

of transforming D into D′ may not be the same as the cost of transforming

D′ into D. For this reason, care must be taken when comparing multiple

distributions against a baseline distribution: the direction of transformation

should be made consistent.

It is interesting to note that the computation of F could be recast as a

network flow problem defined on a simple linear network with non-negative

flow variables, xt and yt, where ft = xt + yt. In Figure 2, one would replace

each arrow ft with a right arrow (xt) and a left arrow (yt). The vector F

corresponds to an acyclic flow, i.e., a flow in which for each t, at most one of

xt and yt is nonzero. An acyclic flow is optimal as long as the flow costs are

non-negative (see [6] for an analysis of flow problems on linear networks and

see [7] for a treatment of general network flow problems).
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3.2 Normalization of RCI

3.2.1 The Worst-case Scenario

In the motivating example of Section 2, we saw that the normalization step of

the RCI computation requires that we find the redistribution W of a fixed dis-

tribution P with the worst-case (maximum) value, C(W,P ). Consequently,

we must consider any restrictions that may exist on the worst-case W . In the

air traffic management case, we can assume that there is an earliest possible

arrival time for each aircraft. This time is usually the scheduled arrival time

of the flight. Let B = (b0, b1, ..., bT ) be the distribution of earliest possible

arrival times of the flights. That is, bt is the number of flights with an earliest

arrival time in the tth time period. Note that for a fixed time interval t, the

cumulative number of aircraft that can arrive in time periods s = 0, 1, ..., t is

limited by
∑t

s=0 bs. This means that vector W is restricted by

Ws ≤ Bt for all t, (13)

where for any distribution E = (e0, e1, ..., eT ), we have defined the following

partial sum notation:

Et =
t∑

s=0

es for t = 0, 1, ..., T. (14)

B is said to be a (leftward) bounding distribution for P . Since there is no

limit to how late a aircraft could arrive, there is no need to analogously define

a rightward bounding distribution. Let ΩB be the set of redistributions of P

that are restricted by (13). Then E ∈ ΩB, if and only if E can be obtained

from B by making strictly rightward shifts in B. For example, if P = (0, 3, 3)

and B = (1, 2, 3), then (0, 0, 6) ∈ ΩB while (3, 0, 3) /∈ ΩB.
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Recall that our approach to the normalization of the RCI metric is to

divide the cost of transforming a distribution E into a target distribution P ,

C(E,P ), by C(W,P ), where W is the worst case (highest cost) scenario. We

assume that all distributions are rightward shifts of the distribution B so we

seek a solution to

max
{
C (W,P ) | W ∈ ΩB

}
. (15)

We note that (15) is a max-min problem, since (C(W,P ) is the optimal

objective value of a minimization problem. In the next section, we show how

to solve this max-min problem by dynamic programming.

3.2.2 A Dynamic Programming Solution

Let distribution P = (p0, p1, p2, ..., pT ) be given, along with bounding dis-

tribution B = (b0, b1, b2, ..., bT ). We wish to write a recursive relation for

finding a solution to (15) in the case where all distributions are integer. Fix

an index t ≤ T and an integer amount of mass β ≥ 0. Consider the trun-

cated vector P t = (p0, p1, p2, ..., pt) . The subproblem we define is to find a

truncated vector W t = (w0, w1, w2, ..., wt) of mass β such that C (W t, P t) is

as expensive as possible. We denote this maximum cost by Cmax (t, β). To

form the basis of a dynamic programming algorithm, we now derive a recur-

sive relation to compute Cmax (t, β). See Figure 3. Based on our notation,

(W t)t−1 is the (t−1)st partial sum of the vector W truncated at t. For a fixed

β, the mass of (W t)t−1 can range over the values m = 0, 1, ..., Bt−1 ≤ β. For

each value of m, (10) dictates that the value of ft is uniquely determined by

ft = (W t)t − (P t)t−1 = m− Pt−1. This means that the value of Cmax (t, β)
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is related to Cmax (t− 1,m) via the following recursion:

Cmax (t, β) =




−∞, if β > Bt or t > T

0, if t = 0 and β ≤ Bt

max
m=0,1,...,β

χ, otherwise

(16)

where χ = {C (t− 1,m) + cst (ft) | ft = m− Pt−1}. The first case in (16)

prevents β and t from taking on ill-defined values and the second case ini-

tializes the recursion. The third case expresses the fundamental recursion.

The solution to our problem, (15), is given by Cmax (T, PT ).

This recursion might seem simple, even trivial, since ft does not vary in

the max operation. However, the complexity of this problem lies within the

restrictions imposed by the bounding distribution B, which limits the values

to which the max operation is applied. In fact, without, this restriction,

extreme or trivial solutions would always result.

Note that for a given β and t, the computation of Cmax (t, β) is dependent

upon the values

Cmax (t− 1, 0) , Cmax (t− 1, 1) , ..., Cmax (t− 1, β) (17)

This structure leads naturally to a forward recursion, dynamic programming

algorithm. If we let S be the total mass in P , then the running time of such

an algorithm is at most O(TS2) since there are at most O(TS) Cmax ( )

values to be computed and the computation of each one requires at most

O(S) comparisons.
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Figure 2: Transformation of distribution D into distribution D′ by vector F

Figure 3: Finding the highest cost redistribution W when the partial

sumWt−1 is set to β
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4 Ground Delay Program Analysis

In this section, we demonstrate the application of the RCI metric in the

context of ground delay programs.

4.1 Modelling Air Traffic Flow into an Airport

A Ground Delay Program (GDP) is an FAA traffic flow action to reduce the

flow of aircraft into an airport. A GDP is implemented whenever it is pre-

dicted that the arrival demand at an airport will exceed the arrival capacity

for a significant period of time. In essence, flights bound for a single airport

are held at their origin airports so that they can be accepted to enroute and

terminal area traffic flows without delay. A light amount of airborne holding

during times of reduced capacity is considered desirable because it ensures

that airport arrival resources are being fully utilized. However, excessive

airborne holding queues are considered undesirable because of the added

workload on air traffic controllers. Aircraft must be physically separated,

placed in and out of layered holding patterns, and monitored for sufficient

fuel reserves.

Most GDPs are prompted by adverse weather conditions that can dra-

matically reduce the airport acceptance rate (AAR). Other causes are runway

construction and special airport operations. GDPs are planned several hours

in advance and can run for periods as long as 12 hours. For more background

on ground delay programs and the ground holding problem, see [8], [9], [10],

[11], [12].

Since the primary purpose of a GDP is to control the rate of aircraft flow
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into an airport, the typical metric for evaluating the performance of a GDP

is to measure the actual landings-per-hour (LANDt, where t varies over the

discretized time intervals over which the GDP operated) against the planned

landings per hour (PAARt). Although this is often taken to be the “bottom

line” in a GDP, it is in fact a hybrid analysis that blurs the appropriateness

of the plan with the execution of the plan.

The ability of air traffic service providers to land aircraft is directly related

to airport conditions and runway configuration. These are, in turn, depen-

dent upon weather conditions, which are highly stochastic. If weather condi-

tions turn out to be worse than expected, then airport capacity is lower than

forecasted and the desired arrival rate will not be achieved. If we measure

program performance strictly by landings-per-hour, then we are effectively

holding program participants responsible for the quality of the forecasts upon

which the program was based. There needs to be a mechanism to analyze

the success with which the plan was executed, independently of the appro-

priateness of the plan and the forecasts upon which it was based. (See [13]

for treatment of stochastic airport capacity.)

The solution to removing stochastic airport conditions from measurement

is to meter the traffic flow at a point close to the airport but before it could

be directly affected by airport capacity. Ideally, we would like to know for

each flight how much airborne holding it incurred as a result of restricted

airport capacity. From this we can compute the time it would have arrived

at the airport in the absence of airport capacity restrictions. Holding data

is recorded by air traffic service providers, but only when work conditions

allow them sufficient time to do so. Hence, FAA flight holding databases are
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often incomplete.

As a surrogate for this holding data, several approaches can be used. A

general idea is to define a radius of geographical distance (or time) about

the airport and declare that once a flight has passed over this boundary, it

has been delivered to the airport. This should be the smallest possible radius

that captures all, or most of, the airborne holding. For many airports, the

holding location for a flight varies with the airport arrival fix over which

the flight will pass. The radius may have to be flight-path specific. Such a

model can use as input readily available flight data, such as that provided by

the Enhanced Traffic Management System (ETMS). For each flight, ETMS

provides a runway departure time, a runway arrival time, and a sequence of

estimated arrival times (ETAs), as the flight moves along its flight path [14].

We assume the existence of a model that will estimate, post facto, for

each flight f the amount of airborne holding that it incurred, which we

denote ABHf (see [15] for one such model). From this, we can deduce that

f was in a state of airborne holding at a given time t < ARTAf if and only

if ABHf ≥ ARTAf − t, where ARTA is the actual runway time of arrival as

recorded by ETMS.

For a set of contiguous time intervals t = 0, 1, ..., T , let DELt be the

number of flights delivered to the airport during time interval t, meaning,

the number of flights that would arrive given unlimited capacity. Let ABHt

be the number of flights that are in a state of airborne holding at the end of

interval t. Let LANDt be the number of flights that land during time period

t. If we view the airport as a closed network, then we have the following
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elementary relationship for each t (see Figure 4).

DELt = (ABHt − ABHt−1) + LANDt (18)

After a GDP, three distributions can be assembled: PAAR, DEL, and

LAND. In the case study that follows, we use RCI (PAAR,LAND) to

measure general program performance and we use RCI (PAAR,DEL) to

measure program performance independent of stochastic airport conditions.

4.2 The Aggregate Version of RCI

Figure 5 shows a graphical analysis of the performance of a ground delay

program (GDP) conducted at San Francisco airport (SFO) on March 5, 1998.

The planned acceptance rate of flights (the PAAR distribution) was set at 32

flights per hour for each of the six hours of the GDP. The RCI value assigned

to this GDP was 88.24%. Since this is below the 1998 RCI average for SFO,

approximately 92.0%, it would be a likely candidate for further analysis.

The RCI value of 88.24% was computed based on PAAR versus DEL, the

distribution of “flights delivered” to the terminal airspace of the airport (but

not necessarily landed). The cost parameters were set to c+ = c− = 1.0, to

obtain pure flight-movement units. Also shown are the distributions LAND,

flights landed at the airport, and ABH, the size of the airborne holding queue

at the end of each hour.

Figure 5 shows why the RCI(PAAR, DEL) was not closer to the optimal

value, 100%. There were too many flights delivered to the airport early in

the program: in the first hour, 41 flights were delivered when only 32 were

intended. One possible explanation for this is that the GDP was implemented
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too late and some of these 41 flights were already airborne when the program

was planned, hence, they could not have been held on the ground. Some of

these flights may have been assigned ground holds but departed too early,

but this is a less likely explanation. Moreover, there were drastically too few

flights delivered in the 2100 (zulu) hour: 16 flights compared to the desired

32. Some of the flights intended to arrive in hour 2100 may have arrived in

hour 2000. Note the increase in the airborne holding queue size in hour 2100

hour as a result of high arrival volume in hour 2000.

One can see that the LAND distribution more closely follows PAAR

than does DEL. Thus, the value of RCI(PAAR,LAND) (not computed)

would be slightly better than RCI(PAAR,DEL). This is not uncommon:

some of the arrival flow is smoothed out by airborne holding, resulting in a

smoother distribution.

An interesting feature of this GDP was that, during hour 2100, even with

the pressure of a substantial airborne holding queue, the airport was able

to land only 23 flights, instead of the forecasted number, 32. Airport tower

traffic counts confirm that the controllers at the airport favored departures

during the 2100 hour.

4.3 The Nominal Version of RCI

In this section, we demonstrate the use of a nominal version of the rate

control index. For each flight f , we compute the amount of arrival delay, Mf

via

Mf = |actual arrival time − planned arrival time| . (19)

23



Figure 4: Model of an airport as a closed system

Figure 5: Analysis of ground delay performance at San Francisco Airport,

3/5/98

24



The unnormalized RCI score is
∑

f M (f), which represents the amount of

flight movement through time that would be necessary to restore all flights to

their planned arrival time. This number is normalized by dividing by the cost

of the worst-case scenario,
∑

f W (f), where W (f) is the largest deviation

that could have occurred for flight f (i.e., the farthest time period in either

direction from its planned period of arrival). The final value is subtracted

from 1.0 and multiplied by 100%. If desired, the positive delays (Mf > 0)

and negative delays (Mf < 0) can be weighted with cost parameters c+ and

c− before summing, as was done with the aggregate version of the metric. In

the examples shown in this section, we have elected to set c+ = c− = 1.0 so

that
∑

f M (f) represents the (absolute) variance of flight arrivals from their

planned arrival times.

Each point in Figure 6 is an ordered pair,
(
RCINom, RCIAgg

)
, for a

GDP run at SFO during the period January 1 to October 28, 1998. Consider

the point (64, 92) for July 10. The value RCIAgg = 92% indicates that, in

the aggregate, the distribution of landed flights closely matched the desired

distribution. However, the low value of RCINom reveals that, too often, the

flights that landed in a given time interval were not the flights that were

intended to land in that time interval. Some of the flights arrived earlier

than planned while others arrived too late. On the whole, for any given time

interval, the number of flights that migrated out of a time interval was almost

equal to the number of flights that migrated into that time interval, hence,

the aggregate numbers of flights were preserved. The stochastic processes

cancelled each other out and there was a great deal of ‘luck’ involved in

achieving the high value of RCIAgg = 92%.
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Figure 6: Nominal and aggregate RCI values for Ground Delay Programs at

SFO, January - October, 1998
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In general, points in the upper right quadrant of Figure 6 correspond

to programs in which the aggregate distribution of flights was achieved and

most of the flights arrived in their expected time periods. These are the

best-run programs, the goal of each program being (100%, 100%). Given two

points (x1, y1) and (x2, y2), with x1 < x2 and y1 = y2, we can say that they

had the same level of aggregate success but that the first program involved

more ‘luck’ while the second program involved more ‘skill’.

The center of mass of the squares lies at about (82, 92), marked by the

cross. This indicates that the overall ground delay performance at SFO

is quite good. In general, RCINom is about 10% less than RCIAgg. Note

that all of the points lie above the 45-degree line. This is to be expected

since as RCINom increases, more flights are arriving in their planned arrival

periods and so the aggregate distribution of flights is more likely to match

the planned distribution, which also increases the value of RCIAgg. Note

that when RCINom = 100%, the only way for RCIAgg to fall below 100% is

for there to be arrivals that were not anticipated by the GDP.

5 Closing Remarks

We have introduced a new metric for the evaluation of planned versus realized

traffic flow for a region of space or an airport. In its most general form, the

metric generalizes to a comparison of two finite distributions, hence, has the

potential for use in any area of traffic management in which vehicular move-

ment through time is regulated. This represents a substantial improvement

over the standard techniques for comparing two finite distributions. The met-
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ric naturally lends itself to intuitive interpretation (when decomposed into

left and right-handed movements) and to cost evaluation. The development

of an aggregate and nominal version of the metric captures the two crucial

aspects of traffic flow management: how many flights flowed through a region

of space and which flights flowed through the region. Also, we have shown

how to apply the metric to factor out the effects of inaccurate forecasts from

performance analysis of a traffic flow initiative.

We showed how to compensate for controlled flights that arrive outside

the planned time horizon by augmenting the realized distribution. The in-

tuitive justification for this was that the cost added is assessed at a rate

commensurate with the wasted capacity due to these flight cancellations.

However, there doesn’t seem to be an analogous compensation for the case

in which unanticipated flights arrive within the planned time horizon. For

consistency with flight shortages, the logical adjustment for these pop-up

flights would be to augment the planned distribution. Unfortunately, the

added cost would be assessed at a rate commensurate with the movement of

flights backward in time, for which there is no intuitive obvious justification.

In practice, pop-up flights comprise a small enough percentage of the total

flights that their effect on the RCI metric is minimal when they are ignored.

However, future development of the metric should incorporate pop-up flights.
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