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Significant reductions in greenhouse emissions from personal transportation will 

require a transition to an alternative technology regime based on renewable energy 

sources.  Two bodies of research, the quasi-evolutionary (QE) model and the multi-level 

perspective (MLP) assert that processes within niches play a fundamental role in such 

transitions.  This research asks whether the description of transitions based on this niche 

hypothesis and its underlying assumptions is consistent with the historical U.S. transition 

to motor vehicles at the beginning of the 20th century. 

Unique to this dissertation is the combination of the perspective of the 

entrepreneur with co-evolutionary approaches to socio-technical transitions.  This 

approach is augmented with concepts from the industry life-cycle model and with a 

taxonomy of mechanisms of learning.  Using this analytic framework, I examine 

specifically the role of entrepreneurial behavior and processes within and among firms in 

the co-evolution of technologies and institutions during the transition to motor vehicles. 

I find that niche markets played an important role in the development of the 

technology, institutions, and the industry.  However, I also find that the diffusion of the 



 

automobile is not consistent with the niche hypothesis in the following ways: 1) product 

improvements and cost reductions were not realized in niche markets, but were achieved 

simultaneously with diffusion into mass markets; 2) in addition to learning-by-doing and 

learning-by-interacting with users, knowledge spillovers and interacting with suppliers 

were critical in this process; 3) cost reductions were not automatic results of expanding 

markets, but rather arose from the strategies of entrepreneurs based on personal 

perspectives and values.  This finding supports the use of a behavioral approach with a 

micro-focus in the analysis of socio-technical change 

I also find that the emergence and diffusion of the motor vehicle can only be 

understood by considering the combination of developments and processes in multiple 

regimes, within niches, and within the wider technical, institutional, and ecological 

complex (TIEC).  For the automobile, the process of regime development was more 

consistent with a fit-stretch pattern of gradual unfolding and adaptation than one of niche 

proliferation and rapid regime renewal described in the literature. 
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1.0 Introduction 

Steering an economy with positive feedbacks into the best of its many 

possible equilibrium states requires good fortune and good timing – a feel 

for the moments when beneficial change from one pattern to another is 

most possible. 

-- W.B Arthur, 1990 

1.1 Statement of the Problem 

For the last twenty years, the international community has engaged in negotiations 

to stabilize the atmospheric concentration of greenhouse gases (GHGs). Yet scientific 

concern over GHG emissions arose at least fifty years ago.  As Revelle and Suess (1957) 

succinctly stated, “[h]uman beings are carrying out a large scale geophysical experiment 

of a kind that could not have happened in the past nor be produced in the future.  Within a 

few centuries, we are returning to the atmosphere and the oceans the concentrated organic 

carbon stored in sedimentary rock over hundreds of millions of years.”   

This experiment was enabled by the development of energy technologies and 

infrastructures that have vastly improved the human condition, even while threatening 

human and ecosystem health on local, regional, and global scales.  While the energy 

intensity of the U.S. economy has declined, total energy use continues to rise and has 

tripled since 1950.  During that time, transportation has accounted for around one quarter 

of the nation’s energy consumption, though that fraction has risen slightly to 28% (EIA, 

2007).  Because the U.S. transportation system is almost entirely dependent on 

petroleum, this sector is currently responsible for about 28% of the nation’s total GHG 

emissions.  Transportation contributes the largest fraction of U.S. carbon dioxide (CO2) 

emissions from the combustion of fossil fuels by end use sector at 33%.  Light vehicles 

generally used for personal transport (automobiles and light trucks) alone account for 
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20% of U.S. CO2 emissions from the combustion of fossil fuels (U.S. EPA, 2007a).  In 

addition to being a significant contributor to emissions, the personal transportation 

system poses unique problems for control because of the extremely large number and 

wide distribution of sources, as well as the fact that vehicle purchasing decisions involve 

more than rational cost considerations.   

Carbon dioxide emissions from personal vehicles are a function of carbon content 

of the fuel, total fuel consumption, and engine properties.1  Consumption is in turn a 

function of vehicle fuel efficiency and vehicle miles of travel (VMT).  This lends four 

approaches to addressing the issue of greenhouse gas emissions from personal 

transportation: efficiency, substitution, travel demand reduction, and carbon capture and 

sequestration.  Technological options addressing efficiency and substitution are generally 

considered necessary components of any greenhouse gas reduction strategy.   

Improving the efficiency of vehicles slows consumption of oil, reduces annual 

greenhouse gas emissions, and allows more time to develop and deploy alternative 

technologies.  Substitution of alternative fuels displaces demand for petroleum and can 

reduce GHG emissions, depending on the selected alternative fuel and its production 

process.  While there are renewable fuels and end-use technologies with lower life-cycle 

GHG emissions that currently are technologically feasible, they pose challenges in terms 

of relative cost, performance, safety, and infrastructure.  Meanwhile, petroleum remains 

plentiful and relatively inexpensive in the near term.  Should the availability or price of 

petroleum become problematic, due to depletion or socio-political factors, higher fuel 

prices might stimulate more fuel efficient vehicle technologies and use patterns, thereby 

                                                 
1 Carbon is emitted as carbon dioxide, carbon monoxide, soot (black carbon), methane, and various organic 
compounds, depending on engine properties. 
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slowing the growth of GHG emissions.  However, liquid fuels for transportation could be 

obtained from other plentiful fossil resources (e.g. unconventional petroleum, coal, and 

natural gas) and used with little alteration of the existing vehicle technology paradigm 

that has evolved over a period of more than 100 years (Johnson et al., 2003).  Yet if road 

transport remains the dominant mode for personal mobility, significant reductions in 

emissions will require widespread transition to an alternative technology regime based on 

renewable energy sources. 

In 1973, OPEC production cuts and the Arab oil embargo resulted in a dramatic 

increase in petroleum fuel prices as well as shortages at gasoline stations.2  In an effort to 

decrease U.S. dependence on foreign oil, Congress passed the Energy Policy and 

Conservation Act (EPAct) of 1975.  Since then, there have been numerous federal and 

state policies directed at improving vehicle efficiency and developing alternatives to 

petroleum fuels.  Despite these efforts, personal transportation remains almost entirely 

dependent on petroleum and improvements in fuel economy have largely stalled.  This 

failure raises the following questions for policy: 

• What conditions would foster the transition of the U.S. personal transportation system 

from the existing socio-technological regime based on petroleum to one which 

produces lower carbon emissions?  

• Can the development of alternate technology alone enable this transition or are other 

factors critical in stimulating a transition? 

                                                 
2 In 1973, Egypt, Syria, and the Arab members of OPEC embargoed shipments of oil to countries that 
supported Israel during the on-going Yom Kippur War.  They specifically targeted the United States and 
the Netherlands, the latter having supplied arms to Israel and allowed U.S. use of Dutch airfields. 
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• What are the policy leverage points for facilitating a transition and steering the 

system to a desired outcome?   

1.2 Background: Policy Approaches 

Policy approaches to improve the energy efficiency of U.S. light vehicles and 

promote the development and use of alternative fuel can be grouped into four categories: 

research and development (R&D), market incentives, regulations, and what I will call 

niche approaches.  These categories relate to explanations for the lack of a market for 

such technologies and the underlying theoretical assumptions of these explanations.  This 

section discusses these underlying assumptions and demonstrates that niche approaches 

have emerged as the only policies that attempt to address the underlying dynamics of 

technical transitions. 

1.2.1 Research and Development (R&D) 

The first explanation for that lack of a market for alternative technologies is that 

they simply are not mature enough and that additional research and development (R&D) 

is needed to overcome cost and performance issues.  Government sponsored R&D is 

justified because private industry generally under-invests in innovation and in particular 

under-invests in research to solve social problems that promise little profit or in 

technologies with potentially high payoff but high risk.  R&D policy therefore directs 

innovation toward the solution of specific socially significant problems and may also 

determine the search space. Federal support of R&D includes research programs at 

federal laboratories, research grants to other research institutions, and public-private 

partnerships such as the Partnership for the Next Generation Vehicle (PNGV) established 

in 1993 and FreedomCAR which replaced PNGV in 2002.   
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The underlying assumption, then, is that technical and cost hurdles are the only 

barrier to market development.  The new technology will compete successfully once it is 

developed to the point where it is competitive, which is to say it provides equivalent 

service at lower cost or better service at an appropriate marginal cost.   

1.2.2 Market Incentives 

Proponents of market incentives argue that alternative technologies should not be 

required to compete on the same cost basis because the price signals are incorrect.  

Market incentives are recommended to correct for various market failures – public goods, 

externalities, inadequate or asymmetric information, and natural monopolies – that lead 

to inefficient markets or inequitable distribution of welfare.  Tax incentives to fuel 

producers have been used to stimulate production of ethanol and bio-diesel as well as 

stimulate further research.  Federal and state fuel taxes may also be restructured to 

decrease the relative cost of alternative fuels, on an energy content basis, to the 

consumer.  Tax incentives and disincentives have also been applied to vehicles, such as 

the federal ‘gas guzzler’ tax imposed on the most inefficient new cars.  Recently, federal 

and state income tax incentives have also been offered for the purchase of hybrid electric 

vehicles and alternative fuel vehicles (AFVs).  However, experience has shown that 

market incentives may need to be extreme to influence consumer behavior.   

1.2.3 Regulations 

Both R&D and market policies fundamentally rest on the assumptions of neo-

classical economics, with the understanding that true markets violate these assumptions 

in a limited sense.  However, experience has shown that these policies, even when 

combined, are not necessarily sufficient to insure that new technologies are deployed and 
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adopted.  The problem is that neo-classical economics relies on static analysis and has 

little to offer in terms of explaining the dynamic processes involved in transitioning from 

one equilibrium state to another. 

The establishment of regulations or standards can circumvent the difficulties 

posed by the dynamics of transitions by ‘forcing’ innovation in a particular direction and 

ensuring deployment.  This policy approach may be justified by the existence of market 

failures but is often criticized as being economically inefficient; there is no guarantee that 

the cost of meeting the regulation is equivalent to the value of the benefits.  Therefore, 

regulations are most often recommended when market failures lead to fairness or ethical 

issues which are difficult to place in monetary terms, such as the value of ecosystem 

services or human life. 

Historic examples of regulations related to vehicle fuel consumption include the 

federal Corporate Average Fuel Economy (CAFE) standards and California’s Zero 

Emission Vehicle (ZEV) mandates.  Such regulations alter the product’s design 

specifications by establishing functional standards, e.g., for fuel economy or tailpipe 

emissions.  Manufacturers must determine the best technological solution to meet the 

politically established requirements while simultaneously satisfying consumer demands.  

Thus, policy ‘forces’ innovation toward the solution of a particular problem, but does not 

define the search space. 

However, the politically established functional requirements may conflict with 

those of the market; existing or near-term technology may be unable to satisfy both at 

reasonable cost.  If manufacturers are unable to find an innovative solution, product cost 
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rises or performance falls as measured by consumer preferences.3  In this case, 

manufacturers may seek to modify the regulations or delay (or even halt) implementation, 

as has occurred with the California ZEV mandates.  Another possibility is that complex 

system dynamics may over time result in the innovation of new products that do satisfy 

both consumer preferences and the regulations as written, but this evolution may 

undermine the goals of the regulations.  For example, although vehicle manufacturers 

have generally met the CAFE standards, the overall fleet fuel economy has fallen since 

1987 due to changes in product offerings and an increasing light truck market share.  

Meanwhile, average weight and horsepower have risen appreciably 

1.2.4 Niche Approaches 

Where regulations tend to treat dynamic processes as a black box, niche 

approaches aim to influence them directly.  Niche approaches may be seen as arising 

from a theoretical model that departs drastically from neo-classical economics.  This 

model asserts that the difficulties faced in transitioning to alternative fuels arise because 

the transportation system is a complex dynamic system where positive feedbacks 

reinforce the dominance of the existing paradigm.  The existence of these feedbacks – 

learning, adaptive expectations, network effects, and economies of scale – pose 

significant challenges to the development and adoption of promising new technologies. 

In general, a niche can be defined as a distinct application domain, small in scale 

and scope, characterized by specific functional requirements (Hoogma et al., 2002; 

Raven, 2005).  Because of the special functional requirements of the niche, users are 

                                                 
3 Under CAFE, fuel economy standards are established for a manufacturer’s entire sales fleet.  Thus, if the 
cost of meeting the standard exceeds consumers’ willingness to pay, manufacturers must adjust prices to 
encourage the purchase of more efficient vehicles over less efficient ones, thus lowering profits, or opt to 
pay fines established by the regulations. 
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willing to accept higher cost or lower performance on other non-essential functionalities 

compared to those attained with any other products available in the market.  Niche 

approaches may be divided into two categories of policies, the first relating to 

experimental niches and the second to market niches.  Analogous to Hoogma’s (2000) 

‘technological niche,’ the term experimental niche refers to non-commercial exploration 

of a technology in a temporary ‘societal experiment’ where it is protected from market 

selection pressures and from the engineering and use practices established by the existing 

regime.  Market niches involve commercial production and occur naturally but may also 

be created by policies that provide varying degrees of protection from the selection 

environment. 

Explorations that create experimental niches include demonstration and pilot 

projects.  These experiments serve as a test-bed where production and use are 

investigated in an environment approaching real-world conditions. The goals of these 

projects vary.  In the most limited sense, they are used to test production processes and 

product performance, improve them, and reduce costs.  In the broader sense 

recommended by an emerging policy approach known as strategic niche management 

(SNM), experimental niches can be used to stimulate both behavioral and technical 

change as a stepping stone to a socio-technical transition.  According to Elzen et al. 

(2003, p. 177), “[r]adical change can initially begin at the fringes, in so-called niches, 

from which it spreads in conjunction with other developments.  SNM is directed at 

overcoming barriers to broader diffusion by exploiting niche dynamics.”  SNM identifies 

two key processes in such regime shifts: learning and institutional (or societal) 

embedding.  Therefore, the goals of SNM are to investigate user needs and to 
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simultaneously adapt both the technology and the social environment in which it is 

produced and used.  By altering agent (producer and user) perceptions and behavior 

toward the new technology, it becomes ‘embedded’ in a new rule set. 

Market niche policies guarantee a small market for new technologies.  Examples 

include federal fleet and fuel provider mandates for AFVs under EPAct and local fleet 

projects under the Clean Cities program.  Because of the structure of the California ZEV 

mandates, we may also consider that this policy intended to create a market niche for 

electric vehicles.  Only a percentage of vehicles sold by each manufacturer were required 

to meet the ZEV criteria of zero tailpipe and zero evaporative emissions, which, at the 

time the regulations were promulgated, could only be met by the battery-powered electric 

vehicle. 

One aim of market niche creation is to overcome the “chicken-and-egg” problem 

posed by network effects: manufacturers are unwilling to produce the alternative 

technology until there is market demand and an available fuel infrastructure, while fuel 

providers are unwilling to invest in infrastructure until there is demand for the fuel.  

While establishment of a stable market niche initiates commercial manufacturing, 

substantial emission reductions can only occur through widespread adoption.  Thus, the 

expectation is that processes within the niche market will facilitate development of a 

viable mass market. 

1.3 Theoretical Basis of Niche Approaches: An Overview 

Niche approaches have emerged as the only policies that target the dynamic 

processes underlying transitions in complex socio-technical systems.  These approaches 

clearly assert that processes within niches facilitate such transitions.  According to Elzen  
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et al. (2003), “Technological niches appear a necessary component of a regime renewal.  

They help to create a pathway to a new regime without which there will not be a new 

regime.  Niches act as stepping stones.”  The assertion of the fundamental role of niches 

in technological transitions, or the ‘niche hypothesis,’ is supported by two streams of 

research which arise from the tradition of evolutionary economics.  This section provides 

a brief overview of this research, summarizes the basic assumptions, and discusses some 

difficulties with this theoretical basis.  These findings are then used to construct a series 

of specific research questions that could help illuminate the over-arching issue presented 

in section 1.1.  Chapter 2 presents a more complete discussion of the research literature. 

1.3.1 The Quasi-Evolutionary Model 

The approach of SNM introduced in section 1.2.4 emerged from a body of 

research involving the ‘quasi-evolutionary’ (QE) model of innovation which arises from 

the tradition of evolutionary economics.  Evolutionary economics traces to Schumpeter 

(1939, 1942), but its application to innovation, which forms the basis of research on 

technological transitions, is based primarily on the work of Nelson and Winter (1977) and 

Dosi (1982, 1988). 

Evolutionary economics is a behavioral approach that departs from static analysis 

and rational behavior and instead focuses on learning processes and adaptive behavior.  

Drawing from the analogy with biological evolution, innovation is viewed as a complex 

interaction among firms, the economy, and society that is characterized by three 

processes (Witt, 1992; Metcalfe, 1994; Malerba, 2002): variation, or the generation of 

novelty; selection through social, political, and market mechanisms; and the retention of 
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successful variations through imitative and conservative behavior, routines, heuristics, 

and culturally learned behavioral patterns.   

A main theme that arises from evolutionary theory is the cumulative nature of 

knowledge and learning which leads to path dependence.  Thus, technological innovation 

proceeds along relatively well defined paths or trajectories.  This is not to say that 

technical progress is deterministic, but rather that past innovation makes improvements in 

certain directions easier.  In fact, the self-reinforcing nature of cumulative effects 

combined with the stochastic element of variation results in an inherent unpredictability 

of evolutionary systems. 

However, according to the QE literature, evolutionary descriptions of 

technological progress lack a sufficient description of the sociological dimensions of 

technological regimes (Schot, 1992; Kemp, 1994).  Therefore, a body of research has 

combined evolutionary theory with sociological and historical co-evolutionary models.  

In the resulting QE theory, a socio-technical regime is defined as “the whole complex of 

scientific knowledges, engineering practices, production process technologies, product 

characteristics, skills and procedures, and institutions and infrastructures that make up the 

totality of a technology” (Rip and Kemp, 1998).  The existence of technological 

trajectories, then, is accounted for by the fact that existing technologies are embedded in 

broader technical systems, production practices and routines, consumption patterns, 

engineering and management belief systems, and cultural values – collectively referred to 

as rules (Kemp et al., 1998).  In regime transitions, then, “both the technology and the 

system in which it is produced and used change through a process of co-evolution and 

mutual adaptation” (Kemp et al., 1998). 
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The key feature of the QE model is the “focus on the way variation and selection 

processes are partly independent and yet coupled” (Schot et al., 1994).  Heterogeneous 

actors link variation and selection in three ways (Schot, 1992).  First, entrepreneurs may 

anticipate selection and adjust the search heuristics used in innovation (ex ante selection).  

Second, institutional links between actors in the two processes create a ‘technological 

nexus’ which mediates between social and market requirements (selection) and 

technological opportunities and constraints (variation).    Third, actors may create a niche 

to protect variation against harsh selection. 

Raven (2005), based on Geels (2004), notes that the stability found in regimes 

results from the alignment of various rules, e.g. user preferences, automobile design, and 

government regulations.  This stability is dynamic; rules do change, with or without 

erosion of stability.  However, the alignment and embedded nature of rules that provides 

stability also results in resistance to change, and change is therefore incremental.  

Incremental change within a regime results in ‘regime optimization’ while radical 

innovation results in ‘regime renewal’ or transition (Elzen et al., 2003). 

In the QE model, new technologies gain momentum when the dominant 

technology cannot adapt to a changing selection environment or when they are protected 

against a harsh selection environment through niche creation.  Niches allow the 

technology to be developed in terms of user needs and to achieve wider use through 

learning processes and simultaneous adaptations in the selection environment.  A 

technological regime shift is conceptualized as a process of niche proliferation or niche 

branching as the new technology is adapted to new niches defined by new geographical 

regions or new application domains. 
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1.3.2 The Multi-level Perspective 

Geels (2002, 2004, 2005a, and 2005b) presents a second model of technical 

change based in the evolutionary tradition.  In the multi-level perspective (MLP), socio-

technical systems of innovation consist of a nested hierarchy of three heuristic levels: (1) 

the meso-level consists of socio-technical regimes, (2) the micro-level consists of 

technological niches; and (3) the macro-level is formed by the socio-technical landscape.  

The MLP stresses that system innovation occurs when simultaneous processes acting on 

multiple dimensions and levels “link up and reinforce each other” (Geels, 2005a). 

The MLP conceptualizes the innovation process through three phases.  In the first 

phase, novelties emerge within the context of the existing regime, in part due to 

landscape developments.  Entrepreneurs experiment with designs in an attempt to 

determine users’ requirements, and a variety of technical forms may compete with each 

other.  In the second phase, the novelty is adopted in niche markets which serve as 

incubators.  The innovation develops a technological trajectory and improves due to 

learning processes, while users explore new functionalities.  This phase results in the 

articulation of user preferences and the development of a dominant design.  The third 

phase is characterized by widespread diffusion of the innovation and competition with the 

established regime.   

Two patterns of transition emerge from the interplay between the levels in the 

perspective.  The ‘technological substitution route’ has a technology push character, 

where radical innovations emerge in niches and break into mainstream markets when 

they have sufficient momentum and when landscape developments put pressure on the 

existing regime. The ‘wider transformation route’ has a demand-pull character, where the 
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existing regime becomes unstable due to persistent problems or landscape changes.  

Simultaneous changes on multiple dimensions stimulate actors to experiment with new 

technical options. After a prolonged period of experimentation and strategic 

maneuvering, a particular option may acquire dominance and lead to the creation of a 

new socio-technical regime.  In both routes, three factors contribute to the wide diffusion 

of a new, radical, technology: 1) niche markets that act as incubators; 2) the penetration 

of the novelty into new application domains, leading to ‘niche-accumulation;’ and 3) 

circumstances at the regime or landscape level that create windows of opportunity.   

1.3.3 Summary 

Both the QE and MLP approaches integrate technological and sociological factors 

to describe the dynamic processes underlying technological transitions.  Both approaches 

also stress the role of niches – distinct application domains that are small in scale and 

scope.  The MLP describes a socio-technological regime transition as a process of ‘niche 

accumulation,’ while the QE model describes it as a process of ‘niche branching’ or 

‘niche proliferation.’  Based on the QE literature, I identify five fundamental assertions of 

the role of niches in regime transitions: 

1) Within the niche, manufacturers learn about users’ needs and users learn about 

product performance through “learning-by-interacting.” 

2) Manufacturers improve the technology in terms of those needs and achieve lower 

costs through “learning-by-doing.” 

3) As a result of these learning processes, the new technology becomes embedded in a 

new rule set which reflects the adaptation of institutions.  Both the technology and the 

system in which it is produced and used are altered in this co-evolutionary process 
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linking variation and selection which arises from the interaction of agents in the 

technological nexus. 

4) Growth of niche markets (or niche branching or niche proliferation) allows 

manufacturers to reduce costs through economies of scale. 

5) These changes facilitate diffusion into wider markets. 

The MLP and Raven (2005) add regime dynamics and instability as a significant 

factor in the growth (or lack of growth) of niches.  Instability may be due to three 

sources: 

1) Success of niche technology. 

2) External forces – changes at the landscape level – which influence the direction and 

rate of variation by altering regime agents’ perceptions and expectations or altering 

the resources available for variation; or alter the selection environment by altering 

prices or consumers’ preferences. 

3) Internal regime forces – difficulties with the expanding scale or scope of the existing 

regime or achievement of technological or economic limits of existing technology – 

which lead regime actors to view the new technology as a solution. 

1.3.4 Theoretical Issues 

Ultimately, a theory of transitions must be based on a complete theory of 

innovation that includes existing regimes as well as emerging technologies.  While early 

research on the quasi-evolutionary (QE) model began developing a robust theory of 

technical change, the literature has stressed the role of niches and recent work has shifted 

to a focus on SNM.  I believe this leaves important aspects of the QE theory of 

innovation under-developed, leaving promising opportunities for policy unexplored. 
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First, the focus on the coupling between variation and selection leads to an 

exclusive emphasis on learning-by-doing (learning curve effects) and learning-by-

interacting with users.  This yields an incomplete description of the innovative process 

behind product and process improvements that are critical for wide diffusion. 

Second, the technological nexus that links variation and selection is discussed as a 

key aspect of the process of embedding, yet remains an underdeveloped concept.  Who 

are the relevant agents?  How do new networks form and how are they sustained?  Are 

elements of existing networks important?  If so, how are they altered?   

Third, the focus on a single dominant regime neglects interactions with other 

existing regimes which may help or hinder market growth (Raven, 2005).  New 

technologies may address problems in multiple regimes or be based on fundamental 

innovations with applications that cut across regimes.  This relates back to the first and 

second issues, in that the process of innovation is more complex than is reflected in QE 

theory.  It involves multiple learning mechanisms and networks that tie the innovators to 

a relevant knowledge base.  These networks may link seemingly unrelated industries, 

particularly in the early phases of a technology’s life cycle. 

Fourth, as Raven (2005) notes, the focus on the operation of niches in competition 

with a stable regime results in a simplistic description of niche-regime interaction.  It 

neglects the dynamic processes within stable regimes (incremental change) that may 

either hinder or assist the diffusion of the new technology.  In particular, it neglects 

regime response to internal and external forces of change which cause instability.  Such 

challenges may be interpreted as opportunities for innovation, either for change within 
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the regime or for radical new technologies that lead to a complete regime transition.  This 

leads to the last issue.  

The dichotomy of regime optimization (incremental change) versus renewal 

(radical change and transition) is overly simplistic for complex technologies.  It places 

policy focus on transformation of the socio-technical regime in its entirety, which 

requires a complete alteration of both producer and user interpretations of technology and 

the related institutions.  Meanwhile, it discounts innovations which make only part(s) of 

the existing regime obsolete but could still radically reduce environmental impacts.  More 

significantly, it neglects intermediate or transitional technologies that may form a bridge 

to a new regime, such as hybrid and plug-in hybrid vehicles as a pathway to full electric 

or fuel cell vehicles.  In such a transition, only part(s) of the regime may be transformed 

at a given time. This deficiency is interesting, because early works on QE theory 

highlighted the significance of compatibility issues: new technologies that may be easily 

embedded in the existing production, use, and institutional systems will diffuse more 

rapidly.  According to Kemp (1994), “[o]nly in a few respects did radically new products 

constitute a radical break with the past, which suggests that the term ‘radical’ is 

somewhat misleading.  Radical innovations often combined the new with the old (or even 

combined older technologies) and often rightly so because this helped the product to 

survive the initial harsh market selection and establish itself in the market place.”  Thus, 

transitions can occur as a more gradual unfolding and adaptation of the existing regime 

than the path described by ‘regime renewal.’   
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1.3.5 Research Questions 

These findings from the literature lead to the following research questions related 

to the assumptions underlying the niche hypothesis, the role of the technological nexus in 

niche dynamics and the diffusion to wider markets, and regime dynamics and stability: 

• Is the role of niche markets as described in the literature historically accurate for the 

transition from horse-drawn to motorized vehicles? 

▫ Were learning-by-interacting with users and learning-by-doing the primary 

processes involved in improving the performance and cost of early motor 

vehicles? 

▫ Did growth in niche markets facilitate economies of scale? 

▫ Is niche branching, niche proliferation, or niche market growth an accurate 

description of the diffusion of the gasoline motor-vehicle into wider markets? 

• Is the linkage between selection and variation described by the technological nexus an 

accurate account of the interactions that produced the technological and institutional 

adaptations that facilitated wider diffusion of the automobile? 

▫ Who were the agents involved and from what regimes were they drawn? 

▫ How did elements of the existing regime(s) influence their identities and roles?  

How were these identities and roles altered? 

▫ What formal institutions were developed and what contributed to their stability 

and longevity? 

▫ How were the variation and selection environments altered?  Did this co-

evolution occur within the context of niches? 
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▫ Was the selection-variation linkage the most significant network contributing to 

technological and institutional adaptations? 

• Were other factors related to niche-regime interaction important in facilitating the 

transition to motor vehicles? 

▫ In what ways were early motor vehicles compatible with the existing regime(s)?  

How did this compatibility evolve and eventually diverge? 

▫ Did regime instability contribute to the transition?  If so, what were the causes of 

this instability? 

▫ What role did unexpected exogenous events play in existing and emerging regime 

instability and the adaptation of institutions? 

1.4 Approach 

To answer the research questions posed above, I review the historical transition 

from horse-drawn to gasoline-powered motor-vehicles within a co-evolutionary 

framework of innovation based in evolutionary and quasi-evolutionary theory.  However, 

in order to account for the issues discussed in section 1.3.4, this framework is constructed 

using contributions from two additional bodies of research:  the industrial lifecycle model 

(Abernathy, 1978; Abernathy et al., 1983; Abernathy and Utterback, 1978; Utterback and 

Abernathy, 1975; Anderson and Tushman, 1990) and mechanisms of learning in 

innovation.  In this fashion, I attempt to take advantage of the explanatory power of some 

of the technical details found in these approaches while avoiding their shortcomings in 

describing the sociological dimensions of technical change.  This framework is not 

proposed as a new model of innovation or a complete theory of technological transitions, 

but rather uses concepts and insights from several bodies of theory to provide the 
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structure and vocabulary to trace the historic development of motor vehicle technology 

and its diffusion to wider markets.  This section provides a brief overview of this analytic 

framework which is developed in Chapter 2. 

1.4.1 Analytic Framework 

First, I take from Malerba (2002) the perspective of the sectoral system of 

innovation and production which is defined as “a set of new and established products for 

specific uses and the set of agents carrying out market and non-market interactions for the 

creation, production and sale of those products.”  This sector operates within a socio-

technical system with a technological and social history, all of which is embedded in the 

natural environment.  Therefore, the actions and interactions of the agents are shaped by 

institutions.  Institutions in this context are analogous to QE’s rules and are defined to 

include any form of social construct or constraint on human interactions.  Viewing the 

sectoral system within an institutional context then approaches the concept of a socio-

technical regime, but the focus is clearly on the agents involved in innovation and 

production.  In addition, the focus remains on system dynamics: “Over time, a sectoral 

system undergoes processes of change and transformation through the co-evolution of its 

various elements” (Malerba, 2002). 

Second, I take from industrial lifecycle models the concept that technologies, 

firms, industries, and markets typically progress through a series of phases: emergent, 

transitional, specific, and senescent (Utterback and Abernathy, 1975; Abernathy and 

Utterback, 1978).  Although the phases lie on a continuum with indistinct boundaries, the 

character of a sector at a given time can be related generally to this typology.  The 

emergent phase is characterized by new technologies, niche markets, rapid innovation, 
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and a focus on product improvement.  The specific phase is characterized by dominant 

technologies, mass markets, incremental innovation, and a focus on process 

improvement.  A dominant design is a (temporarily) stable description of the functional 

requirements of the technology and the product attributes used to fulfill them.  The 

specific phase thus exhibits the stability of a socio-technical regime that results from the 

alignment of institutions (rules) and a mature technology. 

I borrow from Anderson and Tushman (1990) the idea that innovation is cyclic; 

after an industry attains the specific phase, incremental innovation is punctuated by 

periods of ‘ferment.’  This is represented by movement from the specific phase into a 

new transitional phase. However, where Anderson and Tushman describe these periods 

as initiated by stochastic technological breakthroughs, I allow for the possibility that non-

technical phenomena (social, political, economic) may create instability which presents 

opportunities for innovation or even forms the basis of the innovation of new production 

processes or usage norms.  Thus, the phase typology gives structure to the dynamics of 

niche-regime interactions and the central role of stability.  In addition, the cyclic aspect of 

this framework accounts for transition within an existing regime which is understood as a 

redefinition of the product’s functional requirements and the realignment of the 

technology through the emergence of a new dominant design. 

I then add a richer description of the learning mechanisms in innovation, relying 

primarily on Malerba (1992), but incorporating the work of various other researchers.  

This provides the vocabulary to explore the processes underlying product and production 

process improvements that facilitate the movement from niche to wider markets.  I 

identify four learning mechanisms: internal research and development, learning-by-doing, 
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learning-by-interacting, and spillovers.  The boundaries of these classifications are not 

necessarily distinct since entrepreneurial activities often fall within more than one class.  

In addition, the ability of entrepreneurs to learn by each mechanism is influenced 

activities in other classes.  All four sources are expected to contribute to the advance of a 

given technology at any point in time.  However, industry lifecycle models predict that 

the relative importance of these mechanisms will depend, among other things, on the 

industry’s and technology’s phase of development.   

This conceptual framework has the following advantages: 

1) It places focus on the behavior of entrepreneurs (agents of change) which allows 

examination of learning processes within and among firms and is consistent with the 

fundamentally behavioral nature and micro-focus of evolutionary theory.  According 

to Kemp (1994), “the relationship between firm behaviour and technological regime 

shifts is a relatively underresearched area.” 

2) It allows further exploration of the network of agents involved in variation (the 

entrepreneurs) and selection (consumers, policy makers, and society at large) and the 

two-way linkage between the two processes through the technological nexus.  

According to Schot (1992), “The activities of a technological nexus result in a 

learning process, which takes place both in the firm, a place where an important part 

of the variation process is located, and in its environment.” 

3) It allows exploration of the full range of learning processes underlying innovation and 

transitions to determine whether learning-by-doing and learning-by-interacting with 

users are indeed the appropriate focus for policy. 
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4) It allows exploration of the dynamic processes of innovation and transition within a 

regime in response to internally and externally generated challenges.  This in turn 

determines how regime instability will influence the growth of niches. 

1.4.2 Data 

As developed in this research, innovation is a synthetic process whereby 

entrepreneurs combine existing artifacts and threads of thought with personal inspiration 

and insight to create a new whole that is more than the sum of its individual and, to some 

extent, preexisting components (Rycroft and Kash, 1999).  This dissertation applies that 

very process to a study of the history of innovation in the automotive industry in order to 

develop insights on the sources of technological progress and transitions to new 

technological regimes.  It is largely an historical study that presents no new data, but 

rather presents a new organization and re-analysis of the work of many very able 

historians and analysts.  In defense of this approach, I borrow the words of Flink (1970, 

p. 9):  “…in the interest of economy of research and in the belief that the writing of 

history must be a cumulative process based upon considerable trust in one’s predecessors, 

I have not hesitated to deal synthetically, in the main, with those aspects of the history of 

the automobile industry that have already been examined in detail by others and to 

eschew firsthand reexamination of the various industry sources upon which previous 

studies have been primarily based.”  By using a variety of such sources, I hope to 

minimize selection and interpretation biases. 

1.5 Significance of the Dissertation 

Addressing climate change will require a transition to alternative transportation 

technologies.  Constructing effective policies to facilitate such socio-technical transitions 
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requires an understanding of the underlying mechanisms and processes of innovation and 

the mutual adaptation of technology and institutions.  Therefore, this research adds to the 

policy debate on stimulating innovation and diffusion of new technologies to address 

climate change. 

Prior analysis of the transition to motor vehicles has followed two general 

approaches.  The first approach describes transition as a process of logistic substitution 

where old and new technologies compete for market share beginning with the initial 

introduction of the new innovation (Grübler, 1998); Nakićenović, 1986).  While the data 

supports a logistic substitution, this aggregate representation masks the underlying 

process of change.  The second approach, found in the MLP literature, attempts to 

remedy this issue by examining the dynamics between niches, socio-technical regimes, 

and the wider socio-technical landscape (Geels, 2005b).  However, by focusing on 

interactions between the regime and the wider socio-technical context, this approach still 

has an aggregate representation of the components of sectoral systems of innovation and 

production and is ill-structured to examine processes within that system.  In other words, 

innovation processes found within and between firms in the regime remain inside the 

black box.   

This research takes a unique approach and examines socio-technical change from 

the perspective of the entrepreneur.  Thus, this research adds to the literature on socio-

technical transitions by examining specifically the role of entrepreneurial behavior and 

learning processes within and among firms in the historical co-evolution of technologies 

and institutions during the transition to automobiles.  As a result of this unique approach, 

I show that the conception of innovation in theories of socio-technical transitions is 
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overly simplistic and would benefit from a richer description of mechanisms of learning 

such as the one used in this research.  I also show that firm-specific histories and rules 

constraining interaction shaped the strategies and adaptive capabilities of firms.  These 

strategies, and thus firm-specific rules, had a large impact on the development and 

diffusion of the technology.  This finding supports the use of a behavioral approach with 

a micro-focus in the analysis of innovation and socio-technical change. 

1.6 Organization of the Dissertation 

This dissertation is organized as follows.  Chapter 2 reviews the analytical 

literature on evolutionary approaches to innovation and socio-technical transitions.  This 

section identifies the fundamental assumptions and assertions of the literature as well as 

some shortcomings.  It then reviews several strands of innovation research that may be 

used to illuminate and improve on these shortcomings.  In the final section of this chapter 

I synthesize these approaches to formulate a framework for analysis.  Chapters  3 through 

5 then review the historic development of gasoline motor vehicles and places this history 

within the framework developed in chapter 2 to analyze the development of the personal 

transportation regime based on this technology.  These chapters are roughly 

chronological but overlapping.  Chapter 6 provides a summary of the findings and 

discusses the implications for theories of socio-technical transitions and policies intended 

to foster technological innovation and transitions.  I conclude this chapter by outlining 

areas for future research.
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2.0 Innovation and Technological Transitions 

…the scope for policy is not to optimise with respect to some objective 

function… but rather to stimulate the introduction and spread of 

improvements in technology.  At the core of this approach are complexity, 

cognitive limitations, and the role of organizations… 

-- Metcalfe, 1994 

 

2.1 Introduction 

Although the role of innovation in the economy has long been recognized, the 

underlying mechanisms of learning and progress are less understood, particularly as they 

relate to transitions.  The study of innovation is complicated by the fact that it does not 

fall neatly into a single academic discipline.  According to Smits (2002), “the discipline 

of innovation studies is not a firmly integrated theoretical bastion,” but rather “can be 

typified as an evolving (inter)discipline that finds itself at the crossroads of sociological 

and historic scientific and technological research, economic innovation studies and policy 

studies.”  The literature on innovation is therefore vast with wide variation in goals, 

scope, and approach. 

The earliest research in technical progress considered the role of innovation in 

economic progress and international competitiveness.  This research therefore focused on 

macroeconomic impacts and treated the innovative process as a “black box.”  Other areas 

of innovation research have been concerned with economic progress in developing 

countries, innovation market failures, firm decision-making and strategy, firm survival, 

industrial and institutional change, explaining the success or failure of specific 

technologies, and most recently, advancing technologies for mitigating climate change.  

As these bodies of research have grown, frameworks for studying innovation have 

evolved from static, neoclassical economic models to complex system dynamic models.  
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The evolutionary approach to innovation is a subclass of dynamic system theories which 

is distinguished by a behavioral theory of the firm and a focus on learning and adaptation 

(Metcalfe, 1994). 

Because a transition is by definition dynamic – a process of moving from one 

state to another – the study of technological transitions has built on these later models.  

This dissertation is concerned primarily with the assertions of two streams of research on 

technological transitions that have emerged from the evolutionary approach: the quasi-

evolutionary model (QEM) and the multi-level perspective (MLP). 

This chapter presents a selective review of the literature on innovation and 

technological transitions.  In sections 2.2 and 2.3 I review the origins and significant 

contributions of evolutionary systems theories of innovation as it relates to understanding 

innovative processes.  In section 2.4 I review the literature on the QEM and the MLP.  

This review presents the assertions of these models in regard to the role of niches in 

technological transitions and discusses a number of theoretical difficulties.  In section 2.5 

I review two additional bodies of innovation research – the industry life-cycle model and 

mechanisms of learning in innovation – that I then use in conjunction with the QEM and 

MLP to construct an analytical framework that accounts for these difficulties.  This 

framework is summarized in section 2.6 and serves as a guide for analysis of the history 

of the transition to automobiles. 

2.2 From Neoclassical Economics to System Theories 

Systems theories of innovation arose largely due to dissatisfaction with the 

neoclassical economic view in handling two separate classes of research: management of 

research and development in industrialized countries and economic growth in developing 
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countries (Sahal, 1981).  This dissatisfaction rests on four main criticisms of neoclassical 

economics: the focus on static analysis; the focus on aggregate phenomena; the treatment 

of innovation as an exogenous process; and the simplistic characterization of firm 

behavior based on rational agents.   

Section 2.2.1 describes the neoclassical conception of innovation and introduces 

the shortcomings of this approach in studying the process of technological change.  

Section 2.2.2 presents the earliest dynamic model of innovation and the progression of 

understanding that led to the development of complex systems models of innovation, 

which are discussed in section 2.2.3. 

2.2.1 Neoclassical Conception of Innovation 

In neoclassical economics, technology is conceptualized by means of the 

production function, which represents the relationship between combinations of inputs of 

production and the resulting output.  Theoretically, the production function specifies all 

technically feasible modes of production under existing knowledge (Sahal, 1981).  The 

production function is typically illustrated by a convex isoquant, which represents the 

various combinations of inputs required to produce a fixed amount of output.  

Technological advance is then defined as an increase in productivity such that fewer 

inputs are required to produce the same quantity of output, thus shifting the production 

function toward the origin.   

Schumpeter (1939) defines innovation as the “setting up of a new production 

function.”  Solow (1957) defines technical change as a “…shorthand expression for any 

kind of shift in the production function.  Thus slowdowns, speedups, improvements in the 

education of the labor force, and all sorts of things will appear as ‘technical change.’”  In 
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other words, innovation allows the economy to produce at a given level of output using 

fewer resources (e.g., capital and labor).4   

While developed theoretically at the level of the individual firm, research 

applying the production function typically considers the aggregate function of an entire 

industry or nation.  Although this concept has provided insight for macroeconomic 

policy, it leads to a number of theoretical and practical difficulties, the full details of 

which are beyond the scope of this discussion (Sahal, 1981).  What is important to note is 

that a static analysis of the impact of technical change on the aggregate output of an 

entire sector or economy provides little insight into the internal drivers and dynamics of 

that change, and is therefore of little use to those seeking to manage or influence 

innovation (Grübler, 1998).  For this purpose, we must examine the innovative process, 

i.e. the activities involved in setting up a new production function.   

Unfortunately, neoclassical economic theory has little to say about the process of 

moving from one production function to another.  At worst, innovation is treated as an 

entirely exogenous process and a new production function is simply imposed.  At best, 

innovation is treated as a response to an exogenous change in data, namely the price of 

labor or capital.  Attempts to explain technical change within neoclassical growth models 

rely on the familiar assumptions of rational, maximizing behavior and static equilibrium.  

The resulting theory of induced innovation introduces the innovation possibilities 

function (IPF) which represents the envelope of all alternative production functions 

attainable with available innovative resources (time and skill) (Ahmad, 1966).  In 

                                                 
4 More recently, researchers of economic development have shifted focus from the mechanics of the 
production function to how innovation creates a “learning society,” that in turn indirectly improves an 
economy’s productivity.  In this view, the most important product of the innovative process is expansion of 
the knowledge base (Conceiçãoa et al., 2003). 
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response to exogenous changes in factor prices, firms are assumed to choose a level of 

investment in research that will maximize expected profits, possibly within the 

constraints of a research budget. 

Researchers have pointed out difficulties with the theory of induced innovation, 

including theoretical criticisms of the IPF, the single focus on productivity enhancements 

through reductions in capital and labor inputs, and the assumption of profit maximization 

as the basis of entrepreneurial effort.  While a complete review of these shortcomings is 

beyond the scope of this discussion, it is worthwhile to note two points.  First, the IPF is 

independent of history; the returns to research effort in a given time period are 

independent of what research was pursued and what production techniques were used in 

the past (Nordhaus, 1973).  Second, the assumption of profit maximizing behavior, even 

when uncertainty and risk are considered, is overly simplistic.  In reality, research is often 

under-taken by individuals and organizations not motivated by profit.  Further, 

entrepreneurs face cognitive and resource limitations when selecting from an enormous 

range of possible research projects with uncertain prospects.  According to Nelson and 

Winter (1977), the assumption of profit maximizing behavior “suggests an unrealistic 

degree of inevitability and correctness in the choices made, represses the fact that 

interpersonal and interorganizational differences in judgment and perception matter a lot, 

and that it is not at all clear ex-ante, except perhaps to God, what is the right think to do.” 

In addition, shifting focus from static analysis to dynamic processes alone is not 

sufficient.  A macro-level conception of technological progress based on aggregate 

phenomena and macro-level innovation policies are ill-suited to address research 

questions such as those studied here.  Research has shown that rates of innovation vary 
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greatly among economic sectors and industries, and policies must therefore be designed 

to influence the sector of interest.  Effective policies must consider the nature of current 

and appropriate institutional structures, which in turn depends on the underlying 

technologies themselves (Nelson and Winter, 1977; Nelson and Langlois, 1983).   

Further, neoclassical theory of innovation focuses on productivity measures, and 

essentially assumes that product characteristics are fixed.  However, in manufacturing 

firms as much as 90% of research and development (R&D) effort and 75% of R&D 

results relate to changes in product characteristics or development of new products.  In 

addition, a number of econometric studies have indicated that a large proportion of 

productivity growth is attributable to changes in the quality of inputs (Sahal, 1981). 

2.2.2 Dynamic Models of Innovation 

The need for a more satisfying conceptualization of the dynamic process of 

innovation has led to the development of a large number of system dynamic models.  

Schumpeter (1939, 1942) was perhaps the first economist to emphasize the role of the 

dynamic process of innovation in the economy, a process that “incessantly revolutionizes 

the economic structure from within, incessantly destroying the old one, incessantly 

creating a new one.”  While most economists stressed the price equalizing effect of 

competition for homogenous goods, Schumpeter (1942) instead asserted that the process 

of “Creative Destruction” was “the essential fact about capitalism” and “the powerful 

lever that in the long run expands output and brings down prices.”  

Schumpeter described three distinct processes of innovative activity: invention, 

innovation, and diffusion.  Invention creates new ideas that may be scientific, 

technological, or even organizational.  While the creative process may be stimulated by 
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economic and social conditions, the product of invention is only a potential with no 

realized economic or social value.  It is the entrepreneur’s role5, through innovation, to 

create economic value, “to reform or revolutionize the pattern of production by exploiting 

an invention or, more generally, an untried technological possibility for producing a new 

commodity or producing an old one in a new way, by opening up a new source of supply 

of material or a new outlet for products, by reorganizing an industry and so on” 

(Schumpeter, 1939).  From this definition, innovations can by classified as either product 

innovations (producing a new commodity) or process innovations (producing an old 

commodity in a new way).6  The entrepreneur temporarily occupies a monopolistic 

position in the market and realizes economic profits.  In the final process of diffusion, 

imitators bring competition to the market, bidding down the price, eroding the 

entrepreneurs’ profits and moving the market toward economic equilibrium (Schumpeter, 

1939 and 1942; Langlois, 2002; Godin, 2005). 

Consistent with Schumpeter’s description, one of the first frameworks used to 

study the innovative process followed a sequential linear model that traced the flow of 

information and the time progression from scientific research and invention, to 

technological innovation and development, to production and market diffusion.  The 

linear model underpins the “science-driven” or “technology-push” theory of innovation 

that holds that invention creates the possibility for new products or processes, and thus 

drives innovation.  It is not clear when the framework was first articulated, though some 

                                                 
5 In this discussion, the term ‘entrepreneur’ refers to all innovating units, including individuals, teams, or 
entire firms. 

6 The distinction between process and product innovations depends on the unit of analysis.  One 
entrepreneur’s product innovation may be applied in the manufacture of an existing product.  Thus the new 
product becomes a process innovation for the adopting entrepreneur (Abernathy and Utterback, 1978).  
Often the two entrepreneurial units are the same, as when new process equipment is developed within the 
user firm or industry (Pavitt, 1984).  
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attribute the origin of linear model to Schumpeter’s “trilogy” of invention, innovation, 

and diffusion.  However, Schumpeter himself clearly refuted linear dependence and 

causality by asserting that innovation “is possible without anything we should identify as 

invention and invention does not necessarily induce innovation” (Schumpeter, 1939).  

According to Godin (2005), “[t]he precise source of the linear model remains nebulous, 

having never been documented.”  Godin suggests that it developed in stages over a period 

of decades, and “is a theoretical construction of industrialists, consultants and business 

schools, seconded by economists.” 

The linear model has been heavily criticized beginning as early as the 1960s 

(Godin, 2005).  A main criticism of the model is its independence from the economic and 

social environment.  According to Dosi (1982), “extreme forms of technology-push 

approaches, allowing for a one-way causal determination (from science to technology to 

the economy) fail to take into account the intuitive importance of economic factors in 

shaping the direction of technical change.”  Economic, institutional, and social factors all 

serve to focus innovative activities on certain technological problems and to select certain 

trajectories to the exclusion of others (Rosenberg, 1976; Dosi, 1982).  

Griliches (1957) and Schmookler (1962, 1966) found empirical evidence of the 

importance of market demand in stimulating inventive activities.  This research has been 

used to support the “demand-pull” theory of innovation, which holds that unmet 

consumer needs drive investment in invention and innovation – ‘necessity is the mother 

of invention.’  However, demand-pull theory assumes the “possibility of knowing a 

priori… the direction in which the market is ‘pulling’ the inventive activity” (Dosi, 1982; 

emphasis in original).  This requires that consumers’ needs are effectively articulated as 
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demands in the market via price and quantity signals, and that they are interpreted by a 

responsive industry (Mowery and Rosenberg, 1979; Freeman, 1996; Dosi, 1982).  There 

is little doubt that the market plays an important role in stimulating innovative activity by 

presenting problems, opportunities, and targets that focus the search process.  Freeman 

(1982) lists market forecasting among the factors that distinguish successful attempts at 

innovation.  However, researchers find insufficient evidence to conclude that consumer 

needs articulated through market signals are the primary drivers of innovation (Mowery 

and Rosenberg, 1979; Dosi, 1982).  Indeed, the entrepreneurs of major innovations of the 

last century, including the telephone, computer, and laser, often underestimated the 

importance of and market for their products (Rosenberg, 1996).  The ultimate range of 

application for these products depended on unforeseeable advances in the technologies, 

the development of complimentary technologies, and co-evolutionary processes.  Market 

demand, then, is more appropriately considered a necessary, but not sufficient, condition 

for successful innovation. 

Further, Dosi points out the “general weakness of market mechanisms” in 

selecting the direction of technological progress, especially in the early phase of an 

industry’s development, and the inability of demand-pull theories in explaining why and 

when certain innovations occur (Dosi, 1982).  Freeman (1994) asserts that the empirical 

evidence of innovations characterized as demand led were “actually minor innovations 

along established trajectories.”  Meanwhile technology push patterns have been shown to 

be more characteristic of the early stages of innovation in numerous products (Freeman, 

1994). 
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In 1991, Rosenberg claimed, “Everyone knows that the linear model of 

innovation is dead.”  Yet according to Godin (2005), the linear model survives, “despite 

regular criticisms… due to statistics. Having become entrenched…, the linear model 

functioned as a ‘social fact’.  Rival models, because of their lack of statistical 

foundations, could not easily become substitutes.” 

2.2.3 Systems View of Innovation 

In reality, innovation is a complex dynamic process that is neither independent of 

the economy nor purely demand driven.  Indeed, the history of individual innovations 

often is characterized by an iterative and co-evolutionary socio-cultural process whereby 

firms respond to demand, supply, and institutional forces (Mowery and Rosenberg, 

1979).  Innovation, then, is more accurately viewed as a complex interaction among 

firms, the economy, and society that links “potential users with new developments in 

science and technology” (Freeman, 1996, emphasis added).  The systems approach to 

innovation is therefore founded on the idea that innovation cannot be understood solely 

by examining independent decision-making at the level of the firm.  Rather, researchers 

must consider the interaction of firms with their environment, which is taken to include 

not only customers and suppliers, but also the broader factors shaping firm behavior.  

This includes the social and cultural context; institutional and organization frameworks; 

and infrastructures (Smith, 2000).   

By definition, a system is composed of a group of independent yet functionally 

interrelated elements that together comprise a unified whole.  These interdependent 

elements or subsystems are linked by a network of feedbacks.  A system’s characteristics 

then derive from the functional properties of the whole, which are more than the simple 
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aggregation of its subsystems or parts.  In the systems view, “technology is best 

understood in terms of its functional attributes” (Sahal, 1981).  Among its advantages, the 

systems view clearly maintains a focus on dynamics in terms of change in functional 

performance.  In addition, it emphasizes the continuous and cumulative nature of 

innovation, as improvements in functional performance build upon prior achievements. 

Complex systems models highlight the systemic nature of innovation and are 

characterized by multidirectional links among the sources and stages of technical change 

at any point in time.  Such a model blurs the lines between types and phases of research 

and innovation, and instead stresses the exchange and exploitation of new knowledge by 

researchers, engineers, designers, manufacturers, suppliers, and users.  While there is 

wide variation in the focus and goals of system dynamics studies, these models of 

innovation share the following important characteristics (adapted from Freeman, 1996; 

Soete and Arundel, 1993).  These characteristics are discussed further in section 2.3.2 in 

relation to evolutionary systems. 

1) Multidirectional links at the same point in time between the stages of technical 
change; 

2) Complex interactions of firms within the industry, with supporting industries, and 
with seemingly unrelated industries; 

3) Complex interactions with the socio-economic environment; 

4) Central role for knowledge and assimilation through learning; 

5) Cumulative and self-reinforcing processes; 

6) Increasing complexity over time in technology, industry, and innovative process. 

There has been a recent surge in systems approaches within the innovation 

literature, with authors describing our society as increasingly complex and nonlinear 

(Rycroft and Kash, 1999) with a trend toward “a system with strongly linked fuzzy 
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components” Smits (2002).  This thinking, however, is not new.  Rosenberg (1963) 

referred to the industrialization of the 19th century as “involving, not only growing 

specialization, but also growing complexity and differentiation.”  Abernathy and 

Utterback (1978) recognized the importance of understanding the production process as 

“a system of linked productive units” and noted that “[m]ajor change at one level works 

its way up and down the chain…”     

Systems themes can be found in studies of the role of innovation in economic 

progress, how firms manage innovation and survive industry transitions, and the forces 

behind sector transitions.  In considering the challenges to firms and policymakers 

managing innovation, Smits (2002) asserts that “[i]n the network society…innovating in 

chains, networks and systems becomes more and more important.”  Conceiçãoa et al. 

(2003) consider the role of innovation for promoting growth in developing countries, and 

assert that “…innovation should be understood as a broad social and economic activity: it 

should transcend any specific technology, even if revolutionary...”   Dijkema et al. (2006) 

assert that fostering environmental sustainability requires a shift in our “techno-economic 

paradigm.”  Rather than focusing on corporations, production plants, or individual 

technologies, they claim that sustainability research must consider innovation in the 

entire lifespan of a product; the entire production network; and the stakeholders and 

decision processes, including business organization, public institutions, and policy and 

regulatory frameworks. 

Most relevant, however, is the research in sectoral systems of innovation.  

Ultimately, technologies provide societal functions, such as transportation.  The need for 

a social function is satisfied, not by a single technology or industry, but rather by a 
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complex system of social, technical, and institutional elements, including supply 

networks; related industries; physical infrastructures and maintenance industries; 

government, industry, and research institutions; markets; and society (Unruh, 2000; 

Geels, 2005b).  How such a system is defined – its elements, its boundaries, and its 

linkages and interactions with the external environment – varies greatly among 

researchers.  Unruh (2000) refers to a techno-institutional complex (TIC); Nelson and 

Winter (1977) refer to a technological regime; Geels (2002) defines a socio-technical 

regime embedded in a socio-technical landscape.  For the purpose of discussing 

evolutionary theory in general, I will refer to the socio-technical system and its 

environment.  The socio-technical system is composed of heterogeneous elements of 

three general types: physical artifacts; human actors and organizations; and a complex set 

of constraints on human interactions with each other and with the physical elements in 

the system (Geels, 2004).  Various authors refer to these constraints as institutions or 

rules, which include formal constraints such as legislation, economic rules, and legal 

contracts and informal constraints such as social conventions, moral codes, and shared 

knowledge and beliefs.   

2.3 Evolutionary Systems Theory of Innovation 

The evolutionary approach to innovation represents a special class of complex 

systems theories and adds an additional and distinctive feature: “its adoption of a 

behavioural theory of the firm and its focus upon learning processes and adaptive 

behavior” (Metcalfe, 1994).  Thus, the shift away from static analysis to dynamic 

processes – from ‘being’ to ‘becoming’ – and from a macro to a micro focus is captured 

in evolutionary approaches.  There is wide variation in the scope and methods found in 
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evolutionary economics, but all focus on the process of economic change which is 

endogenously generated (Witt, 1992; Metcalfe, 1995).  In fact, endogeneity is a central 

hypothesis, and Witt (1992) defines evolution as the self-transformation of a system over 

time.  According to Metcalfe (1995), “evolution means two things: the gradual unfolding 

of phenomena in a cumulative and thus path-dependent way; and quite separately, a 

dynamics of system behaviour which creates change and emerging structure from variety 

in behaviour.” 

Evolutionary economics discards the global objective function, well defined 

choice sets, maximizing behavior, rational choice, and the global production function.  

Instead, it “places emphasis on cognitive dimensions such as beliefs, objectives and 

expectation, in turn affected by previous learning and experience and by the environment 

in which agents act” (Malerba, 2002).  Drawing from Witt (1992), Dosi (1997), Ruttan 

(1997), Metcalfe (1995), and Malerba (2002), the methodological building blocks central 

to an evolutionary approach can be summarized as: 

1) The emphasis on dynamics: becoming, rather than being. 

2) Behavioral, or micro, focus: what agents do, and why. 

3) Imperfect understanding and bounded rationality, broadly defined. 

4) Heterogeneity of agent knowledge, perception, behavior and learning. 

5) Continuous creation of novelty or variety in technologies, products, processes, 
firms and organizations due to the local search for innovation. 

6) Interactions of agents that collectively act as selection mechanisms, reducing 
variety and generating system inertia and continuity, including: 

a) imitation of the practices of other agents; 

b) conservative behavior; 

c) culturally learned interpretation patterns, world views, and paradigms; 
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d) satisficing economic behavior; 

e) market selection. 

7) Aggregate phenomena are emergent properties of non-equilibrium interactions 
and heterogenous learning, and have a ‘metastable nature’, i.e. they persist longer 
than the processes that generate them, but disappear eventually.  

2.3.1 Basic Evolutionary Concepts 

Evolutionary approaches entail three processes based on the biological analogy: 

variation, selection, and retention.  These basic evolutionary concepts are summarized in 

this section.  A more complete discussion is included in section 2.3.2 elaborating the 

characteristics of evolutionary systems models. 

The generation of variety in biological systems is a process of mutation caused by 

random errors in replication.  In evolutionary economics, the generation of variety or 

novelty is the “outcome of human creativity and of the discovery of new possibilities for 

action” (Witt, 1992).  Some researchers have interpreted the biological analogy rather 

literally, asserting that “[v]ariation is driven by stochastic technological breakthroughs” 

(Anderson and Tushman, 1990; Tushman and Rosenkopf, 1992) that result from research 

by “trial and error” (Raven, 2005).7  This interpretation is unnecessarily restrictive and 

inconsistent with the main goal of evolutionary theory to explain endogenous processes.  

In one of the foundational evolutionary works, Nelson and Winter (1977) conceptualize 

innovation as “purposive, but inherently stochastic.”  Metcalfe (1994) asserts that “it is 

central to the evolutionary approach that the creation of diversity is neither blind nor 

                                                 
7 Tushman and Rosenkopf (1992) interpret variation as a blind process driven by chance events (stochastic 
technological breakthroughs), while technological advance resulting from the “puzzle-solving actions of 
many organizations learning-by-doing” is treated as a retention process.  In this research, I interpret 
variation to include all processes that result in new or enhanced products or processes, regardless of 
whether the advance is incremental or ‘radical.’ 
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unbounded.”  Instead, innovative behavior is “intentional and guided” (Metcalfe, 1994) 

which results in trajectories of development.   

Innovation – the accumulation of knowledge and its application to new domains – 

is the result of a fundamental characteristic of the restless capitalist economy: the search 

for profit opportunities and the pursuit of competitive advantage.  Witt (1992) proposes 

two additional motivations for agents to experiment with new technologies: preference 

for novelty and frustration with the status quo.  Preference for novelty explains a basic 

rate of innovation, while frustration explains innovation in response to crises.  It is 

notable that rational choice models cannot explain such emotional motivations as 

frustration.  Witt, therefore, adopts an adaptive aspiration and satisficing model for 

decision-making. 

In biology, selection refers to the Darwinian concept of ‘survival of the fittest.’  In 

evolutionary economics, variations in technologies (products and processes) and 

organizations are selected through social, political, and market mechanisms.  Most 

evolutionary research focuses on market selection and stresses social and political 

selection factors only for ‘non-market’ sectors such as public education and defense.8  

Market selection entails the introduction of technologies and entry of new firms; the 

elimination of unprofitable technologies and firms; and changes in the relative 

importance or market position of surviving technologies and firms.  Selection reduces 

variety, as “competition consumes its own fuel” (Metcalfe, 1994).  Because survival or 

‘fitness’ of a firm or technology is judged relative to the average of its rivals (the 

                                                 
8 See, for example, Nelson and Winter (1977) and Dosi (1997). 
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population), evolutionary systems do not guarantee optimal outcomes; any optimum that 

is achieved is only local (Witt, 1992; Metcalfe, 1994).   

However, markets represent only one mode of selection.  According to Metcalfe 

(1995), “[a]ny framework in which agents interact in order to choose between competing 

patterns of behaviour has selective properties.”  Of particular note are selection 

environments internal to innovating organizations.  Agents learn from experience, 

anticipate future market selection, and use this information to choose from a vast array of 

alternative research projects and approaches.  Thus technological variation and selection 

are linked. 

In biological systems, the final evolutionary process of retention is accomplished 

through the replication of successful variations through reproduction.  In economic 

systems, retention occurs through imitative and conservative behavior; the development 

of routines; culturally learned interpretation patterns; world views and paradigms.  Most 

evolutionary theories of innovation treat retention as a cognitive process within the minds 

of researchers and engineers (Raven, 2005).  For example, Nelson and Winter (1977) 

describe a broadly defined ‘technological regime’ as a cognitive concept “relating to 

technicians’ beliefs about what is feasible or at least worth attempting.”  Co-evolutionary 

processes result in a core technological framework or paradigm which is shared by the 

entire community of technological and economic actors (Kemp, 1994) and which guides 

innovation.  In this vein, the majority of evolutionary research focuses on routines, rules 

of thumb, and search heuristics within firms which lead to the establishment and 

maintenance of technological trajectories.  This rather limited view of retention is a major 

criticism addressed by the QEM and MLP approaches. 



 

43 

As discussed in the following sections on learning and cumulative effects, 

evolutionary systems are inherently path dependent and unpredictable, which is at odds 

with deterministic tools used for policy analysis.  “…evolutionary economic processes 

are essentially open ended and unpredictable.” (Metcalfe, 1995, p. 28)  According to 

Ruttan (1997), the evolutionary approach has not “become a productive source of 

empirical research,” possibly because simulation methodology “lends itself to the easy 

proliferation of plausible results.  At present, the evolutionary approach must be regarded 

as a ‘point of view’ rather than as a theory.”  Dosi (1997), however, disagrees, asserting 

that “an interpretation of technological dynamics which significantly relaxes the 

commitments to equilibrium, rationality and inter-agent homogeneity is straightforwardly 

born by the current evidence, and is also beginning to generate formalized theoretical 

tales.”  Nonetheless, taking an evolutionary perspective requires that one abandon the 

ideas of determinacy and prediction because “[t]heories of evolution, whether biological 

or social, are not predictive ones – they are retrospective and historical” (Holling,1994). 

2.3.2 Characteristics of Evolutionary Systems Models 

The characteristics of systems models introduced in section 2.2.3 have 

implications unique to evolutionary models of innovation.  A discussion of these 

characteristics therefore illuminates the distinctive features of evolutionary theory and the 

development of technological paradigms and trajectories. 

2.3.2.1 Multi-Directional Links Among Phases 

Since the stages of technical change are connected by multidirectional links at a 

given point in time, the classic phases of development – invention or basic research; 

innovation or applied research and product development; and diffusion – are not clearly 
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defined and cannot be isolated for analysis.  Notably, feedback from the diffusion process 

(selection) is one of the critical elements in technology development, and therefore, 

innovation and diffusion are “inseparable and mutually reinforcing” (Metcalfe, 1994; see 

also Metcalfe, 1995).   

Nelson and Winter (1977) point out that many uncertainties with a new 

innovation “cannot be resolved until an innovation actually has been tried in practice.”  

When first introduced, new technologies are often poorly developed in terms of 

performance (Kemp, 1992) and sometimes even functional definition, such that 

determining users’ needs and improving the technology are critical to diffusion.  This is 

supported by Freeman’s (1982) finding that successful innovations are frequently 

characterized by greater interaction with and attention to feedback from users. 

In addition, information from the selection environment feeds back into the 

variation process by influencing the kinds of research that firms believe are likely to be 

profitable in the future.  In this process of ex ante selection, entrepreneurs attempt to 

anticipate future market selection and use such forecasts as a factor in selecting from a 

large number of possible research choices.  According to Dosi (1982), the “economic and 

social environment affects technological development in two ways, first selecting the 

‘direction of mutation’ (i.e. selecting the technological paradigm) and then selecting 

among mutations, in a more darwinian manner (i.e. the ex post selection among 

‘schumpeterian’ trials and errors).”   

However, recognizing the importance of feedbacks in the innovative process and 

the indistinct nature of the stages of research and development does not mean that phase 

characterizations are not useful.  In section 2.5.1 I review the industry life-cycle model 
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which describes how industries, products, and markets mature over time.  This model 

provides a guide for studying the dynamics of established technological regimes and for 

evaluating the changing relative role of various agents and learning mechanisms as a 

technology and industry evolve.  This evaluation should allow the identification of 

opportunities to introduce alternative technologies. 

2.3.2.2 Complex Firm and Industry Interactions 

The unit of analysis used in innovation studies ranges from an individual 

assembly line, to a complete production department within a firm, to an entire firm, entire 

industry, entire sector, or entire national system.  A central theme of the evolutionary 

systems view is that the “innovation activities of firms involve a wider range of other 

institutions supplying the knowledge and skills which underpin the efforts of firms” 

(Metcalfe, 1994).  Systems models recognize that innovation and production are 

influenced by complex interactions within and between firms in the industry, with 

supporting industries, and with seemingly unrelated industries.  Malerba (2002) describes 

innovation as a ‘collective process.’  Therefore, systems models stress the importance of 

networks, both formal and informal, between firms and all institutions producing 

knowledge, skills and artifacts within the technology system, as well as user-supplier 

interactions.  According to Freeman (1996), “[f]eedback loops and interdependencies can 

be important at every stage, so that networking and cooperation between research 

institutions and firms should be continuously encouraged.”  As a result, we cannot study 

a single product, firm, or industry in isolation. 

According to Abernathy and Utterback (1978), examining a single product type 

and firm is “of little use in understanding innovation.  Technological change causes these 
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terms to change their meaning, and the very shape of the production process is altered.”  

In addition, management of operations and management of innovation within a firm or 

industry are intrinsically linked and co-evolve with product and process changes.  Whipp 

and Clark (1986) define strategic innovation as “changes in technology and forms of 

work organization at all levels, which includes boards of directors or the various 

interfaces between a company and its suppliers or potential customers.”  In their analysis 

of a British auto manufacturer’s innovation project in the 1970s, the authors include the 

overall organization of the firm, and the processes and politics involved in order to 

analyze the firm’s capacity to undertake design and innovation.  

The unit of analysis for a technology must include all the characteristics of the 

manufacturing unit that produced it, which may include several firms, often not even in 

the same industry, depending on the level of diversification or fragmentation.  This idea 

traces back to Rosenberg (1963), who recognized the interdependence of apparently 

unassociated industries in 19th century manufacturing.  “For many analytical purposes it 

is necessary to group firms together on the basis of some features of the commodity as a 

final product; but we cannot properly appraise important aspects of technological 

developments… until we give up the Marshallian concept of an industry as the focal 

point of our attention and analysis.  These developments may be understood more 

effectively in terms of certain functional processes which cut entirely across industrial 

lines...”   

Rosenberg points out that products from apparently disparate industries can share 

fundamental production technologies and processes, and therefore suffer from common 

problems and limiting conditions.  This ‘technological convergence’ creates synergies 
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that are of critical importance for the innovation and diffusion of production technologies 

and techniques.  Innovations that are developed as a solution for a narrow range of 

problems in a single industry can be generalized for wide ranging applications.  Raven 

(2005) finds that applications of new technology in multiple regimes help explain the 

development of niches for bioenergy technologies.  Mowery and Rosenberg (1998, p. 5) 

assert that the inter-sectoral flow of new technologies is a “fundamental characteristic of 

20th-century innovation in the U.S. economy.”   

Further, while emerging and growing industries are characterized by high rates of 

internal innovation, mature industries may experience significant productivity growth 

resulting from external sources of innovation.  Under these conditions, the degree of 

vertical integration in an industry has significant implications for a firm’s ability to 

appropriate new production technologies.9   

It is significant to note that the interactions among firms and industries are 

multidirectional.  According to Rosenberg, advances in machine tools used for the 

manufacture of firearms, sewing machines, and bicycles, made possible the rise of the 

automobile industry.  As the industry developed, solutions to problems in automobile 

design were incorporated into and improved the performance of the specialized machine 

tools used in their manufacture.  These improvements were then generalized into and 

again revolutionized the machine tool industry. 

                                                 
9 According to Rosenberg, in the late 1900s, increasing vertical disintegration of individual industries was 
accompanied by technological convergence in a larger group of industries.  He attributes the high degree of 
machinery specialization to the combination of vertical disintegration and technological convergence.  
Stigler (1951) theorized that vertical disintegration is generally a feature of growing industries, while 
increasing vertical integration is typical of declining industries.  At the birth of a new industry, firms must 
produce their own input materials, design and possibly manufacture their own specialized equipment, and 
recruit skilled labor.  When the young industry attains a certain size, it becomes profitable for other firms to 
assume and become specialists in these tasks.  As the industry declines, it can no longer support 
independent firms for these functions and surviving firms must re-assume them. 
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2.3.2.3 Complex Interactions with the Environment 

A growing body of innovation research expands on the role of the environment in 

which innovation occurs, and the constant interplay among technology, society, and 

institutions.  According to Smith (2000), systems approaches to innovation are founded 

on the idea that innovation cannot be understood purely in terms of independent decision-

making at the level of the individual, firm, or industry.  Rather, innovation involves 

complex interactions between these entities and their environment.  Therefore, large 

technological systems that are a product of decades of innovative efforts cannot be 

understood by analyzing the existing set of technological artifacts, but must be viewed 

“as complex systems of technologies embedded in a powerful conditioning social context 

of public and private institutions” (Unruh, 2000). 

Evolutionary systems theories of innovation follow Schumpeter’s definition of 

innovation as the creation of value by exploiting change, but expand the notion of what 

change is relevant.  Innovation occurs when entrepreneurs exploit a new invention or 

changes in any element of the socio-technical system or its environment.  In addition to 

scientific and technical knowledge, such change may include relative prices, 

demographic makeup, consumer tastes and practices, cultural meanings, physical and 

institutional infrastructures, regulatory frameworks, and even geopolitics (Dijkema et al., 

2006).  For example, successful energy technologies and policies simultaneously must 

satisfy multiple and often conflicting economic, environmental, and security goals.  

While technologically feasible alternatives to conventional oil currently do exist, their 

development and diffusion is impeded by economic (too costly), social (too inconvenient, 

too disruptive, too dangerous, etc.), and environmental (too polluting) considerations 
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(Holdren, 2006).  Cowan and Hultén (1996) identify six “extraordinary events” that could 

facilitate the transition from internal combustion engines: (1) a crisis in the technology, 

(2) regulations, (3) technological breakthroughs, (4) changes in consumer preferences, (5) 

niche markets, and (6) new scientific results.  I interpret these events, along with shifts in 

social values, as innovation opportunities that could be exploited by entrepreneurs. 

Further, innovation creates ripples of change throughout the elements of the 

socio-technical system and its environment.  For example, the introduction of a new 

technology can alter consumers’ expectations and even social structures, as witnessed by 

the automobile in the first half of the last century and the computer in the latter half.  In 

the words of Schon (1967), “…technological innovation belongs to us less than we 

belong to it.  It has demands and effects of its own on the nature and structure of 

corporations, industries, government-industry relations, and the values and norms that 

make up our idea of ourselves and of progress.  We do not remain the same throughout.”  

Success changes the game (Gharjedaghi, 2006).  Thus, technological innovation and 

changes in the socio-technical system and its environment are co-evolutionary processes, 

marked by positive feedbacks, associated path-dependent behavior, and potential lock-in 

(Unruh, 2000). 

The multi-directional linkages between the environment and the process of 

innovation are a major issue in the quasi-evolutionary model and the multi-level 

perspective discussed in section 2.4.  As these approaches point out, most evolutionary 

studies include interactions with the environment in a very limited fashion.  Economic 

and social factors are incorporated as ‘focusing devices’ which entrepreneurs factor into 

the process of determining which technical problems and solution spaces to pursue – i.e. 
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the direction of variation (Rosenberg, 1976; Dosi, 1982).  Little to no attention is paid to 

the more co-evolutionary interactions involved in aligning product designs and 

behavioral rules – engineering perspectives, production processes, usage norms, cultural 

meanings, and world views. 

Note that with co-evolutionary models of innovation, it is impossible to attribute 

simple linear causality.  Changing environmental conditions provide opportunities and 

focus innovation in particular directions at a given time, but at the same time, the 

introduction, diffusion, and use of new technologies alter the environment.  This is 

particularly true for a transition to a new socio-technological paradigm.  This inability to 

attribute causality is discussed further in section 2.3.2.6.   

2.3.2.4 Knowledge and Learning 

In the latest economic thinking, the ability to continuously generate knew 

knowledge through learning is the ultimate determinant of a firm’s success and a nation’s 

long-run prospects; knowledge is the new competitive resource (Rycroft and Kash, 1999; 

Dijkemaa et al., 2006).  Evolutionary approaches in economics and innovation are 

fundamentally behavioral theories that focus on learning processes and adaptation 

(Metcalfe, 1994).  Dosi (1982, 1988) describes innovation as the process of solving 

technological problems using information drawn from previous experience and formal 

(codified) knowledge as well as tacit (uncodified) capabilities of the entrepreneurs.  The 

current state of a particular technology can be considered as a multidimensional frontier 

that represents the current trade-offs among technological and economic factors (Dosi, 

1982).   Problem solving activity along the current trajectory can be represented by the 

search for changes in the trade-offs among the technological and economic variables that 
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the entrepreneurs consider relevant.  Since the entrepreneurs determine what variables 

are relevant, they define the search space based on their knowledge and interpretation of 

the technical problems and possibilities, economic realities, user needs, and social 

constraints. 

Dosi uses the term “technological paradigm” to encompass the definition of the 

relevant problems as well as the set of procedures and specific knowledge required for 

their solution.  According to Metcalfe (1994), “The concept of a paradigmatic framework 

for a technology also provides a natural unit of analysis for the technology policy maker 

in terms of the knowledge base, theories, facts and concepts, which define the technology 

and the institutions in which its development is taking place.”  Following Dosi (1988), a 

knowledge base is the set of information inputs, knowledge, and capabilities that 

inventors or entrepreneurs draw on when looking for innovative solutions to problems.  A 

knowledge base has a distinct character along a continuum from tacit and specific to 

public and universal.   Tacit knowledge and capabilities are ill defined, uncodified, 

unpublished and difficult to express.  However, it is to some degree shared by, and 

therefore specific to, inventors and entrepreneurs with common experience. 

Pavitt (1984) provides empirical evidence that the knowledge base is a key 

determinant of the direction of innovation, finding that the innovative choices of 

industrial firms in the U.K are constrained by their “existing range of knowledge.”  In 

addition, an organization’s ability to assimilate and exploit new knowledge from external 

institutions, such as advances in basic science or competitors’ production processes, is a 

critical determinant of the rate of innovation.  Cohen and Levinthal (1989, 1990) assert 

that this “absorptive capacity” is a function of the existing knowledge base, as well as 
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investments in research and development (R&D).  This assertion is supported by 

Lieberman (1984), who finds statistical evidence that R&D expenditures increase the 

learning rate in the chemical industry.10   

2.3.2.5 Cumulative Processes 

Let us return to Dosi’s (1982, 1988) description of innovation as the process of 

solving technological problems, where the direction of innovation depends on what 

specific problems are addressed (the search space) and what information is used for their 

solution.  The determination of the search space and techniques for solution is influenced 

by two internal forces (Rosenberg, 1963).  The first is a reactive force, driven by the 

technology itself, as advances “tend to create their own future problems, which compel 

further modification and revision.”  The second is self-reinforcing and relates to the 

origination and expansion of the entrepreneur’s knowledge base.  These forces, which I 

discuss in turn, are cumulative processes that result in path dependence and potential 

lock-in.  As a result, the history of a technology matters and the details of the 

development path and diffusion process for each technology are unique. 

The reactive force arises because “complex technologies create internal 

compulsions and pressures which, in turn, initiate exploratory activity in particular 

directions” (Rosenberg (1963).  In any production process, the component elements vary 

in their ability to exceed current performance (e.g. capacity, quality, cost), and one 

particular element may therefore be considered the limiting factor of production.  This 

element may be related to any aspect of firm or industry operations, including supply 

                                                 
10 Lieberman (1984) finds a statistically significant correlation between the reduction in product price and 
both cumulative output and an interaction term for R&D investments and cumulative output, while 
controlling for other sources of cost reductions. 
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lines, input materials, product design, machinery, plant layout, firm organization, 

distribution, marketing, etc.  Innovation efforts are commonly directed at improving this 

limiting factor.  However, such an improvement may exceed the capacity of the next 

most restrictive factor, possibly even causing a production failure, thereby stimulating 

further innovations.  Consequently, the direction of technical change depends on the 

technology’s cumulative history. 

The concept of the limiting factor of production can be generalized to the entire 

socio-technical system, and the factors may include economic (e.g. input prices), political 

(e.g. regulations), social (e.g. cultural norms), and environmental conditions.  These 

focusing devices help entrepreneurs select a subset of technological problems from a 

large set of possible directions for development (Rosenberg, 1976).  For example, 

congestion could be considered a limiting factor for the automobile market.  Although 

commuters could switch to alternative modes of mass transit, those inside the automotive 

industry would be motivated to maintain the existing dominance of personal vehicles.  

One possible solution is so-called “intelligent transportation,” where vehicle spacing and 

speed are automatically controlled. 

The viewpoint of the agents is of particular significance in this example.  Those 

inside the mass transit industry see congestion as an imperative to develop bus or rail 

innovations.  Those in the information technology industry see an opportunity for 

telecommuting innovations such as telecommuting centers, satellite broadband, or web-

based teleconferencing.  This brings us to consideration of how the entrepreneur 

determines not only what problems on which to focus but also the solution space – the 

applicable scientific principles, material properties, and technological options. 
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As asserted in the previous section, the entrepreneur determines the search space 

and solution techniques based on his existing knowledge and skills.  Since technological 

innovation and changes in the socio-technical system and its environment are co-

evolutionary processes, these factors are determined by the socio-technical history.  As a 

technological regime develops, industry organizations arise and academic disciplines 

emerge.  Such organizations create self-sustaining networks, develop standard 

approaches, and train ‘like-minded’ professionals (Unruh, 2000).  Unions and user groups 

arise, as do trade and enthusiast publications.  The perspectives of these organizations 

become an integral part of the knowledge base and technological framework shared by an 

entire community of technological actors.  These groups reinforce expectations and 

influence the political process.  Eventually, a technological system becomes an integral 

part of daily life, leading to the emergence of behavioral norms, customs and rituals. 

Since the entrepreneurs’ skills, knowledge base, and social view are a product of 

their experience, the socio-technical system, and its environment, the search space is to 

some extent circumscribed by the existing technological paradigm.  Except perhaps in 

early in a technology’s life-cycle, innovation seldom consists of a radical breakthrough, 

but rather results from the synthesis of numerous minor advances (Sahal, 1981).  Often, a 

standard design may emerge that persists for decades while innovation continues 

incrementally.  This overall configuration of the technology remains relatively 

unchanged, serving as a technological ‘guide-post’ that points in the “general direction of 

technical advance” and partially determines the boundaries of further development 

(Sahal, 1981).  Thus, the state of the technology and its history determine both the 

industry’s perceived needs and the tools available for change.  As a result, innovation 
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follows a particular technological trajectory: a pattern of solution of selected 

technological problems, based on selected scientific principles and on selected material 

technologies.   

For the most part, these innovative choices are made within firms and are 

constrained by their existing range of experience and knowledge.  As a result, “technical 

change is largely a cumulative process specific to firms” (Pavitt, 1984). With investments 

in innovation and experience in production, the entrepreneur continues to develop the 

technology and his capabilities along the existing technological trajectory.  According to 

Rosenberg (1963), “in technological change…one thing often leads to another – not in a 

strictly deterministic sense, but in the more modest sense that doing some things 

successfully creates a capacity for doing other things.”  In addition, firms and research 

organizations develop a corporate culture including search heuristics, rules of thumb, and 

standard operating procedures based on past activities, successes and failures. 

Gharjedaghi (2006) identifies three strategic behaviors of firms that maintain the existing 

trajectory.  Firms are likely to imitate the strategies of the most successful firms, stick 

with their own past strategies if they were successful (inertia), and may possibly take 

their past strategy to a greater extreme (sub-optimization), believing it will solve new 

problems that arise.  The forces behind imitation, inertia, and sub-optimization are the 

result of economic as well as institutional factors.  For example, the firm may have 

accumulated large investments in specialized equipment and expertise that makes moving 

in new directions expensive and time consuming.  This is especially true in mature 

industries where efforts have been focused on process innovations; productivity and 

flexibility are often at odds (Abernathy, 1978). 
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Of course, the technological trajectory is not entirely self-determined.  Rosenberg 

(1994) refers to the sequence of technological development as a “‘soft determinism,’ in 

which one historical event did not rigidly prescribe certain subsequent technological 

developments, but at least made sequences of technological improvements in one 

direction easier.”  As discussed, economic, political, social, and environmental factors 

serve to focus innovative activity in a particular direction at any one time.  However, 

these factors often stimulate progress along an existing technological trajectory, as when 

intelligent transportation systems are proposed as a solution to congestion.  The 

accumulation of knowledge, artifacts, and societal experience with the predominating 

technology tend to “lock” society and industry into the existing technological paradigm.  

According to Dosi (1982), radical shifts along new technological directions “emerge 

either in relation to new opportunities opened-up by scientific developments or to the 

increasing difficulty in going forward on a given technological direction” for 

technological, economic, or other reasons. Thus a shift of paradigm may be by design 

(learning and unlearning) or out of frustration (Gharjedaghi, 2006). Note also that the 

focusing factors and difficulty going forward actually may be due to success of the 

existing technological paradigm, which has altered elements of the socio-technical 

system and its environment and possibly posed unforeseen problems as it expanded in 

scale and scope.  Thus cumulative processes may also overcome system lock-in by 

forcing a shift in paradigm, either in terms of our understanding of the nature of reality 

(philosophy), our analytical and technological approach, or both (Gharjedaghi, 2006). 
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2.3.2.6 Increasing Complexity 

The increasing complexity exhibited by evolutionary systems models derives 

from two sources: the continual generation of variety (a distinctive feature of 

evolutionary systems) and the co-evolution of technology, supporting industries and 

organizations, society, and behavioral rules, i.e., the socio-technical system and its 

environment.  Evolutionary models of innovation therefore demonstrate increasing 

complexity in any and possibly all of the elements of the system, including the product; 

its manufacture, sale and use; markets; and the process of technological innovation.  

However, evolutionary systems involve both positive and negative feedbacks, and 

selection processes reduce both the variety of products and the number of firms in an 

industry as a dominant design emerges.  For example, Simons (1995) and Klepper and 

Simons (1997, 2005) find evidence that the ‘shakeout’ dynamic that reduces the number 

of firms in an emerging industry is largely due to a process of continual technological 

change.  In mature markets, the introduction of a new competing innovation can also 

begin a new process of ‘creative destruction’ that decreases the market for the established 

technology, the number of firms producing it, and eventually possibly eliminating the 

industry altogether. 

How this last phase occurs for complex socio-technical systems is exactly the 

question addressed in this research.  In the foregoing sections, I have discussed the 

complexity of firm interactions with other firms, other industries, research institutions, 

suppliers, users and the firm’s socio-economic environment.  These interactions make it 

difficult to attribute linear causality, and make such relationships less meaningful 

(Rycroft and Kash, 1999).  However, the increasing complexity of the product itself, its 
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production process, and the environment in which innovation occurs has a host of 

implications regarding the process and sources of innovation, as well as the outcome of 

market selection. 

In general, a complex product or system is composed of many interconnected 

parts, resulting in a whole that is complicated and difficult to understand.  According to 

Rycroft and Kash (2002), “[c]omplex technologies are those that cannot be understood in 

detail by an individual expert, and cannot be precisely communicated among experts 

across time and distance.”  Hodbay (1998) uses the term ‘complex’ to “reflect the number 

of customised components, the breadth of knowledge and skills required and the degree 

of new knowledge involved in production,” and defines complex products and systems as 

“high cost, engineering-intensive products, systems, networks and constructs.”  Hodbay 

is concerned with a specific class of products that are manufactured in small batches or as 

“one-of-a-kind” goods, and does not consider the automobile to be ‘complex’.  I argue, 

however, that his definition does apply to automotive technology. 

Consider that today’s automobile consists of multiple subsystems – powertrain, 

body, interior, emission control, cabin environmental control, navigation, stability, safety, 

etc. – each of which requires specialized engineering expertise. Further, the interaction of 

these subsystems can result in unexpected behavior, such that the integration of 

subsystem designs is also a specialized task.  No single engineer has complete detailed 

knowledge in all of these areas.  Therefore, no single individual is capable of undertaking 

innovation in all areas of automotive design.  Building on Rycroft and Kash (2002), I 

define a complex technology or system as one that consists of many, interacting and 

interdependent subsystems, the behavior of which cannot be predicted by isolated 
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analysis of any one subsystem, and the whole of which cannot be understood in detail by 

an individual expert nor precisely communicated among experts across time and distance. 

The (increasing) complexity of a technology, its production process, and its 

production and use systems has significant implications for those trying to influence 

innovation.  Rycroft and Kash (1999) describe the development of technologies and their 

manufacturing processes as a progression from craft production of a simple technology, 

where innovation is undertaken by individuals; through mass production of intermediate 

technologies, where innovation is undertaken by in-house R&D units; to what the 

authors’ call ‘synthetic production’ of complex technologies, where innovation occurs 

through organization.  Rycroft and Kash define ‘innovation by synthesis’ as “creating 

new and enhanced technological products and processes with previously unattained 

performance by combining components, knowledge, and capabilities in ways that deliver 

synergism.”   

According to the authors, “[a]ll complex technologies manifest a process of 

coevolution between the technologies and the organizational networks that produce and 

use them.  Embedded in these organizational networks is a capacity for creativity and 

innovation that in earlier times was provided by inventors and entrepreneurs like Edison 

and Ford.” Therefore, successful innovating organizations are networks that facilitate 

rapid learning and purposefully organize to “learn to learn.”  In these organizations, 

teams of experts from every commercialization activity, including suppliers and users, 

work concurrently to innovate new technologies.  Complexity of product and production 

process means that components and subsystems are “synthesized by widely dispersed, 
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rapidly evolving, and often obscure organizations.”  Thus, the focus and targets for 

technology analysts, strategists, and policy makers become difficult to identify. 

Increasing complexity means that production and use systems are increasingly 

nonlinear, and the process of innovation is altered by emphasizing continuous learning 

and adaptation, celebrating speed to market rather than efficiency, and shifting key 

decision-making roles to groups rather than individuals.  Furthermore, according to 

Tushman and Rosenkopf (1992), the more complex the product, the greater role for non-

technical factors in influencing technological evolution, and the “less likely the selection 

process reflects economic efficiency.”  

2.4 Technological Transitions 

Much of evolutionary theory is concerned with innovation within existing 

technological regimes and the forces that reinforce technological trajectories and regime 

stability.  Although this stability is dynamic, it resists radical change and impedes the 

introduction and diffusion of alternative technologies.  In general, evolutionary research 

provides only suggestions of how new trajectories and paradigms emerge.  Most describe 

two factors that provide new opportunities for ‘radical’ change:  1) scientific or 

technological breakthroughs and 2) difficulty moving forward on the current trajectory.  

These difficulties include looming theoretical limits (real or perceived); increasing 

marginal costs of improvements in the current technology; problems posed by the 

increasing scale or scope of the existing paradigm; and economic or institutional factors. 

While the bulk of research in evolutionary economics has neglected a full 

exploration of the emergence and development of new trajectories, two strands of 

research specifically target these transitions: the quasi-evolutionary model (QEM) and the 



 

61 

multi-level perspective (MLP).  Therefore, this research addresses the core question of 

how radical technologies emerge, compete, and gain momentum despite the barriers and 

myopia presented by the existing technological system (Schot et al., 1994).  The QEM 

and the MLP arose due to dissatisfaction with the description of the sociological 

dimensions of technological regimes found in most evolutionary theories of technological 

progress (Schot, 1992; Kemp, 1994).  Therefore, this body of research has combined 

evolutionary theory with sociological and historical co-evolutionary models.  Because of 

its focus on managing transitions, it has also built on constructive technology assessment, 

which holds that “during the course of technological development, choices are constantly 

being made about the form, the function, and the use of that technology and, 

consequently, that technological development can be steered to a certain extent” (Schot, 

1992). 

Sections 2.4.1 and 2.4.2 review the literature on the quasi-evolutionary and multi-

level perspective theories of technological transitions.  Section 2.4.3 summarizes the 

assertions of these two bodies of theory regarding the role of niches in the development 

and diffusion of new technologies, or what I have called the niche hypothesis.  Section 

2.4.4 then raises some theoretical issues with QE theory and the niche hypothesis that 

give rise to the set of research questions posed in chapter 1. 

2.4.1 The Quasi-Evolutionary Model 

The quasi-evolutionary (QE) literature identifies three main criticisms of 

‘mainstream’ evolutionary theory that arise from an inadequate description of the 

sociological dimensions of technology.  To some extent, this critique describes errors of 

emphasis and depth rather than errors of omission.  This section describes these 
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deficiencies in evolutionary theory, the elements of the QE model that seek to rectify 

these deficiencies, and the QE description of technological transition.  

2.4.1.1 Elements of the Quasi-Evolutionary Model 

According to the QE literature, evolutionary theory fails to adequately account for 

the sociological dimensions of technology as it relates to regime stability (retention 

mechanisms), the selection environment, and the linkage between variation and the 

selection environment.  First, evolutionary theory stresses the importance of a core 

technological framework which encompasses the shared engineering beliefs and 

expectations of the community of technological and economic actors involved in 

innovation (see sections 2.3.2.4 and 2.3.2.5).  This framework forms the basis for 

competition and guides the search for improvements in process efficiency and product 

performance.  Thus evolutionary theory conceptualizes the technological paradigm or 

regime, which serves as a retention mechanism, as a cognitive concept that relates to 

technologists perceptions regarding the relevant problems and the solution spaces worth 

pursuing (Nelson and Winter, 1977).  While QE theory acknowledges the importance of 

shared engineering beliefs, it asserts that “there is a clear socioeconomic dimension 

involved in the stability of search activities and the patterns of technological change” 

(Kemp, 1994).  

QE theory therefore re-conceptualizes retention as a process of embedding that is 

more in line with the co-evolution of a techno-institutional complex described by Unruh 

(2000).  Innovation choices depend “not just on the prevailing interpretative framework 

of engineers,” but also on the embedding of technologies in “engineering practices, 

production plants and organizational routines,” as well as the embedding of products in 
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consumption and usage patterns and in supporting and complimentary systems (Kemp et 

al., 1998).  Thus, while QE theory uses the term ‘regime’ first introduced by Nelson and 

Winter (1977), it redefines the technological regime as “the rule-set or grammar 

embedded in a complex of engineering practices, production process technologies, 

product characteristics, skills and procedures, ways of handling relevant artifacts and 

persons, ways of defining problems – all of them embedded in institutions and 

infrastructures” (Rip and Kemp, 1998, p. 338).  The term regime is used in a sense 

similar to that of a political or regulatory regime in that it refers to rules as a set of 

commands and requirements and also as roles and practices that guide the research 

activities of firms, the solution spaces explored, and the strategies of actors.  The focused 

nature of socio-technical change is “accounted for in large part by the embedding of 

existing technologies in broader technical systems, in production practices and routines, 

consumption patterns, engineering and management belief systems, and cultural values – 

much more than it is by engineering imagination” (Kemp et al., 1998).   

Second, while evolutionary theory recognizes that the selection environment 

includes social and political mechanisms, these interactions generally are discussed only 

in non-market sectors such as government services.  Thus, market interactions are the 

main focus for both ex ante and ex post selection (see section 2.3.2.1).  However, social 

and political conditions are included peripherally as ‘focusing devices’ in ex ante 

selection; entrepreneurs’ perceptions of these conditions may focus attention to particular 

research directions (problems and solution spaces) that are likely to be profitable at a 

given time (see sections 2.3.2.3 and 2.3.2.5). 
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The view of the selection environment in QE is closer to Metcalfe’s (1995) 

assertion that “[a]ny framework in which agents interact in order to choose between 

competing patterns of behaviour has selective properties.”  Therefore, the selection 

environment includes institutional and geographical factors as well as economic markets 

(Schot, 1992).  New technologies must become embedded in existing socio-technical 

system, making non-market interactions a significant factor in adoption and diffusion.  

Thus, “[t]he selection environment is defined by the capital outlays, physical 

infrastructure, supplier-user linkages, production routines, skills, technical standards, 

government rules, norms, people’s preferences and beliefs” (Kemp, 1994).  These 

existing institutions, linkages, and patterns of behavior are determined by the socio-

technical history and are therefore aligned with existing technologies.  According to 

Kemp (1994), “[t]he key problem for new technologies to become incorporated into the 

socioeconomic system is that of compatibility… New technologies that can easily be 

embedded in the production system and people’s ways of life will diffuse more rapidly 

than technologies which require the replacement of capital goods, a new infrastructure, 

different skills, new ideas about production and consumption, and regulatory changes.”   

However, the embedding of a new technology alters the environment such that 

technology and the wider socioeconomic system co-evolve in a process of mutual 

adaptation.  This brings us to QE’s third and most significant criticism: evolutionary 

theory of technical change lacks a complete understanding of the coupling between 

variation and selection processes.  As discussed above, evolutionary theory fails to 

adequately account for the influence of social factors on variation via ex ante selection.  

In addition, evolutionary theory neglects how the introduction of new technology changes 
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the selection environment through the process of embedding.  To realize successful 

design, ‘heterogeneous engineers’ must be involved in overcoming technical, economic, 

and social obstacles.   As a result, they often must design elements of the environment in 

which the technology is marketed, sold, and used – i.e. the selection environment (Schot, 

1992).  As a result, social, political, and economic factors are embedded in technology 

development, and successful variations change the selection environment.  As a 

technology comes into wider use, new institutions arise and old ones adapt.  Consumer 

tastes, lifestyles, and habits also adapt.  As user feedback is incorporated into product 

improvement, new functions emerge and the technology and consumer tastes co-evolve.  

While the selection environment has a certain momentum that tends to block some 

variations and encourage others, it can be altered by the introduction and embedding of 

new technology.  Therefore, the distinguishing characteristic of the QE model is its focus 

on “the way variation and selection processes are partly independent and yet coupled” by 

the regime (Schot et al., 1994). 

This coupling occurs through ex ante selection, but also through interactions 

involving institutional linkages that QE theory calls the ‘technological nexus.’  The 

active, boundary-spanning nexus role is carried out by a broad range of agents who link 

selection and variation by translating information from both realms; shaping interactions; 

and harmonizing social and market needs with the results of scientific and technological 

research.  A number of actors within and external to firms shape the process of variation 

either through the direct formulation of research objectives and search heuristics or by 

attempting to influence the process from the outside (e.g., government regulators and 

environmental activists).  However, actors serving in the nexus role translate the 
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requirements of the selection environment into objectives for technological development 

and also impose the requirements of technology on the selection environment.  These 

activities result in a learning process that occurs simultaneously in firms and in the 

environment (Schot, 1992). 

QE theory asserts that the co-evolutionary nature of technology and the socio-

economic environment in which it is produced and used results in regime stability and 

gives rise to trajectories of technological development.  According to Kemp (1994), “the 

dominance of particular trajectories is related to the ‘dynamic scale and learning effects’ 

from which prevailing technologies have benefited and the adaptation of the ‘selection 

environment’ to the old technological regime” (Kemp, 1994).  Thus, cumulative learning 

effects and alteration of the selection environment via the coupling of variation and 

selection together serve as a retention mechanism.  

2.4.1.2 Quasi-Evolutionary Theory of Transitions 

While co-evolutionary forces lead to stability in technological regimes, this 

stability is dynamic.  Innovation continues along the current technological trajectory, to 

some extent constrained by the regime as described above.  Elzen et al. (2003) refer to 

these incremental improvements within the existing regime as ‘regime optimization.’  On 

the other hand, ‘regime renewal’ refers to radical innovations that depart from the 

existing trajectory and require a change in the architecture and rules of the existing 

regime.  The distinguishing feature of regime renewal is that it requires considerable 

change in “the behavior of various actors in relation to various relevant technologies” 

(Elzen et al., 2003).  For example, these changes may include new interpretation of the 

function of technology, new usage norms, and new forms of ownership.  While 
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incremental innovations in regime optimization may accumulate to yield significant 

improvement in system function, regime renewal has much greater potential to yield 

societal benefits.  The question then arises as to how radical innovations emerge and 

diffuse despite the inertia presented by regime stability.   

Much innovation research has asserted that radical innovations depend on the 

opening of new technological and economic opportunities by new scientific insights or 

advances in engineering and material technology.  However, novelty may emerge due to 

pressing technological needs that arise from bottlenecks in development due to the 

growth in technological systems, from pervasive shifts in consumer preferences, or from 

external crises such as war which produce new demands or create resource scarcities.  In 

addition, looming theoretical limits to current technology, real or perceived, may 

stimulate the search for innovation along a new trajectory (Kemp, 1994).   

Schot et al. (1994) list two possible routes for new technologies to compete and 

gain momentum despite the “myopia of the existing technological system.”  First, the 

existing system may lose viability due to a changing selection environment which 

presents new challenges that the existing technology cannot meet or can only meet at 

excessive marginal cost.  Second, new technologies may “use a niche that protects them 

against too harsh selection and provides space to grow.”  A niche can be defined as a 

distinct application domain, small in scale and scope, characterized by specific functional 

requirements (Hoogma et al., 2002; Raven, 2005).  Because of the special requirements 

of the niche, users are willing to accept higher cost or lower performance on standard 
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functionalities compared to existing products available in established mass markets.11  

This first route, which I will refer to as ‘regime instability,’ remains relatively unexplored 

within the QE literature.  Meanwhile, a predominant theme found in the QE literature is 

the critical function of early market niches in the development and eventual diffusion of 

radical technologies.  The remainder of this section describes the basic tenets of this 

‘niche hypothesis.’ 

According to Rip and Kemp (1998, p. 338), novelty arises within existing regimes 

“starting at the micro-level of local practices.”  These radical technologies are relatively 

immature at the time of introduction, require improvement, and are only able to compete 

in specialized markets or market niches.  Kemp (1994) asserts that “market niches may 

be an important stepping stone for the further evolution of radically new energy 

technologies.  It helps suppliers better to understand user needs, to identify and overcome 

critical problems, to achieve cost reductions in mass production, and, perhaps most 

important, to build a constituency behind the new product to sustain a new technological 

trajectory.”  In reviewing the historical evidence of transitions, Kemp et al. (1998) 

conclude: “Apart from demonstrating the viability of a new technology and providing 

financial means for further development, niches helped to build a constituency behind a 

new technology, and to set in motion interactive learning processes and institutional 

adaptations – in management, organization and the institutional context – that are all-

important for the wider diffusion and development of the new technology.” 

A brief review of Strategic Niche Management (SNM), a policy recommendation 

that emerges from the QE literature, helps illuminate the assumptions regarding processes 
                                                 
11 In contrast to niche markets, mass markets are understood to be large in scale and scope.  Thus, products 
provide functions with wide appeal and demand is sufficient to allow high volume production.  
Competition in mass markets is based mainly on cost and quality. 
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that occur within niches.  Kemp et al. (1998) define SNM as “the creation, development, 

and controlled phase-out of protected spaces for the development and use of promising 

technologies by means of experimentation.”  SNM seeks to create linkages between users 

and other actors to stimulate learning and facilitate institutional adaptation. Critical to this 

process is the alignment of agent expectations; the articulation of technological 

characteristics, policies, cultural and psychological meanings, the market (users and their 

needs), and production and maintenance needs; and the formation of networks.  The four 

aims of SNM are: 

1) To articulate the changes in technology and institutional framework necessary for 

economic success; 

2) To learn more about the technical and economic feasibility and environmental 

benefits of the technology; 

3) To stimulate further development of the technology, achieve cost efficiencies in 

mass production, promote development of complementary technologies and skills, 

and stimulate changes in social organization important to wider diffusion; and  

4) To build a constituency behind the technology. 

Niches, then, serve as temporary protected spaces that allow the technology to be 

developed in terms of user needs and to achieve wider use through learning processes and 

adaptations in the selection environment.  The technology may then be adapted to new 

niches which are defined by new geographical regions or new applications.  Thus, a 

technological regime shift is conceptualized as a process of niche proliferation or niche 

branching.  “Eventually, [the protected] technology might compete head-on with the 
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dominant technological option in a part of its market or markets” (Hoogma et al., 2002, p. 

4). 

While the QE conversation concentrates on niche development as an independent 

process, there are two notable exceptions to which we will return later.  First, Kemp 

(1994) comments that “[o]nly in a few respects did radically new products constitute a 

radical break with the past, which suggests that the term ‘radical’ is somewhat 

misleading.  Radical innovations often combined the new with the old (or even combined 

older technologies) and often rightly so because this helped the product to survive the 

initial harsh market selection and establish itself in the market place.”  Thus, new 

paradigms emerge and develop within the previous one.  Second, Kemp et al. (1998) 

refer in passing to the importance of niche-regime interactions and developing regime 

instability: “The processes of niche formation occur against the backdrop of existing 

technological regimes… The success of niche formation is, therefore, linked to structural 

problems, shifts and changes within the existing regime(s).  The ultimate fate of 

processes of niche formation depends as much on successful processes within the niche 

as on changes outside the niche: it is the coincidence of both developments that gives rise 

to niche development patterns.”   

2.4.2 The Multi-level Perspective 

The multi-level perspective (MLP) compliments the QE model and arose from a 

similar perspective of the sociological shortcomings of evolutionary theory.  The MLP 

integrates the findings from various literatures, including evolutionary theories, the 

sociology of technology, and the history of technology, into a set of analytical concepts to 

study the complex dynamics of socio-technical change.  In the MLP, technological 
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transitions are seen as evolutionary processes, where evolution is both a process of 

variation, selection and retention, and also a process of unfolding and reconfiguration.  

This follows from Metcalfe (1995), who states that “evolution means two things: the 

gradual unfolding of phenomena in a cumulative and thus path-dependent way; and quite 

separately, a dynamics of system behaviour which creates change and emerging structure 

from variety in behaviour.” 

The MLP builds on the concept from actor-network theory that technical systems 

are configurations or networks of linked heterogeneous elements (technical and social) 

where the linkages among elements provide stability.  However, the MLP distinguishes 

among three types of elements: systems, consisting of resources and material aspects; 

actors involved in maintaining and changing the system; and the rules which guide 

actors’ perceptions and behavior.  The concept of a regime in the MLP then closely 

follows the QE model but the term ‘socio-technical regime’ is used to refer to the “semi-

coherent set of rules carried by different social groups.”  The MLP identifies three types 

of rules: cognitive, normative, and formal/regulative.12  Rules provide structure for and 

coordinate human interactions yet leave room for perception and strategic action (Geels, 

2004).  The alignment of rules and the linkage of elements results in system stability and 

trajectories of development.  Thus in a regime, the rules of all relevant social groups 

(users, engineers, producers, policy-makers, etc.) are aligned with a particular 

technological system or artifact (e.g. personal automobiles) (Raven, 2005).  The regime 

thus serves as a selection and a retention mechanism (Geels, 2002).   

                                                 
12 The MLP distinguishes rules from institutions, the latter referring specifically to public organizations. 
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Despite this stability, the system remains dynamic and interactions between 

elements are multidirectional.  As illustrated in Figure 2-1, while rules shape human 

action, they are also carried and reproduced by humans and can therefore be changed by 

human action.  Similarly, artifacts are created by human action but also shape further 

action.  Rules are both embedded in and shaped by artifacts.  This multidirectional 

interaction allows for co-evolution and endogenous change. 

 

Figure 2-1 Interaction of System Elements 
(reproduced from Geels, 2004) 

To analyze technological transitions, the MLP (Geels, 2002, 2004, 2005a and 

2005b) conceptualizes a nested hierarchy of three heuristic levels: (1) the meso-level 

consists of socio-technical regimes, where cognitive rules are embedded widely in the 

knowledge base, engineering practices, corporate structures, manufacturing processes, 

product characteristics, etc.; (2) the micro-level consists of technological niches; and (3) 

the macro-level is formed by the socio-technical landscape.  The socio-technical 

landscape provides an external structure or context, containing the material aspect of 

society (e.g., cities, factories, and highways) and heterogeneous factors such as oil prices, 
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economic growth, wars, cultural values, and environmental problems.  The transition to a 

new system involves crucial interactions between the socio-technical regime (the meso-

level) and the two other levels.  

Regimes are embedded within the landscape which undergoes slow change and 

provides ‘gradients’ for the technological trajectories of regimes.  As in the QE model, 

innovation within the regime is incremental.  Radical innovations emerge in niches in the 

context of the specific problems, rules, and capabilities of the existing regimes and 

landscapes.  These innovations require protection because they “have relatively low 

technical performance, are often cumbersome and expensive” (Geels, 2002).  Niches 

insulate the novelty from the selection environment represented by the regime and 

provide space for learning processes (learning-by-doing, learning-by-using, and learning-

by-interacting) and for building social networks, such as supply chains and user-producer 

relationships.   

Thus, the MLP conceptualizes innovation as a process involving three phases 

(Geels, 2005a).  First, novelties emerge in within the context of the existing regime, in 

part due to landscape developments.  Entrepreneurs experiment with designs in an 

attempt to determine users’ requirements, and a variety of technical forms may compete 

with each other.  Second, the novelty is adopted in niche markets which serve as 

incubators.  Within the niche market, the innovation develops a technological trajectory 

and improves due to learning processes, while users explore new functionalities.  This 

phase results in the articulation of user preferences and the development of a dominant 

design.  Third, the innovation diffuses into wider markets and competes with the 

established regime. 
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However, successfully breaking out of niche markets depends not only on 

processes within the niche but also on developments within the regime and landscape.  

Technological transitions therefore occur when simultaneous processes on multiple 

dimensions, both technological and social, align and reinforce each other (Geels, 2002, 

2004, 2005a).  In particular, when the activities of social groups are ‘mis-matched,’ the 

resulting tension provides windows of opportunity for radical innovations to break into 

wider markets. Geels (2004) identifies five sources of tension and misalignment: 

1) Changes at the landscape level that put pressure on the existing regime and cause 

internal restructuring. 

2) Technical problems internal to the existing regime, such as bottlenecks, 

diminishing returns to innovative activities, and looming (real or perceived) 

theoretical limits. 

3) Negative externalities of existing regime. 

4) Changing user preferences due to negative externalities, cultural changes, changes 

in relative prices, policies, or endogenous change. 

5) Strategic and competitive games between firms. 

Two patterns of transition emerge from the interplay between the levels in the 

MLP.  In the ‘technological substitution route:’  

…the existing sociotechnical regime is initially relatively stable, characterised by 
incremental developments. Radical innovations emerge in niches… 
Breakthrough of the novelty in mainstream markets may occur when the novelty 
has acquired enough internal momentum, and when landscape developments put 
pressure on the existing regime… This may lead to creative destruction and the 
downfall of established firms. The breakthrough triggers all kinds of adaptations 
and transformations in the regime, leading to an ‘era of ferment.’  Hence, this 
route has a technology push character. Once a new sociotechnical regime has 
been formed, the dynamic shifts back to incremental change (Geels, 2004). 

In the ‘wider transformation route:’  
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…the regime becomes unstable and opens up in an early phase, because of 
persistent problems or landscape changes. Simultaneous changes occur on 
multiple regime dimensions, e.g., policy, user preference, technology, 
infrastructure, culture, etc. The loosening up of the existing regime stimulates 
actors to experiment with other technical options. There is a prolonged period of 
experimentation, and strategic maneuvering. Such a period of heating up is 
eventually followed by a period of ‘cooling down,’ i.e., narrowing down the 
number of technical options. A particular technical option may come to be seen 
as ‘universal,’ push other options out of the market and acquire dominance. This 
is complemented by the creation of a new sociotechnical regime (Geels, 2004). 

Geels (2002) clearly identifies niche accumulation as the primary mechanism 

leading to wider diffusion of radical technologies. “The step from niche to regime-level 

does not occur at once, but gradually, as radical innovations are used in subsequent 

application domains or market niches.”  However, the penetration of new niches is not 

necessarily easy, and involves “experimentation, learning processes, adjustments and 

reconfigurations” (Geels, 2002).  If the specific characteristics of the innovative 

technology lead to the articulation of new functionalities, the novelty may penetrate new 

application domains without competition from the existing technology.  In a stable 

regime, this process of ‘niche branching’ allows the technology to develop within niches 

where the new functionality is especially suited and ‘below the surface’ of the existing 

regime.  In the absence of new functionalities, the novelty must conquer new niches by 

battling head-on with existing technology.  In an unstable regime, problems in the regime 

or landscape present opportunities for the new technology to serve as a solution, 

effectively creating new niches.  New functionalities may be articulated early in the 

process as regime actors search for new options and niche actors present their innovation 

as a solution.  Thus, the novelty may link up with and reinforce processes in many 

dimensions, leading to transformation and co-evolution early on (Raven, 2005).   
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In the case of unstable regimes, Geels (2002) identifies a second mechanism of 

diffusion: technological add-on and hybridization.  In this process, new technologies are 

merged with existing ones to solve particular problems by forming a symbiosis.  Thus, 

the two technologies are used in conjunction with as few regime modifications as 

possible.  However, the hybrid technology may gradually evolve into a new form defined 

by the functional capabilities of the novelty.  This is mechanism is consistent with a more 

general ‘fit-stretch’ pattern often found in the co-evolution of a new technology’s form 

and function as illustrated in Figure 2-2.  The fit-stretch pattern satisfies the issue of 

compatibility raised by Kemp (1994; see section 2.4.1.1).  New technologies are likely to 

diffuse more rapidly when both form and function fit closely with the existing regime.  

However, continuous development eventually leads to the articulation of new 

functionalities and new technical designs tailored specifically to these functions. 

 

Figure 2-2: Fit-Stretch Pattern in the Co-evolution of Form and Function 
(reproduced from Geels, 2005a) 
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Geels (2002) identifies a third and final mechanism of diffusion: “new 

technologies may break out of niches by riding along with growth in particular markets.”  

Though Geels does not identify the forces behind such growth, I will posit that growth of 

a particular niche may be due to landscape development or endogenous changes in 

consumer tastes and preferences. 

In summary, the distinct contribution of the MLP is the inclusion of two factors in 

the transition to new socio-technical regimes: 1) the socio-technical landscape as a 

constraint and an opportunity; and 1) the stability of the existing regime and resulting 

niche-regime dynamics.  The MLP conceptualizes technological transitions as gradual 

reconfigurations involving a series of adaptations that take place “on all dimensions of 

the socio-technical regime (e.g. markets, user groups and user practices, technologies, 

production networks, policies)” Geels (2002).  Three primary factors contribute to the 

wide diffusion of a new, radical, technology: 1) niche markets that act as incubators; 2) 

‘niche-accumulation;’ and 3) circumstances at the regime or landscape level that create 

windows of opportunity.  The MLP has identified two transition routes distinguished by 

the initial stability or instability of the existing regime.  Within each route, the transition 

path is also defined by articulation of new functionalities for the novelty or the lack 

thereof.   

2.4.3 The Niche Hypothesis 

Both the QEM and MLP stress the role of niches – distinct application domains 

that are small in scale and scope – in the emergence, development, and diffusion of 

radical innovations.  The transition to a new technological regime, defined and stabilized 

by a set of rules shaping the interactions of social and technical elements, is described as 
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a process of niche branching, niche proliferation, and niche accumulation.  Based on the 

QE literature, I identify five fundamental assertions of the role of niches in regime 

transitions, which I will call the niche hypothesis: 

6) Within the niche, manufacturers learn about users’ needs and users learn about 

product performance through “learning-by-interacting.” 

7) Manufacturers improve the technology in terms of those needs and achieve lower 

costs through “learning-by-doing.” 

8) As a result of these learning processes, the new technology becomes embedded in 

a new rule set which reflects the adaptation of institutions.  Both the technology 

and the system in which it is produced and used are altered in this co-evolutionary 

process linking variation and selection which arises from the interaction of agents 

in the technological nexus. 

9) Growth of niche markets, niche branching, or niche proliferation allows 

manufacturers to reduce costs through economies of scale. 

10) These changes facilitate diffusion into wider markets. 

The MLP and the work of Raven (2005) add regime dynamics and instability as a 

significant factor in the growth (or lack of growth) of niches.  Instability may arise from 

three sources: 

4) Success of niche technology. 

5) External forces – changes at the landscape level – which: 

a. influence the direction and rate of variation by altering regime agents’ 

perceptions and expectations or altering the resources available for variation; 

or  
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b. alter the selection environment by altering prices or consumers’ preferences. 

6) Internal regime forces – difficulties with the expanding scale or scope of the 

existing regime or achievement of technological or economic limits of existing 

technology – which lead regime actors to view the new technology as a solution. 

2.4.4 Theoretical Issues 

The niche hypothesis has led to a specific policy recommendation within the QE 

literature called strategic niche management (SNM).  The literature has thus shifted focus 

to SNM, which I believe leaves important aspects of the QE theory of innovation under-

developed.  Section 1.3.4 listed four related theoretical issues with the QEM and the 

niche hypothesis which I repeat here.   

First, the focus on the coupling between variation and selection leads to an 

exclusive emphasis on learning-by-doing (learning curve effects) and 

learningbyinteracting with users.  This yields an incomplete description of the innovative 

process behind product and process improvements that are critical for wide diffusion. 

Second, the technological nexus that links variation and selection is discussed as a 

key aspect of the process of embedding, yet remains an underdeveloped concept.  Who 

are the relevant agents?  How do new networks form and how are they sustained?  Are 

elements of existing networks important?  If so, how are they altered?   

Third, the focus on a single dominant regime neglects interactions with other 

existing regimes which may help or hinder market growth (Raven, 2005).  New 

technologies may address problems in multiple regimes or be based on fundamental 

innovations with applications that cut across regimes.  This relates back to the first and 

second issues, in that the process of innovation is more complex than is reflected in QE 
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theory.  It involves multiple learning mechanisms and networks that tie the innovators to 

a relevant knowledge base.  These networks may link seemingly unrelated industries, 

particularly in the early phases of a technology’s life cycle. 

Fourth, as Raven (2005) notes, the focus on the operation of niches in competition 

with a stable regime results in a simplistic description of niche-regime interaction.  It 

neglects the dynamic processes within stable regimes (incremental change) that may 

either hinder or assist the diffusion of the new technology.  In particular, it neglects 

regime response to internal and external forces of change which cause instability.  Such 

challenges may be interpreted as opportunities for innovation, either for change within 

the regime or for radical new technologies that lead to a complete regime transition.  

While the MLP begins to address regime dynamics, it only does so in relation to the 

presentation of opportunities for innovations that fall outside the regime.  The 

consideration of change within the regime leads to the last issue.  

The dichotomy of regime optimization (incremental change) versus renewal 

(radical change and transition) is overly simplistic for complex technologies.  It places 

policy focus on transformation of the socio-technical regime in its entirety which requires 

a complete alteration of both producer and user interpretation of the technology, its 

function, and the related organizations and rules.  Meanwhile, it discounts innovations 

which make only part(s) of the existing regime obsolete but could still radically reduce 

environmental impacts.  More significantly, it neglects intermediate or transitional 

technologies that may form a bridge to a new regime, such as hybrid and plug-in hybrid 

vehicles as a pathway to full electric or fuel cell vehicles.  In such a transition, only 

part(s) of the regime may be transformed at a given time. This deficiency is interesting, 
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because early works on QE theory highlighted the significance of compatibility issues: 

new technologies that may be easily embedded in the existing production, use, and 

institutional systems will diffuse more rapidly.  According to Kemp (1994), “[o]nly in a 

few respects did radically new products constitute a radical break with the past, which 

suggests that the term ‘radical’ is somewhat misleading.  Radical innovations often 

combined the new with the old (or even combined older technologies) and often rightly 

so because this helped the product to survive the initial harsh market selection and 

establish itself in the market place.”  Thus, transitions can occur as a more gradual 

unfolding and adaptation of the existing regime than the path described by ‘regime 

renewal.’  This suggests that the concept of transition as gradual reconfiguration and the 

mechanism of hybridization introduced by Geels (2002) should be more prominent in the 

formalization of a model of innovation and transition. 

2.5 Additions to Theory 

In order to develop a structured framework for analysis that addresses the 

theoretical issues raised above and allows exploration of the research questions, I draw 

from two additional themes within the evolutionary systems of innovation literature.  

Section 2.5.1 reviews the industry life-cycle model which provides a structure for 

analyzing regime dynamics, specifically the emergence of regimes, the stability of 

existing regimes and innovation within established regimes.  In section 2.5.2, I introduce 

a more complete description of the learning mechanisms involved in innovation that will 

provide the nomenclature for analyzing the learning processes involved in improving the 

performance and cost of early motor vehicles.  I then develop a conceptual framework in 

section 2.6 that will be used to explore the research questions posed in section 1.3.5.  This 
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framework begins with the sectoral system of innovation which focuses more directly on 

the entrepreneurs and the linkages that facilitate learning and innovation.  This provides 

the perspective to analyze innovation processes within and between firms, the both the 

development of the technological nexus, and the learning mechanisms involved in 

transitioning the automobile from niche markets to a regime. Each of these approaches 

used in constructing this framework has its limitations.  However, by integrating them, I 

hope to take advantage of their explanatory power while compensating for their 

shortcomings.  

2.5.1 Industry Life-Cycle Model 

As discussed in section 2.3.2.1, the classic phases of development – invention, 

innovation, product development, and diffusion – are not clearly defined in systems 

models of innovation.  However, a number of researchers have noted general patterns in 

the development of technologies, industries, production processes, and markets.  The 

number of stages of development identified by these researchers varies, as does their 

nomenclature.  This section provides an overview of the concepts found in the literature 

consolidated into four phases: emergent, transitional, specific, and senescent.  While 

development might be more accurately considered along a continuum, the phases 

described here and summarized in Table 2-1 provide a useful structure and vocabulary 

for studying technological progress. 

Let us consider first the early, or emergent, phase of a new technology that begins 

with the first practical application of a new idea.  This phase is characterized by radical 

innovation, flexible production capacity, and the emergence of new firms (Dosi, 1982; 

Freeman, 1996; Utterback and Abernathy, 1975; Abernathy and Utterback, 1978). New 
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knowledge is generated by directed research activities and is largely tacit, existing as 

uncodified knowledge of the entrepreneurs (Grübler et al., 1999a and 1999b; Cowan et 

al., 2004).  At this stage, primary importance must be attributed to the institutions which 

produce and direct the accumulation of knowledge, the existence of risk-taking actors or 

‘product champions’, and the exchange of knowledge among R&D units within firms and 

external research institutions (Dosi, 1982; Kantrow, 1980).  Because no supporting 

industries exist, entrepreneurs must either use off-the-shelf parts and process equipment 

or manufacture their own custom parts and equipment.  Thus, craft production techniques 

and a high degree of vertical integration are typical early in the emergent phase.



 

 

Table 2-1 Phases of Technological Development 

Phase  

Emergent Transitional Specific Senescent 

Innovation Innovation is rapid, product 
oriented and radical. 

Primary importance of risk-
taking product champions. 

Focus on defining users’ 
needs and reducing risk. 

Refinement of users’ needs. 

Focus shifting to production 
cost and product quality. 

Innovation becoming more 
process oriented. 

Innovation is incremental and 
process oriented. 

Innovation stalls. 

Primary Source 
of Innovation 

Interaction with users, 
suppliers, competitors and 
manufacturers of 
complimentary products. 

Spillovers. 

Learning-by-doing. 

Interacting with users and 
suppliers. 

IR&D. 

Interacting with suppliers. 

Learning-by-interacting with 
users. 

Supporting 
Network 

Industry produces its own 
supplies and process 
equipment. 

Emerging support industries 
and institutions. 

Vertical disintegration. 

Complex web of supporting 
and complementary 
industries and institutions. 

Supporting industries unable 
to survive. 

Vertical re-integration. 

Knowledge Base Uncodified knowledge of 
entrepreneurs. 

Institutional knowledge is 
increasingly codified. 

Institutional knowledge of 
sector and supporting 
network, codified in plants, 
capital equipment, and 
operating procedures. 

Institutional knowledge of 
individual firms. 

Production 
System 

Craft Craft → Mass Mass → Synthetic Synthetic 

Product Variety of product 
configurations. 

Competition based on product 
differentiation. 

Emerging dominant design. 

Competition based on product 
differentiation. 

Products proliferate around 
dominant design. 

Competition based on product 
price and quality. 

Products tailored to niche 
markets with special 
requirements or those 
requiring heritage designs. 

Market Niche Growing Established Niche 
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 After the feasibility of the product has been demonstrated it is still unable to 

compete on a cost basis with existing technologies in mainstream markets.  However, it 

may have performance advantages in specific uses which lead to competitive application 

in niche markets.  In fact, Christensen (1997) finds that the very attributes that make 

disruptive technologies uncompetitive in mainstream markets may actually count as 

positive attributes in initial markets.13  Within the niche market, various technical 

approaches and product configurations may be competing.  At this point, there is a great 

deal of uncertainty about the product and its potential market.  Therefore, entrepreneurs 

must interact with suppliers, customers, manufacturers of complementary products, and 

competitors to reduce these uncertainties (Afuah and Utterback, 1997).  Freeman (1982) 

finds that successful attempts at innovation are distinguished by greater attention to the 

education of users, to publicity, to market forecasting and selling, and to the 

understanding of user requirements.  However, Christensen (1997) points out that no one, 

not market researchers or even users, can predict what the early markets and uses for a 

new technology will be.  Rather, through a process of experimentation with real products, 

customers discover these uses at the same time as producers do.  These assertions, drawn 

from empirical observations, are consistent with processes of learning and the mutual 

adaptation of variation and selection described in the niche hypothesis.  Cowan et al. 

(2004) assert that cooperation among firms and geographic clustering are likely to 

enhance innovation during this phase since the transmission of tacit knowledge often 

requires face-to-face contact. 

                                                 
13 Christensen (1997) distinguishes technologies that disrupt or redefine the performance trajectory from 
those that sustain the trajectory. 
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Next, during the transitional phase of a product’s lifecycle, a dominant design 

emerges as consumers’ needs and product features, design, and components become 

standardized.  Innovation slows and technological change becomes incremental and 

focused on cost reduction and quality enhancements, often through process 

improvements.  Firms compete mainly on product differentiation (Afuah and Utterback, 

1997).  Knowledge is codified and technology is largely embodied in production plants, 

equipment and products.  New knowledge is generated primarily through learning-by-

doing and learning-by-using such that and user and supplier interactions are of primary 

importance (Abernathy and Utterback, 1978; Grübler et al., 1999a).  Malerba (1992) 

finds empirical support for these assertions, but also finds that advances in science and 

technology contribute to firms’ efforts at product differentiation.  Technological advances 

still convey temporary monopolistic advantages, and possibly long-run oligopolistic 

positions, which serve as an incentive for further innovation (Dosi, 1982). 

Afuah and Utterback (1997) name a third specific phase where products 

proliferate around the dominant design and even more emphasis is given to process 

innovation.  Knowledge is embodied in capital equipment (process technology) and 

engineering personnel (Abernathy et al., 1983).  There is little product differentiation – 

the product design becomes increasingly standardized – and the industry is primed for the 

next round of innovation.  A new innovation may render the old technology obsolete, 

pushing it into decline, or senescence.   

Abernathy (1978) and Abernathy et al. (1983) refer to the specific phase as 

industry maturity, but note that the evolutionary process is not “self-contained or 

irreversible”.  A product design can be conceptualized as a combination of functional 
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requirements and the product attributes that fulfill them.  Changes in market preferences 

and technological innovations (both internal and external to the industry) can alter the 

relative importance of the product’s parameters and attributes, possibly adding new 

functional requirements.  Changes in market preferences may be due forces outside the 

industry, including changes in the prices or attributes of complementary or substitute 

products, shifts in cultural values, governmental actions, economic or social crises, etc.  

Such interactions with the environment were discussed in section 2.3.2.3.  Firms must 

develop new design concepts through product innovation in order to remain competitive 

in the new market reality.   

Mature firms that have experienced past success may be at a disadvantage at this 

point.  Concentration on productivity is often associated with a decrease in innovative 

flexibility due to capital investments in highly specialized equipment that makes 

retooling expensive and time consuming (Abernathy, 1978).  Radical product innovation 

is disruptive and competence destroying.  In addition, these firms’ past experience shapes 

their current thinking (see sections 2.3.2.4 and 2.3.2.5).  For both cognitive and strategic 

reasons, incumbent firms’ innovative efforts are shaped by their existing customers, and 

they therefore are often slow to develop innovations that appeal to new customers 

(Christensen, 1997; Klepper and Simons, 1997).  Thus, innovations that result in new 

uses for a product by a new market segment provide opportunities for new entrants.  If 

technical progress is rapid, the performance of the new product in serving existing 

functions may eventually provide an opportunity for these new firms to compete with the 

incumbents, possibly leading to the decline of industry leaders.  
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Gharajedaghi (2006) identifies three hierarchical forces of this nature that can 

transform past success into future failure: inertia, sub-optimization, and change of the 

game.  Inertia and sub-optimization were introduced in section 2.3.2.5.  In the third force, 

change of the game, a firm’s past success essentially solves the major historic 

technological challenge and fundamentally changes the nature of the problem – the 

industry has come to the end of the current trajectory.  Because of its triumphant success, 

the incumbent firm may have difficulty seeing or accepting the new direction of 

development.  The end result is that established firms are likely to attempt ‘retrofitting,’ 

altering secondary or component attributes before pursuing fundamental technological 

changes.  Meanwhile, new entrants have the advantage of starting from scratch with 

completely new product designs and process equipment.  However, there is renewed 

uncertainty and risk in new designs as users’ needs and technological solutions are 

redefined.   

Changes in the functional requirements of a product and the resulting round of 

innovations represent a reversal of the process of maturity, or what Abernathy calls a 

phase of ‘de-maturity’.  De-maturity leads to an increase in the variety of products 

available in the market and possibly an increase in the number of firms in the industry.  

This introduces the idea that a product and industry may experience cycles of maturity 

and reinvention, moving between the specific and transitional phases.   Anderson and 

Tushman (1990) propose a cyclic evolutionary model of technological change in which a 

stochastic technological breakthrough initiates an era of innovative ferment which 

generates a variety of product configurations.  Competition among these variations 

culminates in the selection of a single dominant design. The era of ferment is then 
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followed by a period of incremental technical progress which preserves the standard 

architecture until a new innovation initiates another cycle of variation, selection, and 

retention. 

The final or senescent phase of technological development begins when a new 

innovation begins to dominate and the existing technology experiences declining market 

share.  Eventually, the old technology once again finds application only in niche markets 

where it still holds some performance advantage or where heritage design is required.  As 

markets shrink, supporting industries become economically unviable.  Remaining firms 

in the final product industry must begin manufacturing their own parts and become 

vertically integrated.  Innovation slows or stops, is tailored to the needs of niche users, 

and occurs primarily through learningbyinteracting with these users.  Eventually, even 

the remaining firms are unable to survive and the industry ceases to exist. 

2.5.2 Mechanisms of Learning 

Systems models of innovation assert that technical progress is dependent on 

knowledge and learning.  In this section, I identify four mechanisms of learning, each of 

which has a distinct character and knowledge base.  The boundaries of these 

classifications should be interpreted as being rather ‘fuzzy,’ since entrepreneurial 

activities often fall at the boundary or within more than one class (Clarke et al., 2006).  

While all four sources are expected to contribute to the advance of a given technology at 

any point in time, their relative importance may shift as an industry matures.  Various 

researchers’ theories on the relationship between learning mechanisms and industry phase 

are included in the discussion.  Also, the ability of an entrepreneur to learn via any one 

mechanism is expected to depend on efforts in other mechanisms, the depth of all 
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relevant knowledge bases, and on how tightly the entrepreneur is linked into research, 

production, and use networks. 

2.5.2.1 Internal Research and Development 

The distinguishing characteristic of research and development (R&D) is the 

institutionalized, guided search for new knowledge, generally aimed at solving particular 

problems – what Malerba (1992) calls learning by searching.  The goal may be to expand 

fundamental sciences (so called ‘basic research’), apply existing or new scientific 

findings to a technological problem (so called ‘applied research’), to develop original 

products, or improve existing product design or production.  R&D is generally 

systematic, progressing through problem definition, theory development, data acquisition, 

model construction, and bench testing, with results used iteratively to refine the process. 

R&D is undertaken by private firms, government agencies and labs, universities, 

and non-profit organizations.  I use the term ‘internal R&D’ (IR&D) to refer to research 

investments within a single firm or industry, as distinguished from research in other 

firms, institutions and industries (depending on the unit of analysis), which I classify as 

‘spillovers.’ 

Investments in IR&D expand a firm’s internal knowledge base and directly 

produce technological innovations.  In addition, the research effort enhances a firm’s 

ability to identify, assimilate, and exploit knowledge, new findings, and innovations 

developed outside the firm (Cohen and Levinthal, 1989 and 1990).  In other words, 

IR&D develops the firm’s capacity to access and utilize external knowledge bases 

(spillovers), what Cohen and Levinthal call ‘absorptive capacity’. 
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R&D undertaken by research organizations is likely to play the greatest role 

during the emergent phase of technological development when innovations are more 

radical.  During this phase of development, researchers are forging new frontiers, so 

knowledge is largely tacit, residing primarily in human capital.  However, during this 

phase, manufacturers are focused on determining user’s needs and their relative 

preferences for the various product attributes that can meet these functional requirements.  

New firms therefore are likely to delay establishing R&D units until the emergence of a 

dominant design reduces the market risk.14  In such cases, IR&D is expected to contribute 

to incremental product and process innovations later in the product’s life cycle.  With 

complex products such as automobiles, component subsystems may undergo repeated 

cycles of radical innovation.  However, these innovations may originate from IR&D as 

well as from supplier and external R&D.  Thus, with increasing complexity, learning-by-

interacting with suppliers and the exploitation of inter-industry spillovers become 

increasingly important.  This in turn emphasizes the significance of absorptive capacity. 

2.5.2.2 Learning-by-Doing 

According to Rycroft and Kash (1999), U.S. networks that successfully innovate 

complex technologies have emphasized experience over theory.  The concept of learning-

by-doing evolved out of the long held idea that individual performance improves as a 

worker gains experience with a particular task (Argote and Epple 1990).  As individuals 

become more proficient with a task, it seems likely that a manufacturing team would, on 

average, become more productive.  This concept of organizational learning-by-doing can 

be extended to include experience with product designs, manufacturing processes and 

                                                 
14 In some mature ‘science based’ industries, such as pharmaceuticals and biochemicals, established firms 
engage in continuous new product R&D.  In such cases, industry and product maturity cycles do not align. 
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machinery (learning-by-using), and material inputs.  Innovations from learning-by-doing 

include changes in any of these factors, as well as changes in plant layout, firm 

organization, inventory control, and supply and distribution networks and methods.  The 

results of these changes include increased labor and equipment productivity, reduced 

material costs, improved plant capacity or uptime, decreased manufacturing defects, 

improved product quality, and reduced time to market. 

In learning-by-doing, process and product knowledge can be codified in texts, 

databases, operating procedures, and organizational structure and can be embodied in 

production plants, equipment, and products.  However, a significant amount of 

knowledge is still tacit, existing in human capital and organizational culture.  Thus, 

employee turnover and corporate reorganization can account for institutional ‘forgetting’ 

(Argote and Epple, 1990).  

While learning-by-doing is often referred to as moving up the ‘learning curve,’ it 

is important to distinguish between the process of learning-by-doing and the studies that 

provide statistical evidence of the process.  Early researchers recognized that learning-by-

doing could have significant implications for manufacturing as direct-labor personnel 

gained experience performing repetitive assembly-line tasks.  Wright (1936) is generally 

credited as the first to publish findings that per unit manufacturing labor hours decreased 

with cumulative production.  Early applications focused on military applications 

(Alchian, 1963; Rapping, 1965), but thousands of studies in diverse industries have 

examined the relationship between labor productivity, per unit costs, or average costs, 

and cumulative production, capital equipment, or some other measure of experience.  

This relationship, variously termed the learning curve, progress function, or experience 
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curve, has proven to be quite robust.   Dutton and Thomas (1984) review 100 studies and 

find statistical evidence that a doubling in cumulative production is associated, on 

average, with a reduction in production costs to 80% of the initial value (a progress ratio 

of 0.80).   

While experience curves provide a methodologically tractable method of 

modeling endogenous technological change, care must be taken in interpreting these 

statistical studies.  The literature on progress rates demonstrates high variation both 

across and within industries, firms, processes and products (Dutton and Thomas, 1984; 

Hirsch, 1952; Hirsch, 1956; Joskow and Rose, 1985).  According to Dutton and Thomas 

(1984) “progress curves are aggregate empirical descriptions of a process, and they mask 

its underlying dynamics.”  Organizational learning is more complex than individual 

workers improving their manual facility.  Improvements in coordination, scheduling, 

plant organization, production processes, and manufacturing technologies can increase 

labor productivity, decrease production costs, decrease time to market, or improve 

product quality.  Therefore, learning-by-doing encompasses experience gained at all 

levels in the organization, including engineers, managers and even sales and marketing 

staff (Hirsch, 1952; Baloff, 1966; Yelle, 1979; Montgomery and Day, 1985; Argote and 

Epple, 1990).  This learning may or may not be represented in the learning curve, 

depending on how progress and experience are measured.   

At the same time, reductions in both direct-labor hours and unit costs may be 

realized through other factors that are correlated with time and therefore with cumulative 

output, such as increasing capacity, cumulative investments in internal R&D, and 

progress in other industries and basic science (Ghemawat, 1985; Day and Montgomery 
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1983).  Therefore, so-called experience curves may conflate learning effects with 

economies of scale and the influx of new knowledge that is both internally and externally 

generated.15  A number of studies that control for these variables find that measures of 

cumulative experience are still statistically significant (Rapping, 1965; Hirsch, 1952; 

Joskow and Rose, 1985; Lieberman, 1984; Zimmerman, 1982).   

Finally, the blanket application of simple experience curves assumes that all firms 

and industries are capable of attaining the average progress rate without any effort; it 

treats progress as a “free good”.  However, the variation in progress rates found in the 

literature supports the idea that firms must expend resources to exploit knowledge from 

the environment.  In a study of progress in the chemical industry, Leiberman (1984) 

found statistical evidence that R&D expenditures steepened the learning curve.  In 

addition, organizational structure and culture can either thwart or facilitate learning.  

Individual learning is not enough; continuous learning must occur across the 

organization; “the ability to integrate individual learning into system-wide learning” is an 

important factor in failure or success (Rycroft and Kash, 1999).   

As I review the history of the automobile, I will attempt to distinguish among 

learning-by-doing, other sources of knowledge and learning, and economies of scale.  

The influence of organizational structure and corporate structure on learning will be 

examined and changes in these factors will be considered as learning-by-doing. 

                                                 
15 In his foundational research, Wright (1936) attributed the reduction in labor costs to “improvement in 
proficiency of a workman with practice” as well as to economies of scale, such as spreading the tooling and 
set up time over larger production volumes, the opportunity for greater tooling, and the “ability to use less 
skilled labor as more and more tooling and standardization of procedure is introduced.” 
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2.5.2.3 Learning-by-Interacting 

Learning-by-interacting can be classified in two categories: learning from users 

and learning from suppliers.  Learning-by-interacting represents a fundamental aspect of 

the evolutionary dynamic: outcome of selection processes must feed back into the next 

round of variety generation.  While the idea of ‘selection processes’ is typically 

interpreted narrowly as market mechanisms, here were refer to any framework in which 

manufacturers and suppliers or users interact in order to choose between competing 

patterns of behavior (Metcalfe, 1995).   

Feedback from users is particularly important during the emergent phase of a 

product and industry.  During this phase, such feedback establishes the product’s 

functional requirements as well as users’ preferences for product attributes that fulfill 

them.  Even after the emergence of a dominant design, firms must continuously interact 

with users due to the ever-present potential for shifts in user preferences.  However, 

Hayes and Abernathy (1980) caution that over-reliance on market analysis tends to lower 

the overall level of product innovation and leads to imitative rather than innovative 

product design:  

It may be useful to remember that the initial market estimate for computers in 
1945 projected total worldwide sales of only 10 units.  Similarly, even the most 
carefully researched analysis of consumer preferences for gas-guzzling cars in an 
era of gasoline abundance offers little useful guidance to today’s automobile 
manufacturers in making wise product investment decisions.  Customers may 
know what their needs are, but they often define those needs in terms of existing 
products, processes, markets and prices.  Deferring to a market-driven strategy 
without paying attention to its limitations is, quite possibly, opting for customer 
satisfaction and lower risk in the short run at the expense of superior products in 
the future. 

In the earliest phase of development, entrepreneurs are building one-of-a-kind 

prototypes and are likely manufacturing their own parts and equipment, or modifying off-
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the-shelf parts to fit a new use.  As the product and its market evolve, it becomes 

profitable to purchase supplies, parts, and equipment from specialists who can profit from 

economies of scale and in-depth knowledge and experience.  Therefore, mature 

manufacturing industries typically are mutually supported by a large network of suppliers 

of raw materials, parts, subassemblies, process equipment, and complementary products.  

When these specialists support multiple industries, they serve to diffuse knowledge and 

innovation across sectors.  For this reason, firms that follow a strategy of backward 

integration may isolate themselves from the R&D of independent suppliers who now 

view them as a competitor.  Such a strategy may eliminate supplier power and supply 

chain bottlenecks and therefore reduce costs in the short run.  However, it may also slow 

innovation by diverting the company’s resources from its core business and can lock the 

firm into outdated process technology (Hayes and Abernathy, 1980).  At the same time, 

firms should not leave innovation of supplies and process technologies entirely to their 

manufacturers; rather, the interaction must involve information flows in both directions 

with mutually supporting research programs. 

2.5.2.4 Spillovers  

Spillovers refer to innovations that originate outside the sectoral system – in other 

industries, institutions or other countries.  Spillovers may involve either a transfer of 

knowledge (knowledge spillovers) or economic benefits (rent spillovers).  Rent spillovers 

are realized when an innovation in another (supplier) industry results in decreased costs 

or increased quality or performance of the material inputs or the capital equipment used 

by the subject industry.  If the entire cost saving is not passed on to consumers of the 

final good, the manufacturer of that product realizes some profit from the innovation.  In 
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this research, we are primarily concerned with knowledge spillovers which lead to 

technological progress in the automotive industry.   

However, the distinction becomes somewhat problematic with a complex product 

and production system.  Here, the relationship between manufacturers and suppliers is 

dynamic and more complicated than a simple market transaction.  Suppliers may provide 

entire subsystems which may be jointly designed.  Even ‘simple’ improvements in 

material inputs, like new metal alloys, may require iterative problem-solving by the 

supplier and manufacturer to develop product-unique specifications and appropriate 

product designs, manufacturing processes, and machine tools.  Therefore, rent spillovers, 

knowledge spillovers, and learning-by-interacting with users become difficult to 

differentiate. 

Knowledge spillovers from other manufacturing industries, scientific research 

institutions, and technological research institutions outside the sector require that the 

organization be capable of exploiting knowledge from outside the firm.  While some 

externally generated innovations may be directly used in existing products (direct 

spillovers), others (indirect spillovers) must be adapted and existing product designs may 

require modifications.  Thus, manufacturers must be able to identify and synthesize 

promising innovations.  This capacity is facilitated by an active research department and 

effective linkages with the knowledge base beyond the individual firm (Cohen and 

Levinthal, 1989). 

2.6 Analytical Framework and Approach 

The research questions posed in Chapter 1 follow from the assertions of the QEM 

and MLP theories of technological transitions, mainly those regarding the role of niche 
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markets and the technological nexus.  Section 2.4.4 identified a number of shortcomings 

of these theories which could lead to incomplete or flawed conclusions.  Therefore, in 

this section I integrate the main concepts of the QEM and MLP with concepts from the 

additional research reviewed in section 2.5 to construct an analytical framework that 

accounts for these difficulties.  In this manner, I hope to take advantage of the 

explanatory power of each body of research while compensating for any theoretical and 

practical oversights.  This dissertation does not assert that this framework represents a 

new model of innovation or a complete theory of technological transitions.  Rather, this 

conceptual framework provides the structure and vocabulary to trace the historic 

development of motor vehicle technology and its diffusion to mass markets.  However, 

because of the uniqueness of this approach, the findings of this research have important 

implications for the theory of socio-technical transitions. 

Because of the multidirectional interactions among elements in complex systems 

and between the system and its environment, determining the system boundaries for 

study is a difficult task.  While the QEM and MLP take a technological regime as the unit 

of analysis, it is not entirely clear prior to analysis what actors, organizations, and 

artifacts are relevant.  Because the research questions posed in chapter 1 address the 

coupling between variation and selection identified in QE theory, both agents involved in 

supply (innovators and producers) and demand (users) must be considered.  However, the 

research questions also specifically address the innovative processes involved in 

improving the performance and cost of early motor vehicles.  Thus, the analytic 

framework must adequately account for the behavior of entrepreneurs (agents of change) 

and how they gather, interpret, and respond to information from the selection 
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environment.  Therefore, I take the perspective of the entrepreneurs and trace their 

actions and interactions through history.  This viewpoint provides the structure to analyze 

both the development of the technological nexus and the learning mechanisms involved 

in transitioning the automobile from niche to wider markets. 

The conceptual framework used here is based on a systems view where 

“technology is best understood in terms of its functional attributes” (Sahal, 1981).  The 

system of interest provides the societal function of personal transport.  To begin 

constructing this framework, I appeal to the sectoral system of innovation and production 

described by Malerba (2002) as “a set of new and established products for specific uses 

and the set of agents carrying out market and non-market interactions for the creation, 

production and sale of those products.  A sectoral system has a knowledge base, 

technologies, inputs and an existing, emergent and potential demand.  The agents 

composing the sectoral system are organizations and individuals (e.g. consumers, 

entrepreneurs, scientists).”  Within the sectoral system, “[a]gents are characterized by 

specific learning processes, competencies, beliefs, objectives, organizational structures 

and behaviors. They interact through processes of communication, exchange, co-

operation, competition and command, and their interactions are shaped by institutions 

(rules and regulations). Over time, a sectoral system undergoes processes of change and 

transformation through the co-evolution of its various elements.” 

Thus, the personal transportation system of innovation and production includes 

agents – individuals, firms, and units within the firms – that are carrying out market and 

non-market interactions for the innovation, design, production, marketing, sales, service 

(maintenance and repair), purchase, and use of new and established products for the 
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provision of personal transport.  This system, then, includes manufacturers of 

automobiles and automobile parts (direct suppliers) and automobile buyers and users.  In 

addition, it includes physical artifacts – factories, equipment, distribution and service 

facilities, product and parts inventories, and stock in use.  The relationship of the agents 

to the physical artifacts and the interaction of agents are shaped by a set of institutions.  

Institutions in this context are defined to include both organizations and rules (cognitive, 

normative, and regulative).  They include any form of social construct or constraint on 

human interactions, including organizational constructs, such as governmental bodies and 

research and industry organizations; formal constraints, such as legislation, economic 

rules, and legal contracts; and tacit constraints, such as shared perceptions, beliefs, social 

conventions, and moral codes.  In general, I will use the term institutions in this manner, 

resorting to the terms ‘rules’ and ‘organizations’ when the distinction is significant to the 

discussion.  Thus, the sectoral system describes all three of the types of elements found in 

complex systems as identified by Geels (2004) – human actors and organizations, 

physical artifacts, and rules. 

Geels (2004) asserts that the sectoral system of innovation inadequately considers 

users and this criticism falls within the broad problem that evolutionary theories generally 

neglect the sociological aspects of systems of production and innovation.  This can be 

remedied by considering that the sectoral system is an integral part of a larger socio-

technical system with a technological and social history, all of which is embedded in the 

natural environment.  In other words, the sectoral system may be considered a subsystem 

of a larger complex system composed of actors, physical artifacts, and rules.  Therefore, 

this analysis examines the innovative behavior of automobile manufacturers, automotive 
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suppliers, and the manufacturers of precursor technologies embedded in a technical, 

institutional, and ecological complex (TIEC) as illustrated in Figure 2-3.   

 

 

Figure 2-3: The Sectoral System of Production and Innovation 

While some elements of the TIEC are analogous to the socio-technical landscape 

in the MLP, there are important conceptual differences.  Geels (2002) defines the socio-

technical landscape as the macro-level which provides an external structure or context 

that is relatively ‘hard,’ which is to say that the landscape is difficult to influence and that 

change occurs slowly.  It contains the material aspect of society, such as cities, factories, 

and highways, and heterogeneous factors such as oil prices, economic growth, wars, 

cultural values, and environmental problems.  In contrast, the TIEC consists of both 

macro- and meso-level elements.  For example, some of the elements of the landscape 
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here are considered as part of the regime’s system of production or as linked systems, 

such as factories and highways respectively.  Meanwhile, the MLP’s landscape does not 

explicitly account for the interaction between the regime under study and other meso-

level systems.  By incorporating overlapping (linked) systems, the TIEC accounts for 

interactions between regimes that are somewhat independent yet inter-related.  In 

addition, meso-level systems that are not directly linked to the system under study may 

still influence it through diffuse associations within the TIEC.  A fuller discussion should 

clarify these important distinctions between the MLP’s landscape and the TIEC.  

Like the socio-technical landscape in the MLP, the TIEC includes regionally or 

nationally established rules and higher level social constructs (e.g. cultural values and 

culturally learned patterns of behavior), among other elements.  Thus, while the 

observable structure and linkages of the system are described by Figure 2-3, the 

institutions determine the interactions that occur through these links, i.e. the processes of 

communication, exchange, co-operation, competition and command.  In dynamic systems 

modeling terminology, the institutions (rules) are analogous to the equations that 

determine the flow of energy, materials, and information.  While a majority of rules are 

imposed by the TIEC, some rules exist that are specific to the sectoral system such as 

perceptions that are unique to the system’s knowledge base and standard operating 

procedures specific to firms or industries. 

Within the TIEC, the sectoral system is directly linked to supporting industries, 

markets, government and private institutions, and the natural systems that provide raw 

materials and absorb material and energy wastes.  These directly linked systems are in 

turn linked to their own network of supporting industries, institutions, and natural 
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systems, providing an indirect link from these ‘apparently unrelated’ institutions to the 

sectoral system of interest.  For example, the sectoral system has a knowledge base that 

resides with the manufacturers, suppliers, universities, government agencies, trade 

associates, etc., and is networked through the TIEC with knowledge bases in other sectors 

and industries.  As a specific example, consider that members of the Society of 

Automotive Engineers (SAE) may also be members of the American Society of 

Mechanical Engineers (ASME), which includes engineers employed in other sectors and 

industry.  And because all planetary ecological systems (water, air, land) are 

interconnected, there is a direct or indirect link between the sectoral system and the entire 

global ecosystem. 

The network of linkages among systems and the TIEC allows for the feedback 

dynamics that are a crucial characteristic of evolutionary change and accounts for the 

two-way linkage between variation and selection identified in the QEM.  Over time, the 

system undergoes processes of change and transformation through the co-evolution of its 

various elements and elements of the TIEC.  For example, the increasing scale of 

automobile use in the U.S. contributed to local air quality problems by the 1970s.  This 

change in a directly linked ecological system (atmospheric processes) led to a social 

change in the TIEC – increased public concern for the health effects of air pollution.  In 

response, the actions of private and government agents led to the creation of new 

institutions for the control of vehicle emissions: the Clean Air Act and the U.S. 

Environmental Protection Agency (EPA).  In effect, the success of the automobile had 

radically altered the selection environment, and this change led to new requirements for 

innovation.  Actors within the government served the nexus role of interpreting the new 
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demands of the selection environment and imposing them on the variation that occurred 

within firms.  Actors within firms also participated in the nexus through negotiations and 

collaboration with government agents to establish standards and testing procedures. 

Clearly, the structure of the TIEC and its subsystems is dynamic as new 

institutions and linkages emerge and others disappear.  Meanwhile, the overlap in 

systems is only partial.  For example, while the EPA has responsibility for promulgating 

and enforcing vehicle emissions standards, other divisions within the agency fulfill 

functions unrelated to motor vehicles.  At the same time, the EPA has no jurisdiction over 

establishing new vehicle fleet fuel economy standards, though it is tasked with 

establishing the testing methods manufacturers use to measure the  fuel  economy of new 

models to verify compliance with these standards.16 

Further, some elements of the TIEC can influence the sectoral system with no 

apparent feedback in the reverse direction, while other elements have no identifiable 

connections to the sectoral system.  Although there is no traceable link between these 

systems and the sector of interest, they are connected through associations, often diffuse, 

with the TIEC.  These elements can be considered the sector’s environment and are 

somewhat analogous to the socio-technical landscape described by Geels (2002), though 

they are not necessarily all as ‘hard’ and unchangeable, nor are they necessarily at the 

macro-level.  Dynamics within these systems can effect changes within the TIEC that are 

exogenous to the sectoral system, but which exert influence on it.  This dynamic, in 

effect, changes the boundary conditions for the system under study.  For example, U.S. 

                                                 
16 The National Highway Safety Administration is tasked with reviewing and establishing the Corporate 
Average Fuel Economy (CAFE) standards.  The fuel economy of each manufacturer’s new vehicles, 
averaged over its entire sales fleet, must meet or exceed the CAFE standard, or the manufacturer must pay 
fines.  
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involvement in both World Wars – events with no causal links to the transportation sector 

– required, among other things, the re-allocation of productive resources to the war effort.  

The actions of governmental agents with no prior relationship to the transportation 

industry curtailed the production of automobiles.  In addition, automobile manufacturers 

became involved in the design and production of military supplies such as aircraft 

engines, creating new linkages to a formerly independent industry. 

The actions of the agents and the process of change are studied within a cyclic 

framework, illustrated in Figure 2-4, based on the industry life-cycle model described in 

section 2.5.1 and elements of the cyclic model of innovation described by Anderson and 

Tushman (1990).  The sectoral system (technology, industry, firms and markets) 

progresses through four phases: emergent, transitional, specific, and senescent.  The 

general characteristics of these phases are summarized in Table 2-1.  The specific phase 

is characterized by the emergence of a dominant product design, which represents a 

stable description of the functional requirements of the technology and the product 

attributes used to fulfill them.  In addition, the specific phase entails stable production 

processes and organizational forms, which to some extent are embodied in rules.  

Stability in this case is understood to be dynamic, where technological change occurs 

incrementally without causing discontinuous disruptions to production processes and 

usage norms.  
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Figure 2-4 Cyclic Co-evolutionary Framework 

I borrow from Anderson and Tushman (1990) the idea that innovation is cyclic; 

after an industry attains the specific phase, incremental innovation may be punctuated by 

periods of ‘ferment.’  This is represented by movement from the specific phase into a 

new transitional phase.  Anderson and Tushman, however, describe these periods as 

being initiated by stochastic technological breakthroughs (see also Tushman and 

Rosenkopf, 1992).  In the framework presented here, cyclic evolutionary change may be 

triggered by any change in the TIEC – technological, economic, social, institutional, or 

environmental – which may be brought about through co-evolutionary interactions 

between the transportation sector and other elements of the TIEC or by causes entirely 
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exogenous to that sector.  Thus, through the TIEC, the cyclic framework incorporates the 

sociological dimensions of technological change found in the QEM.  Non-technical 

phenomena (social, political, economic) may create instability which presents 

opportunities for innovation or even forms the basis of the innovation of new production 

processes or usage norms.  Changes that trigger innovative ferment may alter the firm’s 

operating environment or result in a redefinition of users’ needs and therefore the 

product’s functional requirements in an evolutionary or discontinuous fashion. 

Entrepreneurs, within or outside the sector’s existing firms, can exploit the change 

in the TIEC to create economic value by modifying existing products and processes or 

developing new ones.  Existing firms in the industry must adapt through changes in their 

products, processes, and organizational structures or face obsolescence and senescence.  

Successful innovation eventually moves the sector toward another specific phase 

awaiting the next round of innovation.  Finally, when an innovation that can fulfill the 

new functional requirements arises outside the existing technological paradigm, the entire 

sector enters a phase of senescence while the success of the innovation gives rise to a new 

sectoral system.  Note that in this framework, the phases of development are a continuum 

with indistinct boundaries and the sector’s characteristics may not align perfectly with 

those listed in Table 2-1.  Further, the system may not attain the characteristics of the 

specific phase as diagramed in Figure 2-4 before another change in the TIEC triggers 

additional innovation and transition. 

In the cyclic model proposed here, changes in the TIEC that trigger a shift to a 

new transitional phase or to the senescent phase can be placed in one of two categories: 

1) new scientific discoveries, technological innovations, or institutional arrangements that 
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arise outside the existing technological paradigm and stimulate the development of 

competing technology; or 2) difficulties advancing along the existing technological 

paradigm due to problems created by its success, its expanding scale and scope, 

theoretical limits, or exogenous factors.  These two classifications are conceptually 

consistent with Geels’ (2005a) ‘technological substitution’ and ‘wider transformation’ 

routes; Gharjedaghi’s (2006) shift of paradigm by design or out of frustration; and Dosi’s 

(1982) theory that radical shifts along new technological directions “emerge either in 

relation to new opportunities opened-up by scientific developments or to the increasing 

difficulty in going forward on a given technological direction” for technological, 

economic, or other reasons.  In both cases, the change in the TIEC may manifest itself in 

one of three ways: 1) through the market via altered consumer preferences for product 

attributes, the price of input materials or waste disposal (i.e. the cost of the factors of 

production), or competition with other technologies; 2) through other institutional 

changes such as taxation or regulation; or 3) through direct environmental effects such as 

the impact of weather patterns on production processes or end use.17 

The cyclic evolutionary model accounts for the increasing complexity of 

products, production systems, and support networks through the cumulative effects of 

innovation through successive cycles.  Also, change may occur at any level – component, 

subsystem, or system – while the other levels remain stable.  For example, with a 

complex technology like the automobile which is produced in a complex industry 

structure, there can be cycles of radical innovation and emerging and senescent markets 

                                                 
17 For the case of the current personal transportation system, most environmental effects are manifested 
through input prices, taxes, and regulation.  If one considers the increasing frequency and severity of 
storms, a case might be made for climate change impacts on end use.  Other sectoral systems, notably 
agriculture and renewable energy systems, obviously have large direct environmental effects which are 
accounted for in the general model. 
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for component technologies, even while the basic architecture of the consumer product 

that supplies personal transport remains unchanged.  However, the functional 

requirements it fulfills and the attributes used to do so may be altered significantly.  

When this is the case, a new dominant design emerges.  Similarly, while the industry 

structure of automobile manufacturers may appear stable over a long period of time, their 

organization, production processes, and interactions may be radically altered, along with 

the network of supporting industries and their relationships with manufacturers.  Thus, 

the network of linkages and the rules guiding these interactions may change while the 

observable structure of the system appears unaltered. 

The phase typology of the cyclic model provides a structure for analyzing the 

emergence of new technologies, the development of a socio-technical regime, and the 

dynamics of niche-regime interactions, while also stressing the central role of stability.  

The QE process of embedding that occurs with movement from the emergent phase to the 

specific phase (and the movement from niche to mass markets) results from the co-

evolution of the technology, the sectoral system, and the TIEC.  As shown in Table 2-1 

and Figure 2-4, this co-evolution results in the emergence of a complex web of 

complimentary and supporting industries, institutions and infrastructure.  Using concepts 

from the MLP, a socio-technical regime is understood to exist when a technology and 

sector have achieved the specific phase and when the stability of that specific phase is 

supported by the alignment of institutions, including rules, and existing physical 

infrastructure with the dominant product design, production processes, and organizational 

forms.  This alignment confers advantages to the existing technology over alternatives.  

Changes in the TIEC result in a misalignment that erodes stability and provides 
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opportunities for an emergent technology to compete with the existing technology, 

possibly pushing it into senescence as described above. 

Alternately, such a misalignment could lead to technological transition within an 

existing regime.  While new functional requirements arising from the misalignment may 

be met by a radically new technology, they may also be met by a new product design that 

emerges within the regime.  What distinguishes transition within the regime from 

transition to a new regime is that internal transition involves a great deal of adaptation 

versus replacement – of firms, industries, knowledge bases, infrastructures and 

institutions.  This is not to say that there is no replacement, as some firms or even entire 

supporting industries may be eliminated by the transition and some new infrastructure 

and institutions may be required, but internal transition is, overall, less disruptive to the 

regime.  The regime and the technology remain identifiable.  Transition to a new regime, 

or ‘regime renewal,’ as described by QE theory, involves the simultaneous and relatively 

abrupt change to both a radically new technology and to a new rule set.  It requires 

considerable change in “the behavior of various actors in relation to various relevant 

technologies,” such as new usage norms and new forms of ownership (Elzen et al., 2003).  

The description of innovation in the cyclic model then allows for the transition to a new 

regime to occur as a gradual unfolding or reconfiguration of the existing regime as 

described by Geels (2002).  In internal transition, a new product design may integrate 

radically new technologies with the existing technology in a manner which allows for 

compatibility with existing rules and infrastructure.  Over a longer time period, this may 

lead to the gradual emergence of a new regime through co-evolutionary adaptations. 
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This analytic framework will be used to review the early history of motor 

vehicles. The analysis will focus on the behavior of entrepreneurs (agents of change) and 

explore the development of the technology, the establishment of the network of agents 

involved in variation (the entrepreneurs) and selection (consumers, policy makers, and 

society at large) and the two-way linkage between the two processes through the 

technological nexus role.  In particular, I will attempt to identify the interactions that 

produced the technological and institutional adaptations that facilitated wider diffusion of 

the automobile.  This includes identifying significant innovations and, using the 

vocabulary introduced in section 2.5.2, exploring the learning processes underlying these 

innovations.  I will also attempt to generally delineate the sector’s phases of development 

based on the emergence of dominant designs, mass markets, and regime stability, 

recognizing that the boundaries of these phases are not necessarily distinct. 
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3.0 Emergence 

Technological innovations which may have market application, lie fallow 

until markets can be identified or created. 

-- J.M. Utterback and W.J. Abernathy, 1975 

 

 

Prior to the development of the motor vehicle, personal transportation was 

provided by what may be considered a socio-technical regime based on draft animals, 

primarily horses.  This regime had existed for thousands of years and was characterized 

by a set of rules and aligned industries for the production, ownership, use, and 

maintenance of vehicles (carts, wagons, carriages, etc.) as well as the breeding, housing, 

care, and training of draft and riding animals.  These rules also included the construction, 

maintenance and usage of urban roads.  The regime consisted of two separate but linked 

systems of production and innovation – vehicles and draft animals – that were 

characterized by incremental progress. 

However, the ancient Greeks first conceived of and experimented with alternative 

sources of power as early as the second or first century BC, thus marking the invention of 

the motor vehicle.  It took some two thousand years for this invention to become an 

innovative product with practical application and economic significance.  This chapter 

reviews the history of the technologies involved in this innovation and includes the 

emergent phase of motor vehicles.  Section 3.1 discusses the development of the 

underlying technologies for motor vehicles powered by steam engines, electricity, and 

gasoline internal combustion engines.  Section 3.2 reviews the historical development of 

manufacturing processes for volume production and standardized interchangeable parts, 

two necessary components of mass production.  Section 3.3 relates the history of 
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automobile manufacturing during the emergent phase, which concludes around the 1900.  

Section 3.4 provides the context of developments in the technical, institutional, and 

ecological complex (TIEC).   

Section 3.5 then synthesizes and analyzes this history and context within the 

framework presented in section 2.6.  I identify two initial niche markets for motor 

vehicles – local urban transport and long-distance pleasure touring.  I determine that 

misalignments in multiple regimes combined with several developments in the TIEC 

explain why the motor vehicle industry emerged in these markets when it did.  I find that 

spillovers and learning-by-doing appear as the primary mechanisms of innovation in a 

cumulative and synthetic process during this era.  I also identify four examples of the 

emerging technological nexus role which links variation and selection.   

3.1 Technologies for Motive Power 

3.1.1 Steam Powered Vehicles 

The concept of steam power dates back to ancient Greece, but it was another 1700 

years before the technological possibilities were fully grasped.  During the Renaissance, 

the revival of interest in classical approaches to understanding the physical world led to 

two significant developments:  the scientific method, a process of discovery relying on 

empirical evidence and mathematics; and a new mechanical philosophy which held that 

all natural phenomena can be explained by physical causes.  In 1680, Sir Isaac Newton 

envisaged a steam carriage and predicted that steam power would revolutionize 

transportation.  The earliest patents on practical applications of the principles behind 

steam power were obtained shortly thereafter, and engines for pumping came into 

widespread use in England during the first half of the 18th century.  James Watt’s 
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revolutionary inventions between 1762 and 1782 brought the application of steam power 

to other uses.  Watt described a steam locomotive in a patent in 1784 but never 

constructed one and, in protection of his patents, actually hindered further development 

of steam engines using high-pressure. 

Nicholas Joseph Cugnot of France constructed the first motorized vehicle in 1769, 

a three-wheeled gun tractor powered by a two-cylinder steam engine.  The vehicle was 

inefficient and slow and Cugnot was driven into exile by the French war ministry which 

had funded the project.  Although Napoleon later brought Cugnot back to France to 

continue his work, the project was never completed.  In 1801 and 1802, Oliver Evans and 

Richard Trevithick built high pressure ‘road engines’ to pull heavy loads on tracks in the 

U.S. and England, respectively.  In 1825, the first public railway opened in England and 

successful steamboats applied Watt engines in both countries early in the century (Nevins 

and Hill, 1954). 

By the 1830s, stationary steam engines were being used to power U.S. threshing 

machines, sawmills, and gristmills.  Portable steam engines that were mounted on wheels 

and could be pulled by horses came into use on farms in the 1850s.  They became 

particularly popular for ‘belt work,’ mainly threshing, in the 1870s, though advertising 

was required to overcome some farmers’ well-founded fears of boiler explosions.  The 

machines were more economical than horses, since they required no veterinary care and 

wood for fuel and sperm oil and beef tallow for lubrication were readily available. 

Experimentation with steam-powered plows began in 1856, but these trial and error 

efforts resulted in machines that were far too heavy for practical use.  Wik (1951) blames 

this failure in part on the absence of steel tools and lack of access to schools of 
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agricultural engineering, though overly ambitious design goals also contributed.  The first 

successful self-propelled, or traction, engine was introduced in 1873 when an Ohio 

manufacturer added a gear attachment to a portable engine.18  The traction engine was 

still dependent on horses for steering until the 1882 introduction of a self-steering model.  

Steam power use in agriculture reached a zenith in 1910 at around 3.6 million 

horsepower.  Manufacturing of steam farm engines peaked at 10,000 in 1913 but was 

essentially abandoned by 1925, having been replaced by the gasoline tractor (Wik, 1951). 

Attempts to use steam engines on U.S. roads initially failed because the vehicles 

were too heavy to negotiate the country’s poor roads.  Sylvester Roper was the first 

American to produce lightweight steam cars, some of which weighed no more than 500 

pounds.  Roper built around ten experimental road steamers using coal-fired boilers 

between 1860 and 1895.  Following Roper’s death in 1896, George Eli Whitney, who had 

worked occasionally in Roper’s shop, built his first steam carriage using kerosene to heat 

the boiler.  Whitney founded the Whitney Motor Wagon Company in 1897 and produced 

and sold a few automobiles weighing about 800 pounds for $1500 and up (May, 1990).   

In 1898, the Stanley brothers, Francis and Freelan, built a 600-pound steamer 

using a lightweight engine built by J.W. Perry & Sons and a light, high-pressure boiler of 

their own design.  Frances won a race in the steamer in October, 1898, and Freelan drove 

one over unpaved rocky roads to the summit of Mount Washington the next year, 

marking the first time an automobile had accomplished that feat.  Encouraged by their 

success and the interested it garnered, the brothers formed the Stanley Brothers Motor 

Carriage Company in late 1898 and began production of 100 steamers.  The company and 
                                                 
18 The steam traction engine, or road locomotive, was used to plow, pull heavy loads, or provide power at a 
chosen location.  It was used extensively in agriculture and is the forerunner of the steam tractor.  Though 
powerful and self-propelled, it was heavy, slow, and poorly maneuverable. 
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the Stanleys’ patents were promptly bought out and the firm was renamed Locomobile.  

The patents were later sold back to the brothers who began building an improved version 

of the steamer in 1901.  A specially built Stanley automobile set a speed record of 127.6 

miles per hour (mph) in 1906.  A year later, the racer became airborne at a speed of 197 

mph, seriously injuring the driver, and the brothers abandoned attempts to set speed 

records (May, 1990).  

More than 100 U.S. manufacturers produced steam cars based on the Stanley-

Locomobile design, though most firms were short-lived.  In 1901, Rollin H. White began 

producing a car based on the Stanley but he incorporated a ‘semi-flash’ boiler and a 

condenser.  White also gradually increased the working steam pressure, nearly doubling it 

by 1910.  White sold 9,122 vehicles before abandoning steam power in 1911.  The 

market for steam-powered automobiles began a rapid decline around 1910, but the 

Stanleys continued to make improvements to their automobiles, shifting from gasoline to 

kerosene, adding weight and strength, and, in 1915, adding a condensing system.  The 

brothers’ reputation allowed them to continue selling several hundred cars per year.  

Many analysts have asserted that the Stanleys could have sold many more vehicles if they 

had shifted to mass production techniques and more aggressive advertising.  However, 

the brothers preferred to stick to traditional craft techniques, believing it produced higher-

quality workmanship, and maintained annual production below 650 cars.  The brothers 

sold the company in 1917, but Stanley steamers were produced until 1924, with 

cumulative production exceeding 14,000 vehicles (May, 1990).   

Steam-powered automobiles were designed to operate using gasoline or kerosene, 

which was widely available at rural general stores in the 1890s.  And in an emergency, 
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steam boilers could use nearly any fuel.  Prior to the incorporation of condensers, steam 

cars also required frequent refills with clean, preferably soft, water, which could be 

obtained in many areas at public watering troughs that were made available for horses.  

Steam engines could easily provide adequate and economical power, provided a wider 

range of operation than electric motors, and were less mechanically complex than 

gasoline internal combustion engines (ICE).  They did not stall, permitted smooth 

transmission of power to the wheels, and were easier to manufacture.  However, the 

boiler required sufficient time to heat up, then required frequent attention during 

operation and posed serious risks of explosion.  The development of the flash boiler 

overcame many of these difficulties, but steam car technology reached a plateau in 

development after 1901, just as the gasoline automobile began rapid improvements 

(Flink, 1970, p. 236).   

Although steam-powered automobiles did not ultimately succeed in the market, 

technological developments in this arena made significant contributions to the 

development of gasoline ICE vehicles.  The designers of the steam traction engine had 

developed basic solutions to the problems presented by transmitting power from the 

engine to the wheels, changing speed, and steering.  In addition, the first gasoline ICE 

engines adopted from steam power the concept of a ‘doubling acting’ cylinder: the 

practice of applying expanding gas to one side of the piston to move it in one direction, 

then applying another charge to the other side to return it to the original position (Nevins 

and Hill, 1954). 
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3.1.2 Electric Powered Vehicles 

Experimentation with electricity traces back at least to the ancient Greeks who 

first observed properties we now call static electricity.  In 1800, Alessandro Volta created 

the first chemical battery, consisting of a pile of discs of copper and zinc separated by 

brine-soaked cardboard.  The first batteries for practical use, developed in the 1830s, used 

a liquid electrolyte which was prone to spillage, making them impractical for portable or 

mobile applications.  Dry cell batteries were invented near the end of the 19th century 

and replaced the liquid electrolyte with a paste.  Both the wet and dry cell batteries were 

permanently drained when the chemical reaction was spent.  In 1859, Gaston Planté 

invented the lead-acid battery, the first battery that could be recharged by reversing the 

current through it.  In 1881, Camille Alphonse Faure developed an improved lead-acid 

battery with better performance that was also easier to produce in quantity.  In the 1880’s, 

massive storage batteries were being used in the first electrical power distribution 

systems to augment  power at peak usage, smooth current output, boost output at remote 

substations, and provide power during outages. 

Public transportation in cities was initially provided by the horse-drawn omnibus 

which was replaced by the horse car.19  These vehicles were limited in their ability to 

negotiate steep grades and contributed to problems with animal wastes, odor, flies and 

disease.  Humans risked infection with tetanus, while close quarters spread infectious 

diseases rapidly among urban horse populations. A major outbreak of an equine 

infectious disease in 1872 proved devastating to most eastern cities.  In the 1880s, 

entrepreneurs experimented with steam-powered cable cars with little success. 

                                                 
19 The horse car looked much like its successor, the cable car, but was pulled by horse. 
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Electrification of urban transport in the U.S. began in 1888 with the installation of 

Frank J. Sprague’s electric streetcar system in Richmond, Virginia.  The system used a 

generator and overhead power distribution, which minimized the energy losses from 

friction that plagued steam-powered cable systems.  Electric streetcar technology diffused 

rapidly, and by 1901, $2 billion had been invested in 15,000 miles of track.  By 1902, 

97% of urban street railway systems were electric.  Because of inherent economies of 

scale, the industry was soon concentrated in the hands of large firms.  These firms were 

often granted long-term or perpetual franchises by local authorities, leading to public 

controversy over control of city streets and government corruption. 

Construction of new lines was terminated abruptly with the Panic of 1907 (see 

section 4.5.1), after which only a few systems were extended.  Though safe and 

comfortable, streetcars required high initial investments and suffered from system 

inflexibility.  While the systems were capable of supporting heavy use, few urban centers 

generated such high traffic.  By 1917, the industry was caught between rising costs and 

rigid fare structures.  Passenger miles reached a peak in 1923 and the industry went into 

decline (Hilton, 1969). 

The earliest U.S. experiments with electric powered personal vehicles were 

undertaken by Andrew L. Riker, who built an electric tricycle in 1884.  He formed the 

Riker Electric Motor Company in 1888 to produce electric motors then established the 

Riker Motor Vehicle Company in 1898 to manufacture electric cars.  William Morrison 

of Des Moines, Iowa built the first successful four-wheeled electric car in the U.S. in 

1891 and drove it on the streets of Chicago the following year (Rae, 1959).  Morrison 

apparently did not pursue commercial production of the vehicle.  The Pope 
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Manufacturing Company, the nation’s largest bicycle manufacturer until 1896, began 

producing both electric and gasoline ICE cars in 1897.  Within two years, Pope had built 

500 electric and 40 gasoline ICE vehicles and was the leading U.S. automobile 

manufacturer. 

In 1894, Henry G. Morris and Pedro G. Salom of Philadelphia produced an 

electric car called the Electrobat consisting of a wooden-wheeled wagon to which masses 

of lead-plate batteries and electric motors were attached.  The two had spent ten years 

developing the vehicle with the support of the Electric Storage Battery Company (ESB).  

In 1895, the Electrobat II was awarded a gold medal for excellence in design by the 

judges of the Chicago Times-Herald race.  However, the Electrobats were not capable of 

the long-range travel required to complete the race.   

Morris and Salom created the Electric Carriage and Wagon Company in 1896 and 

the first experimental vehicles were ready the next year.  However, the two engineers felt 

that untrained drivers were not capable of servicing and maintaining electric vehicles and 

decided instead to operate them as a fleet of public cabs in New York City beginning in 

March, 1897.  By this time, Morris and Salom had relinquished ownership and 

managerial control to executives of the ESB.  Six months later, ESB’s Isaac Rice formed 

the Electric Vehicle Company (EVC) with the intention of expanding the cab service to 

include one hundred vehicles, a monumental task for a nascent industry employing craft 

production methods.  By January, 1899, forty-five electric cabs were in regular service, 

and as many as forty more were leased under long-term contracts (Kirsch, 2000). 

Of the three automobile types, the electric car most closely resembled horse-

drawn vehicles in terms of performance and styling.  It appears that electric vehicle 
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manufacturers conceived of the automobile as a direct replacement for the horse-drawn 

buggy, providing exactly the same functionality but without the disadvantages (feeding 

and stabling requirements, manure production, flies, odor, etc.).  According to Flink 

(1970, p. 238), the Woods Motor Vehicle Company eschewed the production of an 

automobile capable of touring, and instead planned to sell electric cars as “fine carriages 

in all variety of styles” for “gentlemen’s private stables.”   

Battery powered electric vehicles could only travel a short range between 

recharging (initially 20 miles), recharging was time consuming (two to three hours), and 

operation was more expensive than steam and gasoline internal combustion alternatives.  

Batteries yielded poor hill climbing ability and their weight made negotiating mud and 

snow difficult.  In addition, the batteries were unable to withstand the punishment of 

traveling on rough roads and rapidly deteriorated.  However, the electric automobile was 

superior to horse-drawn, steam-driven, and gasoline internal combustion vehicles in 

terms of noise, odor, and ease of operation.  It especially appealed to women who had 

difficulty with shifting gears in the early transmission found in internal combustion cars.  

Around the turn of the century, the general consensus was that electric vehicles were the 

best choice for travel in and around town.  Enthusiasts were optimistic that improvements 

in battery technology and recharging or battery exchange infrastructure would expand 

their use to even enable touring. 

In the summer of 1899, news out of Europe cast a shadow on public optimism 

regarding the electric vehicle.  Electric cab companies in London and Paris announced 

the discontinuation of service, claiming difficulties retaining employees.  Shortly 

afterward, the Automobile Club of France released discouraging initial results from tests 
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of battery endurance.  These reports coincided with efforts in the U.S. by William C. 

Whitney to corner the electric vehicle market.  The financier and transportation magnate 

had cobbled together New York’s Metropolitan Street Railway and had begun 

electrifying the system.  In the process, he had also obtained interest in several of the 

city’s electricity providers.  In 1899, Whitney gained control of both the EVC and its 

parent company, the ESB, through stock purchases on the open market.  Shortly 

afterward, he negotiated the purchase of Pope’s automobile manufacturing enterprises.  

Whitney intended to create an electric vehicle industrial combination that would supply 

electric vehicles to a nationwide organization of regional companies that would in turn 

operate cab fleets and sell electric vehicles to the public.  The new holding company 

formed a manufacturing subsidiary named the Columbia and Electric Vehicle Company 

from the production facilities acquired from Pope and the EVC.  Operating companies 

were established in New York, Atlantic City, Boston, Philadelphia, and Chicago.   

Editorials in a leading trade publication, Horseless Age, scathingly attacked the 

plan, asserting that the formation of a motor vehicle trust was premature and only in the 

interests of the investors.  The magazine attacked both the storage battery and the EVC, 

pointing out the ‘inherent weaknesses’ of the technology and protesting that the cab 

scheme stood in the way of progress.  Other trade publications admonished the editor of 

Horseless Age for misleading its readers with inaccurate information. By January, 1900, 

the magazine’s position on electric vehicles had softened, but public opinion had already 

turned against Whitney’s enterprise which was derisively named the Lead Cab Trust.  

Perhaps most significantly, the EVC in 1899 also purchased and attempted to enforce the 

Selden patent, leading to a number of patent infringement lawsuits against manufacturers 
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of gasoline ICE automobiles that dragged on through 1910 (see section 4.5.2).  According 

to Kirsch (2000, p. 32), the EVC “became synonymous with trust building, stock jobbing, 

financial manipulation, and legal chicanery.” 

Despite the damaging press, the Columbia and Electric Vehicle Company became 

the country’s leading motor vehicle manufacturer, producing around 2,000 electric cabs 

in 1899.  Although this expansion in production was admirable, it fell far short of the 

Lead Cab Trust’s ambitious goal to produce 10,000 electric cabs.  In addition, the 

company failed to unify operations or improve the production process, continuing to rely 

on carriage production techniques.  According to Kirsch (2000), EVC customers were 

reportedly conservative, desiring vehicles that were consistent in appearance with those 

to which they were accustomed – carriages. 

The Lead Cab Trust was plagued by problems regarding finances, production, 

maintenance, and operations.  In December, 1899, an unrelated scheme to monopolize the 

electric vehicle industry led to a speculative bubble that inflated the stock price of the 

EVC then dragged it down when the bubble collapsed.  In addition, the first vehicles put 

on the road apparently had been rushed into service and performed poorly due to design 

defects and improper assembly.  Renters in Boston drove the vehicles carelessly and 

reports of reckless driving were common.  Due to inadequate inspection and 

maintenance, more than half of the vehicles were inoperable after four months of service.  

Operators in Atlantic City experienced similar problems with maintenance, but were also 

plagued by an unreliable electric power grid that led to undercharged batteries.  On some 

occasions, overnight power fluctuations resulted in the batteries discharging into the grid 

to power the town.  Despite high demand for service, the electric cabs failed to show 
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sufficient profits.  When cab drivers in Chicago refused a profit-sharing plan and staged a 

strike in February, 1901, the manager chose to liquidate the company claiming the 

service was unprofitable.  Boston followed suit within weeks and the EVC shut down 

operations in Atlantic City in May.  The EVC was reorganized in December, 1901, 

resulting in the sale of the Philadelphia operation to the ESB.  The New York cab fleet 

became a profitable independent firm and continued offering transportation on a fee-for-

service basis until 1905. 

Following the failure of the EVC, the electric vehicle market grew modestly, the 

technology remaining popular with wealthy urban women and in some commercial 

applications, particularly local delivery trucks.  Meanwhile, the market for gasoline ICE 

automobiles expanded exponentially.  Electric vehicles enjoyed a brief revival beginning 

in 1910, in part due to the efforts of the Electric Vehicle Association of America (EVAA) 

– a national organization of electricity providers, vehicle manufacturers, and the battery 

industry.  To foster the market for electrics, particularly in commercial fleets, the EVAA 

pursued programs in education, advertising, standardization, and cooperation.  A handful 

of central station operators established departments to provide technical support and 

maintenance to electric vehicle owners, subsidize local recharging facilities, and provide 

delivery and service vehicles for their own use.  EVAA efforts resulted in the adoption of 

two standard charging plugs, one for passenger cars and one for commercial vehicles.  

With the increasing reliability of power distribution networks and the adoption of 

standard charging plugs, battery designs coalesced into a general standard by 1912.   

However, efforts at cooperation soon foundered.  Vehicle owners were unwilling 

to share operational cost information and prospective customers became suspicious of the 



 

125 

data provided.  The various factions within the EVAA disagreed on responsibilities, 

particularly with regard to promoting vehicle sales.  Amid slow market growth, 

cooperation gave way to finger-pointing, and in 1916 the EVAA ceased to exist as a 

separate entity, having been absorbed by the National Electric Light Association (Kirsch, 

2000). 

3.1.3 Gasoline Internal Combustion Vehicles 

The history of the gasoline internal combustion engine (ICE) automobile begins 

in Europe during the late nineteenth century.  In 1801, French engineer Phillipe Lebon 

patented a two-stroke engine using electric ignition of a compressed illuminating gas 

made from coal.  The engine was ‘double-acting,’ using explosions on both sides of the 

cylinder, a practice used in steam engines.  Unfortunately, Lebon was assassinated in 

1804 and his design was neglected for sixty years before Belgian mechanic Etienne 

Lenoir was inspired by the Lebon engine.  Lenoir added a carburetor for mixing air and a 

liquid hydrocarbon to form a vapor, but he did not compress it.  The design contained no 

new components, but its construction represented a striking advance over previous 

engines.  Lenoir also benefited from the availability of better materials, machining 

techniques, and electrical equipment than Lebon had available sixty years earlier.  In 

1860, Lenoir obtained a French patent for the first commercially successful internal-

combustion engine and around 500 Lenoir engines were sold in France, England, and the 

U.S. over the next five years.  Unfortunately, the engine did not prove to be as 

economical as originally assumed, the electric ignition was unreliable, and the engine 

overheated quickly. 
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The same year that Lenoir obtained the patent for his engine, he designed a four-

wheeled carriage to be propelled by it using a sprocket chain to transmit power to the 

wheels, a rod for steering, and a brake.  He built a lighter engine that could run at higher 

speed, but quickly foresaw the desirability of substituting a liquid petroleum fuel and 

began designing a new engine with the addition of a carburetor.  Lenoir built a model 

automobile that ran twenty-four kilometers in three hours, but there is no evidence that he 

continued his automotive pursuits, likely because the carriage was heavy and 

undependable (Nevins and Hill, 1954). 

Nikolaus Otto, a young German store clerk, was inspired by reports of the Lenoir 

engine and began experimenting with engine designs for stationary power.  Otto joined 

forces with Eugen Langen and the two developed an improved engine which used flame 

ignition, a compressed illuminating gas mixture, and a flywheel to regularize the force of 

the working stroke.  The open cylinder design and free piston avoided the overheating 

that plagued the Lenoir, although it resulted in noisy operation.  But the engine was 

dependable, used half the volume of gas as the Lenoir, and actually cost less to operate 

than a small steam engine.  Otto obtained a patent in 1866; demand was slow to develop, 

but by 1872, Langen founded the Deutz Gas-Engine Factory for quantity manufacture.  

Langen hired engineer Gottlieb Daimler as chief engineer and William Maybach as chief 

of production.  The two engineers improved the engine design, making it simpler, more 

efficient, and more reliable.  Although still cumbersome and noisy, the unit was more 

compact and cost effective and was widely used in Europe. 

In 1872, Englishman George Bailey Brayton, who was living in Boston, invented 

and patented a two-stroke continuous-compression-cycle engine that operated on liquid 
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petroleum fuel; it was the first engine to use crude petroleum.  The thermodynamic cycle 

of the Brayton engine is sometimes referred to as the Joules cycle, which vaporizes and 

then compresses the fuel in a separate chamber, feeds it into the cylinder, then burns it in 

a continuous flame rather than exploding it.  The engine was quiet, easy to start, and 

reportedly as efficient as the Otto-Langen engine.  While Europeans preferred the Otto 

engine, Americans showed a preference for the quieter Brayton engine (May, 1990; 

Nevins and Hill, 1954). 

Otto, however, was not satisfied with the performance of his engine, and was 

already working on an entirely new design.  He returned to a concept he had explored 

briefly in 1860 but had abandoned: a four-cycle engine.  By drawing in a larger charge of 

gas, the four-cycle is able to produce an explosion powerful enough to carry through two 

revolutions of the crankshaft.  This allows the piston to compress the next charge of gas 

during the third stroke, an operation that must be performed externally in the two-stroke 

engine, or not at all.  In 1862, French engineer Alphonse Beau de Rochas had also 

proposed a four-cycle engine, discussing it in some detail, but had not attempted to apply 

the principles.  With the help of Daimler and Maybach, Otto was able to make the 

concept operational, receiving a patent in 1877.  Despite requiring a large flywheel to 

regularize the motion of the crankshaft, the ‘silent Otto’ was compact and relatively 

quiet, and was soon licensed for sale in England and France.  By 1882, it was being 

manufactured in the U.S., and the Brayton soon disappeared. 

Otto and Langen showed no interest in applying their invention to transportation, 

and although Brayton experimented with installing his motor in an omnibus, he was not 

fully successful.  The first account of a successful internal-combustion-powered 
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automobile is attributed to German Siegfried Marcus, who reportedly built two 

experimental motor carriages in the early 1870s using a four-stroke engine inspired by 

Beau de Rochas’ work.  However, Marcus saw no commercial use for his carriage and 

discontinued working on it.  Around the same time in the U.S., patent attorney George 

Selden became interested in developing a horseless carriage.  He first considered using 

steam power, but quickly turned to internal combustion.  After witnessing a 

demonstration of the Brayton engine in 1879, he drew up plans for a ‘road-locomotive’ 

consisting of a four-wheeled vehicle powered by a gasoline engine similar to Brayton’s.  

Selden applied for a U.S. patent, but made minor changes to the application annually 

which delayed its formal registration until November, 1895.  Selden sought financial 

backing to manufacture his automobile but was unsuccessful.  His patent, however, 

would figure prominently in the future development of the automotive industry (see 

section 4.5.2). 

In Europe, two Germans working independently built the first crude gasoline-

powered road vehicles.20  In 1882, Daimler left the Deutz Gas-Engine Factory and began 

working on a lighter engine that could be used in a vehicle.  Completed in 1883, 

Daimler’s new four-cycle engine weighed around 80 pounds per horsepower and 

operated at up to 900 revolutions per minute (rpm), compared to the four-cycle Otto’s 

200.  Daimler developed a carburetor that delivered fuel at a suitable ratio of gasoline and 

air and also developed a system that used a heated platinum tube to ignite the fuel when 

compression was complete.  The motor eventually was water-cooled and used oil for 

lubrication.  The light, compact, and highly efficient engine was the first specifically 
                                                 
20 For brevity’s sake, the term gasoline or gasoline-powered vehicle is used from here on to refer to motor 
vehicles powered by gasoline internal combustion engines.  Although gasoline was often used as a fuel for 
the boiler of steam engines, the reference should be clear based on context. 
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designed as an effective power-plant for a motor vehicle.  Daimler immediately began 

experimenting with using the engine in bicycles, four-wheeled carriages, and boats.  He 

received a German patent for a two-speed motorcycle in August, 1885, and for his two-

speed motor carriage in October, 1886. 

Meanwhile, Karl Benz developed a two-stroke engine in the 1870s then began 

work on a four-stroke for automotive applications.  Using knowledge of the Otto, he 

developed a 300 rpm, water-cooled engine with an electric ignition. In July, 1886, he 

successfully applied the engine to power a one-speed tricycle, using a system of belts and 

chains to transmit the power to the wheels.  He later developed a two-speed vehicle and 

obtained a patent for a sun-and-planet transmission in April, 1887. 

The appearance of gasoline-powered road vehicles in Germany was met with a 

mixture of excitement and alarm.  Benz was granted permission to operate his vehicle on 

city streets, but was initially ordered to not exceed 6 kilometers per hour (kph) in the city 

and 12 kph in the country.  Neither Daimler nor Benz vigorously promoted their 

automobiles, though Daimler began manufacturing his engine commercially in 1887.  

Over the next few years, he adapted the engine for motorboats, streetcars, a fire engine, 

and a small locomotive.  In 1889, the French firm Panhard & Levassor began developing 

a motor carriage using Daimler’s engine and began production in 1892.  Benz made an 

alliance with Emil Roger and also began selling vehicles in France, where smooth, well-

paved, level roads were more abundant than in the U.S.  Thus the gasoline-powered 

automobile arrived first in France. 

Many American entrepreneurs were experimenting with gasoline internal 

combustion engines and motor carriages at this time, including Henry Ford, Ransom E. 
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Olds, Elwood Haynes, Charles and Frank Duryea, Hiram Percy Maxim, and countless 

others.  Henry Ford claimed to have begun building gasoline engines as early as 1891, 

though there is no evidence of experiments with a satisfactory motor until 1893.  His first 

successful test of a motor carriage followed in 1896.  Credit for the first successful U.S. 

gasoline-powered motor vehicle goes to Charles and Frank Duryea, who began 

manufacturing bicycles in the 1880s.  The brothers began experimenting with a gasoline-

powered carriage in 1891 and obtained financing for construction in March, 1892.  

Although Charles developed the initial designs for the vehicle, Frank worked alone over 

much of the following year, solving problems with the two-cycle engine, ignition, and 

transmission.  Frank therefore deserves much of the credit for their success when the 

vehicle completed a public trial run in September, 1893.   

Frank proceeded to redesign the vehicle with wooden-spoked wheels, rubber tires, 

a new water-cooled four-cycle engine mounted in the rear, a cranking device, a clutch 

and gear transmission, and a lever for steering.  The economic crisis beginning in 1893 

postponed introduction of the vehicle for sale, but in September, 1895, the brothers and 

backers from Springfield Massachusetts founded the Duryea Motor Wagon Company, the 

first company organized in the U.S. for the production of automobiles.  The company 

also became the first to produce multiple motor vehicles from a single design when it 

built and sold thirteen automobiles in 1896 (Nevins and Hill, 1954; May, 1990).   

3.2 Volume Production and Standardized Interchangeable Parts 

Early automobiles thrilled the public with their speed and were viewed as luxury 

items for the rich.  Conventional wisdom for high profit was to manufacture a small 

quantity of a highly personalized product (Ford and Crowther, 1922; Rubenstein, 2001).  
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This meant that demand outpaced supply, and manufacturers could sell at a high per-unit 

profit.  But not all early automobile manufacturers subscribed to this doctrine.   With the 

rise of venture capitalism, industries were discovering the profits that could be made with 

large production volumes.   

However, manufacturing technology at the dawn of the automobile industry was 

incapable of producing any quantity of identical vehicles.  The automobile requires parts 

of unprecedented durability, especially gears, and steel parts must therefore be hardened 

to withstand such heavy use.  Because early machine tools could not work hardened steel, 

the parts were heat-treated after fabrication.  This process often caused warping and the 

parts then required reshaping through further machining, grinding, or hand filing.  In 

addition, car builders contracted different craftsmen to manufacture various parts.  

Though highly skilled, these craftsmen did not work to a common gauge.  The resulting 

parts had to be custom filed and fitted for final assembly. 

Innovations in machine tools and production methods around the turn of the 

century allowed a transformation in the automobile industry.  While Henry Ford is 

popularly thought of as the originator of mass production, the Olds Motor Works actually 

became the first company to mass produce a vehicle when it introduced the curved dash 

for $650 in 1900.  Olds produced about 1,400 vehicles in 1900, 2,100 in 1901, 3,300 in 

1902 and about 4,000 in 1903 (Pound, 1934, p. 54; Epstein, 1972, p. 37; Abernathy, 

1978; Rubenstein, 2001).  By 1904, the Olds plant was producing up to 40 vehicles per 

day and the Cadillac Company was soon making 30 to 40 cars per day (Epstein, 1972).  

Henry Ford believed that the desire for vehicle ownership was nearly universal and saw a 
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huge potential market for an inexpensive vehicle, but did not find commercial success 

until after 1903 (see section 3.3 and chapter 4).   

According to Womack et al. (1990, p. 27), the key to mass production was not the 

moving assembly line, but rather “the complete and consistent interchangeability of parts 

and the simplicity of attaching them to each other” (emphasis in original).  This required 

that the vehicle be designed for ease of manufacturing, and that all parts be standardized 

and made to a common gauge.  While this may seem obvious in retrospect, for the 19th 

century manufacturer, it required entirely new ways of thinking about production.  The 

move to mass production techniques with standardized interchangeable parts did not 

occur discontinuously, nor did it occur within the automobile industry.  Rosenberg (1963) 

notes: 

The problems of large-scale automobile production involved the extension to a 
new product of skills and machines not fundamentally different from those which 
had already been developed for such products as bicycles and sewing machines.  
Underlying the discontinuity of product innovation, then, were significant 
continuities with respect to productive processes.  The transition to automobile 
production for the American economy after 1900 was therefore relatively easy, 
because the basic skills and knowledge required to produce the automobile did 
not themselves have to be “produced” but merely transferred from existing uses 
to new ones.  This transfer was readily performed by the machine tool industry. 

Thus, the development of techniques for mass production reviewed in this section 

was a continuous and cumulative process that occurred over decades and within several 

industries that superficially appear to be entirely unrelated. 

3.2.1 Arms Manufacturing 

While the earliest automobile production was a craft industry, large volume 

production using standard parts was not a novel concept.  As early as the end of the 16th 

century, the Venetian Arsenal employed interchangeable pre-manufactured parts, 

specialized labor, and an assembly line for shipbuilding.  In 1765, French General Jean 
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Baptiste Vaquette de Gribeauval proposed that muskets could be manufactured 

economically if they were made from interchangeable parts, with the added benefit of 

being more easily repaired on the battlefield.  However, the ideal of standardized, 

interchangeable parts was not easy to achieve in practice (Hounshell, 1984).  

The U.S. War Department became convinced that a ‘system of uniformity’ was 

necessary for military progress, and invested a great deal of effort over a 40 to 50 year 

period to solve the problem of manufacturing interchangeable parts.  The Department 

established the Springfield and Harper’s Ferry Armories in 1794 and 1798, respectively, 

and also began contracting with private arms-makers for muskets and pistols.  In 1798, 

Eli Whitney proposed that mechanized production would facilitate large volume 

production, but he never produced the quantity of guns he promised, and none had 

interchangeable parts.  Arms contractor Simeon North had greater success.  With his first 

two contracts for a total of 2,000 pistols, he found that the division of labor resulted in 

significant time savings and higher quality workmanship.  North’s third contract specified 

that any component part should be able to fit any of the 20,000 pistols ordered.  To fulfill 

the contract, North developed the revolutionary idea of manufacturing to a standard 

model or gauge rather than a pattern.  In addition, he pursued the design and development 

of special-purpose machinery. 

During this time, the Springfield and Harper’s Ferry Armories began phasing out 

the traditional apprentice system and experimenting with new production and managerial 

procedures, including division of labor and piece-rate wage systems.  By 1819, an 

elaborate gauging system had been devised.  However, it was an array of special-purpose 

machinery developed by Thomas Blanchard that brought the benefits of mechanization 



 

134 

and allowed large volume production of interchangeable parts.  Sequentially arranged 

special-purpose machinery was first used in making rope blocks for the British Royal 

Navy around 1807.  But Blanchard was the first to develop machinery for making 

irregularly shaped parts, a technology he applied to barrels and gunstocks for the Harpers 

Ferry and Springfield Armories in 1818-1819.  By 1826, Blanchard, with the support of 

the Springfield Armory, was able to fully mechanize stock manufacturing using fourteen 

sequential machines.  By combining this process with the gauging methods developed by 

North, an intense commitment to making interchangeable parts, and the financial backing 

of U.S. government, John Hall of Harpers Ferry Armory was able to design and 

manufacture a rifle with fully interchangeable parts in 1824.  Hall was convinced that his 

process could be used for production on a large scale that, when combined with “a minute 

subdivision of Labor,” could realize significant economies of scale (Hounshell, 1984, p. 

42).  However, government appropriations never allowed for more than 1,000 rifles per 

year at a single armory, which in 1834 were produced at Harpers Ferry and Simeon 

North’s armories. 

Hall’s methods were transferred to the Springfield Armory, where they were 

applied to the manufacture of muskets in the 1830s.  The government contracted with 

private arms-makers and freely shared parts, workers, and information on production 

technology.  As a result, the Armory served as a “clearing house for technical information 

and a training ground for mechanics,” thus facilitating the diffusion of the innovative 

production methods at the heart of what came to be known as the ‘armory practice’ or the 

‘American System of Manufactures’ (Hounshell, 1984, p. 45).  According to a British 

committee charged in 1854 with studying U.S. manufacturing practices, the American 
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system was characterized by the “adaptation of special tools to minute purposes,” “the 

ample provision of workshop room,” “systematic arrangement” of manufacturing, “the 

progress of material through the manufactory,” and the “discipline and sobriety of the 

employed” (cited in Hounshell, 1984, p. 64). 

It is significant to note that the U.S. government was not interested in efficiency, 

but only in producing uniform parts such that firearms could be easily repaired.  

Therefore, despite increasing mechanization, the Springfield Armory never decreased the 

cost of its products.  But at the same time that the arms-makers were applying 

mechanization to solve the problem of uniformity, U.S. clockmakers were increasingly 

using special-purpose machines and tools to manufacture large quantities of inexpensive 

clocks.    The market-driven clockmakers never aimed at nor achieved interchangeable 

parts and apparently did not grasp the importance of this innovation for high volume 

production. Though they were turning out hundreds of thousands of clocks annually by 

1850, assembly was slow.  With such high production levels, the clockmakers developed 

novel marketing and financing strategies to maintain demand, including sales on credit 

and the introduction of new models when demand fell (Hounshell, 1984).  Similar 

strategies would be adopted by automakers some 70 years later. 

Beginning around 1840, the increasing requirements of the firearms industry 

spurred the development of the infant machine tool industry, which had originated in the 

1830s with the development of heavy steam-powered machinery for the New England 

textile mills.21  The machine tools required for precision manufacturing of 

                                                 
21 According to Rosenberg (1963), the development of the machine tool industry was hindered by the 
difficulty and expense of transporting heavy equipment.  Machinery production therefore remained general-
purpose and localized until the development of the railroads.  After 1840, a growing number of firms began 
producing increasingly specialized machinery for a narrow range of applications. 
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interchangeable firearms parts were further developed through the 1850s and adapted for 

use in other industries.  Rosenberg (1963) describes the machine tool industry as a 

“reservoir of skills and technical knowledge which are employed throughout the entire 

machine-using sectors of the economy.” As such, it can be viewed as a knowledge base 

that played a central role in the learning processes responsible for U.S. industrialization.  

“This role…is a dual one: (1) new skills and techniques were developed or perfected here 

in response to the demands of specific customers; and (2) once they were acquired, the 

machine tool industry was the main transmission center for the transfer of new skills and 

techniques to the entire machine-using sector of the economy.” 

3.2.2 Sewing Machine Manufacturing 

The requirements of sewing machine production stimulated further machining 

innovations in the latter half of the 19th century, and many of the mechanics hired by the 

nascent sewing machine industry had experience at the Springfield or private armories 

(Rosenberg, 1963).  The Wheeler and Wilson Manufacturing Company adopted 

manufacturing techniques similar to those used at the Colt armory, which utilized 

extensive drop forging prior to machining.  By 1862, Wheeler and Wilson was able to 

produce nearly 30,000 sewing machines annually with uniform parts that the company 

claimed required no filing during assembly.  The company continued to expand with a 

production goal of 100,000 per year at reduced prices that would allow every family to 

own one.  Its production peaked in 1872 at 174,088 machines (Hounshell, 1984). 

In 1858, the Willcox and Gibbs Sewing Machine Company contracted with the 

Brown & Sharpe machine shop of Rhode Island, which was experienced with making 

clocks and watches.  Despite having no experience with the armory practice, Brown & 
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Sharpe approached the task by designing a model, special tools, fixtures, jigs and gauges 

right from the start.  Brown & Sharpe’s success in developing special-purpose tools for 

sewing machine manufacture, a process that took eight months, ultimately led the 

company to begin selling machine tools to the industry as well.  Because the company 

made both process machinery and finished products, it was uniquely positioned to 

understand the needs of the industry and benefited from in-house testing capabilities 

(Hounshell, 1984).  Rosenberg (1963) credits Browne & Sharpe with producing the most 

important innovations in the sewing machine industry, including the universal milling 

machine first sold in 1862. 

Henry Leland, the eventual founder of the Lincoln Motor Company, worked as a 

tool builder at the Springfield and Colt armories and several machine shops, and was 

hired by Browne & Sharpe in 1872 (Hounshell, 1984).  According to Hounshell (1984), 

Leland’s insights and advice were critical in the development of the universal grinding 

machine and a grinder for production work that were capable of producing a fine finish 

on hardened steel parts.  These new technologies overcame the warping caused by 

hardening and helped eliminate the need for hand fitting at assembly.  In addition, they 

improved the precision of gauges, and therefore the precision of manufactured parts 

(Hounshell, 1984).  

In addition to contributing to the development of new machine tools, Leland 

helped institute important organizational changes.  Under the armory system, arms 

manufacturers hired inside contractors who used the company’s shop space, power, tools 

and materials to produce parts at a set piece-rate.  The contractor hired, managed, and 

paid his own workers.  The contract system was a hallmark of New England armory 
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practice and contributed to the diffusion of the armory system and new technologies.  

Leland, however, believed that adopting a strict procedural approach would ensure that 

sequential operations were more closely followed and that materials would flow more 

smoothly.  Leland eliminated the contract system and instituted a piece-work system that 

allowed department supervisors to determine pay rates.  After a year, these changes 

reportedly resulted in a 47% reduction in labor costs and a comparable improvement in 

the quality of work (Hounshell, 1984). 

After leaving Browne and Sharpe, Leland founded the Leland and Faulconer 

Company, which in 1899 designed a machine for production grinding of hardened bevel 

gears for bicycles (Rosenberg, 1963).  The company became Detroit’s most successful 

machine shop and earned a national reputation for machining cylinders and pistons to 

closer tolerance than other companies.  Leland was then hired in 1902 to run the failing 

Henry Ford Company, which was renamed the Cadillac Automobile Company.22  The 

Cadillac and Leland and Faulconer companies largely had the same stockholders, and 

were officially merged in 1905 (Nevins and Hill, 1954).  It is notable that Cadillac was 

the first to manufacture precision-machined interchangeable automobile parts 

(Abernathy, 1978).   

The I.M. Singer & Company initially built sewing machines using predominantly 

European craft manufacturing methods.  Company officials believed that hand finishing 

by skilled workers resulted in the highest product quality. Rather than focusing on 

manufacturing methods, Singer concentrated on a highly successful worldwide marketing 

                                                 
22 Cadillac was purchased by GM in 1909, but Leland retained complete control of management.  When the 
U.S. entered World War I in 1917, Leland left Cadillac and founded the Lincoln Motor Company to 
produce Liberty airplane engines.  The company began producing automobiles in 1920 and was sold to 
Ford in 1923. 
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strategy, which included advertising, demonstrations, financing, and establishment of 

retail stores.  Singer’s sales tripled between 1855 and 1856, due in part to the first Singer 

model intended exclusively for home use, changes in the company’s sales system, and the 

initiation of an installment purchasing plan.  This last innovation, which Singer’s Edward 

Clark credited to the Wheeler and Wilson Company, allowed customers to advance a 

percentage of the purchase price to ‘hire’ the machine then pay monthly installments and 

eventually own it.  Despite growing demand, the company continued to rely on hand 

fitting and assembly was slow and expensive.  Singer’s factories began having trouble 

meeting demand and the company was soon plagued with complaints from customers and 

sales agents about the quality of the sewing machines.  

Around 1863, the now Singer Manufacturing Company began a process of 

increasing mechanization.  Singer hired L.B. Miller, who had two years experience with 

New England armory practice at the Manhattan Firearms Company, to supervise the 

development of special-purpose machinery and tools to facilitate manufacturing with 

interchangeable parts.  The transition was rocky, and company officials and inside 

contractors clashed over the tradeoff between quality and quantity production.  But by 

1882, Singer was producing sewing machines with interchangeable parts that did not 

require hand fitting when soft.  The parts were stamped with a serial number, hardened, 

and then refit by hand using matching serial numbers.  In order to gain more control over 

the production process, Singer subsequently eliminated the inside contract system and 

developed an operations guide that detailed machining instructions and work-flow routes. 
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3.2.3 Bicycle Manufacturing 

Beginning in the late 1880s, the U.S. experienced what contemporaries named the 

‘bicycle craze.’  In 1818, German Karl von Drais invented the first two-wheeled, 

steerable, human-powered vehicle, commonly called a velocipede and nicknamed a 

‘dandy horse’.  Riders propelled the dandy horse by pushing it along with their feet.  The 

velocipede was popular with wealthy Europeans, but was banned on city streets due to 

accidents involving pedestrians.  Over the next 40 years, European inventors 

experimented with velocipedes using 2, 3 and 4 wheels, some using treadles and cranks.  

Around 1863, French inventors developed the first commercially successful bicycle using 

two wheels, rotary cranks and pedals.23  The first bicycles were made in 1867 by 

blacksmith Pierre Michaux who was experienced in making carriage parts.  The bicycle 

consisted of a cast iron frame (later replaced with wrought iron) and wooden wheels 

surrounded with iron ‘tires’.  The velocipede rolled easily on newly paved macadam 

roads in Europe, but the stiff frame delivered a rough ride that earned the nickname 

‘boneshaker’.  The ‘ordinary’ bicycle appeared around 1870, with a large, wire-spoke 

front wheel, ball bearings, solid rubber tires, and a hollow-section steel frame.  The 

design provided a smoother ride and was fast but unsafe for the rider, limiting cycling to 

a sport for adventurous young men.  Bicycles and racing became popular among the 

wealthy, especially in England. 

Albert Pope began selling imported English bicycles in the U.S. around 1876, and 

in 1878 obtained the U.S. patent rights to produce his own version of the ordinary, which 

he named the Columbia.  Although English bicycles were manufactured using European 

                                                 
23 There were conflicting claims for the French patent rights, but Pierre Lallement filed the first and only 
U.S. patent claim for the pedal driven bicycle in 1866.   
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craft techniques, Pope set out to build bicycles with interchangeable parts under contract 

with the Weed Sewing Machine Company.  In 1866, Weed had initially contracted with 

the Sharps Rifle Manufacturing Company to build its sewing machines.  But when Sharps 

changed ownership and moved to new facilities in 1875, Weed began its own production 

in the old plant by hiring some former Sharps employees.   The Weed Company therefore 

had extensive experience in armory practice, and the president of manufacturing 

operations had even been an inside contractor at the Colt armory (Hounshell, 1984). 

According to Hounshell, the production of bicycles required essentially no new special 

purpose machinery or techniques over sewing machine manufacturing, though finishing 

and assembly was considerably more complicated and time consuming. 

Pope aggressively marketed bicycles through cycling journals, cycling clubs, and 

monthly poster contests.  Cycling clubs actively lobbied for road improvements.  With 

Albert Pope’s assistance, the League of American Wheelmen drafted a petition to 

Congress, resulting in the birth in 1893 of the Office of Road Inquiry in the U.S. 

Department of Agriculture.  In 1883, he organized the first bicycle trade show, an 

institution that became an important promotional and sales tool for the bicycle and 

automobile industries.  Pope’s patent royalties allowed him to dominate the market, but 

the Ames Manufacturing Company, under contract to A. H. Overman, posed the first 

competitive threat to Pope in 1885.  Notably, Ames had been involved in arms and 

machine tool production from the early days of the armory practice.   

High-wheeled bicycles were quite successful in the U.S., with sales totaling 

around 250,000 by 1887 when the chain-driven safety bicycle was introduced from 

England (Hounshell, 1984).  The instability and height of the ordinary bicycle meant 
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riding was a daring feat, but the two same-sized wheels of the safety bicycle made it 

stable enough for men, women, and children of all ages.  Demand for bicycles exploded, 

in part due to interest in the healthful benefits of outdoor recreation as a remedy for the 

ills caused by increasing urbanization (Geels, 2005b).  In addition, bicycles conveyed to 

both men and women a level of freedom and mobility they had never before experienced 

(Hugill, 1982).   

As demand grew, an increasing number of arms-makers, sewing machine 

companies, and even clockmakers began manufacturing bicycles in addition to their main 

product.  According to Rosenberg (1963), there were 27 U.S. firms manufacturing 

bicycles and tricycles in 1890; by 1900 there were 312.  Because bicycle production was 

a sideline, most of these companies invested in only a minimum of new equipment, 

purchasing machinery from machine tool companies like Pratt & Whitney and Brown & 

Sharpe.  However, Albert Pope gained control of the Weed Company in 1890, renamed it 

the Pope Manufacturing Company, and ended production of sewing machines.  He then 

pursued a strategy of backward integration by establishing a cold-drawn steel tubing plant 

for building frames – the first of its kind in the U.S. – and by purchasing a rubber factory 

for producing pneumatic tires – an entirely new industry at the time.  Pope also 

established a research department, headed by an MIT graduate, to ensure quality control, 

improve designs, and perform extensive testing of materials, parts, and bicycles (Rae, 

1959; Hounshell, 1984). 

The safety bicycle presented new manufacturing challenges in the need for 

lightness (tubular steel), hardened precision parts (gears and hubs), efficient power 

transmission (chain), and reduced friction (ball bearings and races) (Rosenberg, 1963).  



 

143 

Machining techniques and tools were gradually improved, and New England 

manufacturers began departing from the drop-forging methods used in armory practice, 

increasingly opting to machine parts from solid steel bars (Rosenberg, 1963; Hounshell, 

1984).   

In the western states, a separate group of bicycle manufacturers arose from the 

carriage, wagon, toy, and agricultural implement industries.  Having no experience with 

New England armory practice, these firms developed entirely different manufacturing 

processes.  Beginning in the 1890s, these firms reduced machining to a minimum by 

developing techniques for sheet metal stamping to produce frame joints, crank hangers, 

hubs and sprockets.  The electric resistance welder developed around 1888 by Elihu 

Thomson proved essential for these production methods.  The crank hanger, which holds 

the pedal axle and the frame tubing that runs to the seat, rear wheel and steering head, 

was particularly complicated to machine and strength was critical. Stamping techniques 

resulted in a lighter, sufficiently strong part with significantly less waste, and therefore 

lower cost.  Stamped crank hangers were eventually adopted by the entire industry.  In 

another departure from armory practice, the mechanics in the western bicycle companies 

remained seated at their machines, while runners brought materials to them.  Although 

New England bicycle manufacturers insisted that their forged and machined hubs and 

sprockets were far superior to stamped ones, the Western Wheel Works of Chicago 

overtook Pope as the largest U.S. bicycle producer before the market collapsed 

(Hounshell, 1984).  Stamped or pressed steel would soon become vital to the automobile 

industry. 
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3.3 Automobile Manufacturing 

By providing an unprecedented level of freedom and mobility, the bicycle 

stimulated Americans’ desire for light, personal transport.  It is not surprising, then, that 

many early automobile manufacturers had experience in the bicycle industry and, 

therefore, also in arms and sewing machine production.  In 1892, Hayden Eames, then in 

charge of Pope Manufacturing’s Tube Department, arranged an interview for Hiram 

Percy Maxim, an MIT graduate who had successfully mounted a gasoline engine on a 

Columbia tricycle.  After Pope’s engineering laboratory had inspected the invention, 

Maxim was invited to work for Eames in a newly created Motor Carriage Department. 

Albert Pope, however, was unimpressed by the noisy gasoline contraption. 

Though the company continued experimentation with gasoline vehicles, Pope 

concentrated on developing an electric vehicle which was introduced as the Columbia in 

1897.  For its introduction, Albert Pope invited reporters to a private showing, allowed 

them to operate it, and supplied pictures for publications.  The elaborate press interview 

soon became a standard custom in introducing new vehicles to the public (Flink, 1988).  

Over the next two years, Pope manufactured 500 electric and 40 gasoline vehicles, 

making it the leading motor vehicle manufacturer of the time.  In 1899, the motor vehicle 

venture was separated from the parent company, taking Eames and Maxim with it, and 

sold to the Electric Vehicle Company.  This move raised cash for Pope’s attempt to save 

the bicycle industry through the consolidation of some 45 firms into a ‘bicycle trust.’   

Two of the firms acquired by Pope’s new American Bicycle Company produced electric 

and steam vehicles.  These operations were reorganized as the International Motor 

Company in 1901 and converted to producing gasoline cars.  As the bicycle market 
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continued to collapse, Albert Pope converted more facilities to manufacturing gasoline 

vehicles and consolidated his automotive ventures as the Pope Motor Car Company in 

1903. 

Charles and Frank Duryea began manufacturing bicycles in the 1880s.  Charles 

claimed to have been interested in ‘horseless carriages’ since boyhood, but an 

announcement in 1890 encouraged him to pursue this interest more seriously: an exhibit 

at the World’s Columbian Exposition in Chicago in 1893 would offer rewards for the best 

examples of “vehicles propelled by other than animal power.”  By this time, Charles had 

contracted the Ames Manufacturing Company of Massachusetts to produce his bicycle, 

and Frank was employed as a toolmaker at Ames.  With Charles’ designs and Frank’s 

practical abilities, the two began experimenting with a gasoline-powered carriage (May, 

1990).  In September, 1895, the brothers and backers from Springfield Massachusetts 

founded the Duryea Motor Wagon Company, the first company organized in the U.S. for 

the production of automobiles.  The company also became the first to produce multiple 

copies of a motor vehicle for sale to the public when it built and sold thirteen automobiles 

in 1896 (May, 1990).   

However, Duryea produced only three automobiles in 1897 and failed in 1898.  It 

appears that the Duryeas were unsuccessful at transferring critical elements of armory 

practice from their experience with Ames, including the organization of operations.  May 

(1990, p. 167) describes the Duryea factory as “a hopeless tangle of machinery and 

workmen,” and attributes the company’s failure to the lack of experience in 

manufacturing a complex product.  But availability of startup capital for such a large 

undertaking may also have played a role (Nevins and Hill, 1954).  According to Epstein 
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(1972), people were skeptical about large-scale production of automobiles and few were 

willing to invest in the industry.  Manufacturers who were interested in high volume 

production, such as Olds, Cadillac, and Ford, were forced to start on a small scale, turn 

over capital quickly, and reinvest any profits in expansion.  Since these manufacturers 

largely purchased parts, assembled them into complete vehicles, and sold for cash, the 

industry was basically financed by the parts manufacturers who were largely engaged in 

production of parts for other industries (Epstein, 1972).   

In fact, the majority of automobile manufacturing prior to 1900 was undertaken as 

a sideline business by established firms in New England.  In 1899, three quarters of the 

automobiles produced were built in the Northeast (Jarvis, 1972).  These firms were well 

capitalized and had a ready supply of skilled machinists and facilities.  In addition to 

manufacturing infrastructure, the region benefited from relatively well-developed roads 

and communication systems.  Perhaps because of the availability of soft water for steam 

and electric power for recharging, New England manufacturers specialized in steam or 

electric automobiles of medium to high price.   

A second center of automobile production arose in the Midwest which was the 

center of carriage and wagon manufacturing, due in part to the abundance of hardwood 

forests.  The region was largely rural, lacked electricity, with the population widely 

dispersed and connected by some of the nation’s worst roads.  In addition, the area was 

prominent in the production of gasoline engines used for rural and marine applications 

(Flink, 1970).  Therefore, the Midwestern manufacturers specialized in gasoline-powered 

automobiles.  But the makers of gasoline cars were characterized by a significant factor 

other than geography. According to Jarvis (1972, p. 69), “Established firms went for the 
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electric or the steam auto, whereas the small, underfinanced company headed by a man 

with technical expertise favored the internal combustion engine.”  The individual 

entrepreneur was willing to pursue a more radical innovation than the established 

company.  By 1904, the Midwest and the gasoline automobile dominated the industry. 

Ransom E. Olds was one such Midwestern entrepreneur and the only automotive 

pioneer to have early experience in all three sources of motive power.  Olds had worked 

in his father’s Lansing, Michigan, machine shop, P.F. Olds & Son, eventually taking on a 

leadership role in the enterprise.  Around 1885, Olds developed a steam engine for 

business use that employed a gasoline burner.  The engine was extremely successful and 

the business expanded.  Olds experimented with applying his steam engine to a motor 

carriage, eventually linking two 2-hp engines to power a 1,200 pound, four-wheeled 

vehicle.  Although seriously under-powered, the Olds steamer was featured in Scientific 

American in May, 1892, and Olds sold the vehicle to an English patent medicine firm the 

following year.  In 1893, Olds also observed the large number of European-made 

gasoline internal combustion motor vehicles on display at the Chicago World’s Fair and 

became convinced that gasoline engines were the technology of the future. 

Olds immediately began developing a gasoline engine and applied for a patent on 

a simple and efficient design in 1895.  P.F. Olds & Son began production in 1896 and the 

highly successful engine soon became the company’s main product.24  Olds attached the 

one-cylinder engine beneath a carriage supplied by a local manufacturer and drove it in a 

public demonstration in August of 1896.  In his application for a patent, Olds stated his 

practical objectives to “produce a road vehicle that will meet most of the requirements for 

                                                 
24 In 1897, P.F. Olds & Son was recapitalized and reorganized as the Olds Gasoline Engine Works. 
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the ordinary uses on the road without complicated gear or requiring engine of great power 

and to avoid all necessary weight” (May, 1990, p. 360). 

Although Olds attempted to assemble automobiles in the P.F. Olds & Son shop 

using his engines and purchased components, demand for the engines for farm and 

business use took precedence and he hesitated to divert labor to the new endeavor.  Olds 

obtained outside financial backing to establish the Olds Motor Vehicle Company in 1897 

and the board of directors empowered Olds to “build one carriage in as nearly perfect a 

manner as possible” (Pound, 1934, p. 50).  Unfortunately, the funds were insufficient to 

produce more than a handful of vehicles.  Olds obtained more significant funding from 

banker Samuel L. Smith, but Smith insisted that the engine manufacturing and 

automobile businesses be consolidated.  The Olds Motor Works was established in 1899 

with Smith holding a large majority of the stock, though Olds retained presidency of the 

engine works.25  A new factory for automobile manufacturing was promptly constructed 

in Detroit, but Olds, who was in charge of operations, was unable to select a vehicle 

design.  Though he firmly believed that gasoline internal combustion was the motive 

power of choice, the first vehicle produced was an electric.  In the first year, Olds 

produced a small number of the electrics and some large, expensive gasoline cars.   

Though the company’s initial plans were to build a fairly expensive automobile 

with “up to the minute improvements – pneumatic clutch, cushion tires, and electric 

push-button starter,” Olds became convinced that the machine would be too complicated 

for the still skeptical public.  By summer 1900, Olds finally settled on an inexpensive, 

lightweight, gasoline-powered runabout that could be constructed for $300 and sold for 

                                                 
25 The Olds Motor Works divested of the engine works in 1903. 
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$650 – the Oldsmobile curved dash.  Reminiscing in 1926, Ransom Olds stated that 

“[his] whole idea in building it was to have the operation so simple that anyone could run 

it and the construction such that it could be repaired at any local shop” (cited in Pound, 

1934, p. 52).  The curved dash weighed only 700 pounds, was powered by a 4.5 hp, one-

cylinder engine, with a two-speed planetary type transmission and a chain drive.   

Olds contracted out the supply of wheels, batteries, and bodies.  Demand for the 

Olds engine, which was manufactured in both Lansing and Detroit, remained high, so 

Olds contracted the Dodge Brothers and Leland and Faulconer to manufacture engines 

and transmissions for the curved dash.  By spring of the following year, more than 300 

orders had been received, and Olds directed the Detroit plant superintendent to gear up to 

produce 1,000 vehicles over the coming year.  But just as production got underway, the 

plant burned to the ground in early March, 1901.  Legend has it that a single curved dash 

survived the fire, forcing Olds to concentrate solely on this model.  In truth, the other 

vehicles could still have been produced since their plans survived in the company’s 

vaults.  However, the accident may have prompted Olds to abandon the larger vehicle 

models earlier than initially planned. 

While a new plant was built on the old site, Olds established temporary assembly 

facilities and production of the curved dash resumed in April.  At the same time, Lansing 

officials made the Olds Motor Works an attractive land offer, and the firm began 

constructing a second automobile facility.  In 1901, Samuel Smith served as company 

president and Olds served as vice president and general manager of the Lansing plant, 

while Smith’s son Fred took over operations in Detroit.  To keep up with demand, Olds 

assigned workers a limited number of tasks rather than have them work on assembly of 
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the entire vehicle, and arranged them in a primitive sort of production line.  By 1902, the 

Olds Motor Works was assembling the curved dash at both the Lansing and Detroit 

facilities with production on the order of 2,500, making the company the largest U.S. 

automobile producer.  By 1904, Oldsmobile sales topped 5,500 (Flink, 1988). 

However, a rift began to develop between Ransom Olds and Fred Smith.  

Concerned about the number of complaints from owners, Smith urged Olds to correct 

defects in the fragile curved dash.  At the same time, Smith began pushing Olds to 

develop a larger touring car.  While Olds apparently agreed with the need for a larger 

vehicle, he disagreed on the timing and resented Smith’s intrusion in his domain – the 

production side of operations.  The relationship became untenable in 1903 when Smith, 

without Olds’ knowledge or authorization, established an experimental engineering shop 

at the Detroit plant and soon after applied for a patent on improved springs that would be 

more suited to heavier vehicles.  By summer of 1904, Olds had sold all his stock in the 

Olds Motor Works and resigned from the board.   

Olds went on to establish the Reo Car Company, named for his initials, which 

began production in 1905.  The Reo line included a $650 runabout and a 1,500 pound 

touring car that sold for $1,250.  Meanwhile, Smith continued production of the curved 

dash but also moved forward with the production of a larger touring vehicle as well.  

Apparently because of Olds Motor Works’ reputation as a producer of small cars, the 

new Oldsmobile did not fare well in the market, and Reo soon outsold Olds.  By 1908, 

Olds Motor Works sales fell to only 1,000 cars per year. 

The Dodge brothers’ history parallels the Duryeas’, but with greater success.  

Frank and Horace Dodge were both experienced machinists in 1897 when they began 
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manufacturing bicycles in Windsor, Ontario.  In 1900, they left the bicycle industry to 

open a machine shop in nearby Detroit.  The Dodge Brothers served a wide variety of 

clients, and soon became one of the best machine shops in the Midwest, noted for 

precision machining and for an arrangement of machinery that allowed for ease and 

speed of manufacturing (Nevins and Hill, 1954).  Dodge Brothers began supplying 

automobile components, notably engines and transmissions under contract to Ransom E. 

Olds (Hyde, 2003).  

In 1903, the Dodge Brothers Company took a huge risk and established an 

alliance with the fledgling Ford Motor Company.  Dodge began supplying chassis – 

engines, transmissions, and axles – for the Model A, but the brothers were far more than 

supply contractors.  Prior to production, they made improvements to Henry Ford’s engine 

and axle designs (May, 1990).  Ford was having difficulty raising startup cash, so the 

Dodges accepted 10% of the capital stock in the Ford Motor Company in exchange for 

$7,000 worth of components and a $3,000 bank note.  John F. Dodge was named as one 

of five directors when the company was incorporated (Nevins and Hill, 1954).  Although 

Ford built its own factory in 1904 on Piquette Avenue in Detroit, the company purchased 

most of its parts.  The facility was therefore designed for assembly and housed only 

general purpose machines (Hounshell, 1984).  By 1904, Ford had less than $10,000 

invested in equipment, while Dodge had spent more than $60,000 for machinery 

dedicated to producing Ford automobiles.  While Ford was mainly an assembler of 

components, Dodge was manufacturing nearly a complete automobile except for wheels 

and a body.  By 1905, Dodge was supplying Ford with 400 engines and transmissions per 

month.   
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Dodge continued to be Ford’s largest supplier until 1913, with Dodge 

manufacturing around 60% of the total value of Ford automobiles (Hyde, 2003).  John 

Dodge was named vice president of the Ford Manufacturing Company when it was 

incorporated in 1905 and was named vice president of the Ford Motor Company in 

1906.26  Sometime in 1912, the Dodge Brothers decided to manufacture their own 

automobile, although they knew that, as a result, Henry Ford would not allow them to 

continue participating in management decisions.  While the arrangement between Ford 

and the Dodges had been mutually beneficial and the brothers had prospered, annual 

price negotiations over Dodge parts caused friction.  In August of 1913, John Dodge 

resigned as director and vice president of the Ford Motor Company (Nevins and Hill, 

1954).  The Dodges were able to rely on their extensive experience and reputation, and 

when the first Dodge automobile was produced in November, 1914, it was an immediate 

success. 

The influence of Henry Ford himself was of primary significance after the turn of 

the century.  While a complete discussion of Ford’s history is left for the following 

chapter, a brief overview of his activities prior to 1902 completes the discussion of the 

origins of the automobile industry.  As a child growing up on a farm in rural Michigan, 

Ford showed an interest in and aptitude for all things mechanical.  His formal mechanical 

training began at age 16 when he left the farm for Detroit, where he garnered extensive 

experience repairing engines.  Sometime in the late 1880s, Ford began experimenting 

with steam and gasoline internal combustion engines for a horseless carriage.  While 

working as chief engineer at Edison Illuminating Company in 1896, Ford built a two-
                                                 
26 Henry Ford served as vice president of the Ford Motor Company and banker John Gray served as 
president.  After Gray’s death in 1906, Ford was named president and John Dodge replaced Ford as vice 
president. 
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cylinder engine, chassis, and body with the assistance of two fellow Edison employees.  

Built in a garage behind Ford’s rented house, the quadricycle weighed only 500 pounds 

and used bicycle wheels with pneumatic tires.  After completing a successful test run in 

May, 1896, Ford sold it so that he could begin building a new vehicle. 

Ford’s second and improved horseless carriage was completed in the summer of 

1899 with the help of a carriage blacksmith.  Though still lightweight, it was substantially 

stronger than the quadricycle, which had been made almost entirely from wood.  In 

August, Ford resigned from Edison after he and his financial backers had established the 

Detroit Automobile Company.  The company announced ambitious plans for production 

in 1900, but the shop encountered a number of supply problems.  According to Nevins 

and Hill (1954), the company’s car also was probably too expensive and not quite ready 

for production.  Ford apparently wanted to design a better car but was vetoed by the 

stockholders.  Though the Detroit Automobile Company did produce a few vehicles, it 

soon ground to a halt and was dissolved in January, 1901.   

Undaunted, Ford decided to build a racer and use it to gain recognition.  His 

racing successes reinvigorated his investors, who reorganized the old Detroit Automobile 

Company as the Henry Ford Company in November, 1901.  Unfortunately, dissension 

arose over Ford’s preoccupation with racing and his dissatisfaction with the financial 

arrangements of the new company.  The stockholders eventually hired Henry Leland of 

Leland & Faulconer to complete the design of a commercial car and begin production.  In 

March, 1902, Ford left and Henry Leland took over the company, which was renamed the 

Cadillac Automobile Company. 
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Ford then joined forces with a new assistant, C. Harold Wills, who, much like 

Ford, had keen mechanical instincts and preferred to learn by doing.  Wills took charge of 

designing two new racers, one of which set a speed record in October 1902 by averaging 

a mile in one minute and six seconds.  Ford, however, was no longer entirely focused on 

racing.  Despite his prior business failures, he was determined to build and produce a car 

to replace the family horse.  In the summer of 1902 he began planning an inexpensive 

motor vehicle that included a novel, vertical engine design that resulted in less vibration, 

noise and wear.  In August, 1902, Ford established a partnership with a coal merchant, 

Alexander T. Malcomson, to produce a pilot model.  The partnership would become the 

Ford Motor Company in June, 1903, and begin production of the Model A. 

3.4 Technical and Institutional Context 

3.4.1 Industrialism, Individualism, Capitalism, and the Progressive Movement 

By the beginning of the 20th century, increasing industrialism had brought 

prosperity and a rising quality of life to many.  While technological innovations 

facilitated the exploitation of natural resources and a phenomenal growth in productivity, 

these developments rested on fundamental philosophies and the institutional 

arrangements based on them.  The original U.S. settlers had come to America to escape 

religious persecution and were heavily influenced by egalitarian ideals.  These ideals 

shaped the U.S. Constitution and Bill of Rights, which sought to protect individual rights.  

Thus, the idea of individualism, which stresses human independence and the importance 

of individual self-reliance and liberty, was a fundamental American ideology. 

This individualism was also reflected in the development of American economic 

doctrine advocating private ownership of property over collective or state arrangements 
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and individual autonomy in economic decision-making.  In the 19th century, many 

Americans believed in strict adherence to these ideals.  In such strict free-market 

economics, or laissez-faire capitalism, the state has no responsibility to intervene in 

markets to maintain a desired wealth distribution or to protect citizens from poverty.  In 

addition, in the laissez-faire view, the government should not create legal monopolies or 

break up de facto monopolies. 

By the late 19th century, it was clear that not everyone was sharing in the 

prosperity wrought by industrialism and capitalism.  The rise of factory production 

required an unprecedented number of semi- or unskilled workers, which were drawn 

from the countryside and from an influx of immigrants.  Rural farm culture was eroded 

while crowded urban slums arose to house this large population of poorly compensated 

factory workers.  The pollution from factories combined with wastes from the slums to 

create unhealthy living conditions which the wealthy and middle-class soon sought to 

escape.  Although the growing middle-class owed its prosperity to industrialism and 

capitalism, increasing tensions in the large working class threatened the security of their 

new-found socio-economic position.  Meanwhile, a select few were becoming 

phenomenally rich as their business enterprises grew to colossal proportions. 

A growing faction began to view capitalism as unfair and exploitative and felt that 

an increasingly corrupt government failed to serve its citizens.  Activists began pursuing 

a wide range of social, economic, and political reforms to cure American society from the 

problems associated with industrialism.  The ‘progressive’ ideals of these reformers 

diverged from the strictly individualist view and often leaned toward socialism.  Drawn 

from the urban educated middle-class, the Progressives believed that government should 
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play a role in solving social problems, establishing fairness in economic matters, and 

improving the welfare of all citizens.  The movement sought to remove corruption from 

government and give people more participation in and direct control over the political 

process.  The Progressive movement was not coherent and many reformers disagreed on 

issues and approaches, but in general, they sought to regulate business practices, improve 

working conditions, and address health hazards.  Progressive issues included temperance 

(prohibition), child labor and welfare, safe and sanitary food and drugs, the right to 

collective bargaining, conservation of natural resources, immigration control, women’s 

suffrage, and trust regulation. 

Activists worked at the local, state and national levels, and much of the 

movement’s success can be attributed to publicity generated by muckrakers – writers like 

Upton Sinclair who detailed the horrors of poverty, urban slums, factory conditions, and 

child labor.  Local efforts attacked political corruption, addressed child welfare, 

suppressed red-light districts, expanded schools, and constructed playgrounds.  At the 

state level, Progressives promoted minimum wage laws for women, industrial accident 

insurance, child labor restrictions, and factory regulation.  Among the movement’s 

successes at the national level were the Interstate Commerce Act passed in 1887 which 

addressed issues of railroad abuse and price discrimination; the Sherman Anti-trust Act 

passed in 1890 authorizing federal action against the formation of trusts and the restraint 

of trade; the Pure Food and Drug Act passed in 1906 providing for federal meat 

inspection and prohibiting the manufacture, sale, and transportation of adulterated food 

products or poisonous patent medicines; the 18th Amendment ratified in 1919 prohibiting 

the manufacture, sale, and transportation of alcohol; the 19th Amendment ratified in 1920 
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granting women the right to vote; and the development of the National Park system 

beginning in 1902. 

3.4.2 Emerging Markets and Fuel Infrastructure, 1895-1900 

Around the turn of the century, gasoline automobiles were competing with steam 

and electric cars, each of which had niche markets, as well as horse drawn vehicles and 

bicycles which had established markets.  By 1899, around 30 manufacturers had 

produced 2,500 motor vehicles.  Based on their interpretation of the functional 

requirements of the automobile and on the product and production technologies with 

which they were experienced, individual entrepreneurs developed a variety of product 

solutions that could provide personal motorized travel.  Motor vehicles varied in terms of 

motive power, mechanism of power transmission, location of engine, body style, and a 

multitude of design characteristics.  Consider the great variety within just gasoline cars:  

Nothing was certain, all was in process of experiment.  There were offered cars 
with engines of one, two, three, four, or even six cylinders.  The engine could be 
of either the four-cycle or two-cycle type.  The cylinders could be parallel or 
opposed; they could be set in the chassis either horizontally or vertically; they 
could be mounted under the body, under the hood, or at the rear of the car near 
the axle.  The engine might be either air-cooled or water cooled.  Steering could 
be by bar, tiller, or wheel.  The drive might be by shaft, through bevel gears, or 
by chain.  If by chain, it might be either double or single.  The transmission could 
be either planetary or sliding gear; it might have either 2, 3 or 4 speeds forward.  
Finally… the ignition might be by either battery or magneto; if batteries were 
employed, they could be either dry or storage; if magneto, this might be of either 
high or low tension (Epstein, 1972, p. 87-89). 

No doubt the bewildering variety of technical configurations caused many to 

postpone purchasing a motor carriage.  More significant, however, was the fact that 

automobiles were expensive to purchase and maintain.  Parts wore out quickly or broke 

suddenly.  Springs lasted only 1,200-2,000 miles and tires were only warranted for 2,000-

3,000 miles (Epstein, 1972).  Because parts were not standardized among vehicles nor 
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produced in volume, they were extremely expensive.  It is not surprising, then, that the 

wealthy elite were the first to purchase motor vehicles.  Nevins and Hill (1954, p. 197) 

describe the development of a ‘special market’ for automobiles among the social leaders 

of the East, advertised by “lavish activities not unworthy of the Arabian Nights.”  The 

son of a banker initiated the era in 1897 with the purchase of a French car, making it 

“good form” to own an automobile.  By 1900, “nearly everyone at Newport owned ‘a 

machine,’ and some two or three… Naturally the fashion in the East became the fashion 

elsewhere.” 

Among these early owners, some of the men favored gasoline cars while nearly 

all the women used clean quiet electric vehicles which they used for social calls, 

shopping, and riding downtown.  Many of the wealthiest households could afford to own 

more than one type of vehicle – a horse and carriage, an electric vehicle for short trips 

around town for the lady or doctors making late night calls, and a gasoline vehicle for 

touring the countryside.  This created what Kirsch (2000) refers to as the hybrid 

household.  According to Flink (1970, p. 57), Harper’s Weekly estimated in 1906 that 

“there are more than 200 persons in New York who have from five to ten cars apiece… 

The string of vehicles owned by an enthusiast of this class will include two or three 

touring cars, a pair of racers, a couple of broughams, a runabout, a station-car, and a work 

car.” 

Early observers expected the alternative motive powers to share the eventual 

established market.  Horseless Age editor Albert Clough commented in 1903 that 

“experience will furnish the decisive evidence which shall assign each motive power to 

its appropriate sphere” (cited in Kirsch, 2000, p. 217).  Initially, steam and electric 
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vehicles offered distinct advantages over internal combustion engines.  Steam engine 

technology was more mature and more people had experience operating and repairing 

them, while electric vehicles were quiet, clean, easy to operate, and less mechanically 

complex because they did not require a clutch and multi-speed transmission.  As a result 

of these advantages, more steam and electric automobiles were produced in the early 

years of the industry.  In 1900, 57 U.S. manufacturers produced 4,192 motor vehicles of 

which 1,681 were steam, 1,575 were electric, and 936 were gasoline (Flink, 1970; 

Mowery and Rosenberg, 1998).  Locomobile steamers, based on the Stanley patent, 

accounted for around 5,000 of the 22,000 automobiles produced between 1899 and 1902. 

Poor quality intercity roads produced regional isolation and sustained the unique 

characteristics of local markets (Kirsch, 2000).  In 1900 in Chicago, electric vehicles 

accounted for 65% of motorized vehicles; in 1902 in Portland, Maine, 88% of vehicles 

were steam; in Cleveland, 49% of the first 100 vehicles registered were internal 

combustion.  According to Flink (1970), about half of the 100 automobiles in Los 

Angeles in early 1902 were electrics, with the remaining half divided between steam and 

gasoline.  But by 1904 in Cleveland, internal combustion engines accounted for 61% of 

the vehicles. 

Fuel infrastructure played a significant role in the development of these regional 

preferences.  Steam cars were designed to run on kerosene or gasoline and which nearly 

all rural general stores in the 1890s sold for lighting and stationary gasoline engines.  

Prior to the incorporation of condensers beginning in 1901, steam cars also required 

clean, soft water, which in many areas could be obtained at public watering troughs that 

were made available for horses.  Gasoline cars also benefited from the general 



 

160 

availability of gasoline, but there were issues of quality, as some retailers diluted the fuel 

with water or heavier petroleum fractions.  In rural areas, gasoline and steam engines also 

benefited from the relative availability of mechanics experienced with repairing engines 

used as stationary power sources.  Meanwhile, electricity was only available in parts of 

some urban centers and output was unreliable.  Furthermore, connecting to the power 

supply was complicated by the lack of a standard plug or operating voltage (Kirsch, 

2000). 

3.4.3 Enthusiast Publications and the Popular Press 

The first publication devoted to the automobile, Horseless Age, appeared in 

November, 1895.   Enthusiast publications were read by motorists and also served 

communication among engineers.  While hundreds of early press articles revealed a 

strong skepticism of motor vehicles, others extolled the virtues of automobiles in glowing 

prose.  Consider the following description found in the inaugural edition of Horseless 

Age (cited in Nevins and Hill, 1954, p. 165): 

A pleasing prospect it is, that rises before us in contemplating this array of 
horseless vehicles!  From the gradual displacement of the horse in business and 
pleasure, will come economy of time and practical money-saving.  In cities and 
towns the noise and clatter of the streets will be reduced, a priceless boon to the 
tired nerves of this overwrought generation…  On sanitary grounds too the 
banishing of horses from our city streets will be a blessing.  Streets will be 
cleaner, jams and blockades less likely to occur, and accidents less frequent, for 
the horse is not so manageable as a mechanical vehicle. 

The general consensus among proponents was that each option for motive power 

had its place in the market.  Established professional publications like Electrical World 

and Electrical Engineer expressed optimism for the future of electric vehicles, citing the 

maturity and innate superiority of the underlying technology.  However, editorials 

published in Horseless Age in 1899 took a stance against attempts by the Electric Vehicle 
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Corporation (EVC) to monopolize the market, saying that trust-building was premature, 

would slow technological and market advance, and would only benefit investors.  The 

magazine also reported discouraging results from European electric cab experiments and 

battery testing and its editorials soon lambasted the technology as well as the EVC.  After 

the EVC plan failed, the editor of Horseless Age took a more balanced position and 

claimed its actions had been in the interests of saving the technology and industry from 

unscrupulous speculators (Krisch, 2000).  

In 1897, Albert Pope pioneered the use of the elaborate press interview for 

introducing new automobile models.  Other manufacturers, including Henry Ford, 

adopted his tactics, making it common industry practice.  The articles produced from 

these interviews were read more like advertisements than balanced journalism.  A 

reporter for the Detroit News-Tribune rode in Ford’s prototype vehicle for the Detroit 

Automobile Company in the fall of 1899.  His vivid account appeared on the front page 

under the headline (cited in Nevins and Hill, 1954, p. 180): 

SWIFTER THAN A RACE-HORSE  
IT FLEW OVER THE ICY STREETS 

Thrilling Trip on the First Detroit-Made Automobile, 
When Mercury Hovered About Zero 

It was also the popular press which initiated races in the United States, beginning 

with the Chicago Times-Herald race in 1895.  Manufacturers also enlisted the press to 

publicize their vehicles’ performance in long distance reliability tests.  Alexander Winton 

was the first to follow this tactic when a reporter accompanied him on his second 800-

mile trip from Cleveland to New York City in 1899. 
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3.4.4 Races, Demonstrations, and Trade Shows 

Speed and reliability races captured the public’s interest and demonstrated the 

performance, endurance, and dependability of competing technologies and models.  The 

earliest automobile races were held in France, where twenty-five horseless carriages 

competed in a race in July, 1894.  Of the fifteen that completed the course, the winner 

was a De Dion steam car which was nearly tied by a gasoline Peugeot; a gasoline 

Panhard & Levassor finished fourth.  In a 727-mile French race held the following year, a 

Panhard & Levassor made the fastest time, but, as a 2-seater, it was ineligible for the 

prize which the Peugeot Brothers took.  Already, the gasoline internal combustion engine 

was gaining on the competition.  Shortly afterward, Scientific American conceded that 

“[u]pon the whole, it was the lightest vehicles that behaved best on the road, and this fact, 

now universally established, proves the superiority of gasoline and naphtha over any 

other motive power at present known” (cited in Nevins and Hill, 1954, p. 139). 

The first U.S. reliability race was sponsored by the Chicago Times-Herald in 

November, 1895.  Since none of the 89 potential entrants was ready by race day, the race 

was postponed three times.  On the third try, only two contestants were ready: a Duryea 

and a Benz, both gasoline-powered.  The organizers allowed a 92-mile consolation run 

that the Benz won after the Duryea ran into a ditch to avoid a farm wagon.  On the fourth 

try, six vehicles started the race, which required the competitors to brave 30-degree 

temperatures and negotiate deep snow that had fallen the day before.  Two electric cars 

and a Benz dropped out after brief runs.  Another Benz lasted eight hours before the 

engine died.  Only two completed the 52.4 mile course: the same Benz and Duryea that 
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had completed the consolation run.  The Duryea emerged the winner, averaging only 6.66 

mph through the snowy streets of Chicago (Nevins and Hill, 1954; Rubenstein, 2001). 

Despite the encouraging performance of gasoline cars in early reliability races and 

demonstrations, Americans showed a definite initial preference for steam.  Two years 

after the Chicago Times-Herald race, an industry expert asserted that “the vast majority 

of people would prefer a smooth-running, reliable steam engine for use as the propelling 

medium of a pleasure or light business carriage, to the evil-smelling, dangerous, wasteful, 

and at best uncertain and unreliable engine heretofore chiefly employed for that purpose 

in motors of recent construction” (Nevins and Hill, 1954, p. 141). 

The first U.S. track race was held in Rhode Island in 1896 with five Duryeas and 

two electric cars competing.  An electric won, averaging 26.8 mph and eliciting a cry 

from spectators of “get a horse!” (Flink, 1970, p. 42).  But the pace soon picked up and 

gasoline-powered cars quickly demonstrated an advantage over the competing options.  

An early speed race at Grosse Pointe race track near Detroit in October, 1901, held 

separate competitions for steam, electric, and gasoline cars.  The winning cars then 

participated in an exhibition, with the gasoline car completing one mile in 1 minute, 12.4 

seconds compared to 1 minute, 52 seconds for the steam car, and more than 4 minutes for 

the electric (Rubenstein, 2001).  However, in 1906, a Stanley Steamer averaged 127.7 

mph in a one mile race at Ormond Beach, Florida (Flink, 1970). 

Sanctioned races placed primary emphasis on speed and revealed weaknesses and 

strengths in technologies and designs (Flink, 1970).  However, racing tended to reinforce 

the definition of the automobile as an expensive toy for the very wealthy and inhibited 

diffusion into wider markets.  Ford recalled (Ford and Crowther, 1922, p. 36):  
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When it was found that an automobile really could go and several makers started 
to put out cars, the immediate query was as to which would go fastest. It was a 
curious but natural development – that racing idea. I never thought anything of 
racing, but the public refused to consider the automobile in any light other than 
as a fast toy. Therefore later we had to race. The industry was held back by this 
initial racing slant, for the attention of the makers was diverted to making fast 
rather than good cars. It was a business for speculators. 

Meanwhile, long-distance reliability demonstrations proved that the gasoline 

automobile could successfully negotiate the nation’s poor roads, enabling the new sport 

of touring.  In the summer of 1897, Alexander Winton drove one of his company’s cars 

800 miles from Cleveland to New York City in less than seventy-nine hours.  Two years 

later, he repeated the trip in only forty-eight hours, taking with him a newspaper reported 

to publicize the trip en route.  Hoping to prove that his moderately priced, light car was 

reliable for touring, Ransom Olds picked a tester from his factory to drive the new curved 

dash Oldsmobile from the Detroit plant to the New York Automobile Show in 1901.  

Despite extremely muddy roads, the Oldsmobile made the trip in nine days, requiring all 

of the myriad spare parts the driver had taken along (Flink, 1970). 

In the summer of 1903, three separate expeditions completed cross-country trips 

from San Franscisco to New York City.  The first, and perhaps most noteworthy, was 

undertaken by a Vermont physician, Horatio Nelson Jackson, and a hired chauffer in a 

Winton automobile without the sanction or assistance of the manufacturer.  The two took 

shifts driving over rough, rock-strewn dirt roads, through mud and creeks, using a block 

and tackle to dislodge the automobile when it got stuck and frequently patching 

punctured inner tubes.  More than once, the team was stranded for days awaiting 

replacement batteries, tires, and parts, but Jackson proved that private motorists could 

undertake long-distance motor trips.  Jackson completed the trip in sixty-three days.  The 

two other trips, one in a Packard and the second in an Olds curved dash, were undertaken 
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by the manufacturers while Jackson was en route.  According to Flink (1970), Olds’ 

unprecedented sales success in 1902 and 1903 was to a large extent attributable to the 

favorable publicity generated by these accomplishments. Such feats fueled popular 

expectations that the horseless carriage might actually become accessible to the masses 

and eventually displace the horse. 

In addition to races, automobile manufacturers followed the lead of the bicycle 

industry and began using trade shows to publicize their new models.  The first 

automobile show was held in February, 1899, in conjunction with the bicycle exhibit at 

Madison Square Garden.  The first independent automobile show was held in November, 

1900.  American and foreign manufacturers displayed thirty-four models, of which 

nineteen were gasoline-powered, seven were steam-powered, six were electric, and two 

combined gasoline internal combustion engines and electric motors.  One manufacturer 

of gasoline vehicles built a wooden hill and hired a stunt driver to demonstrate the the 

Gasmobile’s hill-climbing, braking, and backing abilities (Nevins and Hill, 1954). 

3.5 Synthesis and Analysis 

This section synthesizes the history of the emergent phase of the automobile 

industry presented in this chapter and analyzes it within the framework presented in 

section 2.6.  Section 3.5.1 describes the changes in the technical, institutional, and 

ecological complex (TIEC) resulting from the success of the bicycle that initiated the era 

of innovative ferment from which the automobile industry emerged.  Section 3.5.2 

identifies the initial markets for automobiles and describes the functions that motor 

vehicles provided in these markets.  These markets emerged due to multiple factors, 

including problems with the existing carriage regime, the combination of functional 
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features which provided advantages over existing options, and the articulation of a new 

functionality.  Product design is then described as arising from multiple regimes and 

benefiting from innovation in multiple industries.  Section 3.5.3 identifies spillovers and 

learning-by-doing as the primary mechanisms of learning and describes innovation as a 

cumulative and synthetic process during this era.  Section 3.5.4 describes the relationship 

between the agents of change and existing regimes and the role of these agents as 

heterogeneous engineers.  I also identify four examples of the emerging technological 

nexus role which links variation and selection.   

Section 3.5.5 then summarizes the findings of this analysis as they relate to the 

research questions posed in Chapter 1.  I find that the role of niches during the emergent 

phase of the motor vehicle industry is consistent with the QE and MLP theories in several 

ways.  However, while the QE and MLP approaches focus on a single existing regime, 

this analysis shows that considering misalignments in multiple regimes along with other 

developments in the TIEC is critical to understanding why the automobile industry 

emerged when it did and in the particular niche markets that it did.  Further, while these 

theories identify learning-by-doing and learning-by-interacting with users as the primary 

mechanisms in learning about user’s needs and improving product performance, I find 

that innovation in this era was highly synthetic and resulted from cumulative progress in 

products and processes over more than a century of development.  Thus, knowledge 

spillovers were a significant, if not the primary, mechanisms underlying the development 

of this new innovation.  Finally, the activities of the agents of change in an emerging 

technological nexus support the assertion that, in order to realize successful designs, 
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entrepreneurs must behave as heterogeneous engineers, solving social, economic, and 

infrastructural as well as technical issues. 

3.5.1 Initiation of an Era of Innovative Ferment 

Evolutionary theories generally assert that innovation is triggered by new 

scientific or technical breakthroughs – a new invention.  The QE and MLP theories focus 

on transitions rather than the initial introduction of radical technologies, though they 

assert that innovations emerge in niches.  However, the MLP identifies tensions or 

misalignments in the existing regime and landscape developments as opportunities for 

niche branching, whereby the technology then breaks into new niches.  The motor vehicle 

was not an innovation based on a recent scientific or radical breakthrough.  Rather, 

innovation was initiated by two factors arising from the bicycle regime: 1) the bicycle 

altered perceptions about personal travel; and 2) the bicycle was reaching technological 

limits.  This finding, discussed further in this section, supports the description of 

innovation in the framework described in section 2.6 where innovative ferment is 

triggered by any change in the TIEC – technical, institutional (economic, social, etc.), or 

ecological – which entrepreneurs can exploit to create value. 

At the dawn of the motor vehicle industry, the underlying technologies for 

generating power from steam, electricity, and gasoline did not represent recent 

inventions.  Most notably, practical steam engines were developed around 1800 and were 

in use in rural America as early as 1830.  Self-propelled traction engines were in use in 

the U.S. beginning around 1873 and Roper was building experimental steam-powered 

vehicles capable of road travel as early as 1860.  Indeed, steam technology was capable 

of fulfilling the functional requirements for basic personal road transport 20-30 years 
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before the first commercially successful automobiles were built.  A handful of 

entrepreneurs experimented with it, perhaps sensing a latent demand, but the market did 

not materialize.27   

In the words of Utterback and Abernathy (1975), “[t]echnological innovations 

which may have market application, lie fallow until markets can be identified or created.”  

One could speculate that the market may have developed earlier if a particularly 

determined product champion with exceptional vision and technical abilities had built a 

functional, light, steam-powered motor carriage and invested in a marketing strategy in 

line with that of the I.M Singer & Company for sewing machines and Albert Pope for 

bicycles.  But that is not how history unfolded.  The automobile industry did eventually 

pattern its marketing strategy in this manner, using journals, demonstrations, races, and 

trade shows, but not until after 1895. 

Given that the development of a practical gasoline engine was nearly 

simultaneous with the commercial development of motor carriages, it is tempting to 

conclude that this innovation served as a critical enabling technology – the technology 

that initiated the ‘technology push.’  But while the gasoline engine quickly became the 

motive power of choice, it was a less mature technology compared to steam and not the 

preferred option at the outset of the industry.  Contemporaries did not attribute the 

development of the automobile to the invention of the gasoline engine.  In his 

reminiscences of 1937, Hiram Percy Maxim (cited in Nevins and Hill, 1954, p. 133) 

recalls, 

                                                 
27 Latent demand generally refers to desires that consumers cannot satisfy due to a lack of money or 
information regarding the product’s availability.  As used here, it refers to desires that consumers cannot 
satisfy due to product unavailability.  As such, it cannot be revealed through market signals (price and 
quantity). 
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As I look back, I am amazed that so many of us began work so nearly at the same 
time, and without the slightest notion that others were working on the problem.  
In 1892, when I began my work on a mechanical road vehicle, I suppose there 
were fifty persons in the United States working on the same idea.  Why did so 
many different and widely separated persons have the same thoughts at the same 
time?... 

It has always been my belief that we all began to work on a gasoline-engine-
propelled road vehicle at about the same time because it had become apparent 
that civilization was ready for the mechanical vehicle… It has been the habit to 
give the gasoline-engine all the credit for bringing the automobile… In my 
opinion this is a wrong explanation… 

The reason why we did not build mechanical road vehicles before this [1895], in 
my opinion, was because the bicycle had not yet come in numbers and had not 
directed men’s minds to the possibilities of independent, long-distance travel 
over the ordinary highway.  We thought the railroad was good enough.  The 
bicycle created a new demand which it was beyond the ability of the railroads to 
supply.  Then it came about that the bicycle could not satisfy the demand which it 
had created.  A mechanically propelled vehicle was wanted instead of a foot-
propelled one, and we now know that the automobile was the answer. 

Like Maxim, many historians credit the bicycle with altering Americans thinking 

about the possibilities of transport.  While the railroad had brought rapid long-distance 

transport, passengers had to adjust their schedules and routes to rail schedules and were 

subjected to unfair pricing policies.  The bicycle brought both independence and relative 

speed, which agreed with and reinforced an established and growing cultural focus on the 

individual.  Thus, it was the bicycle craze of the 1880s and 1890s that began to give 

many entrepreneurial and mechanically minded individuals the same vision.  Riders like 

Maxim began to think of adding mechanical power to relieve the hard physical labor 

required to travel distances of any consequence.  According to Abernathy (1978, p.11):  

Emerging consumer needs, not new technological capabilities, triggered the rapid 
development of the U.S automobile industry at the turn of the century.  A 
practical steam-powered car could have been produced twenty years earlier… 
[T]he industry was born from the consumer’s desire for a light personal 
transportation vehicle, a desire stimulated by the bicycle boom of the 1890s.  
Hitherto, the motorpowered vehicle had been envisioned as a product for the 
commercial transportation industry, not the consumer. 
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From the perspective of bicycle’s technological paradigm, the success of the 

bicycle had altered the TIEC in terms of consumer perceptions of personal travel.  

Consumers wanted better performance in terms of speed and distance than the bicycle, 

based on human power, could provide.  Development of the bicycle was reaching 

technological limits.  By stimulating a demand which it could not fulfill, its very success 

would ultimately lead to the industry’s senescence.28  It was this change in the TIEC – the 

developing desire for rapid long-distance personalized transport – that entrepreneurs in 

the late 1880s began to exploit to create economic value out of the invention of motorized 

transport that had occurred to Sir Isaac Newton as early as 1680 and had become 

technologically feasible with the steam engine in 1860.  Serendipitously, entrepreneurs 

now could also exploit the innovation of the practical gasoline engine. 

3.5.2 Initial Niche Markets, Product Definition, and Design 

Two developments that originated with the bicycle regime – the alteration of 

perceptions regarding personal transport and approaching technological limits – explain 

why entrepreneurs began experimenting with motor vehicles when they did.  However, 

these developments do not fully explain why the automobile found commercial success at 

that time and in the markets that it did.  This section identifies four additional factors that 

contributed to the commercial success of the motor vehicle and to the definition of its 

function and initial niche markets: 1) difficulties moving forward with the existing 

carriage regime for providing urban transport; 2) difficulties in the railroad regime: 

abuses of monopoly power and price discrimination;  3) a growing cultural trend known 

                                                 
28 Due to later changes in the TIEC and resultant shifts in consumer preferences, the U.S. bicycle industry 
would eventually be reborn with the functional characteristics of the product redefined strictly for sport 
rather than practical transport. 
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as Progressivism; and 4) new cultural values for sport, recreation, and the healthful 

benefits of escaping urban centers.  Thus, the emergence of the automobile industry can 

only be understood by considering misalignments in multiple regimes along with other 

developments in the TIEC.  This finding provides additional support for the inclusion of 

technical, institutional and ecological factors among the triggers of innovation.  It also 

supports the assertion that a framework for analysis of transitions should include multiple 

regimes as discussed in section 2.4.4 and accounted for in the framework described in 

section 2.6. 

With its unstable design, the first commercially successful bicycle, the ordinary, 

limited cycling to a sport for adventurous young men.  Thus, the bicycle craze began with 

the popularity of racing among the wealthy.  After the introduction of the safety bicycle, 

cycling became accessible to men, women, and children of all physical abilities.  The 

bicycle could be used as a form of clean urban transport for short trips, and while it found 

some use in this function, for the most part it remained functionally defined as providing 

sport and recreation.  The new middle class escaped the increasingly crowded and 

polluted cities to enjoy the healthful benefits of cycling in parks and the countryside.  

However, longer trips and transport of any cargo required too much effort for a ‘human-

powered’ vehicle.  Therefore, the bicycle had established new niche markets but for the 

most part did not compete with horse-drawn vehicles.  Yet the bicycle aroused a desire to 

combine the functionalities of flexibility and speed with long-distance travel.  

Entrepreneurs interpreted this challenge as an opportunity for a radically new technology 

– motorized transport, most commonly in the form of four-wheeled motorized carriages 

and wagons but also as motorized bicycles. 
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Because of the technology’s complexity and the state of industrial production, the 

first motor vehicles were costly to manufacture.  However, the idea of individualism, 

freedom, speed, and the attendant danger appealed to wealthy young men who were 

willing to pay for excitement.  As a result, the earliest applications of motor vehicles 

were racing and cross country touring.  Much as bicycling originally had been conceived 

as a sport for the wealthy and daring, the earliest automobiles were functionally defined 

as entertainment for the rich.  Because of their cost, they also conveyed social prestige, as 

motoring provided a very public demonstration of wealth.  By combining the flexibility 

of bicycles and horse-drawn vehicles with the speed and long distance capabilities of rail, 

touring provided a new function – rapid, cross country, personal transport – that fulfilled 

the desire for entertainment, sport, and thrill.  In this function, motor vehicles did not 

compete with rail transport and carriages because those existing technologies could not 

provide it.  However, demonstrations of the technology fueled expectations that motor 

vehicles might become accessible to the masses, freeing them from the tyranny of the 

railroads and the limitations of the horse.  This niche was served by steam and gasoline-

powered motor vehicles. 

Entrepreneurs were experimenting with a variety of technological approaches and 

another market niche emerged for more practical use on shorter trips in cities where 

animal waste from the use of carriages was creating problems.  This market consisted of 

wealthy businessmen, bankers, their wives, and also doctors.  Electric vehicles were easy 

to operate, quiet and odorless and therefore were best suited to this niche.  In this market, 

electric vehicles competed with carriages, electric rail systems, and bicycles.  However, 

electric vehicles combined the advantageous features of each without the disadvantages.  
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They were as clean like electric rail and bicycles, flexible like carriages and bicycles, and 

did not require the physical exertion of bicycles or the stabling and upkeep of horses.  

Use of electric motor vehicles also did not require investments in costly rail lines.  

Because electric vehicles were also very expensive, they provided both practical transport 

and social prestige and were conceived as a direct replacement for fine carriages in urban 

transport. 

The bicycle craze provided more than the beginnings of demand for personal 

transport and the inspiration for innovation.  The earliest motor vehicle designs borrowed 

heavily from bicycle technology, employing tubular frames and pneumatic tires and 

transmitting power to the wheels using sprockets and chains.  Some designs also followed 

bicycle architecture, such as Benz’s tricycle, Daimler’s motorcycles, and Riker’s electric 

tricycle.  However, early motor vehicle designs also evolved from carriages and steam 

traction engines.  The materials, techniques, and organization of production arose largely 

from experience in the bicycle and carriage manufacturing trades, the former benefiting 

from process innovations developed for the arms and sewing machine industries.   

3.5.3 Mechanisms of Learning and Innovation 

Like most new technologies, the automobile was immature when introduced and 

required significant improvements in performance.  The QE and MLP theories stress the 

importance of learning-by-interacting with users and learning-by-doing in this critical 

process.  However, innovation during the emergent phase of the automobile industry was 

highly synthetic and resulted from cumulative progress in products and processes over 

more than a century of development.  As discussed in this section, entrepreneurs relied on 

learning-by-doing to synthesize existing technologies from a variety of arenas into an 
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innovative new application.  Thus, spillovers were a significant, if not the primary, 

learning mechanism underlying the development of this new innovation.   

Although superficially a radical innovation, the automobile arose from a 

continuous evolution in product and process technologies (Rosenberg, 1963) as well as 

consumer demand.  Spillovers from the stationary engine and bicycle industries appear to 

be the most significant mechanism involved in innovation during the emergence of the 

motor vehicle industry.  The automobile industry relied on the continuous, incremental, 

and cumulative technical progress in production techniques over more than a century in a 

myriad of seemingly unrelated industries: arms manufacturing, sewing machines, 

bicycles, machine tools, and steel working.  As Rosenberg (1963) points out, the machine 

tool industry served a critical role in transmitting these spillovers in technical knowledge 

across industries.  This knowledge was embodied in the machines and manufacturing 

facilities themselves, but also in human capital as vividly illustrated by the careers of 

Henry Leland, Ransom Olds, and the Dodge and Duryea brothers.  This dynamic would 

continue to play out in the first decade of the 20th century. 

Firms that stayed connected to customers and suppliers evolved into new 

applications of expertise previously developed for existing applications.  In this manner, 

the evolution of specific manufacturing firms from the production of arms to sewing 

machines to bicycles to automobiles facilitated the transmission and accumulation of 

knowledge in the form of plants, capital equipment and human capital.  This progression 

is illustrated by the Weed Sewing Machine Company, which contracted with the Sharps 

Rifle Manufacturing Company, acquired some of its facilities and personnel, and evolved 

into the Pope Manufacturing Company, which made bicycles then transitioned to 
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automobiles.  Thus, certain firms exhibited longevity and success in multiple industries 

over time based on the cumulative nature of knowledge and learning as well as the firm’s 

willingness and ability to adapt to change – both technological and social. 

Successful early automobile manufacturers, then, were “less likely to be 

individual inventors starting a completely new business than men who added the 

production of automobiles to an existing operation” (Rae, 1959, p. 8).  New firms like the 

Ford Motor Company that lacked such legacies were largely assemblers of components 

purchased from existing machine shops and firms in the bicycle and carriage industries, 

as will be illustrated further in the next chapter. However, many of them benefited greatly 

from hiring individuals from these industries that brought with them the largely tacit 

knowledge of armory practice.  Unsuccessful firms, like Duryea, were unable to bring 

process technology into the production of technically successful product innovations.   

In general, entrepreneurs were relying on learning-by-doing to synthesize existing 

technologies from a variety of arenas into an innovative new application.  Automotive 

pioneers were working with limited finances and, in many cases, only in their spare time 

while working paid jobs or running another business.  Epstein (1972, p. 28) asserts that 

prior to 1900, road vehicles were not ‘manufactured,’ but were “crude products of home 

or workshop experiment,” built using improvised tools and, wherever possible, 

borrowing parts from steam engines, bicycles, and carriages.  Experimental designs were 

sometimes abandoned because their complexity made commercial fabrication impossible.  

According to Epstein, true commercial manufacturing did not begin until after 1900. 

Contrary to Rycroft and Kash’s (1999) assertion that the creativity in these early 

years were provided by individual entrepreneurs, it is clear that these innovations were 
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produced by multiple agents who collectively synthesized existing artifacts and threads of 

thought from wide ranging industries and disciplines with personal inspiration and insight 

to create a new product or concept.  Even the European inventors of gasoline engines and 

motor carriages generally were inspired by the work of others and worked with an 

assistant or partner.  Etienne Lenoir was inspired by the work of Phillipe Lebon some 60 

years earlier; Nikolaus Otto was inspired by Lenoir and collaborated with Eugen Langen, 

Gottlieb Daimler, and William Maybach.  In the U.S., the Duryea and Dodge brothers 

worked together as a team and Ford relied on a talented team of engineers and metal 

workers, notably including C. Harold Wills.   

Epstein (1972, p. 27-28) describes the American automobile entrepreneurs as 

experimenters that “both through the copying of foreign designs and through a great deal 

of more or less original work… drawing on the mechanical, chemical, and electrical 

developments of decade piled upon decade, succeeded in building practical self-propelled 

road vehicles…”  They worked steadily to improve their designs and construction 

methods through the “synthesis and skillful application of more or less well-known 

principles in order to produce results of an order higher than was known before.”  While 

already evident, teams of entrepreneurs, innovating through synthesis, would become 

even more significant in the early 20th century. 

3.5.4 Agents and Mechanisms of Change 

The QE theory of transitions identifies the technological nexus, where selection 

and variation are linked, as a critical mechanism in the mutual technological and 

institutional adaptations that result in a new technology becoming embedded in the wider 

socio-technical complex.  In this section, I identify the emergence of agents and 
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institutions in the nexus role and trace any connections to existing regimes.  The activities 

these agents of change supports the assertion that, in order to realize successful designs, 

entrepreneurs must behave as heterogeneous engineers, solving social, economic, and 

infrastructural as well as technical issues. 

Automotive entrepreneurs emerged from existing regimes and represented 

stationary engine manufacturers, machine shop mechanics, and bicycle manufacturers.  

Contributions were also made by carriage manufacturers, though entrepreneurs from this 

industry would become more prominent after 1910.  Although these agents of change 

arose from within related existing regimes, they pursued different technical approaches 

based on experience and geography.  A number of established bicycle and sewing 

machine firms, particularly those in the East, began manufacturing automobiles as a 

sideline.  These firms, most notably Pope Manufacturing, generally developed electric 

and steam cars.  Meanwhile, new firms established by Midwestern entrepreneurs with 

expertise in stationary engines or machining, such as Ransom Olds, were more likely to 

pursue less developed and therefore riskier gasoline technology.  These entrepreneurs 

opted to secure outside financing to establish new firms rather than place their existing 

businesses at risk. 

While most innovators began by working in small teams tackling technological 

problems, their roles quickly evolved into that of heterogeneous engineers involved in 

promoting the technology, overcoming public perceptions, altering the use environment, 

and securing financing.  Prior to the turn of the century, we see four examples of agents 

serving the emerging technological nexus role linking variation and selection.  This role 

involves two aspects: interpreting demands from the selection environment into 
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requirements for design, and altering the selection environment, in part by imposing the 

requirements of technology on the selection environment.  Enthusiast publications and 

the popular press were the first institutions to emerge in this intermediary role.  They 

facilitated communication among engineers and as such shaped the shared perceptions of 

designers and entrepreneurs.  They also altered selection by influencing public opinion 

and expectations of motor vehicles, the technological options and specific manufacturers.  

In this role, they were not necessarily a source of unbiased information.  Manufacturers 

also made extensive use of the press beginning with the initiation of the elaborate press 

interview by Albert Pope. 

Albert Pope had a great deal of experience serving in the nexus role for bicycles 

and translated much of that experience to the marketing of motor vehicles.  He was active 

in cycling journals and cycling clubs that lobbied for improved roads, and after 1900 this 

movement shifted to the automobile industry and began to bear fruit (see section 4.5.6).  

This movement represented attempts to impose the requirements of technology on the 

selection environment.  Pope organized the first bicycle trade show to link manufacturers 

and consumers, a practice adopted by the automobile industry, with the first one held in 

conjunction with the bicycle show.  Trade shows advertised new models and provided 

manufacturers with feedback on new designs and innovations.   

Third, Ransom Olds understood that the public was still skeptical of the 

technology and believed motor vehicle design therefore needed to be greatly simplified to 

allow anyone to operate the vehicle and any local shop to repair it.  This interpretation of 

the selection environment resulted in the design of the first mass produced automobile – 

the quite successful Olds curved dash.  Olds also influenced the selection environment 



 

179 

through long-distance demonstrations that altered public perceptions that the automobile 

and long-distance touring were privileges for the wealthy. 

Fourth, automakers began using speed and reliability races to influence public 

opinion of automobiles generally and demonstrate the capabilities of their technical 

approaches and products specifically.  However, races reinforced the image of motor 

vehicles as toys for the wealthy.  Races did more than alter public perceptions and 

expectations; they also stimulated the interest of investors and helped swayed their 

opinion in favor of gasoline engine technology, which was most in need of financial 

backing.  By directing resources to particular firms and technologies, racing altered 

variation as well as the selection environment. 

3.5.5 Summary 

In the 1890’s, the motor vehicle emerged as a technological innovation which, 

though radical as a synthetic whole, resulted from cumulative progress in products and 

processes over more than a century of development.  The primary mechanisms of 

innovation in this era were knowledge spillovers and learning-by-doing.  Conceptions of 

motor vehicles and experimentation trace back to at least the 17th century.  Therefore, the 

automobile was not a new invention, but it emerged as an innovation (a commercial 

product) when five developments in the TIEC provided opportunities that entrepreneurs 

were able to exploit:  

1) the success of the bicycle which altered consumer perceptions about personal 

transportation and created a demand for performance characteristics (greater 

speed, distance, and cargo capacity) that the technology was unable to fulfill due 

to technological limits;  
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2) difficulties moving forward with the existing carriage regime for providing urban 

transport;  

3) difficulties in the railroad regime: abuses of monopoly power and price 

discrimination;  

4) a growing cultural trend known as Progressivism; and  

5) new cultural values for sport, recreation, and the healthful benefits of escaping 

urban centers.   

Only the combination of these developments explains both why the automobile 

emerged in the 1890s rather than earlier and why it emerged in two specific niche 

markets.  This supports the issue raised in section 2.4.4 that an appropriate analytic 

framework should account for multiple regimes, i.e. multiple meso-level systems, as well 

as institutional developments. 

Initially, motor vehicles served two niche markets, both consisting of very 

wealthy consumers, serving the functions of: 1) local urban transport and 2) country 

touring.  Because of the specific requirements of these two niches, the technological 

solutions best suited to each differed.  Electric automobiles were used for short trips 

within cities and were the technology of choice for wealthy women.  They provided 

practical urban transport, conveyed social prestige, and, because they offered both 

cleanliness and flexibility, were attractive as a solution to rising problems with the 

existing animal-powered transport regime in this function.  Thus, it was emerging 

misalignments in multiple regimes that provided an opportunity for electric cars to enter 

the urban niche, where they competed with carriages, electric rail cars, and bicycles.   
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Steam-powered and gasoline ICE vehicles were used for touring the countryside.  

This use represented a new function by combining the flexibility of horse-drawn vehicles 

and bicycles with the speed and long-distance capabilities of rail transport.  This function 

– rapid, cross country, personal transport – provided sport and recreation and conveyed 

social prestige.  Motor vehicles in this application did not compete with the existing 

technologies for practical long distance transport (rail and carriage).  However, to some 

extent, they did compete with bicycles as wealthy urbanites began driving electric-, 

steam-, and gasoline-powered motor vehicles in city parks for recreation.   

Thus, the role of niches in the emergence of the motor vehicle industry is 

consistent with the MLP and QE theories in the following ways:  

1) Radical technologies emerge in niches;  

2) Instabilities or misalignments in existing regimes provide opportunities for radical 

technologies to serve as a solution; 

3) The articulation of new functionalities creates new niche markets; 

4) Niches serve to demonstrate technical feasibility relative to niche market needs; 

5) Niche markets serve to demonstrate the relative advantages of alternative 

technological approaches; and 

6) Within niches, firms develop technical capabilities, establish reputations, and 

form networks for financing, manufacturing, and sales. 

However, while the QE and MLP approaches focus on a single regime, this analysis 

shows that considering developments and misalignments in multiple regimes is critical to 

understanding the emergence of the automobile industry.   
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Agents and organizations serving in the emerging technological nexus role began 

to emerge, with noticeable roots in related regimes.  Many of these institutions included 

individuals like Albert Pope that had been active in these related industries and others 

were patterned after institutions established in these industries.  The Good Roads 

movement began with cycling enthusiasts, and trade shows, press interviews, and racing 

evolved from customs in the bicycle regime.  Agents experienced with stationary engines, 

notably Ransom Olds and Henry Ford, emerged as important agents interpreting design 

requirements based on market and infrastructural requirements while also attempting to 

alter perceptions about gasoline-powered vehicles and the function they could serve.  The 

activities of these agents of change support the assertion that, in order to realize 

successful designs, entrepreneurs behave as heterogeneous engineers, solving social, 

economic, and infrastructural as well as technical issues. 

The turn of the century approximately marks the end of the emergent phase, 

which is characterized by a variety of product designs and configurations, and the 

beginning of the transitional phase, where products begin to converge on a standard 

design.  While there is no sharp delineation between the emergent and transitional phase, 

the year 1900 marks the introduction of the first mass produced automobile, the Olds 

curved dash.  The Olds Motor Works produced about 1,400 vehicles that year and was 

producing up to 40 vehicles per day by 1904.  Several manufacturers would soon achieve 

similar production volumes.  Thus, ‘true’ commercial production began around 1900 

(Epstein, 1972). 
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4.0 Transition and Onset of the Specific Phase 

“…the motorcar business is a fusion of three arts – the art of buying 

materials, the art of production, and the art of selling.” 

-- Sorensen, 1956, p. 93 

 

By around 1900, the automobile industry was entering the transitional phase, 

where products begin to converge on a standard design.  This phase is particularly critical 

to understanding technological transitions because it also involves the movement from 

niche to wider markets.  Two developments are critical to diffusion into wider markets: 

defining or refining the product’s functional requirements to appeal to the needs of a 

larger customer base and improving the product’s performance relative to these 

requirements.  The quasi-evolutionary (QE) and multi-level perspective (MLP) theories 

assert that these developments occur within initial markets through learning-by-

interacting with users and learning-by-doing.  Consequently, growth of niche markets, 

niche branching, or niche proliferation allows manufacturers to reduce costs through 

economies of scale.  During this development, the technology begins a process of 

embedding that is characterized by the co-evolution of the technology and the selection 

environment. 

This chapter continues the history of the automobile through approximately 1915 

in order to identify the technological improvements to both products and production 

processes that enabled movement into a wider market.  Most importantly, I seek to 

identify the role of niche markets in this transition and the mechanisms of learning 

involved in these improvements.  I also identify the emergence of rules, other institutions, 

and artifacts which contributed to the onset and stability of the specific phase.  This 

review also traces the continuing development of the technological nexus linking 
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variation and selection, identifies agents serving the nexus role, identifies activities which 

link variation and selection, and describes the institutional adaptations that co-evolve 

with the technology.  Other institutional factors shaping this evolution, including 

exogenous events, also are identified. 

Section 4.1 reviews the history of the Ford Motor Company, beginning with 

Henry Ford’s struggles as a heterogeneous engineer to obtain financial backing. Both 

product and process innovations are discussed. While learning-by-interacting with users 

and learning-by-doing were important aspects of this process, they were not the only or 

even primary mechanisms of learning.  First, Ford’s own experiences and perspectives 

were important in determining users’ needs in the rural market segment.  Second, 

learning-by-interacting with suppliers were critical in the product innovations that 

significantly improved the performance and reliability of Ford’s vehicles.  Third, the 

innovative process was highly synthetic and spillovers played a fundamental role in both 

product and process improvements.  By 1910, Ford’s product was consistent with a new 

functional definition that suited the very large rural market.  The company’s production 

processes were becoming increasingly aligned with broader developments in the 

technical, institutional, and ecological complex (TIEC).  By 1915, Ford had developed a 

revolutionary production system that reinforced these trends and became the industrial 

model for 20th century.  This section concludes with a discussion of the role of 

innovations, institutional factors, and Ford’s experiences and perspectives in the 

company’s move toward vertical integration and centralized control as the industry 

entered the specific phase.  This progression would have important consequences for 

Ford’s innovative capabilities in the following era.   
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Section 4.2 reviews the formation of General Motors, beginning with the Buick 

Motor Company.  Once again, a clear picture emerges of entrepreneurship as a 

heterogeneous endeavor, with William Durant jointly addressing issues of design, 

production, management, marketing, and finance.  The success of the Model 10 in 1908 

testifies to the rising importance of the low-priced market.  While the product design 

during the transitional phase was converging on a dominant design, manufacturers did 

not know what that design would entail, which presented them with substantial risk.  

While Ford attempted to influence the selection environment with his interpretation of the 

automobile and appropriate product attributes, Durant attempted to mitigate the risk 

presented by the converging dominant design by creating GM, an industrial combination 

that diversified his product line in terms of technological approaches and market 

segments.  However, by 1910, only Buick and Cadillac were profitable.  This can be 

attributed to two factors: 1) the emergence of a new functional definition that appealed to 

a wider market and an aligned dominant design which supplanted other technological 

interpretations and configurations; and 2) manufacturing processes at GM subsidiaries 

that were not aligned with the TIEC and market needs for the combination of high 

reliability and low cost.  These problems, combined with an aggressive acquisition and 

expansion strategy, contributed to the transfer of control to a banking syndicate between 

1910 and 1915.  While the bankers did improve production processes and institute a 

research program, they also increased the company’s misalignment with these emerging 

conditions.  Finally, this section provides a detailed description of the development of the 

electric self starter 1911. This review reveals that spillovers and learning-by-interacting 

with suppliers were the most significant mechanisms in this critical innovation. 
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Section 4.3 reviews Durant’s formation of the Chevrolet Motor Company.  The 

firm’s failure with expensive touring vehicles and its contrasting success with small 

inexpensive vehicles again illustrate the increasing importance of the low-price market 

and the changing functional definition of the automobile.  This success also paved the 

way for Durant to re-take control of GM, which is covered in chapter 5.  

Section 4.4 discusses the severe industry shakeout that occurred beginning in 

1909.  A shakeout is typical as industries approach the specific phase, a dominant design 

emerges, and firms begin competing based mainly on cost and quality rather than product 

differentiation.  However, the shakeout for the automobile industry was extreme.  I 

identify eight factors that contributed to this phenomenon, several of which are inter-

related: 1) increasing economies of scale that necessitated high volume production and 

high capital investments; 2) the cumulative burden of manufacturing parts for multiple 

models; 3) process innovations at Ford that were not easy for firms to adopt; 4) the 

cumulative effects of and increasing returns to innovation; 5) the redefinition of the 

automobile for mass markets; 6) an emerging dominant design; 7) the saturation of the 

market niche for very expensive vehicles; and 8) the Panic of 1907 and ensuing 

recession.  Items 5-7 together represent an important feedback mechanism between 

selection and variation.  By contributing to the failure of specific firms, the selection 

environment influenced variation and further reinforced the emerging dominant design. 

Section 4.5 discusses five developments in the TIEC that provide the technical 

and institutional context for this era: the Panic of 1907; the Selden Patent patent dispute; 

the emergence of trade associations and their efforts to standardize parts and materials; 

the expansion and evolution of the autombile market; the activities of motoring clubs; 
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and efforts to improve the condition of the country’s roads.  Finally, section 4.6 

synthesizes this review and summarizes the findings as they relate to the research 

questions presented in chapter 1.     

4.1 Fordism and the Model T 

Despite an early interest in motor vehicles, Henry Ford was not one of the first 

American entrepreneurs to break into the automotive industry.  Ford’s first attempt at 

commercial manufacturing produced fewer than 25 vehicles before being dissolved and 

the second firm succeeded only after Ford’s departure.  Ford’s third attempt found 

commercial success with production of the Model A in 1903.  By the end of that year, the 

Olds Motor Works already had produced an estimated 10,800 motor vehicles.  Over the 

next ten years, the Ford Motor Company revolutionized the manufacture of motor 

vehicles and quickly overtook Olds’ production.  Using a combination of product and 

process innovations, Ford achieved his goal of producing a car that every man could 

afford.  The company’s production system, which came to be known as ‘Fordism,’ was 

so successful at cost reduction that it soon became the industrial model for 20th century 

production. 

This chapter begins in section 4.1.1 with Henry Ford’s background, which shaped 

the perspectives that led him to experiment with motor vehicles and to establish a goal to 

produce an automobile that could replace the family horse.  These perspectives, which 

aligned with evolving higher-level rules within the TIEC regarding capitalism, 

mechanistic reductionism, and increased cultural valuation of efficiency, served as a basis 

for Ford’s highly successful innovations between 1900 and 1915.  Ford also needed 

financial backing, but his conception of the automobile was not aligned with the initial 
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product definition presented in chapter 3.  This section describes his struggles as a 

heterogeneous engineer to obtain funding and sway the opinion of financiers and 

customers regarding the function of the motor vehicle and the attributes necessary to 

fulfill it.  During this process, Ford made use of two institutions described in chapter 3 

that were emerging in the technological nexus: the press and racing. 

Section 4.1.2 then reviews the product innovation and design process at the Ford 

Motor Company beginning with the Model A in 1903 and culminating with the Model T 

in 1908.  Ford targeted the rural market with the company’s least expensive models, most 

notably the A, N and T.  While the QE and MLP theories place primary importance on 

learning-by-interacting with users to determine users’ needs, Ford relied on his own 

childhood experience to understand users’ needs in the rural market segment.  However, 

he did rely on feedback from dealers and buyers to identify defects as he focused on 

product innovations to improve reliability.  Consistent with the QE and MLP theories, 

Ford showed a marked preference for learning-by-doing over guided research, though C. 

Harold Wills did begin metallurgy testing at some point.  However, this review also 

uncovers the critical role of learning-by-interacting with suppliers in the product 

innovations that significantly improved the performance and reliability of Ford’s vehicles 

during the transitional phase. 

In addition, process innovations at Ford discussed in sections 4.1.3 through 4.1.5 

once again highlight the highly synthetic nature of innovation and the fundamental 

importance of spillovers in the product and process innovations that enabled Ford to 

manufacture a product of both high quality and low cost.  While one or the other had 
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been achieved within the industry, it was the combination that allowed Ford to conquer a 

mass market. 

Section 4.1.3 covers the adoption and adaptation of process innovations in plant 

organization from New England armory practice, which was transferred to the Ford 

Motor Company through the ‘acquisition’ of human capital – this knowledge was 

embodied in key personnel with experience in the sewing machine and machine tool 

industry.  Section 4.1.4 discusses a second aspect of Ford’s evolving production process, 

the management of production, specifically the breakdown of manufacturing and 

assembly operations into minute tasks.  This section places these developments within the 

context of a wider movement toward ‘scientific management,’ the formulation of which 

is attributed to Frederick W. Taylor.  The question arises as to how much of the 

innovation at Ford represented original inspiration versus knowledge spillovers 

transmitted either directly from the work of Taylor or indirectly through shared 

perceptions of the knowledge base.  As with the emergence of the automobile itself, 

multiple entrepreneurs were working separately yet concurrently on the same problems 

and were developing a variety of similar solutions.  I find that this era of innovative 

ferment was attributable to pervasive changes in the TIEC and that the role of spillovers 

in Ford’s innovations was of primary significance. 

Section 4.1.5 covers the third and final aspect of Ford’s process innovations, 

continuously moving assembly.  Popular opinion generally regards this innovation as 

Ford’s most significant achievement and attributes its development to Henry Ford alone.   

However, this review reveals first that the development of continuously moving assembly 

at the Ford Motor Company was a highly synthetic process involving the talents and 
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personal inspiration of multiple entrepreneurs and spillovers from multiple industries.  In 

addition, moving assembly was just one component of several which, when combined, 

created a production system that was more efficient than the simple sum of the parts. 

Finally, section 4.1.6 completes the history of the Ford Motor Company through 

1915 and discusses the company’s progression toward centralized control and vertical 

integration.  Throughout the period covered in this chapter, Henry Ford clashed with his 

financial backers over strategy.  This fact, combined with Ford’s predisposition toward 

individualism and autocracy, led Ford to seek complete financial and managerial 

independence.  Ford was assisted in achieving this goal by an unexpected exogenous 

event, the Panic of 1907.  In addition, the price and availability of raw materials was 

always a concern, and supply holdups and bottlenecks became an increasing problem as 

Ford moved toward continuously moving assembly.  Therefore, Ford also began a 

process to bring these supplies under his control.  This movement toward centralized 

control and vertical integration would not be complete until 1918, at which point it had 

significant implications for the company’s innovative capabilities. 

4.1.1 Birth of the Ford Motor Company 

Born in 1863, Henry Ford grew up in rural Michigan where he found the endless 

work on the family farm to be tedious.  He developed an interest in all things mechanical 

at an early age and much preferred to tinker at his tool bench.  Around the age of 12, 

Henry saw a steam traction engine moving along the road under its own power.  

Fascinated by the possibility of an engine being used for a self-propelled vehicle, he 

grilled the operator about the machine.  The man was impressed and allowed Henry to 

operate the machine over the next few summers.   
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With his schoolwork finished at the age of 16, Henry Ford left the farm for 

Detroit.  Between 1879 and 1882 he earned the first-hand mechanical experience he had 

desired all his young life.  His first job as an apprentice at the Michigan Car Company, a 

large Detroit manufacturer of railroad cars, lasted only six days.  Henry was discharged 

after angering the older hands by repairing in half an hour a machine they had spent most 

of the day trying to fix.  Henry then spent nine months as an apprentice in a machine shop 

before moving on to Detroit’s largest shipbuilding firm where he was employed in the 

engine works.  Between 1882 and 1885, Henry worked various jobs, installing and 

repairing engines for the Westinghouse Engine Company and other employers, finding 

occasional work in Detroit factories, and lending a hand at his father’s farm.  He also 

attended business school for practical commercial training. 

In 1887, Henry Ford’s father offered him forty acres of wooded land, which 

Henry accepted so that he might marry Clara Bryant.  He set up a sawmill, which 

provided a source of income and raw materials to build a new home.  Sometime 

afterward, he built a small shop where he did repair work and reportedly began 

experimenting with steam and gasoline engines, aiming to build one to pull a wagon or 

plow.29  Although no record of his work survives, it is clear that he had become interested 

in the idea of a horseless carriage.  As the timber began running out on his property, he 

became restless; he had no desire to become a farmer as his father wished.  Instead, he 

decided that he needed to learn more about electricity in order to build his horseless 

carriage.  In 1891, the Fords moved to Detroit and Henry began working for the Edison 

Illuminating Company, where he was soon promoted to chief engineer.  Shortly after the 

                                                 
29 Except for public demonstrations, the timeline of Ford’s experimentation and achievements is uncertain 
due to discrepancies between his accounts and those of friends and colleagues. 
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move, Ford’s experimentation with horseless carriages began in earnest, and by the end 

of 1893 he reportedly had built a functional one-cylinder gasoline engine.   

In 1896, Ford began working on a two-cylinder engine, chassis, and body with the 

assistance of two fellow Edison employees.  Ford’s quadricycle, as he called it, weighed 

only 500 pounds and used bicycle wheels with pneumatic tires.  The experimental vehicle 

completed a successful test run in May, 1896.  Ford improved the quadricycle then sold it 

so that he could begin building a new vehicle.  After obtaining financial assistance, Ford 

began building a second horseless carriage.  The quadricycle had been built almost 

entirely of wooden parts and Ford hired a carriage blacksmith to fashion metal parts for 

the wheels, seat railings, undercarriage, and steering mechanism.  The new vehicle, 

completed in the summer of 1899, was still lightweight but was substantially stronger and 

capable of carrying both a driver and passenger.   

In August, Ford secured financial backing to establish the Detroit Automobile 

Company and then resigned from Edison to devote himself full-time to the endeavor.  

Ford had a test vehicle ready in January, 1900, and the new company announced 

ambitious plans to produce ten vehicles a month beginning in March.  However, Ford 

wrestled with problems of design while the shop encountered problems with assembly 

and the workmanship of parts supplied under contract.  In addition, the company’s car 

probably was too expensive, not as advanced as some others, and not quite ready for 

production (Nevins and Hill, 1954).  Ford apparently believed the car would not sell and 

wanted to design a better car but was vetoed by the stockholders.  Though it did produce 

a few vehicles, perhaps as many as 25, production at the Detroit Automobile Company 

soon ground to a halt and the company was dissolved in January, 1901. 
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Undaunted, Ford took a new approach.  The public “refused to consider the 

automobile in any light other than a fast toy,” so he decided to build a racer and use it to 

gain recognition (Ford and Crowther, 1922, p. 36). The race car, designed and built with 

the assistance of Oliver Barthel, was ready in time for an October 10 race sponsored by 

the Detroit Automobile Club.  Ford was one of only three competitors that showed for the 

ten-mile race held at the Grosse Pointe track near Detroit.  After one dropped out due to a 

leaking cylinder, only Ford and Alexander Winton remained.  Winton took an early lead, 

but Ford was gaining when Winton developed engine trouble.  Ford won the race with an 

average time just under 1 minute and 21 seconds per mile.  Later that month, Ford made a 

credible challenge of Winton’s newly established one-mile record of 1:09 before losing 

his nerve on the turn.  Inspired by Ford’s racing successes, his investors reorganized the 

old Detroit Automobile Company as the Henry Ford Company in November, 1901.   

Ford hired Barthel full-time, ostensibly to work on the design of a vehicle for 

commercial production, but Ford instead immediately began plans for a new racer.  

While the Henry Ford Company’s financers supported racing as a vital part of publicity, 

dissension arose over his preoccupation with it.  Ford apparently was extremely 

dissatisfied with his share in the profits of the new company and felt he would make 

much more money from racing.  As Ford increasingly neglected his duties as chief 

engineer, the stockholders pressed him to complete design of the commercial car and 

begin production.  Eventually, they brought in the services of Henry Leland of Leland & 

Faulconer who apparently found fault with Ford’s “cut and try” design methods.  In 

March, 1902, Ford left the company.  The stockholders gave him the incomplete plans for 
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the racer and $900 and agreed to discontinue using his name.  Henry Leland took over the 

company which was renamed the Cadillac Automobile Company. 

Ford joined forces with famous cyclist Tom Cooper, who had ridden with him in 

the Grosse Point race the previous October, and a new assistant, C. Harold Wills.  Wills 

had completed a four-year apprenticeship as a toolmaker, worked in a machine shop, and 

studied engineering, chemistry, and metallurgy at night.  Much like Ford, Wills had keen 

mechanical instincts and preferred to learn by doing.  He agreed to work for Ford early in 

the morning and after dinner so that he could keep his full-time job.  Wills took charge of 

drafting and design of two new racers, “The Arrow” and the “999,” the latter named after 

the Empire State Express No. 999, a New York Central train that in 1893 set a world 

speed record of over 112 mph.  The cars were tested in September and the 999 was 

entered in a five-mile race at Grosse Ponte in October.  Apparently both Ford and Cooper 

were intimidated by the vehicle’s power, as neither was willing to drive in the race.  

Cooper found another cyclist who, though he had never driven an automobile, agreed to 

try it. The 999 won, setting a speed record by averaging 1 minute and 6 seconds per mile.  

The relationship between Ford and Cooper, however, had begun to cool.  Cooper 

purchased the 999 and the two parted ways. 

Since leaving the Henry Ford Company, Ford was no longer entirely focused on 

racing.  Despite his prior business failures, he became determined to build a car to replace 

the family horse, and in the summer of 1902 began planning a motor vehicle of moderate 

cost.  His new car included a novel vertical engine design that resulted in less vibration, 

noise and wear than Olds’ horizontal engine.  To obtain funds to produce a pilot model, 

Ford approached successful coal merchant Alexander T. Malcomson, with whom he had 
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become acquainted while working at Edison Illuminating Company.  This time, Ford was 

careful to ensure a profitable stake in the venture.  In August, 1902, Malcomson agreed to 

an equal partnership in developing the pilot model and to establish a corporation to 

replace the partnership and bring Ford’s automobile to market once they had sufficient 

capital for manufacturing.  Ford took charge of engineering and manufacturing, while 

Malcomson was to handle the financial and commercial aspects of the business.  

Malcomson assigned James Couzens, his office manager and business advisor, to handle 

the accounts for the new partnership.   

Following the victory of the 999 in October, the design team turned their full 

attention to developing the new commercial car.  Ford provided general design concepts, 

and Wills helped develop them into specific plans.  With the car, work force, and a rented 

shop on Mack Avenue coming along, Ford and Malcomson made plans for incorporation, 

but had difficulty finding willing investors.  Nonetheless, they began approaching parts 

makers for contracts.  Ford and Malcomson contacted the Dodge Brothers, which was 

one of the best machine shops in the Midwest, to manufacture the new engines.  The 

Dodges had been building engines for Olds, but faith in Ford’s new design and hopes for 

large future profits led them to contract to supply 650 engines, transmissions, and axles.  

The Dodges agreed to invest in machinery, tools, and materials in advance of payment, 

with installments due from Ford beginning in March, 1903.  Ford and Malcomson 

arranged contracts for bodies, wheels, and tires, and were able to show potential investors 

the promising margin for profits from their automobiles.   

Nonetheless, start-up capital remained elusive.  The risks of investing in the 

automobile industry during this still experimental stage were well known, and three-fifths 
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of the companies formed between 1900 and 1908 to produce automobiles would fail.  

Further, Malcomson was over-extended, debt-ridden, and distracted by his other business.  

His reputation as an impulsive ‘plunger’ did little to reassure potential investors.  With 

the first payments to the Dodge Brothers and other suppliers looming, Ford and 

Malcomson were finally able to draw in a few investors.  Among them were 

Malcomson’s cousin, attorneys, friends, and, most significantly his uncle, John S. Gray, a 

banker to whom Malcomson was already heavily in debt.   

The Ford Motor Company was incorporated in June, 1903.  In exchange for a 

$10,500 cash investment, John Gray was named president and granted 10.5% of the 

company stock.  Ford and Malcomson each took 25.5% of the stock in exchange for work 

completed, plans, machinery and patents.  The Dodge brothers were each granted 5% in 

exchange for $7,000 in materials and a $3,000 note.  Couzens invested $1,000 and a 

$1,500 note and was granted 2.5% of the company.  With only $28,000 paid in cash, the 

Ford Motor Company was born on a shoestring.  Gray, Malcomson, Ford, John Dodge, 

and investor John W. Anderson were named as the board of directors.  Henry Ford was 

named vice-president, Malcomson treasurer, and Couzens secretary.  In practice, 

however, Ford served as president, handling all matters of production, and Couzens 

served as both treasurer and secretary, handling all business affairs (Nevins and Hill, 

1954).  Couzens would eventually develop an elaborate but highly efficient business 

organization.  Sorensen (1956, p. 36) designates the first twelve years of the Ford Motor 

Company (1903-1915) as the Couzens period, giving the enterprising and severe 

individualist equal credit for the company’s success:   

True, the company had Henry Ford’s name, its product and production were his.  
There never would have been a Ford car without him.  But the Ford Motor 
Company would not have made Ford cars long without James Couzens.  He 
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controlled expenditures, organized sales, and set the pattern for business 
operation.  He drove Ford and the production side to produce cars to meet the 
public’s demand.  He yelled for plant expansion and drove us from the Piquette 
Avenue Plant into Highland Park.  Everyone in the company, including Henry 
Ford, acknowledged him as the driving force during this period. 

4.1.2 Product Design 

This section reviews the product innovation and design process at the Ford Motor 

Company beginning with the Model A in 1903 and culminating with the Model T in 

1908.  Ford targeted the rural market with the company’s least expensive models and 

relied on his own childhood experience to understand users’ needs in this market 

segment.  Ford focused on improving the reliability of these vehicles, relying on feedback 

from dealers and buyers to identify defects.  This history shows Ford’s marked preference 

for learning-by-doing over guided research, but also uncovers the critical role of learning-

by-interacting with suppliers in the product innovations that significantly improved the 

performance and reliability of Ford’s vehicles. 

In 1903, the Ford Motor Company began producing the Model A in a rented shop 

on Mack Avenue in Detroit.  The Model A design was simple, lightweight (the runabout 

weighed 1250 pounds), and efficient.  The major novelty of the Model A was Ford’s two-

cylinder engine, which could produce eight horsepower and up to 30 mph.  Ford 

contracted the Dodge Brothers for the engines, transmissions, and axles; the C. R. Wilson 

Carriage Company for the wooden body and cushions; the Hartford Rubber Company for 

tires; and the Prudden Company for wheels.  Ford employees assembled four cars at 

once, aiming to finish 15 per day.  The runabout sold for between $750 and $850.   

Although advertised as reliable and rugged, in addition to inexpensive, the first 

Model A’s suffered from many design and manufacturing faults.  The radiators were 

defective, the carburetors were inefficient, and the brakes and engines were often 
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assembled hastily and shoddily by the Dodge Brothers.  Although serious, these problems 

were not a great threat to the longevity of the Ford Motor Company since, in 1903, all 

automobiles were similarly defective, and no one expected them to be dependable.  

Complaints poured in from dealers, one of whom sent a list of recommended changes.  

Ford brought the dealer to Detroit and worked through the problems.   

Ford initially replaced the faulty carburetor with one from a different supplier, but 

the replacement was still unsatisfactory.  Ford then contacted George Holley, who had 

garnered a reputation manufacturing a one-cylinder car, motorcycles, and a simple 

carburetor.  Using principles laid down by Ford and Wills, Holley designed a new 

carburetor that finally solved the problem.  Suppliers also marketed their products to 

improve the vehicle.  For example, Peter Steenstrup of Hyatt Roller Bearing admonished 

Ford that he had failed to honor a promise to use his company’s bearings instead of ball 

bearings and Ford eventually switched.  Within 6 months, the Model A design had been 

reworked (Nevins and Hill, 1954). 

Sales were better than expected and the profits allowed for payment of dividends 

while still financing expansion, all without the need for raising working capital on Wall 

Street.  Since many car-buyers were suspicious of high finance, a Wall Street connection 

likely would have negatively impacted sales.  In 1904, the stockholders approved the 

construction of a new factory on Piquette Avenue.  In the 1904-1905 sales year,30 Ford 

offered three models, all somewhat larger in wheelbase than the Model A.  The Model C, 

which replaced the Model A, weighed 1250 pounds, delivered 10 hp, and sold for $800.  

The new Model F was a touring automobile that weighed 1400 pounds, delivered 12 hp, 
                                                 
30 The sales year began in the fall.  Because early automobiles were open to the elements, Northerners did 
little driving from Thanksgiving through Easter.  Accordingly, few automobiles were sold during this 
period and sales agents were laid off (Nevins and Hill, 1954). 
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and sold for $1000.  Malcomson insisted on tapping the wealthy market and Ford 

introduced the Model B which weighed 1700 pounds, incorporated a four-cylinder engine 

that produced 24 hp, and sold for $2000.  Where the Model A, C and F were all chain-

driven, the Model B had a rotating-shaft or torque drive.  The new models were better 

than the A but still had many defects.  Sales continued to climb and production reached 

25 automobiles per day in 1905 (Nevins and Hill, 1954). 

Shortly after occupying the Piquette plant in late 1904, Ford began planning two 

new models: the moderately priced four-cylinder, 15 hp, Model N, which would improve 

on and replace the C and F, and the six-cylinder, torque-driven Model K, which was 

priced at $2800.  As expected, Malcomson championed the K, bolstered by the industry 

trend toward larger, more expensive cars.    In 1903, 26% of the automobiles produced 

sold for under $875 while 12% were over $2775.  In 1905, the situation was reversed, 

with 10% of vehicles selling for under $875 and 25% for over $2775 (Epstein, 1972).   

The industry and the Ford Motor Company were moving ever farther away from 

Henry Ford’s ideal of manufacturing a single automobile of simple, standardized design 

that could be sold at $500, enabling the masses to replace the family horse.  Malcomson 

seemed justified, however, as many contemporary industry analysts wrote that the 

country was prospering and too many manufacturers were making inexpensive 

automobiles while there were too few expensive models available.  Henry Ford was not 

alone in his battle; Olds Motor Works had been the first to produce in volume a 

lightweight, inexpensive, and highly successful motorcar, yet even Olds’ financial backer 

pushed for higher-priced models.  Unhappy with what he saw as interference with his 

decision-making, Ransom Olds in 1904 resigned from the company that bore his name.  
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Ford, however, remained adamant; he wanted to build a car that workingmen could 

afford. 

Although the Model N was not completed in time for the New York Automobile 

Show in early 1906, Ford showed a specimen without an engine, advertising a price of 

$500.  The response was immediate and overwhelming; Ford’s championship of the “car 

for the ordinary man” was finally vindicated.  The Model N incorporated ideas that had 

been developed for the expensive models B and K, including a torque-drive, yet was 

light, weighing 1050 pounds, and inexpensive.  The engine was located under a front 

hood, lamps were added to the radiator and dash, and mud guards and polished fenders 

were added.   

Ford planned production of the Model N at 100 per month beginning in July of 

1906, with the engines, axles and gears manufactured by the Ford Manufacturing 

Company at the Bellevue plant.31  Such a large production volume was previously 

unheard of and, by this time, Henry Ford was convinced that this feat would require fully 

interchangeable parts and careful plant organization for progressive flow.  Rapid 

expansion of the automobile industry complicated the acquisition of the necessary 

machine tools, but production was in full swing by the fall. 

Dealers and customers were highly enthusiastic, and advance orders for 1907 

production streamed in.  Nevins and Hill (1954, p. 323) declared the new Model N “one 

of the best designed cars yet seen in the United States.”  Nonetheless, the Model N 

suffered from defects and production problems.  The biggest challenge was 

manufacturing interchangeable camshafts of sufficient strength that also provided proper 

                                                 
31 See sections 4.1.3 and 4.1.6 for the history of the Ford Manufacturing Company and the Bellevue plant. 
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timing (Sorensen, 1956).  Sales were brisk, but Ford was already looking ahead.  Late in 

1906, he set up the design room for the next Ford automobile: the Model T. 

Since founding the Ford Motor Company, Henry Ford’s goal had been to produce 

an automobile for mass consumption, and each small car model moved him closer to his 

goal.  The car for everyman would have to be rugged, reliable, and easy to operate, 

maintain, and repair.  To produce it in volume, it needed to be designed for ease of 

manufacturing as well.  The comparative simplicity of Ford’s Model N and T designs 

made them easy to understand and use, and also was well adapted to mechanized, mass 

production techniques.  Ease of repair was facilitated by the availability of standardized, 

precision-machined, yet inexpensive mass-produced parts.  The Ford models’ lightness 

and rugged designs meant that they could negotiate the rough roads and weather 

conditions better than costlier and heavier models and remain structurally sound. 

To correct the faults of previous models and adapt the vehicle design to the 

rugged conditions of American roads, the Model T’s body was lifted high above the road.  

It had stout wheels and springs which negotiated rough terrain and partially relieved the 

body and chassis from the painful wrenching suffered by most cars.  It was offered with 

two carburetors, one of which Holley designed and then manufactured in a Detroit 

factory that Ford purchased for him in exchange for a full order of carburetors.  Dry cells 

for ignition had been replaced by a magneto, and the engine and transmission were 

entirely enclosed.  For the first time, the engine cylinder block and crankcase were made 

in a single casting with a detachable cylinder head, which simplified both design and 

manufacturing once a suitable gasket was developed.  The engine utilized a three-point 

suspension to eliminate the distortion of the motor base from operation on rough roads, 
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and the transmission was an improved planetary type, both of which had been first 

introduced by Northern in 1902 (Abernathy et al., 1983, Appendix D).   

The rugged, easy to operate transmission was key to the mass appeal of the Model 

T.  The soft metal used in previous transmissions meant that gears were easily stripped by 

motorists who had little experience with shifting, and many drivers, especially women, 

had difficulty with the heavy, sticky clutches of previous gasoline-powered automobiles.  

For the first time in automotive manufacturing, the Model T used vanadium steel gears, 

crankshafts, axles, and springs (Nevins and Hill, 1954; Sorensen, 1956).  According to 

Abernathy (1978, p. 96), “The Model T was superior as a car in its era because it 

innovated in the use of a vanadium-steel alloy to achieve a high strength-to-weight ratio 

and could be powered by a moderate-sized … engine.”  Vanadium steel provided more 

than twice the tensile strength of the steel it replaced and yet was easier to machine.   

However, consistent with Rosenberg’s (1963) thesis of technological convergence 

and the reactive forces behind innovation, the use of vanadium steel required 

improvement in the machine tools used to work on it.  According to Sorensen (1956), 

when test parts for the Model N were forged with the new alloy, it was discovered that 

better drills and cutting tools would be needed to machine it. 

The introduction of vanadium steel appears to have inspired Ford to design the 

Model T, and certainly determined its final form.  The origin of this innovation is a bit of 

a mystery, as accounts vary.  According to Nevins and Hill (1954), Ford wrote in his 

reminiscences that, in 1905, he picked up an engine part from a French racecar following 

a wreck at Palm Beach.  Noting that it was very light and tough, he had a company 

mechanic look into its composition and found that it was a French vanadium steel alloy.  
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Ford then sent for metallurgist J. Kent-Smith of England and subsequently arranged for a 

steel mill in Canton, Ohio, to experiment with the new alloy.  In another account, C. 

Harold Wills reports that he saw an exhibit of the steel at an engineering conference in 

1905 and subsequently had it tested.   

The third account by Charles Sorensen32 is the only one where a Ford official is 

not claiming for himself credit for pioneering the use of the high strength steel.  Kent-

Smith had worked extensively with vanadium steel since 1900 and his work was widely 

published in technical journals.  According to Sorensen, Ford executives therefore knew 

about the alloy from their readings (Nevins and Hill, 1954).  Kent-Smith made his first 

U.S. contacts in Canton, Ohio, and then traveled throughout the country with samples of 

the new steel.  When he visited Ford several times in 1905, company officials met him 

with great interest.  Afterward, Henry Ford told Sorensen, “this means entirely new 

design requirements, and we can get a better, lighter, and cheaper car as a result of it” 

(Sorensen, 1956, p. 98).  The lack of self-interest in this final account perhaps lends it 

more credibility than the others, since Henry Ford was known to embellish stories.  

Further, Nevins and Hill (1954, p. 349) conclude that Kent-Smith “seems to have come to 

the Piquette plant on his own initiative.”   However, Sorensen had his own priorities and 

loyalties and as such was not an unbiased source either.  Regardless, in any version of the 

story, supplier interactions were critical in this major innovation. 

Supplier interactions also played a significant role in the development of stamped 

steel parts for the Model T.  Sometime in 1907, William H. Smith of the John R. Keim 

                                                 
32 Charles Sorensen began working at Ford as a pattern-maker in 1905 and within a year was in charge of 
the pattern-making department.  After Walter Flanders and Max Wollering left Ford in 1908, P.E. Martin 
served as plant superintendent and Sorensen served as assistant superintendent, though Ford disdained the 
use of job titles (Sorensen, 1956). 
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mills in Buffalo showed Henry Ford the stamped steel bell housing of a telephone 

receiver and suggested making a full-scale axle housing using the same process.33  Ford 

was reportedly delighted by the idea of using such parts for both the current Model N the 

design of the new Model T and sent Sorensen and Wills to tour the plant (Nevins and 

Hill, 1954).  Sorensen subsequently proposed using a stamped steel cover for the Model 

T crankcase and transmission (Sorensen, 1956).  By 1908, the Keim plant was making 

large quantities of pressed steel parts for Ford cars. 

The design process for the Model T is described in fairly vivid detail in the 

reminiscences of company officials.  Henry Ford was clearly the originator of design 

concepts, which he described to a small engineering team led by Joseph Galamb and 

Harold Wills.  Ford would make rough sketches on a blackboard and Galamb and his 

assistants would draw up graphic sketches and blueprints.  Ford photographed the 

blackboard to document their progress in case of any patent suits.  To facilitate 

visualization of the design concepts, Sorensen built wooden mockups and castings of 

parts, often before blueprints were drawn up.34  These ideas were then presented to a 

group of machinists to work out details and test them.  Meanwhile, Wills took charge of 

testing the new vanadium steel alloys which were fundamental to the lightweight design.  

This process of “cut-and-try” design continued for more than a year before the Model T 

was introduced.  Sorensen, however, asserts that it took more than four years to develop 

                                                 
33 Pressed steel rear-axle housings were first introduced by the Fiat Company around 1907 (Nevins and 
Hill, 1954). 

34 It is well documented that Ford preferred models over blueprints and several contemporaries assert that 
he had difficulty reading blueprints.  Nevins (1954) finds this unlikely since Ford’s machine shop 
apprenticeship would have taught him to draw and use blueprints. 
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the new car since previous models served as experimentation on the road to realizing 

Henry Ford’s dream of a car for everyman (Sorensen, 1956; Nevins and Hill, 1954).   

The Model T was first advertised in the spring of 1908 with prices beginning at 

$825.  The Model T was the synthesis of various product designs and was consistent with 

an emerging dominant design:  a water-cooled, 4-stroke, 4-cylinder gasoline engine 

mounted in front of the driver; left hand drive using a steering wheel; shaft drive; 

magneto; and pneumatic tires.  The Model T’s only major departure from the industry 

standard was the use of a planetary-type transmission.  Ford assumed that his main 

market would be farmers who were experienced in repairing farm equipment.  Therefore, 

the Model T came with a 64-page owner’s manual that explained how to use simple tools 

to repair any of the 140 problems likely to occur (Womack et al., 1990).  At the same 

time, Ford trained dealers how to handle stocks of parts and how to do repair work, and 

also supplied parts lists that included prices.  While the new Model T provided 

unsurpassed simplicity, practicality, dependability and quality at an incredibly low price, 

it was still fraught with problems.  Yet the Model T performed remarkably well in 

contests, negotiating steep grades, rough roads, mud, and water obstacles.  It even 

performed admirably in cross country speed races. Orders for the new Ford flooded in. 

4.1.3 Plant Organization 

In order to manufacture a vehicle that could replace the family horse, Ford needed 

to produce an automobile that was simultaneously high quality and low cost.  Process 

improvements at the Ford Motor Company began with the adoption and adaptation of 

innovations in plant organization that originated with New England armory practice.  

This knowledge was embodied in key personnel with experience in the sewing machine 
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and machine tool industry.  However, its adaptation to automobile manufacturing and 

assembly was accomplished through learning-by-doing on the shop floor. 

Late in 1905, Henry Ford established the Ford Manufacturing Company to begin 

manufacturing parts for the new Model N and as a means to gain control of the Ford 

Motor Company.  Ford rented a factory on Bellevue Avenue for the new company and 

began equipping it to produce engines and small parts for the Model N.  According to 

Nevins and Hill (1954, p. 324), the division of work between the two factories, followed 

by reorganization and expansion of the Piquette facility, enabled Ford “to take the first 

steps, 1906-08, toward a production system that within the next decade became not only 

world famous, but a world force.”   

In 1906, Ford hired Walter E. Flanders, a Yankee machinist who had worked for 

the Singer Manufacturing Company and witnessed quantity manufacture firsthand.  He 

had later built tools for the Landis Tool Company, a pioneer in precision automotive 

grinding.  Although Flanders’ experience with Singer was not true armory practice, he 

conveyed to Ford officials and mechanics that complete interchangeability would be 

absolutely essential for assembly under high volume production.  While the Ford 

Manufacturing Company’s plant superintendent, Max Wollering, claimed the idea was 

not new to him, he conceded that it may have been new to the company.  Whether 

Flanders was responsible for bringing the concept to Ford is unclear.  Nonetheless, in 

1906, the Ford Motor Company began advertising that it was manufacturing in 

unprecedented volume and that every part of each Ford car was made to be exactly alike 

across all 10,000 automobiles produced.  Yet the company’s factory and contractors had 

not yet achieved interchangeability (Nevins and Hill, 1954; Hounshell, 1984).   
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Flanders and Wollering were responsible for rearranging machine tools according 

to sequential operations rather than according to machine type and they introduced Ford 

to the idea that productivity gains could be realized through the use of special- or single-

purpose tools (Hounshell, 1984).  But Flanders brought more than an appreciation of the 

fundamentals of armory practice; he taught Ford officials that “the motorcar business is a 

fusion of three arts – the art of buying materials, the art of production, and the art of 

selling” (Sorensen, 1956, p. 91).  The large demand for the Model N allowed Ford to 

establish monthly delivery contracts with sales agents, which allowed Flanders to plan 

production for steady output.  Late in 1906, when demand began to exceed capacity, he 

set up a 12-month production plan and established long-term contracts with suppliers that 

required them to carry inventories, allowing Ford to reduce theirs to only 10 days.  This 

freed up funds that became critical to design and planning for the Model T (Sorensen, 

1956). 

When Ford gained financial control of the Ford Motor Company in 1907, he 

consolidated the two Ford companies, bringing the Bellevue equipment and Flanders to 

Piquette.  Flanders and Wollering subsequently reorganized the placement of machines 

and flow of materials at Piquette, effectively introducing “the fundamentals of an 

admittedly modern version of New England armory practice to the handful of young 

mechanics Ford had assembled” (Hounshell, 1984).  However, the orderly progression of 

materials and parts was limited by the plant itself, as was total production.  The huge 

volume of advance orders for the Model T in 1908 outstripped the capacity of the 

Piquette plant and Ford began planning for the construction of a third plant at Highland 

Park on the outskirts of Detroit.  This time, progressive operation – logical sequencing of 
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operations and machine layout – was an integral part of the facility’s design.  

Construction began at Highland Park in 1908 and the move to the new plant began in 

January, 1910, when only a quarter of the construction was complete (Nevins and Hill, 

1954).  Prior to occupying the Highland Park plant, Ford production had utilized fairly 

standard machinery.  But in equipping the new plant, Ford began designing special-

purpose tools in earnest (Sorensen, 1956). 

As sales of the Model T increased, shipping fully assembled cars by train became 

wasteful.  To make more efficient use of train space, Ford decided in 1909 to establish 

branch assembly plants and ship knocked-down automobiles.  This innovation resulted in 

lower freight and handling costs and orders were filled more promptly.  In addition, stock 

of automobiles and parts could be held at the branch assembly plants, allowing 

production to continue in Detroit in months when sales were typically slow (Nevins and 

Hill, 1954).  The first branch assembly plant was built in Kansas City, Missouri, and by 

1913, Ford had established branch assembly plants in thirty-one U.S. cities (Flink, 1988).   

4.1.4 Management of Production 

At the turn of the century, American industry was at a crossroads as traditional 

craft production was giving way to modern ideas of high volume production.  Many 

products were being manufactured in factories, including watches, clocks, sewing 

machines, typewriters, and bicycles, but the transition was not yet complete.  Production 

and management systems were not yet aligned with emerging ideas about capitalism and 

high volume production.  Because traditional craft manufacturing practices gave 

craftsmen complete control of the production process, manufacturers engaged in factory 

production continually clashed with suppliers and workers in trying to increase the 
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quantity and reduce the cost of their products.  The shift to mass production presented 

new challenges for product and process management, especially with a complex product 

like the automobile.  New techniques were required to manage quality control, inventory, 

a large labor force, and investments in expensive equipment (Abernathy, 1978).   

This section reviews the second aspect of Ford’s evolving production process, the 

management of production, specifically the breakdown of manufacturing and assembly 

operations into minute tasks.  These developments took place within the context of a 

wider movement toward ‘scientific management,’ the formulation of which is attributed 

to Frederick W. Taylor.  By reviewing both the development of so-called ‘Taylorism’ and 

the management of production at Ford, this section explores the question of how much of 

the innovation at Ford represented original inspiration versus knowledge spillovers 

transmitted either directly from the work of Taylor or indirectly through shared 

perspectives of the knowledge base.   

As with the emergence of the automobile itself, multiple entrepreneurs were 

working separately yet concurrently on the same problems and were developing a variety 

of similar solutions.  Craft production was misaligned with emerging rules within the 

TIEC regarding capitalism, factory production, mechanistic reductionism, and an 

increased cultural valuation of efficiency.  Thus, this era of innovative ferment was 

attributable to pervasive changes in the TIEC.  Scientific management and the Ford 

system improved efficiency by taking control of the production process out of the hands 

of skilled craftsmen, thereby establishing new rules for production that were aligned with 

the evolving higher-level rules within the TIEC.  While the Ford team certainly must be 

credited with a great deal of inspiration and insight, critical members of that team were 
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either educated in scientific management or were tied into the knowledge base where 

these ideas were circulating.  Therefore, the role of knowledge spillovers in Ford’s highly 

synthetic innovations was of primary significance. 

4.1.4.1 Taylorism 

Frederick W. Taylor, the son of a wealthy Philadelphia Quaker family, was an 

educated man who had aspired to law school but dropped out of college when problems 

arose with his eyesight.  The formal education of mechanical engineers was still a new 

idea, and, despite his parents urging, Taylor opted to follow a more traditional path and 

became a patternmaker’s apprentice.  On completion of his apprenticeship in 1878, 

Taylor began working at Midvale Steel Company, where he quickly rose to gang boss 

and then foreman.  In trying to extract more work from the men, Taylor saw his 

camaraderie with them turn to hostility.  He was convinced that the men could be more 

productive, yet they claimed to be working as fast as possible.  Taylor’s observations led 

him to conclude that management was responsible for most worker inefficiencies.  

Believing it would defuse the animosity between workers and supervisors, Taylor 

resolved to study the elements of work and let science impartially determine what 

constituted a fair day’s work (Kanigel, 1996).   

Taylor and his contemporaries were heavily influenced by the scientific paradigm 

of the time based on the ideas of reductionism and mechanism.  Methodological 

reductionism holds that the best way to understand a complex system is to develop an 

understanding of its component parts.  The ideas of reductionism and mechanism were 

introduced by René Descartes in 1637, who argued that the physical world was like a 

machine, its pieces like clockwork mechanisms, and that the machine could be 
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understood by taking its pieces apart, studying them, and then putting them back together 

to see the larger picture.  Descartes, however, was a dualist and did not believe that the 

human mind could be explained in mechanistic terms.  The mechanistic view gained 

favor with the revolutionary successes of Isaac Newton, whose work in mechanics 

seemed to successfully explain the motion of everything in the heavens and on earth. 

Scientists and engineers in the late 19th century applied Newton’s laws of motion 

and the principles of classical thermodynamics to improve the operating efficiency of 

steam-driven machinery.  Taylor had begun studying engineering through a series of 

correspondence courses at the Stevens Institute of Technology and eventually obtained a 

Mechanical Engineering degree in 1883 (Kanigel, 1997).  Familiar with current scientific 

and engineering thinking, Taylor believed that a mechanistic approach could be applied 

to the organization and execution of work in order to improve the efficiency of human 

labor.  By breaking down a job into small, isolated parts, Taylor believed he would be 

better able to understand the individual tasks and thus be able to control them (Freedman, 

1992).  Taylor tackled the problem of managing the human worker as he would have 

approached the design and optimization of a machine. 

Taylor began experimenting with ‘time’ studies around 1880, using a stopwatch 

to measure the component parts of a task to the hundredth of a minute to determine the 

“one best way” to complete the task.  With contributions from Frank Gilbreth, this 

methodology later became known as time-and-motion study.35  Through time studies, 

Taylor determined the amount of work a first-class laborer could complete in a day and 

                                                 
35 While Gilbreth’s and Taylor’s work had similar methodologies, the two differed in philosophies and 
goals.  Taylor was concerned with determining a fair day’s work, primarily as a means to increase profits.  
Gilbreth was concerned with the efficiency of motion and elimination of unnecessary movement 
purportedly for the workers’ welfare (Price, 1990). 
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used this to develop work standards and pay incentive schemes that would reduce 

‘soldiering’ or loafing.  With his approach, which later became known as Taylorism, he 

sought to deliver more goods at lower prices while paying higher wages.   

Through extensive metal cutting experiments, Taylor and his assistants developed 

customized slide rules that could quickly determine the fastest cutting speed that would 

simultaneously satisfy a machine tool’s ability to exert power and a cutting tool’s ability 

to bear it. The customary rules of thumb traditionally used by skilled machinists could be 

replaced with scientifically determined, step-by-step, minute-by-minute instructions.  

Control of the machine shop was taken out of the hands of the workmen and placed 

completely in the hands of management (Kanigel, 1997).  Workers need only be trained 

in the “one best way” and left to execute their instructions mechanically, no thinking 

required.  The planning of work was left to engineers and managers, who were to apply 

Taylor’s scientific management principles to determine the best method for each task.  A 

Taylorist firm was thus hierarchical, with layers of efficiency engineers and managers 

supervising highly specialized workers who operated according to minutely detailed 

instructions.   

Taylor believed that his system of work organization and pay incentives would 

equally divide work between workers and managers, force workers to deal individually 

with managers’ demands, and bring an understanding of the managers’ perspective to the 

worker.  Unfortunately, instead of decreasing hostilities between labor and management, 

Taylorism was demonized by workers and bosses alike.  Labor saw it as exploitative; 

workers had to work harder and faster, while reduced to operating mindlessly like a 

machine.  Meanwhile, bosses resented the higher wages and interference with their 
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management decisions (Kanigel, 1996).  Nonetheless, Taylorism effectively removed 

control of the production process from skilled craftsmen and placed it in the hands of 

management. 

Taylor left Midvale in 1890 to become a management consultant for varied 

industrial clients.  In 1903, Taylor presented an essay titled Shop Management, the most 

complete statement of his management system to date, to a gathering of 350 mechanical 

engineers in Saratoga, New York.  He served as president of the American Society of 

Mechanical Engineers (ASME) from 1906-1907, where he was asked to reorganize the 

management of the twenty-five year-old society.  

Yet Taylor’s ideas were little known outside industrial engineering circles until 

1910, when lawyer Louis Brandeis used his ideas to argue before the Interstate 

Commerce Commission that a wage increase did not necessitate an increase in railroad 

rates.  The Eastern Rate Case stimulated great interest in worker efficiency and ‘scientific 

management,’ as Brandeis called it.  Taylor published a collection of his articles in 1911 

in a book titled The Principles of Scientific Management and later became known as “The 

Father of Scientific Management.”   The book was re-published as a three part series in 

the American Magazine.  Later that year, Taylor’s disciples, including Frank Gilbreth and 

H.L. Gantt, published a number of books on efficiency.  Kanigel (1997) reports an 

incomplete count of thirty-one articles on scientific management in 1910, fifty-eight in 

1911, and 220 in 1912.   According to Kanigel (1996), Taylor “took strands of thought 

and practice already present in the late 19th century and wound them into a thick, muscled 

cable – Taylorism.” 
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4.1.4.2 Scientific Management in the Automotive Industry 

The emerging field of scientific management defended specialization based on 

scientific observations, but specialization of automobile assembly operations began due 

to happenstance and necessity.  The Olds Motor Works was just turning out the first mass 

produced automobile when its shops were destroyed by fire in 1901.  This disaster led 

Olds to organize a separate final assembly operation, which “demonstrated, perhaps for 

the first time anywhere, that a major production process could be organized as a series of 

separate specialized plants” (Abernathy, 1978).  Departmentalization had become 

common and elaborate in other industries, as illustrated by the organization of Standard 

Oil, and developed along functional lines in the automotive industry.  By 1909, Cadillac, 

Buick, Olds, Studebaker, and other large factories had instituted minute subdivision of 

both business and production sides, with separate departments for purchasing, time-

keeping, cost-accounting, engineering, design, and manufacturing.  Cadillac had forty-

four different manufacturing departments.  This organization required a complex 

management system for inventory tracking, materials handling, and job routing (Nevins 

and Hill, 1954). 

In 1909, the president of Packard invited Taylor, who by then was considered the 

nation’s leading productivity consultant, to Detroit to speak to company executives.  

During a four-hour meeting, Taylor advised that managers should remove all brainwork 

and skilled labor from the shop floor by restructuring every job as dozens of simple 

repetitive tasks.  Packard subsequently instituted a jobs analysis at their factory and had 

‘Taylorized’ the plant by 1913.  However, when Taylor returned to Detroit in 1914 to 

speak to over six hundred superintendents and foreman from various industries, he was 
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informed that “several Detroit manufacturers had anticipated his ideas” on their own 

(Nevins and Hill, 1954, p. 468). 

Nevins and Hill (1954, p. 468) assert that some understanding of Taylor’s theory 

“slowly percolated through industry” and that Ford employees “had doubtless caught 

some of his ideas.”  Taylor had pioneered the idea of breaking down a task into minute 

steps around 1880 and according to Kanigel, by 1908 when Ford was planning the 

Highland Park plant, “this habit of thought was densely part of the American industrial 

air.”  After Taylor published The Principles of Scientific Management in 1911, “you 

could hardly buy a stopwatch in Detroit, so swiftly were they snapped up” (Kanigel, 

1997, p. 497).  The Ford Motor Company established a time study department perhaps as 

early as 1912, and time and motion studies were used to establish wage rates and were 

critical in the design of the chassis assembly line in 1913-1914 (see section 4.1.5). 

Rubenstein (2001) concludes that structural changes that led to deskilling the 

automotive labor force predated Taylorism.  Hounshell (1984) is less conclusive, stating 

that “[t]he Ford Motor Company could have been ‘Taylorized’ without Taylor” 

(emphasis added).  Indeed, the automobile industry had faced substantial management 

challenges early on.  The booming demand for automobiles starting in 1904 made it 

difficult for manufacturers to meet demand and increasing production led to significant 

problems securing sufficient skilled labor in Detroit.  Given his mechanical inclinations 

from an early age, it is likely that Ford would naturally approach the problems posed by 

mass production and labor shortages from a mechanistic and reductionist perspective, just 

as Taylor had.  Further, advances in machine tools and high speed steel (which Taylor 

had helped revolutionize) meant that machines no longer held up production processes; 
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labor was now the limiting factor in productivity.  Nevins and Hill (1954, p. 469) 

conclude that “[t]he machine process, in short, was generating and perfecting its own 

procedures.  Plant engineers and production superintendents, knowing little of theory but 

schooled in machine shop, foundry, and assembly room to a firm grasp of practical needs, 

were creating a system of management to meet them.” 

Charles Sorensen, who began with Ford as a patternmaker and became an 

indispensable member of Ford’s production team, stresses that Ford did not employ a 

formal management system and that no one at Ford was acquainted with Taylor’s 

theories.  He claims that the articulation of the principles and philosophy of Ford’s 

production system followed its achievement, but his ex post description is highly 

suggestive of Taylorism.  According to Sorensen, the Ford system put higher skill into 

planning, management, and tool building, thereby making jobs easier and making it 

possible for unskilled workers to earn higher wages (Sorensen, 1956).   In 1926, Henry 

Ford provided a ghost-written article to the Encyclopaedia Britannica that listed among 

the principles of mass production the “analysis of operations into their constituent parts.”  

He went on to say that successfully planning the orderly progression of materials through 

the shop requires “a careful breaking up of the work into the sequence of its ‘operations’” 

(Encyclopedia Britannica, 1926, p. 822).  When American Machinist editor Fred Colvin 

visited Highland Park in early 1913, he was convinced “that motion study has been 

carefully looked into, whether it is called by that name or not” (cited in Kanigel, 1997, p. 

497).  Ford described the 1913 establishment of new wage rates using strikingly Taylorist 

language:  

And then, too, the wages were not scientifically adjusted to the jobs.  The man in 
job "A" might get one rate and the man in job "B" a higher rate, while as a matter 
of fact job "A" might require more skill or exertion than job "B." A great deal of 
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inequity creeps into wage rates unless both the employer and the employee know 
that the rate paid has been arrived at by something better than a guess. Therefore, 
starting about 1913 we had time studies made of all the thousands of operations 
in the shops. By a time study it is possible theoretically to determine what a 
man's output should be. Then, making large allowances, it is further possible to 
get at a satisfactory standard output for a day, and, taking into consideration the 
skill, to arrive at a rate which will express with fair accuracy the amount of skill 
and exertion that goes into a job--and how much is to be expected from the man 
in the job in return for the wage. Without scientific study the employer does not 
know why he is paying a wage and the worker does not know why he is getting 
it. On the time figures all of the jobs in our factory were standardized and rates 
set (Ford and Crowther, 1922, p. 125-126). 

The highly publicized Eastern Rate Case in 1910 and the publication of The 

Principles of Scientific Management in 1911 marked the height of influence of scientific 

management, and corresponded with the development of Ford’s revolutionary production 

methods.  It therefore is reasonable to theorize that the fundamentals and language of 

Taylorism had permeated the knowledge base, possibly in tacit form.  However, by the 

time Ford was designing the Model T and the Highland Park plant, some of this 

knowledge also would have been codified in operating procedures at a number of 

Detroit’s manufacturing plants.  Indeed, the field of scientific management grew quickly 

after 1911 and widespread interest brought an “efficiency craze that reached into home, 

farm, and office, as well as factory” (Kanigel, 1997, p. 486).  When investigators toured 

Highland Park in 1914, they commented that the Ford had arrived, by trial and error, at 

the practical results detailed in two new theoretical texts: The Business Administrator, by 

E. C. Jones, and Installing Efficiency Methods, by C. E. Knoppel (Nevins and Hill, 1954).   

Further, there is ample evidence that Ford officials were networked in the 

knowledge base.  Ford Motor Company’s chief tool designer, Oscar Charles Bornholdt, is 

listed on the membership roster for the ASME in 1907, while Taylor served as president 

from 1906-1907.  Hounshell (1984, p. 223) names Bornholdt, who worked at Ford from 
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April, 1906, until 1913, among the “backbone of the Ford production team” responsible 

for tooling up for production of the first Model T.   

In 1912, Ford hired Clarence Avery, who had taught Henry Ford’s son, Edsel, in 

high school.  Avery was an educated man, having studied at the Ferris Institute and the 

University of Michigan.  According to Nevins and Hill (1954, p. 474), “[h]e read widely, 

knew the latest European and American advances in engineering, and kept in touch with 

the ideas of men like Frederick W. Taylor.”  As discussed in section 4.1.5, Avery played 

a critical role in developing Ford’s new production system and likely originated some of 

its revolutionary ideas.  Sorensen (1956, p. 130) states that it was Avery who redesigned 

operations and “worked out the timing schedules necessary” to install continuously 

moving conveyer assembly systems and Avery certainly was responsible for instituting 

time-motion studies for chassis assembly. 

Higher labor productivity at Ford came at a price.  The rapid pace of production 

was set by machines and conveyor systems while the work became minutely prescribed 

and monotonous.  Labor became increasingly dissatisfied, and by 1914, Ford was 

required to hire 53,000 employees per year to maintain a staff of 14,000 (Ford and 

Crowther, 1922).  Although the workers now required little skill and could be quickly 

trained, the rising turnover rate would become untenable.  In 1895, Frederick Taylor had 

presented a paper titled “A Piece Rate System” to the Detroit meeting of the American 

Society of Mechanical Engineers which warned that “MEN WILL NOT DO AN 

EXTRAORDINARY DAY’S WORK FOR AN ORDINARY DAY’S PAY” (Taylor, 

1895, emphasis in original).  In conjunction with his management system, Taylor 
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recommended pay increases between 30 and 100% depending on the skill, intelligence, 

and strength required (Taylor, 1911). 

John R. Lee, who came to work for the Ford Motor Company though the purchase 

of the John R. Keim Mill in 1911, took over personnel and began an effort to systematize 

the wages.  The new structure initiated in October, 1913, established wages based on skill 

class and granted a 13% factory-wide raise apportioned according to individual worker 

efficiency.  Lee designed other labor reforms to protect workers from potential 

discriminatory conduct of foremen and to enable steady advancement from an unskilled 

standing to that of first-class workman.  Foremen were required to participate in 

continuous reviews of worker capacity and job assignment to further ensure proper 

advancement.  In addition, safety measures, such as mechanical guards, railings, and 

improved lighting, were put in place to protect workers from “external” causes of 

accidents.  Alarm systems were installed to protect them from accidents caused by 

“internal” or psychological causes like carelessness and boredom (Nevins and Hill, 

1954). 

In 1914, Ford nearly doubled wages to $5 per day – an increase in the upper range 

of Taylor’s recommendation – and reduced the work day from 9 to 8 hours.  Ford 

claimed that the wage hike was simply profit sharing: consumers benefited from low 

prices wrought through high productivity; the company was enjoying huge profits and 

paying dividends and bonuses to executives; it was time for the working man to share in 

the profits too.  When Ford executives were working out the new pay scales, Sorensen 

(1956) claims he envisaged higher productivity and economies that would result from 

more-satisfied willing workers.  In addition, higher wages made economic and business 
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sense because a more prosperous national workforce would expand the market for 

automobiles.  Whatever the motivation, labor management reforms and increased wages 

had a profound and immediate impact on the company’s retention rate.  The following 

year, Ford hired only 6,508 new employees, most of which were required due to growth 

rather than turnover (Ford and Crowther, 1922).  Only one man was discharged in the six 

months prior to April, 1916 (Nevins and Hill, 1954).  As a result of sweeping labor 

changes, Ford’s employees were more experienced and happier and Henry Ford became a 

folk hero. 

However, Fordism diverged from Taylorism on a significant point.  Taylor largely 

took production hardware as a given, stripped away needless elements, and focused on 

maximizing the efficiency of work with that hardware through motion studies 

(Hounshell, 1984; Kanigel, 1997).36  The studies were then used to determine a fair day’s 

work and establish incentive pay schedules.  Meanwhile, Ford engineers redesigned the 

fundamental production hardware to mechanize work processes to the fullest extent 

possible.  While he may have applied time and motion studies to set up the processes, the 

machines then set the pace of work.  Kanigel (1997) describes Taylorism as the universal 

case and Fordism the special case: the application of Taylor’s system to mass production.  

Taylor may have provided the tools and the descriptive language, maybe even the mental 

paradigm, but Ford’s team combined them with principles of armory practice and moving 

assembly and extended all three to develop an entirely new system of continuous 

production. 

                                                 
36 Taylor did, however, design a number of specialized tools to substitute mechanical devices for skilled 
labor prior to 1900 (Kanigel, 1997). 
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4.1.4.3 Summary 

The traditional craft system put control of production in the hands of skilled 

craftsmen and was incompatible high volume, low cost production in factories.  Thus, 

craft production was misaligned with emerging rules within the TIEC regarding 

capitalism, factory production, mechanistic reductionism, and an increased cultural 

valuation of efficiency.  To improve efficiency, managers needed to take control of the 

production process out of the hands of skilled craftsmen.  This problem was not unique to 

the automobile industry and multiple entrepreneurs were working separately yet 

concurrently on the same problems and were developing a variety of similar solutions. 

An era of innovative ferment in the management of production had arisen in response to 

pervasive changes in the TIEC.   

Scientific management and the Ford system improved efficiency by taking control 

of the production process out of the hands of skilled craftsmen, thereby establishing new 

rules for production that were aligned with the evolving higher-level rules within the 

TIEC.  Ford’s production team was uniquely able to synthesize and exploit the 

opportunities provided by this social and institutional context, in part because the 

management was relatively unfamiliar with the rules of production under the craft 

system.  However, critical members of Ford’s production team were either educated in 

scientific management or were tied into the knowledge base where these ideas were 

circulating.  Therefore, while the Ford team certainly must be credited with a great deal 

of inspiration and insight, the role of knowledge spillovers in the company’s highly 

synthetic innovations was of primary significance.  
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4.1.5 Moving Assembly Line, 1908-1915 

The third and final aspect of Ford’s process innovations, continuously moving 

assembly, is popularly regarded as his most significant contribution to modern production 

methods and confers to Henry Ford the status of ‘hero entrepreneur.’  However, the 

development of continuously moving assembly at the Ford Motor Company was a highly 

synthetic process involving the talents and personal inspiration of multiple entrepreneurs 

and spillovers from multiple industries.  In addition, moving assembly was just one 

component of a production system in which synergies yielded higher cost reductions than 

the simple sum of the parts.   

By 1906, Ford had established a highly innovative atmosphere.  After obtaining 

financial control of the Ford Motor Company in 1907, Ford pursued an atypical fiscal 

strategy.  Contemptuous of money-making and profit-seekers, Ford opted to reinvest 

profits in the company instead of paying out large dividends and corporate salaries.  This 

internal funding gave the company extraordinary financial stability.  In addition, though 

Flanders had introduced critical elements of armory practice, Ford and his engineers had 

no rigid ideas about production processes.  Sorensen (1956, p. 55) recalls, “The Ford 

operations and creative work were directed by men who had no previous knowledge of 

the subject.  They did not have a chance to get on really familiar terms with the 

impossible... There was no one around who had had experience, and if one came along 

who had done well in any other business we had more of a problem to get him to drop his 

ideas and fall in with our progressive manufacturing and assembling.”   

According to Hounshell (1984, p. 220), “Ford allowed an extensive amount of 

experimentation to be carried out in the factory and a surprising rate of scrapping 
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processes and machine tools when they did not suit the immediate fancy of his production 

engineers.”  Ford’s young talented engineers “carried out production experiments and 

worked out fresh ideas in gauging, fixture design, machine tool design and placement, 

factory layout, quality control, and materials handling.”  Machinery was organized for 

sequential operation, increasingly specialized tools and equipment were designed and 

installed, and the work was progressively broken down into smaller tasks.  Each worker 

became more specialized, performing only a single task.  In 1908, a single worker’s 

average time before repeating the same operation was 8.56 hours.  By 1913, the task 

cycle had been reduced to 2.3 minutes (Womack et al., 1990).  In 1915, engine assembly 

at Highland Park was performed in a sequence of 84 tasks on three assembly lines 

(Rubenstein, 2001). 

In trying to reduce the cycle time, moving the workers from stand to stand quickly 

became a problem.  The solution, obvious in retrospect, was a major departure from 

standard industry practice: move the cars instead of the workers.  According to 

Rubenstein (2001), Henry Ford and four other Ford Motor Company leaders all claim 

credit for inventing the moving assembly line.  Yet Sorensen (1956, p. 129) claims that 

“Mr. Ford had nothing to do with originating, planning, and carrying out the assembly 

line.  He encouraged the work, his vision to try unorthodox methods was an example to 

us.”  Although Henry Ford took a special interest in magneto assembly, it appears that 

“seminal ideas moved from the bottom to the top” at Ford and that Clarence Avery 

played the largest single role in developing Ford’s new production system (Nevins and 

Hill, 1954, p. 474).  When Avery was hired in 1912, he spent eight months studying 

every production department and then was assigned to assist Sorensen in production 
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planning.  A member of Ford’s experimental staff recalled that Avery was “known as 

pushing the assembly line” and that “it was Avery who put that before the boss” (Nevins 

and Hill, 1954, p. 474).  Others in the Ford experimental staff concur that Avery was the 

first to see the potential for putting the entire plant on the new system and that he served 

as the “guiding light” in working out assembly operations. 

The idea of the mechanized moving assembly line is perhaps a natural progression 

from the practice pioneered by western bicycle manufacturers like the Western Wheel 

Works of Chicago, where machinists remained seated and runners brought materials to 

them.  In addition, the Westinghouse Foundry used a conveyor system to move molds 

and sand as early as 1890.  However, the idea apparently came to Ford officials from 

outside the metalworking industries.  The flour-milling, brewery, meat-packing, and food 

canning industries were using gravity slides and conveyor systems to facilitate the 

smooth flow of materials, and all were well publicized. 

Late in the 18th century, Oliver Evans had synthesized existing technological 

elements into an automatic flour mill and use of such sophisticated materials handling 

technology in the mills in Minnesota were a matter of national and local pride.  Late in 

the 19th century, Edwin Norton developed automatic can-making machinery that 

combined sequential arrangement of machinery with automatic conveyors.  Around the 

time that Ford implemented moving assembly lines, toolmaker Bornholdt compared the 

arrangement of Ford’s machine tools to the layout of canning machinery.  William Klann, 

head of Ford’s engine department, had worked repairing grain elevators and other 

mechanical conveyors in Detroit breweries and his former employer also made conveyors 

for foundries.  But it was the ‘disassembly’ lines of the slaughterhouses, described in 



 

225 

detail in Upton Sinclair’s 1906 book The Jungle, that apparently captured the Ford 

officials’ imagination.  After touring a Chicago slaughterhouse, Klann reportedly told the 

factory superintendent P.E. Martin that “[i]f they can kill pigs and cows that way, we can 

build cars that way and motors that way” (Hounshell, 1984, p. 241).   

Experimentation with the moving assembly line was so rapid that the chronology 

of events found in photo documentation, reminiscences of company officials, and 

historical writings conflict (Hounshell, 1984).  It is clear that Ford added the first moving 

assembly line in 1913 and improved the design through trial and error experimentation 

over the next year.  Moving assembly lines were completed for magnetos, motors, and 

transmissions, and by the summer of 1913, the production from these lines threatened to 

swamp final assembly.  It was time to revolutionize this line as well.  Clarence Avery and 

William Klann were responsible for the intricate calculations necessary to develop the 

sequence and timing of steps and the distribution of parts.  They began by timing the men 

as they assembled fifty chassis at fifty different spots in each of two assembly lines.  On 

average, each chassis took 12.5 man-hours to complete.  Next, they pulled a chassis along 

the floor to test their ideas.  “Then after trial and error test to determine speed, optimum 

part placement, and other technical questions, an assembly line pulled by rope and 

windlass was set in operation October 1, 1913” (Nevins and Hill, 1954, p. 473).   

Even in this rough experiment, the average assembly time fell to 5 hours and 50 

minutes.  By December, after careful motion-study, the line was extended to 300 feet and 

assembly time averaged only 2 hours and 38 minutes.  Machine power soon replaced 

hand power on the windlass, an endless chain replaced the rope, and the assembly lines 

were raised to waist level.  With further subdivision of the work, assembly time fell to 1 
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hour and 33 minutes.  Engine assembly time was similarly cut from 600 minutes in the 

fall of 1913 to 226 minutes by the spring of 1914.   

But the moving assembly line can not be credited as the sole source of Ford’s 

unprecedented efficiency.  Ford had invested a great deal in developing the Highland 

Park plant and subsequent moving assembly innovations.  According to Nevins and Hill 

(1956, p. 504): 

A large force was constantly employed in what might be called the creative 
preparations for mass production; that is, in equipping the factory to carry it on.  
This spring of 1914 saw fifty-nine men hunched over desks with triangles, 
compasses, and slide-rules, making drawings for machine tools and fixtures; 
forty men busy with hammer, saw, and chisel making patterns; and nearly five 
hundred men at Highland Park and three hundred in outside machine shops 
forging, casting, and building tools.  A regiment of men, in short, was constantly 
storming the bastions of old-style factory methods. 

The combination of fully interchangeable parts, specially-designed single-purpose 

machinery, sequential placement of men and machines, overhead carriers for materials, 

slides and moving assembly lines, and the minute breakdown of assembly operations 

combined into a production system that was more efficient than the simple sum of the 

parts.  Of this system, continuously moving assembly was the crowning jewel: the key to 

complete coordination and control.  According to Hounshell (1984, p. 187), “Although 

the bicycle industry in the late nineteenth century brought to perfection the American 

system of manufactures it was unable to solve the problem of finishing and assembly of 

parts.  The Ford assembly line… overcame this problem…” 

4.1.6 Centralized Control and Vertical Integration, 1907-1914 

Throughout the period covered in this chapter, Henry Ford clashed with his 

financial backers over strategy.  This fact, combined with Ford’s predisposition toward 

individualism and autocracy, led Ford to seek complete financial and managerial 
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independence.  Ford was assisted in achieving this goal by an unexpected exogenous 

event, the Panic of 1907.  In addition, the price and availability of raw materials was 

always a concern and supply holdups and bottlenecks became an increasing problem as 

Ford moved toward continuously moving assembly.  Therefore, Ford also began a 

process to bring these supplies under his control.  This section relates this progression 

toward centralized control and vertical integration through 1915, though it would not be 

complete until 1918.  Therefore, this trend and its implications for the company’s 

innovative capabilities will be continued in the following chapter. 

Like many early automobile manufacturers, the Ford Motor Company began as an 

assembler of purchased parts, first at a rented facility on Mack Avenue, then at its own 

plant on Piquette Avenue.  In these early days, the financial backers, Malcomson and 

Gray, wielded significant managerial power.  Malcomson owned 25.5% of the voting 

stock and Gray held 10.5% and served as company president.  Ford, who owned 25.5% 

of the company, was designated vice president and had final say on automobile design, 

engineering, and production.  Though Couzens held a small minority (2.5%) of company 

stock, he was completely responsible for all business matters, including bookkeeping, 

correspondence, accounts payable and receivable, supply contracts, advertising, and 

sales.  A determined individualist with a fiery temper, Couzens was not afraid to assert 

his will over Ford or Malcomson when it came to meeting market demand and making 

the company profitable. 

Despite both being hard-nosed individualists, Ford and Couzens worked well 

together, regarding themselves as the insiders and Gray, Malcomson, and the rest of the 

stockholders as the outsiders (Nevins and Hill, 1954).  Ford had clashed with Malcomson 
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over managerial and design issues from the beginning.  The most significant conflict 

involved Ford’s goal to produce a single, inexpensive automobile, while Malcomson 

preferred that the company build expensive cars.  Late in 1905, Henry Ford established 

the Ford Manufacturing Company to begin manufacturing major parts for the new Model 

N, believing that retention and reinvestment of profits from these parts was critical to the 

success of producing an inexpensive car for the masses.  Though Ford, the Dodges, 

Couzens, and three other Ford Motor Company stock holders were allotted shares in the 

new company, Malcomson was conspicuously excluded.  While Ford’s primary goal was 

to begin the in-house manufacture of the most important parts of Ford cars, it appears that 

he also created the new company as a means to free himself of Malcomson’s influence. 

Ford rented a factory on Bellevue Avenue for the new company and equipped it to 

produce engines, gears, and other parts solely for the Model N.  The Dodge Brothers 

continued to manufacture the engines and parts for the more expensive Model B and 

Model K.  In 1907, the new Ford Manufacturing Company enjoyed large profits from 

parts for the highly successful Model N, but Ford Motor Company profits fell due to 

flagging sales of the higher priced models.  The saturating market for expensive vehicles 

and the Panic of 1907 no doubt contributed to the slow sales of the Model K, which 

represented Ford’s first foray into the highest price bracket.  Meanwhile, Malcomson had 

launched his own automobile manufacturing enterprise, the Aerocar Company.  With his 

dividend income dwindling, Malcomson was coerced into selling his now unprofitable 

shares of the Ford Motor Company in order to keep his new venture afloat. 

The bylaws initially adopted for the Ford Motor Company stipulated that no 

stockholder could sell shares to an outsider without approval from the other stockholders 
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and without offering the other stockholders an opportunity to purchase them.  Henry Ford 

purchased all of Malcomson’s stock, and within the next year, three of Malcomson’s 

friends sold their company stock to Ford and Couzens.  The Ford Motor Company 

purchased the Ford Manufacturing Company and, by the fall of 1907, Henry Ford owned 

58.5% of the reunified company and Couzens owned 11% (Nevins and Hill, 1954).  

Shortly after the death of John Gray in 1906, Ford had been named president of the Ford 

Motor Company and John Dodge had been named vice president.  Henry Ford now 

wielded both managerial and financial control of the firm that bore his name. 

With the success of the Model N and the ousting of Malcomson, Ford made his 

strategy for the future clear, saying that “he was going to produce a four-cylinder 

automobile, that once it was produced he was going to stick to that standardized design 

without changing it, that he was going to reach constantly toward a growing volume 

because it would drastically cut his costs, and that he was going to reduce prices steadily” 

(Nevins and Hill, 1954, p. 339).  In the years that followed, production cost reductions 

were realized through a combination of high volume production of a single product, the 

Model T, and a number of process innovations – highly standardized parts, extensive use 

of specially-designed single-purpose machinery, and moving assembly.  The introduction 

of this last innovation required a timely supply of parts, further reinforcing Ford’s desire 

for control over supplies. 

From the birth of the company, the Dodge Brothers had manufactured a major 

portion of the Ford automobiles, including engines, transmissions, axles, drive shaft 

assemblies, and drop forgings.  While this arrangement had worked to the benefit of both 

companies, difficulties arose over annual price negotiations.  With the inclusion of a huge 
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foundry and a machine shop for manufacturing engines, transmissions, and axles, the 

Ford plant at Highland Park brought in-house the production capabilities previously 

provided by the Dodge Brothers.  The move from Piquette Avenue to Highland Park 

began in 1910.  With Ford as their only customer, the Dodge brothers must certainly have 

been concerned about the future of their business.  In August of 1913, John Dodge 

resigned as director and vice president of the Ford Motor Company so that the Dodge 

brothers could pursue manufacturing their own automobile.  Dodge soon ceased 

supplying parts to Ford (Nevins and Hill, 1954).   

Just after the decision on the Selden patent dispute in 1911 (see section 4.5.1), 

Ford purchased the John R. Keim Mills of Buffalo, New York, which supplied stamped- 

and drawn-steel components for Ford cars.37  Following a wildcat strike in 1912, Ford 

moved pressed steel manufacturing from the Keim plant to Highland Park and converted 

the Buffalo facility into a branch assembly plant.  With the purchase of the Keim Mills, 

Ford was capable of manufacturing its own axle housings, crankcase and transmission 

covers, and even bodies.  The intellectual capital that Ford inherited from the Keim Mills 

would also prove invaluable to the development of Ford’s ground-breaking mass 

production techniques:  William Knudsen was instrumental in setting up branch assembly 

plants; William H. Smith, who had first approached Henry Ford with the idea of used 

stamped steel, was a highly capable engineer; and John R. Lee later became Ford’s 

personnel manager and engineered the company’s sweeping labor and wage reforms. 

By the close of 1914, Henry Ford was well on his way to bringing under one roof 

the entire business of automobile manufacturing.  He had realized his dream of producing 

                                                 
37 Ford had underwritten the new tools and dies necessary for this production, and the outlay represented a 
significant risk (Sorensen, 1956). 
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a car to replace the family horse and, without the influence of Malcomson, he was able to 

pursue his goal of steadily decreasing the price of that car so that every working man 

could afford it.  By synthesizing a number of process innovations – the manufacturing of 

fully interchangeable parts, the development and use of special purpose machinery, the 

sequential placement of men and machines, the minute breakdown of production 

operations, and continuously moving assembly – he also was well on the way to 

developing the production system to make that happen.  In 1914, sales of the Model T 

reached nearly a quarter of a million and Henry Ford had plans for expansion on a grand 

scale. 

4.2 The Rise of General Motors 

During the period from 1900-1915, the Ford Motor Company emerged as the 

industry leader with sales in 1915 exceeding half the market for automobiles.  In the same 

time period, another industry giant was forming.  But while Ford had arisen from a single 

firm that, by 1915, was producing a single model, this second giant took a very different 

form and path.  The history of General Motors Corporation (GM) involves numerous 

automobile manufacturers and a multitude of suppliers.  Like Ford, the company’s history 

prior to 1915 is dominated by a single personality whose name, unlike Henry Ford’s, is 

largely forgotten: William C. Durant. 

This chapter begins in section 4.2.1 with the origins of GM in the Buick Motor 

Company and with W.C. Durant, whose experience in the carriage trade did not involve 

engineering or production, but rather management and primarily sales.  Durant’s success 

with Buick supports the notion that entrepreneurs (in this case the team of Durant and his 

partner Josiah Dort) must act as heterogeneous engineers who jointly address issues of 
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technology, management, marketing, and finance.  The Model 10 priced under $1,000 

propelled Buick to the lead market position by 1908 and serves as a testament to the 

rising importance of the low-priced market.  

Section 4.2.2 reviews Durant’s establishment of GM and subsequent loss of 

control.  While the product design during the transitional phase was converging on a 

dominant design, manufacturers did not know what that design would entail, which 

presented them with substantial risk.  Ford attempted to influence the selection 

environment with his interpretation of the automobile and appropriate product attributes, 

while Durant attempted to mitigate his risk through diversification.  However, by 1910, 

only Buick and Cadillac were profitable.  This can be attributed to two factors: 1) the 

emergence of a new functional definition that appealed to a wider market and an aligned 

dominant design which supplanted other technological interpretations and configurations; 

and 2) manufacturing processes at GM subsidiaries that were not aligned with the TIEC 

and market needs for the combination of high reliability and low cost.  This situation is 

illustrative of the difficulties facing much of the industry, as discussed later in sections 

4.4 and 4.5.4.  While most of GMs subsidiaries produced mediocre and outdated products 

using craft production techniques, Buick and Cadillac had high quality models positioned 

for the upper end of the mass market segment and lower end of the wealthy market 

segment. However, GM continued to struggle with aligning production methods to new 

rules in the TIEC.   

These problems, combined with an aggressive expansion strategy and an 

economic slowdown, contributed to the transfer of control to a banking syndicate 

between 1910 and 1915, the era covered in section 4.2.3.  In an effort to restore GM to 
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profitability, the bankers increased the company’s misalignment with both the emerging 

functional definition of the automobile and the rules of manufacturing for the mass 

market this definition served.  By eliminating the Buick Model 10, they eliminated 

participation in the low-price market.  And by maintaining high prices, low volume 

production, and hand-craft techniques, they adhered to outmoded economic rules.  

However, the bankers did improve production processes, bringing GM into alignment 

with the rules of armory practice, and also instituted a research program to replace rules 

of thumb for engineering.  The company was returned to profitability, but a significant 

loss of market share and stock value placed it in jeopardy. 

Finally, section 4.2.4 provides a detailed description of the development of the 

electric self starter 1911, one of the most significant product innovations for GM and the 

industry in this era.  The electric starter overcame one of the largest disadvantages of the 

gasoline car and began a process of ‘electrifying’ the gasoline motor vehicles, making it a 

technological hybrid that combined advantages of electric and gasoline vehicles.  This 

review reveals that spillovers and learning-by-interacting with suppliers were the most 

significant mechanisms in this critical innovation. 

4.2.1 Buick and William C. Durant, 1902-1908 

David Dunbar Buick, an inventor and manufacturer of plumbing supplies, 

founded the Buick Motor Company in 1902.  Buick developed a well-engineered vehicle 

but exhausted the company’s finances doing so.  Buick’s main asset was a patent on a 

valve-in-head engine that obtained a better fuel-air mixture and thus produced more 

power.  The company was sold twice, landing in 1903 in the hands of James H. Whiting 

of Flint, Michigan.  Located at a ford in the Flint River surrounded by abundant pine 
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forests, Flint had been founded on the fur trade then later prospered in the lumber 

industry.  About 90% of the original settlers hailed from New England and New York.  

By the time the forests began disappearing in the 1880s, the city was a manufacturing 

town of flour, paper, wool, and cotton mills.  But its primary business was woodworking 

and the city’s industrial base included an array of woodworking tools and skilled 

workmen.  When the lumber mills closed down, Flint turned to carriage making and 

became the national center of the industry by the turn of the century. 

James Whiting was president of the Flint Wagon Works and looking to enter the 

automobile industry when he purchased Buick and moved it from Detroit to Flint.  

Although David Buick and his engineer, Walter Marr, put together a successful prototype 

of what would be the Buick Model B, they had once again exhausted the company’s 

capital.  Yet they had produced no more than forty cars in 1904.  Whiting had borrowed 

heavily from three Flint banks and the city’s entire financial community was at risk.  

Whiting determined he needed a younger man to reorganize and run the company and 

turned to William C. Durant.   

Durant was a highly energetic businessman and a persuasive salesman.  At the age 

of 43, Durant was already a self-made millionaire and the semi-retired head of the 

country’s largest carriage producer, the Durant-Dort Carriage Company.  His 

achievements and his sincere and persuasive personality had earned the high opinion of 

his neighbors and associates in Flint.  In building his carriage business, he had developed 

a strategy for corporate expansion that he readily transferred to the automotive industry.   

Durant’s sales philosophy is revealed in his advice to other salesmen: “Do not talk 

too much.  Give the customer time to think.  In other words, let the customer sell himself.  
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Look for a self-seller” (Weisberger, 1979, p. 35).  Durant made record sales and new 

friends of prospective customers by giving them a vision of themselves as improved by 

the product.  The trick was finding a deserving product.  Durant had found his first ‘self-

seller’ in 1886, when he purchased the patent rights and manufacturing operations for a 

simple yet elegant two-wheeled road cart with a novel suspension.  His partner, Josiah 

Dallas Dort, agreed to supervise production while Durant handled sales and financing for 

the new Flint Road Cart Company.  Although the business he had purchased could only 

turn out two cars per day, within two weeks Durant had garnered orders for the quick 

delivery of 600 carts.  To meet this demand, he subcontracted a Flint competitor, W. A. 

Paterson, who had excess capacity.  The enterprise manufactured around 4,000 carts in its 

first year (Weisberger, 1979).  In order to meet this volume of production, Paterson had 

to reorganize his plant and operations, thereby introducing the rudiments of mass 

production techniques to the carriage industry (Pound, 1934).  Unfortunately, after the 

first 1,500 carts were delivered, Durant discovered that Paterson was preparing to market 

a cart suspiciously similar to his own but at a lower cost.  Durant and Dort promptly 

established their own production facilities and ended the subcontract arrangement. 

The existing wagon and carriage industry in Flint followed the seasonal pattern of 

agriculture: inventories were built up during the spring and summer then sold to farmers 

in the fall.  Durant, however, sought higher volume production, lower prices, and wider 

markets.  To pursue his goals, he systemized sales, developed advertising, and spread 

production and sales operations over the entire year.  Durant was soon swamped with 

orders and his Flint Road Cart Company became well known.  His dealers suggested he 

begin manufacturing a four-wheeled family buggy for which they saw good prospects.  
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After his staff designed a new buggy, Durant again approached Paterson with a contract 

to supply 200 units.  This time, Paterson obtained the names of his customers and lured 

some away with the promise of a cheaper model direct from the factory (Weisberger, 

1979).  Once again, Durant ended the contract arrangement, this time learning a valuable 

lesson on the virtues of vertical integration that would shape his business strategy for the 

next forty years. 

Paterson’s deceit was not the only impetus for vertical integration.  Dependence 

on suppliers dictated production volumes and costs, which was a worrisome problem in 

an age of horizontal trusts.  In 1900, there were rumors of a trust to control the 

manufacture of steel axles and wagon tires; in 1901, there were rumors of a combination 

to control the price of linseed oil used in paint and varnish (Weisberger, 1979).  Durant 

recalled, “My twenty years’ experience in the carriage business taught me a lesson.  We 

started out as assemblers with no advantage over our competitors.  We paid about the 

same prices for everything we purchased.  We realized that we were making no progress 

and would not unless and until we manufactured practically every important part that we 

used” (Rubenstein, 2001, p. 72).  Durant  proceeded through acquisitions and the 

founding of new enterprises to bring under his control the manufacture of all significant 

components and many smaller parts: 

Our plan was to manufacture practically every important part of a buggy, and 
carrying out this idea, we did not stop until we had controlled or were interested 
in building a full line of bodies, wheels, axles, forgings, stampings, leather, paint, 
trimmings and various other items, even whip sockets; but not until our accessory 
plants were in operation… did we have a product that had no competition in 
value or price in the country.  This gave us control of the business in that line as 
long as carriages were in demand.  (Weisberger, 1979, p. 47) 

In addition, Durant’s acquisitions provided product diversification according to 

both price and styling.  The two principles of Durant’s strategy – vertical integration and 
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product diversification – helped build the country’s largest carriage company in terms of 

production volume.  In 1895, the company was renamed the Durant-Dort Carriage 

Company to better reflect the full range of its products.  In seven of ten years beginning 

in 1892, the company added a major division (Weisberger, 1979).  By 1900, Durant-Dort 

consisted of fourteen branch plants and hundreds of sales agencies with annual sales of 

over 150,000 carriages (Flink, 1988). 

While a more complacent man would have been content with his success, Durant 

was in search of a new challenge when Whiting approached him to run Buick in 1904.  

Durant spent two months testing the Buick automobile and decided he had found his next 

self-seller.  Six weeks later after accepting the reins, he traveled to the Automobile Show 

in New York and obtained 1,108 orders for automobiles – 1,071 more than the company 

had produced in the previous year – but he also effectively raised significant amounts of 

capital.  Durant had insisted on absolute control of Buick and, within ten months, he had 

increased the company’s capitalization to $1.5 million.  Durant recruited new engineering 

talent to work with Buick, Marr, and Arthur Mason, an expert the previous management 

had hired from Cadillac.38  Mason developed a new engine that increased operating speed 

from 1,800 to 4,000 rpm, which led to the development in 1905 of the Model C, a 

powerful two-cylinder, 22-horsepower car (Weisberger, 1979). 

Durant also created a national sales organization, using Durant-Dort carriage 

showrooms and seeking out dealers willing to travel into the countryside in New England 

and the West.  One of his New England dealers, Harry Shiland, was a mechanic who 

personally overhauled each vehicle he sold.  He was not impressed with the early Buicks 
                                                 
38 Though David Buick was highly successful with technical innovations, he apparently was quite inept at 
finances and sank into debt.  In 1906, he resigned from the company that bore his name and disappeared 
into poverty and obscurity. 
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and wrote a letter of complaint to the company.  At Durant’s invitation, Shiland toured 

the plant and provided such accurate criticisms that Durant decided to appoint him 

director of Buick’s service department.  Shiland stressed that cars needed to be foolproof 

in order to market them to doctors and businessmen and he proceeded to build a parts and 

complaint department on this principle. 

When it came to parts delivery, automakers and parts manufacturers were at the 

mercy of railroad freight dispatchers.  Within months after Durant took the helm, Buick 

experienced a production bottleneck due to delayed delivery of axles from the Weston-

Mott Company in Utica, New York.  Durant promptly contacted Charles Mott and invited 

him to relocate or establish a branch plant in Michigan.  In the negotiations that ensued, 

Durant offered to subscribe to 20% of the stock in the new enterprise, donate the site for 

the new plant, and award the new company all of Buick’s axle business (Weisberger, 

1979).  In 1907, Buick became an owner of the Weston-Mott Axle Company which 

moved its machinery and operations to Flint, Michigan.   

Durant was once again following his successful strategy of vertical integration 

and product diversification.  He directed Buick to develop several models of cars in 

different price ranges and was particularly interested in entering the lower priced market.  

In 1908, Buick introduced the Model 10, a lightweight, four-cylinder runabout with 18 

horsepower and a simple planetary transmission.  The Model 10, fondly known as the 

White Streak, was fast, sporty in design, easy to drive and maintain, and sold for under 

$1000.  Buick also sold the luxury Model D for $2,500 and two additional models priced 

between the D and the 10.  In only four years, Durant was able to turn Buick into the 
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country’s leading automobile manufacturer with production of 8,487 units in 1908 

(Pound, 1934; Weisberger, 1979; Flink, 1988).   

4.2.2 The Birth of General Motors, 1908-1910 

Benjamin Briscoe, head of the Maxwell-Briscoe Motor Company, approached 

Durant in 1908 with a plan to unite the major firms in the automobile industry into a 

single company.  Like many other businessmen of the times, Briscoe believed that a large 

industrial ‘combination’ on the order of U.S. Steel Corporation would protect the 

automotive industry from the ‘destabilizing’ effects of unregulated competition.  In 1907, 

manufacturers were competing for an ill-defined and relatively small market for 

automobiles, with the top 25% of firms accounting for around 75% of sales.  Producers 

financed operations with credit from suppliers and cash advances from dealers and 

customers, leaving little cushion against a slump in demand.  A company faced with ruin 

might resort to desperate competitive tactics while other unscrupulous new entrants 

promised quality at prices they could not deliver.  The resulting collapses shook buyer 

and investor confidence, sending ripples through the entire industry (Weisberger, 1979).   

Briscoe and Durant, with the backing of J. P. Morgan & Company, began 

negotiations with Henry Ford, Ransom Olds, who was now making the Reo, and other 

leading automobile producers.  Durant envisioned a holding company that allowed the 

manufacturers to continue to operate under existing management.  Ford and Olds, 

however, insisted on a cash buyout rather than an exchange of stock, and pulled out of the 

negotiations.  Although Morgan initially supported a merger of Briscoe and Durant’s 

enterprises, the bank soon withdrew.  According to Flink (1988), the bankers were 

concerned by Durant’s cavalier attitude, particularly in dealing with Buick’s stockholders 
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and also in an offer he had made to buy the Olds Motor Works without reviewing the 

company’s books.  They became convinced that Durant was unbalanced when he 

prophesied that U.S. automobile sales would soon reach half a million units.39  Durant 

also insisted he be left in control of the new combination’s finances, but the bankers 

insisted on choosing the officers and directors of the new company.  When details of the 

proposed merger were leaked to the press, the plan died (Weisberger, 1979).   

Durant, however, moved forward on his own, founding the General Motors 

Company (GM) in September, 1908, as a holding company that would purchase 

companies by exchanging stock in the old firm for stock in the new one.  GM first 

acquired Buick then within months acquired the Olds Motor Works, which was failing.  

Durant initially left the management in charge at Olds, but replaced them in 1909.  He 

then reportedly brought a Buick White Streak to the Oldsmobile plant, sawed its wooden 

body into quarters, separated the four parts into a wider and longer profile, and directed 

the engineers to duplicate the result to create the basic 1910 Oldsmobile (Weisberger, 

1979).  In 1908, GM also purchased the underfinanced Oakland Motor Car Company 

which would later be renamed Pontiac.  In July, 1909, Durant purchased the Cadillac 

Automobile Company from Henry Leland, who had taken control of the firm in 1902 

when it was the failing Henry Ford Company.  Under Leland’s guidance, Cadillac had 

earned international recognition for high quality engineering and the production of 

precision-machined interchangeable parts.  In 1909, the Cadillac was widely viewed as 

the best high-priced car in the country (Weisberger, 1979).  As agreed during 

negotiations, Durant left Leland in complete control of managing Cadillac.   

                                                 
39 Durant was, of course, proven correct six years later when sales reached 548,000 in 1914. 
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Durant also began purchasing parts manufacturers, believing that “[c]ontrolling 

this enormous volume would make it possible for these accessory plants…to materially 

reduce costs because of the volume of business from GM which they could depend upon 

if motor cars and motor trucks, as I was firmly convinced, was [sic] to become important 

factors in the industrial life of America” (Rubenstein, 2001, p. 73).  Shortly after the 

creation of GM, Durant was approached by Albert Champion, who was manufacturing a 

spark plug of his own design.  Durant was impressed and, as before with the Weston-

Mott Axle Company, promised Champion a market for every plug he could make if he 

moved his operations to Flint.  Durant sold his interest in the Champion Ignition 

Company to GM in 1909, and the firm was later renamed the A.C. Spark Plug Company.  

Within two years of incorporation, GM acquired at least part interest in manufacturers of 

electrical components, transmissions, wheels, brakes, engine castings, springs, body 

panels, and other parts. 

Unsure of the future technological direction of the industry, Durant pursued 

“getting every car in sight, playing it safe all along the line” (Flink, 1988, p. 65).  By 

1910, GM had acquired thirteen motor vehicle manufacturers and ten parts 

manufacturers, employed 14,000 workers, and produced one-fifth of the automobiles 

made in the U.S. (Nevins and Hill, 1954; Weisberger, 1979).  Unfortunately, Durant’s 

policy of broad acquisition and loose managerial control quickly turned disastrous.  

Several of his purchases turned out to be ill-advised, notably the Cartercar Company 

whose friction drive turned out to be poorly designed, the Elmore Manufacturing 

Company for its outdated two-cycle engine, and the Heany Lamp Company whose 

incandescent lamp patent was later revealed to be fraudulent.  Meanwhile, of the 
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automobile manufacturers, only the Cadillac and Buick companies turned profits and 

Buick’s fell as Durant’s energies were increasingly stretched.  GM was a combination of 

twenty-five independent firms which had no unified system of accounting, purchasing, 

marketing or engineering research.  The company had no cash reserves and little working 

cash, so when sales dropped due to an economic slowdown in 1910, GM was unable to 

make the payroll or pay suppliers.  GM’s accounting system was so inadequate that 

Durant was unable to demonstrate the company’s exact needs to potential lenders. 

The fact that only Buick and Cadillac were profitable can be attributed to two 

factors: 1) the emergence of a new functional definition that appealed to a wider market 

and an aligned dominant design which supplanted other technological interpretations and 

configurations; and 2) manufacturing and management systems at GM subsidiaries that 

were not aligned with the TIEC and needs of this wider market for high volume 

production, high reliability, and low cost.  Most of the companies acquired by GM 

(Elmore, Oakland, Rainier, Welsh, and Cartercar) produced fairly low volumes of 

mediocre-quality automobiles using craft production methods and incorporating soon-to-

be outmoded technologies like the two-cycle engine and the friction drive.  However, in 

the Buick Model 10 priced from $900, GM had a product positioned for the upper end of 

the low-priced mass market. Buick sold almost 11,000 Model 10s in 1910 while Ford 

sold 18,700 Model Ts with prices starting at $680.  In the Cadillac Model 30 priced from 

$1,400 to $3,000, GM had a high quality car positioned for the lower end of the wealthy 

market segment.  The Cadillac also incorporated Delco’s new ignition system discussed 



 

243 

in section 4.2.4 and offered a closed body style for $2,200.40  Cadillac sold about 8,000 

Model 30s in 1910. 

4.2.3 Banker Control of GM, 1910-1915 

A banking syndicate came to GM’s rescue with a $12.75 million loan that came at 

a very high price – $15 million in 5-year, 6% notes, and $6 million in stock.  GM’s stock 

was placed in a five-year voting trust and, though Durant was appointed a trustee and still 

held a seat on the board, he was outnumbered by bank representatives.  Durant was 

forced to step down from active management of GM.  Banker James Jackson Storrow 

was appointed as interim president of GM.   

Storrow was a Progressive who distrusted one man rule and endorsed 

administrative decentralization.  He appointed managers to track profits and costs for 

each of the GM divisions and gave them a great deal of independence.  In return, he 

expected teamwork: the managers were to fully share information and resources and not 

compete with one another.   

Charles W. Nash, who had worked his way through the ranks at Durant-Dort, was 

appointed president and general manager of Buick in 1910.  Nash slashed inventories, 

squeezed more productivity out of the facilities, and compressed costs.  With Nash 

consumed with administrative details, Storrow hired Walter Chrysler, then a 

superintendent at the American Locomotive Company’s Pittsburgh plant, to supervise 

Buick’s plant operations.  When Chrysler arrived at Buick in January, 1912, he found the 

company’s production methods were still based on labor-intensive handcraft methods 

inherited from the carriage industry.  He also discovered that Buick had no system to 

                                                 
40 Closed-body styles became increasingly significant in the specific and second transitional phases as 
discussed in detail in chapter 5. 
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determine the costs of production (Hyde, 2003).  Relying on his experience building 

railroad cars, Chrysler instituted changes in management, production processes, and 

material handling that greatly improved scheduling and productivity, cut costs, and 

decreased manufacturing time.  Concurrent with Ford’s experimentation with moving 

assembly lines, Chrysler introduced a system to push unfinished chassis along tracks 

through the assembly area (Hyde, 2003).  In November, 1912, Nash was promoted to the 

presidency of GM and Chrysler remained in charge of Buick operations. 

In order to reduce the number of defects in GM’s automobiles, Storrow decided to 

replace the rule-of-thumb methods used for design with organized research programs.  

Arthur D. Little, Inc., developed a plan for a centralized testing and research laboratory.  

With Storrow’s support, the board voted in early 1911 to fund an engineering laboratory 

for mechanical and electrical testing which was later named the General Motors Research 

Department.  The Department was staffed by nine researchers and their assistants.  The 

first problems they tackled included painting, lubricating, and cutting oil practices at GM 

plants; materials testing for purchasing departments; and the investigation of new parts 

and accessories proposed by outside suppliers (Pound, 1934). 

Between 1910 and 1915, the banker controlled management of GM instituted 

tighter fiscal controls and liquidated most manufacturing units, leaving only Buick, 

Cadillac, GM Truck, Oakland, and Oldsmobile.  At the same time, they increased the GM 

interests in Weston-Mott, A.C. Spark Plug, GM of Canada, and Brown-Lipe-Chapin, 

which supplied gear-trains.  They hired new administrative staff and improved 

communication and coordination among the units within the combination. GM was soon 

restored to solvency, but receipts were devoted to debt retirement rather than dividends or 
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growth.  In addition, the bankers failed to pursue the low-priced market or invest in 

production innovations, the two strategies that propelled Ford to the forefront of the 

industry during this time period.  GM manufacturing units essentially adhered to two 

tenets of traditional manufacturing strategy: 1) that high-priced products yield high per 

unit profits and thus higher overall profits than large volume production of inexpensive 

products; and 2) that craft manufacturing techniques yield superior quality over machine-

intensive mass production techniques.  Thus, in an effort to increase per unit profits, Nash 

ended production of the Buick Model 10 that was competitive with the Model T and 

essentially cut Buick sales in half in 1911.  Meanwhile, Leland refused to adopt 

assembly-line techniques at Cadillac, believing they would compromise mechanical 

precision.  Despite improvements made by Chrysler, GM’s strategies and production 

techniques were incompatible with the new functional definition of the automobile that 

appealed to a wider market and with emerging economic rules.  By 1914, the company’s 

market share had fallen from 21% to 8.5% and its stock price was depressed (Flink, 

1988). 

4.2.4 Development of the Electric Self-Starter, 1911-1912 

Prior to the invention of the electric self-starter, motorists had to adjust the spark 

and turn the engine over by hand, spinning a crank which turned the flywheel.  This feat 

required, according to Pound (1934, p. 271) “the strength of Ajax, the cunning of 

Ulysses, and the speed of Hermes.”  Starting a car in the cold was particularly 

problematic, and the starter problem was one reason that electric vehicles were preferred 

by some motorists, especially women, since “the whole back-breaking operation was 

quite beyond the powers of all women save those of Amazonian proportions.”  From 
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almost the beginning of the industry, gasoline-powered auto-makers had experimented 

unsuccessfully with air, spring, and electric starting devices (Epstein, 1972).  But a 

random accident was perhaps the catalyst that finally stimulated a solution.  In the winter 

of 1910, the founder of Cartercar stopped to help a female motorist whose car had stalled 

near Detroit’s Belle Island Park.  When Byron Carter spun the crank, the engine 

backfired, throwing the crank in reverse, breaking Carter’s arm and jaw.  Two Cadillac 

engineers driving by took Carter to the hospital where he developed pneumonia and died 

a few weeks later.  As legend has it, Henry Leland was horrified and vowed “I won’t 

have Cadillacs hurting people that way” (Cray, 1980, p. 116).41  He called his engineers 

to a special meeting and told them that eliminating the hand crank was a top priority.  

Unfortunately, the working model they developed was far too large to put into an 

automobile.  When the team was unsuccessful at solving the starter problem, Leland 

turned to Charles F. Kettering.42 

While at National Cash Register (NCR) in Dayton, Ohio, Kettering had invented a 

small electric motor to replace the hand crank on cash registers.  All earlier attempts had 

failed, leading experts to the conclusion that it was physically impossible because the 

electric motor would need to be at least as big as the cash register itself.  Kettering, 

however, perceived that the motor needed to provide only a short burst of power, leading 

him to develop a small motor with a mechanical clutch.   

                                                 
41 Other versions of the story claim that Leland was a close fried of Carter’s and that Leland said either “the 
Cadillac car will kill no more men if we can help it,” or “I won’t have Cadillacs hurting any more people 
that way,” both of which imply that the stalled car was a Cadillac (Barach, 2007; Cray, 1980). 

42 Although Cadillac had already purchased electric ignition systems from Kettering’s Dayton Electronics 
Company, Cray (1980) reports that it was Cadillac’s assistant sales manager, Earl Howard, who suggested 
that Leland should contact Kettering.  Howard was employed as secretary to the sales manager at National 
Cash Register when Kettering had developed a compact electric motor to replace the hand crank on cash 
registers. 
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Edward Deeds, general manger at NCR, subsequently asked Kettering to assist in 

building a car from a kit he had purchased.  Kettering developed a high-energy spark 

ignition to replace the weak one supplied with the kit.  At that time, the emerging 

standard ignition system for gasoline-powered cars, including the Cadillac, employed a 

magneto for spark ignition rather than a dry cell or a battery.  Dry cells wore down 

quickly and had to be replaced.  Thanks to development for electric vehicles, batteries 

were becoming more reliable, but as late as 1911, batteries in gasoline-powered vehicles 

still wore down in about 500 miles.  They could be removed from the car and recharged, 

but they rapidly deteriorated due to vibration and shock from the rough roads.  Kettering 

simplified the ignition system by placing the induction coils, one for each spark plug, in 

series in a heat-resistant, armored steel box which reduced the failure rate caused by heat 

and vibration.  He then replaced the vibrators that made and broke the circuit with a 

single master set of contact points connected to a condenser that drew away excess 

current, prolonging the life of the points.  His system was less susceptible to vibration 

and arcing, produced a hotter spark, and used less current, which extended battery and 

component life (Barach, 2007).   

Kettering perfected his ignition system and installed it in his Cadillac Roadster, 

then wrote to Leland about its flawless performance.  In September, 1908, Leland sent his 

chief engineer, Ernest Sweet, to Dayton to test drive Kettering’s Cadillac.43  Sweet was 

impressed, and Leland ordered electrical ignition sets for the entire production run of 

model year 1910 Cadillacs, around 8,000 units.  But Leland also included a standard 

magneto ignition system as a backup, just in case.  With the contract in hand, Kettering 

                                                 
43 Ironically, it reportedly was Sweet and another Cadillac engineer who two years later came upon Byron 
Carter after his fateful accident near Belle Island Park and drove him to the hospital (Barach, 2007). 
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and Deeds established the Dayton Engineering Laboratory Company, later shortened to 

Delco, in 1909 to produce the ignition devices and to develop electrical components for 

the automotive and other industries. 

When Leland approached Kettering with the self-starter problem, it took him and 

moonlighting engineers from NCR little time to develop a solution based on his small 

motor for the cash register.  In fact, according to Pound (1934), Kettering had already 

been trying to sell his electric self-starter to auto manufacturers who were skeptical of its 

reliance on a battery they believed would be quickly exhausted.  Kettering demonstrated 

a prototype to Leland in December of 1910 and by August, 1911, had been awarded a 

patent.  Kettering’s solution was an integrated starter and ignition system that employed a 

battery, starting motor, and generator equipped with a clutch and reduction gear.  Leland 

had the electrical self-starter installed in the 1912 Cadillac, but still included a magneto 

and hand crank as a backup.  He also installed a variable speed regulator developed by 

Kettering that allowed recharging of the battery without removing it from the car and also 

prevented overcharging, which had plagued earlier attempts at recharging. 

Within two years, nearly all manufacturers offered automatic starters on their 

automobiles (Epstein, 1972). The electric self-starter incorporated one of the most 

attractive features of the electric vehicle – ease of starting – into the internal combustion 

engine vehicle and opened the gasoline-powered car market to women.  Industry 

observers of the day referred to this innovation as the ‘electrified gas car,’ and in truth, it 

represented a weak hybrid gasoline-electric vehicle (Kirsch, 2000).  By 1920, electrical 

components accounted for 5% of the total cost of a gasoline vehicle.  Today, that fraction 

is at least one third.  
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In 1915, Delco was purchased by Durant’s United Motor Company, which was in 

turn acquired by GM in 1918.  In 1919, GM purchased the remaining three companies 

that Kettering had founded, the Delco Light Company, Dayton Metal Products, and the 

Dayton-Wright Airplane Company.  With Kettering and his research operations 

completely enfolded in the corporation, GM commissioned Kettering to set up and direct 

the General Motors Research Laboratories in Dayton.  In 1920, the laboratories were 

incorporated as the General Motors Research Corporation, and in 1925, the research 

activities were moved to Detroit. 

4.3 The Birth of Chevrolet, 1911-1915 

After being forced from active management of GM in 1910, Durant did not sit 

idle.  In 1911, he established three new firms: the Chevrolet Motor Company in Detroit, 

and the Little Motor Company and Mason Motor Company in Flint, Michigan.  He hired 

Louis Chevrolet, a star on his Buick racing team, to design a new vehicle for Chevrolet 

and William Little to head the Little Motor Company.  He hired Arthur Mason, who had 

been the Buick engine superintendent, to run the Mason Motor Company which was to 

produce engines for both the Chevrolet and Little cars.  Durant was incensed by Nash’s 

decision to discontinue the Buick Model 10 in 1911 and therefore aimed for the 

inexpensive market.  Priced at $600, the underpowered Little was moderately successful, 

but the Chevrolet, a ponderous 6-cylinder model with a $2,150 price tag, was a market 

failure.  Louis Chevrolet left the company and Durant consolidated the Chevrolet and 

Little companies as the Chevrolet Company in 1913, discontinuing the Little nameplate.  

The new company retained partial ownership of Mason Motors under the assumption that 

Chevrolet would require only part of Mason’s output.   
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It took Chevrolet’s engineers another year to develop a satisfactory new 

automobile, but in 1914 they introduced two new 4-cylinder models that proved to be 

spectacularly successful: the $875 Baby Grand touring car and the $750 Royal Mail 

roadster.  Weisberger (1979) provides a vivid picture of Durant’s ‘family proposition’ 

and of innovation in the early years at Chevrolet.  During engineering conferences, 

Mason, Little, and engineer Alfred Sturt would discuss shop problems, sometimes 

arguing heatedly.  Durant would then step in to calm them down and they would set to 

work solving the problem.  On one occasion, Buick veteran Charlie Wetherald, an 

incorporator of Mason Motors, heard how the tight-fitting pistons of a new engine 

produced more power but seized up when hot.  Wetherald proceeded to hand file the 

pistons to a slightly elliptical shape that solved the problem.  Another engineer then 

developed a special cam for the grinder to mechanize and standardized the new process.  

“We didn’t even take the trouble to find out if we could apply for a patent” (Weisberger, 

1979, p. 173).  Workers simply developed a solution through trial and error and moved 

on to the next problem. 

In 1914, Chevrolet could sell as many cars as it could produce and Durant 

expanded production and sales operations, establishing new assembly and regional sales 

facilities nationwide and in Canada.  Durant then announced that the 1915 Chevrolet line 

would include a new model called the 490 – named for the price of Ford’s Model T with 

which it was intended to compete.  Arthur Mason was called in to assist in the new design 

and Durant was impressed with his ideas on components other than motors, including 

axles, transmissions, and suspension.  Aware that Mason was personally in debt and that 



 

251 

Mason Motors was behind schedule and short of cash, Durant decided that Chevrolet 

should purchase the remaining shares of the company.   

Although the price of the 490 came in above the Model T at $550, Chevrolet was 

flooded with orders.  At over 70,000 units, Chevrolet sales in 1916 exceeded even 

Durant’s optimism (Weisberger, 1979).  This phenomenal success, contrasted with the 

failure of the original, powerful and expensive vehicle designed by Louis Chevrolet 

underscores the growing importance of the low-priced market after 1900.  But while 

Durant had once again found business success, his sights were set higher.  He yearned to 

retake control of GM, which he referred to as ‘my baby.’  His success with Chevrolet, 

combined with the conservative behavior of GM’s banker regime and Durant’s clever 

stock maneuvering, would provide the means for a dramatic return to GM, which is 

covered in chapter 5. 

4.4 Industry Shakeout 

As an industry approaches the specific phase, a dominant design emerges and 

firms begin competing based on cost and quality rather than product differentiation.  At 

this point, it is typical for an industry to experience shakeout, where the number of firms 

peaks and begins to decline.  The shakeout for the automobile industry began in 1909 and 

was extreme.  I identify eight factors that contributed to this phenomenon, several of 

which are inter-related: 1) increasing economies of scale that necessitated high volume 

production and high capital investments; 2) the cumulative burden of manufacturing parts 

for multiple models; 3) process innovations at Ford that were not easy for firms to adopt; 

4) the cumulative effects of and increasing returns to innovation; 5) the redefinition of the 

automobile for the mass market; 6) an emerging dominant design; 7) the saturation of the 
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market niche for very expensive vehicles; and 8) the Panic of 1907 and ensuing 

recession.  Items 5-7 together represent an important feedback mechanism between 

selection and variation.  By contributing to the failure of specific firms, the selection 

environment influenced variation and further reinforced the emerging dominant design. 

Between 1902 and 1910, the number of automobile manufacturers entering the 

market generally rose, with a peak entry of 81 firms in 1907 (Simons, 1995; Klepper and 

Simons, 1997).  Market entry declined between 1911 and 1921 then became negligible.  

The exit rate followed a similar pattern, peaking around 1909.  As shown in Figure 4-1, 

the number of firms in the industry peaked at 274 in 1909 then began a precipitous 

decline, leaving only 30 firms by 1929.44  With the reduction in firms, there was also a 

reduction in product variety.  In 1911, 270 producers manufactured 400 different 

nameplates; by 1942, there were only eight producers manufacturing 17 nameplates 

(Rubenstein, 2001).   

 

Figure 4-1: Number of Automobile Manufacturing Firms, Entry, and Exit 
Reproduced from Simons (1995, p. 100) 

                                                 
44 Data is from Simons (1995) based on Smith (1968) and excludes small firms that never achieved 
commercial production. 
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Around the turn of the century, new automobile manufacturing ventures were 

launched with very little capital.  For example, Ford was incorporated in 1903 with a 

$150,000 capitalization of which $50,000 was held in company stock.  Machinery was 

assessed at $10,000 and patents at $40,000.  The company initially ran at the verge of 

bankruptcy, owing well more in contracts to suppliers than it could cover until cash 

advances came in from dealers.  Many manufacturers rented modest facilities where they 

largely assembled parts and supplies bought on contract.  By 1911, when Ford was 

implementing revolutionary mass production techniques and Durant was establishing 

Chevrolet, the situation was far different.  Large factories were now required that could 

turn out huge quantities of vehicles using a vast array of expensive, specialized 

equipment.  A manufacturer needed established credit, highly trained executives for both 

production and business offices, and connections in the steel, rubber, nickel and 

upholstery industries.  In 1910, Flanders commented on the difficulty of entry in the 

Detroit Saturday Night (cited in Nevins and Hill, 1954, p. 476): 

The man or concern that would start in the automobile business today must 
begin, not where others began, but where they are now… To equal in quality cars 
now selling at $700 to $900, it is not only necessary to build them in tremendous 
quantities, but to build and equip factories for the economical manufacture of 
every part.  You must begin with an experimental laboratory for analyzing and 
testing metals.  The outlay for this department alone, with its necessary adjunct, 
the machine shop for tool and jig making, would amount to more than the earlier 
makers ever had invested in factories.  Yet the laboratory is an indispensable 
adjunct to the modern automobile factory.  It is the chief means of effecting an 
economy that cuts dollars from the final prices of the car. 

Flanders estimated that, in 1910, it would take an initial investment of at least two million 

dollars to enter the market with a medium-priced car. 

Innovation is among the significant factors influencing firm shakeout, with 

cumulative and self-reinforcing effects strengthening the position of early entrants 
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(Simons, 1995; Klepper and Simons, 1997).  Process innovations, made almost 

exclusively by Ford, conferred significant and growing advantages to the market leaders.  

When innovations are difficult for other firms to adopt, profitable entry becomes 

increasingly difficult.  In 1914, the National Automobile Chamber of Commerce (NACC) 

instituted a cross-licensing agreement among its members.  Though Ford was not a 

member, the company also shared patents with competitors without assessing royalties.  

In addition, Ford’s mass production innovations were well publicized in trade 

publications such as the American Machinist and a book by Arnold and Faurote 

published in 1919.  Henry Ford also extended an open invitation for all to tour his 

Highland Park plant.  As such, these innovations were accessible to other manufacturers, 

but not necessarily easy to adopt, as discussed further below.   

However, it is extremely difficult to differentiate between the advantages 

conferred by innovation and those conferred by simple economies of scale.  In 1909, 

Scientific American (cited in Flink, 1988, p. 71) wrote that “standardization and 

interchangeability of parts will have the effect of giving us a higher grade of motorcar at 

a lower price, but this is dependent in considerable degree upon the production of one 

model in great numbers and the elimination of extensive annual changes in design that 

necessitate the making of costly jigs, gauges, and special machinery.”  The president of 

the Society of Automobile Engineers (SAE) in 1910 expressed a belief that the lack of 

inter-company standardization was “responsible for nine tenths of the production troubles 

and most of the needless expense entailed in the manufacturing of motorcars” (cited in 

Flink, 1988, p. 71).  The mechanical branch of the SAE attempted to level the playing 

field for the small producer by standardizing parts across manufacturers.  Whether 
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wrought through innovation or economies of scale, the falling production costs realized 

by the largest producers put profit margin pressures on smaller firms, leaving no cushion 

for a crisis in production or a drop in demand. 

In such a climate, corporate strategies were key factors in survival.  In 1905, 

Henry Ford staked the future of the company on the Model N.  With its success in 1907, 

he made his strategy for the future clear, saying that “he was going to produce a four-

cylinder automobile, that once it was produced he was going to stick to that standardized 

design without changing it, that he was going to reach constantly toward a growing 

volume because it would drastically cut his costs, and that he was going to reduce prices 

steadily” (Nevins and Hill, 1954, p. 339).  Ford’s strategy was consistent with Scientific 

American’s assessment of the industry published two years later.  In the years that 

followed, reductions in production costs at Ford were realized through a combination of 

high volume production of a single model and a number of synergetic process 

innovations – highly standardized parts, extensive use of specially-designed single-

purpose machinery, minute subdivision of labor, and automated materials and work 

flow.45   

Ford’s complete production system certainly yielded more than simple economies 

of scale and was not necessarily easy for others to adopt, despite Ford’s open door policy 

(Raff, 1991).  While many auto manufacturers adopted some of Ford’s production 

methods such as conveyor systems, most still required skilled fitters as late as World War 

I.  Ford’s system allowed for a high degree of centralized control, which Henry Ford 

demanded.   Raff (1991) argues that Ford’s conveyors and moving assembly lines were a 

                                                 
45 Ford himself described mass production as entailing the application of seven principles: power, accuracy, 
economy, continuity, system, speed, and repetition (Nevins and Hill, 1957). 
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means of coordination and control and that other firms had difficulty imitating these 

methods because they did not fully understand them.  He cites as an example that 

Studebaker conceived of conveyors only as labor-saving devices.  While much was made 

in the press, both then and through history, of the moving assembly line, the key to 

Fordism was the combination of progressive assembly and the production of fully 

interchangeable (standardized) parts – no fitting, and thus no skilled workers, required. 

In addition, Ford’s complete focus on a single model was also a critical part of his 

success, though it would later become a detriment.  According to Nevins and Hill (1954, 

p. 332):  “One factor thrusting numerous early companies into bankruptcy was their 

production of too many chassis.  Just before the First World War one of the largest 

automobile makers said than no company was strong enough to build two chassis every 

year without going broke.”  As early as 1906, auto manufacturers had concluded that the 

annual model change was a curse.  By producing multiple chassis and introducing new 

models every year, manufacturers were saddled with high design and tooling costs and 

were forced to produce a large variety of parts in small volumes at high cost.  The 

manufacturer faced selling these parts below cost or ruining its reputation.  The longer 

the company was in production, the larger the parts burden became.  Ford solved this 

problem by producing large volumes of a single chassis and making only minor styling 

changes from year to year.  Thus, Ford’s production system and strategy placed him in 

unique position early in the 20th century. 

GM later solved the multiple chassis problem differently, building on the SAE’s 

approach, with the introduction of the Pontiac in 1927 which initiated a program to 

standardize parts across its divisions (see chapter 5).  While this strategy would help GM 
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eventually emerge as the dominant firm in the industry, the corporation flirted with 

financial failure throughout its first decade.  This difficulty was due in part to the 

incomplete transition to the new manufacturing techniques and management systems that 

Ford exploited so fully.  Since it was not clear what technological configuration and price 

range would prove most successful, Durant pursued a strategy of diversification.  He 

assembled a large combination of automobile and parts manufacturing companies and 

purchased a wide variety of technologies. This strategy improved GM’s chances of 

owning a product innovation that proved to be a crucial refinement.  Unfortunately, it 

also meant GM was likely to purchase some market failures.  In fact, Durant’s rash 

behavior resulted in some spectacularly disastrous, as well as some brilliant, acquisitions.   

In addition, Durant failed to integrate the management of the companies he 

purchased or rationalize the product lines.  As a result, GM companies competed among 

themselves as much as with other firms.  And because each division produced a number 

of different chassis, GM was not able to fully realize the economies of scale afforded by 

the high volume production of the corporation as a whole.  Meanwhile, the parts 

manufacturing divisions continued to operate as independent companies concerned 

primarily with their own profitability rather than corporate level issues, as witnessed by 

the clash of priorities of the Fisher brothers and the GM board discussed in chapter 5.  As 

of 1918, a few profitable divisions were carrying the entire corporation.  These struggles 

were representative of the industry as a whole during this era. 

By 1916, the situation for market concentration was further reinforced.  

According to Rae (1959, p. 133),  

[N]o independent company founded after 1916 managed to survive for more than 
a few years.  This phenomenon occurred not in spite of the increasing use of 
motor vehicles, but rather because of it.  The day of the small-scale producer in 
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the automobile industry was over.  The successful manufacturer had to be able to 
produce in quantity and sell in a nation-wide market, and the needed investment 
in plant, equipment, and sales organization was prohibitively high for a 
newcomer to raise on the uncertain prospect of being able to break into a highly 
competitive business in the face of the existing well-established companies. 

The one major exception was the Chrysler Corporation, established in 1920.  However, 

the corporation was actually a reorganization of the Maxwell and Chalmers companies, 

and as such can not be considered a new enterprise. 

In summary, economies of scale, a cumulative parts burden, cumulative learning 

effects, positive returns to innovation, and process innovations that were difficult to adopt 

served as selection mechanisms by reducing the number of firms in the industry.  But 

other factors contributed to the failure rate of firms.  The redefinition of the automobile 

for the mass market, an emerging dominant design, and saturation of the market for 

expensive vehicles (see section 4.5.4) also played a significant role in the shakeout 

phenomenon.  Epstein (1972) concludes that “[t]he extraordinary exit figure in 1910, of 

26% of all firms engaged in the field, is probably due, above all, to the absolute falling 

off in the demand for high-priced cars which occurred in that year.”  Firms that were 

unwilling or unable to adapt to production of smaller lightweight vehicles were 

effectively weeded out.  In addition, the Panic of 1907 and ensuing recession (see section 

4.5.1) occurred just prior to the year in which the largest number of firms exited the 

industry and likely played a role in the failure of some of these firms, particularly those 

manufacturing expensive automobiles for the wealthy, who would have been hardest hit 

by the stock market plunge.  Thus, by contributing to the failure of specific firms, a 

random event and the selection environment influenced variation and further reinforced 

the emerging dominant design. 
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4.5 Technical and Institutional Context 

This section discusses five developments in the TIEC that provide the technical 

and institutional context for this era: the Panic of 1907; the Selden Patent patent dispute; 

the emergence of trade associations and their efforts to standardize parts and materials; 

the expansion and evolution of the autombile market; the activities of motoring clubs; 

and efforts to improve the condition of the country’s roads.   

4.5.1 The Panic of 1907 

After a period of economic prosperity, the nation faced an economic slump in 

early 1907.  The economic weakness was due in part to losses from the violent 

earthquake that shook the San Francisco Bay area on April 18, 1906 and the fires that 

ravaged San Francisco for the next four days.  However, in October, 1907, the economic 

downturn, an unusually tight money supply, and a failed attempt by F. A. Heinze to 

corner the stock of United Copper Company combined to trigger one of the most severe 

bank panics the country had experienced to date.  Heinze was both a speculator and a 

banker whose dealings involved “an intricate network of interlocking directorates across 

banks, brokerage houses, and trust companies in New York City.  Contemporary 

observers… believed that the close associations between bankers and brokers heightened 

depositors’ anxiety” (Tallman and Moen, 1990).  As news of Heinze’s financial losses 

and bank connections spread, depositors, fearing insolvency, rushed to withdraw their 

savings from banks where Heinze and his associates held prominent positions.  The bank 

run spread to the third largest trust in New York City, Knickerbocker Trust Company, 

whose president, Charles Barney, was also rumored to have been involved in Heinze’s 

corner attempt.  Because Barney also served on the board of directors of Trust Company 
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of America, the second largest trust in New York, it soon was involved as well.  The bank 

run lasted two weeks, during which Trust Company of America reportedly paid out $47.5 

million of its nearly $60 million total deposits.  

To avert the failure of several large trusts, J. P. Morgan channeled $3 million to 

Trust Company of America on Wednesday, October 23.  J. D. Rockefeller announced his 

support of Morgan and deposited $10 million with another trust.  However, with so many 

of New York’s banks in trouble, the crisis had spread to Wall Street.  On Thursday, 

October 24, no money was available on the New York Stock Exchange floor for the 

purchase of stock equity despite offers of up to 60% interest.  Prices plummeted and the 

stock market was threatened with total collapse. Less than an hour before the closing bell, 

J. P. Morgan organized a group of bankers who made a pool of $25 million available to 

the exchange.  The group provided an additional $10 million pool for call loans the 

following day and other sources provided $2.5 million.  Over a period of ten days, the 

U.S. Treasury deposited a total of $37.6 million in New York national banks and 

provided $36 million to meet bank runs.  In early November, Morgan convinced other 

trust presidents to provide another $25 million in loans to threatened institutions.  The 

panic finally eased when these presidents formed a consortium to support trust companies 

facing runs.  Though the panic had ended, the nation suffered a deep but brief recession 

in 1908 with GDP falling about 11%.  The stock market suffered more severely, with the 

Dow Jones Industrial Average falling about 50% from a peak value in January, 1906, 

before bottoming out in November of 1907. 

Bank runs and economic panics were fairly common in the 19th and early 20th 

century, occurring in 1819, 1837, 1857, 1873 and 1893.  The Panic of 1907 underscored 
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the weaknesses of the U.S. financial system and served as a catalyst for banking reform.  

In May, 1908, Congress passed the Aldrich-Vreeland Act, which eased the credit 

situation in the short-term and established the National Monetary Commission.  In 1912, 

the Commission recommended adoption of a central banking system to be coordinated by 

a board of commercial bankers.  Congress subsequently crafted the Owen-Glass Federal 

Reserve Act, enacted in December, 1913.  The Act established twelve regional Federal 

Reserve Banks to act as central banks for national and other member financial 

institutions.  The Banks were not Federal bodies, but were privately owned by the 

member banks.  However, the Act formed a public body, the Federal Reserve Board, to 

oversee the system rather than leave control in the hands of private bankers. The Act also 

created a new form of currency, the Federal Reserve Note, which was an obligation of the 

U.S. Treasury.46   The tight money supply encountered in 1907 arose in part because 

seasonal increases in economic activity, primarily driven by agriculture, were not 

matched by increases in the money supply. The Federal Reserve Banks were authorized 

to issue Federal Reserve Notes to solve this problem of inelasticity.  The Federal Reserve 

System was also authorized to establish the discount rate – the interest rate the Banks 

charged to its member institutions.  By making loans to commercial banks and issuing 

currency, the Federal Reserve System was intended to avoid the problems that 

contributed to the Panic of 1907. 

4.5.2 The Selden Patent Dispute 

After witnessing a demonstration of the Brayton engine in 1879, patent attorney 

George Selden drew up plans for a “road-locomotive” consisting of a four wheeled 

                                                 
46 The Federal Reserve Note now makes up the nation’s supply of paper money.   
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vehicle powered by a gasoline engine similar to Brayton’s.  Selden applied for a U.S. 

patent, but made minor changes to the application annually to delay its formal registration 

until November, 1895, the same month as the first U.S. reliability race which was held in 

Chicago (Rubenstein, 2001).  Although Selden had not invented any component of his 

design, he claimed it represented an original combination of elements.  The patent design 

was defined in broad terms, covering “the combination with a road locomotive, provided 

with suitable running gear including a propelling wheel and steering mechanism, of a 

liquid hydrocarbon gas-engine of the compression type, comprising one or more power 

cylinders, a suitable liquid-fuel receptacle, a power shaft connected with and arranged to 

run faster than the propelling wheel, an intermediate clutch or disconnecting device and a 

suitable carriage body adapted to the conveyance of person or goods” (U.S. Patent Office, 

2008).   

Selden sought financial backing to manufacture his automobile but ultimately was 

unsuccessful.  Though he never built a single vehicle, he claimed the engine and vehicle 

were operable and that the patent was basic.  Therefore, he asserted, it covered all 

vehicles built after 1879 that used a compression engine, and no automobiles could be 

built during the seventeen years that the patent was valid (1895-1912) without his 

permission.   

Lacking the resources to enforce his patent, Selden in 1899 assigned the rights to 

a group of investors that also bought the Electric Vehicle Company (EVC).  Selden and 

the investors believed that restricting production would maintain high prices and 

royalties.  After the EVC filed several infringement suits between 1900 and 1903, a group 

of automakers agreed to settle the dispute by recognizing the validity of the patent in 
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exchange for exclusive license to manufacture automobiles under its stipulations.  As part 

of the agreement, a new trade organization called the Association of Licensed 

Automobile Manufacturers (ALAM) was formed to enforce the license and prevent 

‘disreputable’ manufacturers from entering the business (May, 1990).  The ALAM leased 

to its members the right to sell a limited number of automobiles.  The ALAM also was 

charged with deciding what companies should be sued for patent infringement 

(Rubenstein, 2001).  However, since the ALAM reserved the right to deny licenses, many 

industry observers opposed the patent claim on ethical grounds (Nevins and Hill, 1954). 

Ford approached the president of the ALAM after forming the Ford Motor 

Company in 1903 but was told the association likely would not rule favorably on an 

application because the company was nothing but an ‘assemblage’ plant rather than a true 

manufacturer.  ALAM officials recommended that Ford delay application until the 

company had its own plant (Nevins and Hill, 1954).  A fierce dispute ensued, with Ford 

publicly challenging the ALAM to take legal action.  The ALAM subsequently filed 

infringement suits against Ford, Ford’s New York sales agent, and a company that had 

purchased a Ford automobile.  The ALAM also sued a foreign auto manufacturer 

(Panhard et Levassor), and in 1904, an automobile importer.   

The five lawsuits were eventually combined into one and litigation dragged out 

over the next five years. The defense prepared arguments based on two interpretations of 

the patent: either the patent was broad, covering all engines of the compression type, or it 

was specific to automobiles utilizing the two-stroke, external compression, Brayton 

engine.  Under the first interpretation, the defense argued, the patent was invalid due to 

“prior art” since patents, devices, and machines that antedated Selden’s application 
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demonstrated that it did not represent a new invention.  Under the second interpretation, 

they denied any infringement because nearly all gasoline automobile engines employed 

the four-stroke internal compression Otto cycle. 

In early 1905, the ALAM gained control of the lease of Madison Square Garden, 

where the annual Automobile Show was held, and announced that only ALAM members 

would be permitted to exhibit at the show.  Less than a month later, twenty independent 

manufacturers formed the American Motor Car Manufacturers Association (AMCMA) 

and leased nearby property to house its own exhibition.  The AMCMA was formed with 

seven objectives which basically served in the same capacity as the ALAM did for its 

members: 1) to arrange for public exhibition of members’ cars; 2) to promote races; 3) to 

promote the sale of members’ cars; 4) to encourage public interest in automobiles; 5) to 

establish agencies; 6) to promote good roads; and 7) to exchange technical information.  

By 1908, the AMCMA consisted of 48 companies. 

As the litigation dragged on, the ALAM sent notices demanding payment of 

royalty fees by owners of imported automobiles and filed an additional seventy suits 

against independent manufacturers (Nevins and Hill, 1954).  The fate of the industry 

depended on resolution of the case against Ford, which finally was decided in September, 

1909, when the judge filed in favor of Selden.  Ford had introduced the Model T a year 

earlier and was liable for royalties running into the millions of dollars on the cars the 

company had sold since being formed in 1903 (Rubenstein, 2001).  Sorensen (1956) 

states that if the decision had been upheld Ford would have faced financial ruin, though 

others dispute this claim. 
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Independent manufacturers rapidly withdrew from the AMCMA and sought 

licenses from the ALAM; on February 9, the AMCMA disbanded.  However, Ford’s 

resolution never faltered, and he promptly appealed the court’s decision.  In January, 

1911, the U.S. Court of Appeals upheld the validity of the Selden patent but ruled that it 

only covered automobiles built with the modified two-stroke Brayton-type engine Selden 

had shown in his application.  The court therefore found that the patent had not been 

infringed.  With only two years remaining on the now worthless patent, the ALAM 

decided not to appeal (Nevins and Hill, 1954; May, 1990).  The ALAM was disbanded in 

1911 and transferred responsibility for promoting and improving the industry to the 

newly organized Automobile Board of Trade, which in 1914 became the National 

Automobile Chamber of Commerce (NACC).47  To prevent a similar costly patent 

dispute in the future, the NACC instituted a cross-licensing agreement among its 

members (Flink, 1988). 

4.5.3 Trade Associations and Parts Standardization, 1905-1910 

In an editorial in 1902, Peter Heldt of The Horseless Age suggested that a 

technical society devoted to automobiles would be best suited to solving technical 

questions requiring cooperation among industry engineers.  Horace Swetland, whose 

editorials in The Automobile had served as the voice of the automobile engineer, also 

promoted the idea.  In 1905, a group of trade journalists founded the Society of 

                                                 
47 The NACC became the Automobile Manufacturers Association in 1932, and then the Motor Vehicle 
Manufacturers Association (MVMA) in 1972 (Flink, 1988).  When foreign manufacturers began 
production in the U.S., they joined the MVMA.  Due to differences in objectives between these foreign 
owned companies and the remaining U.S. companies, the ‘big three’ (Ford, GM, and Chrysler) dissolved 
the MVMA in 1992 and formed the American Automobile Manufacturers Association (AAMA), a U.S. 
only lobbying group.  When Daimler-Benz purchased Chrysler in 1998, the AAMA was dissolved.  Ford 
and GM now participate in the international organization, the Alliance of Automobile Manufacturers which 
was created in 1998 (Rubenstein, 2001). 
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Automobile Engineers (SAE)48 to serve this function, primarily through the publication 

of technical articles.  Andrew Riker, an automotive engineer who had built electric cars 

beginning in 1888 and gasoline cars for Locomobile after 1902, served as the first 

president and Henry Ford served as the first vice president.  Beginning with 30 members, 

the society grew over the next ten years, adding full-time staff and the publication of a 

technical journal, the SAE Transactions (SAE, 2007; Flink, 1988). 

Perhaps the most valuable contribution of the SAE came through work begun by 

the Association of Licensed Automobile Manufacturers (ALAM).  Although the ALAM 

was organized to enforce the Selden patent and therefore served as an instrument to wield 

monopolistic market control, in 1905 it established a Mechanical Branch whose aim was 

to promote technical collaboration among manufacturers.  Composed of around 100 

engineers and plant superintendents who met regularly to exchange information, the 

Mechanical Branch initiated a program to standardize automotive parts and materials.  It 

also established a metallurgy lab to test automotive parts and materials. 

During the Panic of 1907, funding for the ALAM’s Mechanical Branch was cut 

and never restored.  Its work and valuable library was transferred to the SAE in 1910.  In 

the process, the SAE’s membership jumped from 310 to 899.  Members previously 

associated with the ALAM who became influential officers in SAE included Coker 

Clarkson, manager of the Mechanical Branch, and Henry Souther, who had been in 

charge of ALAM’s experimental and testing laboratory.  Clarkson, Souther, and SAE 

president Howard Coffin, who was also vice-president of the Hudson Motor Car 

                                                 
48 With Orville Wright’s backing, the SAE incorporated the aeronautical industry in 1916 and changed its 
name to the Society of Automotive Engineers to represent any form of self-powered vehicle. 
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Company, were largely responsible for completing the important work on standardization 

begun by the Mechanical Branch (Barnes, 1921). 

Prior to 1910, automotive manufacturers were using at least 800 different bolts, 

800 different sized lock washers, 1,600 different sizes of steel tubing, and some 230 

different steel alloys (Barnes, 1921; Epstein, 1972).  The ALAM Mechanical Branch and 

the SAE standardized small parts, including spark plugs, screw threads, nuts, bolts, 

tubing, and rods, resulting in 16 standard sizes of washers and 210 types of steel tubing.  

The development of uniform specifications for 50 steel alloys allowed steel makers to 

supply superior grade materials to the industry (Epstein, 1972; May, 1990). 

In general, the SAE represented the interests of small automotive firms whose 

employees constituted most of its membership.  These firms had the most to gain from 

the standardization of parts because it allowed them to purchase small orders of readily 

available, standard, small components at much lower prices, essentially helping them 

realize economies of scale formerly only available to large manufacturers.  

Unfortunately, standardization ultimately failed to keep the small producer competitive 

(Flink, 1988).  Nonetheless, standardization of parts brought order out of chaos and 

eliminated waste. And because of the micro scale of these parts, standardization did not 

stifle innovation in vehicle design (Epstein, 1972). 

4.5.4 Market Expansion 

At the beginning of the century, popular opinion held that the motor vehicle 

would never be more than a toy for the rich.  Ford (Ford and Crowther, 1922, p. 36) 

recalled, “No man of money even thought of it as a commercial possibility… [I]n the 

beginning there was hardly any one who sensed that the automobile could be a large 
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factor in industry. The most optimistic hoped only for a development akin to that of the 

bicycle.”  But the market for automobiles quickly shifted from the very wealthy to the 

lower upper class.  According to Nevins and Hill (1954, p. 241) “…as a group, doctors 

were among the first to make significant use of the automobile.”  Epstein (1972, p. 95-97) 

lists the occupation of the first purchasers of automobiles as capitalists, manufacturers, 

merchants and physicians.  Notably, among the purchasers of the first twenty Waverly 

Electric cars sold in Detroit by 1898 there are six “ladies – wives of the above class, 

including two wives of bankers.”  Purchasers of the relatively inexpensive Olds curved 

dash model between 1900 and 1903 were mostly merchants and physicians, and no 

capitalists or manufacturers are listed.   

Beginning in 1904, the U.S. enjoyed a period of growing prosperity the scale of 

which had never before been seen.  Political reforms and the rise of new industrial 

methods resulted in an increase in production, incomes, and standards of living.  

Technological innovation had brought the telephone, electric lighting, the phonograph, 

modern plumbing, and the bicycle.  Automobile production reached 11,000 units in 1903 

and doubled in 1904. 

The growing popularity of the automobile was accompanied by a shift in the 

functional definition of the product.  According to Epstein (1972), the purposes of the 

motor vehicle can be classified under four headings: transportation service, sport, 

personal possession, and social prestige.  As ‘playthings for the rich,’ the earliest 

automobiles largely fulfilled the desire for sport – the thrill of rapid, cross country transit 

– and social prestige – a public demonstration of wealth.  A writer in the Independent 

declared in 1906, “The man who owns a motorcar gets for himself, besides the joys of 
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touring, the adulation of the walking crowd, and the daring driver of a racing machine 

that bounds and rushes and disappears in the perspective in a thunder of explosions is a 

god to the women” (cited in Flink, 1970, p. 64).  The social prestige conveyed by 

automobile ownership was so alluring that by 1908 many Americans were recklessly 

mortgaging their homes to purchase vehicles they could not afford, leading even to 

foreclosures (Flink, 1970). 

But to the physician who traveled frequently about town, the automobile was 

utilitarian as well, providing more rapid transport and promising more economical service 

than a horse and buggy.  The initial expense of a moderately priced motor car was 

comparable to that of a carriage and, although the monthly maintenance costs of early 

automobiles often turned out to be more than the upkeep of a horse, the automobile could 

do far more work and was likely to last longer than a hard-used horse (Flink, 1970).  The 

automobile was not willful and unpredictable, nor was it susceptible to heat or fatigue. 

By 1905, demand for automobiles outstripped capacity, and cars had gone from a 

fashionable novelty for the very rich to a necessity for well-to-do business and 

professional men (Nevins and Hill, 1954).  Automobile manufacturing was significant 

enough for the U.S. Bureau of the Census to publish separate statistics for industry that 

year.  In the introduction to the report, George E. Oller commented, “As a means of 

amusement, [the automobile’s] popularity may fluctuate or decline, but its practical value 

has been so thoroughly demonstrated that its use will doubtless become more general 

each year, until it is displaced by some vehicle as much its superior as the automobile is 

the superior of the horse and wagon” (cited in Jarvis, 1972, p. 64).  The automobile was 
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rapidly becoming a utilitarian product that fulfilled the necessary service of 

transportation, though with initial and repair costs it was still limited to the well-off. 

At the turn of the century, farmers generally viewed the automobile with 

indifference.  But by 1904, they became noticeably hostile with the rise of touring.  The 

early touring automobiles were purchased by wealthy people “of a sporting and 

adventurous turn of mind who sometimes used them ruthlessly on the highways” (Pound, 

1934, p. 38-39).  Speeding automobiles on dirt roads endangered horses and livestock and 

raised clouds of dust that settled on crops, houses, barns, and wash hung out to dry (Flink, 

1970).  At first, farmers could not foresee owning cars themselves, and felt the 

automobile “flaunted idleness and conspicuous consumption in the faces of hardworking, 

hard-pinched men” (Nevins and Hill, 1954, p. 397).  Some farmers took extreme actions, 

plowing up roads, stringing barbed wire across roads, threatening to boycott businessmen 

who purchased cars, and lobbying for resolutions to ban automobiles from state roads.  

However, most opposition was more balanced, with agricultural publications and 

organizations lobbying for better legislation and enforcement of existing laws regarding 

speed and reckless driving (Flink, 1970). 

The anti-automobile sentiment among farmers was short-lived as prosperous 

farmers became ever more familiar with the vehicles and began to envision owning 

automobiles themselves.  A number of manufacturers in the Midwest produced cheap 

buggy-type cars with a light surrey body, solid rubber tires on carriage wheels, a small 

one- or two-cylinder engine mounted under the seat, and chain or rope drives.  These cars 

were well-suited to navigating poor rural roads and if they did get stuck were light 

enough to easily be pushed out (Flink, 1970).  However, they suffered from inherent 
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mechanical weaknesses and required frequent repairs.  In 1906, Ford introduced the 

rugged and moderately priced Model N that delivered more comfort, reliability, and 

performance for a similar price.  By 1907, farmers’ opposition to the automobile had 

given way to a substantial rural market and dealers in many medium-sized cities were 

selling more cars to farmers than to city inhabitants.  The American Motor Car 

Manufacturers’ Association reported in 1909 that manufacturers were selling to two large 

new segments: the farmer and the middle class (Flink, 1970).   

Americans were relatively wealthy by European standards, the wealth was more 

equally distributed, and social class distinctions were less pronounced.  As a result, the 

U.S. constituted a large market for standardized, homogenous products – the perfect 

conditions for mass production.  In addition, much of the population was highly 

dispersed, creating a large market for a rugged vehicle capable of rapid, long-distance 

travel.  The motor car could bring significant advantages to these rural populations.  Prior 

to the automobile, traveling 20 or 30 miles by horse took a whole day and the farmer was 

dependent on the railroad to transport his products to the market.  With an automobile, 

the farmer’s social radius expanded and he could market directly to a wider area. 

Figure 4-2 shows sales of motor vehicles between 1903 and 1916 stratified by 

three price classes.  Even in 1903, low-priced cars were each outselling the medium- and 

high-price categories.  At that time, most of the vehicles in the least expensive class were 

light, low-horsepower, surrey-styled vehicles, with the Olds curved dash accounting for 

more than half of these sales.49  These vehicles tended to rattle apart quickly on rough 

                                                 
49 Flink (1988, p. 33) refers to the curved dash as “merely a motorized horse buggy.”  Olds reportedly sold 
4,000 vehicles in 1903, while a total of 7,253 vehicles were sold for less that $1,375 (Epstein, 1972). 
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country roads.  By 1910, however, surrey-style design was largely abandoned and the 

reliability of vehicles in this price class was much improved. 

 

Figure 4-2: Sales by Price Class 
Source: Based on data from Epstein (1972, Appendix B) 

This development of a new market for automobiles after 1900 represents the onset 

of wider diffusion of the motor vehicle.  The niche hypothesis asserts that growth in 

initial niche markets yields cost reductions through learning-by-doing and economies of 

scale, and that these reductions facilitate diffusion to wider markets.  However, as the 

automobile was penetrating a new segment, the market for expensive cars was no longer 

growing, it was saturating – buyers in this market were not purchasing their first car, but 

were almost exclusively replacing an older car.  The proportion of the market consisting 

of moderately priced cars (over $1,375) reached a maximum of almost 64% in 1907 then 
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began a steady decline.  Similarly, expensive cars priced over $2,775 declined after 

reaching 31% of the market in 1907.  The down-turn in demand for expensive motor 

vehicles in 1908 may be attributed at least partially to the Panic of 1907 and the ensuing 

recession (see section 4.5.1).  It is likely that buyers of this class of vehicles were hit 

hardest by the stock market plunge in 1908, but it appears that many of these purchases 

were delayed rather than foregone.  As shown in Figure 4-2, sales of expensive cars 

spiked in 1909 then stabilized in 1910 at an average of 17,400 per year, which is slightly 

lower than Epstein’s (1972) estimate of replacement demand.   

The original niche markets for gasoline automobiles were not only stabilizing, but  

Figure 4-3 shows that the trend within the high-price category between 1903 and 1908 

was, if anything, toward higher price, not lower, since vehicles priced above $3,375 were 

gaining market share over those priced between $2,775 and $3,775.  Instead, innovation 

was improving the performance of these vehicles relative to their functional 

requirements.  According to Epstein (1972), the trend in these cars was toward ever 

higher horsepower and weight.  Thus, while in 1904, the high-priced vehicle was 

represented by a four cylinder vehicle, by 1916, it was more likely a six-cylinder that 

produced 60 hp.  Similarly, the representative low-priced vehicle had progressed from a 

light two-cylinder engine to a four-cylinder that produced 30 hp.  Thus, while vehicles in 

all price classes had improved dramatically in performance, the relative size, 

workmanship, and performance of each class remained comparable over the period. 

While demand for the highest price class had stabilized, demand for medium-

priced vehicles continued to grow, but at an ever decreasing rate.  With a midpoint 

around $2,000, the cost of these vehicles was still high enough that “their consumption 
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was mainly indulged in, up to 1910-1911, by the very wealthy” (Epstein, 1972, p. 94).50  

Thus, the market for cars priced above $1,375 consisted primarily of manufacturers, 

capitalists, bankers, merchants and physicians.     
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Figure 4-3: Market Share within the High-Price Category 
Source: Based on Epstein (1972, Appendix B). 

Meanwhile, sales of inexpensive cars experienced the highest rate of change with 

growth actually accelerating during this period.  In 1903, merchants and physicians 

dominated this market.  As shown in Figure 4-4, the trend within this category after 1907 

was clearly toward lower price as well as improved performance, with sales under $675 

gaining market share on those priced between $675 and $1,375.  By 1915, cars selling for 

                                                 
50 For reference, nominal GDP per capita was only $322 in 1903 and rose to $362 by 1910. 
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under $1,375 constituted nearly 75% of the market, while those priced above $2,775 

amounted to less than 2% of sales (Epstein, 1972).51 
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Figure 4-4: Market Share within the Low-Price Category 
Source: Based on Epstein (1972, Appendix B). 

This pattern is not consistent with the assertions of the niche hypothesis.  In fact, 

while some of the largest manufacturers offered models in both the low- and medium- 

priced classes, the market for expensive touring cars was for the most part served by 

different manufacturers than the market for inexpensive cars.  The strategy among 

makers of the most expensive vehicles was not to achieve high volume sales or low price, 

but rather to maintain high quality through hand craftsmanship, increase power, and 

sustain high prices and thus high profits.  Such firms that were unwilling or unable to 

adapt to production of smaller lightweight vehicles faced fierce competition within a 
                                                 
51 Epstein’s (1972) data is not adjusted for purchasing power. 
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stagnating market.  Epstein (1972) asserts that the saturation of the high-priced market 

was the most significant factor behind the extraordinary number of firms that exited the 

industry in 1910 (see section 4.4). 

Henry Leland at the Cadillac Motor Car Company was one of the first 

manufacturers to make progress in reducing costs and maintaining quality in volume 

production.  However, between 1903 and 1908 the company moved toward production of 

moderately priced cars of exceptional quality like the Cadillac Model 30 which sold for 

$1,400 in 1908 (Flink, 1988).  While a few manufacturers like Brush attempted to make 

cars for the lowest price bracket (under $675), their methods of reducing costs often led 

to poor quality vehicles with significant mechanical weaknesses.  In this effort, Ford 

emerged the leader in pursuing ever lower prices and unprecedented volume production 

of reliable, high quality, basic transportation, recognizing the vast market attainable with 

this novel strategy.  By 1915, the Ford Model T was priced starting at $390 and 

accounted for 53% of all automobile sales and roughly 70% of sales under $1,375 

(Epstein, 1972; Cain, 2006; Nevins and Hill, 1954).  While designed with the rural 

market in mind, the low price, high reliability and high quality of Ford’s vehicles also 

served the needs of the urban middle class. 

In 1900, as many as 57 plants were engaged in manufacturing automobiles, 

though some were still in the experimental stages.  Around 4,000 motor vehicles were 

manufactured that year, but designs and technology varied dramatically and steam- and 

electric-powered vehicles accounted for at least 75%.  But by 1910, sales of motor 

vehicles exceeded 180,000 units (Cain, 2006) and the extreme variety of product 

configurations and the accompanying customer confusion had largely disappeared.  A 
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standard design had appeared that served the great majority of the market: a shaft driven, 

magneto equipped, vehicle powered by a water-cooled, four-stroke, four-cylinder, 

gasoline internal combustion engine mounted vertically under a front hood, with a 

steering wheel and a three-speed sliding-gear transmission (Epstein, 1972). 

4.5.5 Motoring Clubs, 1901-1910 

The first automobile club, the American Motor League, was formed on November 

1, 1895, just prior to the Chicago Times-Herald race.  The organization was premature 

and failed, but several local automobile clubs in large cities were active by the turn of the 

century.  The members of these early clubs were almost exclusively very wealthy and 

socially prominent and the clubs emphasized social functions.  However, automobile 

ownership quickly became too widespread to form the basis for an exclusive social club.  

At least twenty-two local organizations existed by early 1901 and almost 100 U.S. clubs 

were active by early 1904 (Flink, 1970).  Motoring was becoming increasingly utilitarian 

by 1905, and the majority of motorists were concerned with local issues of motor vehicle 

legislation, road improvements, and community relations.  Clubs in smaller cities and 

rural areas developed into democratic organizations that charged small dues, drew 

membership from a wide cross section of the population, and set limited practical goals.   

Yet many motorists believed in the need for a national association of local clubs 

to deal with issues beyond local concerns.  Two such affiliations were founded in 1902.  

In February, eight local clubs founded the American Automobile Association (AAA).  In 

March, the American Motor League (AML) was revived by its original organizers and 

representatives from two cycling associations: the League of American Wheelmen and 

the National Cycling Association.  The AML was organized as a national association of 
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individuals and aimed to advance the interests of motorists and add to the value of 

motoring through reports of the mechanical features of automobiles, education, lobbying, 

defense of motoring rights, and promoting better roads.  The AML intended to establish 

branches throughout the states, but its influence never rivaled that of the AAA.   

The AAA was designed as an affiliation of local clubs that would pursue 

legislative issues, protect the interests of motorists, and promote the construction and 

maintenance of good roads and highways.  In mid-1903, the AAA opened its membership 

to individual motorists.  However, legislative issues were largely local and aggressively 

pursued by local clubs.  Therefore, the AAA accomplished little in the first few years.  

Dissention erupted among the organization’s officers and dissatisfied clubs began to 

withdraw, believing the AAA delivered little for their dues.  The AAA accepted a more 

limited role for the national organization, granting more power at the local level, and 

membership began to rise again in 1908.  At the same time, the organization established a 

relationship with the automobile industry by granting three seats on its board of directors 

to the National Association of Automobile Manufacturers (NAAM) in exchange for a 

$5,000 contribution.  By 1909, the AAA consisted of 225 clubs from thirty state 

associations with total membership over 15,000 and was firmly established as the voice 

of the American motorist (Flink, 1970). 

Public safety concerns prompted municipalities and states to consider legislation 

regarding vehicle registration, speed regulation and driver licensing.  Automobile clubs 

actively opposed the first two.  Registrations, initiated in New York in 1901, allowed 

officials to pursue reckless and speeding drivers and to track down owners who evaded 

vehicle property taxes.  Other states followed suit in 1903.  Registrations were either 
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annual or perennial and in some states were initially established at the county level, 

requiring motorist to obtain multiple registrations.  Automobile clubs and the NAAM 

contested the legality of compulsory registration, claiming class discrimination since 

horse-drawn vehicles were not required to register and display identification tags.  

However, motorists’ main objections were based on fear of punishment – arrest, fines, 

imprisonment, and damage claim liabilities – for tax evasion, reckless driving, and 

accidents.  Of course, such illegitimate objections were never voiced in court and the 

constitutionality of small registration fees was repeatedly upheld.   

Automobile associations shifted attention to establishing reasonable state laws to 

avoid multiple and possibly costly fees at the municipal level.  Eventually, these 

associations recognized that registration taxes were often used to improve roads and as 

such were a benefit to their members.  By 1910, thirty-six states had enacted motor 

vehicle registration laws, and all states had done so by 1915 (Flink, 1970). 

4.5.6 Road Improvements, 1880-1916 

At the turn of the century, American roads were in poor condition compared to 

European countries, particularly France where the first automotive industry was born.  

The U.S. federal government was involved in road-building early in the 19th century, but 

abandoned this role in 1837 due to the rapid growth of railroads and an economic 

depression which followed a banking panic.52  Therefore, constructing and marking roads 

was left to counties and municipalities and it was common for road conditions to change 

dramatically at county lines. 

                                                 
52 The Panic of 1837 was preceded by a speculative bubble which burst in May.  An unprecedented number 
of banks failed and unemployment reached record levels during the ensuing five-year depression. 
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Bicycle manufacturers, dealers, and enthusiasts began promoting better roads as 

early as 1880.  At the 1893 World’s Fair in Chicago, the Columbia Exposition, General 

Roy Stone organized the National League for Good Roads which established branches in 

most states.  With Albert Pope’s assistance, the League of American Wheelmen, a 

bicycling organization, drafted a petition to Congress, resulting in the birth in 1893 of the 

Office of Road Inquiry in the U.S. Department of Agriculture. This agency became the 

Office of Public Roads, which conducted a census of American roads in 1904.  The 

census reported that only 7% of U.S. roads were surfaced, most with just gravel.  There 

was only one mile of improved road per 492 inhabitants, and most of this mileage was of 

poor quality unsuitable for steady motor vehicle use (Flink, 1970).  In truth, there still 

were few roads passable by automobile. 

With the demise of the bicycle industry, leadership for the “good roads 

movement” shifted to automobile interests around 1903.  However, the leaders were 

largely the same individuals, as bicycle manufacturers entered the automotive industry 

and bicycle enthusiasts bought automobiles and joined or organized motoring clubs.  For 

example, by 1899, Albert Pope had become one of the country’s leading automobile 

manufacturers with the production of 500 electric and 40 gasoline vehicles (Rae, 1959).   

The influence of motor vehicles and the automobile clubs propelled the need for 

good roads to public consciousness.  Prominent political leaders, including President 

Theodore Roosevelt, attended the National Good Roads Convention in St. Louis in 1903, 

where resolutions were passed endorsing federal support for highway construction and 

state aid to counties and municipalities.  Activists exploited issues of popular appeal, 

including the high cost of transporting farm products to the market, which was due in part 
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to high rates charged by the railroads (Flink, 1970; Geels, 2005b).  The AAA and the 

National Grange, representing motorists and farmers respectively, were the dominant 

influences at the second Good Roads Convention in 1909. 

The federal government gradually increased funding for the Office of Public 

Roads and states increasingly passed legislation designed to improve highways, often 

funding road construction using revenues from registration fees.  By 1910, total mileage 

of improved roads had increased by 48,266 miles, but this represented only a 1.5 

percentage point gain over 1904.  More significantly, gravel was being replaced by 

macadam.  Yet these improvements were easily offset by the rising demands of 

automobile traffic as even macadam broke down rapidly under frequent use.  Concrete, 

first used on a 24-mile stretch of highway to Ford Highland Park plant in Michigan in 

1908, proved to be the most durable and economical solution.  Some 750 miles of 

concrete roads were added nationwide in 1912 and 1913.  California rapidly adopted the 

use of concrete to serve the transportation needs of its agriculture, covering 35% of its 

2,600 miles of improved roads with concrete by 1914 (Nevins and Hill, 1954; Flink, 

1988). 

In 1912, a businessman and automobile enthusiast pitched an idea for a 

continuous, coast-to-coast highway to a group of prominent automotive and supplier 

executives.  Led by automobile interests, the Lincoln Highway Association was 

organized in 1913, having already garnered pledges for four of the estimated $10 million 

required for the project.  Although it was approved by the Conference of Governors that 

year, planning for the project was plagued by a multitude of problems, including 

financing, pressure to change the route, and the inability of states and communities to act 
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harmoniously.  The association downgraded its activities and the road was never 

completed under its original name, the Lincoln Highway.  The federal government 

eventually took over the task in 1923 and used its own system of numbering its routes 

(Nevins and Hill, 1954). 

The breakthrough in road construction began in 1916 when Congress passed the 

Federal Aid Road Act, appropriating $75 million to be distributed to states in matching 

grants over a period of five years.  The main intent of federal involvement was to 

improve postal roads for Rural Free Delivery instituted by the Post Office in 1896.  To 

receive matching grants, states had to have “properly constituted highway departments to 

handle the road-building projects.  The result was the modernization of all state activity, 

as well as a marked increase in it” (Nevins and Hill, 1954, p. 487).   

4.6 Synthesis and Analysis 

This section analyzes the history of the industry between 1900 and 1915 using the 

approach developed in chapter 2.  This era traces the industry’s first transitional phase 

and includes the onset of the first specific phase around 1910.  Because history is 

cumulative, this analysis also builds on the narrative from chapter 3, which covers the 

industry’s emergent phase. 

Section 4.6.1 discusses the emerging dominant design and diffusion of the 

gasoline automobile into wider markets.  The QE and MLP theories assert that, within 

niche markets, product and process improvements achieved through learning-by-doing 

and learning-by-interacting with users allow new technologies to define or conquer new 

niches.  This process of niche proliferation then allows further cost reductions through 

economies of scale, which facilitates diffusion to wider markets.  I find that the history of 
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the diffusion of automobiles was not consistent with the assertions of the QE and MLP 

theories in the following ways.  First, movement from niches to a wider market occurred 

simultaneously with a functional redefinition of the automobile.  The needs of this market 

were not discovered within the niche, nor were product improvements relative to these 

needs achieved in the niche market.  Product improvements and cost reductions from 

both process innovations and economies of scale were all realized within the new market 

for reliable, rugged, inexpensive vehicles.  And because the vast, primarily rural, low-

price market can not be accurately described as a market niche, niche branching, niche 

proliferation, or niche market growth are not accurate descriptions of the diffusion of the 

gasoline motor-vehicle into mass markets. 

Section 4.6.2 discusses the process innovations that allowed motor vehicles to 

conquer the mass market.  I identify four facets of the TIEC that enabled the volume 

production of automobiles.  I find that Ford’s innovative production system resulted from 

a highly synthetic process and relied on knowledge spillovers as well as learning-by-

doing.  However, Ford’s greatest accomplishment was the manufacture of a product of 

both high quality and low cost, a combination that had not yet been achieved in the 

industry.  Ford’s success was accomplished by jointly addressing issues of product design 

and manufacturing processes. Thus, product and process innovations that served the 

needs of wider markets originated concurrently with the development of the large rural 

market and arose from a more complex process than simple learning-by-doing. 

In section 4.6.3 I address the mechanisms of learning and innovation during the 

transitional and early specific phases.  I find that the emphasis on learning-by-interacting 

with users and learning-by-doing found in the QE and MLP literatures is overly 
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simplistic.  While these were important mechanisms of learning during this timeframe, 

spillovers and learning-by-interacting with suppliers were also extremely prominent.  

Consistent with the assertions of the industry life-cycle model, the first attempts at 

systematic research within firms were instituted at the onset of the specific phase. 

Section 4.6.4 explores the continuing development of the technological nexus 

linking variation and selection and the ongoing mutual adaptation of the technology and 

institutions.  I find that the technology itself was a major factor in altering the selection 

environment, first inhibiting then later enhancing diffusion to wider markets.  Several 

new institutions emerged during the transitional phase, including trade organizations that 

served communication among engineers, connected manufacturers to customers, 

established industry standards, and lobbied for road improvements and the rationalization 

of registration laws.  I also identify one set of institutions, the Selden patent and the 

ALAM, that was misaligned with emerging rules in the TIEC, the redefinition of the 

automobile, and the needs of the mass market.  Motoring clubs also emerged in the 

technological nexus and their role changed as the era progressed.  I find that the process 

of embedding was underway and many of the activities responsible for the co-evolution 

of technologies and institutions were consistent with QE theory’s technological nexus 

description.  However, most of these adaptations were simultaneous with or lagged 

behind the diffusion of the automobile into wider markets.  Thus, success wider markets 

did not depend on these processes occurring first.  

In chapter 2, I asserted that a socio-technical regime exists when a technology and 

sector have achieved the specific phase and when the stability of that specific phase is 

supported by the alignment of the technology, institutions, physical infrastructure.  In 
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section 4.6.5, I summarize the role of the alignment in the success of the automobile in 

the mass market.  A number of emerging institutions were increasing the alignment of 

rules and organizations but one set of institutions was misaligned with emerging rules in 

the industry and the TIEC.  I determine that physical infrastructure was not well aligned 

with the mass use of automobiles at the onset of the specific phase.  Thus, while stability 

was increasing during that phase, the automobile regime was still immature and the 

technology was not yet “locked in.” 

Section 4.6.6 summarizes the role of the Panic of 1907 and the ensuing recession 

in the diffusion of the gasoline automobile to wider markets.  By contributing to the 

downturn in sales of the most expensive vehicles in 1908 and to the high failure rate of 

manufacturing firms in 1909, event served as a selection mechanism, reducing variety of 

firms and products.  It also supported Henry Ford’s efforts gain control of the Ford Motor 

Company and pursue production of a single inexpensive model, a strategy that was 

critical to the success of the automobile in the mass market. 

Finally, section 4.6.7 summarizes the events during the time period covered by 

this chapter and the findings of this analysis. 

4.6.1 Emerging Dominant Design and Wider Diffusion 

The MLP and QE theories assert that new technologies emerge within niche 

markets.  Within these niches, manufacturers learn about users’ needs and users learn 

about product performance through learning-by-interacting.  Manufacturers then improve 

the technology in terms of those needs and achieve lower costs through learning-by-

doing.  Consequently, growth of niche markets, or the penetration of new niches allows 

manufacturers to achieve economies of scale and further reduce costs.  Once cost and 
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performance are improved, the technology enters wider markets where it competes with 

existing technologies.  This diffusion to wider markets occurs as the technology moves 

through what I have called the transitional phase to the specific phase.  This transition is 

marked by the emergence of a dominant design.  In the specific phase, products 

proliferate around this design, competing based on price and quality. 

By 1910, a dominant design for gasoline motor vehicles was coalescing and the 

technology had begun conquering what proved to be a mass market consisting of farmers 

and the growing middle class.  The analysis in this section shows that the movement from 

niches to this mass market occurred simultaneously with a functional redefinition of the 

automobile.  Further, cost reductions were realized within the mass market.  Thus, growth 

in niche markets did not provide the economies of scale that reduced the costs of motor 

vehicles and facilitated diffusion to wider markets.  Further, the needs of the new market 

for reliability, ruggedness, high quality and low price were not discovered within the 

niche market, nor were product improvements relative to these needs achieved in the 

niche market.  And because the vast, primarily rural, low-price market can not be 

accurately described as a market niche, niche branching, niche proliferation, or niche 

market growth are not accurate descriptions of the diffusion of the gasoline motor-vehicle 

into wider markets.  In fact, niche branching occurred after diffusion to the mass market.  

The gasoline motor vehicle conquered the urban niche occupied by electric vehicles after 

being vastly improved for use in the mass market.  Therefore, the role of niche markets in 

the transitional phase of the automobile is not consistent with the characterization found 

in the MLP and QE theories of transitions.   
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During the emergent phase discussed in chapter 3, individual entrepreneurs 

borrowed from the product and production technologies with which they were 

experienced, resulting in a bewildering variety of solutions to the basic engineering 

problem of providing motorized travel.  As the industry entered the transitional phase 

around the turn of the century, the original function of the motor vehicle as a novelty that 

provided sport and prestige for the very wealthy began to yield to more practical 

applications.  All of the motorized transport options – powered by electric motors, steam 

engines, or gasoline ICE – could replace existing technology, but each option was best 

suited to a narrow application or niche market.  Thus, while some initial niches were 

defined by geographic preferences and infrastructure as discussed in the previous chapter, 

functional requirements became increasingly important during the transitional phase. 

Electric vehicles were easy to operate, quiet and odorless and therefore were best 

suited to the urban niche market, where they served as a direct replacement for fine 

carriages by providing both clean practical transport and social prestige.  They were 

especially favored by wealthy women.  However, because of their limited range and the 

lack of refueling infrastructure beyond city limits, electric motor vehicles did not provide 

any new functionality.  Steam-powered and gasoline internal-combustion engine motor 

vehicles combined the flexibility of bicycles and horse-drawn vehicles with the speed and 

long distance capabilities of rail to provide a new function – touring – that fulfilled the 

desire for entertainment, sport, and thrill, while also conveying social prestige.  These 

vehicles could also fulfill the need for local travel in cities, but they were odiferous and 

extremely noisy, so were not as well suited to this purpose as the electric vehicle.     
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Because of its consistency with developments in the TIEC – new perceptions 

about personal travel wrought by the bicycle and rising individualism – flexible, rapid, 

long-distance travel had wide appeal and thus a large potential market.  As early as 1901, 

Motor World reported that with a motor vehicle “you have a method of moving from 

place to place as tireless as a train, one which for short journeys and cross journeys is as 

quick as the train, and yet one which is individualistic and independent, hence its charm” 

(cited in Flink, 1970, p. 102).  An article in Harpers Weekly in 1909 claimed that one of 

the chief attractions of the automobile was “the feeling of independence – the freedom 

from timetables, from fixed and inflexible routes, from the proximity of other human 

beings than one’s own companions; the ability to go where and when one wills, to linger 

and stop where the country is beautiful and the way pleasant, or to rush through 

unattractive surroundings” (cited in Flink, 1970, p. 101).  Such flexibility and speed 

allowed Americans to enrich their social experiences.  Travel by horse limited social 

visits to a 10-12 mile radius, the round trip distance a horse could handle in a day.  

Gasoline- and steam-powered motor vehicles extended that range to 20-30 miles for a 

day trip, and much further for vacations. 

While the state of steam car and electric battery technology stalled in the early 

1900s, rapid improvements in gasoline ICE technology partially overcame the problems 

of noise and ease of operation such that gasoline-powered cars were good enough or 

better at serving all the niche and larger markets – short in-town trips, pleasure touring, 

and long distance travel.  However, while manufacturers of expensive touring vehicles 

continued to increase the quality and performance of their vehicles, they did not seek 

high volume production or low prices. It was the pioneering strategy of two 
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manufacturers to produce simple, lightweight, inexpensive, reliable, and rugged vehicles 

that ultimately tipped the scales in favor of the gasoline vehicle and expanded the market 

for these vehicles beyond the very wealthy.  While the manufacturers of electric and 

steam vehicles continued to use craft production techniques to produce expensive, 

conservatively styled vehicles for the wealthy market, the inexpensive Olds curved dash 

and Ford Model N appealed to a wider market that included the lower-upper class 

consisting of physicians and merchants.  For these relatively affluent buyers, the 

automobile was more a utilitarian product than a toy.   

These inexpensive vehicles also added another important new market and 

function – farmers who needed a practical vehicle to transport products to the market, 

buy supplies in town, and make social visits.  In the words of Utterback and Abernathy 

(1975), during the early phases of a product’s life cycle, “[t]he locus for innovation is in 

the individual or organization that is intimately familiar with needs.”  Based on his own 

experiences, Henry Ford was intimately familiar with the farmers’ needs and he targeted 

them when developing his inexpensive vehicles, particularly the Model T introduced in 

1908.  Following its introduction, Ford’s strategy of progressively reducing the price of 

the Model T combined with rising farm incomes to make the rural market the mainstay of 

the automobile industry (Flink, 1988).  Expansion of the rural market was reinforced by 

positive feedbacks – as the price of motor vehicles came down, more relatively wealthy 

farmers purchased them, and the rural populace became ever more familiar with and 

accepting of the technology.   

By 1910, the bewildering variety in motor vehicle design and the accompanying 

customer confusion had largely disappeared.  Sales of automobiles reached 181,000 units 
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that year53 with 52% of these vehicles selling for under $1,375.  The majority of motor 

vehicles sold were no longer expensive toys for the very rich.  The automobile had been 

functionally redefined as a technology to provide basic, reliable, inexpensive, personal 

transportation that was capable of negotiating rough rural roads and was easy and 

inexpensive to repair.  In 1903, only 14% of vehicles sold had four-cylinder engines, 

while the majority of vehicles were powered by one-cylinder engines.  In 1910, 84% of 

vehicles had four cylinders and nearly 7% had six cylinders.  The four-wheeled 

automobile powered by a water-cooled, four-cylinder, gasoline internal combustion 

engine had emerged as the dominant design.  This design – the functional requirements 

and the technological attributes that met them – was epitomized by the Model T.  By 

1916, sales of cars priced below $1,375 had expanded to nearly 1.3 million units, 

constituted 90% of the total market, and exceeded sales of higher priced vehicles by a 

factor of ten.  The Model T alone accounted for around half of sales.  Clearly, the vast 

and growing scale of the primarily rural low-price market can not be accurately described 

as a market niche. 

The product redefinition that opened the large market for inexpensive automobiles 

directly altered the selection environment, but, combined with the saturation of the 

market for expensive vehicles, it also had a powerful effect on variation by reducing the 

total number of firms.  Firms that were unwilling or unable to adapt to production of 

smaller lightweight vehicles were effectively weeded out.  This further reduced the 

variety of products offered and further reinforced the new functional definition and 

dominant design. 

                                                 
53 See Appendix A. 
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4.6.2 Process Innovations 

The volume production of automobiles, beginning with Olds in 1901 and 

perfected by Ford around 1913, was enabled by four facets of the TIEC: 1) a broad-based 

acceptance of the ideals of individualism as expressed in capitalism; 2) the evolution of 

the American system of manufactures begun in the arms-manufacturing industry and 

perfected through the sewing machine and bicycle industries; 3) the disintegration of 

traditional craft society; and 4) mechanistic scientific approaches based in 

methodological reductionism that led to the development of scientific management.   

The section analyzes the process innovations in this era.  I find that Ford’s 

innovative production system resulted from a highly synthetic process and relied on 

knowledge spillovers as well as learning-by-doing.  However, Ford’s greatest 

accomplishment was the manufacture of a product of both high quality and low cost.  

While one or the other had been achieved within the industry, it was the combination that 

allowed Ford to conquer the mass market.  This combination was achieved by jointly 

addressing issues of product design and manufacturing processes.  Thus, the transition to 

these new production techniques and the resulting cost reductions that enabled market 

expansion did not originate within niche markets, but rather as Ford was developing the 

rural market.  Further, product and process innovations that served the needs of the large 

rural market for ruggedness, reliability, high quality, and low initial and repair cost arose 

from a more complex process than simple learning-by-doing.  

The disintegration of traditional craft society was itself a manifestation of the 

misalignment of old and emerging rules within the TIEC.  Capitalism, factory production, 

and mechanistic reductionism led to an increased cultural valuation of efficiency.  The 
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old rules governing the craft system were incompatible with these evolving economic 

rules and cultural perspectives.  To improve efficiency, managers needed to take control 

of the production process out of the hands of skilled craftsmen.  Scientific management 

and Fordism realized this goal and established new rules for production that were aligned 

with the evolving higher-level rules within the TIEC. 

The companies within GM were struggling with the misalignment of these rules 

as late as 1914, and the continued use of craft techniques contributed to the company’s 

financial difficulties.  However, Ford’s production team was uniquely able to synthesize 

and exploit the opportunities provided by this social and institutional context, in part 

because the management was relatively unfamiliar with the existing rules of production.  

Around 1910, Ford’s production system was evolving rapidly as the team began 

experimenting with the addition of another innovation adapted from of the flour milling, 

canning, brewing, and meat packing industries: mechanical slides and conveyors to move 

materials through the plant.  While the individuals on the team perceived the potential of 

each element in isolation, no one foresaw the synergistic results of their collective efforts. 

Nevins and Hill (1954, p. 366) summarize mass production as the application of 

“simplification of design, standardization of parts, precision machining, carefully timed 

speed, continuous motion, and use of the most ingenious labor-saving mechanism.”  As 

such, it represents an amalgam of process and product innovations.  Ford did not 

originate any of the process innovations: standardized parts all built to common gauge, 

precision manufacturing, high volume production, specialized workers performing 

increasingly minute tasks, control and planning by supervisors and engineers, hierarchical 

management, specialized machine tools, and continuously moving assembly.  And except 
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for continuously moving assembly, Ford was not the first automobile company to apply 

them.  The company was, however, the first to fully integrate them. 

In addition, Ford designed the Model T with the requirements of mass production 

in mind, jointly evolving the product design, machine tools, and production process.  

Abernathy et al. (1983) list four Ford process innovations introduced in 1907, of which 

two (stamped crankcase pans and integrally cast cylinder block and crankcase) require 

component redesign.  Ford introduced five innovations in 1908, three of which (magneto 

integrated into flywheel, detachable cylinder heads, and vanadium steel components) 

involved product redesign for manufacturing.  It appears that Ford was fairly unique in 

jointly addressing issues of process innovation and product design, and much credit 

should be give to the highly innovative atmosphere created at the plant. 

  Rather ironically, the resulting system of production included minutely 

prescribed procedures.  Ford had begun with no rules of production and ended with a 

complex, detailed, and (eventually) inflexible set of rules that were embodied in standard 

operating procedures, routines, and capital equipment. 

4.6.3 Mechanisms of Learning and Innovation 

The QE and MLP theories stress the importance of learning-by-interacting with 

users and learning-by-doing in improving product performance and decreasing 

production costs.  While I find that these were important mechanisms during the 

transitional phase, I also find that spillovers and learning by interacting with suppliers 

were also extremely prominent in the description of product innovations at Ford and GM.  

Process innovations were achieved through a highly synthetic process in which 

knowledge spillovers were critical.  Consistent with the assertions of the industry life-
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cycle model, we also see the first attempts systematic research along the lines of internal 

research and development (IR&D) beginning with the onset of the specific phase. 

As true manufacturing began around 1900, competition among Midwest 

manufacturers of gasoline-powered automobiles was fierce.  The technology still was 

unproven and risky.  Firms operated on slim resources, relying on credit from parts 

suppliers and advance deposits from dealers.  Established firms that sought to expand 

were forced to reinvest profits into improved plant and equipment.  Technology and 

designs changed rapidly, and failure to keep up could mean financial ruin. 

Entrepreneurs focused first on product innovations to improve reliability.  The 

detailed description we have of Ford’s design efforts shows a reliance on feedback from 

dealers and buyers to identify defects.  The role of the producer-supplier relationship is 

also prominent in Ford’s early history.  The Dodge brothers took a great risk in joining 

with the Ford Motor Company, foregoing all other business and essentially financing the 

new venture.  Ford and George Holley collaborated to design a satisfactory carburetor for 

the Model A and Ford later bought a plant for Holley to produce carburetors for the 

Model T.  Suppliers were constantly marketing their parts, materials, and methods to 

manufacturers.  Metallurgist J. Kent-Smith initiated contact with Ford and likely 

provided the motivation to use vanadium steel in the Model T.  Peter Steenstrup of Hyatt 

Roller Bearing pressured Ford to use the company’s bearings in the Model A, and 

William H. Smith of the John R. Keim mills approached Ford about using stamped steel 

axle housings.  Ford was soon using numerous stamped steel parts, and within four years 

had purchased the Keim plant. 
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With cumulative learning effects, each Ford model was an improvement of the 

previous ones.  Ford was also learning from experience on the shop floor, working out 

production improvements through arrangement of men and machines and designing his 

vehicles to facilitate production on an ever increasing scale.  By the time Ford began 

designing the Model T in 1906, he had a clear idea of the functional requirements of 

inexpensive car for the working man and the necessary knowledge to design and build it. 

Weisberger (1979, p. 65) points out that, at the onset of motor vehicle 

manufacturing, no one had the will or the resources for “systematic research – defining a 

problem, accumulating data, testing materials and devices in the laboratory or on the 

bench, building and studying models.  Trial-and-error, which is a costly long-run method 

of learning but requires almost no head-start capital, was what all the pioneers relied on.”  

However, the distinction between learning-by-doing and organized research and 

development is extremely difficult to make.  Systematic corporate research (IR&D) as we 

think of it first appeared at GM in 1911 when James Storrow established an engineering 

laboratory for mechanical and electrical testing.  Charles Kettering, who would later 

refine systematic research at GM, also seems to have progressed systematically from 

problem definition to theory to prototype in developing the electric ignition and the 

electric self-starter between 1908 and 1912.  However, the earliest efforts at systematic 

research were conducted by a trade association, the Mechanical Branch of the ALAM, 

which was formed in 1905 and established a metallurgy lab to test parts and materials.  

The lab ceased operation when funding was cut during the Panic of 1907. 

Ford’s innovative efforts in automobile design and production methods were 

described by contemporaries as “cut-and-try” and definitely fall more along the lines of 
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learning-by-doing.  However, these efforts were aimed at the solution of specific 

problems and did involve construction of mock-ups to assist in working out 

manufacturing issues prior to building a prototype.  In addition, Wills was operating a 

materials testing laboratory that provided strength test data used to design vanadium steel 

parts for the Model T prior to its introduction in 1908.  In 1910, Walter Flanders 

commented that starting an automobile business required the establishment of such a 

laboratory. 

However, Ford’s cut-and-try approach, undertaken by engineers with no 

preconceived notions of what was and was not possible, was highly effective at jointly 

addressing issues of process innovation and product design.  In prior attempts to establish 

a manufacturing firm, Henry Ford had been restricted by investors’ understandable focus 

on near-term profit.  This time, Ford’s lack of interest in personal wealth allowed for the 

reinvestment of profits in innovation, resulting in “an extensive amount of 

experimentation to be carried out in the factory and a surprising rate of scrapping 

processes and machine tools when they did not suit the immediate fancy of his production 

engineers” (Hounshell, 1984, p. 220).   

The synthetic and heterogeneous nature of the rapid innovations after 1900 is 

quite clear and innovation by teams of entrepreneurs became even more prominent than 

during the emergent phase.  David Buick and William Marr put together a technically 

sound motor vehicle, but it took a businessman like William Durant to make it 

commercially successful.  Ford’s product and enterprise would not have succeeded 

without C. Harold Wills, James Couzens, and talented vehicle and tool design teams.  For 

the process innovations during this phase, spillovers remained prominent and were 
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combined in a highly synthetic manner.  The ability of the automobile industry to develop 

and to mass produce high-quality inexpensive motor vehicles relied on continuous, 

incremental, and cumulative technical progress in production techniques from multiple 

industries.  The roots of mass production began prior to the emergence of the automobile 

with the developments for firearms, sewing machines, and bicycles.  Much of the 

necessary innovations – machining technologies, sequential organization of production, 

and application of special purpose machine tools for mass production – had been 

introduced prior to the turn of the century and were extended by the emergent automotive 

industry.  Then, between 1905 and 1914, Ford engineers collectively refined these 

techniques and combined them with innovations in the flour milling, canning, and meat 

packing industries, as well innovations from scientific management, to create a new 

production system that amounted to more than the sum of the constituent parts. 

There are two other examples of the importance of spillovers between 1900 and 

1915.  First, Kettering’s solution to the very significant problem of the automatic starter 

built upon his experience developing an electric motor to replace the hand crank on cash 

registers.  Second, Walter Chrysler drew on his experience building rail cars when 

instituting changes in management, production processes, and materials handling at 

Buick in 1912.  Once again, the movement of key entrepreneurs between industries 

served to facilitate the transfer of knowledge.  This, however, did not represent the only 

mechanism of knowledge transfer, as entrepreneurs were increasingly networked with the 

knowledge base.  

Most, though not all, of the early manufacturers had technical experience or 

training, and Rae (1959, p. 203) points out that “[t]he number of college-trained 
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engineers in this first generation of automotive entrepreneurs is surprisingly large, 

considering that engineering degrees were something of a rarity in the United States until 

the twentieth century.”  According to Raff and Trajtenberg (1997), “the highest rate of 

quality change occurred at the very beginning [of the industry’s history] (1900-1914).  

This is undoubtedly the portion of our period in which the greatest proportion of 

entrepreneurs were engineers or mechanics by training, knowledge spillovers were all-

pervasive, and design bureaucracies were shallowest.” 

Many of these engineers were members of the relatively new American Society of 

Mechanical Engineers (ASME), which was founded in 1880 “to promote the art, science 

and practice of mechanical engineering and the allied arts and sciences” (ASME, 2008)  

Listed among the ASME’s original objectives was the collection and diffusion of 

knowledge.  Prior to the turn of the century, the exchange of information specific to the 

industry was facilitated by several enthusiast publications, including Horseless Age and 

The Automobile.  In 1905, three industry groups were formed to foster collaboration 

among automobile engineers: the SAE, the mechanical branch of the ALAM, and the 

AMCMA, which served the independent manufacturers resisting the Selden patent.  After 

the SAE inherited the ALAM’s library and mechanical work in 1910, the SAE consisted 

of 899 members.  The most significant contribution of these groups was the 

standardization of automobile parts and materials. 

4.6.4 Agents and Mechanisms of Change 

This section explores the continuing development of the technological nexus 

linking variation and selection and the ongoing mutual adaptation of the technology and 

institutions.  I find that the technology itself was a major factor in altering the selection 
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environment, first in a negative way as touring offended the sensibilities of the less 

affluent and aroused the anger of farmers.  Later, the proliferation of motor vehicles that 

conformed to a new utilitarian product definition was a major factor in overcoming these 

hostilities.  I identify several new institutions that emerged during the transitional phase.  

These included trade organizations that served communication among engineers, 

connected manufacturers to customers, established industry standards, and lobbied for 

road improvements and the rationalization of registration laws.  I also identify one set of 

institutions, the Selden patent and the ALAM, that was misaligned with emerging rules in 

the TIEC, the redefinition of the automobile, and the needs of the mass market.  In this 

timeframe, local and national motoring clubs also emerged in the technological nexus and 

their role changed from serving to provide entertainment to one of activism as the era 

progressed.  I find that the process of embedding was underway and many of the 

activities responsible for the co-evolution of technologies and institutions were consistent 

with QE theory’s technological nexus description.  However, most of these adaptations 

were simultaneous with or lagged behind the diffusion of the automobile into the mass 

market.  Thus, success in the mass market did not depend on these processes occurring 

first.  The question of how they contributed to stability and strengthened diffusion will be 

addressed in section 4.6.5 and again in chapter 5. 

As discussed in Chapter 3, races demonstrated the performance, endurance, and 

dependability of competing technologies and models.  At the same time, racing tended to 

reinforce the definition of the automobile as an expensive toy for the very wealthy and 

inhibited diffusion into wider markets.  Though Ford was not interested in building racing 

vehicles, he successfully used racing as a means to build recognition and attract 
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financing.  This use of racing altered the selection environment by directing funding 

toward specific entrepreneurs and projects.  Ford’s efforts to build racers also began 

building a successful team of entrepreneurs and accumulating critical knowledge. 

While races reinforced the public image of motor vehicles as toys for the very 

wealthy, the use of automobiles in this application also inhibited diffusion into wider 

markets.  The very wealthy staged elaborate festivities involving automobiles and 

recklessly toured the countryside, flaunting their conspicuous consumption in the face of 

the hard-working middle and lower class and arousing farmers’ anger.  However, this 

negative opinion was overcome around 1907 by two factors: rising farm income and the 

introduction of inexpensive motor vehicles that rural populations and the middle class 

could afford and in which they found a valuable function.  The first of these were light 

buggy-type vehicles manufactured by Midwestern firms.   

However, Olds and Ford pursued a pioneering strategy when they targeted this 

relatively untapped market by producing a simple, lightweight, reliable, and inexpensive 

vehicle in large quantities. The Olds curved dash and Ford Model N introduced in 1900 

and 1906 respectively were designed specifically for this more utilitarian purpose.  The 

Ford was superior in this respect since it departed from the buggy-style design and its 

inherent weaknesses that were found in the curved dash.  As these vehicles became more 

common and as their performance was demonstrated and improved, the public’s 

interpretation of the motor vehicle and its function shifted.  Ford did not require that these 

users discover and communicate their needs to him; he had lived the life of a farmer and 

already knew what they had yet to discover: if properly designed, the motor vehicle could 
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vastly improve their economic and social well-being.  Ford had interpreted an unmet 

demand and imposed it on the technology. 

Other activities of manufacturers through emerging industry trade organizations 

served the nexus role.  The ALAM and the AMCMA in particular were conceived as 

organizations to connect manufacturers to each other and to customers by arranging for 

public exhibition new vehicles at trade shows; promoting races; promoting the sale of 

members’ cars; encouraging public interest in automobiles; promoting good roads; and 

facilitating the exchange of technical information.  In enforcing the Selden patent, the 

ALAM claimed to be protecting the industry from disreputable manufacturers that would 

have created public distrust and a negative opinion of the automobile.  But by restricting 

licenses and controlling production output, the ALAM also sought to maintain high 

prices, thus affecting variation.  The issue was settled by the legal system, and these 

higher level rules ultimately supported the independent manufacturers of the AMCMA, 

though this group had already disbanded.  After the legal decision in 1911, the ALAM’s 

boundary spanning role was transferred to the Automobile Board of Trade and then, in 

1914, to the National Automobile Chamber of Commerce (NACC).   

The ALAM’s technical work was transferred to another prominent industry 

organization, the Society of Automobile Engineers (SAE), which served as a linkage 

among manufacturers and suppliers.  While the SAE did not connect manufacturers to 

customers, it did influence both variation and selection.  As a technical society, the SAE 

represented the shared knowledge base which served as a cognitive constraint on 

innovation by shaping the perceptions of engineers. But more significantly, the confusion 

caused by the huge number of parts used by the industry constituted an adverse selection 
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environment which the SAE attempted to alleviate through parts standardization.  While 

the organization succeeded at easing the parts burden and improving the quality of 

materials, it was unable to make the selection environment significantly more benign for 

small manufacturers. 

Other than the Selden patent dispute, the automobile industry was fairly free to 

develop without governmental restrictions during the emergent and transitional phase.  

However, formal constraints on automobile use were emerging in the form of local and 

state speed and registration laws.  Initially, these laws were misaligned with the 

capabilities of the automobile and served to limit its usefulness and therefore its 

diffusion.  Through motoring clubs, enthusiasts joined forces with manufacturers to 

remove this element from the selection environment, eventually shifting efforts from 

opposition to coordination.  In this process, the purpose of motoring clubs shifted from 

organizing social activities for the wealthy elite to activism for all motorists.  By 1910, 

registration laws were more coherent and actually served to create a more benign 

selection environment since fees were used for road improvements. 

The poor condition of roads initially had served to limit the usefulness of the 

automobile and was a major design consideration for inexpensive vehicles.  Once again, 

motorists, through local clubs and the AAA, joined forces with manufacturers to promote 

road improvements.  Some of this activism evolved from movements begun by bicycle 

enthusiasts.  This movement tied into dissatisfaction with rail rates, particularly among 

farmers who relied on the railroad to transport agricultural goods to urban and export 

markets, and farmers joined these efforts around 1909 through the National Grange.  The 

Good Roads movement produced modest results, but improvements were overtaken by 
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the increasing demands of motor vehicle use.  Although there was an increase in the 

mileage and condition of surfaced roads between 1900 and 1915, it was not likely a 

significant factor in the process of embedding in this timeframe.  Federal funding for road 

improvements was initiated in 1916, but the major breakthrough occurred after WWI. 

Early in the development of the automobile, critics had warned that the innovation 

would not find market success until the roads were improved.  However, in this 

timeframe, construction of roads passable by motor vehicles lagged well behind the 

development and diffusion of the automobile itself.  The capability to navigate rough 

roads was therefore a main design criterion for those vehicles, like the Model T, that were 

ultimately successful in the first decade of the 20th century.  Road improvements would 

play a significant role in the co-evolution of the automobile regime and the wider TIEC 

between 1915 and 1930.  Similarly, although a pre-existing dispersed fuel infrastructure 

was aligned with the gasoline automobile (see section 3.4.2), a dedicated refueling 

system tailored to the needs of the technology and its widespread use did not begin to 

appear until 1907 and significant growth began around 1915. Therefore, the topic of 

infrastructure will be taken up again in chapter 5.   

By the beginning of the specific phase (1910), mutual adaptation had resulted in a 

dominant design that was aligned with existing physical infrastructure (rough roads and a 

dispersed refueling system) and supporting organizations were actively working to 

improve that infrastructure as well as legislative rules that created an adverse selection 

environment.  Thus, the process of embedding was underway and many of the activities 

responsible for the co-evolution of technologies and institutions were consistent with QE 

theory’s technological nexus description.  However, most of these adaptations occurred 
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during the transitional phase and were simultaneous with or lagged behind the diffusion 

of the automobile into the mass market.  In addition, they continued and were 

reinvigorated with the onset of the second transitional phase covered in chapter 5. 

4.6.5 Alignment and Stability 

In describing the framework for analysis (see chapter 2), I asserted that a socio-

technical regime is understood to exist when a technology and sector have achieved the 

specific phase and when the stability of that specific phase is supported by the alignment 

of institutions (rules and organizations) and existing physical infrastructure with the 

dominant product design, production processes, and organizational forms.  Further, 

changes in the TIEC can result in a misalignment that erodes stability and initiates a new 

transitional phase or provides opportunities for the emergence of a new technology.   

In this section, I summarize the role of alignment in the success of the Ford Motor 

Company and of the automobile in the mass market.  I identify a number of emerging 

institutions that increased the alignment of rules and organizations but also one set of 

institutions that was misaligned with emerging rules in the industry and the TIEC.  

Finally, physical infrastructure was not well aligned with the mass use of automobiles at 

the beginning of the transitional phase but efforts were underway to improve this 

situation.  Thus, while stability was increasing during the first specific phase, the 

automobile regime was still immature. 

The automobile itself was aligned with and reinforced increasing individualism.  

Meanwhile, scientific management and Fordism were aligned with evolving higher-level 

rules within the TIEC regarding capitalism, mechanistic reductionism, and increased 

cultural valuation of efficiency.  In the specific phase, the success of the automobile and 
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Fordism contributed to evolving economy-wide rules on the organization of production 

and further reinforced these trends.  Related alignments supporting the first specific phase 

include the emergence of engineering institutions, including engineering schools and 

associations like the SAE and ASME.  Parts standardization begun by the ALAM and 

completed by the SAE also contributed to the stability of the industry by improving the 

quality of materials and reducing the complexity of the supply environment.  It did not, 

however, have the intended effect of bringing economies of scale to small producers.  

The Selden patent and the ALAM represented institutions that were misaligned with both 

the trend toward high volume production and the 1910 functional definition of the 

automobile.  The patent could potentially have blocked or delayed market growth, but 

this barrier was removed in 1911 with the resolution of lawsuits brought by the ALAM. 

The condition of roads was improving during this era through an increase in the 

mileage of surfaced and the application of new materials with better performance.  

However, this development lagged behind the diffusion of the automobile, and increased 

usage quickly overwhelmed road improvements during the transitional and early specific 

phases.  As of 1916, a mechanism was in place for federal funding of road construction, 

but significant improvements in physical infrastructure did not occur until well into the 

specific phase.  The breakthrough would occur after WWI.  And although gasoline was 

widely available at country stores and other dispersed sources, growth in dedicated 

refueling infrastructure also began a period of significant growth after the emergence of a 

dominant automobile design in 1910 as will be discussed in the chapter 5. 

In conclusion, the stability of the automobile industry was increasing during the 

first specific phase.  However, it still was somewhat fragile and the automobile regime 
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therefore was still immature.  This implies that changing technological trajectory would 

not likely have represented a major disruption at this point; the technology was not yet 

“locked in.” 

4.6.6 Role of Exogenous Events 

This section summarizes the role of the Panic of 1907 and the ensuing recession 

in the diffusion of the gasoline automobile in the mass market.  This event likely 

contributed to the downturn in sales of the most expensive vehicles in 1908 and to the 

high failure rate of manufacturing firms in 1909.  It also supported Henry Ford’s efforts 

gain control of the Ford Motor Company and pursue production of a single inexpensive 

model, a strategy that was critical to the success of the automobile in the mass market. 

The economic downturn and the Panic of 1907, events with no causal link to the 

motor vehicle sector, altered the selection environment in two significant ways.  First, the 

Panic was coincidentally timed with the saturation of the market for expensive 

automobiles.  It is impossible to know whether the recession played a causal role or 

served to hasten the stabilization of demand for these cars, but very wealthy buyers of 

these automobiles would have been among the hardest hit by the 50% drop in the stock 

market between early 1906 and late 1907.  Following on the heels of slowed growth in 

demand for vehicles priced over $2,775 in 1906 and 1907, the downturn in sales in 1908 

would have looked ominous to manufacturers.  Firms in this era were operating with slim 

cash reserves and, for many, a slump in demand spelled financial ruin.  It is significant to 

note that the number of firms exiting the industry peaked in 1909 (Simons, 1995).  The 

Panic of 1907 very likely contributed to the failure of some of the firms that ceased 

production between 1907 and 1909 and would have influenced the strategies of the 
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surviving firms.  In therefore served as a selection mechanism that reduced both the 

variety of firms and the products offered. 

More specifically, the Panic and recession likely contributed to the disappointing 

demand for the Ford Model K in 1907, Ford’s first foray into the highest price bracket, as 

well as the mid-priced Model B.  Serendipitously for Henry Ford, this event occurred as 

he was planning to wrest financial control of the Ford Motor Company from Alexander 

Malcomson.  Malcomson was known as an impulsive ‘plunger’ who took speculative 

risks and was perpetually over-extended.  His Ford Motor Company stock was no longer 

paying dividends and the value of any other of his stock holdings would have plunged 

with the market.  Malcomson’s undoing was the result of multiple factors: his own 

speculation, including the launch of another automobile firm; Henry Ford’s maneuvering 

with the Ford Manufacturing Company; and the economic crisis.  Thus, the Panic of 1907 

was a contributing factor in providing both the justification and the means for Henry Ford 

to pursue his unique strategy of producing a single inexpensive model.  This strategy was 

critical to achieving the cost reductions that made the automobile accessible to nearly 

every American. 

4.6.7 Summary 

The transitional phase of development for the automobile industry began roughly 

in 1900 and, by about 1910, the industry was beginning the specific phase.  The number 

of firms in the industry, the number entering, and the number exiting had peaked by 1909 

and the total number of firms began a precipitous decline in 1910.  By that time, the 

automobile had been functionally redefined as a technology to provide basic, reliable, 

inexpensive, personal transportation that was capable of negotiating rough roads and 
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traveling long distances.  In 1910, just over half of the vehicles sold were priced under 

$1,375 and 84% utilized a four-cylinder gasoline internal combustion engine.  The four-

wheeled automobile powered by a water-cooled, four-cylinder, gasoline ICE emerged as 

the dominant design. 

During the transitional phase, two main factors contributed to the gasoline internal 

combustion engine’s selection over rival technologies and its diffusion to wider markets: 

1) the ability of gasoline ICE technology to fulfill a new function with mass appeal; and 

2) the strategies pursued by the entrepreneurs.  Gasoline vehicles provided a new 

functionality – rapid, flexible, long-distance, personal travel – that ultimately appealed to 

a much larger market than the niche markets served by electric vehicles.  Success in this 

market required a low price and therefore large reductions in production cost.  Chapter 3 

identified five developments in the TIEC that provided opportunities for entrepreneurs to 

begin developing a commercial motor vehicle.  During the transitional phase, the Ford 

production team was able to synthesize four additional facets of the TIEC to develop 

innovations for the production of inexpensive and reliable automobiles:   

1) a broad-based acceptance of the ideals of individualism as expressed in 

capitalism;  

2) the evolution of the American system of manufactures begun in the arms-

manufacturing industry and perfected through the sewing machine and bicycle 

industries; 

3) the disintegration of traditional craft society; and  

4) mechanistic scientific approaches based in methodological reductionism that led 

to the development of scientific management.  
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While process innovations for interchangeable parts originally had been 

developed to facilitate repairing firearms in the field, the Ford’s team perceived that these 

innovations could also reduce assembly time and manufacturing costs; therefore, they 

were critical to high volume production.   

The important mechanisms of learning during this timeframe included inter-

industry spillovers, learning-by-doing, and learning-by-interacting with both users and 

suppliers.  The electric starter was arguably the most significant improvement to gasoline 

ICE technology and was achieved through inter-industry spillovers as well through 

spillovers from electric vehicle technology.  Throughout the period, the role of suppliers 

as innovators and collaborators is particularly striking.  Meanwhile, learning-by-

interacting with users played a significant role in identifying flaws and improving the 

performance of early motor vehicles, but was less significant in communicating users’ 

needs in terms of functionality.  Rather, Olds and Ford relied on their own perceptions 

and experiences with the needs of the rural market and actively targeted this new 

application. 

Thus, I find that the role of niche markets in the diffusion of the automobile to 

wider markets is not consistent with the characterization found in the MLP and QE 

theories of transitions in the following ways: 

1) Niche markets did not provide cost reductions through process improvements and 

economies of scale.  Rather, cost reductions were realized simultaneously with a 

movement to wider markets.  Further cost reductions were realized within this 

mass market. 
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2) The needs of the primarily rural mass market were not revealed within the niche 

market; Ford interpreted these needs from his own experience. 

3) Product improvements relative to these needs were achieved in the mass market, 

not the niche market. 

4) While learning-by-interacting with users and learning-by-doing were important, 

spillovers and learning- by-interacting with suppliers were also critical 

mechanisms of learning. 

5) Because niche markets were saturating and the vast, primarily rural, low-price 

market can not be accurately described as a market niche, niche branching, niche 

proliferation, or niche market growth are not accurate descriptions of the diffusion 

of the gasoline motor-vehicle into mass markets. 

6) The gasoline motor vehicle conquered the urban niche occupied by electric 

vehicles after being vastly improved for use in the mass market.  Therefore, niche 

branching occurred after diffusion to the mass market. 

The very existence of inexpensive and practical motor vehicles did much to alter 

the perceptions of the public, probably more than any other efforts to influence the 

selection environment in this era.  The emergence of a dominant design provided a 

culturally shared definition of the technology – a common image that readily came to 

mind when one heard the term “automobile.”  This image was increasingly symbolic, 

connoting freedom and rugged individualism.  Thus, the automobile and the industry 

were aligned with wider developments in the TIEC and the growth of supporting 

institutions.  Despite these early embedding processes, supporting institutions and 

infrastructure were still in their infancy.  The development of coherent registration laws, 
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roads passable by motor vehicles, and dedicated refueling infrastructure lagged behind 

the growth in markets for automobiles.  This somewhat undermines the argument that the 

alignment of technology, infrastructure and institutions contributed to diffusion into mass 

markets.   Further, while stability was increasing, it was fragile and the automobile 

regime therefore was still immature.  This implies that the technology was not yet 

“locked in” and that changing technological trajectory would not likely have represented 

a major disruption at this point.
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5.0 Stability Yields to New Challenges 

To keep an industry alive, it should be kept in perpetual ferment. 

-- Sorensen (1956, p. 51) 

 

This chapter picks up the history of the industry beginning in 1916, but also 

includes earlier developments that became important to the industry between 1916 and 

the late 1920s.  As discussed in chapter 4, the first specific phase began around 1910 with 

the emergence of a dominant design.  During the first five years of this phase, the 

automobile was being embedded in complex systems for production and use, but the 

stability of this developing regime was still fragile.  However, a mass market was well 

established by 1916, with sales of cars priced under $1,375 approaching 1.3 million units 

and constituting 90% of the market for automobiles.  Cars priced under $675 constituted 

51% of the market. The Model T was the best selling car and Ford’s market share 

reached 50%.  Henry Ford announced his strategy prior to the introduction of the Model 

T and proceeded to follow it to the letter: he produced a four-cylinder automobile, he 

stuck to that standardized design without changing it, he reached constantly toward a 

growing volume in order to cut costs, and he reduced prices steadily (Nevins and Hill, 

1954). 

This strategy meshes perfectly with the product and industry life-cycle model’s 

description of the specific phase – standard product design, mass production, a focus on 

process innovations, and competition based mainly on price and quality.  However, for 

this strategy to be successful, the industry must remain in the specific phase, which 

requires a static environment.  But beginning around 1918, exogenous and co-
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evolutionary forces altered the technical, institutional, and ecological complex (TIEC) in 

which the automobile industry was embedded, requiring that firms adapt. In this chapter, 

I discuss the characteristics of innovation, mechanisms of learning, development of 

institutions, and the two-way interactions between variation and selection during the first 

specific and second transitional phases.  I examine the mutual adaptation of the 

technology, institutions, and physical infrastructure and discuss the role of alignment and 

embedding, as well as unexpected events, in the stability of the developing automobile 

regime.  I identify forces and misalignments that undermined the stability of the first 

specific phase and triggered a second transitional phase beginning around 1918.  By 

1926, the automobile had once again been functionally redefined, a new dominant design 

had emerged, and the industry was beginning a second specific phase.   

Section 5.1 relates the history at the Ford Motor Company between 1915 and 

1927.  Henry Ford continued to follow strategies based on his personal rules, acquiring 

complete ownership and control of the company, pursuing ever deeper vertical 

integration and centralized control, and clinging steadfastly to the product and production 

processes that had been so successful in the prior era.  However, the changes in the TIEC 

that initiated a new transitional phase around 1917 were misaligned with these rules, 

strategies, artifacts and processes.  Adaptation at Ford lagged behind these changes in the 

TIEC and was costly. 

Section 5.2 relates the history of the General Motors Company (GM) between 

1915 and 1927.  Because of William Durant’s haphazard style, GM was plagued with 

uncoordinated management.  But because of the corporation’s acquisition strategy and 

Durant’s past blunders, GM was also lucky to have managerial and technical talent in 
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Pierre du Pont, Alfred Sloan, and Charles Kettering.  In addition, business ties to the E.I. 

Du Pont de Nemours Company gave GM access to that company’s war surplus.  With 

these resources, the corporation was able to respond aggressively to the challenges posed 

by the second transitional phase and turned crisis into entrepreneurial opportunity.  By 

1927, the corporation had products and systems of management and production that were 

aligned with the TIEC and structured to sense and adapt to future change. 

Section 5.3 relates the history of the Chrysler Motor Company, a late entrant in 

the industry.  While many small automobile manufacturing firms were unable to survive 

the post-war recession, Walter Chrysler was able to exploit the opportunity this presented 

by converting the failing Maxwell and Chalmers companies into the third largest 

manufacturer by 1928.  In doing so, he also created an opportunity out of another 

unexpected event: the influenza epidemic of 1920 which took the lives of the John and 

Horace Dodge, leading eventually to the sale of the Dodge Brothers in 1928.  Chrysler’s 

success was due in large part to his strategy to maintain a position of technological 

leadership. 

Sections 5.4 and 5.5 discuss two significant industry innovations, enclosed steel 

bodies and consumer financing, which cannot be attributed to a single manufacturer.  

Inexpensive closed wooden bodies and all-steel bodies were developed by suppliers and 

were key contributors to the shift in consumer preferences that triggered the second 

transitional phase.  Consumer financing was largely a spillover, and represents a 

widespread trend in the TIEC that was strengthened by its use in the automobile industry. 

Section 5.6 discusses five developments in the TIEC that provide the technical 

and institutional context for the period from 1915 to the late 1920s: World War I and the 
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post-war recession; on-going efforts to improve the condition of the country’s roads; 

development of a dedicated refueling infrastructure; market saturation and the developing 

used car problem; and the increasing role of women in automobile purchases.    

Finally, section 5.7 synthesizes this historical review and summarizes the findings 

as they relate to the research questions presented in chapter 1.   

5.1 Ford: Inertia and Sub-optimization 

Henry Ford successfully gained managerial and financial control of the Ford 

Motor Company in 1907.  Without the influence of Alexander Malcomson, who had 

owned an equal share of company stock, Ford was free to pursue his strategy of 

producing a single inexpensive car.  The departure of the Dodge brothers from active 

management in 1913 further empowered Henry.  He had begun to bring the supply of raw 

materials and parts under his control and had plans for massive increases in capacity.  His 

keen engineering instincts and understanding of the rural market were major factors in his 

past business success.  However, Ford’s steadfast adherence to his personal beliefs and 

perceptions and his increasingly autocratic nature became dysfunctional as the industry 

matured.  Henry Ford was not prepared for evolutionary change. 

Section 5.1.1 relates the events culminating with Ford’s acquisition of 100% of 

the Ford Motor Company’s stock.  This move was motivated by Ford’s personal 

predilection for autocracy and was precipitated by friction between Ford and the Dodge 

brothers over expansion plans.  By 1919, Ford had complete financial and managerial 

control, but had lost important human and financial capital along the way.  Thus, Ford’s 

personal beliefs, aspirations, and tactics placed the company in a precarious position just 

as the disruptions of the second transitional phase gripped the industry.  Henry Ford’s 
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response to the initial crisis posed by the post-war recession, which is related in section 

5.1.2, was shaped again by his beliefs and perspectives.  While his personal rules and 

strategies in earlier phases had been aligned with the TIEC and the market, this was not 

the case in the second transitional phase.  By the beginning of 1922, the Ford Motor 

Company was no longer in debt, but had lost critical human capital and was not prepared 

to adapt to the remaining challenges of the transitional phase. 

Section 5.1.3 describes the extent of vertical integration achieved at the River 

Rouge industrial complex, which, by 1923, was a perfectly-timed and efficient industrial 

machine that converted raw materials into cash in 33 hours.  Ford not only controlled the 

manufacture of nearly every vehicle part, he also secured access to raw materials and 

operated rail lines and fleets of cargo ships.  Although the Ford Motor Company 

continued to rely on suppliers for some key materials, the company’s exploitation of 

resources and transportation sent a clear signal to suppliers and shippers considering price 

increases. 

Section 5.1.4 examines the stagnation in product design and innovation at Ford.  

Although improvements were made to the Model T between 1908 and 1926, Ford’s 

incorporation of new technologies lagged behind the rest of the industry.  Product 

innovations and road improvements eliminated many of the requirements that had 

dictated the Model T’s design, turning many of the attributes that had been advantages 

into disadvantages.  As consumer preferences began to shift, they became increasingly 

misaligned with Henry Ford’s personal rules.  Although user feedback was available, 

Ford refused to act on it, imposing his personal rules on the company.   
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By 1927, the Model T was no longer aligned with the rules or physical artifacts of 

the TIEC.  Section 5.1.5 covers Ford’s development of an entirely new four-cylinder car 

beginning in 1926. Henry Ford took charge of the project himself, continuing with “cut-

and-try” methods.  Developing a light, low rpm, high power engine proved to be the most 

significant design problem, which was solved in part by knowledge spillovers when Ford 

brought in an engineer from the company’s aircraft division.  Equipment in Ford’s plants 

were so specialized that a complete retooling was necessary to manufacture the Model A.  

The changeover was costly in terms of lost production, capital outlays and the loss of 

experienced personnel.  In the process, Ford learned that accommodating change required 

advanced planning in both product design and production processes.  More importantly, 

the changeover revealed the importance of shifting from machinery designed for a single 

task to more flexible tools that could accommodate changes in design.  The rules of 

production embodied in Fordism and Ford plants were misaligned with the new 

functional definition of the automobile which required frequent model changes.  New 

rules in the TIEC dictated new rules of production represented by “flexible mass 

production.” 

5.1.1 Ousting the Minority Stockholders, 1915-1919 

In 1912, Ford’s stockholders and directors had agreed to reinvest 15% of the 

annual profits to expansion of productive resources, including facilities at Highland Park 

and branch assembly plants nationwide and beyond. By 1914, all sixty acres of the 

Highland Park tract were covered with Ford Motor Company buildings (Sorensen, 1956) 

and the plant was producing 1,200 automobiles daily (Nevins and Hill, 1954).  Sometime 

around 1907, Ford had initiated experiments to fulfill a boyhood dream to “lift farm 
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drudgery off flesh and blood and lay it on steel and motors” (Nevins and Hill, 1957, p. 

21).  Funded through Henry Ford’s personal accounts, several tractor models were 

constructed in the following years, but the designs were unsatisfactory until 1915.  Ford 

made plans to produce the tractor in temporary facilities in Dearborn, but also had more 

grandiose plans in mind.  Due to space restrictions and the availability of water for the 

steel plant, Highland Park would not be able to accommodate expansion beyond an 

annual capacity of 500,000, yet Ford believed he should plan for a goal of at least 

1,000,000.  Developing a new site would accommodate tractor production and would 

allow Ford to shift some production functions, such as the foundry and power house, 

from Highland Park.  In June, 1915, Ford announced plans for developing an industrial 

complex along the River Rouge to the southwest of Detroit, where he had quietly 

purchased nearly 2,000 acres of farm and woodland. 

The Dodge brothers, who still owned a minority of Ford Motor Company stock, 

supported the expansion even though they were primarily interested in receiving 

generous dividends to help finance their independent automobile manufacturing.  They 

apparently believed that tractor production was its primary purpose and trusted Couzens, 

as treasurer, to keep spending under control.  However, the relationship between Ford and 

Couzens was deteriorating and there had been noticeable friction since 1909.  Ford had 

always been disparaging of the business office, asserting that it was a necessary evil to be 

tolerated.  He was irritated by Couzens’ domineering manner and what he viewed as 

excessive economizing for the sake of money itself.  Now Ford was showing interest in a 

larger executive role just as Couzens was becoming interested in serving in politics.  

Further, Couzens was vigorously pro-Ally and was annoyed by Ford’s public anti-war 
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remarks.  The situation came to a head when Couzens squelched a pacifist editorial and 

article for the Ford Times, the company’s organ for advertising.  In the ensuing 

confrontation, Ford overrode Couzens authority to take such an action.  On October 12, 

1915, Couzens resigned as vice-president and treasurer of the Ford Motor Company. 

According to Nevins and Hill (1954, p. 500), “[Ford and Couzens] had provided 

the inspiration which made [the company] great, and both manifested in growing degree 

the dictatorial and temperamental qualities which would soon mar and eventually impair 

its greatness.  So long as one balanced the other, and John F. Dodge and others exercised 

considerable influence, the possibilities of harm to the company were limited.”  But with 

both John Dodge and Couzens gone from active management, Henry Ford became 

increasingly autocratic, making important decisions as though there were no board of 

directors.  On more than one occasion, funds were disbursed for design and construction 

of facilities before the plans were ratified by or even put before the board (Nevins and 

Hill, 1954). 

In 1916, Ford lowered prices across the board and announced that no special 

dividends would be paid.  He believed this move would increase sales from 500,000 to 

800,000 cars per year, and plans were underway to double production capacity.  The 

Dodge brothers opposed these moves, believing the company had attained its goals.  In 

November, 1916, the Dodge brothers filed a lawsuit to stop the diversion of company 

profits from dividends, thereby delaying expenditures on plant expansion.  Development 

of both Highland Park and the River Rouge was allowed to move ahead in 1917 when 

Ford posted a $10-million bond to protect the minority stockholders.  The courts then 

forced Ford to pay a special dividend of over $19 million plus interest in February, 1919.  
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Although Henry Ford received the bulk of this dividend, he resented the interference of 

the minority stockholders and resolved to rid himself of such constraints.   

In December, 1918, Henry Ford resigned as president of the Ford Motor 

Company, claiming he wanted to devote himself to other organizations, presumably 

Henry Ford & Son which he had established to manufacture tractors.  The board elected 

Henry’s son Edsel to replace him as president.  Then in March, 1919, Henry Ford 

announced he would organize a new firm, owned entirely by the Ford family, to produce 

a better and lower priced car than the Model T.  He claimed the move had been 

necessitated by the settlement of the Dodge suit which, through dividend payments, had 

given him large personal resources that he could not reinvest in the Ford Motor 

Company, which was left without cash reserves for expansion.  The new company would 

allow Ford complete freedom and control.   

Needless to say, the minority stockholders of the Ford Motor Company were 

alarmed.  Apparently at Edsel’s initiation, Henry Ford’s agents began arrangements to 

obtain their stock, representing 41.5% of the company, with the requirement that if the 

entire block could not be purchased then none would be.  Though the stockholders knew 

that the agents were acting for Ford and felt the negotiated stock price was below its 

actual value, they were left with few alternatives.  When the transaction was complete in 

July, 1919, Henry Ford became the first individual to control completely a company the 

size of the Ford Motor Company.  Ford immediately reorganized the company, 

integrating all Ford enterprises, and allocated the new firm’s stock 55.2% to himself, 

41.7% to Edsel, and 3.1% to his wife Clara.  Although Edsel was named company 

president, Henry clearly remained in control (Nevins and Hill, 1957; Flink, 1988). 
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The price of control was high.  Many of Ford’s ablest executives – C. Harold 

Wills, John R. Lee, and Norval Hawkins, head of Ford sales – resigned in the spring of 

1919, apparently as a result of growing tensions and Ford’s desire for absolute authority.  

William Knudsen followed in 1921 and both he and Hawkins found executive positions 

at GM.  Wills and Lee joined forces to develop and produce a new and technologically 

advanced automobile, the Wills-Sainte Claire.  More significantly, Ford, who despised 

reliance on bankers and credit, had to borrow to finance the stock buyout.   

5.1.2 Financial Crisis, 1919-1921 

Payments on the debt, the court ordered dividend, aggressive expansion at the 

River Rouge, and the acquisition of mines and timber tracts left the company in a delicate 

financial position.  It seemed irrelevant in early 1919 when sales were booming, fueled 

by pent-up demand from the war years.  But in the summer of 1920, the post-war 

recession sent sales plummeting (see section 5.6.1).  Ford cut prices, knowing that he 

would take a loss with every car sold, but believing he would make up for it with profits 

from the sale of parts.  By October, nearly half of the industry had followed suit.  Though 

Ford’s sales rallied temporarily, they sank even further by December.  One by one, 

manufacturers began slowing production then shutting down.  By the end of the year, 

Highland Park was closed.  With the plant idle, Ford restructured the company, slashed 

employment, and sold off obsolescent and excess equipment.  Prior to WWI, Ernest 

Kanzler had worked out schedules at the Fordson tractor plant that minimized supply 

inventories.  As a result, parts were managed on a nearly just-in-time basis, arriving only 

hours before being used.  Ford brought Kanzler to Highland Park to assist Edsel in a 

program of ‘waste elimination’ (Nevins and Hill, 1957). 
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But with payment on the debt looming in early 1922, Henry Ford figured his 

obligations at $58 million while the company held only $20 million in cash.  Ford’s 

financial position was precarious enough that company officials began investigating loan 

possibilities, though Henry Ford denied he had ever seriously considered that option.  

Instead, Ford took a calculated gamble and resumed limited production at Highland Park 

in February, insisting that dealers resume taking deliveries despite the fact that they 

already held considerable stocks of unsold vehicles.  The move shifted the burden of 

Ford’s debts to the dealers, most of who were forced to borrow in order to pay for the 

consignments (Nevins and Hill, 1957).  However, company officials worked with the 

dealers to secure the financing required.  Sales figures also showed that the situation was 

improving and that the dealers were generally reducing their inventories. 

By April, sales were rising steadily and Ford had paid off his debts.  His 

reorganization of the plant during the downtime helped streamline production.  But while 

his ruthless restructuring of the business offices considerably reduced the payroll, it was 

essentially an inept hatchet job.  Because of Henry Ford’s disparaging views of the 

‘parasitic’ office force, he “completely missed the opportunity [for an orderly 

reorganization] which General Motors seized and developed under Alfred P. Sloan, Jr.” 

(Nevins and Hill, 1957, p. 167).  By the end of 1921, many of Ford’s most talented 

executives were discharged or had resigned over friction with Henry, who had become 

increasingly autocratic and impatient with independent individualists.  Those who 

remained were talented and resourceful, but also completely deferential to Ford’s wishes. 
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5.1.3 The River Rouge 

From 1915 until the post-war recession hit, the price of raw materials for 

automobile manufacturing – steel, malleable iron, leather, and glass – more than doubled 

in price.  Ford had long been interested in bringing the price and availability of these vital 

resources under his control and had begun the process when planning development of the 

Rouge site.  Because of a contract to supply Eagle Boats for the war effort, the U.S. 

government in 1918 granted Ford priority materials for construction of the blast furnace 

which Ford had planned anyway.  Construction forged ahead despite the Dodge suit 

(Nevins and Hill, 1957).  In addition, the government widened and dredged the river and 

constructed a turning basin so that the Eagle Boats could be launched from the plant.  

Further improvements were required to allow passage of deep draft ships but were not 

completed until 1923.   

In 1919, with complete control of the company in Henry’s hands and with the war 

over, Ford began development of the Rouge in earnest.  Body making at the site began in 

August and production reached 800 units per day by November.  By the end of the year, 

the coke plant was in operation.  Early in 1920, a sawmill began preparing wood for body 

making and the first blast furnace went into operation in May.  Shortly afterward, the 

postwar recession hit and most construction was suspended, though work continued on 

setting up tractor manufacturing, which had ended in Dearborn.   

After Ford’s quick recovery from the recession, tractor production began at the 

Rouge in late February, 1921.  Soon after, the foundry and power plant began operation – 

both were the largest of their kind in the world.  By 1922, 10,000 workers manned the 

foundry.  When complete, the power plant was capable of generating 240,000 kilowatts 
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and 500,000 hp.  In 1924, the Rouge complex covered nearly 1,000 acres, contained 

forty-four buildings, employed 42,000 workers, and was still growing.  The blast furnaces 

produced 35-50% of the iron used in Model T’s and tractors and the foundry produced 

nearly all the iron, brass, steel, and bronze castings used by Ford factories.   

The Rouge realized Ford’s objectives to integrate the flow of materials with key 

production units.  A vast array of conveyors moved materials through an apparently 

congested plant.  Traversing the floor was nearly impossible, but each stationary worker 

had sufficient room to perform his operation.  A visitor to the plant in 1922 described the 

factory as a huge machine where he saw “each unit as a carefully designed gear which 

meshes with other gears and operates in synchronism with them, the whole forming one 

huge, perfectly-timed, smoothly operating industrial machine of almost unbelievable 

efficiency” (cited in Nevins and Hill, 1957, p. 288).  The resulting processes also made 

remarkably efficient use of waste materials like gas from the coke ovens and ore dust 

from the blast furnaces.  In its publicity materials, the company claimed that ore arrived 

at 8:00 AM on Monday, and by Tuesday afternoon, it was a finished motor en route by 

conveyor to final assembly: raw materials were converted to cash in about 33 hours. 

Ford’s steel making was expanded, beginning in 1925, to include open hearth 

furnaces, blooming mills, and rolling mills.  Ford had not only become the only 

automobile manufacturer to have its own steel-making facilities, but beginning in 1921, 

was also the only one to make its own glass.  The Rouge eventually manufactured 

coatings, lubricants, artificial leather for tops, solvents, gaskets, upholstery, and carpet.  

Soybean meal was used to manufacture small interior plastic components, including 

window strips, horn buttons, switches, and gear shifter knobs.  Ford eventually 
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manufactured rubber components as well, including tires, mountings, hoses, gaskets, 

mats, running board covers, and insulation (Rubenstein, 2001). 

Ford also secured access to the raw materials for production.  Between 1920 and 

1923, he purchased over 700,000 acres of timberland, an iron mine plus an additional 

2200 acres of iron ore-bearing land, coal mines, and dock facilities.  By 1928, Ford’s coal 

mining operations were large enough to sell one quarter of the output to the public.  

While Ford never produced a significant amount of iron ore and continued to buy from 

contractors about 80% of the lumber required for the company’s automobiles, this 

exploitation of resources sent a clear signal to suppliers considering price increases.  Ford 

later invested in a Brazilian rubber plantation but the venture was never profitable. 

Ford also bought and completely remade the Detroit, Toledo, & Ironton railroad 

in 1920, the use of which cut shipping time and insulated the company from rail strikes.  

Ford purchased a fleet of barges and cargo ships in 1924 and, although costs were higher 

than those of rivals, the operation of the fleet was profitable.  In addition, use of the fleet 

forced other shippers to liberalize their carrying practices and reduce rates. 

5.1.4 End of the Model T 

Though the Ford Motor Company was committed to making only one automobile, 

the Model T first introduced in 1908 was not a static design.  Between 1913 and 1918, 

steady improvements were made in response to complaints by dealers and customers, as 

well as part of constant efforts to accelerate production, reduce costs, and reduce 

requirements for replacement parts.  In 1914, the Model T was modernized to replace the 

bulb horn, acetylene gas headlamps and straight fenders with a hand operated Klaxon 

horn, brass electric headlamps powered by the magneto, and curved fenders.  More style 
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changes were made in 1917, mainly in response to consumer complaints.  The more 

streamlined appearance and nickel trim was well received.  Cadillac introduced the 

electric self-starter on its 1912 model and most manufacturers had adopted it within two 

years, but Ford held out until 1919, and then only offered it as an option.  Initially, the 

compression ratio of the engine was actually reduced because the quality of gasoline had 

been steadily declining, resulting in problems with engine knock at higher compression.  

However, other improvements in the design and machining processes improved 

compression ratio, acceleration, and strength. 

Model T sales climbed steadily, slowed only temporarily by World War I and the 

post-war recession.  In 1921, sales approached one million.  No longer tempered by 

Couzen’s and the Dodge brothers, Ford’s increasing tendency toward arrogance and 

autocratic behavior began to stifle product innovation.  When the dealers began to press 

for changes, they were brought to Highland Park for a meeting as they had been in the 

previous decade.  They complained that the Model T brakes were noisy and difficult to 

repair; brake shoes wore out quickly; and the planetary transmission was inferior to the 

now popular three-speed selective transmission.  This time, however, their 

recommendations got a chilly reception.  When asked his opinion at the close of the 

discussion, Ford replied, “I think that the only thing we need worry about is the best way 

to make more cars” (Nevins and Hill, 1957, p. 389). 

Meanwhile, Ford’s competitors were slowly closing the price gap.  Manufacturers 

cut prices in all price categories in the summer of 1925 and, the following year, ten firms 

were offering 27 models of four-passenger cars priced below $1,000.  Most notable were 

the price cuts in closed-body cars, with several now available for less than $1,000.  In 
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1924, dealers reported that somewhere between half and all of their sales represented 

exchanges of open- for closed-body cars.  An analysis completed in 1925 revealed that 

four fifths of the used vehicles traded in were open-body cars.  According to Sloan (1964, 

p. 162), “[t]he rise of the closed body made it impossible for Mr. Ford to maintain his 

leading position in the low-price field, for he had frozen his policy in the Model T, and 

the Model T was pre-eminently an open-car design.  With its light chassis, it was 

unsuited to the heavier closed body, and so in less than two years, the closed body made 

the already obsolescing design of the Model T noncompetitive as an engineering design.”  

Although Ford did put closed bodies on the Model T beginning in 1924, they made up 

only 37.5% of Ford’s sales.  By 1927, closed-body cars represented 85% of the 

automobile market, but constituted only 58% of Ford’s sales compared to 82% of 

Chevrolet’s sales.54 

New innovations were also making cars safer and more comfortable.  For the 

1924 model year, four-wheel brakes were offered by 25 firms as standard or optional 

equipment.  Balloon tires that gave a smoother ride were standard on 14 models.  The 

Model T offered neither innovation.  In addition, more powerful six-cylinder engines 

were gaining popularity, growing from less than 20% of the market in 1917 to nearly 

40% by 1926.  Excluding Ford’s sales, six-cylinder engines made up 55% of the market 

in 1926 and a few were offered at under $1,000 (Epstein, 1972).  Though the Model T 

had been restyled in 1923 and was available in a choice of colors beginning in 1925, it 

remained a homely and utilitarian vehicle now competing with more stylish and 

comfortable cars that were also easier to operate. 
                                                 
54 Nearly 80% of overall GM sales were closed-body cars as early as 1925.  But it was the penetration of 
closed cars into the low-price field occupied by Ford and Chevrolet (and Plymouth beginning in 1928) that 
posed a serious challenge for the Model T. 
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During the 1920s, rising prosperity, availability of credit, improved roads, new 

technologies, the increasing market influence of women, and a saturating market fueled a 

shift in preferences from simple utility to style, comfort, and power (see section 5.6).  

Ford could scarcely have been unaware of the trend.  Industry publications and company 

executives alike pointed out the obsolescence of the Model T.  Market saturation around 

1923 posed a particularly difficult problem for the aging Tin Lizzie.  “When first-car 

buyers returned to the market for the second round, with the old car as a first payment on 

the new car, they were selling basic transportation and demanding something more than 

that in the new car.  Middle-income buyers, assisted by the trade-in and installment 

financing, created the demand, not for basic transportation, but for progress in new cars, 

for comfort, convenience, power, and style” (Sloan, 1964, p. 163).  With most buyers 

trading in and up, an increasing number of inexpensive used cars were competing with 

new Model T’s to fill the demand for basic transportation, and many of the used cars had 

more options and advanced features than the Ford. 

Infrastructural changes also contributed directly to the obsolescence of the Ford.  

By the 1920s, many roads had improved dramatically and motorists were driving at ever 

faster speeds.  The high road clearance and stiff suspension of the Model T had been 

designed to navigate rugged rural roads, which it did extremely well, though not 

comfortably.  With improved road surfaces, this functionality became unnecessary and 

the Ford design actually became dysfunctional.  According to Hugill (1982), on smooth 

roads at high speed “the Model T rolled like a ship in a bad storm.”  And when Ford 

finally incorporated four-wheel brakes and balloon tires, innovations that made driving 

safer and more comfortable on most cars, the combination on the Model T “produced a 
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disastrous front-end shimmy when braking at high speeds” (Hugill, 1982).  In addition, 

the Ford’s high center of gravity, necessary on rugged roads, became increasingly unsafe 

at higher speeds. 

In 1924, sales of the Model T reached two million but had stagnated.  Both sales 

and market share were falling by 1926 and a price reduction had no effect.  Although 

Ford could certainly see the trends in the market, he had no tolerance for frills or 

conspicuous consumption and continued to believe that automobiles were and should be 

service vehicles.  Ford vehemently opposed the growing emphasis on style and the trend 

toward annual model changes: 

It is considered good manufacturing practice, and not bad ethics, occasionally to 
change designs so that old models will become obsolete and new ones will have 
to be bought either because repair parts for the old cannot be had, or because the 
new model offers a new sales argument which can be used to persuade a 
consumer to scrap what he has and buy something new. We have been told that 
this is good business, that it is clever business, that the object of business ought 
to be to get people to buy frequently and that it is bad business to try to make 
anything that will last forever, because when once a man is sold he will not buy 
again. 

Our principle of business is precisely to the contrary. We cannot conceive how to 
serve the consumer unless we make for him something that, as far as we can 
provide, will last forever. We want to construct some kind of a machine that will 
last forever. It does not please us to have a buyer's car wear out or become 
obsolete. We want the man who buys one of our products never to have to buy 
another. We never make an improvement that renders any previous model 
obsolete.  (Ford and Crowther, 1922, p. 148-149) 

In December, 1926, Ford was quoted in the New York Times defending the Model 

T’s design. “The Ford car is a tried and proved product that requires no tinkering.  It has 

met all the conditions of transportation the world over” (cited in Hounshell, 1984, p. 

277).  But despite his philosophical objections, there was no escaping the direction of the 

market.  Five months later on May 25, 1927, Ford announced the company would cease 

production of the Model T and build a new car.  The next day, the fifteen millionth 
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Model T rolled off the assembly line.  When production was suspended, Ford had built a 

total of 15,458,781 Model T’s. 

5.1.5 The New Model A 

Although Henry Ford had repeatedly insisted that the Model T required no 

‘tinkering,’ he recognized that eventually it would need to be replaced.  One factor in his 

delay in introducing a new model apparently was the hope that the next Ford automobile 

would be as revolutionary for its day as the Model T had been in 1908 (Nevins and Hill, 

1957).  Since 1920, Ford engineers had experimented intermittently with design concepts 

for a radical “X” car utilizing an engine with eight or twelve cylinders arranged half 

facing upward and half downward in an X pattern.  But by 1926, the car was still a dream 

needing years of development to become reality and Edsel believed it was too radical for 

public acceptance.   

Sometime in mid to late 1926, Ford discontinued work on the X-car and gave the 

order to begin designing a new four-cylinder model.  Ford took charge of developing the 

entirely new car, outlining design objectives of speed, power, and comfort.  Integrity was 

to come first, and Ford wanted to replace stampings and malleable castings with more 

expensive steel forgings.  The body would be somewhat longer than the Chevrolet and, at 

Edsel’s insistence, set lower to the ground than the Model T.  Ford no longer had an 

engineer with the talent of C. Harold Wills, but he had a competent and adaptable team 

willing to subordinate their ideas to Ford’s.   

However, the company had no organized engineering laboratories or research 

facilities and work was carried out in various locations near the production lines where it 

would be applied.  Ford encouraged competition and more than one group of engineers 
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often worked on the same problem.  The resulting research maintained a highly practical 

focus, but lacked careful planning and depth.  According to one employee, “No money 

was being spent… to get highly trained young men out of the universities and 

technological schools.  Expenditures for laboratory equipment and general research 

facilities were made according to Henry Ford’s mood and whim” (Nevins and Hill, 1957, 

p. 443).  And while other manufacturers had sophisticated testing laboratories and 

proving grounds, Ford used public highways to test its experimental cars.  Parts, 

materials, and even entire vehicles were tested on a pass-fail basis, and no data was 

recorded.  Ford was still embracing a cut-and-try approach. 

By the spring of 1927, the first experimental car was ready for road testing; at 

least twenty more would follow.  The biggest problem encountered by the design team 

was the new engine.  Ford insisted it be light, with cylinder bore and stroke only slightly 

larger than the Model T, and kept at relatively low revolutions-per-minute to prolong life, 

yet that it deliver at least 40 hp. The experimental engines produced no more than 22 hp 

until Ford finally brought in Harold Hicks, chief engineer of Ford’s aircraft division.55  

Hicks is credited with solving the basic engine problem, though he gave credit to 

contributions by Edsel and to Henry Ford for his insistence on the combination of 

lightness and power.  The new engine won national acclaim for its quick take-off and 

remarkable acceleration.  Where the Model T produced a top speed of 43 mph, the new 

Ford engine achieved 65 mph. 

                                                 
55 Ford had remained interested in aircraft after producing Liberty engines during the war.  In 1925, he 
purchased the Stout Metal Airplane Company, which was making single-engine monoplanes designed by 
William Stout.  Hicks was initially assigned to assist Stout in the development of a larger three-engine 
aircraft, but replaced him as chief engineer when the tri-motor performed poorly in initial tests. 
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The engine was the last technical issue to be solved.  Edsel had directed the 

design of a new stylish body and distinctive interior.  A selective sliding-gear 

transmission replaced the Model T’s planetary transmission, which had been a major 

source of complaints.  A water pump was added.  For finishing touches, Ford added a 

safety glass windshield and hydraulic shock absorbers.  The safety glass was added after 

Hicks crashed one of the test cars and was hurled through the windshield, badly mangling 

his arm.  The shock absorbers were unheard of in a low-priced vehicle and did more than 

any other feature to provide passenger comfort.  The prototype was complete in August, 

1927.  But Ford faced another daunting task – retooling to produce the new car. 

Every one of the 5,580 parts of the new Ford Model A was entirely new; every 

Ford plant had to be rebuilt from the ground up.  It was the largest and most urgent 

change-over undertaken in U.S. industry to date.  Workers were brought in at Highland 

Park and the Rouge starting in May, and by July, 17,000 were busy with new 

construction, electrical work, tool design, and the complete reconfiguration of the 

factories.  Ford once again developed and purchased extremely specialized machine 

tools.  One notable development was a self-indexing automatic welder used to replace 

bolting on subassemblies; the industry would later adopt this innovation.  Final assembly 

of the Model T had occurred at Highland Park, but for the Model A, it was set up at the 

Rouge. 

The first factory-produced Model A came off the assembly line in late October, 

1927, but Ford used this car for testing and inspection.  Final changes were made in the 

main assembly line, and limited production began November 1.  Finally, in December, 

the public got the first look at the new Ford.  Though the car was not radical, it included 
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up-to-date innovations, superior workmanship and excellent styling; it was available in 

four colors, none of them black.  The anxiously awaited new Ford was an overwhelming 

success.  But as orders came flooding in, Ford had trouble achieving full production.  

There were problems with plant layout, training, and the delivery of machine tools.  

Design refinements were required.  And in the changeover, Charles Sorensen was 

cleaning house, purging the company of “all the Model T son-of-a-bitches” from 

Highland Park.  The loss of seasoned production men, including Clarence Avery and 

William Klann, was crippling (Sorensen, 1956; Nevins and Hill, 1957; Hounshell, 1984).   

Dealers were hard hit by the delays and in March, 1928, Ford established the 

Universal Credit Corporation to finance time-sales of Ford cars and assist authorized 

agents in accumulating stocks.  After six months, only 100,000 Model A’s were in the 

hands of customers, but production was finally up.  The following year proved to be a 

resounding success; production was the largest since 1925 and sales were strong. 

The changeover to the Model A cost roughly $250 million and taught Ford some 

hard lessons in accommodating change (Nevins and Hill, 1957; Hounshell, 1984).  First, 

changeover could not be accomplished smoothly without adequate advanced planning in 

design and production of the automobile.  Although about 25% of the planning for 

retooling was accomplished in the six months before shutting down Model T production, 

this was not nearly sufficient.  Second, Ford learned the value of establishing pilot 

production lines to test new approaches to machine work before tearing out old 

equipment.  Time restrictions had only allowed for one pilot line for the Model A engine 

block, which proved important in identifying and solving production problems.  Third, 

Ford learned the importance of leaving adequate time for error in planning body die 
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work.  It was particularly important for production experts to review new designs since 

body styles proposed by designers could involve curves too deep for drawing.  Fourth, 

Ford personnel learned the hard way the importance of shifting from machinery designed 

for a single task to more flexible tools that could accommodate changes in design.  For 

example, the presses used for the Model T were unable to handle the larger sized 

stampings required by a slight lengthening of the automobile’s design in 1926.  Later, 

specialized multi-spindle drill presses were replaced with ones that could accommodate a 

new arrangement of drills by simply changing the head.  These changes to specialized 

machine tools led to what became known as “flexible mass production.”  Finally, Ford 

was reminded that “a new model in the initial stages of production was a sure target for 

hundreds of proposed changes,” just as the Model T had been in 1908 (Hounshell, 1984, 

p. 294).  

5.2 GM: Planning for Change 

Between 1910 and 1915, the banker controlled management of General Motors 

headed by James Jackson Storrow had cut unproductive units, tightened fiscal controls, 

and restored the firm to solvency.  In the process, Charles Nash had ended production of 

the Buick Model 10, thereby eliminating GM’s share of the growing market for low 

priced vehicles.  By 1915, GM’s market share had slipped to 8.5%.  Meanwhile, William 

Durant had successfully established the new Chevrolet Motor Company in the 

inexpensive market dominated by Ford.  This section reviews the history of GM from 

1915 to 1930.  This era is dominated by four key individuals: William Durant, Pierre du 

Pont, Alfred Sloan, and Charles Kettering.   
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Section 5.2.1 covers the history of GM from 1915 to 1920.  In 1915, William 

Durant used his success with Chevrolet to regain control of GM, bringing Pierre du Pont 

to the board of directors.  GM’s strategy of vertical integration through acquisitions, 

along with Durant’s ultimately destructive actions in the stock market, led to corporate 

associations and the appropriation of critical human capital. The most significant of these 

were associations with the E.I. Du Pont de Nemours and Fisher Body Companies and the 

managerial and technical talents of Pierre du Pont, Alfred Sloan, and Charles Kettering.  

However, Durant’s haphazard management combined with GM’s aggressive acquisitions 

and optimistic expansion left the company in a vulnerable position when the brunt of the 

post-war recession hit the industry in 1920.  That same year, Durant was forced from GM 

after his second disastrous attempt to prop up the value of GM stock.  

Pierre du Pont reluctantly succeeded Durant, serving as president from 1920 to 

1923.  During this period, covered in section 5.2.2, du Pont and Sloan instituted sweeping 

management reforms and restructured the product lines.  Durant’s management had left 

behind an uncoordinated set of rules for the individual subsidiaries that did not serve the 

welfare of the corporation as a whole.  The new system of management began to establish 

a coherent set of rules for GM that was codified in corporate structure and policies.  

Sloan’s reforms represented a synthesis of prior managerial experience, knowledge 

spillovers in financial management from the Du Pont Company, and personal inspiration.  

The restructured product line began a process of aligning the technology with new 

consumer preferences.  However, du Pont’s attempt to compete with Ford using 

innovative technology failed and, as a result, du Pont stepped down as president.   
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Sloan succeeded du Pont, ushering in a new era for GM that is covered in section 

5.2.3.  The failure of du Pont’s pet project, the copper-cooled engine, prompted Sloan to 

adopt new corporate policies that 1) coordinated the functions of and communication 

between the production divisions and the research labs; 2) distinguished programs for 

advanced product engineering from those for long-range research; 3) explicitly avoided 

technological leadership and its inherent risks.  However, the failure, combined with 

Sloan’s market segmentation strategy, also led to one of GM’s most significant 

innovations in the second transitional phase – sharing parts across divisions – which 

allowed GM to offer a greater variety of products while achieving cost reductions 

through economies of scale.  Sloan’s increasing reliance on statistical reporting and 

analysis not only helped with production planning but also provided GM with a wealth of 

market data.  This data may have contributed to GM’s ability to align its products to 

shifting consumer preferences.  By 1930, the corporation had institutionalized designing 

for style and was accommodating annual model changes. 

Section 5.2.4 provides a more detailed history of five significant GM innovations 

between 1915 and 1930: the development of financial controls; the copper air-cooled 

engine; tetra-ethyl lead (TEL) gasoline additive; Duco paint; and institutionalizing style 

and annual model changes.  GM institutionalized research and development in 1919, and 

both the copper-cooled engine and TEL were products of internal research and 

development.  However, this review reveals that knowledge spillovers and learning-by-

doing were also prominent in the development of financial controls, TEL, and Duco 

paint.  Simple luck also played a role in the breakthroughs that led to the development of 

TEL and Duco paint. 
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5.2.1 Durant Returns to GM, 1915-1920 

With the end of the GM five-year voting trust approaching in October, 1915, 

Durant began purchasing GM stock and arranging for voting proxies on stock owned by 

friends and family.  On the scheduled date of the board meeting on September 16, 1915, 

Durant, Storrow, and Nash met privately.  Durant also brought banker Louis Gaveret 

Kaufman, Pierre du Pont, and du Pont’s chief financial assistant, John J. Raskob, to the 

meeting.  Du Pont was one of Kaufman’s directors and held GM stock in his personal 

portfolio.  At the private meeting, it became apparent that neither Durant nor Storrow had 

control of a clear majority of stock.  Rather than resort to an official count, the two 

parties negotiated a compromise.  A new board of seventeen members would be elected, 

with each party selecting seven members.  The remaining three positions would be 

appointed by du Pont and not connected with either party.  Du Pont selected Raskob, his 

brother-in-law, and a du Pont corporate executive.  The executives then joined the official 

board meeting and Storrow announced the details of the agreement.  In November, the 

new GM board of directors elected Pierre du Pont as chairman. 

However, Durant’s plans were not yet complete.  A week after the September GM 

board meeting, he reorganized the Chevrolet Motor Company in Delaware as a holding 

company for Chevrolet operations.  The new company was capitalized to $20 million 

with $6.8 million in stock used to raise funds to triple production.  Ninety day later, the 

directors of Chevrolet recapitalized again at $80 million.  He then offered to trade five of 

his shares in Chevrolet for one in GM, a profitable trade for GM stockholders who 

received no dividends and watched stock prices fall under the banker regime.  By the end 

of 1915, Durant owned around 45% of Chevrolet common stock and 44% of GM.  In a 
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desperate bid to maintain control, the pro-Storrow faction proposed a new three-year 

voting trust, reminding stockholders that the conservative leaders had managed to retire 

the $15 million debt.  The proposal was doomed to failure in the face of the enormous 

profits to be made from Durant’s stock trade.   

In May, 1916, Durant announced that he controlled GM with 54.5% of the 

company’s stock.  Nash, whose name had appeared as a proposed director on the petition 

for a new voting trust, resigned.  Durant took over as GM president in June.  Storrow 

made plans to start his own automobile manufacturing company, intending to install Nash 

and Walter Chrysler in charge of the enterprise. Durant, however, enticed Chrysler to stay 

with GM by promoting him to general manager and president of Buick, raising his salary 

from $50,000 to $500,000, and promising no interference with his authority.56  Durant 

reincorporated the General Motors Company as General Motors Corporation in October, 

and the production facilities were organized as corporate divisions.    

Just months before Durant took control of GM, he formed the United Motors 

Corporation as a holding company for automotive parts manufacturers.  To ensure that he 

retained control of the company, he arranged for only a small minority of stock, owned 

by himself and Kaufman, to have voting rights.  Within months, United Motors owned 

five parts and accessories firms, including Hyatt Roller Bearing, Delco Corporation, and 

the Remy Electric Company.  Hyatt’s Alfred Sloan was named president of the new 

corporation.57   

                                                 
56 Chrysler was promoted to vice president of GM in charge of operations in 1919 (Hyde, 2003).   

57 Delco, originally Dayton Engineering Laboratories Company, had been formed by Charles Kettering and 
Edward Deeds in 1909 to build an electric ignition system under contract to Cadillac.  See section 4.2.4. 
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Unfortunately, fortune would not smile on Durant for long.  In April, 1917, 

America entered World War I.  Henry Leland petitioned Durant to allow Cadillac to 

produce Liberty aircraft engines, but Durant refused.  Leland resigned in June to form the 

Lincoln Motor Company.58  Within a few months, mounting public pressure forced 

Durant to begin token production of Liberty engines at Buick and Cadillac.  Then, despite 

excellent profits, GM stock began an unexplained slump.  Durant proposed to du Pont 

and Raskob that they form a buying syndicate to purchase large amounts of GM stock 

and thereby slow the decline in price.  When they demurred, Durant began purchasing on 

the margin himself.  As prices continued to fall, Durant found himself at the brink of ruin.  

In October, he approached the board and requested a $1 million loan.  His actions had 

been intended to support GM and therefore its stockholders, so he felt his request was 

perfectly reasonable.  Fearing legal liability, the board turned him down.  However, they 

were concerned that public knowledge of Durant’s predicament would harm the company 

and instead voted him an annual $500,000 salary, retroactive to 1916.   

While this solved Durant’s immediate personal financial problems, it did nothing 

for GM’s stock situation.  Raskob later proposed to Pierre du Pont that the Du Pont 

Corporation, which was holding a capital surplus from wartime profits in gunpowder, 

purchase large blocks of GM and Chevrolet stock.  This move would solve GM’s stock 

problem and serve to further diversify Du Pont’s business, a process begun before the 

U.S. entered World War I.  As part of the plan, Durant would have to cede financial 

                                                 
58 The Lincoln Motor Company was initially devoted to building aircraft engines for the war effort.  After 
the war ended, Leland decided to produce a new luxury car line.  Lincoln was still in debt from tooling for 
Liberty engines and retooling for automobile manufacturing when the post-war recession struck.  Due to 
outdated styling, sales of the new car were poor and Lincoln went into receivership.  Ford purchased 
Lincoln in February, 1922, leaving left Henry Leland and his son, Wilfred, in charge.  However, Henry 
Ford insisted that Lincoln be aligned with Ford philosophies and processes.  Friction soon arose, and in 
June, Wilfred was relieved and Henry Leland resigned in protest. 
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control to du Pont and agree to merge GM, United Motors, and Chevrolet – a move he 

had repeatedly refused.  In pitching the plan to the Du Pont board, Raskob pointed out the 

prospect of a large and closed market for Du Pont paints, varnishes, and synthetic fabrics.  

He went on to predict that the Du Pont Company would eventually control the entire GM 

enterprise.   

By the end of January, 1918, a newly created Du Pont American Industries had 

purchased 24% of GM and a sizeable share of Chevrolet for $25 million.  Most of the 

stock was purchased on the open market with $1.2 million purchased from Durant.  Du 

Pont was now the second largest stockholder in GM and controlled GM’s finance 

committee which Pierre du Pont now chaired (Weisberger, 1979).  GM acquired 

Chevrolet in May and the United Motors Corporation in June, 1918.  With the purchase 

of United Motors, Alfred Sloan became a director of GM and vice president in charge of 

its accessories division. 

Du Pont doubled its investment in GM later in 1918.  Over the next two years, 

Pierre du Pont’s control of GM’s finances did nothing to slow the firm’s growth as it 

continued a veritable spree of acquisitions, purchasing all or part interest in 

manufacturers of automobiles, accessories, automotive parts, automobile bodies, tractors, 

aircraft, tires, rubber, and leather, as well as a steel plant and surplus war plants.  Notable 

acquisitions during this timeframe included the Scripps-Booth Company, Samson 

Tractor, and Frigidaire, as well as shares of the Fisher Body Company, Goodyear Tire 

and Rubber, and Dunlop Rubber.  GM secured all of Charles Kettering’s time by 

purchasing three additional firms he had founded, the Delco Light Company, Dayton 

Metal Products, and the Dayton-Wright Airplane Company.  With Kettering and his 
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research operations now completely enfolded in the corporation, GM commissioned 

Kettering to set up and direct the General Motors Research Laboratories, which were 

subsequently incorporated as the General Motors Research Corporation.  GM also 

established the General Motors Acceptance Corporation (GMAC) and the General 

Motors Export Division.  

By the end of 1919, GM’s fixed investments totaled $153.8 million, its payroll 

was 85,890, and it was carrying huge inventories and their attendant storage and control 

costs.  But with the end of World War I, the future looked bright.  Because automobile 

production had been limited during the war, there was now a shortage of automobiles for 

sale.  The market was clamoring for every car the industry could produce and at just 

about any price.  GM was just one of the many manufacturers scrambling to increase 

production to fill a backlog of orders. 

However, the following year brought about abrupt changes at GM, beginning with 

the resignation of Walter Chrysler in March.  He had given Durant the three years he had 

promised, and although he loved the man personally, he was unable to tolerate Durant’s 

interference with his management of Buick (Weisberger, 1979).  Meanwhile, Pierre du 

Pont’s doubts about Durant’s management skills and methods were growing.  With the 

post-war inflation pushing up material and labor costs in late 1919 and early 1920, it also 

became apparent that GM needed more cash to cover operations and the optimistic 

expansion plans initiated in 1919.  A stock offering failed to generate the needed capital, 

so Durant and du Pont formed buying syndicates to acquire and temporarily hold GM 

stock hoping to bid up the price and attract more buyers.  When that proved insufficient, 
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du Pont approached J.P. Morgan.  The bank agreed to invest in GM and distribute stock 

to associated banks, but demanded seats on the board in return.   

Within weeks of the new relationship, the price of GM stock began to slide.  Then 

a block of 100,000 shares was dropped on the market causing a dive.  Durant’s sources 

informed him the sale had come from one of the Morgan partners who now sat on GM’s 

board.  The Federal Reserve Board had raised the discount rate in November, 1919, and 

speculators were liquidating over-inflated stocks.  By summer, the nation was entering a 

recession and the price of GM stock continued its downward spiral.  The 1919 boom in 

automobile demand had been fleeting, based on inflated wartime prices, easy credit, and 

over-blown expectations.  Now the boom had collapsed.  Sales plummeted; trainloads of 

cars stood undelivered.  After Ford cut prices as much as 30%, GM and other 

competitors’ sales dropped even further.  GM’s factory lots were clogged with inventory 

that tied up $210 million (Cray, 1980).  Production was cancelled, factories shut down, 

and workers were laid off to stem the cash outflow.  Yet supplies continued to arrive at 

warehouses that were already full.  The situation was made worse by the lack of accurate 

inventory figures despite the improvements in coordination and management of the GM 

divisions since 1910 (Pound, 1934).   

Amid the great optimism of 1919, Alfred Sloan had become concerned about 

Durant’s management and the lack of any contingency plan for a drop in demand or a 

serious problem in production.  Sloan had built the Hyatt Roller Bearing Company into 

an industry force by keeping pace with the expanding and varied needs of the automobile 

industry.  In the process, he had learned invaluable lessons.  From Cadillac’s Henry 

Leland he had learned about the necessity of absolute precision and accuracy in mass 
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production.  From Ford’s C. Harold Wills, who had insisted on price concessions on large 

volume orders, he had learned that mass production demanded a constant search for 

improved processes and lower costs.  These imperatives required systematic planning, 

research, and accounting (Rae, 1959).  Durant’s “management by crony” was anything 

but systematic (Sloan, 1964, p. 27). 

With du Pont’s encouragement, Sloan had drafted three reports that detailed 

organizational and management reforms, including strict procedures for approval of 

capital expenditures, operating policies, an interdivisional billing system, and a plan for 

centralizing engineering and research functions.  Durant had filed them away 

(Weisberger, 1979; Cray, 1980).  Now Sloan’s worst fears were materializing; it 

appeared that GM could actually collapse under a real market shock and that his life 

savings, tied up in corporate stock, would disappear with it.  Banker and former GM 

president James Storrow had offered him a partnership in the Boston firm of Lee, 

Higginson & Company and Sloan took a month-long vacation to consider it.  He decided 

he should resign and gradually sell his GM stock for whatever he could get.  But he 

apparently cut his vacation short to return to GM, finding the company in the midst of big 

changes and decided to wait.   

The drop in GM’s stock price had put Durant’s personal finances in immediate 

peril once again.  As prices fell, he had continued to buy on the margin.  Brokers 

essentially loaned him 90% of the stock price.  They then borrowed the balance from 

bankers, using the stock as collateral.  When the stock price fell, so did the value of the 

collateral, and the banks asked for either more collateral or repayment.  Durant had dealt 

on such a scale that even he did not know how much he owed.  In early November, 
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Durant was finally forced to admit his predicament to Pierre du Pont.  His assessment of 

his debts reached $38 million, enough to ruin GM, forty-four brokers, and an unknown 

number of banks (Cray, 1980).  With the fate of GM once again in the balance, du Pont 

and J.P. Morgan arranged, partially through borrowing, to buy 60% of Durant’s stock and 

clear his debt (Weisberger, 1979).  The remainder of his stock was purchased by a newly 

created holding company that would hold it until prices recovered.  Though Durant 

owned a minority share in the holding company, he did not directly own any GM stock 

and could not serve as president.  As the news spread that GM control was now 

completely in du Pont and Morgan hands, the stock price began to recover.  On 

December 1, 1920, Durant again left GM; this time he would not return.  

5.2.2 Du Pont Control, 1920-1923 

Pierre du Pont continued as chair of GM’s board of directors and now reluctantly 

succeeded Durant as president.  With the country in a deep recession, it was an 

unfortunate time to begin a career in the automotive industry.  Sales early in 1920 

resulted in a net profit for the industry, but by year end, even Ford had closed the 

Highland Park and River Rouge plants.  Though du Pont would only serve as president 

for two and a half years, the era would see dramatic changes in GM’s finances, 

operations, organizational structure, and product lines. Du Pont attributed much of these 

changes to GM’s new vice president in charge of operations, Alfred Sloan, who had 

forwarded to du Pont copies of his lengthy reports on administrative reforms. 

5.2.2.1 Establishing Coordinated De-centralized Control 

At the end of his first week as president, du Pont reviewed Sloan’s plan for 

organization and in late December put it before the Executive Committee with only 
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minor modifications. The committee unanimously approved it and sent it to the board of 

directors, which also approved it (Sloan, 1964; Cray, 1980).  In essence, Sloan believed 

that GM was too large to operate under Durant’s decentralized, ‘feudal’ system with 

laissez faire doctrines or under Du Pont Company’s rigidly centralized management.  The 

new organizational structure developed by Sloan has been compared to military staff-

and-line division, but with a system of coordination that resembles government 

organizations; local managers retained administrative jurisdiction over and responsibility 

for their divisions (Pound, 1934).  Of the plan’s origins, Sloan recalled in 1964 (p. 47): 

I cannot, of course, say for sure how much of my thought on management came 
from contacts with my associates.  Ideas, I imagine, are seldom, if ever, wholly 
original, but so far as I am aware, this study came out of my experience in Hyatt, 
United Motors, and General Motors.  I had not been much of a book reader, and 
if I had been, I understand that I would not have found much in that line in those 
days to help; and I had no military experience.   

Nonetheless, Sloan’s model would eventually become the gospel for business 

administration students, be copied by nearly every major U.S. corporation, and adapted 

by foreign companies.   

While the central office dictated business policy, division managers were free to 

develop tactics consistent with corporate strategy.  They controlled manufacturing, 

distribution, and sales; hired their own staff; and made their own purchasing decisions.  

But du Pont and Sloan established interdivisional committees, staffed with 

representatives from the manufacturing divisions, to integrate policies regarding 

products, sales, purchasing and advertising.  The committee staff, selected by Sloan, 

controlled the decision-making process by controlling the information passed down.  

Committee recommendations went to du Pont for approval, though Sloan gradually took 

on this responsibility.  Many division managers were unhappy with the reorganization 
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and resigned; others were reassigned.  Sloan and du Pont then promoted men from within 

the corporation to replace them, with Sloan selecting men with engineering backgrounds.   

Many of the committees were temporary in nature, utilized only until problems 

were under control and new organizations and policies were in place.  Of particular note, 

Sloan (1964) felt that the General Purchasing Committee could not be deemed an 

unqualified success for three reasons.  First, many parts were already required in large 

enough quantities by a single division to realize supplier economies of scale and, 

therefore, low prices. Second, some parts were specific to a single engineering concept 

and not applicable to other projects.  Third, vendors that lost a bid sometimes approached 

one of the divisions directly afterward, offering a better price, and thereby causing 

confusion and dissatisfaction with the process.  However, the committee successfully 

demonstrated the feasibility of cooperation among the divisions, proving that 

representatives could work together for the good of their divisions and for the profit of 

the stockholders simultaneously.  Most significantly, though, the committee was 

instrumental in beginning a process of materials and parts standardization across the 

divisions.  By 1926, the evolution of this concept would allow GM to challenge Ford’s 

domination of the market. 

While the committee structure facilitated coordination, the corporation required a 

set of financial controls that could reduce the need to administer operations from the top.  

Forever in search of hard data to support decision-making, Sloan increasingly turned to 

two financial experts, Donaldson Brown and Albert Bradley.  According to Cray (1980, 

p. 200), Brown and Bradley were “among the first of a new generation of financial 

specialists, men who cared little about machines and manufacture and even less about 
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such intangibles as excitement or the romance of the industry.  Trained as economists and 

accountants, they were hard-eyed, coldly dispassionate champions of financial analysis 

and, through analysis, control.”  Brown had been an assistant to Raskob at Du Pont and 

succeeded him as treasurer when Raskob was transferred to GM.  While serving in this 

post, Brown introduced the then unusual practice of hiring economists and statisticians to 

assist in monitoring divisional efficiency and performance.  At Raskob’s request in 

January, 1921, Brown was hired as GM’s vice president in charge of finance.  Sloan and 

Brown “shared similar views on the value of detailed, disciplined controls in the 

operation of a business” (Sloan, 1964, p. 118).  Brown soon tapped the statistical talents 

of Bradley, a young associate who had joined GM’s financial staff in 1919.  Sloan, 

Brown, and Bradley developed financial instruments to control appropriations, cash, 

inventory, and production.  According to Sloan (1964), Brown and Bradley were largely 

the architects of the specific forms of these controls. 

Prior to 1920, each division had controlled its own finances.  Although the 

financial pressures of that year pushed GM into debt, some divisions had more cash than 

was required.  However, division managers concerned with their own operations were 

unwilling to transfer money, forcing the corporation to borrow.  In fact, the GM 

executives had no way of knowing just how much cash was held by each division at any 

given time.  Further, transferring cash involved an inter-city transfer by mail that required 

time.  In 1922, GM created a consolidated cash-control system using the newly created 

Federal Reserve System (see section 4.5.1).  Local depository accounts with fixed 

minimum and maximum balances were established across the country.  Deposits were 

credited to GM and withdrawals were administered by a central financial staff.  When 
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balances exceeded the preset maximum, funds were transferred to one of several central 

reservoir banks.  If a division required cash, it applied to headquarters using a requisition 

system and funds could then be transferred by telegraph within a few hours. 

GM attacked the worst of its emergency problems – the inventory – by halting 

delivery of materials.  Suppliers were persuaded to delay billing, essentially financing the 

company as they had in the early days of the industry.  To reduce finished product 

inventories, du Pont eventually was forced to follow the lead of Ford and other 

manufacturers and cut prices.  The divisions gradually used up their excess inventories, 

and by June, 1921, Buick, Cadillac, and Oldsmobile were in good shape.  Obviously, 

inventory controls were required to prevent similar problems in the future.  Since supply 

shortages had been common prior to 1920, plant managers placed orders in excess of 

expected needs resulting in an oversupply when business slowed.  New policies restricted 

purchasing materials to monthly budgets prepared by the division managers based on a 

four-month forecast of sales.  These forecasts were later expanded to include plant 

investments, working capital, and outstanding product inventory commitments.  As vice 

president in charge of operations, Sloan reviewed these forecasts to approve or modify 

production schedules.  However, division managers had no mechanism for determining 

the actual inventories held in dealers’ hands and could provide only estimates of retail 

sales and market conditions.  Early in 1923, the R.L. Polk & Company began providing 

the industry with statistics on automobile registrations. 

5.2.2.2 Improving and Rationalizing the Product Lines 

The 1920 market slump also uncovered engineering deficiencies in some GM 

automobile designs.  As long as demand was in excess of supply, cars of reasonable 
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quality sold themselves and manufacturers were free to concentrate on increasing 

production.  As soon as demand slackened, inferior mechanical performance quickly 

affected sales and reputation.  Buick and Cadillac continued to be profitable, but 

Chevrolet, Oldsmobile, and Oakland were in need of overhauling.  In early 1921, du Pont 

appointed Sloan to chair a committee tasked with studying the corporation’s products and 

recommending revisions.  He also hired consultants to provide an independent evaluation 

of GM automobiles.  As part of the assessment, Du Pont insisted that GM must compete 

directly with Ford in the low-priced market. 

The independent review concluded that the Chevrolet products and reputation 

were so poor that the line should be terminated.  Since Oakland and Oldsmobile were not 

much better off, they recommended GM change the names of all three lines.  Sloan 

argued that doing so would not improve the models offered and that starting over with no 

reputation would be harder than improving the current one.  In addition, terminating a 

line would abandon and alienate current owners.  Sloan recommended eliminating two 

newer divisions that had no product recognition nor established dealer organizations: the 

two-year-old Sheridan and unreleased Scripps-Booth.  He further recommended 

rationalizing the remaining product lines which overlapped in some price categories, 

resulting in competition with each other, yet left gaps in the pricing structure.   

Du Pont agreed to postpone a decision on restructuring the GM lines.  However, 

he insisted that Sloan include in his committee report a plan for using a new air-cooled 

engine in a vehicle that would compete with Ford.  Kettering had been working on the 

engine since 1918 and Du Pont believed it was the bold stroke that would lure customers 

away from Ford (Cray, 1980).  The air-cooled engine was not a new innovation; Franklin 
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had introduced it in 1898 (Abernathy et al., 1983) and used it in its expensive 

automobiles for twenty years.  Kettering’s design, the development of which is detailed 

in section 5.2.4.2, employed copper fins to conduct heat away from the cylinders and 

there were many manufacturing problems yet to be solved.  Nonetheless, Sloan was 

forced to incorporate Kettering’s copper-cooled engine in new designs for a four-cylinder 

Chevrolet and a six-cylinder Oakland. 

Sloan’s plan for rationalizing the GM products limited the number of lines to six 

price categories within which the divisions would not overlap in price nor compete with 

one another.  Sloan’s proposed policy would make GM automobiles competitive, not by 

leading in design or innovation, but by being technologically equal to competitors’ best 

models.  Sloan proposed that GM cars should be of slightly higher quality and priced just 

above the competition in each price category.  With this strategy, GM would compete 

with its competitor in a price category based on quality.  But it would also compete with 

its competitor in the next higher bracket based on price, since the GM car would be of 

just slightly lower quality but priced low enough to appear a good value.  Chevrolet 

would fill the lowest price category and compete with Ford.  The remaining divisions in 

order of increasing price would be Oakland, Buick, Oldsmobile, and Cadillac, with Buick 

filling two price categories.   

Two features of Sloan’s strategy are noteworthy.  First, Sloan was advocating that 

GM not compete with Ford head-on in the lowest price category, a move that Sloan 

believed would be “suicidal.”  Ford essentially had a lock on the first-time buyer with 

limited financial means (Rubenstein, 2001).  Rather, “the strategy we devised was to take 

a bite from the top of his position” (Sloan, 1964, p. 69), a strategy that was definitely at 
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odds with du Pont’s mandate.  Though there is no documentation of the origin of Sloan’s 

strategy, an expert industry analysis published in 1913 reported that “at least 15,000 

buyers every year would have preferred a car of more stylistic distinction if they could 

have gotten it for only $100 above the Ford prices” (Parlin and Youker Report, cited in 

Nevins and Hill, 1954, p. 509).  This was particularly important in a market with fewer 

first-time buyers and more consumers who were trading in and up. 

Second, by structuring its product line within classes distinguished by price and 

quality, GM offered a product that was available to members of every social class.  

Further, each nameplate was an immediately recognizable statement of the owner’s social 

status.  Chevrolet was for first-time buyers and the working man.  Oakland (renamed 

Pontiac in 1926) offered more style and flair for a bit more money.  Oldsmobile touted 

superior engineering.  Buick appealed to the upper-middle class – doctors, lawyers, and 

managers.  Cadillac offered luxury and superior craftsmanship for the wealthy owner 

(Rubenstein, 2001).  By trading up from a Chevrolet to an Oakland or Buick, the middle-

class owner demonstrated his progress up the social ladder.  In marketing a “car for every 

purse and purpose,” GM turned a single mass market for low priced vehicles into a group 

of niche markets defined by socio-economic status as well as functional requirements.  

Within each niche, competition was based on price, quality, and options, and GM sought 

to place itself near the top of each niche in all three. 

By 1923, all divisions except for Chevrolet offered new models.  The Chevrolet 

design was seven years old and in need of replacement, but the new design was awaiting 

the development of the copper-cooled engine.  Performance of the new engine in a 

production vehicle was still questionable, and the managers of the other GM divisions 
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had passed on it.  Chevrolet’s division manager protested as well, stressing himself to the 

point of a nervous breakdown.  The job of leading Chevrolet passed to its new vice 

president in charge of operations – William Knudsen.  Knudsen had only been with GM 

one month, having quit the Ford Motor Company in early 1921.  Knudsen assured du 

Pont that he could solve production problems with the copper-cooled engine in time for 

the 1923 season, but by January had turned out only half of the promised volume.  

Around 100 of the new vehicles were sold that spring, but by June it was clear the 

vehicles were faulty and Knudsen recalled the cars.  With the costly failure of his pet 

project, du Pont believed he had become too personally vested in the technology and 

failed to listen to the misgivings of Sloan, the division managers, and the production 

engineers (Cray, 1980).  Du Pont had successfully led the company through its financial 

crisis – GM had cleared its debt by June 30, 1922, and the automobile market had 

rebounded.  In May, 1923, Pierre du Pont resigned as president of GM and recommended 

that Sloan succeed him; the board concurred.  Du Pont retained his position as chairman 

of the board of directors. 

5.2.3 The Sloan Era, 1923-1930 

Soon after succeeding Pierre du Pont as president, Alfred Sloan cancelled all 

production plans using the copper-cooled engine, which prompted Kettering to resign in 

discouragement.  Though the move distressed both Kettering and du Pont, Sloan was 

unwilling to force new innovations on the divisions and to hold back programs while 

awaiting uncertain developments (Sloan, 1964).  Yet Kettering’s work was inestimably 

valuable – he was reportedly close to finding a solution to the problem of engine knock – 

so Sloan negotiated a compromise with Kettering and the Executive Committee.  Sloan 
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believed that the main mistake with the copper-cooled engine project had been the poorly 

coordinated division of responsibilities among the Executive Committee, the operating 

divisions, and the Research Corporation.  Therefore, GM established an independent pilot 

operation, under Kettering’s sole discretion, to develop, manufacture, and market the six-

cylinder copper-cooled engine and automobile.  Chevrolet would continue to work out 

problems with the four-cylinder model.  A reluctant Kettering agreed to stay on.  After 

two additional years of development, the project eventually faded away. 

The failure of the copper-cooled engine, which is discussed in detail in section 

5.2.4.2, was a significant factor in shaping the future strategy and organization of GM.  

According to Flink (1988, p. 233),  

The copper-cooled engine was doomed by a lack of coordination and cooperation 
on the project among GM units.  Production problems were the inevitable result 
of a lack of communication between Kettering’s… laboratory, where the engine 
was designed, and the factories… where the car that the engine powered was to 
be produced.  Design problems arose also, because it had not been foreseen that 
numerous other components would have to be redesigned to accommodate to the 
light weight of the new engine.   

Sloan (1964, p. 70) characterized the problem as “one of conflict between the research 

organization and the producing divisions, and of a parallel conflict between the top 

management of the corporation and the divisional management.”  In 1964 (p.94), he 

recalled that the failure “taught us about the value of organized cooperation and 

coordination in engineering and other matters.  It showed the need to make an effective 

distinction between divisional and corporate functions in engineering, and also between 

advanced product engineering and long-range research.”  At the same time, Sloan 

recognized that long-range research of the type undertaken in Kettering’s lab would only 

be of benefit to the corporation and stockholders if the manufacturing divisions were able 

to exploit the results of that research.  To facilitate coordination and cooperation on 
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engineering matters among the divisions as well as between the divisions and the labs, 

Sloan established a General Technical Committee consisting of chief divisional engineers 

and top research staff in the Research Corporation. 

While the experience with the copper-cooled engine may have catalyzed Sloan to 

clarify functional distinctions and improve relationships and coordination within the firm, 

it also encouraged him to adopt a strategy that tended to inhibit technological innovation.  

As early as 1921, Sloan (1964, p. 64) asserted that “the primary object of the 

corporation… was to make money, not just to make motor cars… The problem was to 

design a product line that would make money.”  Under du Pont, GM had sought to “meet 

Ford more or less head on with a revolutionary car design.”  Sloan instead had proposed 

policies to “produce a line of cars in each price area, from the lowest price up to one for a 

strictly high-grade quantity-production car.”  GM would not produce any vehicles in 

small quantities; the price categories would not leave wide gaps in the product line; and 

there would be no duplication by the divisions in the price categories.  The idea was to 

secure the greatest advantage that quantity production could provide.  Sloan (1964, p. 66, 

emphasis in original) asserted that this policy “was valid if our cars were at least equal in 

design to the best of our competitors in a grade, so that it was not necessary to lead in 

design or to run the risk of untried experiments.  Certainly I preferred this concept to an 

irrevocable commitment to replace the then standard Chevrolet with a revolutionary car.”  

The same concept carried through to production efficiency, advertising, selling, and 

servicing – none need be better than that of GM’s best competitor.  According to Cray 

(1980, p. 558), Sloan insisted that “GM is a production company, not a research-oriented 

company.” 
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Under Sloan, GM pushed forward with the redesign of a new Chevrolet model.  A 

booming market in 1923 had resulted in decent sales, but a brief recession in 1924 

underscored the need to redesign Chevrolet’s outdated model.  While U.S. automobile 

sales dropped 12%, GM’s sales fell 28% and represented nearly half of the industry’s 

decline.  Half of GM’s decline was attributed to Chevrolet, where sales dropped 37%.  

Rival Ford’s sales slipped only 4% (Sloan, 1964).  Meanwhile, Dodge, Chrysler, and 

Hudson had increased sales and market shares by introducing new models and affordable 

closed-body designs (Freeland, 2000).  In 1925, Chevrolet introduced the new K Model 

which corrected a number of defects with the previous Chevrolet.  The successful model 

did not include radical changes, but among the improvements boasted a Duco lacquer 

finish that had been introduced on GM’s Oakland the previous year.  The K Model was 

also available in two closed styles, using Fisher bodies, which sold for 40-57% more than 

the roadster.  By 1927, closed bodies constituted 82% of Chevrolet’s production and 85% 

of industry-wide production. 

Consistent with his new product strategy, Sloan also moved to fill a gap in GM’s 

lineup between the low-priced Chevrolet and the more expensive Olds.  The entirely new 

model, which was to incorporate a new six-cylinder engine, was likely to take some sales 

from the four-cylinder Chevrolet as well as the more expensive Olds, but at least those 

sales would stay within the corporation.  In order to minimize the impact on Chevrolet’s 

economies of scale, Sloan decided the new model should use as many Chevrolet body 

and chassis parts as would fit the new design.  As it turned out, the failed copper-cooled 

engine project had given GM some valuable experience with dual-purpose chassis and 

bodies for two different engines.  Although the new GM model would be manufactured 
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and sold by Oakland, Sloan assigned its initial development to Chevrolet due to its use of 

Chevrolet parts.  The introduction of the new Oakland Pontiac in 1926 marked the first 

time that GM physically coordinated the manufacture of vehicles made by different 

divisions; this innovation had sweeping implications for the company.  GM finally had a 

competitive response to Fordism: 

Physical co-ordination in one form or another is, of course, the first principle of 
mass production, but at that time it was widely supposed, from the example of 
the Model T, that mass production on a grand scale required a uniform product.  
The Pontiac, co-ordinated in part with a car in another price class, was to 
demonstrate that mass production of automobiles could be reconciled with 
variety in product… If the cars in the higher-price classes could benefit from the 
volume economies of the lower-price classes, the advantages of mass production 
could be extended to the whole car line. (Sloan, 1964, p. 158) 

While working out improvements to the GM product lines, Sloan also continued 

to integrate and coordinate the operation of the divisions, relying again on financial 

analysts Donaldson Brown and Albert Bradley as discussed in detail in section 5.2.4.  

Sloan was once again forced to address inventory control when a brief recession in mid-

1924 led to an oversupply in dealer stock and forced GM to drastically but belatedly cut 

production.  It was clear that GM needed a more effective way to forecast retail sales and 

to quickly respond to market changes.  A comprehensive study of the total automobile 

market begun by Bradley in 1923 was put toward establishing estimates of consumer 

demand in each price category.  This estimate was then used to set production levels for 

the coming year, allowing for mid-course corrections based on dealers’ reports of sales 

and inventories.  Rather than stay committed to a four-month production schedule 

determined in advance, GM could now respond quickly to market conditions using up-to-

date actual data.  
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The organizational structure put in place by Sloan required decentralization with 

coordinated control.  GM could only leave the execution of operational procedures to the 

divisions if corporate management had a means to monitor and assess the effectiveness of 

these operations.  For Sloan and his analysts, the key was another financial control based 

on rate of return.  Section 5.2.4.1 provides a detailed discussion of these innovations, but 

a brief summary is presented here.  Accounting procedures were first standardized across 

the divisions.  Brown then developed standards for sales and manufacturing expenses 

using past performance adjusted for future plans.  Monthly reports of actual operating 

results, based on uniform return on investment analysis, were used to determine each 

division’s competitive position in the corporation and to troubleshoot when a division’s 

performance deviated from expectations. 

However, comparisons with past performance were complicated by year-to-year 

variations in production volume.  In 1925, Brown developed a new concept called the 

‘standard volume’ based on the average expected production over a number of years and 

a long-term return on investment goal.  Unit costs and prices were developed using the 

standard volume, allowing year-to-year cost comparisons that were unaffected by 

fluctuating volume.  According to Flink (1988, p. 234), GM’s conservative estimate of 

demand used to establish the standard volume ensured “high rates of return in a market 

assumed to be both saturated and technologically mature.” 

With record sales in 1926, GM began to reap the rewards of its reorganization and 

the re-invigoration of its product line.  While Ford clung to the inexpensive, utilitarian 

Model T, GM marketed fifty models of cars and trucks ranging in price from $525 to 

$4,485 – “a car for every purse and purpose.”  In addition, Kettering’s lab had found a 
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solution to the engine knock problem and profits from the growing market for Ethyl 

gasoline, sold in partnership with Du Pont, helped close the gap with Ford (Cray, 1980) 

(see section 5.2.4.3).  However, GM still faced three challenges in the post-war era: 1) 

market saturation; 2) the growing used car problem; and 3) shifting consumer tastes for 

comfort and style.  The corporation’s differentiated product line and consumer financing 

(see section 5.5) helped with these issues, but GM devised one more innovation that 

jointly addressed these challenges and propelled the company to the industry forefront – 

the annual model change.  Again, a brief summary of this innovation is presented here, 

while a more detailed description is given in section 5.2.4.5. 

Since the birth of the industry, style had been forced to adapt to mechanical and 

mass production requirements.  Body and chassis design were largely two separate 

processes, resulting in an awkward fit and appearance.  Closed-body cars were especially 

tall and ungainly and the typical automobile’s high center of gravity was becoming 

increasingly dangerous.  In 1926, Sloan and Lawrence Fisher hired Harley J. Earl, who 

designed custom car bodies for Hollywood celebrities, as a consultant for the design of a 

new GM automobile.  The new La Salle, introduced in 1927, was the first mass produced 

car designed by stylists.  Impressed with the result, Sloan hired Earl to direct a newly 

established Art and Color Section and institutionalized the process of designing for style. 

GM had no policy for regular model changes, which were undertaken as needed 

in response to the market and competition.  Because of the new emphasis on style and the 

need to motivate owners to trade up, GM’s constant upgrading resulted in the 

introduction of annual models beginning in 1923.  By the 1930s, GM had recognized this 

unavoidable fact and was planning for regularized change.  Much of GM’s ability to 
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accommodate change is attributed to William Knudsen, who was appointed vice 

president of Chevrolet in 1922 and promoted to president and general manager of 

Chevrolet in 1923.  Knudsen built a decentralized organization that could accommodate 

change and expansion.  Although Knudsen arranged machinery and operations for 

sequential production as at Ford, he replaced single-purpose machine tools with standard 

or general-purpose machines that could be adapted to accommodate product design 

changes.  Highland Park had been extremely efficient, but also inflexible; in contrast, 

Chevrolet production had been designed to accommodate change and marked the 

beginning of flexible mass production. 

5.2.4 Significant Innovations 

5.2.4.1 Financial Controls 

Despite the 1921 improvements in inventory control at GM designed by 

Donaldson Brown and Albert Bradley, a demand slump in mid-1924 led to an oversupply 

in dealer stock and forced GM to drastically but belatedly cut production.  It was clear 

that GM and the industry as a whole needed a more effective way to forecast retail sales 

and, more importantly, a way to quickly respond to market changes.  In 1923, Sloan had 

tasked Bradley with a comprehensive study of the total automobile market using the 

available sales data and Bradley’s concept of a “pyramid of demand” (Sloan, 1964, p. 

139).  The intent was to determine the potential market by class, the effect of a price 

reduction on total demand, the competitive relationship of new and used cars, and when 

the market would reach saturation – the point when most new car purchasers were 

replacing their old automobile rather than buying their first car.  This study had, for the 
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first time, demonstrated the relationship between demand and income distribution.59  This 

statistical work was now put toward developing a scientifically based procedure for 

determining production schedules.   

In 1924, GM established official corporate-wide estimates of consumer demand in 

each price category based on actual sales over the previous three years and a general 

business outlook.  This estimate was then used to set production levels for the coming 

year, though mid-course corrections could be made, within tooling constraints, as updated 

information became available.  To improve the reliability of these estimates and facilitate 

corrections, GM had dealers report new and used cars sales and inventories every ten 

days.  Division managers compared the reports to their monthly forecasts and adjusted 

purchases and production as necessary; at the end of the month, the reports were used to 

update forecasts for the following month.  Rather than stay committed to a four-month 

production schedule determined in advance, GM could now respond quickly to market 

conditions using up-to-date actual data.  

Sloan described GM’s fundamental management problem as finding the key to 

decentralization with coordinated control.  With new procedures in place for controlling 

operations, GM could leave the execution of these procedures to the divisions – but only 

if corporate management had a means to monitor and assess the effectiveness of these 

operations.  For Sloan and his analysts, the key was another financial control based on 

rate of return.  Sloan had first applied the principle of return on investment while at 

United Motors, which was his first experience managing multiple divisions that 

                                                 
59 Bradley later correlated automobile sales and overall economic activity, finding that when national 
income was rising, car sales increased at an even faster rate; when national income fell, sales decreased at a 
faster rate.  When better statistics were available, he was able to show a close correlation between sales and 
personal income (Sloan, 1964). 
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separately manufactured diverse products.  “By placing each division on its own profit-

making basis, I gave the general office a common measure of efficiency with which to 

judge the contribution of each division to the whole…  [T]he general principle of rate of 

return as the measure of worth of a business… was fundamental in my thinking about 

management problems” (Sloan, 1964, p. 47-50).  This principle had governed the 

thinking of du Pont’s people and, therefore, GM’s Finance Committee since 1918.   

Brown developed a method for computing return on investment that could be used 

to evaluate investment decisions and the performance of the divisions.  The idea was not 

to maximize the short-term return on capital, but rather to achieve the “highest return 

consistent with attainable volume in the market.  The long-term rate of return was to be 

the highest expectation consistent with a sound growth of the business” (Sloan, 1964, p. 

141).  Brown developed standards of performance for business and manufacturing 

expenses using past performance with adjustments for future plans.  Actual performance 

was then compared to these standards.  To facilitate inter-divisional comparisons, 

accounting practices were standardized throughout the corporation.  Each division 

completed monthly reports of operating results, and was informed of its competitive 

position in the corporation based on uniform return on investment analysis.  These reports 

were used to troubleshoot when a division’s performance deviated from expectations. 

However, production volume varied from year to year, making comparison to past 

performance difficult.  In 1925, Brown developed a new standard for overall performance 

which related a long-term return on investment goal and the average expected production 

or average plant utilization over a number of years – the ‘standard volume.’  Unit costs 

and prices were developed using the standard volume, allowing year-to-year cost 
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comparisons that were unaffected by fluctuating volume.  With prices stabilized in this 

way, when demand and production exceeded the standard volume, GM realized windfall 

profits.  Of course, when sales fell short of the standard volume, profits fell below the 

rate of return goal.  According to Flink (1988, p. 234), GM used a conservative estimate 

of demand to establish the standard volume and reinvested only a conservative portion of 

actual profits in expansion, thereby “guaranteeing the safety of invested capital and 

ensuring high rates of return in a market assumed to be both saturated and technologically 

mature.” 

5.2.4.2 Copper Air-Cooled Engine 

The first air-cooled engine was introduced by Franklin in 1898 (Abernathy et al., 

1980) and offered on the company’s expensive automobiles.  Air-cooling theoretically 

offers several advantages over water cooling: lighter weight and therefore higher fuel 

economy for the same horsepower; simpler design and construction by eliminating the 

radiator, hoses and ducts; and elimination of problems from freezing in winter and 

overheating in summer.  Air-cooled engines of the day utilized fins cast on the exterior of 

the cylinders.  The fins were cooled by air pushed over the engine by the movement of 

the car.  Although this worked fine for small engines, larger ones overheated, resulting in 

‘burned’ valves, sticking pistons, and a loss of power (Leslie, 1979; Flink, 1988).  

Therefore, by 1910, most automobile engines were water-cooled.   

In 1918, Kettering began working on what Flink in 1988 (p. 232) called “the last 

attempt by an American automobile manufacturer to pioneer to the stage of production a 

truly radical engine design.”  In an attempt to solve the overheating problem in air-cooled 

engines, Kettering experimented with using copper, which has superior thermal 
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properties compared to iron.  If successful, the engine would realize a higher compression 

ratio and therefore achieve greater fuel economy and power for the same displacement.  

Since copper was too soft and too expensive for use in constructing the engine cylinders, 

the fins had to be attached to the iron cylinders, a difficult proposition.  Kettering’s team 

at Delco experimented with casting the copper fins directly onto the cylinders, attaching 

the fins with molten zinc, and brazing them on with a torch.  All failed until 1921 when a 

member of the team developed a special electrical furnace that could successfully do the 

brazing.  After working out production methods for the cylinders and fins, Kettering’s 

team constructed a four-cylinder prototype engine and tested it in a Chevrolet chassis 

using a fan to boost the air speed over the fins.  This experiment apparently was only 

marginally successful (Leslie, 1979).   

With the drop in automobile sales in 1920, Pierre du Pont became convinced that 

it was critical for GM to enter the lowest-priced market.  He believed that Kettering’s 

new engine was the key to producing a lightweight, inexpensive vehicle that could 

compete directly with Ford’s Model T.  Ford had cut the price of the Model T in 

September, 1920, and sales had picked up enough for Ford to resume production.  

Meanwhile GM was still working off inventories, hoping that sales would rebound with 

warmer weather in spring.  Just as Kettering began making headway on attaching the 

copper fins to the cylinders in January, 1921, du Pont and GM’s Executive Committee 

announced their intent to develop the air-cooled engine for use in a low-priced car made 

by Chevrolet.  The GM executives also decided to develop a six-cylinder air-cooled 

engine that could be used in a more expensive model produced by Oakland, whose sales 

had faltered.   
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The manufacturing division managers were eager for new designs that would 

boost their sales and initially appeared supportive of plans for the new models.  However, 

when Chevrolet manager K.W. Zimmerschied was informed in February, 1921, that his 

division would begin manufacture of the air-cooled model in August, he objected.  He 

had already made improvements in Chevrolet’s water-cooled engine and had designed a 

new body.  He wanted to postpone production of the air-cooled engine another year. 

By May, Kettering had test cars of both the four- and six-cylinder models in 

operation.  The Executive Committee authorized the creation of a small pilot 

manufacturing section, capable of producing up to twenty-five cars per day, at 

Kettering’s laboratory facility in Dayton.  The research lab thus had been given 

responsibility for the development and the initial production of the new car, but the 

manufacturing divisions were responsible for mass production.  Zimmerschied was 

skeptical about the engineering design and wanted to know who was advisor to whom on 

issues of production.  Meanwhile, Kettering worried that the divisions would alter his 

designs. 

Kettering assembled a fleet of test cars, including several competitors’ cars with 

conventional engines, and set out for a road test in July, 1921.  Although the road 

conditions were grueling and none of the cars survived intact, Kettering was satisfied 

with the performance of his engine (Leslie, 1979).  Because Chevrolet still had inventory 

to work off and because Oakland’s manager, George Hannum, was more receptive than 

Zimmerschied, the Executive Committee decided Oakland would receive the first new 

model and Chevrolet’s four-cylinder model would follow in early 1922.  Production of 

Oakland’s water-cooled car was to cease in December, 1921, and production of the air-
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cooled car would begin in February, 1922.  In November, Oakland received a car for final 

testing – the first tests performed by personnel outside of the research staff.  The results 

surprised the Executive Committee: Hannum informed du Pont that the car was not ready 

for production.  He believed another six months of development was required to make the 

necessary changes to eliminate problems with overheating.  He also informed du Pont 

that Oakland would bring out a new water-cooled line in December to bridge the time 

until the air-cooled model was ready.  The Executive Committee remained committed to 

the new engine, but decided to delay production of the air-cooled Oakland until at least 

June, 1923. 

Kettering believed that the division managers were resisting his innovation for 

other than technical reasons, perhaps feeling the technology had been forced on them 

because of Kettering’s close relationship with du Pont.  Nonetheless, he resolved to 

address the issues revealed by the Oakland tests.  His team focused as much on problems 

with the frame, axle, and transmission as those with the engine itself (Leslie, 1979).  The 

pressure was now on developing the four-cylinder model for Chevrolet.  Meanwhile, 

Alfred Sloan decided to prepare a second line of defense by establishing a parallel effort 

in the Chevrolet division to improve the existing water-cooled design.  The team 

responsible for manufacturing both cars was now in direct competition with Kettering’s 

research team. 

In March, 1922, du Pont replaced Zimmerschied as general manager of Chevrolet 

and assigned Knudsen as vice president of operations at Chevrolet.  Knudsen 

recommended that GM immediately put the air-cooled engine into small level production 

for technical and commercial testing.  Production of the Chevrolet four-cylinder was 
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scheduled for September.  The next trial in May, 1922, was encouraging and Kettering 

pushed for immediate production.  But sales of traditional water-cooled cars finally were 

on the rise and division managers openly questioned the wisdom of deploying a new 

technology under such conditions.  Kettering confided to du Pont that he believed the 

divisions were trying to thwart his innovation.  Sloan argued for caution in deploying a 

new innovation during a time of peak sales.  September came, but production was not 

underway.  The executive management remained committed to the new engine but 

decided that production of the water-cooled Chevrolet should continue and that the new 

air-cooled model would be sold as an option.  The new model was to be unveiled at the 

New York automobile show in January, 1923. 

Knudsen reassured du Pont that he would have 500 of the new engines ready for 

the start of production in 1923, but he was able to produce only 250 in time for the New 

York automobile show where the new model was “the sensation of the show” (Sloan, 

1964, p. 85).  Spring sales were booming, but production of the new vehicle soon 

encountered problems of technical malfunctions and miscommunication.  Chevrolet 

produced 759 of the automobiles, but 239 were scrapped by the production team.  Of the 

500 delivered to the sales organization, only 100 were sold to retail customers with the 

remainder either driven by factory representatives or held in inventory.  Complaints 

poured in from field representatives, dealers, and customers.  The engine overheated and 

lost power, even in cool weather.  The design was partly at fault: the air entered the 

engine housing from the bottom and was expelled at the top.  But as it moved over the 

engine, it warmed before ever reaching the cylinders which were the hottest part of the 
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engine.  Customers also complained about excess noise, clutch problems, wear on 

cylinders, carburetor malfunctions, axle break downs, and fan-belt trouble (Leslie, 1979). 

In addition to design flaws, many of the problems were the result of 

miscommunication, poor coordination, and shoddy manufacturing or assembly, though 

the division engineers complained that it was impossible to “produce the car within the 

limits set by Dayton, and rightly or wrongly demonstrated by their sample car” (Leslie, 

1979).  While Kettering remained convinced that there was organized resistance against 

his work, the divisions felt that Kettering’s actions were the result of an over-inflated ego 

and not in the best interests of the corporation.  Leslie (1979) places much of the blame 

on Kettering, claiming that his insistence that only research engineers were capable of 

solving technical problems had alienated the production engineers.  In addition, his team 

“grossly underestimated the difficulty of converting a prototype into a reliable, mass-

produced article ready for sale to the public.” 

Once the extent of the problem became clear, Knudsen moved quickly, recalling 

all of the automobiles.  Du Pont apparently took responsibility for the failure, believing 

he had become too personally vested in the engine’s development.  Although du Pont had 

successfully led the corporation through the post-war recession, it was time to step aside.  

He passed the presidency to Sloan who had consistently advised caution in putting the 

new engine in production cars.  Sloan cancelled development of the six-cylinder copper-

cooled engine for Oakland and Olds and Knudsen at Chevrolet soon cancelled production 

of the four-cylinder model.  Without a clear market demand for the new engine and du 

Pont’s championship of the project, the fate of the copper-cooled engine was sealed. 
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Disappointed in the abrupt termination of production, Kettering announced his 

resignation, prompting Sloan to seek a solution that would retain the inventor at GM.60  

Sloan proposed creating a new pilot operation under Kettering to develop, manufacture, 

and market the air-cooled automobiles.  Pierre du Pont, still serving as chairman of the 

board, insisted the four-cylinder model had to be sold through Chevrolet.  The Executive 

Committee negotiated a compromise, giving Knudsen and Chevrolet responsibility for 

development and engineering of the four-cylinder model.  Kettering’s team in Dayton 

was given complete responsibility for redesigning the six-cylinder copper cooled engine 

for the existing Oldsmobile chassis.  If successful, a new division would be created for 

small scale production and sale prior to going into high volume production (Chandler and 

Salsbury, 1971).  Kettering accepted the compromise, but not without complaint.  

“Accounting always kills research,” he complained (Cray, 1980, p. 218).   

Disappointing tests of both copper-cooled models in the spring of 1924 showed 

neither was ready for production.  With some $3.5 million in direct costs invested in the 

project, du Pont and the Executive Committee were reluctant to terminate the project.  A 

year later, the six-cylinder version still was not ready, but Chevrolet reported all major 

problems had been solved with the four-cylinder model.  But by this time, the successful 

new water-cooled Chevrolet K Model was competing well with the Ford Model T.  The 

Executive Committee did not even discuss Chevrolet’s report and the copper-cooled 

engine project quietly faded away.61 

                                                 
60 Leslie (1979) claims it is doubtful that Kettering would have followed through with his resignation.  He 
had a large financial investment in GM and his research team was making headway on projects of great 
interest to him, especially the engine knock problem they would eventually solve using tetra-ethyl lead.  In 
addition, Kettering had a history of lashing out verbally but not fulfilling his angry threats. 

61 Because of their inherent simplicity and light weight, air-cooled engines are particularly well-suited for 
and frequently used in motorcycles.  They are also used in most aviation piston engines where weight is a 
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Sloan believed the failure of the copper-cooled project was in large part due to 

confusion of responsibilities and poor coordination.  In September, 1923, he established a 

General Technical Committee consisting of chief divisional engineers and top research 

staff to coordinate the activities of the divisions and the Research Corporation.  

According to Sloan (1964, p. 109), the General Technical Committee “had a remarkable 

effect in stimulating interest and action everywhere in the corporation in matters of 

product appeal and product improvement, and produced a free exchange of new and 

progressive ideas and experience among division engineers.”   

The Committee was highly independent and had the authority to undertake 

technical studies using the facilities of the Research Corporation, the operating divisions, 

or outside sources.  Over the course of time, the Committee studied numerous short-range 

engineering problems that concerned brakes, fuel consumption, lubrication, rust and oil 

sludge caused by the condensation of the products of combustion, and changes in steering 

mechanisms required for four-wheel brakes and balloon tires.  The Committee even gave 

attention to educating dealers and sales staff on the value of engineering developments.  

Kettering’s staff reported to the Committee on long-range studies concerning cylinder-

wall temperatures, cylinder heads, sleeve-valve engines, intake manifolds, tetraethyl lead 

as a gasoline additive, and transmissions. 

In summary, the copper-cooled engine was developed through IR&D.  The 

project was begun by Kettering largely because of his belief that more efficient engines 

were important to conserving fuel and avoiding shortages or depletion.  GM’s executive 

                                                                                                                                                 
premium and the much higher airspeed facilitates cooling.  In the 1930s, German engineer Ferdinand 
Porsche developed a simple air-cooled engine for the first Volkswagon.  It was used in the VW Type 1 
(Beetle) and related models, including the Porsche 911.  GM abandoned the air-cooled engine until 1960 
when it introduced the Chevrolet Corvair.  However, none of these engine designs use copper fins. 
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support of the project, however, was stimulated by an external economic condition – the 

post-war recession – and by intra-industry market dynamics – competition with Ford’s 

Model T in the low priced field.  During development of the vehicle, economic 

conditions and demand for automobiles improved.  In addition, market tastes were 

shifting – buyers were becoming interested in more style and comfort than the Model T 

offered.  The new technology was no longer ‘demanded’ by the market and therefore no 

longer ‘needed’ as part of GM’s market strategy.  

Also, though the research lab’s findings show that the technology was ready for 

production, it appears the product was rushed to market before design and manufacturing 

issues were fully worked out.  Where Ford had found great success by jointly addressing 

issues of product design and manufacturing processes for the Model T, GM had failed by 

separating the two for the copper-cooled engine vehicle.  Had the few cars that were sold 

to retail customers performed successfully, the market outcome may have been different.  

But with no apparent need for the new technology and no product champion at the 

executive level, GM chose to minimize its risk and table the project.  However, the 

experience with the copper-cooled engine was responsible for changes in corporate 

policy and organization that significantly shaped the innovative trajectory of the company 

for the next fifty years. 

5.2.4.3 Tetra-Ethyl Lead Gasoline 

In 1913, Cadillac engineers discovered a violent banging in the cylinders which 

they blamed on Kettering’s new electric self-starter and battery system.  At Delco, 

Kettering quickly dismissed the problem after determining that it was not caused by 

faulty firing of the spark plugs.   Kettering later became involved in a broad range of 
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innovative efforts for three companies he founded: Delco Light Company, Dayton Metal 

Products, and the Dayton-Wright Airplane Company.  While working on a farm lighting 

system that used a small internal combustion engine to generate electricity, Kettering 

once again encountered engine knock and found that it occurred even more violently 

when using kerosene.  Kettering assigned the problem to his assistant, Thomas Midgely, 

in 1916 (Cray, 1980).   

Kettering’s focus shifted to aviation fuels when he began working on aircraft 

engines around the beginning of World War I.  He began experimenting with alternatives 

to gasoline altogether, finding that some fuels could be used in high compression engines 

while others produced a significant amount of knock.  Kettering and Midgely also 

experimented with a number of “high-percentage” fuel blends using up to 50% of an 

alternative fuel that produced no knocking, such as benzene from coal or olefins.  Most of 

the additives had technical issues to overcome such as a relatively high freezing point or 

the tendency to ‘gum.’  With the end of World War I, Kettering’s focus returned to the 

automotive industry. 

As demand grew for more powerful automobiles, the industry began using higher 

compression engines and engineers found that the knock problem increased.  Engine 

knock reduced the energy efficiency and therefore the power of the engine and also could 

crack the piston.  While loss of engine power certainly bothered engineers and 

consumers, the efficiency issue was a more pressing concern.  Fears of oil shortages are 

nearly as old as the automobile industry, and in 1919, geologists estimated that only 20 or 

30 years-worth of oil were left in the U.S.  After World War I, demand for gasoline grew 

so rapidly that suppliers had trouble keeping up with demand and the quality of fuel 
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declined (Kovarik, 1994).  Lower quality fuels increased the prevalence of knock and 

further reduced engine efficiency. 

Many industry experts advocated alternative fuels, especially ethanol, as a 

solution to the supply problem.  Ethanol had the added benefit of not producing engine 

knock even at high compression.  However, the lower energy density of ethanol required 

vehicles to carry more fuel and thus more weight, which was particularly problematic for 

aircraft.  In addition, experts concluded that there was insufficient farmland to produce 

both food and fuel.  Although experiments were underway to convert cellulose from trees 

and agricultural wastes into ethanol, the conversion process was too inefficient.  

Prohibition also complicated the development of an ethanol fuel infrastructure and even 

hindered experimentation.  Nonetheless, Kettering apparently was an advocate of ethanol 

as a long-term solution to fuel supply concerns.  He believed more efficient gasoline 

engines would extend the life of oil supplies and could be converted later to use ethanol 

after the fuel production technology was more mature.  Increased efficiency would then 

help compensate for the lower energy density of ethanol.  This approach required high 

compression engines and a solution to the knock problem (Kovarik, 1994). 

 The prevailing view in the industry was that engine knock was caused by 

premature ignition of the fuel when the spark was too far advanced.  However, Kettering 

and Midgely had proven that pre-ignition and knocking were two separate problems and 

they believed that engine knock was due to properties of the fuel itself.  In addition to 

high percentage fuel blends, they also experimented with low concentrations of additives 

or so-called doping compounds.  One of Kettering and Midgely’s early theories was that 

knocking arose from the heat absorption properties of the fuel.  Perhaps the lower 
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volatility of kerosene caused it to remain in droplets in the cylinder then vaporize very 

suddenly after combustion had begun, leading to increased knocking.  They decided to 

try darkening the fuel to enhance heat absorption.62  Unable to locate any oil-soluble dye, 

Midgely tried adding a few drops of iodine to the carburetor and found that knock was 

diminished.  When he later used a number of dyes, there was no effect, yet a colorless 

iodine compound was effective.  Midgely concluded that the effectiveness of the iodine 

was related to its chemical properties.  Since iodine was corrosive and expensive, 

Midgely tried similar elements: bromine, tellurium, tin and selenium.  The results pointed 

toward heavier elements.  In December, 1921, after trying perhaps thousands of 

compounds, he finally used tetraethyl lead (TEL) in the test engine and the knocking was 

silenced.  In 1923, Midgely was awarded the William H. Nichols Medal from the New 

York section of the American Chemical Society for his discovery of the anti-knock 

properties of TEL. 

Although TEL was the most efficient additive Midgely had tried, it was difficult 

to make and broke down quickly in sunlight.  Adding it to gasoline resulted in lead 

deposits on the engine valves and spark plugs, while lead particles corroded the valve 

seats and exhaust system.  Additional experimentation solved these problems and the 

additive was ready for commercialization in 1923.  GM expected to capture 20% of the 

fuel market and estimated production and distribution costs at only one cent per gallon of 

treated gasoline.  With a price differential of three cents per gallon, GM stood to realize 

an annual profit of around $24 million based on the existing fuel market.  

                                                 
62 The literature provides two conflicting stories of the source of this inspiration.  According to Pound 
(1936), Delco chemists noticed that ordinary combustion produced a bluish flame while the flame for 
combustion with knocking was yellow or orange.  Kovarik (1994) reports that Kettering recalled that the 
trailing arbutus sometimes bloomed in the snow and theorized that the flower’s red color might help it 
absorb more heat. 



 

374 

But by 1923, Midgely and three other lab employees were suffering from lead 

poisoning.  Despite his illness and the warnings of several of the world’s leading health 

experts at MIT, Harvard, and Yale, Midgely insisted that there was no risk to the public 

and that there would not be enough lead in automobile exhaust to cause any problems 

(Kovarik, 1994).  Amid a growing controversy over the safety of the additive, GM and 

Standard Oil of New Jersey jointly founded the Ethyl Gasoline Corporation in 1924 to 

market gasoline doped with TEL, which they gave the brand name Ethyl.  Kettering was 

named president and Midgely vice president.   

In 1923 and 1924, three separate operations were set up to produce the lead 

solution.  A pilot plant set up in Dayton manufactured TEL and shipped it in liter bottles 

to prospective customers who mixed it into gasoline at their service stations.  The Dayton 

plant was shut down in April, 1924, after two workers on the packing line died.  Midgely 

claimed that the workers had failed to follow safety precautions and that the liquid was 

safe when handled properly.  The Du Pont Company was contracted to manufacture the 

lead solution beginning in August, 1923, and by January, 1925, Du Pont was 

manufacturing 1,700 gallons per day.  Eight workers died at the Du Pont facility between 

the time it opened and the winter of 1925.  However, demand for Ethyl was booming, and 

GM had been pushing Du Pont to speed up production.  Standard Oil claimed to have a 

less expensive process than Du Pont’s and, with Sloan’s approval, set up a small plant in 

New Jersey in September, 1924.  In late October, five workers went violently insane and 

within eight days had died; at least thirty others were treated for acute lead poisoning and 

some suffered permanent brain damage (Kovarik, 1994). 
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It is not entirely clear whether the New Jersey incident was solely the result of an 

industrial accident or explosion, as typically recounted in automotive histories, or due at 

least in part to the fact that Standard’s production process was inherently more hazardous 

than Du Pont’s, which had already claimed five lives before the new plant opened.  

Concerned over those losses, Du Pont was developing a closed system that would limit 

workers’ exposure to the chemicals and fumes.  Meanwhile, Standard’s process involved 

higher temperatures and pressures and workers were directly exposed to concentrated 

fumes and process wastes.  On touring the facility in September, Du Pont engineers were 

reportedly shocked by the dangers posed by Standard’s equipment and methods as well 

as the inadequacy of safety precautions.  When Kettering and Midgely urged Du Pont to 

adopt Standard’s process, Du Pont’s technical director refused (Kovarik, 1994).   

After the October incident, Standard Oil’s production plant was shut down, but 

the courts found the company innocent of criminal negligence in February, 1925.  

However, media coverage of the incident led to a public panic over acute poisoning from 

the use of ‘loony gas’ and several states moved to ban its use.  GM continued to stress 

that, while manufacturing pure TEL was indeed dangerous, there was no risk to the 

public because the additive was diluted to one part in 1,300 in gasoline.  In a presentation 

to the American Chemical Society, Midgely also asserted that no alternatives to Ethyl 

existed – a claim that was contrary to Midgely’s own research.  Meanwhile, health 

experts continued to weigh in on the danger of chronic exposure to lead in automobile 

exhaust.  As the controversy grew, Kettering and Midgely were secretly removed as 

president and vice president of the Ethyl Gasoline Corporation (Kovarik, 1994).  
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In May, 1925, a conference on the safety of TEL was held by the federal Public 

Health Service (PHS).  While the PHS had no authority to regulate chemicals, it had 

taken an aggressive stance against TEL.  As a result of the conference, which lasted only 

one day, the Surgeon General was tasked with forming an expert panel to investigate the 

dangers of leaded gasoline.  The Ethyl Corporation suspended sales of the additive 

pending the outcome of the investigation.  The study examined the health of 252 men, 

comparing drivers and mechanics exposed to leaded gasoline to those who had not, as 

well as to workers in lead industries.  Despite finding that the exposed workers’ blood 

and stools contained high levels of lead, the panel’s report in January, 1926, was 

inconclusive, citing the incompleteness of data regarding the effect of longer exposures 

on human health. 

Vindicated by the report, Ethyl Corporation resumed sales of leaded gasoline in 

the spring of 1926 after agreeing to put warning labels on it.  In 1927, Chrysler 

introduced the first moderately-priced automobile with a high-compression engine, made 

possible by higher octane fuels like Ethyl that reduced knock.  By 1940, TEL was used in 

90% of the gasoline in the U.S (Kovarik, 1994).  The Ethyl Corporation recorded profits 

of $1 billion between 1924 and 1947, when its patents expired.  GM’s share of the profits 

totaled $82.6 million, while patent royalties netted $43.3 million.  Du Pont realized 

profits of $86 million (Cray, 1980). 

5.2.4.4 Duco Paint 

Finishing methods for automobile bodies were inherited from the carriage 

industry.  As many as three dozen coats of paint and varnish were required, with sanding 

and drying in between.  Body finishing was a major production bottleneck since the total 
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process took from two to eight weeks, depending on a number of conditions, including 

temperature and humidity.  Dark pigments tended to dry faster, leading to the use of very 

dark greens and blues, and of course, black (Nieuwenhuis and Wells, 2007).  The all-steel 

Budd bodies used on Dodge cars beginning in 1914 could be oven-baked, facilitating a 

shift to black enamel.   

In 1921, GM appointed a Paint and Enamel committee to consider the problem of 

finishing car bodies.  In GM’s assessment of the problem, the industry absolutely needed 

a product that would reduce finishing time from days to hours without requiring the use 

of high temperatures beyond what wood could stand.  The product needed to be 

inexpensive, capable of producing a wide range of colors, and able to last the life of the 

vehicle.  In short, the industry needed a finish that would provide all the advantages of 

both varnish and enamel with none of the disadvantages of either (Pound, 1934).  On the 

other end of the spectrum from paints and varnishes, the toy industry was using cellulose 

nitrate lacquers, but they dried too fast.  The paint and varnish industry claimed the task 

was impossible.   

The answer to the auto industry’s finish problem came about largely by accident 

in a Du Pont laboratory, but traces logically from the firm’s origins.  In the 1830s, French 

chemists discovered that nitric acid mixed with starch or wood fibers produced a 

lightweight combustible explosive material broadly called nitrocellulose.  Unfortunately, 

the material was unstable and therefore not practical as an explosive.  Some ten years 

later, a German-Swiss chemist cleaned up a nitric acid spill with a cotton apron which he 

then hung on the stove door to dry.  But once dry, the apron exploded; the chemist had 

serendipitously discovered what came to be known as guncotton, which was also 
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discovered by another German chemist in the same year.  Refinements in the 

manufacturing process improved the stability of guncotton, which was used as a 

propellant and a low-order explosive. 

Guncotton was briefly used in artillery, but was too powerful and unstable for use 

in firearms.  In 1884, Frenchman Paul Vieille invented a smokeless gunpowder by 

dissolving guncotton in ether or alcohol.  The gelatinous solution was formed into thin 

sheets and cut into small flakes to produce a less volatile propellant that only exploded 

when compressed.  The powder was more powerful than black powder, producing a 

higher muzzle velocity and therefore more accurate long-range firing with no pall of 

black smoke.  Du Pont developed its own smokeless gunpowder in the 1890s and became 

a leading manufacturer the explosive for U.S. military use. 

Other experiments discovered that films made of nitrocellulose combined with 

ether or alcohol would harden into a film, leading to the development of plastics, lacquers 

and photographic film.63  The Du Pont management began a program of diversification 

beginning in 1902 and was particularly interested in alternative uses for nitrocellulose.  In 

1904, Du Pont purchased the International Smokeless Powder and Chemical Company 

which produced nitrocellulose lacquers.  In 1910, they purchased the Fabrikoid 

Company, which produced artificial leather made from fabric covered with a 

nitrocellulose film.  Du Pont improved the product and successfully marketed it to the 

automobile industry for tops for open cars.  In 1915, Du Pont purchased the Arlington 

Company which manufactured pyroxylin (nitrocellulose) plastics used in combs, collars, 

cuffs, and automobile side curtains. 

                                                 
63 Though not explosive, this film was still highly flammable. 
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In 1920, a Du Pont chemist working with nitrocellulose film noted an accidental 

chemical reaction that led to the creation of a thick, quick-drying lacquer capable of 

holding more pigment than before.  Du Pont initially marketed the lacquer under the 

name Viscolac in 1921, but subsequently worked with General Motors Research 

Corporation to refine the product for the automotive industry (Du Pont, 2007).  With 

promising progress in the labs, Pierre du Pont petitioned the Du Pont board to give GM 

an exclusive license to the new product, but the request was denied.  The new lacquer 

was renamed Duco and was first used on the “True Blue” Oakland for model year 1924.  

Du Pont made the new finish available to the entire automobile market in 1925. 

The introduction of Duco was a major step forward and was soon used by all 

major auto manufacturers.  The quick-drying, inexpensive lacquer relieved a major 

bottleneck in mass producing cars.  Even inexpensive cars were now available in a wide 

variety of rich, deep colors, opening a new era in automotive styling.  The finish did not 

fade in sunlight or weather, nor was it damaged by the heat of the engine.  And dents 

could be repaired and the metal repainted with matching color.  However, there still were 

issues to be resolved with the lacquer.  Duco did not produce a lustrous finish, so owners 

had to wax the car frequently to maintain a glossy shine.  But the most significant 

problem was that the lacquer was not sufficiently adhesive and would sometimes strip 

away from metal in large sheets.  The Du Pont and GM research laboratories continued to 

collaborate on undercoats to improve adhesion.  In addition, the development of synthetic 

chemicals later eliminated the reliance on natural resins that were limited in quantity and 

varied in quality (Sloan, 1964). 
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5.2.4.5 Style, Annual Models, and Planning for Change 

The post-war era presented the automobile industry with three challenges: 1) 

market saturation; 2) the growing used car problem; and 3) shifting consumer preferences 

for comfort and style.  To stimulate sales, manufacturers relied on consumer credit and 

began focusing on dealer organizations, marketing, and national advertising.  The issue of 

comfort was being partially met by the production of more closed-body cars, which rose 

from 17% of the market in 1920 to 72% by 1926 (Epstein, 1972).  Style, however, had 

always been subordinate to engineering.  Market saturation meant that most customers 

were now purchasing their second vehicle.  If automakers wanted to maintain industry 

growth, owners would have to be enticed to trade up rather than wait until the end of the 

useful life of their current automobile.  Manufacturers needed to engender consumer 

dissatisfaction. 

Since the birth of the industry, performance and economics had dominated the 

design process and both style and comfort had been a secondary issue – style had been 

forced to adapt to mechanical and mass production requirements.  After thirty years of 

development, the product and production technologies were no longer limiting factors in 

styling, which allowed for a new emphasis on aesthetics.  At this point, body and chassis 

design were largely two separate processes, resulting in an awkward fit and appearance.  

The chassis design included the fenders, running boards, and hood, and was still based on 

open body styling.  The separately designed closed body fit on top of the frame and was 

therefore narrower than the chassis and quite tall, resulting in an ungainly appearance.  

To make matters worse, road and engine improvements led to faster driving, and the 

typical automobile’s high center of gravity was becoming increasingly dangerous. 
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GM’s Alfred Sloan had long believed that a lower body was visually more 

appealing and, in 1926, he decided to approach automobile styling more systematically.  

Lawrence Fisher of the Fisher Body Company, now serving as general manager of 

Cadillac, shared Sloan’s sensibilities on styling.  Fisher visited dealers around the country 

and was impressed by the styling of custom bodies being produced by California dealer 

Don Lee for Hollywood stars.  Fisher toured Lee’s custom body shop where he met the 

shop’s young director and chief designer, Harley J. Earl.  Earl, who had studied at 

Stanford and trained in his father’s carriage shop, was using novel approaches to body 

design.  Instead of making models of various automobile components using wood and 

hammered metal, he designed the complete automobile as an integral whole using 

modeling clay.  As a result, the long, low custom bodies that Earl designed blended 

together the elements of the body, hood, fenders, headlights, and running boards. 

In 1926, Sloan and Fisher hired Earl as a consultant for the design of a new GM 

automobile to be sold by the Cadillac Division but at a lower price than the current 

Cadillac model.  The new La Salle, introduced in 1927, was the first mass produced car 

designed by stylists.  Sloan (1964, p. 269) recalled, “The La Salle looked longer and 

lower; the ‘Flying Wing’ fenders were drawn deeper than their predecessors; side 

windows had been reproportioned; the belt line had a new type of molding; sharp corners 

had been rounded off, and other design details were added giving it the unified 

appearance that we were looking for.”  Since there was no time to redesign the existing 

Cadillac model that year, Earl suggested using color to dress it up.  Where the Cadillac 

had previously been offered in three colors, the 1927 model was announced with five 

hundred color and upholstery combinations.   
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Impressed with the results at Cadillac, Sloan hired Earl to direct a newly 

established Art and Color Section funded through the Fisher Body Division.  To facilitate 

the operating divisions’ acceptance of the new section, Sloan and Fisher leant their 

personal support to Earl.  The first automobile completely redesigned by the Art and 

Color Section was the 1928 Buick.  The new model was a commercial failure, in part due 

to style changes made for production reasons, but also because the public saw it as too 

radical a departure from conventional styling.  Afterward, the group instituted successive 

style changes that allowed for an evolution along a projected line of development.  The 

new group gradually gained acceptance as the market proved that appearance sold cars. 

As of the mid-1920s, the annual model change was not a stated policy of GM or 

any automaker.  Manufacturers had always sought to make some improvements in quality 

or performance every year.  Major design and style changes generally were instituted as 

needed in response to the market and competition.  Sloan and the GM division sales 

managers debated the idea of annual models versus continual improvements in a 1925 

sales committee meeting.  While no one in the industry wanted annual models, GM was 

finding it necessary to make more frequent changes.  These changes were not regularized 

and the timing of them was becoming problematic from both production and marketing 

standpoints.  In truth, because of the need to motivate owners to trade up and the new 

emphasis on style, GM’s constant upgrading resulted in the introduction of annual 

models beginning in 1923.  By the 1930s, GM had recognized this unavoidable fact and 

was planning for regularized change.  The annual model change entailed a major style 

redesign every three years, a cycle that meshed with die life to minimizing retooling 

costs.  Minor annual cosmetic changes were made in between.  Although Sloan and Earl 
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did not invent planned obsolescence, they were the first to institutionalize it (Sloan, 1964; 

Cray, 1980; Flink, 1988). 

Much of GM’s ability to accommodate annual model changes is attributed to 

William Knudsen.  Knudsen was a Keim Mills employee when Ford purchased the 

company in 1911 and brought him to Highland Park.  Later in the decade, Knudsen 

repeatedly tried to impress upon Henry Ford that the tired Model T had run its course 

(Cray, 1980).  Tensions rose between the two individualists as Ford became increasingly 

autocratic and rigid in regard to the Model T’s design.  Knudsen could accept Ford’s 

interference with his decisions, but he resented Ford’s methods of countermanding his 

orders or telling employees to ignore them.  In 1921, Knudsen resigned to avoid further 

confrontation with Ford, saying “I can’t avoid it if I stay, and I can’t stay and keep my 

self-respect” (Nevins and Hill, 1957, p. 168).   

GM hired Knudsen in 1922 with no particular role in mind for him.  Amidst 

problems with Kettering’s new copper-cooled engine, Pierre du Pont named Knudsen 

vice president in charge of operations at Chevrolet.  Du Pont planned for the new 

Chevrolet model to compete directly with Ford in the low-price car market.  In 1924, 

Knudsen was promoted to president and general manager of the Chevrolet Division.  

Although the copper-cooled engine failed in the market, Knudsen, under Alfred Sloan’s 

management, was able to turn Chevrolet around.  The division lost nearly $9 million in 

1921, but by 1932, Chevrolet’s profits were largely responsible for keeping the 

corporation out of the red. 

Rather than imitate the production system at Ford, Knudsen built a decentralized 

organization that could accommodate change and expansion.  In 1924, Chevrolet 
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produced 280,000 cars; Chevrolet models were re-styled each year and by 1928, 

production exceeded 1 million and forced an end to the Model T.  Although Knudsen 

arranged machinery and operations for sequential production as at Ford, he replaced 

single-purpose machine tools with standard or general-purpose machines.  He expanded 

production facilities and added new assembly plants, each run independently by a local 

manager.  A Fisher Body plant was then attached to each assembly facility so that body 

production was closely coordinated with the daily output of each assembly plant.  

Highland Park had been extremely efficient, but also inflexible, because “every machine 

tool and fixture was fitted for the production of a single product whose every part had 

been standardized to the minutest detail” (Hounshell, 1984, p. 288).  In contrast, 

Chevrolet production had been designed to accommodate change and marked the 

beginning of what Hounshell calls flexible mass production.  With the addition of 

automated factory equipment in the 1950s, flexible mass production would also allow for 

variety within a product run – body style, color, trim, and powertrain options.   

5.3 Birth of Chrysler, 1920-1930 

Walter Chrysler left GM in 1920, unable to tolerate Durant’s “erratic decision 

making and arbitrary interference in Buick’s operations” (Flink, 1988, p. 68).  Later that 

year, Chrysler was hired as executive vice-president of the Willys-Overland Company in 

an attempt to save its holding company, the Willys Corporation, which suffered from the 

post-World War I recession.  While at Willys, Chrysler hired three talented engineers 

away from Studebaker – Fred Zeder, Owen Skelton, and Carl Breer – who brought with 

them twenty-eight men from Studebaker’s engineering department.  The three ‘wizards’ 

designed an entirely new and far superior car featuring a six-cylinder in-line engine, an 
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updraft carburetor, and semi-elliptic front and rear springs (Hyde, 2003).  Chrysler 

planned to give the car his name and manufacture it under the Chrysler Motor Company, 

a newly incorporated division of the Willys Corporation.  However, the parent 

corporation went into receivership in November, 1920, before the vehicle went into 

production.  The Willys plant and the plans for the new car were auctioned off, purchased 

by the new Durant Motors, which built and sold the car as the Flint. 

Chrysler then moved on to supervise the reorganization of the failing Maxwell 

and Chalmers Motor Companies which were in merger negotiations.  Maxwell had bailed 

out Chalmers, a low-volume high-price producer, by leasing its plants and keeping its 

automobiles in production.  Chrysler restored the Maxwell Company’s reputation and 

returned the company to profitability by improving the faulty Maxwell automobile 

design, introducing a new axle in 1921 and aluminum pistons in 1922.  Chrysler then 

hired the Zeder-Skelton-Breer team, which had opened a consulting firm named ZSB 

Engineering, to design a new six-cylinder car to be named the Chrysler Six.   

The settlement of a lawsuit against Chalmers in late 1922 placed the company in 

receivership, allowing the Maxwell Motor Corporation to purchase the Chalmers 

property outright.  Maxwell continued production of the Chalmers car through 1923 then 

retooled the plant to produce the Chrysler Six.  In 1923, Chrysler signed a four-year 

contract to serve as president of the Maxwell Motor Corporation – the only way he could 

obtain the support of the board of directors for his new car.  The following year, Maxwell 

introduced the Chrysler Six at the New York Automobile Show.  The fast, powerful, and 

stylish automobile was an instant success at the show and in the market.  Advertisements 

for the Chrysler focused on its technological superiority and emphasized the use of Fisher 
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bodies as proof of its overall quality.  The speed and power of the stock automobile were 

proven by a number of racing successes in 1924 and 1925. 

Though not radical in design, the moderately priced automobile offered a host of 

advanced technological features as standard equipment, including a high-compression 

engine (4.7:1 versus the typical 4:1), hydraulic four-wheel brakes, and balloon tires.  The 

Chrysler Six was the first moderately-priced car to offer a high compression engine, a 

technology that was enabled by the 1923 introduction of Ethyl (leaded) gasoline and 

improved crankshaft balancing.  Low-pressure balloon tires were developed by Firestone 

in 1923 (Abernathy et al. 1983) and offered a smoother ride than older style tires.64  They 

were included as standard equipment on fourteen of the models displayed at the 1924 

show (Hyde, 2003).  Duesenberg first introduced four-wheel mechanical brakes, a 

European import, in 1922 by adding standard drum brakes to the front wheels.  Malcom 

Loughheed (later changed to Lockheed) developed a four-wheel hydraulic braking 

system that Duesenberg adopted on its Model A in 1923.  In October of 1923, Maxwell 

offered hydraulic brakes as an option on its Chalmers models.  However, the ZSB team 

found that the Lockheed brakes leaked hydraulic fluid under heavy use.  Working with 

the Manhattan Rubber Company, ZSB designed a rubber cup to replace the rawhide one 

employed by Lockheed to seal in the fluid when braking.  ZSB allowed Lockheed to 

incorporate the change into his design in exchange for free licensing of the Lockheed 

brake system.  The 1924 Chrysler catalog referred to the system as the ‘Chrysler 

Lockheed hydraulic four-wheel brake’ (Hyde, 2003, p. 32).  

                                                 
64 Abernathy et al. (1983), indicate that Firestone’s new low pressure balloon tires were first introduced on 
Ford automobiles in 1923.  Although Firestone supplied Ford, Nevins and Hill (1957) state that Ford was 
late in adopting this innovation. 
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In mid-1925, the company began selling a modified Maxwell Model 25 as the 

Chrysler Four and discontinued the Maxwell line.  That same year, Chrysler reorganized 

the firm as the Chrysler Corporation.  Chrysler offered “new and improved” models 

approximately every twelve months and expanded the variety of cars it offered to include 

four distinct lines, with each line offering four to nine body styles.  Sales tripled from 

31,429 in 1924 to 106,857 in 1925 and reached 192,083 in 1927.  By the late 1920s, the 

Chrysler Corporation had established itself as a leader in technological excellence and 

innovation and according to Nevins and Hill (1957, p. 444), “boasted of an engineering 

laboratory that would have done credit to Yale or Cornell.” 

The biggest challenge for the company during this time was expanding production 

fast enough to keep pace with demand, a difficult proposition since building new 

facilities was both costly and time consuming.  Chrysler relied on the Fisher Body 

Company to supply most of its car bodies, but purchased a large body plant directly 

across from one of its Detroit facilities in 1925.  After Fisher Body became wholly owned 

by GM in 1926, most Chrysler bodies were supplied by the Briggs Manufacturing 

Company, the Edward G. Budd Manufacturing Company, and the Murray Corporation.  

The company expanded its existing manufacturing facilities in 1928. 

However, the biggest increase in plant capacity came when Chrysler purchased 

Dodge Brothers in 1928.  The Dodge brothers had launched their automobile 

manufacturing business in 1913 after ten years of manufacturing parts worth up to 60% 

of the value of Ford automobiles.  Because of their reputation, when the first Dodge car 

was introduced in November, 1914, it was an instant success.  Perhaps the most 

significant feature of the new four-cylinder Dodge was the use of an open all-steel body 
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produced by Edward G. Budd (see section 5.4.2).  The steel body gave the car superior 

strength and allowed the use of an oven-baked enamel finish which reduced finishing 

time to five days. 

During the first year, Dodge only offered one model in two body styles.  In 1915, 

it added a third ‘Winter Model’ which was merely the standard touring or roadster Dodge 

with a detachable steel top and removable glass windows.  The Dodge brothers followed 

a strategy similar to Ford’s, eschewing annual model changes and instead making minor 

improvements to the existing design.  In 1917, the wheelbase of the Dodge automobiles 

was increased and a coupe and a sedan were added to the line.  Two delivery trucks were 

introduced in 1918, and a four-door sedan, the first of its type in the industry, was added 

in 1920.  However, there were few styling changes to the Dodge models from 1914-1920 

(Hyde, 2003).   

While at the New York Automobile Show in January, 1920, both of the Dodge 

brothers contracted influenza.  The disease took the life of John Dodge on January 14.  

Weakened by his illness and devastated by his brother’s death, Horace spent much of the 

year in Florida and died on December 10.  The company continued to operate 

successfully under the leadership of Frederick J. Haynes, whom the brothers had hired in 

1912 to oversee production.  Following the Dodge brothers’ policies, Haynes pursued 

engineering improvements and cost reductions rather than cosmetic changes.  In the fall 

of 1921, the share of closed car bodies in the Dodge lineup jumped to 35%.  For the 1923 

model year, Haynes and Budd jointly designed two all-steel closed-body models that 

were introduced in the summer and fall of 1922, another industry first.  Since these 
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models used a steel frame and steel panels, they allowed Dodge to use a baked enamel 

finish on its closed-body cars. 

In 1925, the Dodge widows sold the company to a banking house whose 

executives had no experience manufacturing or selling cars.  The new management 

introduced an entirely new line of automobiles in 1927, all more expensive than the old 

four-cylinder Dodge models.  Though solid and comfortable, they had few innovative 

features and failed in the market; Dodge sales and profits plummeted.65  Though the 

management correctly perceived a market shift to larger engines and more luxurious cars, 

in going ‘up-market,’ Dodge had abandoned its long-time customers and entered a 

market segment where it had no reputation (Hyde, 2003).  The company had spent nearly 

$15 million retooling plants to produce the new automobiles and now could not sell them.  

In a year when the price of automobile stock generally increased 50%, the price of Dodge 

Brothers stock fell, prompting the bankers to sell. 

As luck would have it, Chrysler desperately needed to increase his production 

capacity and was as anxious to buy Dodge as the bankers were to sell it.  The Chrysler 

line was popular and profitable and the company already had plans to introduce two new 

models.  The new low-priced Plymouth was intended to compete with Ford and 

Chevrolet, while the mid-priced DeSoto was to compete with Dodge.  However, 

competing with Ford and Chevrolet in the low-priced car market would have been 

extremely difficult without a large established dealer network.  The acquisition of Dodge 

doubled Chrysler’s sales outlets with the addition of a distribution and dealer network 

                                                 
65 Factory sales of automobiles fell 1% (42,800) in 1926 and 20% (755,800) in 1927, then rebounded by 
28% in 1928 to exceed 1925 sales.  In 1926, Ford sales alone dropped nearly 450,000 from a high of nearly 
2 million units.  In May of 1927, Ford shut down the Rouge plant to retool for the new Model A and 
production ceased for almost a year.  This shutdown left the low-priced field wide open for Chevrolet and 
the new Chrysler Plymouth. 
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that was generally considered one of the best in the industry (Hyde, 2003).  Chrysler was 

also especially interested in adding casting and forging capabilities and the Dodge 

Brothers plants had large, modern, and efficient facilities. 

According to Hyde (2003), the purchase of Dodge was not just intended to 

increase production capacity and capabilities, but was a strategic move to ensure the 

long-term survival of the company.  Since Chrysler and Dodge models overlapped in 

terms of price categories, the purchase reduced competition in those segments while 

increasing Chrysler’s market share within them.  Most significantly, the merger would 

allow Chrysler to operate more like, and therefore compete with, the dominant force in 

the industry – General Motors.  A larger size and sales volume enabled the operation of 

finance and export companies; greater production of parts; and economies in research, 

engineering, and purchasing.  When the merger was complete on July, 1928, Dodge 

became a division of Chrysler, making it the third largest U.S. automaker behind GM and 

Ford.  An editorial in the Automotive Daily News noted that the industry was now 

dominated by a ‘big three’ that accounted for nearly 75% of passenger car manufacturing 

(Hyde, 2003). 

5.4 Enclosed Steel Bodies 

The earliest automobile bodies were styled and built similarly to carriages, and 

even the names were borrowed from this tradition: stanhope, surrey, brougham, phaeton, 

tonneau, cabriolet, landaulet, and wagonette.  The techniques for shaping wooden bodies 

– steaming and bending – resulted in simple curves with little distinguishing style 

characteristics from one make to another.  The use of sheet metal and aluminum, 

beginning around 1900, allowed for greater styling differences.  Columbia Electric 
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produced the first enclosed body, constructed of a wood frame and steel panels, in 1898.  

Marmon introduced the first all metal (open) body using cast aluminum in 1902 

(Abernathy et al., 1983).  However, closed wooden bodies were expensive, costing 30-

50% more than open bodies (Epstein, 1972), and did not hold up well to the vibration and 

shock of rough roads.  The use of metal was also expensive and therefore was found only 

in high-priced automobiles and limousines.  In 1916, 98% of new cars bodies were open 

(Epstein, 1972) and as late as 1920, 85% of car bodies were constructed of wood 

(Abernathy, 1978).66  Motorists could protect themselves from the elements by 

purchasing canopy tops from automobile or accessory manufacturers.  In 1905, Peerless 

introduced a folding top which became standard equipment by 1916 (Epstein, 1972).   

Beginning in 1916, the percentage of automobiles manufactured with closed 

bodies rose from a mere 1.5% to 17% by 1920 and reached 72% by 1926.  Epstein (1972) 

credits the increasing popularity of closed bodies in part to road improvements which 

reduced the vibrations and shocks that damaged automobile bodies.  In addition, quantity 

production brought costs and prices down and extended the market for closed bodies 

beyond the wealthy.  The difference in price between open and closed bodies fell to 

around $100 by 1926, costing about the same as optional folding canopy tops offered 

prior to 1916 (Epstein, 1972).  The Hudson Motor Company was among the first 

manufacturers to produce closed-body cars in volume, introducing the affordable Essex 

coach at $1495 in 1921.  By 1925, the price of the four-cylinder Hudson coach had 

                                                 
66 The wood or wood and steel automobile body and chassis were attached to a frame consisting of two 
long bars.  Initially the frame was constructed of wood, which produced a quiet ride.  In 1903, A.O. Smith 
introduced a pressed steel frame (Abernathy et al., 1983).  As manufacturers began instituting mass 
production techniques, they found suppliers could not produce wood frames quickly enough to meet the 
speed of moving assembly lines.  As the industry shifted to pressed steel frames, A.O. Smith soon became 
the leader in frame production, a position it held for most of the twentieth century (Rubenstein, 2001). 
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dropped to $895, placing it within the low-price field (Sloan, 1964).  One firm, the Fisher 

Body Company, is largely responsible for the development of inexpensive closed bodies. 

Meanwhile, the use of all-steel bodies was also rising thanks to innovations 

pioneered by the Edward G. Budd Company that significantly reduced production time 

and costs.  Manufacturing wooden bodies entailed a large amount of hand crafting that 

simply could not be replaced with Fordist production techniques.  The adoption of all-

steel bodies banished the last foothold of the craft system from automobile 

manufacturing.  Steel also improved the strength and flexibility of bodies, making them 

quieter and more comfortable.  At the same time, it allowed greater variety in body 

styling.  By 1925, Budd’s all-steel technology was used in 50% of U.S. body production. 

5.4.1 The Fisher Body Company 

The industry shift to closed bodies is attributable to Fred J. and Charles T. Fisher 

who formed the Fisher Body Company in Detroit in July, 1908.  The brothers were third 

generation vehicle craftsmen with experience in carriage building and in motor vehicle 

body manufacturing for the C.R. Wilson Body Company, then the largest U.S. 

automobile body firm.  The Fisher’s younger brothers, six in total, joined them in the 

business later.  While many automobile body builders, particularly older ones, employed 

machinery and styling inherited from the carriage business, the Fishers understood the 

specific needs of the automobile for strength and resilience and were therefore more 

progressive.  Most notably, for two years they actively solicited orders for closed bodies, 

believing it would extend the driving season and expand the market for motor 

automobiles especially by appealing to women.  In 1910, Cadillac ordered the first ‘large’ 

volume of closed bodies, 150 units, prompting the Fishers to organize the Fisher Closed 
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Body Company (Pound, 1934).  The Fishers quickly gained a reputation for building high 

quality bodies.  By 1916, after merging all their interests into a single company, the 

Fisher Body Company was a leader in the industry, manufacturing 370,000 car bodies a 

year. 

As Fisher production expanded, so did concerns about capital and future demand.  

If the brothers issued additional stock to new holders, their control of the company could 

become weakened.  In addition, the automobile industry was becoming increasingly 

concentrated and their customers could switch to a new supplier or begin manufacturing 

their own bodies.  The Fishers’ best options were to either begin producing their own 

automobiles or merge with an existing manufacturer.  As they made tentative plans for 

the former option, two manufacturers initiated negotiations for mergers.  William Durant 

had tried unsuccessfully to employ four of the Fisher brothers at GM and was alarmed by 

the potential loss of a source for closed bodies, which he believed might be of strategic 

importance.  In 1919, GM outbid the competitors, purchasing 60% of the Fisher Body 

Company.  GM signed a ten year contract to purchase, at cost plus 17.6%, as many closed 

car bodies from Fisher as it could supply, though Fisher was free to produce bodies for 

other customers.  Under the terms of the merger, Fisher Body and GM each selected half 

the members of the board of directors for the reorganized Fisher Body.  The firm’s stock 

was placed in a five year voting trust with each side assigning two trustees.  Fisher 

retained a majority control in a newly appointed operating committee, but GM secured 

majority control of the finance committee.  For the next five years, Fisher essentially 

would be allowed to continue operating as an independent firm.  However, the brothers 
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were contractually obligated to remain with the company for those five years (Coase, 

2000; Freeland, 2000).   

At $26.7 million, GM’s purchase price of the 60% share of Fisher Body was 

exceptional even in a year of frenzied acquisitions.  But according to Pound (1934, p. 

182), the significance of this event went far beyond the value of the physical assets 

obtained: 

The importance of this alliance, which was later extended to the point of 
complete merger, can hardly be overestimated.  It gave General Motors first call 
on the production of the largest and best equipped body-building plants in the 
world.  With the steady trend toward closed cars, the Fisher brothers… had 
pushed forward until they occupied a foremost position in their line both as to 
quantity and quality.  The Fisher name had become known far and wide, and the 
presence of a Fisher body on any car recommended it to the consuming public.  
By this one decisive step the General Motors Corporation wrote off future body 
difficulties by placing that business in the hands of outstanding specialists in the 
field of body manufacture.  With advancing complexities in design and 
manufacture, the wisdom of this alliance has become increasingly manifest. 

Apparently, the Fisher brothers should not have been concerned about losing their 

customers, because they possessed a scarce resource – knowledge.  Freeland (2000) 

argues that GM’s purchase of a majority share in Fisher Body was motivated by “the 

desire to acquire and retain the specialized knowledge and services of the Fisher brothers.  

Unified ownership was thus driven much more extensively by the attempt to capture 

scarce knowledge than has been recognized.” 

While the work provided by Fisher Body continued to be efficient and of high 

quality, GM officials felt that the Fisher brothers were not sufficiently aware of or 

concerned with GM’s needs, particularly in terms of expanding body production by 

locating new plants near GM assembly facilities.  Concerned first with the bottom line for 

their own company, the Fishers preferred to expand existing facilities instead of building 

entirely new plants.  In order to improve coordination between the two companies, Pierre 
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du Pont placed Fred Fisher on GM’s board of directors in 1921 then appointed him a 

member of the executive committee in 1922.  These positions involved him in making 

broad decisions regarding GM’s production, product design, and pricing (Chandler and 

Salsbury, 1971).   

As the end of the five year employment contract neared in October, 1924, closed-

body cars were increasingly popular and GM became concerned about retaining the 

Fishers.  The possibility of a merger was discussed as early as 1922, but the brothers had 

no desire to become GM employees and were reluctant to see the family business 

disappear.  In addition, they wished to continue receiving financial incentives comparable 

to the lucrative profit-sharing terms of the original contract, while GM was concerned 

that such an arrangement would limit Fisher Body’s ability to expand with GM.  A new 

agreement was brokered that compensated the brothers through GM’s stock incentive 

plan rather than from Fisher’s profits.  To receive the full benefit, the brothers would 

have to stay with the company until 1929.  Fred Fisher was also appointed to GM’s 

finance committee while Lawrence Fisher joined the GM board of directors and the 

executive committee.  This agreement retained the knowledge and skills of the brothers 

and had the added benefit of further aligning the interests of the two companies.  From 

this time, it apparently was understood that the GM-Fisher relationship was permanent 

and the two firms would eventually merge (Coase, 2000; Freeland, 2000).   

Despite the improvements in communication and coordination between the firms, 

availability of bodies continued to limit automobile production as late as 1925.  The 

wooden frames in Fisher bodies limited the use of heat to speed drying and therefore 

created a production bottle neck.  According to a GM publication, in 1923, Fisher 
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“pioneered the use of lacquer in place of paint and varnish for bodies.  This was a vital 

step in attaining volume production, thereby helping to bring the closed car within the 

reach of the average buyer” (cited by Nieuwenhuis and Wells, 2007).  However, this 

innovation originated at Du Pont (see section 5.2.4.4) and its early adoption at Fisher was 

facilitated by GM’s close relationship with both firms.  In fact, according to Cray (1980), 

the Fisher’s were reluctant to adopt the new finish because of its dull finish and 

difficulties getting the paint to adhere.  Though GM sought an exclusive license for the 

new Duco lacquer, Du Pont made the paint available to the entire motor industry in 1925 

(Cray, 1980; Sloan, 1964).  The shift to lacquer reduced the time required to paint and 

trim a body from four weeks to six hours.  And, as GM (cited by Nieuwenhuis and Wells, 

2007) later pointed out, it “ushered in a new era of color in automotive styling.” 

In 1925, the entire GM line was redesigned with an increasing emphasis on color 

and style and a growing number of closed bodies.  Sales were booming and GM needed 

to expand production, which meant Fisher Body needed to expand as well.  The Fisher’s 

were still reluctant to move to new facilities close to GM assembly plants, in part because 

they still provided bodies to other manufacturers.  Closed-body styling was a primary 

means of product differentiation and the Executive Committee was concerned that 

control of a strategic asset would be compromised if the remaining 40% of Fisher Body’s 

stock were sold to outside interests, such as a speculator like Durant.  Only a year after 

GM reached a new employment contract with the Fishers, Pierre du Pont once again 

suggested the companies merge.  Du Pont and Fred Fisher negotiated an exchange of 1.5 

shares of GM stock for each remaining share of Fisher stock, half of which was owned by 

the brothers.  Fisher Body became a fully owned GM division.  Charles Fisher joined the 
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Executive Committee and Sloan appointed Lawrence Fisher head of Cadillac.  All but 

one of the six Fisher brothers eventually served as senior executives at GM.  GM’s 

complete ownership of Fisher Body cut off competitor’s access to the most important 

supplier of closed bodies and helped propel GM to the top position in the industry 

(Freeland, 2000).  In 1934, Fisher would be responsible for the innovation that removed 

the last vestige of fabric from auto bodies: the turret top. 

5.4.2 Edward G. Budd Manufacturing Co. of Philadelphia  

After graduating from high school, Edward G. Budd apprenticed as a machinist in 

a Smyrna, Delaware, iron works firm.  Around 1890, Budd moved to Philadelphia where 

he worked for a foundry and a manufacturer of machine tools and metal presses.  The art 

of pressing steel sheets was a relatively new idea, dating back to around 1860.  In 1911, 

The Horseless Age (cited in Grayson, 1978) wrote “by the term pressed steel, engineers 

generally understand that the material has been worked into shape from plate or tube by 

means of stamping and drawing processes performed either while the material is hot or, 

in some cases, cold.  The process is therefore one which usually changes the form of 

rather than the thickness of the material operated upon…” 

Budd became acquainted with a Connecticut mechanic who had designed a pulley 

made of sheet steel which was lighter and cheaper to produce than traditional cast iron.  

When his friend received financing to produce the new pulley, Budd joined him as a 

draftsman and engineer at the American Pulley Company.  The pulleys proved to be 

strong and flexible and were a market success.  As the business expanded, American 

began producing stamped steel parts for Hale & Kilburn, a furniture manufacturer that 

specialized in seating for railways, subways and trolleys.  Most Hale & Kilburn’s parts 
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were produced using cast iron, and in 1902, the company hired Budd away from 

American to develop lighter, cheaper pressed steel parts.  Budd and co-worker Morris 

Lachman accomplished these goals using new techniques in oxy-acetylene welding 

enabled by the work of Frenchmen Henry Le Chatelier, Edmond Fouche and Charles 

Picard and Americans Thomas Wilson, Major J. Turner Morehead, and Eugene 

Bournonville.   

Budd and Lachman also experimented with resistance and arc welding.  The 

electric resistance welder was developed around 1888 by Elihu Thomson, an Englishman 

working in the U.S.  In 1892, C.L. Coffin of Detroit received a U.S. patent for an arc 

welding process using a metal electrode whereby the metal from the electrode was used 

to fill the joint.  With this new expertise in welding and pressed steel fabrication, Budd 

designed all-steel passenger rail cars that Hale & Kilburn produced for the Pullman 

Company in the early 1900s.   

Budd soon began experimenting with shallow-draw sheet metal stamping, and 

produced a small number of sheet metal panels for the King and Paige Co.’s automobile 

bodies.  In 1909, Budd was contacted by Emil Nelson, the chief engineer of the Hupp 

Motor Car Co., for help developing an all-metal body.  Although advances in sheet metal 

manufacture made possible larger stampings of uniform thickness, the compound curves 

demanded by automobile bodies still required multiple stampings connected by hand 

welding and no Detroit firm was willing to contract to build an all metal body.  Budd 

already believed that car bodies should not have a piece of wood “as big as a toothpick,” 

and eagerly embraced the project (Grayson, 1978).   



 

399 

Since they lacked the equipment and experience necessary to draw complex 

shapes from a single piece of metal, Budd and Nelson designed the cowl and tonneau 

from formed and welded panels, and devised a system to support the parts during 

welding.  Hale & Kilburn began supplying Hupp with pressed steel body panels and 

Budd began development of an all-steel body.  In 1911, Budd developed and Hale & 

Kilburn built for Hupp the first automobile body that used steel-reinforced wood frames, 

called armored wood, to which sheet steel was attached.  In 1912, Hupp introduced the 

Model 32, the first car with an all-steel body produced by Hale & Kilburn (Grayson, 

1978).  At this time, the painting of bodies was a production bottleneck.  Because of the 

wood frames, the bodies could not be baked to speed drying because this could result in 

fires.  Gluing, sanding, staining, and varnishing took weeks.  By adapting stove 

enameling on the Model 32, Hubmobile reduced the process to one day (Grayson, 1978; 

Nieuwenhuis and Wells 2007). 

In 1911, Hale & Kilburn was sold to J.P. Morgan and the management was 

replaced.  The new management had no understanding of the stamped metal business and 

Budd had difficulty tolerating the stream of senseless orders.  In the same year, Robert C. 

Hupp left the Hupp Motor Car Company.  In 1912, Budd resigned from Hale & Kilburn 

and Nelson resigned from Hupp.  Although the Hupp Company continued to manufacture 

the Model 32, it incorporated a traditional wood and steel body. 

In June, 1912, Budd formed the Edward G. Budd Manufacturing Co. and hired a 

handful of coworkers from Hale & Kilburn.67  Budd’s son later claimed “[i]t is probably 

true that this small group of people represented the greatest aggregate knowledge that 

                                                 
67 One of these, Joseph Ledwinka, would later be responsible for numerous lucrative patents and would be 
a significant factor in Budd’s success. 
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existed in the Country at that time, of the art of making dies and using presses for the 

formation of light gauge steel parts” (Grayson, 1978).  Budd believed that steel was the 

material best suited for manufacturing both automobile bodies and interior frames.  Steel 

“gave the elasticity that was desirable so that some flexibility of the chassis was absorbed 

by the flexibility in the body.  It gave greater strength at less weight.  Our art reduced to 

the minimum the number of joints in the body and so kept the body water tight, wind 

tight, and quiet” (Grayson, 1978). 

Budd continued to perfect the techniques required to manufacture all-steel bodies, 

eventually developing jigs and fixtures that prevented the stamped steel parts from 

deforming during the welding process.  Soon after being appointed president of GM in 

1912, Charles Nash ordered a sample metal body for Buick then ordered 2,000 metal 

touring (open) bodies for GM’s Oakland division.  Willys-Overland also ordered 2,500 

metal touring bodies that year for its recently purchased Garford Truck Company.  Budd 

purchased a facility in Detroit to paint and upholster bodies shipped from Philadelphia.  

Unfortunately, Garford filed for bankruptcy soon afterward and Oakland demand 

dropped.  Budd was forced to sell the Detroit facility, but was able to keep the company 

afloat by manufacturing truck bodies, automobile fenders, and stamped panels and trim 

for railway cars. 

The breakthrough came for Budd when the Dodge Brothers ordered 5,000 all-

steel bodies for their new automobile in 1914.  With its instant success, Dodge ordered 

50,000 all-steel bodies in 1915.  In June of 1915, Budd was granted a patent on the design 

of a welded all-steel touring car body.  Demand for the new Dodge exceeded Budd’s 

production capabilities, so the C.R. Wilson Body Co. supplied Dodge with bodies using 
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wooden frames (Grayson, 1978; Nieuwenhuis and Wells, 2007).  In addition to complete 

bodies, Budd supplied stamped parts for Buick, Reo, Willys-Overland, and later, 

Chevrolet. 

In 1916, Budd introduced a hard-top with optional side curtains that could be 

attached to the Dodge chassis during inclement weather and removed during fair weather, 

thus creating the Dodge ‘Winter Model’.  In 1917, Budd developed an all-steel sedan for 

Dodge, but dedication of Budd facilities to the war effort delayed production.  In 1922, 

Budd and Dodge’s Frederick Haynes developed an all-steel coupe body for Dodge that 

was introduced in the 1923 model year.  It was the industry’s first all-steel closed-body 

car.  Due to limitations in sheet metal width and concerns over noise problems, the roof 

section still used a wood and wire frame over which fabric was stretched.   

As closed bodies gained in popularity during the 1920s, Budd expanded 

production rapidly.  Significant economies of scale realized from high production 

volumes combined with improved welding and engraving machinery allowed Budd to cut 

the average body price by 40% in 1922.  By 1925, Budd’s all-steel technology was used 

in 50% of U.S. body production (Nieuwenhuis and Wells, 2007).  Ledwinka continued to 

improve manufacturing techniques, developing a huge welding machine capable of 

producing steel sheets 140 inches long – longer than those rolled by steel mills.  This 

allowed Budd to stamp entire side panels from a single sheet (Grayson, 1978).   

Although Budd did not invent the steel body or any of the core technologies used 

– production of sheet steel, forming by hydraulic presses, resistance welding, and the use 

of jigs and fixtures to prevent distortion – he was the first to see the possibilities for these 

processes to revolutionize body manufacturing.  His synthesis and adaptation of existing 
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tools and processes eliminated the remaining need for craft techniques in body 

production, beginning with the elimination of handcrafted wood components and ending 

with the replacement of hand bolting of steel panels by automated welding in 1925 

(Abernathy et al., 1983).  Nieuwenhuis and Wells (2007) assert that researchers have 

under-valued Budd’s contributions to the displacement of craft manufacturing by mass 

production. “[T]he early Fordist revolution in mass manufacturing of cars was 

incomplete, and required the introduction of Budd’s all-steel body technology to resolve 

key bottlenecks in the manufacture and painting of vehicle bodies and thereby enable a 

transformation of the industry.”  Without a doubt, the closed steel body marked a major 

change in the functional specifications and design attributes of the automobile.  

According to Abernathy (1978, p. 18), “The very concept of the automobile was changed 

for the consumer by an early technological advance in body design.  The introduction of 

closed steel bodies during the 1920s raised a whole new set of criteria for automotive 

design – passenger comfort, room, heating and ventilation, and quietness of ride.” 

5.5 Time Sales and Financing 

Even before 1910, consumers had become willing to forego savings and 

investments or go into debt to own an automobile.  Banks generally disapproved of 

financing the purchase of luxury items like “pleasure cars,” a perspective which persisted 

until sometime in the 1920s (Sloan, 1964).  As a result, Americans began mortgaging 

their homes to obtain the necessary cash, leading sometimes to foreclosure (Flink, 1970).  

However, the automobile became more utilitarian and more affordable just as the wealthy 

market became saturated.  Dealers soon found that some promising sales prospects 

required extension of credit.  In 1911, the Studebaker Corporation announced it would 
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accept dealer-endorsed notes from farmers and other responsible buyers (Smith, 1968; 

Flink, 1988).  In the following years, dealers began arranging for customers of financial 

standing in the community to make a down payment of 66-75% with the balance due in 

one or two payments within one to three months (Epstein, 1972).    

Success with these arrangements emboldened some dealers to develop installment 

plans under which they held title to the car until it was completely paid for.  This 

technique required that dealers make arrangements with local banks and finance 

companies.  While banks still were not willing to handle large quantities of loans for 

automobiles, they were willing to lend money to specialty finance companies.  

Experience soon showed that these installment plans were a good low-risk investment 

when the automobile was well insured and the payment plan took into account the 

depreciation of the car, which was used as security against the loan.  By assessing 

relatively high fees for these low-risk loans, the finance companies prospered (Pound, 

1934). 

As the scale of the automobile business grew, dealers shouldered ever-increasing 

costs of new car inventories and the facilities required to display and stock them.  In 

addition, they needed to provide service facilities and space for stocking and selling used 

cars.  As a result, the specialty finance companies began financing dealer stock as well as 

consumer purchases (Pound, 1934).  Under increasing pressure from their dealers, 

manufacturers of moderately priced cars began to view credit sales as an alternative to 

Ford’s strategy of progressively lowering prices (Flink, 1988).  In 1915, John Willys 

created the industry’s first captive lending agency to finance time sales of Overland and 

Willys-Knight cars (Sloan, 1964; Cray, 1980).  In 1916, the company was reorganized to 
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finance twenty-one makes of cars, including all GM makes, Dodge, Ford, Hudson, 

Maxwell, Reo and Studebaker (Flink, 1988).   

GM became the first manufacturer to directly finance consumer purchases of new 

and used cars when Durant and Raskob created the General Motors Acceptance 

Corporation (GMAC), a GM owned subsidiary, in 1919.  GMAC also financed wholesale 

purchases by GM dealers.  According to Sloan (1964, p. 306), GMAC was established to 

prove the validity of consumer financing of automobiles and to “crusade for reasonable 

rates.”  Over the next few years, GMAC formulated and refined policies regarding loan 

terms and structure in order to minimize the risks associated with default.  GM also 

commissioned a multi-year study by economist E. R. A. Seligman who reported that 

installment credit strengthened consumers’ willingness and ability to save, increased 

purchasing power, and stabilized and increased production.   Published in 1927, the study 

“had a strong influence… in bringing about an acceptance of installment selling among 

bankers, businessmen, and the public” (Sloan, 1964, p. 306). 

The use of installment sales became an important strategy in reducing swollen 

inventories during the recession that followed World War I, particularly the stock of used 

cars traded in as a down payment on a new automobile.  As the automobile market 

saturated in the 1920s and manufacturers began pursuing annual model changes to 

stimulate new car sales, disposing of used cars became a major issue and consumer credit 

became essential to the industry.  Because an inexpensive used vehicle offered more 

options and conferred more status than a new Model T, the sale of these cars on easy 

credit also cut into Ford’s market.  This effect was reinforced by the fact that Henry Ford 
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refused to engage the Ford Motor Company in consumer lending and did not endorse 

installment sales by Ford dealers.   

By early 1921, there were over 110 automobile finance companies in existence 

and by 1925, 75% of new and used automobile sales were made on time-payment plans 

(Flink, 1988; Epstein, 1972).  Prior to the 1920s, merchants arranged time-payment 

purchasing for furniture, sewing machines and pianos, and mortgages were commonplace 

for buying homes.  But now the concept was increasingly applied to all durable consumer 

goods and was rapidly becoming a mainstay of the U.S. economy (Rae, 1965; Flink, 

1988).  One dealer in 1928 went so far as to assert that it was practically a patriotic duty 

to buy and sell on credit, since keeping Americans wanting more than the bare necessities 

kept Americans working and thus kept the economy growing (Cray, 1980). Eventually, 

even the Ford Motor Company was forced to followed suit.  Ford established a credit 

corporation to fund Ford dealers and customers in 1928, concurrent with the changeover 

from the Model T to the Model A.  Hounshell (1984, p. 293) deemed the new Universal 

Credit Corporation “perhaps the most revolutionary change (considering Ford’s 

detestation of credit buying) wrought by the changeover.” 

5.6 Technical and Institutional Context 

5.6.1 World War I, Recession, and Economic Recovery 

From the beginning of World War I, the European automobile industry played a 

key role in what would be the world’s first mechanized war.  Rapid conversion to the war 

effort led to a phenomenal expansion of capacity and employment, mainly for the 

production of trucks, tractors, and tanks, but also for diversification into munitions, 
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aircraft engines, airframes, and other items useful to the military.  The war effort also led 

to the modernization of French, British, and Italian factories. 

With the possibility of U.S. involvement in the war looming, the U.S. government 

called on the domestic automotive industry to help with American preparedness.  Hudson 

vice-president Howard Coffin was tapped to serve on the Navy Department Advisory 

Committee in August, 1915, then was appointed chair of the Committee on Industrial 

Relations, an agency of the Council of National Defense, in 1916. 

Even after the nation entered the war on April 6, 1917, U.S. automobile 

production continued unabated until well into 1918, making 1917 a banner year for the 

industry.  Hundreds of automobile industry executives volunteered for the war effort, 

though most of the industry’s support came from the smaller manufacturers whose 

market position had been deteriorating despite the boom conditions.  Because of their 

smaller investments in specialized plants and equipment, these firms were able to convert 

to wartime production more easily and at lower cost than Ford and GM.  In addition, the 

luxury automobile chassis of Locomobile, Packard, Peerless, and White were easily 

adapted to support two- and three-ton truck bodies for the military.  By 1916, Packard 

was already making more trucks than cars.  White had received orders to supply trucks to 

the Allies at the onset of hostilities and had found truck production so profitable that it 

discontinued making cars in 1917.  The Nash Motor Company, formed in 1916 from the 

ashes of the Thomas B. Jefferey Company, grew to be the leading truck manufacturer by 

the end of the war (Rae, 1959; Flink, 1988). 

Henry Ford had taken a pacifist stance against the war in late 1915, but revised his 

position and vowed to stand behind the president when diplomatic ties with Germany 
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were severed in early 1917.  Ford Motor Company engineers were responsible for 

process innovations that allowed inexpensive mass production of Liberty engine 

cylinders, resulting in a contract for Ford to produce all the cylinders for Liberty engines 

produced in the U.S. and a contract to make 5,000 complete engines.  Ford produced a 

wide variety of other items for the war effort, including armor plate, caissons, shells, steel 

helmets, submarine detectors, and torpedo tubes.  Ford also built 60 Eagle Boats and 

completed two tank prototypes too late to be used in the conflict.68  The company’s most 

significant contribution, however, was 39,000 Model T cars, ambulances, and trucks 

which supplied both American and Allied forces (Nevins and Hill, 1957). 

William Durant of GM had also opposed war production, refusing Henry Leland’s 

request to covert Cadillac facilities to the production of Liberty engines.  Leland and his 

son immediately resigned and formed the Lincoln Motor Company to manufacture the 

engines.  Shortly thereafter, under the mounting pressure of public opinion, Durant began 

token production of Liberty engines at both Cadillac and Buick (Flink, 1988).  The 

Liberty engine itself had been designed for mass production by Packard engineers as a 

replacement for the Allied engine designs which required hand machining (Rae, 1965).   

Supervision of the automobile industry had been assigned to the Automobile 

Products Section of the Council of National Defense and the War Industries Board.  To 

coordinate government requirements and industry facilities, automobile manufacturers 

established a committee with representatives of the National Automobile Chamber of 

Commerce, the Ford Motor Company, and the parts makers.  In reality, the committee 

largely functioned to prevent government interference with industry operations.  In 

                                                 
68 Eagle Boats were small (200-foot) steel submarine chasers intended for use in the battle against German 
U-boats. Only seven were delivered before the signing of the Armistice and none saw service in WWI. 
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response to an apparent steel shortage in late 1917, the War Industries Board proposed 

curtailing the industry’s supply of alloy steel for manufacturing passenger cars.  Though 

spokesmen for the industry denied the existence of an actual shortage, the industry was 

divided on the matter.  While large manufacturers lobbied for the leeway to 

independently solve the supply issue, small producers whose markets were already 

disappearing preferred to suspend all passenger car production and relinquish their 

facilities to the government for the duration of the war.  The debate continued until the 

reality of the shortage became unavoidable by mid-1918.  The War Industries Board cut 

the steel allocation to the industry to allow for passenger car production in the last six 

months of the year at a level of only half of that achieved in the last six months of 1917.  

In truth, the diversion of plant facilities to war production had already substantially 

reduced production for civilian use such that total production for 1918 was only 53% of 

the previous year’s (Rae, 1959). 

U.S. automakers generally believed that the diversion of plant facilities to the war 

would lead to unfulfilled demand and a booming market after the conflict ended.  With 

the advent of peace on November 11, 1918, manufacturers rode a wave of optimism, 

scrambling to reconvert facilities and expand capacity to meet the backlog in demand that 

by mid-1919 had reached an estimated one million vehicles.  Worried about speculation 

on the stock market and the growing use of installment sales plans for new cars, the 

Federal Reserve Board had raised the discount rate in November, 1919, and speculators 

began liquidating over-inflated stock.  Meanwhile, rising commodity prices had increased 

the cost of living.  With the decrease in purchasing power, consumer spending slowed.  

Veterans returning from the war began swelling the unemployment ranks and the 
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oversupply of labor pulled down wages, leading to labor unrest.  Although automotive 

employees generally were not involved, strikes in the coal and steel industries affected 

supply lines.  By the summer of 1920, the country was slipping into an economic 

recession.  To make matters worse, foreign markets for farm commodities collapsed and 

the American farmer – the foundation of the automobile market – returned to hard times.  

The 1919 boom in automobile demand had been fleeting, based on inflated wartime 

prices, easy credit, and over-blown expectations.  Now the boom had collapsed. 

Automobile sales plummeted and trainloads of cars stood undelivered.   

Although the recession would prove to be brief – just an economic readjustment 

to peace-time production and prices – it hit the automobile industry hard.  Many 

manufacturers, especially the largest ones, were in the midst of optimistic expansions and 

were over-extended.  Henry Ford was developing the huge River Rouge complex and 

deeply in debt from his buyout of the minority stockholders.  GM’s expansion plans and 

Durant’s loose management, not to mention his questionable financial dealings, left GM 

in an equally precarious position. 

Ford was the first to respond to the slumping demand for cars, cutting prices in 

September, 1920, as much as 30%, thereby cutting further into its competitors’ sales.  

Soon, twenty-three manufacturers followed suit; GM was not among them.  Price cuts 

failed to sufficiently stimulate industry sales, and by December, production was shut 

down at Buick, Dodge, Ford, Maxwell-Chalmers, Nash, Packard, Reo, Studebaker, and 

Willys-Overland.  Pierre du Pont had taken over leadership at GM and continued to resist 

price cuts but was forced to slow production.  Nonetheless, the industry recorded profits 
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for the year, largely based on sales in the first half of the year (Rae, 1959; Rae, 1965; 

Flink, 1988). 

Ford’s sales began to pick up in early 1921 and production was gradually 

resumed.  Sales of other manufacturer’s cars remained slow, and the last remaining 

holdouts began to cut prices.  Pierre du Pont finally entered the price war in May and two 

rounds of price cuts eventually left a gap of $110 between the Chevrolet and the Model 

T.  However, the more expensive Chevrolet came with features that were only offered at 

additional cost on the Model T and Ford cut the price one last time.  Both vehicles were 

losing money at the final prices, but the cuts enabled Ford to win 62% of the passenger 

car market in 1921.  Sales of all GM cars only amounted to 14% of the market that year, 

yet the corporation was able to survive the recession (Cray, 1980).   

Automobile sales rebounded in 1922 and reached a new high of 3.6 million in 

1923.  GM emerged from the recession a stronger corporation, having undergone a major 

reorganization and begun a complete redesign of its vehicles.  Other companies were 

unable to meet their obligations and went into receivership.  Among these less fortunate 

firms were Maxwell-Chalmers and the Willys Corporation, the remains of which would 

eventually give birth to the Chrysler Corporation.  Meanwhile, firms that had refrained 

from ambitious expansion plans were better positioned to weather the downturn.  These 

companies emerged relatively unscathed and included Dodge, Hudson, Nash, Packard 

and Studebaker (Rae, 1959).  After a brief economic slowdown in 1924, the country 

entered a period of rising prosperity that brought steady growth in automobile sales. 
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5.6.2 Road Improvements, 1917-1930 

With the U.S. turning out motor vehicles and supplies for the war effort, the rail 

lines to eastern ports became clogged in 1917.  Highway Transport Committee Chairman 

Roy Chapin, who was also president of the Hudson Motor Car Company, was tasked with 

identifying road routes for trucks to be driven from assembly plants in the Midwest to the 

docks in the east.  Loaded with other freight, these caravans demonstrated the viability of 

long-distance trucking as an alternative to shipping freight by rail and simultaneously 

drew attention to the need for an interconnected highway system.  In addition, Chapin 

arranged for local authorities to keep the truck routes open in winter, demonstrating the 

feasibility of year-round use of major highways (Rae, 1959; Rae, 1965; Flink, 1988). 

Between 1916 and 1921, Congress had distributed a total of $75 million to states 

to improve postal roads.  Federal support for building roads was substantially increased 

with the passage of the Federal Highway Act of 1921, which appropriated $75 million for 

matching grants in 1922 alone.  Initially, state expenditures were funded through 

licensing fees and property taxes or general funds.  However, sparsely populated states 

found these revenues insufficient.  To pay for highway construction, Oregon, New 

Mexico, and Colorado instituted the first gasoline taxes in 1919.  State and federal 

revenues from registration fees and taxes on gasoline, vehicles, and parts reached nearly 

$189 million in 1923.  Public highway expenditures that year totaled $1.5 billion, while 

the amount spent on investment in and upkeep of automobiles and highways combined 

reached $6 billion.  By 1929, all states had instituted gasoline taxes, raising $432 million 

that year and entirely replacing the use of property taxes and general funds for main roads 

(Nevins and Hill, 1954; Cray, 1980; Flink, 1988). 
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A 1933 report by the President’s Research Committee on Social Trends 

concluded that the automobile was the largest single contributor to the expansion of local 

taxes between 1913 and 1930.  Highway expenditures, funded largely by use taxes, were 

only part of this burden.  The automobile had also required expenditures to solve traffic 

congestion, increased crime, and traffic control.  In addition, increasing suburbanization, 

aided by automobility, required the provision of facilities and public services for 

suburban communities (Flink, 1988).  However, it is important to note that the desire for 

suburbanization predated the automobile.  The rise of factory production late in the 19th 

century, combined with swelling immigration, led to polluted conditions and an 

increasing urban concentration of poorly paid workers and their families.  The 

automobile enabled the growing middle class to fulfill a pre-existing desire to escape the 

city while simultaneously strengthening this demand This led eventually to socio-

economic and racial segregation and the impoverishment of urban centers.  Thus, while 

the automobile and improved roads got “rural America out of the mud,” it also caused a 

host of problems for urban planning.69 

Early in the development of the automobile, critics had warned that the innovation 

would not find market success until the roads were improved.  However, construction of 

roads passable by motor vehicles lagged well behind the development and diffusion of 

the automobile itself.  The capability to navigate rough roads was therefore a main design 

criterion for those vehicles, like the Model T, that were ultimately successful in the first 

                                                 
69 Although the motor vehicle conferred great initial economic and social benefits to rural communities, the 
shift from horses to tractors had unexpected negative feedbacks.  High equipment costs made it more 
profitable to farm larger tracts and often forced farmers to take out mortgages.  Operating costs were 
further increased by the need to replace manure with chemical fertilizers.  As farm productivity rose, prices 
fell.  This shift ultimately led to the displacement of farm laborers, over-production of staple crops, and the 
erosion of agricultural profits.  Thus, impoverished rural populations began migrating to the cities in the 
1920s (Cray, 1980; Flink, 1988). 
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decade of the 20th century.  This resulted in cars with high road clearance and rugged 

suspension, as well as a preference for open bodies since the structural integrity of closed 

wooden bodies rapidly deteriorated from vibration and shock.  With road improvements 

by the 1920s, these design attributes were unnecessary.  They were also undesirable and 

unsafe, since they resulted in a rough, uncomfortable ride and a high, precarious center of 

gravity.  Thus, road improvements were a factor in the shift in market preferences toward 

comfort and luxury in the mid-1920s. 

5.6.3 Refueling Infrastructure 

Around the turn of the century, gasoline was widely available at country stores for 

use in lighting and stationary engines.  At that time, kerosene dominated the petroleum 

product markets and gasoline was a by-product for which supply outstripped demand.  

Around 1905, the largest demand for gasoline was for use as a solvent or in chemical and 

industrial plants; motor vehicles consumed only 600,000 of about 7 million barrels 

produced annually.  However, in 1916, automobiles consumed approximately 1.2 billion 

gallons of gasoline, or more than 28 million barrels (Melaina, 2007).   

Gasoline was distributed using the system established for kerosene consisting of 

around 100 refineries and a large network of small, dispersed, bulk storage facilities.  

Fuel was transported from the refinery to bulk stations in barrels or tank wagons and then 

distributed to retailers by horse-drawn wagons.  A variety of dispersed methods were 

used to deliver gasoline to consumers.  Retailers stocked cans of gasoline, up to five 

gallons each, on store shelves.  General stores and garages that sold or used a higher 

volume of fuel stored gasoline in barrels.  The gasoline was ladled it into a pitcher, 

carried to the vehicle, and poured through a chamois-lined funnel into the tank.  
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Consumers could also purchase home refueling tanks and pumps, which were popular 

with wealthy motorists.  Many wealthy urban motorists used their vehicles for country 

touring on weekends and stored them in downtown parking facilities, many of which 

dispensed gasoline from handcarts with tanks and pumps.  These handcarts were also 

used as mobile refueling centers, as were dispensing tank wagons.   

Curb pumps, the precursor to modern gas stations, were introduced in 1907 and 

consisted of an underground storage tank, a gasoline pump located at the curb, a flow 

meter, and a dispensing hose.  Curb pumps were refilled by tank wagons and were the 

dominant form of refueling in the late 1910s and early 1920s.  Most were operated as a 

sideline and were owned by and located in front of businesses that either catered to 

motorists or wished to attract more customers to their primary business.  Curb pumps 

were a common street-side fixture and were installed in an estimated 140,000 locations 

by 1927.  In fact, they were so prevalent that lines of waiting vehicles became an urban 

nuisance and 14 major cities had banned their installation by 1923. 

Dedicated gasoline stations also appeared around 1907 and were distinguished 

from dispersed methods by the use of land and buildings dedicated to refueling and 

related services.  They also sold larger volumes of fuel and had higher capital and 

operating costs.  The dedicated station rose in popularity after 1915 as motorists became 

increasingly dissatisfied with long waiting lines at curb pumps and on-the-spot price 

increases and unreliable fuel quality experienced with many dispersed refueling methods.  

Dedicated stations were often owned by oil companies, which projected an image of 

reliability and legitimacy.  In addition, these stations began emphasizing service and 

amenities and “the service mentality was firmly established across the gasoline marketing 
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industry” by the end of the 1920s (Melaina, 2007).  These services included free air and 

water; tires, batteries, and accessories; oil and battery checks; free maps; clean restrooms; 

and helpful attendants.  Early records on the number of refueling stations are inconsistent 

but suggest that there were around 15,000 in 1920.  The first reliable statistics became 

available with the 1924 census which reported 46,904 dedicated refueling stations70; by 

1929 the number had risen to 121,513 (Melaina, 2007).  Melaina (2007) concludes that 

“the takeoff period for gasoline stations occurred between 1915 and 1925… so the rise of 

gasoline filling stations followed rather than preceded the rise of gasoline vehicles.” 

5.6.4 Market Saturation and the Used Car Problem 

Before 1920, the typical new car customer was buying his first automobile.  But 

by 1923, the market for new cars was reaching saturation.  Although the total number of 

personal vehicles in use was still rising, sales of new cars had leveled off as shown in 

Figure 5-1.  According to Sloan (1964, p. 163), after 1923 “the role of the new car was to 

cover scrappage and growth in car ownership.”  To a large extent, market saturation was 

an inevitable result of the phenomenal success of the industry’s efforts to decrease 

production costs.  According to Hounshell (1984, p. 186), “Ford pursued specialization in 

production to its logical conclusion – gross overproduction…  Until, Ford, complete 

saturation of the world market by a single product had remained only a theoretical 

concept.” 

                                                 
70 The U.S. Census figures include establishments that derived more that half their revenue from the sale of 
motor fuels. 
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Figure 5-1: Automobile Sales and Registrations 
Source: Cain (2006), see Appendix A. 

As replacement sales came to represent a larger fraction of the market, the used 

car was increasingly traded in as a down payment on a new car.  Initially, manufacturers 

considered the disposal of these used cars to be solely the dealers’ responsibility.  Though 

there are no reliable statistics on trade-ins, the used car market first became an issue for 

manufacturers during the post-war recession beginning in the fall of 1920.  According to 

Cray (1980, p. 187) “[f]or the first time, dealers found themselves unable to deal off the 

used cars taken as down payments on new-car sales.  Used car prices fell 25 percent, and 

still the vehicles sat there.  A ‘used-car problem,’ as it would become known, had 

surfaced.”  After the economy recovered, new car sales in 1923 reached a new record 

when consumers purchased 3.6 million new automobiles but they also traded in 2.8 

million used cars (Cray, 1980). 
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For the first 25 years of the industry, manufacturers had focused on expanding 

production quickly enough to satisfy market demand.  Suddenly, they were competing 

with each other for fewer and fewer first time-buyers.  Saturation presented two new 

challenges for the industry: disposing of used cars and stimulating demand for new cars.  

The industry already had a mechanism in place for assisting with the first challenge: 

installment sales.  But the availability of used cars on easy credit meant even more 

competition for the manufacturers of inexpensive cars.  The automakers needed to 

convince consumers that new vehicles offered something their current cars and used cars 

did not.  To meet this need, manufacturers pursued two strategies: national advertising 

and the annual model change. 

Industry emphasis shifted from production to marketing and sales.  Between 1914 

and 1924, GM’s advertising budget per vehicle increased tenfold.  The industry became 

one of the largest users of magazine advertising, with expenditures rising from $3.5 

million in 1921 to $6.2 million in 1923 and to 9.3 million in 1927 (Cray, 1980; Flink, 

1988).  But the automakers were not alone in their increasing use of national advertising.  

Because of improved transportation, distribution of manufactured products was no longer 

confined to a local sales territory around the factory.  By the 1920s, national advertising 

of brand-name products like Pepsodent toothpaste, Coca-Cola, Welch’s grape juice, 

Listerine, Campbell’s soup, RCA radios, and now automobiles, was common (Cray, 

1980).  Automobile advertisements emphasized utility and the freedom to travel.  In 

addition, automakers began to target women in their advertising, emphasizing style, 

comfort, refinement, social status, and even safety. 
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By 1910, automakers were well aware of the disadvantages of frequent model 

changes and most opted to make continual improvements to existing models.  New 

models were introduced as needed in response to perceived market conditions.  Although 

no manufacturers had policies regularizing change, they continually tracked and 

responded to market trends, introducing new or completely restyled models when they 

perceived it to be necessary.  But by the 1920s, many found they were making 

increasingly frequent style changes in an attempt to entice buyers to trade up and to win 

market share from competitors through product differentiation.  While GM managers 

argued against annual model changes, the corporation in effect introduced a new model 

every year beginning in 1923.  Despite manufacturers’ resistance, the annual model 

change was emerging from evolutionary forces as an unavoidable feature of the industry. 

GM incorporated style as a major consideration in automobile design with the 

establishment of the Art and Color Section in 1927 and in that same year introduced the 

first mass produced stylists’ car, the La Salle.  In 1930, the corporation acknowledged 

that the annual model change had in fact already arrived and led the industry in planning 

for regularized change. 

5.6.5 Role of Women 

A number of exogenous factors increased women’s influence in automobile 

purchases.  Educational opportunities for women had been steadily improving.  Women 

were empowered with the achievement of universal suffrage in 1920 and the widespread 

dissemination of birth-control information.  Labor-saving devices freed more of the 

home-maker’s time, but women were increasingly likely to work outside the home as 

well.  Their participation in the workforce during World War I began to alter public 
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views on women’s role in society.  Prior to the war, when a woman worked outside the 

home it was regarded with shame, but during the war, it became a patriotic and heroic 

act.  Although most of these women left the fields and factories after the war, their 

expectations were permanently effected.  In addition to gaining experience in the 

workforce, married women whose husbands served in the war also found themselves 

making decisions as heads of household.  While war widows were forced to maintain 

these responsibilities, others gladly relinquished them to their returning husbands.  But 

many found their old subordinate roles in the family less satisfying. 

Changing economic conditions were also creating new employment opportunities 

for women.  With the rise of industrialism and scientific management, men were 

promoted to an entirely new class of jobs in middle management and clerical jobs became 

available to women.  A new consumer culture gave rise to chain department stores and 

new opportunities as clerks.  While the percentage of women in the labor force did not 

grow appreciably during the 1920s, between 1920 and 1930, the fraction of employed 

women who were married grew from 19% to 25% in professional jobs, and from 18% to 

32% in clerical jobs (Nottingham, 1947).  With the possibility of paid employment, 

women began to view marriage as less a requirement for financial stability and more a 

partnership and source of personal gratification. 

The young generation was particularly influenced by World War I and the age of 

prosperity that followed.  A large number of young men did not return from the war; 

most servicemen did return, but their outlook was permanently altered.  Facing a high 

probability of death in the trenches, these young men adopted a live-for-the-moment 

attitude, looking for and finding extreme experiences.  They had broken with society’s 
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structure, and returning to their prior lifestyle proved difficult.  Meanwhile, young ladies 

had also broken with that structure in supporting the war effort at home.  These women 

adopted a similar, live-for-fun attitude and experimented with new sexual freedoms.  The 

‘New Woman’ cut her hair short, smoked, drank, and wore makeup.  She shortened her 

skirts and loosened her clothing so that she could dance to jazz music.  The automobile 

suited the flapper’s gregarious lifestyle perfectly, affording freedom and thrill. 

The safety bicycle and the automobile also played a role in emancipating women, 

giving them new freedom of mobility.  Wealthy urban women had first adopted electric 

cars, but with electric self-starters and improved transmissions, gasoline cars became 

accessible to women.  With the availability of closed-body cars which protected them 

from wind, weather, mud, and engine grease, rural and urban women alike took to the 

automobile.  Women wanted cars that were lower to the ground because they were easier 

to board.  They wanted roomier, comfortable interiors with plenty of headroom for hats.  

For women, the mechanical reliability of the automobile was presupposed and high 

priority was given to elegance of style, imaginative use of color, luxurious comfort, and 

ease of operation.  Married women may have left decisions about purchasing a horse and 

carriage to their husbands, but they asserted their preferences when it came to 

automobiles.  Meanwhile, prosperous single women were also becoming a factor in the 

market. 

5.7 Analysis 

 The narrative history presented in this chapter begins in 1916, well into the first 

specific phase.  This phase lasted until approximately 1918, after which the industry 

entered a second transitional phase.  By 1926, a new dominant design had emerged and 
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the industry entered a second specific phase.  In this section, I use the framework 

presented in section 2.6 to analyze the characteristics of innovation and continued 

development of institutions during the first specific and second transitional phase.  I 

examine the mutual adaptation of the technology, institutions, and physical infrastructure 

and discuss the role of alignment and embedding, as well as unexpected events, in the 

stability of the developing automobile regime.  Many of the issues discussed here have 

roots in events that occurred prior to 1916, but come to fruition between 1916 and the late 

1920s.  Therefore, this analysis also builds on the narrative in chapter 4. 

Section 5.7.1 analyzes the industry trend toward vertical integration and its impact 

on innovation during the second transitional phase.  I identify three factors that 

contributed to vertical integration in the automobile industry: 1) a trend in the TIEC 

toward large industrial combinations that could influence the price and supply of raw 

materials; 2) process innovations that required continuous plant operation and carefully 

timed delivery of parts; and 3) tacit knowledge that existed only in human capital.  I 

conclude that the influence of vertical integration on innovation depended on the specific 

strategies pursued and the resulting rules and capabilities that were embodied in corporate 

structure, operating procedures, facilities, and human capital. 

Section 5.7.2 identifies five factors that triggered a second transitional phase: 1) 

World War I and the post war recession; 2) market saturation; 3) the availability of 

inexpensive all-steel closed bodies; 4) and improved roads; and 5) the increasing market 

influence of women.  These changes in the TIEC resulted from exogenous events, 

innovations, and issues associated with the very success of the technology and the 

development of supporting infrastructure.  While the transitional phase did not present 
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serious challenges for the industry until the middle of 1920, the stage had been set by the 

middle of 1918.  Therefore, I mark the beginning of this phase in 1918. 

Section 5.7.3 summarizes firm strategies in responding to the changing 

environment of the transitional phase.  I find that firm histories, the personal beliefs and 

perspectives of firm leaders, and corporate structures and culture – i.e., firm-specific rules 

– shaped individual firm strategies for innovation and their adaptive capabilities.  In 

addition, I find that unexpected events presented insurmountable difficulties for some 

firms, while other entrepreneurs were able to exploit the opportunities presented by those 

firms’ failures.   

Section 5.7.4 reviews the emergence of a new dominant product design that arose 

from co-evolutionary forces.  I find that production processes and management systems, 

i.e. corporate rules, must also be aligned to rules in the TIEC and to the technology.  

Therefore, I conclude that the specific phase also is characterized by a particular 

dominant business model that is aligned with the TIEC of that era. Thus, a transitional 

phase may involve adaptations and innovations in the business model as much as (or 

rather than) the product design and the dominant business model of a specific phase may 

represent a recent innovation for that time. 

Section 5.7.5 reviews the characteristics of innovation during the first specific 

phase and the second transitional phase.  Contrary to the description of the industry life-

cycle model, I conclude that there was no clear industry-wide trend toward process 

innovations and away from product innovations during the first specific phase, nor was 

there a reverse trend during the second transitional phase.  I also find no clear trend in the 

shifting importance of the mechanisms of learning: learning-by-interacting with suppliers 
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remained the most prominent mechanism of innovation during both phases.  Innovation 

also remained synthetic, involving collaborations by teams of entrepreneurs and between 

manufacturers and suppliers.  Finally, I find that innovations in business operations 

played a critical role and should not be over-looked in studies of technological progress 

and transitions. 

Section 5.7.6 discusses the process of embedding, alignment and stability during 

the first specific phase and second transitional phase.  I find that the development of 

‘hard’ supporting infrastructure lagged behind the expansion of markets for the 

automobile and did not become a significant factor in stability until the second 

transitional phase.  Beginning in the latter part of the first specific phase, manufacturers 

also began using consumer financing to alter the selection environment, an institution 

which aligned with and reinforced trends in the TIEC.  The stability of the first specific 

phase was undermined by the post-war recession and evolving consumer preferences that 

became misaligned with the existing dominant product design. This development was 

marked by feedbacks and co-evolutionary effects. The emergence of a new dominant 

product design brought the product and rules (consumer preferences) into realignment.  

Finally, the introduction of TEL was challenged by emerging trends in the TIEC, but the 

innovation was successful due to the immaturity of institutions governing public health 

and GM’s activities to shape the selection environment. 

Finally, section 5.7.7 summarizes the events during the time period covered by 

this chapter and the findings of this analysis. 
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5.7.1 Vertical Integration 

An industry trend toward vertical integration began even prior to the onset of the 

first specific phase.  Henry Ford began this process in 1905 when he established the Ford 

Manufacturing Company to manufacture parts for the Model N (see section 4.1.6).  

William Durant pursued vertical integration beginning in 1907 at Buick with the 

acquisition of the Weston-Mott Axle Company and continuing in 1908 at GM with an 

aggressive acquisition strategy that resulted in partial or complete ownership of a 

multitude of suppliers (see sections 4.2.1 and 4.2.2).  This process continued throughout 

the specific phase and, by the onset of the second transitional phase in 1918, both Ford 

and GM were large, vertically integrated companies.  In chapter 4, I identified learning-

by-interacting with suppliers as a critical mechanism of innovation in the transitional and 

early specific phases.  Therefore, vertical integration and the resulting corporate structure 

had significant implications for the ability of these industry leaders to innovate and adapt 

during the second transitional phase. 

This section examines the factors contributing to the trend toward vertical 

integration and discusses the impact of vertical integration on the innovative capabilities 

of Ford and GM.  I find that three factors contributed to vertical integration in the 

automobile industry: 1) a trend in the TIEC toward large industrial combinations that 

could influence the price and supply of raw materials; 2) process innovations that 

required continuous plant operation and carefully timed delivery of parts; and 3) tacit 

knowledge that existed only in human capital.  I also conclude that vertical integration in 

itself did not necessarily stifle innovation, but that the influence of integration on 

innovation depended on the specific strategies pursued and the resulting rules and 
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capabilities that were embodied in corporate structure, operating procedures, facilities, 

and human capital.  

The traditional explanation of the trend toward vertical integration asserts that it 

was more economical for manufacturers to make their own parts.  According to Smith 

(1968, p. 110), by 1929 “it was still possible to become an automobile manufacturer by 

buying components and assembling them, but it was impossible to cut much of a figure 

this way or to survive in competition… With competition at fever heat, the manufacturer 

could ill afford to share any profits with suppliers.  Companies were growing more 

vertical as well as horizontal.  The rich were getting richer; the poor were getting poorer.”  

However, parts suppliers generally could achieve the same low costs that manufacturers 

could through economies of scale, especially if guaranteed volume sales through long 

term contracts.  Meanwhile, purchasing parts obviated the need for investments in plants 

and equipment, an important consideration in a rapidly growing industry.  On the other 

hand, the price of raw materials – coal, iron ore, and steel – was a concern since suppliers 

were large industrial combinations whose control of a large portion of the market allowed 

for price fixing.  Thus, the wide-spread trend toward combinations and price fixing was 

an important contextual factor for the industry.  But availability was a bigger concern 

since supplies were restricted several times due to labor strikes in the railroad and mining 

industries. 

According to Epstein (1972), vertical integration in the early automotive industry 

became attractive because it ensured an adequate and timely supply of materials and 

parts, and therefore facilitated continuous plant operation.  By the early 1900s, demand 

for automobiles was so great that manufacturers were not concerned with market share, 
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but rather with adequate production volume and prompt delivery of parts. Olds, the first 

mass producer of automobiles, built 3,299 cars in 1902, but could have sold 4,000 if 

suppliers had been able to fill his orders.  A few years later, Buick found that “[t]he 

public would take Buicks as fast as they could be turned out; delay in delivery of even a 

minor part might cost a tremendous sum” (Pound, 1934, p. 87).  Suppliers of parts and 

raw materials were often the cause of plant downtime at Ford, and this became more 

problematic once continuously moving assembly lines were fully implemented and 

timing became crucial.  As late as 1934, Pound (p. 87) reported that “in this industry utter 

dependence on certain forms of goods was so essential that practically all the survivors in 

the stern battle for existence waged during the past thirty years are those who have been 

working toward self-determination, seeking positions where their operations could not be 

shut off by shrinkage of those essential supplies.” 

Another factor in the move toward vertical integration was the appropriation of 

knowledge.  Suppliers of key components possessed singular expertise that, for the most 

part, resided in human capital.  Through partial ownership in the Ford Motor Company, 

Ford established a relationship with the Dodge brothers to provide nearly complete 

vehicles, excluding only bodies, wheels, and tires.  This move was critical in Ford’s early 

success.  The Dodge brothers brought necessary start-up capital, but as manufacturers of 

engines for the only mass produced vehicle to date, they also brought scarce knowledge.  

After Henry Ford made clear his intention to bring this expertise in-house, the Dodges 

successfully launched their own manufacturing firm.  Similarly, GM’s partial, and later 

complete, ownership of the Fisher Body Company was a strategic move to secure 
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exclusive access to the Fisher brothers’ unique skill and knowledge in closed body 

production. 

Ford and General Motors pursued significantly different strategies for vertical 

integration, resulting in different corporate structures and different emphases for 

innovation.  Henry Ford brought nearly all production, including processing of raw 

materials, in-house at the Rouge complex.  He established complete, centralized, 

financial and managerial control.  Without the tempering effects of a board of directors or 

executive committee, strategic decisions were made entirely according to Ford’s personal 

goals, beliefs, values, and perceptions.  The rules governing interactions at Ford included 

those established for Fordist production that were embodied in standard operating 

procedures, routines, and capital equipment, and one additional overarching rule:  defer 

to Henry Ford.  Employees unable to comply were forced out or left in frustration.  As a 

result, innovation at Ford had stagnated by the late 1910s, just as a new transitional phase 

was beginning. 

Meanwhile, GM purchased all or part ownership of suppliers and initially allowed 

them to continue operating as independent firms.  During this time, innovation continued 

on whatever level set by individual company policies.  There was no single identifiable 

set of rules for the corporation as a whole, except perhaps for the understanding that, 

during the years of his tenure, William Durant could interfere at will.  GM’s strategy of 

acquisition, along with Durant’s ultimately destructive actions in the stock market, led to 

corporate associations and the appropriation of human capital that defined GM’s 

innovation capabilities and strategies for the next fifty years.  The most significant of 

these associations were those with the E.I. Du Pont de Nemours and Fisher Body 
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Companies and with Pierre du Pont, Alfred Sloan, and Charles Kettering.  Collectively, 

the decisions of Durant, du Pont, and Sloan were of critical importance in shaping GM’s 

strategies and success in the second transitional phase. 

The financial and managerial reforms achieved between 1920 and 1925 finally 

established a coherent set of rules for GM that was embodied in corporate structure and 

policies regarding operations, communication, and financial reporting.  After du Pont and 

Sloan began coordinating divisional operations through corporate policy, their 

establishment of decentralized control allowed for a greater level of innovation than what 

was realized at Ford.  This innovation was largely realized through IR&D and was 

institutionalized within the Research Corporation.  However, the establishment of 

financial controls to coordinate management of the divisions, the separation of R&D 

from operations, and the establishment of corporate policy on product development likely 

inhibited the rate of innovation realized in production automobiles.  Dodge, and later 

Chrysler, would emerge as industry leaders in incorporating product innovations.  Neither 

firm pursued vertical integration to the extent that Ford and GM did. 

5.7.2 Initiation of a Second Era of Ferment 

Beginning with the onset of conflict in Europe, four factors created misalignments 

that undermined the stability of the specific phase.  These factors resulted in a shift in 

consumer preferences that triggered a new transitional phase: 1) World War I and the 

post war recession; 2) market saturation; 3) the availability of inexpensive all-steel closed 

bodies; 4) improved roads; and 5) the increasing market influence of women.  These 

factors include exogenous events, innovations, and issues associated with the very 
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success of the technology and the development of supporting infrastructure.  These 

initiating events were marked by pervasive co-evolutionary effects.   

In general, the industry first felt the challenges of the transitional phase in the 

middle of 1920 when the post-war recession sent sales plummeting.  However, the stage 

had been set by the middle of 1918 when diversion of facilities to the war and a steel 

shortage limited production to 53% of the level achieved in 1917.  In fact, despite banner 

sales in 1920, average sales for the years 1918-1920 were still lower than total sales in 

1915.  Therefore, I will mark the beginning of the transitional phase in 1918. 

While the war and ensuing recession were exogenous events, the response of the 

industry during and after the war created feedbacks that magnified their impact on the 

industry.  First, using trucks to deliver war supplies to the ports demonstrated the 

feasibility of long-haul trucking and year-round driving.  This provided the impetus for 

increased federal funding for improved roads, a process already underway.  Second, the 

industry (correctly) perceived that decreased production during the war had resulted in 

pent up demand for automobiles.  When the post-war recession hit, companies that had 

invested in aggressive expansion plans had an especially difficult time coping with the 

sudden drop in sales.  Many firms did not survive the crisis. 

Meanwhile, market saturation was a result of the industry’s past success.  The 

industry had to either scale down production to serve a stagnant market consisting of 

replacement sales or find an innovation that would stimulate accelerated replacement or 

create demand in a new market.  In choosing to innovate, a firm would be taking on the 

nexus role, actively using variation to alter the selection environment in terms of 

consumer preferences, and thereby altering the functional requirements of the 
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automobile.  However, consumer demands were already shifting due to other factors.  

Improved roads and affordable closed bodies were increasing the feasibility of year-

round driving, and all-steel closed bodies were more durable and comfortable.  Women 

were driving more and influencing more sales thanks to closed bodies, electric self-

starters, and shifting cultural patterns that were accelerated by the war.  The industry’s 

response to these shifts – an increasing emphasis on style and comfort and frequent style 

change – would be self-reinforcing.   

5.7.3 Firm Strategies for Adaptation 

This section summarizes firm strategies in responding to the changing 

environment of the transitional phase.  The resources available to firms depended on 

institutional linkages, corporate policy, and access to human as well as financial capital.  

Therefore, I find that firm histories, the personal beliefs and perspectives of firm leaders, 

and corporate structures and culture – i.e., firm-specific rules – shaped individual firm 

strategies for innovation and their adaptive capabilities.  Because of industry 

concentration, firm-specific rules had a large and rapid impact on the development of the 

technology and the industry as a whole.  This supports the use of a behavioral approach 

with a micro-focus in the analysis of innovation and socio-technical change.  In addition, 

I find that unexpected events presented insurmountable difficulties for some firms, while 

other entrepreneurs were able to exploit the opportunities presented by those firms’ 

failures. 

GM was one of the firms caught in midst of aggressive expansion when the 

recession struck.  Durant’s market activities only made matters worse.  But because of 

GM’s prior acquisition strategy and Durant’s past blunders, the corporation was also 
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lucky to have managerial and technical talent in Alfred Sloan, Pierre du Pont, and Charles 

Kettering.  These activities also resulted in ties to the E.I. Du Pont de Nemours Company 

that gave GM access to that company’s war surplus.  With these resources, the 

corporation was able to respond aggressively to the challenges before it.  Durant was 

ousted, the corporation was reorganized, and the new management instituted financial 

controls.  With the financial crisis partially under control, GM began to address market 

saturation, which meant fierce competition with other manufacturers in a market of 

relatively fixed size.  GM rationalized the product line and attempted to penetrate the 

low-price market through product innovation (the copper-cooled engine).   

When the new technology failed, the economy was already recovering, so GM 

instead redesigned the conventional Chevrolet.  GM was successful in challenging Ford, 

not because of a new innovation, but because of the company’s understanding of the 

importance of an existing one in a new era.  According to Sloan (1964, p. 160), “The last 

decisive element in this competition, I believe, was the closed body, which itself was by 

far the largest single leap forward in the history of the automobile since the basic car had 

been made mechanically reliable.” 

This understanding of changing conditions, enabled in part by systematic study of 

the market, led to GM’s next three-part strategy: pursuing national advertising, 

emphasizing style, and making frequent model changes.  Although the corporation did 

not formulate style and model change policies during the transitional period, the 

management structure that Sloan instituted was inherently responsive to market 

conditions.  Thus, by the time designing for style and planning for regular change were 

institutionalized, the annual model change was already a de facto policy. 
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GM’s final and arguably most significant strategic move during the transition was 

born from the effort to rationalize the product line and fill an existing gap.  First, by 

offering “a car for every purse and purpose,” GM essentially re-introduced product 

differentiation and turned a single mass market, where competition was based on price, 

quality, and options, into a group of niche markets defined by socio-economic status as 

well as functional requirements.  Within each niche, competition was based on price and 

quality, and GM sought to place itself near the top in both. Then, when adding the 

Pontiac in 1926, GM decided to share chassis and body parts across divisions and price 

categories to provide product variety while preserving economies of scale.  GM now had 

a competitive alternative to Fordism. 

GM had turned the crises of the post-war period into entrepreneurial opportunity.  

In 1927, Moody’s Investors Service praised the results: GM had “reorganized its system 

of buying raw materials, harmonized its factories, reformed its sales methods, improved it 

advertising, organized a department to study public demand, and developed the greatest 

automobile research organization in the world.  In so doing it had approximately doubled 

its rate of profit” (Nevins and Hill, 1957, p. 403). 

When the recession hit, Ford faced the added challenge of being in debt from the 

stock buyout and court ordered dividend.  Ford suspended production at Highland Park 

and the Rouge.  During the shutdown, Ford streamlined the company’s organization and 

improved coordination of supplies, but he also ruthlessly slashed the payroll.  While GM 

was departing from past practice and building an effective management structure, Ford 

was holding the line and eliminating vital business functions.  Ford responded to the post-

war crisis by clinging to the Model T, continuing to reduce prices, and pursuing ever 
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deeper vertical integration.  His pursuit of vertical integration was in part due to price 

fluctuations encountered leading up to and during the war, though such fluctuations had 

always been a feature of the industry.  But by staying with previously successful 

strategies and taking them to an even greater extreme, Ford illustrated the folly of what 

Gharjedaghi (2006) calls inertia and sub-optimization.  The strategy did nothing to 

address saturation, shifting preferences, or other manufacturers’ introduction of 

frequently restyled closed-body cars. 

While Flink (1988, p. 240) asserts that “[t]he annual model change and diversity 

of product were incompatible with Fordist production methods,” the problem went far 

deeper.  The annual model change and diversity of product were incompatible with Henry 

Ford’s values.  In 1907, he had been able to perceive the market potential for the Model T 

because he not only knew the farmer’s needs, but because the farmer’s values were part 

of his psyche: hard work, thrift, and resourcefulness.  Ford had always known that the 

Model T would someday need to be replaced and he was aware of market trends.  But the 

market shift in the 1920s was near anathema.  Ford’s beliefs and perspectives, his 

personal rules, had served him well in the emergent and specific phase, but now were 

misaligned with changes in the definition of the technology and other developments in 

the TIEC.  Because of his intolerance for frills and conspicuous consumption, he 

continued to believe that automobiles were and should be service vehicles.  Unlike GM’s 

Sloan, Ford was unwilling to accept that the functional definition of the automobile had 

been altered from a technology for basic personal transportation to one that provided 

transportation service, demonstrated social status, and provided satisfaction from 

personal ownership.     
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However, the misalignment of Ford’s strategies with the trend toward market 

saturation is harder to explain.  Ford’s stated intention was to build a car that, for all 

practical purposes, would last forever (Ford and Crowther, 1922).  Such a strategy would 

lead inevitably to a saturated market and stabilized sales.  Ford could only have hoped to 

maintain market share and therefore stable production levels.  However, the industry 

response of the annual model change, led by GM, not only accelerated replacement sales 

to maintain market growth, but also eroded Ford’s market position.  

The reality of the market shift was inescapable, especially after other 

manufacturers began to feed demand for style with frequent model changes.  In order to 

accommodate a complete product change to the Model A, Ford had to institute a 

complete shutdown, scrap most of the company’s specialized machine tools, and develop 

and purchase new process equipment.  Inertia and suboptimization cost Ford dearly in 

terms of lost production, capital outlays, and the loss of critical human capital that could 

have increased the firm’s adaptability. 

While many smaller firms were unable to survive the financial crisis of the post-

war recession, Walter Chrysler was able to exploit the opportunity this presented.  

Chrysler was able to convert the Maxwell and Chalmers companies from failing 

enterprises in 1920 into the third largest manufacturer by 1928.  In doing so, he also 

created an opportunity out of unexpected events that were disastrous for the Dodge 

brothers.  The influenza epidemic in 1920 took the lives of the company’s founders, 

leading eventually to the sale of the Dodge Brothers in 1928.  In buying Dodge, Chrysler 

increased its volume and sales force enough to operate much like the industry leader, 

GM. 
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Walter Chrysler was successful mainly because of his strategy to maintain a 

position of technological leadership, an approach that also had served Dodge Brothers 

well.71  Though Chrysler did not necessarily originate many major innovations, the 

company was the first to incorporate a number of advanced technologies in a moderately-

priced car.  Much like GM, Chrysler collaborated with suppliers to improve technologies, 

established a well-funded research laboratory, offered improved models annually, 

developed several distinct lines of vehicles, and established dealer and consumer 

financing. 

5.7.4 Dominant Design and Business Model 

This section reviews the emergence of a new dominant product design that arose 

from co-evolutionary forces.  However, I find that production processes and management 

system, i.e. corporate rules, must also be aligned to rules in the TIEC and to the 

technology.  Therefore, I conclude that the specific phase also is characterized by a 

particular dominant business model that is aligned with the TIEC of that era. Thus, a 

transitional phase may involve adaptations and innovations in the business model as 

much as (or rather than) the product design and the dominant business model of a specific 

phase may represent a recent innovation for that time.   

The “dominant design” is not a static concept, but rather a temporarily stable 

description of the majority of the market.  Even during a specific phase, it co-evolves 

with TIEC in a gradual, continuous fashion.  During a stable specific phase of sufficient 

duration, a product’s functional description and attributes may evolve considerably, 

                                                 
71 Interestingly, after leaving Ford, C. Harold Wills attempted this same strategy in designing the Wills-
Saint Claire introduced in 1921.  The car was an excellent work of engineering, but was years ahead of its 
time.  The engine was so complicated that no ordinary mechanic could repair it and the vehicle was a 
market failure.  C.H. Wills & Company went into receivership in 1922 (Sorensen, 1956; Rae, 1959). 
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appearing radically changed after decades without any disruptive changes in the TIEC or 

the industry.  During the first specific phase, from roughly 1910 to 1918, the functional 

definition of the automobile was stable but the product characteristics used to fulfill them 

evolved.  The most significant change was in engine technology.  In 1912, 91% of new 

automobiles sold included four-cylinder engines while only 8% were six-cylinders; by 

1920, the fractions were 73% and 25% and the trend toward six-cylinders continued 

through the next decade. 

As discussed in section 5.7.2, a new transitional phase was initiated around 1918 

by WWI and other changes in the TIEC.  It is difficult to pinpoint exactly when a new 

dominant design emerged and marked the onset of a new specific phase.  However, it is 

clear that before Ford discontinued the Model T in 1927 the automobile had been 

functionally redefined.  I therefore place the emergence of a dominant design around 

1926.  By that time, providing basic reliable transportation to the masses was no longer 

enough.  In the earlier days, when the expense of motor vehicles restricted ownership to 

the wealthy, owning any automobile conveyed social prestige.  But with ownership 

attainable by the masses, it now mattered which vehicle a person drove.  To all who saw 

it, the automobile suggested that its owner had attained a certain level of income and 

social status.    And much like a work of art, the automobile designed for style had an 

aesthetic value that yielded personal satisfaction.  According to Epstein (1972, p. 58), 

“[l]ike a handsome piece of furniture, a picture, or an artistic piece of jewelry, it not only 

is used but it reaches a deep-seated sense of ownership.”  

The automobile in 1926 was functionally defined as a technology to provide year-

round, comfortable, rapid, personal transportation while displaying social status and 
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imparting the pleasure of personal ownership.  The product attributes that fulfilled the 

requirements of this definition were an all-steel, closed-body car, powered by a four- or 

six-cylinder gasoline internal combustion engine.  However, the trend toward larger 

engines continued in the second specific phase with eight-cylinder engines eventually 

becoming dominant. 

The product strategy that GM adopted in 1923, “a car for every purse and 

purpose,” was the ultimate expression of this new definition.  When a buyer traded in a 

Chevrolet for an Oakland (later Pontiac), he was climbing the economic and social 

ladder.  Owning a Cadillac said that you had ‘arrived.’  The institutionalization in 1927 of 

designing for style completed GM’s transition to the new era.  While Ford and others 

criticized GM for artificially creating demand through planned obsolescence, they 

overlooked the fact that GM did not invent the idea of the car as a style product.  No 

manufacturer’s actions caused the market change; consumer preferences and automobiles 

co-evolved with the TIEC. 

The onset of a second transitional phase taught the industry hard lessons in 

planning for and accommodating change.  Not only did the new definition of the 

automobile dictate continual change, but in a co-evolutionary system, change is the rule 

and adaptation is necessary for survival.  According to Hounshell (1984, p. 264), “The 

Ford Model T dictum of maximum production at minimum cost gave way to planning for 

change.”  This new dictum meant new product strategies, new business organization, and 

new systems of production.  ‘Rigid’ mass production gave way to ‘flexible’ mass 

production.   
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Thus, a second but related distinguishing characteristic of the specific phase 

becomes apparent from this research: the existence of a dominant business model.  

Rycroft and Kash (1999) assert that as industries mature, production processes evolve 

from craft to mass to synthetic production.  However, this research indicates that what I 

have called a specific phase is characterized by a particular business model that includes 

the production process and organizational structure.  Thus, a transitional phase may 

involve adaptations and innovations in the business model as much as (or rather than) the 

product design.  The production methods seen during the specific phases reviewed in this 

research each were new innovations at the time, as was the organizational structure 

originated at GM in the 1920s.  During the first specific phase, the dominant business 

model entailed “Fordist production” (volume production; standardized fully-

interchangeable parts; special or single purpose machinery; and continuously moving 

assembly), and centralized control.  The dominant business model of the second specific 

phase entailed flexible mass production, staff and line organization, and coordinated de-

centralized control using financial controls.  There is good reason to expect that in other 

eras, specific phases will entail yet other business models with production systems and 

organizational structures that are recent innovations for their time, for example lean 

production and the Toyota Production System. 

5.7.5 Characteristics of Innovation 

This section reviews the characteristics of innovation during the first specific 

phase and the second transitional phase.  Contrary to the description of the industry life-

cycle model, I conclude that there was no clear industry-wide trend toward process 

innovations and away from product innovations during the first specific phase, nor was 
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there a reverse trend during the second transitional phase.  I also find no clear trend in the 

shifting importance of the mechanisms of learning.  Learning-by-interacting with 

suppliers was the most prominent mechanism of innovation during both phases, while 

spillovers were and learning-by doing were also important and R&D became a major 

factor for the first time during the transitional phase.  Innovation remained synthetic, 

involving collaborations by teams of entrepreneurs and between manufacturers and 

suppliers.  Finally, I find that innovations in business operations deserves mention and 

should not be over-looked in studies of technological progress and transitions. 

The product and industry life-cycle model predicts that innovation during the 

specific phase, which for the automobile first occurred between roughly 1910 and 1918, 

will shift emphasis from products to processes.  This was certainly true at Ford, which 

constituted only 10% of the market in 1910 but roughly 50% between 1914 and 1919.  It 

should be recalled, however, that Ford’s major process innovations, which actually began 

prior to the onset of the specific phase, involved a great deal of concurrent product 

innovations.  Further, a trend toward process innovation was not characteristic of the 

industry as a whole and a number of significant product innovations were introduced 

during this timeframe, including the large volume production of closed body cars (1910), 

the all-steel body (1912), the electric self-starter (1911), and mass production of the all-

steel body (1914). 

This conclusion is supported by Klepper and Simons (1997) who analyze the list 

of automotive innovations from Abernathy, et al. (1983).  Using a five year moving  

average (shown in Figure 5-2), the authors find no clear trend in product innovation from 
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Transition I Specific I Transition II 

 

Transition I Specific I Transition II 

  

Figure 5-2 Automotive Product and Process Innovation 
Source: Reproduced from Klepper and Simons (1997) with phase 

depiction by author. 

1893 through 1940, both in terms of the number of innovations and their transilience 

index – a subjective measure of the innovation’s impact on production systems and 

market linkages.72  However, the authors do find a generally increasing trend in the 

                                                 
72 Abernathy et al. (1983) define transilience as a measure of the overall competitive impact of an 
innovation, including disruption to production systems and market linkages.  The authors use a seven point 
scale to assign transilience scores, based on their judgment, to each innovation in an extensive list covering 
the period from 1893 to 1981.  A value of 7 represents innovations that were “very disruptive for products 
or processes.” See Abernathy et al (1983) p. 109-110 and p. 153.  Klepper and Simons (1997) calculate the 
sum of the squared transilience scores for all product or process innovations in each year then graph the 
five-year moving average to smooth out year-to-year variations. 
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number and transilience index of process innovations during that timeframe.  

Interestingly, product innovations generally occurred more frequently (averaging 

between 2-9 per year versus 0-2.5) and were more disruptive to production (transilience 

roughly 16-80 versus 0-40).A few points are worth noting on examination of Figure 5-2, 

which shows the phases identified in this research overlaid on Klepper and Simons’ 

graph.  First, midway through the first specific phase (1914), product innovation was 

indeed waning and was then reinvigorated by the end of the post-war recession (1921).  

This is consistent with the life-cycle model and the dates I have drawn to delineate the 

phases, but the specific phase lasted only another four years, which provides very few 

data points from which to draw conclusions.  If the specific phase had lasted longer 

before being interrupted by the war, the decline might have proved to be merely a brief 

slump.   

In addition, WWI  diverted productive and innovative resources as automobile 

manufacturers were involved in both the development and manufacturing of military 

equipment.  For example, Packard engineers were largely responsible for the design of 

Liberty aircraft engines and Ford developed innovative manufacturing processes for the 

engine cylinders.  This diversion of resources would have delayed the introduction of 

new automotive innovations even if events and changes in the TIEC had not triggered a 

new transitional phase.  Thus, the war in itself could explain the pattern of product 

innovations shown in Figure 5-2 between 1917 and 1919.  If, for these reasons, the years 

during the war and the ensuing recession (1918-1921) are excluded, the transilience index 

of process innovations between the first specific and second transitional phases is roughly 

constant, though there is an overall increase in their number.  Therefore, while the work 
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of Klepper and Simon supports the assertion that product innovation stagnates during the 

specific phase and is re-invigorated with a new transitional phase, it is not conclusive.  

Further, it fails to provide evidence of a trend toward greater emphasis on process 

innovation during the specific phase. 

As we have seen, Ford’s focus on process innovations after 1908 was the result of 

Henry Ford’s personal rules (goals, values and perceptions) and not necessarily an 

inherent feature of industry or firm maturity.  Ford pursued both vertical integration and 

centralized control and after 1913, product innovation was stifled in preference for 

control of supply lines and a singular focus on production costs.  Meanwhile, innovation 

was institutionalized at the corporate level in GM and later strengthened considerably 

with the purchase of Kettering’s enterprises in 1918. 

Much of the significant product innovation during the specific phase between 

1910 and 1918 originated with suppliers, including: large-scale production of closed 

bodies by Fisher for Cadillac, the all-steel body by Hale & Kilburn for Hupmobile, and 

the electric starter by Delco for Cadillac.  Dodge Brothers was incorporated during this 

timeframe and quickly established itself as an innovative leader by incorporating Budd’s 

all-steel body.  Budd also contributed a significant process innovation – electric spot 

welding – that served as an enabling technology for all-steel bodies.  Thus, interactions 

with suppliers continued to play a critical role in development, as did spillovers.  Budd’s 

innovations were highly synthetic, representing the culmination of years of teamwork 

beginning at Hale & Kilburn and in collaboration with Emil Nelson, the chief engineer of 

the Hupp Motor Car Co. 
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During the second transitional phase (1918-1926), most of the significant product 

innovations – four-wheel hydraulic brakes, balloon tires, and all-steel closed bodies – 

again originated with suppliers.  Duco lacquer, primarily a process innovation for the 

automobile industry, also originated with a supplier and, though it was a product of a 

guided research, the particular application largely resulted from serendipity. Another 

significant innovation during the second transitional phase was the development of 

leaded gasoline (TEL) at GM’s Research Corporation.  Although part of a guided 

research program, the breakthrough was largely one of trial and error.  While it did not 

represent an innovation in automobile technology, it solved a major industry problem and 

enabled the use of engines with higher compression ratios.  It is also the first instance 

where environmental factors became an issue for the industry. 

Perhaps most interesting during this phase is the importance of innovations in 

business operations which are generally overlooked in studies of technological progress.  

GM’s “car for every purse and purpose” market segmentation was a brilliant solution to 

market saturation and an emerging functional definition (see section 5.7.4).  The 

corporation’s later decision to standardize parts across divisions, an innovation in both 

product and process, enabled this market segmentation and was equally revolutionary for 

the industry and market.  Other significant business innovations include planning for 

annual model changes, design for style, and the use of time sales.73  While planning for 

change may be considered an innovation in business operations, it also required 

important changes to production processes, specifically in capital equipment, which can 

be attributed to William Knudsen. 

                                                 
73 Time sales were introduced during the first specific phase but became a dominant feature of the industry 
in the second transitional phase. 
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Market segmentation and annual model changes designed for style were 

innovations based on a fundamental understanding of emerging user preferences, which 

GM tracked with rather sophisticated data analysis.  At the same time, the appearance of 

stylish new vehicles every year, marketed as symbols of status, reinforced and fed these 

trends in preferences.  These innovations, along with the use of consumer financing can 

be considered as efforts to alter the selection environment by accelerating replacement 

sales and extending the market to more consumers.  Thus, the new functional definition 

of the automobile, the new design attributes that fulfilled them, consumer preferences, 

and financing institutions arose in a co-evolutionary fashion. 

Finally and perhaps most significantly, GM’s innovations in corporate structure 

and operations established a new standard business model for industry in general (see 

section 5.7.4).  These innovations resulted from the collective and synthetic efforts of 

Pierre du Pont, Alfred Sloan, Donaldson Brown and Albert Bradley.  While many of 

these innovations resulted from in-house efforts, largely learning-by-doing, the 

entrepreneurs themselves were associated with GM due to past supplier relationships and 

financial difficulties and brought with them experience gained in other industries. 

5.7.6 Alignment and Stability 

Chapter 4 discussed how the automobile, scientific management and Fordism 

were aligned with evolving higher-level rules within the TIEC.  This section summarizes 

the the process of embedding which continued through the first specific phase and 

became more pronounced during the second transitional phase.  I find that the 

development of ‘hard’ supporting infrastructure lagged behind the expansion of a mass 

market for the automobile and did not become a significant factor in stability until the 



 

445 

second transitional phase.  Beginning in the latter part of the first specific phase, 

manufacturers also began using consumer financing to alter the selection environment, an 

institution which aligned with and reinforced trends in the TIEC.  The stability of the first 

specific phase was undermined by the post-war recession and evolving consumer 

preferences that became misaligned with the existing dominant product design.  This 

misalignment was due to: 1) an exogenous factor – the increasing influence of women in 

the automobile market; 2) two factors related to the technology’s success – market 

saturation and road improvements; and 3) an innovation – the all-steel closed body.  

Changing preferences were also reinforced by the industry’s response to them as well as 

to the war and the challenge posed by market saturation.  The emergence of a new 

dominant product design and business model brought the product and rules (consumer 

preferences) into realignment.  Finally, the introduction of TEL was challenged by 

emerging trends in the TIEC, but the innovation was successful due to the immaturity of 

institutions governing public health and GM’s activities to shape the selection 

environment. 

Physical infrastructures for roads and refueling began periods of significant 

growth late in the first specific phase.  Federal funding for roads began in 1916 and was 

significantly increased in 1921.  This development was supported by the initiation of 

gasoline taxes in 1919, which became the dominant source of state funding for main 

roads by 1929.  The availability of gasoline from dispersed and non-dedicated sources 

prior to the turn of the century was a factor in the success of gasoline-powered vehicles in 

early markets.  A physical infrastructure for refueling gasoline motor vehicles began 

development with the introduction of curb pumps and dedicated stations in 1907.  
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Between 1915 and the early 1920s, the curb pump was the dominant form of refueling, 

but growth in dedicated stations began around this time.  By 1930, dedicated service 

stations were overtaking the curb pump both in terms of number and sales volume.  Thus, 

the development of roads and filling stations, the ‘hard’ infrastructure that still exists 

today, lagged behind the expansion of a mass market for the automobile.  In fact, both 

entered a period of substantial growth just as the automobile industry was entering the 

second transitional phase.  Therefore, physical infrastructure did not become a significant 

factor in stability until the second transitional phase. 

In 1910, bankers disapproved of loans for automobiles, which they still 

considered a luxury.  Beginning in 1916, captive lending agencies began financing time 

sales of automobiles and this became an important strategy in adapting to the challenges 

presented by the second transitional phase.  The implementation of consumer financing 

by dealers and manufacturers can be considered efforts to alter the selection environment 

by extending the market for new vehicles to more consumers and by improving the 

desirability of used cars relative to inexpensive new cars, particularly the Model T.  Such 

financing had been limited to furniture, sewing machines, pianos, and homes, but the 

concept became a mainstay of the U.S. economy in the late 1920s.  Thus, the use of time 

sales for automobiles aligned with and reinforced trends in the TIEC. 

The stability of the first specific phase was undermined by an exogenous event – 

the post-war recession – and by evolving consumer preferences that became misaligned 

with the existing dominant product design.  The increasing influence of women in the 

automobile market represented an exogenous factor in this misalignment.  Two other 

factors were due to the technology’s success – market saturation and road improvements.  
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The fourth factor was an innovation – the all-steel enclosed body.  While continuing road 

improvements during the transitional phase should have served to support the industry, 

they were destabilizing as long as the dominant design remained consistent with the poor 

roads of the earlier era.  The Model T design in particular lagged behind the evolution the 

supporting infrastructure.  Road improvements and the trend toward year-round use, both 

of which were reinforced by events during the war, along with saturation and the 

increasing role of women dictated new design requirements.  Once the automobile had 

been redefined and a new dominant design had emerged, the product and rules (consumer 

preferences) became realigned. 

During the transitional phase, one additional misalignment arose. The 

introduction of tetra-ethyl lead (TEL) represents the first time that the environmental 

health effects of automobile use became a prominent issue.  However, in 1925, 

institutions to protect public and worker health were still in their infancy despite the work 

of Progressives (see section 3.4.1), whose influence waned in the post-war era.  While 

university experts and the federal Public Health Service (PHS) raised the TEL issue to 

national attention, the federal government had no authority to regulate chemicals.  

Meanwhile, Thomas Midgely and GM actively worked to refute the claims of health 

experts and calm the public, despite suffering from lead poisoning himself.  Thus, while 

the use of TEL was misaligned with a rising national consciousness about worker and 

public health, no formal legislative rules were in place to block the use of the additive.  

The PHS study was unable to make conclusive statements regarding the health effects of 

long-term exposure, and the courts found Standard Oil innocent of criminal negligence in 

the TEL plant accident.  Therefore, GM’s efforts at altering the selection environment 
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were successful as the controversy faded.  However, the movement in the TIEC toward 

greater concern with public and worker environmental health would later create more 

serious misalignments with automobile and fuel use. 

5.7.7 Summary 

The first specific phase of the automobile industry extended from roughly 1910 to 

1918.  Though product attributes evolved slowly, the functional definition of the 

automobile remained stable during this phase and was aligned with rules within the 

TIEC.  The specific phase was characterized by a dominant business model that was also 

aligned with the TIEC.  Firms whose operations or products were less aligned struggled 

financially.  Although this alignment supported the stability of the specific phase, 

physical infrastructure lagged behind the expansion of the market and became more of a 

factor during the second transitional phase. 

The stability of the first specific phase was undermined by factors that can be 

placed in three categories: 

1) exogenous factors: WWI, the post-war recession, and the increasing influence of 

women in the automobile market;  

2) the technology’s success: market saturation and road improvements; and  

3) innovations: the inexpensive all-steel closed body. 

These factors influenced the industry through the actions of government agents, 

economics (the price and availability of raw materials, capital, and labor), and changing 

consumer preferences.  As a result, the functional definition and attributes of the 

dominant design from the first specific phase were no longer aligned with consumer 

preferences.  
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Up through the onset of the second transitional phase, three factors contributed to 

increasing vertical integration in the automobile industry:  

1) a trend in the TIEC toward large industrial combinations that could influence the 

price and supply of raw materials;  

2) process innovations that required continuous plant operation and carefully timed 

delivery of parts; and  

3) tacit knowledge that existed only in human capital.   

Vertical integration had a great influence on each company’s innovative focus and 

capabilities, but this influence depended on the specific strategies pursued to achieve 

integration and the resulting rules and capabilities that were embodied in corporate 

structure, operating procedures, facilities, and human capital.  Therefore, during the 

second transitional phase, I find that firm histories, the personal beliefs and perspectives 

of firm leaders, and corporate structures and culture – i.e., firm-specific rules – shaped 

individual firm strategies for innovation and their adaptive capabilities.  In addition, I 

find that unexpected events presented insurmountable difficulties for some firms, while 

other entrepreneurs were able to exploit the opportunities presented by those firms’ 

failures. 

There was no clear industry trend toward process innovation versus product 

innovation during the specific phase, and no reversal of that trend during the transitional 

phase that began in 1918.  Rather, individual firms pursued specific strategies for 

innovation.  For example, Ford focused on reducing costs and controlling supplies, 

consistent with company strategy and the dictates of Fordism.  I also find no clear trend 

in the shifting importance of the mechanisms of learning.  product innovation occurred 
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largely through interaction with suppliers who generally initiated these novelties.  GM’s 

partial ownership of its suppliers created a partner relationship and fostered a higher rate 

of product innovation than was found at Ford.  However, newcomer Dodge Brothers 

quickly assumed the role of industry leader in product innovation with the incorporation 

of all-steel bodies.  This role was taken on by Chrysler in the late 1920s.  Innovation also 

remained synthetic, involving collaborations by teams of entrepreneurs and between 

manufacturers and suppliers.  In addition, innovations in business operations played a 

critical role in the second transitional phase and should not be over-looked in studies of 

technological progress and transitions. 

The new dominant product design of 1926 arose from co-evolutionary forces, 

with industry responses to the challenges of the transition and new product offerings 

reinforcing trends in consumer preferences.  The new product definition that emerged by 

1926 was misaligned with Fordism and dictated a new dominant business model – 

“Sloanism” and flexible mass production.  Thus, the specific phase is characterized by a 

particular dominant business model that is aligned with the TIEC of that era and a 

transitional phase may involve adaptations and innovations in the business model as 

much as (or rather than) the product.   

By the late 1920s, the technology and dominant business model were aligned 

consumer preferences.  With increasingly aligned institutions and the addition of a 

dedicated physical infrastructure, the gasoline automobile had become part of a stable 

socio-technical regime.
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6.0 Results and Conclusions 

…the car is not one invention but a mechanical creation composed of 

hundreds, if not thousands, of inventions.  In truth, we are still inventing 

the car, for the car is an ever-changing assembly of ideas, systems and 

parts. 

-- J. Barach, 2007 

6.1 Introduction 

As discussed in chapter 2, the quasi-evolutionary (QE) and multi-level 

perspective (MLP) theories assert that niches play a fundamental role in socio-

technological transitions.  Niches are understood to be distinct application domains, small 

in scale and scope, that are characterized by specific functional requirements.  Because of 

the special functional requirements of the niche, users are willing to accept higher cost or 

lower performance on other non-essential functionalities compared to those attained with 

existing products available in mass markets.  Thus, products tailored to niches are not 

competitive in other niches or mass markets because the functional requirements are not 

comparable across markets.  For a product to compete in a mass market, which is large in 

scale, it must provide a functionality with wide appeal and compete with alternative 

products based on price, quality, and performance, which can be objectively compared. 

The QE and MLP theories describe transitions as a process of niche accumulation, 

niche branching, or niche proliferation.  The development or penetration of new niches 

allows a technology to expand the overall scale of its markets. Eventually, the technology 

achieves cost reductions through economies of scale and learning effects that allow it to 

conquer a mass market.  This phenomenon relies on learning processes, primarily 

learning-by-doing and learning-by-interacting with users, within niche markets that alter 

the technology and the systems in which it is produced and used.  As a result, a novel 
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technology becomes embedded in a new rule set through the mutual adaptation of the 

technology and institutions, where institutions are understood to include organizations 

and rules.  Rules may be cognitive, normative, or legislative, and are defined as the 

complex set of constraints that shape interactions among agents and between agents and 

the physical elements in the system.  The co-evolutionary process of embedding results in 

the alignment of the technology, institutions, and the physical artifacts of the system, 

forming a stable system or regime.  The embedding process arises from the interaction of 

agents through institutional linkages in what QE theory calls the technological nexus.  

Agents in the nexus role link selection and variation by translating information from both 

realms; shaping interactions; and harmonizing social and market needs with the results of 

scientific and technological research. 

Chapter 1 posed a set of research questions related to the assumptions underlying 

this niche hypothesis; the role of the technological nexus in niche dynamics and the 

diffusion to wider markets; and regime dynamics and stability.  For reference, these 

questions are repeated in section 6.2.  The following sections directly address each 

research question and discuss related findings of this research.   

Section 6.3 summarizes the role of niche markets in both the emergence of the 

motor vehicle and its diffusion to mass markets.  I find that niche markets did indeed play 

an important role in the transition to motor vehicles but that this role was not entirely 

consistent with the assertions of the niche hypothesis.  I also find that the mechanisms of 

learning involved in the improvement of motor vehicle performance and reductions in 

cost were more complex than the descriptions found in QE and MLP theory.  Section 6.4 

reviews the activities aimed at altering variation and selection, as well as other forces that 
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produced mutual adaptations in the technology and institutions. I find that the 

technological nexus concept is useful in understanding the process of embedding.  

However, I find that this process occurred simultaneously with or lagged behind the 

diffusion of the automobile into the mass market rather than within the context of niche 

markets.  I also find that the technological nexus concept is not sufficient for 

understanding all the important forces behind the co-evolution of technologies and 

institutions.  Section 6.5 discusses other factors related to niche-regime interaction that 

were important in facilitating the transition to motor vehicles, including the role of 

compatibility with existing regimes, the stability of existing and emerging regimes, and 

the role of exogenous events.  I find that the diffusion of the motor vehicle is more 

consistent with a description of gradual unfolding and adaptation similar to the concept of 

‘hybridization’ (Geels, 2002) than with the description of niche proliferation and rapid 

regime renewal.  Section 6.6 summarizes these findings and discusses the implications 

for theory and policy.  Last, section 6.7 presents an agenda for future research. 

6.2 Research Questions 

• Is the role of niche markets as described in the literature historically accurate for the 

transition from horse-drawn to motorized vehicles? 

▫ Were learning-by-interacting with users and learning-by-doing the primary 

processes involved in improving the performance and cost of early motor 

vehicles? 

▫ Did growth in niche markets facilitate economies of scale? 

▫ Is niche branching, niche proliferation or niche market growth an accurate 

description of the diffusion of the gasoline motor-vehicle into mass markets? 
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• Is the linkage between selection and variation described by the technological nexus an 

accurate account of the interactions that produced the technological and institutional 

adaptations that facilitated wider diffusion of the automobile? 

▫ Who were the agents involved and from what regimes were they drawn? 

▫ How did elements of the existing regime(s) influence their identities and roles?  

How were these identities and roles altered? 

▫ What formal institutions were developed and what contributed to their stability 

and longevity? 

▫ How were the variation and selection environments altered?  Did this co-

evolution occur within the context of niches? 

▫ Was the selection-variation linkage the most significant network contributing to 

technological and institutional adaptations? 

• Were other factors related to niche-regime interaction important in facilitating the 

transition to motor vehicles? 

▫ In what ways were early motor vehicles compatible with the existing regime(s)?  

How did this compatibility evolve and eventually diverge? 

▫ Did regime instability contribute to the transition?  If so, what were the causes of 

this instability? 

▫ What role did unexpected exogenous events play in existing and emerging regime 

instability and the adaptation of institutions? 

6.3 Role of Niche Markets 

This research shows that niche markets did indeed play an important role in the 

transition to motor vehicles.  However, that role is not entirely consistent with the 
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assertions of the niche hypothesis.  This section summarizes the role of niche markets in 

both the emergence of the technology and its diffusion to mass markets.  I draw out 

several consistencies and discrepancies between the history and the assertions of MLP 

and QE theories.  These findings are also summarized in section 6.6. 

6.3.1 Emergent Phase, Through 1900 

The first experiments with motorized transport, which occurred in the late 18th 

and early 19th centuries, applied steam engine technology to transporting heavy 

equipment for military applications and rail freight.  By the late 19th century, motorized 

rail transport had become the primary mode of commercial long-distance transportation 

for freight and passengers in the U.S.  Although steam-powered cable systems initially 

served urban passenger transportation, electric rail cars, introduced in 1888, became the 

dominant technology for this application by 1902.  Meanwhile, the bicycle emerged in 

the 1880s as a form of personal transportation.  This technology first found application in 

a niche market providing sport and entertainment for daring young men.  By the late 

1880s, technological improvements had expanded the bicycle market to include men, 

women, and children of all physical abilities.  The bicycle provided exercise and 

recreation as well as practical, short-distance, personal travel. 

Thus, by the time motor power vehicles found application in personal transport, 

motorized rail systems had developed into two regimes for commercial transport.  

Practical personal travel was served by an existing regime based on draft animals while 

personal transport for sport and recreation was served by an emerging bicycle regime.  

Although the rail and draft animal regimes were fairly stable, problems had appeared by 

the turn of the century.  The railroads had come under scrutiny for abuses of monopoly 
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power and price discrimination.  Thus, business practices were becoming misaligned with 

a growing cultural trend known as Progressivism.  Horse-drawn public transport in urban 

areas had difficulty negotiating steep inclines and was contributing to problems with 

wastes, odor, flies, and illness.  The success and growth of this regime was causing 

difficulties with continuing on the current trajectory.  Meanwhile, success of the bicycle 

was altering consumer perceptions and creating a demand for performance characteristics 

(greater speed and distance) that the technology was unable to fulfill.  The emerging 

bicycle regime was facing technological limits. 

During the emergent phase, personal motor vehicles first found commercial 

success in two niche markets serving very wealthy consumers.  These niches were 

defined by the function they served.  Electric automobiles were used for short trips within 

cities and were the technology of choice for wealthy women.  They provided practical 

urban transport, conveyed social prestige, and were attractive as a solution to rising 

problems with the existing animal-powered transport regime in this function.  Steam-

powered and gasoline internal combustion vehicles were used for touring the countryside.  

They provided sport and recreation and also conveyed social prestige. 

Based on the niche hypothesis, we might consider that the application of steam 

and electric power to personal vehicles was representative of niche branching – the use of 

a radical innovation in subsequent application domains or market niches – where the 

original application was in rail transport.  However, engines used in commercial transport 

were too heavy and bulky for personal transport and developing a small engine or electric 

motor and battery with sufficient performance represented a significant innovative 

challenge. Therefore, the technologies for steam and gasoline power used in early motor 
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vehicles derived more from engines for stationary uses than from other motorized 

transport applications.  Meanwhile, electric vehicle technology relied on battery 

technology and not primary electricity generation and transmission technologies used for 

electric rail systems.  The inspiration to apply motor power to personal vehicles did not 

arise from rail transport either.  Instead, it arose from the bicycle regime.  Therefore, 

niche branching from the rail regime is not an accurate description of the emergence of 

niche markets for motor vehicles.  Nonetheless, much of the knowledge base relevant to 

motor vehicles was shared with rail transport.74   

The MLP asserts that problems in an unstable regime present opportunities for a 

new technology to serve as a solution, effectively creating new niches (Geels, 2004).  

Thus, one could argue that the early success of electric automobiles in the urban market 

niche was facilitated by problems using horse-drawn vehicles in cities.  However, electric 

rail systems were already established as an effective solution and bicycles also could 

provide clean individualized transportation in town.  Again, electric motor vehicles were 

conceived as a technology for urban applications only after the bicycle altered 

perceptions about personal transport.  This change provided the inspiration for motor 

power to replace horse or human power for personal, rather than commercial, transport.  

Electric vehicles could provide a combination of the advantages of electric rail systems 

(cleanliness) and personal carriages (individual flexibility) without the disadvantages of 

the bicycle (physical exertion and limited cargo capacity).  Thus, it was emerging 

misalignments in multiple regimes that provided an opportunity for electric cars to enter 

the urban niche, where they competed with carriages, electric rail cars, and bicycles.   
                                                 
74 We do see a number of automobile entrepreneurs with experience manufacturing rail cars, notably Walter 
Chrysler and Edward Budd.  Henry For also worked for a manufacturer of rail cars, but only for six days.  
His main experience was with stationary engines. 
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The MLP also asserts that the articulation of new functionalities plays a role in 

niche development.  In a stable regime, a new functionality creates niche applications and 

allows a radical technology to develop relatively unnoticed by the existing regime.  In an 

unstable regime, entrepreneurs may promote the new functionality of their innovation as 

a solution to regime problems.  No new functions were articulated for electric vehicles in 

urban transport – they provided practical transport and social prestige and in this manner 

served as a direct replacement for fine carriages for the wealthy.  They also provided 

clean intra-city transport, which was a direct replacement for electric rail cars or bicycles.  

However, they were able to provide these functions simultaneously, which represents a 

form of hybridization, as discussed below.  The use of steam- and gasoline-powered 

motor vehicles for touring did represent a new function by combining the flexibility of 

horse-drawn vehicles and bicycles with the speed and long-distance capabilities of rail 

transport.  This function – rapid, cross country, personal transport – provided 

entertainment, sport, and thrill, as well as social prestige.  As the MLP predicts, motor 

vehicles in this application did not compete with the existing technologies for practical 

long distance transport (rail and carriage).  However, to some extent, it did compete with 

bicycles as wealthy urbanites began driving motor vehicles in city parks for recreation. 

In both of the niche markets for automobiles, the combination of functional 

features from multiple regimes represents a sort of hybridization.  Hybridization here is 

interpreted as the merging of functions, performance features, and technologies, both old 

and new, from multiple regimes to solve particular problems or provide new functionality 

through symbiosis.  The MLP describes hybridization as a mechanism in niche 



 

459 

proliferation, but identifies only the combination of new and existing technologies to 

solve particular problems while causing a minimum of regime disruption. 

At this point, the automobile case history supports the assertion that radical 

technologies emerge in niche markets.  The history is also generally consistent with the 

pathways of niche development described by the MLP.  However, it suggests two areas 

where the MLP lacks sufficient description.  First, the emergence of the motor vehicle in 

early niche markets can only be understood through consideration of multiple regimes.  

In MLP language, the analysis must include more than one meso-level system.  This 

deficiency was raised by Raven (2005) and accounted for in the framework developed in 

section 2.6 by considering direct linkages to other industries as well as indirect linkages 

through the technical, institutional, and ecological complex (TIEC).  This is also 

consistent with the assertion of Kemp et al. (1998) that “[t]he success of niche formation 

is… linked to structural problems, shifts and changes within the existing regime(s).  The 

ultimate fate of processes of niche formation depends as much on successful processes 

within the niche as on changes outside the niche: it is the coincidence of both 

developments that gives rise to niche development patterns.”  However, this research 

suggests that much more emphasis should be given to this underdeveloped aspect of 

niche formation.  

Second, a more complete conception of hybridization would include the merging 

of functionality and performance features in addition to technological artifacts.  Further, 

this combination can yield synergies that result in new functions or applications in 

addition to novel solutions. 
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6.3.2 Transitional Phase I, 1900-1910 

We now turn to consideration of the transitional phase where the technology 

moves from niche to wider markets.  This phase began around 1900 for the automobile.  

Did processes within the niche facilitate this diffusion, and if so, what were these 

processes?  The MLP and QE theories assert that, within the niche, manufacturers learn 

about users’ needs and users learn about product performance through learning-by-

interacting.  Manufacturers then improve the technology in terms of those needs and 

achieve lower costs through learning-by-doing.  Consequently, growth of niche markets, 

niche branching, or niche proliferation allows manufacturers to reduce costs through 

economies of scale. 

Only the gasoline-powered motor vehicle was able to break out of its niche 

market and conquer wider markets.  The early niche for gasoline vehicles was the 

relatively small, wealthy touring market.  While other uses for the automobile and 

geographic features likely defined many other niche markets, as of the turn of the 

century, the automobile was widely regarded as a toy for the rich.  But the market for 

automobiles quickly shifted from the very wealthy to the lower upper class, primarily 

merchants and physicians, for whom the automobile provided utility as well as sport.  

The Olds curved dash, which sold for $650, accounted for one third of the 4,100 motor 

vehicles sold in 1900, the year it was first introduced.  Many small Midwestern 

manufacturers were also selling light, inexpensive surrey-type vehicles like the curved 

dash that appealed to wealthy farmers.  Although these vehicles were well suited to 

navigating rural roads, they tended to rattle apart quickly on them.  The key to 

penetrating the rural market was producing an inexpensive vehicle that could navigate 
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rough roads yet was rugged and reliable.  With this goal in mind, Ford introduced three 

successive inexpensive models during the transitional phase: the Model A in 1903 with 

prices starting at $750, the Model N in 1906 starting at $500, and the Model T in 1908 

starting at $825. 

Geels (2005b) asserts that growth in the touring niche in the first years of the 20th 

century was responsible for gasoline cars gaining a lead over electric- and steam-powered 

automobiles.  However, this growth had stagnated by 1905 as the market for expensive 

vehicles saturated fairly early.  As shown in Figure 4-2, the market for inexpensive 

vehicles was already well established in 1903 and sales had already surpassed that of both 

the medium- and the high-price category.  By 1910, the market for new automobiles 

priced above $2,775 had stabilized and represented only 10% of the market.  Demand for 

moderately priced vehicles continued to grow, but at an ever decreasing rate.  With a 

midpoint around $2,000, the cost of these vehicles still constrained this market to wealthy 

manufacturers and capitalists.    Meanwhile, the least expensive vehicles appealed to two 

new market segments: the upper-lower class for whom the automobile fulfilled utilitarian 

purposes as well as conveying social prestige and a larger market consisting of affluent 

farmers for whom the automobile was primarily utilitarian. 

It is difficult to argue that processes within the early niche market were 

responsible for a reduction in price that allowed motor vehicles to branch into the 

inexpensive market.  As discussed in section 4.5.4, the trend within the high-price 

category between 1903 and 1908 was, if anything, toward higher price, not lower.  And 

while the performance of these vehicles was being steadily improved, it was being 

improved relative to the functional requirements of the niche market: speed, power, size, 
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and weight were all increasing.  While niche branching was likely occurring between 

1900 and 1910 within the slowly growing medium-price class of vehicles, these markets 

still consisted of a limited number of very wealthy consumers.  The trend within this 

category was toward every higher quality but not necessarily lower price.  Performance 

and reliability in both categories increased as well, but the remaining core requirements 

for the mass market were not being addressed: affordability, ruggedness, ability to 

navigate rough roads, and ease and affordability of repair. 

Meanwhile, the lowest price category steadily gained market share after 1907, and 

the trend within that category was clearly toward ever lower price.  The decrease in 

production costs and price for inexpensive vehicles was not the result of a widening of 

the touring market, but rather of Henry Ford’s business strategy to consciously target the 

rural market and continuously reduce prices.  Cost reductions were realized from 

learning-by-doing and scale economies, among other mechanisms, but they were realized 

simultaneously with a product redefinition that moved the automobile out of the wealthy 

niches into the mass market.  Product improvements for the mass market were also 

accomplished in the mass market. The functional requirements of the mass market were 

decidedly different from those of the wealthy touring market: practicality, ruggedness, 

and affordability of ownership replaced speed, power, and display of wealth.  This 

difference in functional requirements resulted in a product design with decidedly 

different attributes.  The Model T was distinctly a “no frills” utilitarian vehicle. 

6.3.3 Specific Phase I, 1910-1918 

Much of the downward trend in prices within the lowest price category after 1907 

was due to sales of the Model T, which by 1915 was priced from $390 and constituted 
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around 70% of sales of vehicles priced under $1,375.  As the industry approached the 

specific phase, Ford actively sought to drive down the cost of manufacturing motor 

vehicles specifically to make them affordable to the masses.  In this pursuit, he was fairly 

unique.  However, Ford’s greatest accomplishment was the manufacture of a product of 

both high quality and low cost.  While one or the other had been achieved within the 

industry, it was the combination that allowed Ford to conquer the large rural market.  

This combination was achieved by jointly addressing issues of product design and 

manufacturing processes.  Ford designed the Model T with the requirements of mass 

production in mind, jointly evolving the product design, machine tools, and production 

process. 

The volume production of automobiles, perfected by Ford around 1913, was 

enabled by four facets of the TIEC: 1) a broad-based acceptance of the ideals of 

individualism as expressed in capitalism; 2) the evolution of the American system of 

manufactures begun in the arms-manufacturing industry and perfected through the 

sewing machine and bicycle industries; 3) the disintegration of traditional craft society; 

and 4) mechanistic scientific approaches based in methodological reductionism that led to 

the development of scientific management.   

Ford’s production team was uniquely able to synthesize and exploit the 

opportunities provided by this social and institutional context.  The key aspects of mass 

production were simplification of design, standardization of parts, precision machining, 

continuous motion, carefully timed speed, and the use of labor-saving mechanisms.  Ford 

did not originate any of the component process innovations involved in this system: 

standardized parts all built to common gauge, precision manufacturing, high volume 
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production, specialized workers performing increasingly minute tasks, control and 

planning by supervisors and engineers, hierarchical management, specialized machine 

tools, and continuously moving assembly. Ford was not even the first to apply any one of 

them, but was the first company to fully integrate them.  In doing so, the Ford team relied 

on knowledge spillovers, learning-by-doing, and a great deal of inspiration.  Clearly, for 

the automobile, the QE and MLP theories’ singular focus on learning-by-doing is 

inconsistent with this development. 

As manufacturing costs were reduced, Ford continuously lowered prices, despite 

the fact that the market during the first specific phase was still clamoring for more 

production than the industry could provide.  Ford therefore set the stage for competition 

based on price for a given level of quality.  For example, Durant explicitly aimed to 

compete with Ford in developing the 1915 Chevrolet Model 490, named for the price of 

the 1914 Model T.  The automobile had clearly conquered a mass market by 1916: total 

sales reached over 1.5 million units and 91% sold for under $1,375; 51% of sales were 

priced under $675 and the Model T had captured half of the total market. 

6.3.4 Mechanisms of Innovation 

While learning-by-interacting with users and learning-by-doing were important 

mechanisms in the innovations that improved the ability of motor vehicle to meet 

consumers’ needs and reduce costs, they were not the only significant processes.    Table 

6-1 summarizes the significant innovations discussed in chapters 3 through 6 and places 

them within the industry phase structure.  This section discusses the role of each 

mechanism of learning in turn then provides a summary of conclusions. 
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Clearly, knowledge spillovers were of primary importance in the emergent and 

first transitional phase, ending around 1910.  This knowledge resided in human capital 

and initially was embodied in plants and equipment in the bicycle, carriage, and machine 

tool industries.  In general, firms in these industries became suppliers or evolved into 

automobile manufacturing firms.  Suppliers thus served as the link for transmitting inter-

industry and international knowledge spillovers.  Spillovers continued to be extremely 

important during the first specific phase from 1910 to 1918 as the performance of motor 

vehicles continued to be substantially improved and costs were further reduced.  

Spillovers figured prominently in four of the most significant innovations of this phase: 

Budd’s all-steel body (begun while Budd was at Hale & Kilburn), Delco’s electric self-

starter, the incorporation of the moving assembly line in Ford’s production system, and 

sales on credit.   

What is not reflected in Table 6-1, but is apparent from the historical narrative, is 

that user interactions were important in both product refinements and in firms’ decisions 

to adopt technologies already in the market.  Although Ford did not need to interact with 

users to discover the needs of the rural market, he did rely on feedback from dealers and 

buyers to identify defects as he focused on product innovations to improve reliability.  

Meanwhile, supplier interactions provided the technological means to improve the 

product.   

In fact, learning-by-interacting with suppliers figured prominently in all phases.  

These interactions often included collaborations to solve problems with the existing 

component or to design entirely new ones.  For example, Ford and Holley collaborated on 
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early carburetor development during the first transitional phase.75  During the first 

specific phase, Hupp and Edward Budd collaborated to develop all-steel bodies while 

Budd was employed at Hale & Kilburn.  During the second transitional phase, Chrysler 

and Lockheed worked together to improve four-wheel hydraulic brakes.  Suppliers often 

initiated contact with manufacturers and petitioned for the adoption of their technologies. 

This relationship is demonstrated in Ford’s use of stamped steel and vanadium steel, 

Cadillac’s incorporation of the self-starter developed by Kettering at Delco, and GM’s 

adoption of closed bodies developed by Fisher. The unique relationship between GM and 

supplier Du Pont played a significant role in the collaborative development of Duco 

pyroxylin lacquer and the commercialization of tetra-ethyl lead (TEL).  At Ford, where 

extensive vertical integration was realized through in-house production of nearly all parts 

and components, supplier interactions were not significant after about 1916.   

The role of R&D within automotive manufacturing firms in the timeframe of this 

analysis is decidedly less than would be expected from contemporary industry.  This is to 

some extent a reflection of the fact that the idea of corporate research laboratories was 

still relatively new.76  In addition, at least through 1910, firms were operating on slim 

cash reserves and were primarily interested in re-investing profits in capacity expansion.  

However, by 1910, automobile manufacturers were using materials testing laboratories to 

improve product design.  This is consistent with the assertions of the industry-phase 

model.  However, R&D did not appear to be a significant factor until the second 

transitional phase.  By 1920, a broad range of R&D was institutionalized at GM with the 

                                                 
75 This collaboration is not reflected in Table 6-1 because it did not represent a new innovation.  It does, 
however, illustrate the importance of supplier interactions in improving early product performance. 

76 Thomas Edison built the first U.S. industrial research laboratory in Menlo Park in 1876. 
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General Motors Research laboratories by incorporating the knowledge and talents of 

Charles Kettering and his staff at Delco.  Through vertical integration, GM had brought 

the innovative efforts of the corporation’s suppliers in-house.  Kettering’s and Delco’s 

innovative efforts were then subject to the constraints imposed by GM’s market 

strategies.  This was demonstrated by the termination of the copper-cooled engine 

program and the selection of TEL over fuel blends in addressing the problem of engine 

knock.  By late 1920, Chrysler had a research laboratory worthy of comparison to those 

of Ivy League universities. 

Perhaps most interesting is the emergence during the second transitional phase of 

innovations in business operations.  GM’s market segmentation and decision to 

standardize parts across divisions, an innovation in both product and process, combined 

to enable both variety in product and economies of scale.  Other significant business 

innovations include planning for annual model changes, design for style, and the use of 

time sales.  Time sales were introduced during the first specific phase but became a 

dominant feature of the industry in the second transitional phase.  While planning for 

change may be considered an innovation in business operations, it also required 

important changes to production processes, specifically in capital equipment.  Market 

segmentation and annual model changes designed for style were innovations based on a 

fundamental understanding of emerging user preferences, which GM tracked with rather 

sophisticated data analysis.  Finally and perhaps most significantly, GM’s innovations in 

corporate structure and operations established a new standard business model for industry 

in the second specific phase. While these innovations resulted from in-house efforts, 

largely learning-by-doing, the entrepreneurs themselves relied on experience gained in 
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other industries and were associated with GM due to past supplier relationships and 

financial difficulties. 

In conclusion, while learning from users and learning-by-doing were important 

mechanisms in improving the performance and cost of early motor vehicles, they were 

not the only significant ones.  Table 6-1 shows a striking contribution from spillovers and 

learning-by-interacting with suppliers during all phases.  In addition, this table and the 

analysis provided in section 5.7.5 show that, contrary to the description of the industry 

life-cycle model, there was no clear industry-wide trend toward process innovations and 

away from product innovations during the first specific phase, nor was there a reverse 

trend during the second transitional phase.  I also find no clear trend in the shifting 

importance of the mechanisms of learning as the industry progressed.  Finally, I find that 

innovations in business operations deserves mention and should not be over-looked in 

studies of technological progress and transitions.



 

 

Table 6-1 Sources of Selected Innovations and Industry Phase 

Source  
Technology/Innovation Learning by Interactinga 

  
 

Phase Description Typeb 

 
Spillover 

 
R&D 

Learning by 
Doing Users Suppliers 

 Changes in TIEC: problems with expanding scale of current technology (stabling space and cost, waste, odor, and flies); 
demand for rapid personal transport stimulated but not met by bicycle; advances in machine tool technology; changing 

perceptions of efficiency and human labor 
< 1900 Emergent Motive power (batteries, 

steam and gasoline engines) 
1 X     

  Product configuration 1 X 
carriages, 
bicycles 

    

1900-
1910 

Transitional Manufacturing techniques 
(standard parts, volume 
production, single purpose 
machines) 

2 X 
arms, sewing 

machines, 
bicycles 

 X  X 

1903  Pressed steel frame (A.O. 
Smith) 

1 X 
bicycles 

   X 

1907  Integrally cast cylinder block 
and crankcase (Ford) 

1,2c   X   

1908  Vanadium steel (Ford) 1d X 
Europe 

X X  X 

                                                 
a The distinction of user versus supplier interaction is taken from the perspective of the automobile manufacturer.  An innovation that originates with the supplier 
at its initiative is considered to come to the manufacturer through interactions with suppliers. 

b Type denotes (1) product, (2) process, (3) marketing or (4) other innovation. 

c Abernathy et al. (1983) classify these as process innovations.  I give a joint classification to product design changes made for incorporation of innovative 
manufacturing techniques. 

d Abernathy et al. (1983) classify this (and material changes in general) as a process change.  Given our discussion of the impact of the use of vanadium steel on 
the design of the Model T and its resulting superior performance, I classify this as a product change. 



 

 

Source  
Technology/Innovation Learning by Interactinga 

  
 

Phase Description Typeb 

 
Spillover 

 
R&D 

Learning by 
Doing Users Suppliers 

1908  Detachable cylinder head 
(Ford) 

1,2b   X   

1908  Magneto integrated in 
flywheel (Ford) 

1,2b   X   

1909  Branch assembly (Ford) 2   X   
1910-
1920 

Specific Functional definition: basic, reliable, inexpensive, personal transportation capable of traveling long 
distances and negotiating rough roads 

Dominant design: water-cooled, four-stroke, four-cylinder, gasoline internal combustion engine mounted 
vertically under a front hood; shaft drive; magneto; steering wheel 

Dominant business model: capitally intensive volume production using standard parts (Fordist production) 
1910  Closed body (Fisher on 

Cadillac)e 
1    X X 

1912  Electric spot welding (Hale & 
Kilburn; enabling tech. for all-
steel body) 

2 X 
rail cars 

   X 

1912  All-steel body (Hale & Kilburn 
on Hupmobile)f  

1   X  X 

1912  Electric starter (Delco on 
Cadillac) 

1 X 
electric cash 

registers 

   X 

                                                 
e This marks the first mass production (150 units) of closed bodies.  The first closed body, made of a wood frame and steel panels, was introduced in 1898 by 
Columbia Electric. 

f The first all-metal body automobile was a 1902 Marmon with a cast aluminum body.  The all-steel Hupmobile body was developed by Edward G. Budd at Hale 
& Kilburn, and was only available for one year.  The first mass produced (5,000 units) all-steel bodies were built for Dodge by the Edward G. Budd 
Manufacturing Co. in 1914. 



 

 

Source  
Technology/Innovation Learning by Interactinga 

  
 

Phase Description Typeb 

 
Spillover 

 
R&D 

Learning by 
Doing Users Suppliers 

1913  Moving assembly line (Ford) 2 X 
Flour milling, 
meat packing, 

etc 

 X   

1914  Large-scale production V-8 
engine (Cadillac) 

1  X    

1914  Mass production of all-steel 
body (Budd on Dodge) 

1     X 

1916  Sales on credit (Willys) 3 X 
sewing 

machines, 
furniture 

  X 
dealers 

 

1918 Economic shock: post-war recession, overcapacity, and market saturation; precipitates high failure rate and further firm 
consolidation, and thus ever-increasing market concentration 

 Changes in TIEC: new consumer preferences for comfort, style, and performance, due to improved roads, inexpensive 
closed bodies, market saturation, increasing prosperity, increasing role of women in purchases 

1918-
1926 

Transitional        

1921  Market segmentation by 
economic class (GM) 

1,3   X X  

1921  Four-wheel mechanical 
brakes (Duesenberg) 

1 X 
Europe 

    

1922  Four-wheel hydraulic brakes 
(Lockheed on Duesenberg) 

1  X X  X 

1923  Balloon tires (Firestone) 2  X X  X 
1923  All-steel closed body (Budd 

on Dodge) 
1  X   X 

1923  Tetra-ethyl lead gasoline 
additive (GM) 

4  X    



 

 

Source  
Technology/Innovation Learning by Interactinga 

  
 

Phase Description Typeb 

 
Spillover 

 
R&D 

Learning by 
Doing Users Suppliers 

1923  Annual model change (GM) 1,2,
3 

X 
fashion 

 X X  

1924  Duco lacquer finish (Du Pont 
on Oakland) 

2 X 
gunpowder, 

toys 

X   X 

1926  Standardization of parts 
across product line (GM 
Oakland Pontiac) 

1,2   X   

1926-? Specific Functional definition: stylish, comfortable, personal transportation that conveys social prestige and the 
pleasure of personal ownership. 

Dominant design: electric starter, closed body, competition based on styling, increasing body and engine 
sizes culminating in V-8 engine 

Dominant business model: Large, vertically integrated corporation; “flexible mass production”; staff and line 
de-centralized organization with financial controls (“Sloanist” management). 
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6.3.5 Summary 

Growth in niche markets did not provide the economies of scale that reduced the 

costs of motor vehicles and facilitated diffusion to mass markets.  Further, the needs of 

the mass market were not discovered within the niche market, nor were product 

improvements relative to these needs achieved in the niche market.  And because the vast 

rural market can not be accurately described as a market niche, niche branching, niche 

proliferation, or niche market growth are not accurate descriptions of the diffusion of the 

gasoline motor-vehicle into mass markets.  In fact, niche branching occurred after 

diffusion to the mass market.  The gasoline motor vehicle conquered the urban niche 

occupied by electric vehicles after being vastly improved for use in the mass market.   

Therefore, the role of niche markets in the transitional phase and early specific 

phase of the automobile is not consistent with the characterization found in the MLP and 

QE theories of transitions.  This, however, is not to say that niche markets were not 

important or possibly even critical.  Competing technological configurations first found 

applications in niche markets which served to demonstrate technical feasibility relative to 

niche market needs.  These markets also demonstrated the relative advantages, as well as 

the limitations, of each alternative.  Within the niches, firms developed technical 

capabilities, established reputations, and formed networks for financing, manufacturing, 

and sales.  Racing was extremely important in working out technological issues and 

demonstrating to the public the capabilities and the performance of automobiles generally 

and of technological options and manufacturers specifically.  This role will be discussed 

further in section 6.3.5.   
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Finally, while learning from users and learning-by-doing were important 

mechanisms in improving the performance and cost of early motor vehicles, they were 

not the only significant ones.  Table 6-1 shows a striking contribution from spillovers and 

learning by interacting with suppliers.  This finding supports the assertion that the MLP 

and QE theories would benefit from a more complete description of the learning 

mechanisms involved in the co-evolutionary technological and institutional adaptations 

that facilitate diffusion.  It also has implications for the definition of the technological 

nexus, as discussed in section 6.4. 

6.4 Mutual Adaptations and the Technological Nexus 

In QE theory, variation and selection are coupled through institutional linkages 

that constitute the ‘technological nexus.’  Actors serving in the nexus role translate the 

requirements of the selection environment into objectives for technological development 

and also alter the selection environment, in part by imposing the requirements of 

technology on the selection environment.  These activities produce co-evolutionary 

technological and institutional adaptations that facilitate wider diffusion and result in the 

new technology becoming embedded in the wider socio-technical complex.83 

This section reviews the activities aimed at altering variation and selection, as 

well as other forces that produce mutual adaptations in the technology and institutions. I 

find that the technological nexus concept is useful in understanding the process of 

                                                 
83 Recall that in the framework presented in section 2.6 institutions are defined to include both 
organizations and rules (cognitive, normative, and regulative).  They include any form of social construct 
or constraint on human interactions, including organizational constructs, such as governmental bodies and 
research and industry organizations; formal constraints, such as legislation, economic rules, and legal 
contracts; and tacit constraints, such as shared perceptions, beliefs, social customs, and moral codes.  For 
example, races are a social custom with shared cultural meaning and expectations and therefore are an 
institution that shapes interactions. 
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embedding.  However, I find that this process occurred simultaneously with or lagged 

behind the diffusion of the automobile into the mass market rather than within the context 

of niche markets.  I also find that the technological nexus concept is not sufficient for 

understanding all the important forces behind the co-evolution of technologies and 

institutions.  I identify four deficiencies in the nexus description and suggest some ideas 

that would complement the nexus concept.   

Enthusiast publications and the popular press were the first institutions to emerge 

in the nexus role.  They facilitated communication among engineers and altered selection 

by influencing public opinion and expectations of motor vehicles, the technological 

options and specific manufacturers.  In this role, they were not necessarily a source of 

unbiased information.  Manufacturers also made extensive use of the press, beginning 

with Pope’s initiation of the press interview as a means to introduce new models.  

Through the Association of Licensed Automobile Manufacturers (ALAM) and its 

counterpart, the American Motor Car Manufacturers Association (AMCMA), 

manufacturers used the press extensively to sway public opinion and reassure consumers 

during the Selden patent dispute.   

The press initiated another institution, racing, that shaped both variation and 

selection.  Racing was established first in Europe and evolved from the custom for 

bicycles.  Speed and reliability races demonstrated the capabilities of the technical 

options and specific models, thus shaping public perceptions and also stimulating the 

interest of investors.  Thus, by directing funding to particular technologies and 

manufacturers, races and demonstrations influenced the direction of variation. 
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However, Ford argued that races also limited the industry’s early development 

(Ford and Crowther, 1922).  The technology itself – its very existence, its specific design, 

and its use – alters the selection environment.  The first functional definition of the 

automobile and its use in that function initially served to inhibit diffusion into wider 

markets.  As conspicuous spectacles, races reinforced public opinion that motor vehicles 

were no more than toys for the very wealthy.  In addition, the use of automobiles by 

wealthy motorists in elaborate festivities and reckless touring aroused indignation and 

anger in those with lower financial status.  However, this negative opinion faded after the 

introduction of inexpensive motor vehicles that provided a valuable and affordable 

function for these populations.  Ransom Olds served in the nexus role by interpreting 

initial public skepticism into design requirements for the curved dash – simplicity of use 

and repair.  Experience with using this vehicle then served to overcome the skepticism 

that necessitated its design specifications, thereby easing the ‘harsh’ selection 

environment.  Ford’s interpretation of market requirements and the resulting vehicle 

designs continued this mutual adaptation. 

Other activities of manufacturers through emerging industry trade organizations 

served the nexus role.  The ALAM and the AMCMA in particular were conceived as 

organizations to connect manufacturers to each other and to customers by arranging for 

public exhibition new vehicles (trade shows); promoting races; promoting the sale of 

members’ cars; encouraging public interest in automobiles; promoting good roads; and 

through the exchange of technical information.  In enforcing the Selden patent, the 

ALAM claimed to be protecting the industry from disreputable manufacturers that would 

have created public distrust and a negative opinion of the automobile.  By restricting 
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licenses and controlling production output, the ALAM also sought to maintain high 

prices, thus affecting variation.  The issue was settled by the legal system, and these 

higher level rules ultimately supported the independent manufacturers of the AMCMA, 

though this group had already disbanded.  After the legal decision in 1911, the ALAM’s 

boundary spanning role was transferred to the Automobile Board of Trade and then, in 

1914, to the National Automobile Chamber of Commerce (NACC).  The ALAM’s 

technical work was transferred to another prominent industry organization, the Society of 

Automobile Engineers (SAE), which served as a linkage among manufacturers and 

suppliers.  While the SAE did not connect manufacturers to customers, it did influence 

both variation and selection.  As a technical society, the SAE represented the shared 

knowledge base which served as a cognitive constraint on innovation by shaping the 

perceptions of engineers. But more significantly, the confusion caused by the huge 

number of parts used by the industry constituted an adverse selection environment which 

the SAE attempted to alleviate through parts standardization.  While the organization 

succeeded at easing the parts burden and improving the quality of materials, it was unable 

to make the selection environment significantly more benign for small manufacturers. 

Other than the Selden patent dispute, the automobile industry was fairly free to 

develop without governmental restrictions during the emergent and first transitional 

phase.  However, formal constraints on automobile use were emerging in the form of 

local and state speed and registration laws.  Initially, these laws were misaligned with the 

capabilities of the automobile and served to limit its usefulness and therefore its 

diffusion.  Through motoring clubs, enthusiasts joined forces with manufacturers to 

remove this element from the selection environment, eventually shifting efforts from 
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opposition to coordination.  In this process, the purpose of motoring clubs shifted from 

organizing social activities for the wealthy elite to activism for all motorists.  By 1910, 

registration laws were more coherent and actually served to create a more benign 

selection environment, since fees were used for road improvements. 

The first instance of government action related to the environmental health effects 

of automobile use arose during the second transitional phase after the introduction of 

tetra-ethyl lead (TEL).  An industrial incident and the statements of university experts 

and the federal Public Health Service (PHS) raised the TEL issue to national attention.  

However, institutions to protect public and worker health were still in their infancy and 

the federal government had no authority to regulate chemicals in 1925.  Thus, although 

the use of TEL was misaligned with a rising national consciousness about worker and 

public health, no formal legislative rules were in place to block its use.  GM actively 

worked to refute the claims of these experts and the PHS was unable to make conclusive 

statements regarding the health effects of long-term exposure.  In addition, the courts 

found Standard Oil innocent of criminal negligence in the illness and deaths related to the 

TEL plant accident.  Therefore, GM’s efforts at altering the selection environment were 

successful and the controversy faded. 

The poor condition of roads initially had served to limit the usefulness of the 

automobile and was a major design consideration for inexpensive vehicles.  Once again, 

motorists, through clubs, joined forces with manufacturers to promote road 

improvements.  Many of these agents were continuing efforts they had undertaken as 

bicycle enthusiasts and manufacturers.  Because motor vehicles offered an alternative to 

railroads for transporting agricultural goods, farmers joined these efforts around 1909 
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through the National Grange.  Farmers were motivated by economics and by the 

perceived abuses of monopoly power and price discrimination by the railroad, an issue 

brought to national attention by Progressives. The Good Roads movement produced 

modest results, but improvements were overtaken by the increasing demands of motor 

vehicle use until the appropriation of federal funding for road improvements beginning in 

1916.  But the major breakthrough in road construction resulted from the industry’s 

response to events that occurred during WWI which demonstrated the feasibility of both 

long-distance trucking to transport freight and the year-round use of highways. 

While motorists’ and manufacturers’ efforts to coordinate registration laws and 

improve roads did alter the selection environment, they did not simultaneously influence 

technology development.  Therefore, they cannot be designated as nexus activities as 

described by QE theory.  However, these actions indirectly influenced the technology and 

resulted in mutual adaptations.  This feedback came through consumer expectations as 

roads were dramatically improved after the war and the idea of year-round use became 

common.   This change was one of several factors that initiated a second transitional 

phase, or era of innovative ferment, between 1918 and 1926.  As a result, the 

automobile’s functional requirements and attributes were significantly altered to align 

with the much improved condition of roads.  Two other related factors contributed to the 

second transitional phase: market saturation and the used car problem.  Manufacturers’ 

innovative responses to these challenges – time sales and annual model changes – were 

designed to alter the selection environment. 

By the beginning of the specific phase (1910), mutual adaptation had resulted in a 

dominant design that was aligned with existing physical infrastructure (roads and a 
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dispersed refueling system) and supporting organizations were actively working to 

improve that infrastructure as well as legislative rules that created an adverse selection 

environment.  Thus, the process of embedding was well underway and many of the 

activities responsible for the co-evolution of technologies and institutions were consistent 

with QE theory’s technological nexus description.  However, most of these adaptations 

occurred during the transitional phase and were simultaneous with or lagged behind the 

diffusion of the automobile into the mass market.  In addition, they continued and were 

reinvigorated with the onset of the second transitional phase. 

As an agent associated with niche markets, the ALAM worked to protect these 

niches and restrict market diffusion.84  Motoring clubs also represented a niche market 

(wealthy touring) but changed roles during the process to represent the needs of the mass 

market.  One prominent nexus agent, Albert Pope, was drawn from a competing regime 

(bicycles) and was initially associated with a niche market (electric vehicles).  Pope 

apparently viewed motor vehicles as an opportunity – a solution to falling bicycle sales – 

rather than a threat and adapted his role to support rather than stifle the emerging 

industry.  He also eventually adapted from manufacturing electric vehicles to gasoline 

vehicles.  Pope’s activities demonstrate the potential significance of existing networks 

and agents to emerging industries. 

This research provides evidence that the technological nexus concept is useful in 

understanding the process of embedding but suggests that it is not sufficient.  I identify 

four deficiencies in the nexus description of the interactions that produce technological 

and institutional adaptations.  In general, these deficiencies stem from the singular focus 
                                                 
84 The ALAM attempted to maintain the motor vehicle’s standing as an expensive product for the wealthy.  
In addition, it was organized to enforce the Selden patent that was owned by the Electric Vehicle 
Corporation. 
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on agent activities that directly link variation and selection and result in simultaneous 

adaptations. 

First, some of the important linkages between variation and selection are not 

mediated by agents, but arise from system properties.  For example, saturation of the 

wealthy touring market prior to 1910 served to down-select specific firms and thus 

influenced variation.  Similarly, activities that alter the selection environment may not 

directly alter variation (or vice versa), but the system structure and properties may create 

indirect feedbacks that do.  This is illustrated by the chain from activities of motoring 

clubs to improved funding for roads to altered consumer preferences to the re-

specification of vehicle design.   

Third, the technological nexus does not account for all the linkages among agents 

which are important to bringing about technological and institutional adaptations.  

Throughout the history reviewed here, suppliers were extremely important as originators 

of or collaborators in product innovations.  This suggests that two networks that are not 

included in the technological nexus are crucial to understanding technological adaptations 

to selection pressures.  The first is the manufacturer-supplier relationship.  Second and 

less obvious is the relationship between suppliers and consumers of the end-product.  

This raises an interesting question for further study, especially in relation to innovation in 

the automobile industry today: how do suppliers collect and interpret information from a 

selection environment to which they are not directly connected?   

Finally, events that arise outside the system, like WWI or the Panic of 1907, may 

directly alter the selection environment, stimulate agent responses that directly or 
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indirectly influence it, or alter the resources available to certain firms for innovation.  

Such events can be critical in enabling, altering, or halting the process of embedding. 

In addition, this research suggests some ideas that would complement the nexus 

concept.  First, particular individuals with high visibility, resources and influence might 

serve as ‘nexus champions,’ promoting institutional and technological co-adaptations in 

much the same spirit as ‘product champions’ promote specific innovations.  Examples 

from this historic review include the role of Albert Pope in championing the Good Roads 

movement and Henry Ford’s role in championing the rights of the independent 

manufacturers during the Selden patent dispute.  Second, the combination of the 

boundary spanning nexus role, exogenous events, and the effects of system structure and 

properties yields synergies that produce greater impact on variation and selection than the 

sum of the impact of each process occurring in isolation.  This typical feature of complex 

system dynamics is illustrated by the multiple factors and processes that initiated the 

second transitional phase from 1918-1926. 

6.5 Other Factors 

This section 6.5discusses factors related to niche-regime interaction that were 

important in facilitating the transition to motor vehicles, including the role of the 

compatibility of the automobile with existing regimes, the stability of existing and 

emerging regimes, and the role of exogenous events.  I find that the diffusion of the 

motor vehicle is more consistent with a fit-stretch pattern of gradual unfolding and 

adaptation than one of niche proliferation and rapid regime renewal.  I also find that the 

combination of instabilities in multiple existing regimes provided opportunities for the 

emerging automobile industry.  While a process of alignment was increasing the stability 
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of the automobile industry during the first specific phase, I find support for the argument 

that a stable regime did not coalesce until the second specific phase when the technology 

abandoned the last vestiges of carriage styling and automobile production techniques 

became fully aligned with new, higher level rules in the TIEC. 

6.5.1 Compatibility and Fit-Stretch 

Section 2.4.2 described a diffusion pattern of hybridization that Geels (2002) 

asserts may occur in unstable regimes.  In this process, new technologies are merged with 

existing ones to solve particular problems in the existing regime with a minimum of 

disruption to that regime.  Continuous development eventually leads to the articulation of 

new functionalities related to the novelty’s capabilities and new technical designs are 

tailored to these functions.  Over time, the hybrid technology’s form and function co-

evolve through a fit-stretch pattern as illustrated in Figure 2-2.   

Although problems were arising with the expanding scale of the carriage-based 

transportation regime in urban use, the regime was still relatively stable, particularly for 

serving rural transport.  However, the development and diffusion of motor vehicles shows 

many parallels with the hybridization pathway and fit-stretch pattern. 

The first gasoline-powered vehicles can easily be described as a combination of a 

new technology with elements of the existing regime.  Some of the vehicles built during 

the emergent phase consisted of a small gasoline internal combustion engine attached 

under a carriage’s floorboards and connected to the wheels using a chain drive adapted 

from bicycles.  Even after commercial production began in the transitional phase, many 

automobiles were constructed using bicycle wheels attached to bodies produced by 

carriage manufacturers.  Indeed, most of the inexpensive vehicles that first penetrated the 
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mass market were still merely motorized horse buggies (Flink, 1988).  The design 

gradually evolved, departing from the restrictions dictated by horse power and taking 

greater advantage of the options and capabilities afforded by the gasoline engine.  By 

1910, when the first dominant design emerged, the engine had been moved to the front 

and enclosed under a hood; a steering wheel had replaced the tiller; and a rotating shaft 

had replaced the chain drive.  The last vestiges of carriage styling disappeared with the 

emergence of the second dominant design incorporating the all-steel closed body in 

introduced in 1923 and the integrated design of the stylists’ car in 1927. 

With the cumulative effects of a century of innovation in the firearms, sewing 

machine, and bicycle industries, the manufacture of automobiles also required only that 

skills and knowledge be “transferred from existing uses to new ones” (Rosenberg, 1963).  

These manufacturing processes then evolved to meet the specific needs of the technology 

and were soon providing improvements to machine tools that diffused to other industries.  

Eventually, an entirely new production system was developed by the industry that was 

suited to the requirements of high-volume, high-quality, low-cost production.  Again, the 

last vestige of manufacturing techniques inherited from the carriage industry disappeared 

with adoption of all-steel bodies. 

Vehicle design was also tailored to the physical infrastructure of existing regimes.  

Practical automobiles were capable of negotiating rough roads and could be repaired by 

mechanics experienced with stationary engines and farm machinery.  Gasoline vehicles 

gained a market advantage over steam and electricity in part because fuel was widely 

available through a dispersed system established for the production and distribution of 

kerosene for lighting and heating.  Beginning during the first specific phase, the 
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requirements of the automobile were then imposed on the infrastructure.  Roads were 

improved and gasoline of predictable quality became available at dedicated stations.  In 

1923, a fuel additive was developed to enable higher compression ratios.  By the late 

1920s, road improvements made faster, year-round driving possible, and these 

capabilities were reflected in a new dominant design that was lower to the ground and 

incorporated all-steel closed bodies 

Combining this description with the findings of section 6.3, it appears that the 

diffusion of the automobile is more characteristic of Geels’ (2002) hybridization 

mechanism described in section 2.4.2 and the general fit-stretch pattern shown in Figure 

2-2 than niche proliferation.   Indeed, one could argue that the gradual unfolding of the 

automobile regime represented an internal transition (see section 2.6) for the carriage and 

bicycle industries.  Indeed, the bicycle industry clearly went into rapid senescence with 

the emergence of motor vehicles and many manufacturers adapted to automobile 

manufacturing.  However, supporting the argument for internal transition would require a 

more thorough study of the disruption to the carriage industry, specifically an analysis of 

the number of firms that adapted to automobile manufacture, the number that failed, and 

the number of new firms that arose from outside either the carriage or bicycle industries. 

6.5.2 Regime Stability 

As discussed in section 6.3, problems had emerged in rail and draft animal 

regimes by 1900.  Business practices of the railroads were becoming misaligned with the 

trend toward Progressivism, while the success and growth of the carriage regime 

combined with increasing population densities was causing difficulties continuing on that 

trajectory.  Meanwhile, the emerging bicycle regime was facing technological limits just 
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as its success was altering consumer perceptions and creating demand for greater 

performance.  These instabilities did provide opportunities for the emerging automobile 

industry, but mainly through their combination.  The emerging misalignments in multiple 

regimes provided an opportunity for electric cars to enter the urban niche.  Meanwhile, 

the combination of misalignments in multiple regimes and the articulation of a new 

functionality opened a new niche for touring and later contributed to wider diffusion.  In 

addition, the automobile itself was aligned with increasing individualism; this was 

particularly true for gasoline cars since touring conveyed a sense of freedom never before 

experienced. Again, the coincidence of developments and processes in multiple regimes 

and within niches is critical to understanding the emergence of the motor vehicle. 

As the automobile industry developed, the success of the Ford Motor Company 

can be partially attributed to the alignment of Fordism with evolving higher-level rules 

within the TIEC regarding capitalism, mechanistic reductionism, and the value of 

efficiency.  This success in turn reinforced those trends.  A process of embedding, as 

discussed in section 6.3.5, began in the transitional phase and continued through the 

specific phase, bringing the technology, industry, institutions and infrastructure into 

further alignment.  Development of aligned physical infrastructures for roads and 

refueling began periods of significant growth late in the first specific phase and became a 

major factor in the second transitional phase.   

Although many institutions were still in their infancy and dedicated physical 

infrastructure lagged behind diffusion of the automobile, the trend toward alignment gave 

the industry some stability in the first specific phase.  However, this stability was 

undermined by an exogenous event – the post-war recession – and by evolving consumer 
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preferences that became misaligned with the existing dominant product design.  Four 

factors contributed to this misalignment: 1) the increasing influence of women in the 

automobile market; 2) market saturation; 3) road improvements; and 4) the introduction 

of mass produced all-steel closed bodies.  The first of these is an exogenous development 

in the TIEC.  The second and third factors can be attributed to the success of the 

automobile.  The fourth is a breakthrough innovation.  Once the automobile had been 

redefined and a new dominant design had emerged, the product and consumer 

preferences were realigned, marking the start of the second specific phase. 

In chapter 2, I asserted that a socio-technical regime is understood to exist when a 

technology and sector have achieved the specific phase and when the stability of that 

specific phase is supported by the alignment of institutions and existing physical 

infrastructure with the dominant product design, production processes, and organizational 

forms.  Although supporting rules, organizations, and physical infrastructures were 

certainly co-evolving with the automobile during the first specific phase, one could argue 

that a regime did not coalesce until the second specific phase.  This is consistent with 

Nieuwenhuis and Wells’ (2007) argument that true mass production did not occur until 

the development of the all-steel closed-body car in 1923.  At that point, the production 

process was completely aligned with the ‘new’ rules regarding capitalism, mechanistic 

reductionism, and efficiency.  This argument is also consistent with the gradual unfolding 

of the regime as presented in section 6.5.1, which describes the complete break of the 

technology design from the old regime with the introduction of the stylists’ car, the GM 

La Salle, in 1927.  This marks the completion of the fit-stretch pattern as shown in Figure 

2-2.  In this interpretation, the industry might be considered to have experienced a 26-
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year transition, with the period from 1910-1918 representing a lull in the era of ferment.  

However, without a measurable definition of ‘alignment’ and ‘stability,’ the 

determination of whether an industry is in the specific phase or has achieved the status of 

a regime remains a subjective one. 

6.5.3 Role of Exogenous Events 

In this research, exogenous events or developments are understood as external 

forces that arise with no direct causal linkages to the regime or technology of interest.  

This research identified four notable exogenous developments during the period of this 

study. 

First, the Panic of 1907 occurred just as the high-priced touring market was 

saturating and likely contributed to the drop in sales in this price bracket in 1908.  

Therefore, it also contributed to the shakeout phenomenon by contributing to the failure 

of firms manufacturing these vehicles in 1908, when the highest number of firms exited 

the industry.  Thus, the interaction of a random event and developments in the selection 

environment influenced variation and further reinforced the trend toward less expensive 

vehicles and the emerging dominant design.  In addition, by reducing sales of high-priced 

cars and likely influencing the financial position of Alexander Malcomson, the Panic of 

1907 also serendipitously supported Henry Ford’s efforts to gain financial control of the 

Ford Motor Company.   Finally, funding for the ALAM’s Mechanical Branch was cut as 

a result of the panic and its work was transferred to the SAE in 1910. 

Second, the influenza epidemic of 1920 took the lives of John and Horace Dodge.  

The Dodge widows eventually sold the firm to bankers who were unable to manage it 

successfully.  In 1928, this presented an opportunity for Chrysler to expand its 
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distribution and sales network, add production capabilities, achieve economies of scale in 

production and research, and reduce competition.  With the purchase of Dodge, Chrysler 

became the third largest U.S. automaker. 

Third, WWI and the post-war recession had both immediate and co-evolutionary 

impacts on the industry.  Many small firms that were struggling, particularly those 

manufacturing larger vehicles, converted to war-time production of trucks and continued 

in this market after the war.  The industry’s response to the nation’s call for help in the 

war effort also demonstrated the feasibility of both year-round road travel and long-haul 

trucking for freight transport.  This led to increased federal funding for road construction 

and shifted consumer perceptions of motor vehicle use.  Then, many firms did not survive 

the post-war recession.  Those that did were fundamentally altered as this event triggered 

a transitional phase. 

Finally, the increasing role of women in motor vehicle market decisions also 

factored into the initiation of a transitional phase.  This role reinforced the shift in 

consumer preferences toward closed bodies, lower clearance, and design for style. 

6.6 Conclusions 

6.6.1 Research Questions 

This research supports the assertion that niche markets play a significant role in 

the emergence of a new technology.  For the automobile industry, competing 

technological configurations first found applications in niche markets.  These niches 

served to demonstrate the feasibility of the technology relative to niche market needs and 

the technology’s limitations.  They also served to demonstrate the relative advantages of 

alternative technological approaches compared to each other and to the existing regime.  
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Firm capabilities and reputations were established in the niche and networks were formed 

for financing, manufacturing, and sales.  The technology was initially extremely 

immature, and user feedback assisted manufacturers in improving the product’s 

performance relative to users’ needs. 

However, this study also demonstrated that the role of niche markets was not 

consistent with the assertions of the niche hypothesis and that the process of niche 

branching, niche accumulation or niche proliferation is not an accurate description of the 

transition to motor vehicles.  The product was improved within niche markets, but only as 

defined by niche market requirements; the core requirements for the mass market, 

particularly the need for a combination of high quality and low cost, were not being 

addressed.  Further, the initial niche market for gasoline motor vehicles, the wealthy 

touring market, did not widen; by 1907 it was actually saturating.  In addition, prices 

were not reduced in this niche market; they were in fact rising.  Meanwhile, the market 

for mid-priced cars, which represented more functional uses but still consisted of wealthy 

consumers, was growing slowly.  However, product and process improvements were 

again geared toward the needs of this market for higher quality and power. 

Instead, cost reductions from learning-by-doing and scale economies were 

realized simultaneously with a product redefinition that moved the automobile out of the 

wealthy niches into the mass market.  Subsequently, product improvements for the mass 

market were accomplished in the mass market.  While learning from users and learning-

by-doing were important in this innovative process, it also involved a wider set of 

learning mechanisms, with spillovers and learning-by-interacting with suppliers figuring 

prominently.  For the gasoline motor vehicle, niche branching into the urban niche 
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occurred after diffusion to the mass market.  Finally, the transition to automobiles is more 

appropriately described as a process of unfolding consistent with the mechanism of 

hybridization, where elements of old regimes are combined with new technologies. 

This research finds that that the technological nexus concept is useful in 

understanding the co-evolution of technology and institutions, but also finds that it does 

not provide a complete description of this process.  Important factors not included in the 

technological nexus include supplier networks, exogenous events, and feedbacks arising 

from system structure and properties.  Due to system dynamics, the combination of these 

factors yields synergies that produce greater impact on variation and selection than the 

sum of the impact of each process occurring in isolation. 

In conclusion, the product requirements for niche markets are, by definition, 

distinctly different from those of mass markets.  Therefore, learning-by-interacting with 

users in niche markets is inadequate for understanding the needs of the mass market.  

Instead, new technologies diffuse to mass markets simultaneously with a redefinition of 

the product that specifies appropriate functional requirements for the mass market.  For 

example, the computer was originally conceived as a technology for scientific 

applications, but moved into the mass market after being redefined to provide functions 

like word processing that were valuable to a wider market.  The underlying process of 

redefinition is likely to be unique for each technology, though general patterns may 

emerge.  For the automobile, this redefinition was the result of the personal beliefs, 

values, experience, and inspiration of the entrepreneurs.  Finally, supplier networks and 

linkages to other industries and regimes are critical to understanding the innovations that 

improve performance relative to mass market needs and facilitate diffusion. 
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6.6.2 Implications for Theory 

The goal of this dissertation was to answer specific policy-relevant questions 

regarding the role of niche markets in the transition to new socio-technical regimes.  This 

research did not attempt to develop a new model of innovation or a complete theory of 

technological transitions, but rather used concepts and insights from several bodies of 

theory to investigate the research questions.  However, this research has important 

implications for the theory of socio-technical transitions. 

First, this research found that the QE and MLP theories of socio-technical 

transitions would benefit from a richer description of innovation as provided by the 

mechanisms of learning described in section 2.5.2.   

Second, evolutionary theories generally assert that innovation is triggered by new 

scientific or technical breakthroughs and relegate social and institutional issues to the role 

of ‘focusing devices.’  In QE theory, social and institutional issues are actively addressed 

by ‘heterogeneous engineers’ to realize successful designs.  In the MLP, these issues 

provide opportunities for new technologies to serve as a solution, thereby creating a 

niche.  Thus, transitions occur when processes on different levels link up and reinforce 

one another.  This research has shown that social and institutional issues can trigger an 

era of ferment and even serve as the basis of an innovation, such as scientific 

management or Fordism.  This finding is consistent with the description of innovation 

presented in section 2.6, where of the role of the entrepreneur is to create value by 

exploiting any change in the TIEC – technical, institutional (economic, social, etc.), or 

ecological. Thus, the role of social and institutional factors in innovation could be even 

more central than the description found in the QE and MLP theories. 
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Third, the QE and MLP theories tend to focus on a single existing regime, though 

the theories themselves do not preclude the influence of multiple regimes.  Meanwhile, 

this research found that the combination of misalignments in multiple regimes and other 

developments in the TIEC were critical to understanding why the automobile industry 

emerged when it did and in the particular niche markets that it did.  Therefore, these 

theories would benefit from a more explicit accounting of the interactions among 

multiple regimes and niches. 

Fourth, in chapter 5, I found that firm histories, the personal beliefs and 

perspectives of firm leaders, and corporate structures and culture – i.e., firm-specific rules 

– shaped individual firm strategies for innovation and their adaptive capabilities.  These 

firm-specific rules had a large impact on the development of the technology and the 

industry as a whole.  This finding supports the use of a behavioral approach with a micro-

focus in the analysis of innovation and socio-technical change.  Thus, theories of socio-

technical transition would benefit from the incorporation of concepts from micro-level 

theories, such as research in the sociology of entrepreneurship, institutional logic, and 

institutional entrepreneurship, among others. 

6.6.3 Implications for Policy 

Complex co-evolutionary systems present difficult challenges for policy-makers. 

Agents are widely dispersed throughout a network with diffuse connections that are often 

obscure.  Meanwhile, the elements of the TIEC and the attributes of the product and 

production system are continually changing and adapting.  These features combine to 

complicate the identification of targets for regulations, incentives, and sanctions.  
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Influencing such systems requires complex decision-making and complex, adaptive 

policy strategies (Rycroft and  Kash, 1999). 

In addition to local problems, the expansion of the current transportation regime 

based on personal gasoline ICE vehicles is posing large-scale problems, including 

dependence on a finite fossil resource that is concentrated in regions outside our control 

and contributions to global climate change through the emission of greenhouse gases.  

Alternative technologies currently available to solve these problems all fall short of the 

existing regime on one or a number of functional requirements such as cost, performance, 

reliability, fuel availability, convenience, and social acceptability.  Current research and 

policy aim to alleviate these deficiencies. 

Though many efforts are underway to improve the tools available for analysis, 

policies generally fail to account for the difficulties presented by co-evolutionary 

systems.  For example, the existence or lack of opportunities, technological or 

institutional, arising outside the regime of interest typically is not represented in policy 

analyses.  Further, models used for these analyses typically do not consider the potential 

for conditions such as consumer and societal valuations to change or for new 

opportunities to arise in the TIEC.  Because of these facts, niche management and other 

policies may be slow or insufficient to bring alternative technologies into widespread use 

and may yield unexpected and suboptimal results.   

Below I use two cases to illustrate how co-evolutionary issues not considered in 

typical policy-making can yield unexpected and unsatisfactory results.  First, the failure 

of ZEV mandates to bring electric vehicles into widespread use illustrates the 

shortcomings of niche management when new opportunities arise within the TIEC due to 
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co-evolutionary effects of the regulation itself.  Second, the outcome of CAFE legislation 

is used to illustrate how failure to account for changing consumer preferences due to co-

evolutionary effects can erode the benefits of policy.  Both policies altered the selection 

environment by specifying functional requirements for new vehicles.  This discussion is 

not intended to provide a thorough policy analysis, but rather to illustrate the policy 

implications of the co-evolutionary perspective. 

6.6.3.1 California’s ZEV Mandate 

In 1990, the California Air Resources Board (CARB) realized it would have 

serious difficulty meeting federally-mandated air quality goals under the Clean Air Act.  

In response, CARB passed low-emission vehicle (LEV) regulations establishing state-

level exhaust emission standards that were more stringent than those established at the 

national level.  The regulations also established the Zero Emission Vehicle (ZEV) 

program, which required that 2% of new vehicles sold in the state beginning in 1998 have 

zero emissions.  The fraction beginning in 2003 was set at 10%.  In 1990, the battery-

powered electric vehicle was the only vehicle capable of meeting the ZEV criteria of zero 

tailpipe and zero evaporative emissions.  

Because auto manufacturers claimed they could not meet the 1998 deadline, 

CARB delayed implementation until 2003, but the 10% rule for that year remained.  

After the original LEV regulations were drafted, Honda and Toyota offered hybrid 

electric vehicles for sale in the U.S.  In part due to this new technological opportunity, 

CARB revised the ZEV rules in 2001, creating two new categories of standards for 

partial ZEVs (PZEVs) and advanced technology partial ZEVs (AT-PZEVs).  To be 

certified as a PZEV, a vehicle must meet the most stringent LEV emission standard 
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(super ultra-low emission or SULEV85) and have no evaporative emissions.  Provisions 

were made for manufacturers to claim partial credit toward the ZEV mandate for the sale 

of both types of PZEVs, but a fraction of the ZEV mandate had to be met with AT-

PZEVs.   

In 2002, manufacturers challenged the legality of the revised mandate and 

implementation was delayed by the courts pending the outcome of the suit.  California 

further revised the ZEV rules, hoping to put an end to the legal battle and restore the 

program by 2005.  Negotiated with the auto manufacturers, the new rules allow more 

credits from PZEVs but require that manufacturers produce a minimum number of fuel 

cell and electric vehicles – when they become economically feasible.  

The goal of the LEV regulation was to bring the state into compliance with the 

Clean Air Act.  Meanwhile, the official goal of the ZEV mandate was to promote the 

development of advanced technology for zero emissions.  In total, the policy may be seen 

as two-pronged.  The LEV standards served a short-term goal of doing better with 

existing technology until an alternative was commercially available; functional 

requirements (emission standards) were established that were attainable in the near-term.  

The ZEV mandate was intended to serve the longer term goal of developing the 

alternative technology; zero emissions represented a long-term goal for the functional 

requirements of automobiles.   

In general, setting targets in terms of functional requirements allows industry to 

determine the most cost effective technology available to meet policy goals.  However, 

                                                 
85 As modified in 2004, the LEV regulations contain standards for certifying vehicles as low emission 
(LEV), ultra-low emission (ULEV), and super ultra-low emission (SULEV) vehicles. For passenger cars, 
ULEV tailpipe emissions are reduced by 50-84% compared to federal Tier 1 emissions while SULEV 
tailpipe emissions are reduced by 76%-97%. 
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the ZEV mandate was widely regarded as a policy to promote one particular technology – 

electric vehicles – and this interpretation is supported by the most recent policy revision 

that specifies requirements for electric and fuel cell vehicles.  Essentially, CARB officials 

attempted to use the opportunity presented by short-term local problems with moving 

forward in the current regime to create a niche for electric vehicles, which could serve as 

a solution to a long-term global problem.  Proponents of the original rules were optimistic 

that a niche market would be created, eventually leading to commercially viable models.  

But after fifteen years, the rules had not been implemented and the market was still non-

existent.  As a means for advancing electric vehicle technology, the regulation had failed.   

Using the lessons and language from this dissertation, we can propose a plausible 

explanation of what happened and why.  First, automakers actively sought to alter the 

selection environment by lobbying for a delay in implementation and then challenging 

the legality of the regulations under federal law.  Lobbying efforts claimed that the state-

level rules were misaligned with the technology’s and industry’s capabilities.  The legal 

challenge claimed that state-level rules were misaligned with federal-level rules.   

Second, automakers responded to the altered selection environment by developing 

innovations within the existing socio-technological paradigm that required no adaptation 

on the part of users.  As a result, before the 2003 effective date of the ZEV mandate, 

many conventional gasoline vehicles were capable of meeting the stringent SULEV 

emission standard established in the LEV regulations.  Incremental improvements in 

electronic engine and catalytic control technologies were able to meet the overarching 

goals of the ZEV program – reducing automotive emissions.  In fact, exhaust from a 

certified SULEV may be cleaner than the ambient air in major cities like Los Angeles.  
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Therefore, as an air quality policy, the LEV regulation was extremely successful in 

meeting its short-term goal.  But if policy-makers hoped that the ZEV provision of the 

regulation would serve the longer term goal of facilitating a transition to a new 

technological paradigm, then this part of the policy has been a failure. 

While electric or fuel cell vehicles may appear to be superior technologies for 

solving long-term problems as the transportation system continues to expand in scale, 

incremental improvements yielded products that were “good enough” at solving the 

short-term problem of meeting State Implementation Plans for the Clean Air Act. In 

addition, this solution was compatible (aligned with) with existing use systems 

(infrastructure and rules).  Because these incremental improvements realigned the 

technology with new rules, both legislative and normative, regarding ‘clean’ vehicles, 

this success at least temporarily eliminated an opportunity for niche creation and eroded 

political support for longer-term goals. 

At this point, it remains to be seen whether hybrid electric technology will 

achieve high volume production through niche accumulation or other mechanisms, 

thereby yielding technological improvements and cost reductions in battery and 

component technologies that can be incorporated in full electric vehicles.  Such a 

pathway would be consistent again with Geels (2002) hybridization mechanism and the 

fit-stretch pattern. 

6.6.3.2 CAFE 

In 1973, OPEC production cuts and the Arab oil embargo resulted in a dramatic 

increase in petroleum fuel prices as well as shortages at gasoline stations.  In an effort to 

decrease U.S. dependence on foreign oil, Congress passed the Energy Policy and 
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Conservation Act (EPAct) of 1975, which included regulations known as the Corporate 

Average Fuel Economy (CAFE) standards for light vehicles. Under CAFE, the sales-

weighted fuel economy of each manufacturer’s fleet of new vehicles must meet or exceed 

the CAFE standard, or the manufacturer must pay fines.  When the standards were 

established, pick-up trucks were used primarily as work vehicles.  Policy-makers set 

lower targets for light trucks in order to maintain the features and capabilities necessary 

to perform in that role.  Figure 6-1 shows that, following passage of CAFE, the new car 

fleet average fuel economy rose from 15.8 mpg in 1978 to 28.6 mpg by 1988.  It hovered 

at or below that value until 2002.  New light truck average fuel economy increased from 

13.7 mpg in 1975 to 21.6 mpg in 1987, but it declined slowly through 2002. 
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Figure 6-1 Average Fuel Economy of New Light Vehicles 
Source: Sales weighted laboratory composite values calculated from 

U.S. EPA (2007b) Appendix E  

Since the establishment of CAFE, the composition of the light vehicle market has 

changed. Figure 6-2 shows that while the market share of pick-up trucks has remained 
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stable at about 15%, the market share of cars has decreased from about 80% to 50% 

while vans and sport utility vehicles have increased from 6% to 32%.  Initially, most of 

the growth in this last category was in medium sized vans and SUVS.  Since 1990, nearly 

all growth has been in medium and large SUVs. 
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Figure 6-2 Market Share of Cars, SUVs, and Pick-ups 

Source: U.S. EPA (2007b) Appendix E 

Apparently, market preferences have shifted since the institution of CAFE 

standards.  To try to understand why, consider the physical attributes of these vehicles.  

Figure 6-3, Figure 6-4, and Figure 6-5 show the EPA rated fuel economy, the sales-

weighted average weight and horsepower-to-weight ratio for the same three classes of 

vehicles as well as the fleet average.  The horsepower-to-weight ratio, or power density, 

generally indicates a vehicle’s ability to accelerate and is therefore a good measure of 

performance or functional capability.  In 1975, cars and pick-ups weighed essentially the 

same and had nearly equal performance.  The industry’s first response to meeting the new 
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standards was to switch to smaller engines and lighten the vehicles by decreasing their 

overall size; decreasing the thickness, and thus the strength, of structural components; 

decreasing insulation; and lightening other components where possible.  The resulting 

cars and trucks were lighter and more fuel efficient, but they were also less powerful as 

witnessed by the drop in power density, as well as noisier, less comfortable, and, many 

argue, less safe.  However, once the CAFE standards were met, technical progress turned 

toward improving these attributes within the constraints of the regulation.  Changes in 

frame and body design have increased strength, while improvements in engine design 

have produced significantly more power, both without compromising fuel economy. 
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Figure 6-3 Average Fuel Economy of New Light Vehicles 
Source: Sales weighted laboratory composite values calculated from 

U.S. EPA (2007b) Appendix E 
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Figure 6-4 Average Weight of New Light Vehicles 
Source: U.S. EPA (2007b) Appendix E 
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Figure 6-5 Average Power Density of New Light Vehicles 
Source: U.S. EPA (2007b) Appendix E 
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What is more significant, however, is that the weight and performance of cars has 

diverged from that of light trucks.  Despite weight increases since 1987, cars have 

remained substantially lighter than they were in 1975.  Vans and SUVs are about the 

same weight as they were in 1980, and pick-ups are considerably heavier than they were.  

Most interestingly, the average light vehicle has returned to about the same weight as it 

was in 1975.  In 1975, the performance of both truck classes was slightly better than that 

of cars, but cars now show a considerably higher power density than either truck class. 

Based on what we have learned about functional definitions and co-evolutionary 

systems, we can propose a tentative theory for what has happened.  In setting different 

standards for cars and light trucks, the CAFE policy actually created a functional 

distinction that did not exist and essentially defined a new class of vehicles.  Cars were 

restricted to vehicles capable of achieving a certain fuel economy given 1970s 

technology.  The attributes that made it difficult for light trucks to meet the more 

stringent car standard fulfilled a functionality that also was available in cars prior to 

CAFE, for example towing boats, campers, and trailers.  To fulfill this function, 

consumers began showing increased preferences for features on vans and SUVs, of which 

there were very few models in 1975.  Manufacturers responded by tailoring this class of 

vehicles into a set of products better suited to fulfill the functionalities no longer available 

in cars as well as those not available on pickup trucks.  Eventually, this vehicle attained a 

set of attributes consistent with a new functional definition and likely incorporated some 

new functions as well.  Meanwhile, the functional requirements and attributes of the car 

changed as well, becoming perhaps more divergent from both classes of light trucks.  

While the state of technology today might allow cars to meet both the CAFE standard for 
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cars and the functions initially shifted to vans and SUVs, a sufficient solution already 

exists and may appeal to a new set of preferences that have evolved with the product. 

Although CAFE successfully raised the average fuel economy of both cars and 

light trucks, the results in improving light vehicle fleet fuel economy were less than 

would be expected given market conditions at the time of promulgation.  The policy did 

induce innovation, but it also altered the TIEC, resulting in the co-evolution of consumer 

preferences, firm strategies, and the technology.  Meanwhile, the policy remained static 

except for minor adjustments in the actual value of the standard.  As a result, the positive 

effects of the policy continued to be eroded until about 2004.  While it is only conjecture, 

the reversal of this trend is likely due to high fuel prices brought on by several factors, 

including hurricane Katrina, difficulties at refineries in meeting new fuel formulation 

standards, the war in Iraq, and market speculation in oil futures.  Further, the CAFE 

standard for light trucks was revised upward in 2006. 

Again, this explanation of the outcomes of CAFE does not represent a thorough 

analysis and would obviously benefit from a careful analysis of the data and other 

evidence.  But it does serve to illustrate unintended consequences of policy intervention 

in co-evolutionary systems. 

6.6.3.3 Summary 

In light of this research, effective policy must consider the functional 

requirements of the technology as defined by consumer demands and preferences; 

potential strategies of firms in responding to policy and the market; and the potential for 

new innovations and developments in the TIEC to alter either consumer preferences or 

firms’ entrepreneurial opportunities, or both.  In addition, policy should provide for 



 

505 

feedback and adaptation to changing realities.  This last consideration is extremely tricky 

since leaving policies open for adaptation could mean allowing the potential for revisions 

that run contrary to the policy’s original goals, especially if political influences change. 

In addition, this chapter has repeatedly highlighted the role of multiple 

developments and processes occurring within niches, within multiple regimes, and within 

the wider TIEC in the emergence of the motor vehicle, its diffusion into wider markets, 

and the initiation of new transitional phases or eras of innovative ferment.  These 

developments include:  

1) new scientific or technological breakthroughs; 

2) difficulties moving forward within the existing regime(s) due to: 

a. problems arising from the expanding scale and scope of the existing 

regime(s); 

b. approaching technological limits, real or perceived, of the existing paradigm; 

3) shifting consumer preferences; 

4) misalignments between wider developments in the TIEC (e.g. cultural values, 

world views, etc.) and the existing regime(s); and 

5) unexpected events. 

This result can be interpreted from two perspectives, one passive and one active.  

In the passive interpretation, new technologies emerge and transitions occur when 

multiple developments and misalignments result in a more favorable selection 

environment.  In the active interpretation, transitions occur when entrepreneurs exploit 

the opportunities presented by multiple developments and misalignments.  While the 

difference is subtle, it leads to two different and complementary strategies.  First, 
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policymakers need to develop adaptive policies as discussed above.  This requires that 

they gather sufficient information to sense and respond to the challenges these 

developments pose to existing policy regimes.  Second, policymakers should be taking 

the active role of entrepreneur, searching for, linking, and exploiting opportunities as they 

arise.    

6.7 Future Research 

This research examined the mechanisms of innovation and processes of co-

evolution in the transition to motor vehicles.  The findings presented in this chapter raised 

several questions for additional research that would add depth to the current study.  

Meanwhile, the goal of this research is to inform policy aimed at influencing such a 

transition from the current regime.  Therefore, another natural extension of this research 

would add breadth.  This leads to two agendas for future research regarding innovation 

and transitions in the automobile industry.  

6.7.1 Agenda for Adding Depth 

This research found support for the argument that the gradual unfolding of the 

automobile regime represented an internal transition for the carriage and bicycle 

industries that evolved into a distinct regime in 1926.  Two follow-on studies are 

suggested to further explore this argument.  The first would apply the framework used in 

this study to examine the response of the carriage industry during the same era to 

determine how disruptive this transition was to the existing regime.  Specifically, did the 

regime adapt or did it enter senescence?  The second study would develop quantifiable 

definitions and appropriate measures of ‘alignment,’ and ‘stability’ and a definition of 

‘regime’ based on these measures.  This definition would be developed using a set of 
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industries that have experienced misalignments, instabilities, and transitions.  It would 

then be applied to the automobile history to determine when that industry achieved the 

status of a regime. 

A third study that would add depth to the current research would examine the 

questions raised regarding producer-supplier relationships.  Suppliers were identified as a 

major source of innovation between 1900 and 1927.   This study would focus on 

suppliers that provide parts and components directly to manufacturers (tier one) in the 

current era.  Specifically, this study would address whether suppliers continue to be 

major originators or collaborators in innovation; how suppliers stay in touch with the 

needs of end-consumers; and how the producer-supplier relationship influences 

innovative behavior. 

6.7.2 Agenda for Adding Breadth 

This agenda consists of three studies.  The first would apply the analytic 

framework used in the current study to a more contemporary era for the automobile 

industry beginning in the 1970s.  This study would examine: 1) sources of instability and 

the onset of transitional and specific phase(s); 2) changes in consumer preferences and 

the product functional definition; 3) the emergence of a dominant design; and 4) 

processes of innovation and adaptation.  

The second study would make a more rigorous examination of adaptive consumer 

preferences in the same timeframe.  This study would take advantage of the wealth of 

data available and augment the framework used in the current research with statistical 

analysis. This research would examine how consumers make purchasing decisions, how 
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consumer preferences change in this co-evolutionary context, and how these preferences 

and processes are manifested in the market.   

The third and final study would apply the lessons learned in the current research 

and the two more contemporary studies outlined in this section to analyze recent policy 

measures, including the Corporate Average Fuel Economy (CAFE) standards and the 

California Zero Emission Vehicle (ZEV) mandates. 
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Appendix A: Vehicle Sales and Registrations, 1900-1930 

 

 Automobiles (1,000s) Trucks and Buses (1,000s) Ford (1,000s) 

 Sales Registrations Sales Registrations Sales* 

1900 4.1 8.0    

1901 7.0 14.8    

1902 9.0 23.0    

1903 11.2 32.9    

1904 22.1 54.6 0.7 0.7 1.7 

1905 24.2 77.4 7.0 1.4 1.7 

1906 33.2 105.9 0.8 2.2 1.6 

1907 43.0 140.3 1.0 2.9 8.4 

1908 63.5 194.4 1.5 4.0 6.4 

1909 123.9 306.0 3.2 6.1 10.6 

1910 181.0 458.4 6.0 10.1 18.7 

1911 199.3 618.7 10.6 20.8 34.5 

1912 356.0 901.6 22.0 42.4 78.4 

1913 461.5 1190.4 23.5 67.7 168.3 

1914 548.1 1664 24.9 99.0 248.3 

1915 895.9 2490.9 74.0 158.5 472.4 

1916 1525.5 3617.9 92.1 250.0 730.0 

1917 1745.7 5118.5 128.1 391.1 656.2 

1918 943.4 6160.4 227.2 605.5 498.3 

1919 1651.6 7576.9 224.7 897.8 941.0 

1920 1905.5 9239.2 321.7 1107.6 463.5  

1921 1468.0 10493.7 148.0 1281.5 971.6 

1922 2274.1 12273.6 269.9 1569.5 1306.6 

1923 3624.7 15102.1 409.2 1849.1 2019.0 

1924 3185.8 17612.9 416.6 2176.8 1929.1 

1925 3735.1 20068.5 530.6 2587.5 1920.1 

1926 3692.3 22200.2 608.6 2932.2 1565.3 

1927 2936.5 23303.5 464.7 3110.2 424.4 

1928 3775.4 24688.6 583.3 3326.4 750.3 

1929 4455.1 26704.8 881.9 3583.9 1870.3 

1930 2787.4 26749.9 575.3 3715.1 1451.6 

 
* Ford data for 1904-1917 is for cars only for the model year ending in July of the year given.  
Data for 1918-1930 is for the calendar year and includes trucks. 
 
Sources: Industry – L.P. Cain (2006) Tables Df343-346 and Df339-342; Ford – Nevins and Hill 
(1954 and 1957) 

 



 

 

Appendix B: Real GDP, 1890-1930 

 
Source: Johnston and Williamson, 2007. 
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Glossary 

Emergent phase – the emergent phase of a technology begins with the first practical 
application of a new idea (an innovation).  This phase is characterized by radical 
innovation, flexible production capacity, niche markets, and the emergence of new 
firms.  See Table 2-1. 

Exogenous factor - exogenous factors (events or developments) are external forces that 
arise with no identifiable causal linkages to the regime or technology of interest. 

Experimental niche –non-commercial exploration of a technology in a temporary 
societal experiment where it is protected from market selection pressures and from 
the engineering and use practices established by the existing socio-technical regime. 

Fordism –the production system developed at the Ford Motor Company between 1908 
and 1913 entailing large volume production of a single product with centralized 
control.  Elements include highly standardized parts, extensive use of specially-
designed single-purpose machinery, minute subdivision of labor, and the automated 
flow of materials and work (continuous motion). 

Hybridization – the merging of functions, features, and technologies, both old and new, 
from multiple regimes to solve particular problems or provide new functions through 
symbiosis. 

Industrial combination – an aggregation of corporations under a central or controlling 
corporation.  Use of the term ‘combination’ around 1900 was preferred among 
businessmen over the term ‘trust,’ which implied the existence and exercise of 
monopolistic powers. 

Institutions – any form of social construct or constraint on the interaction between 
human agents and between human agents and the physical artifacts in a system.  
Institutions include organizations and rules. 

Mass markets – application domains that are large in scale and scope and that are 
characterized by functionalities with wide appeal.  Demand is sufficient to allow high 
volume production, resulting in economies of scale.  Competition is based mainly on 
price and quality. 

Niche branching – the use of a radical innovation in subsequent application domains or 
market niches. 

Niche hypothesis – The assertions of the quasi-evolutionary and multi-level perspective 
literature regarding the fundamental role of niches in technological transitions. 

Niche markets – distinct application domains that are small in scale and scope and that 
are characterized by specific functional requirements.  Because of the special 
functional requirements of the niche, users are willing to accept higher cost or lower 
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performance on other non-essential functionalities compared to those attained with 
any existing products available in established (mass) markets. 

Regime optimization – incremental improvement within an existing regime. 

Regime renewal – radical innovations that depart from the existing trajectory and require 
a change in the architecture and rules of the existing regime and therefore in the 
behavior of various actors. 

Regime instability – an existing technology looses viability due to emerging 
misalignments between the elements of the system, including the technology, rules 
and other institutions, and infrastructure.  Regime instability may also involve 
exogenous factors. 

Retention – the embedding of technologies in engineering practices, production systems, 
organizational routines, consumption and usage patterns, and supporting and 
complimentary systems that result in the stability of search activities and the patterns 
of technological change. 

Rules – cognitive, normative, or legislative constraints on human interactions and the 
interactions between human agents and the physical elements of a system.  Rules may 
be formal or informal and include legislation, economic rules, legal contracts, social 
conventions, moral codes, world views, and shared knowledge and beliefs. 

Sectoral system – a set of new and established products for specific uses and the set of 
agents carrying out market and non-market interactions for the creation, production, 
sale and use of those products.   

Selection - “[a]ny framework in which agents interact in order to choose between 
competing patterns of behaviour” (Metcalfe, 1995). Selection involves social, 
political, and market mechanisms and is shaped by institutions and infrastructure. 

Senescent phase – the phase of a product’s lifecycle when a new innovation begins to 
dominate that product’s market. The old technology finds application only in niche 
markets where it holds a performance advantage or where heritage design is required.  
Innovation slows or stops and is tailored to the needs of niche users.  Eventually, 
firms are unable to survive and the industry ceases to exist.  See Table 2-1. 

Socio-technical regime – a socio-technical regime is understood to exist when a 
technology and sector have achieved the specific phase and when the stability of that 
specific phase is supported by the alignment of institutions and existing physical 
infrastructure with the dominant product design, production processes, and business 
model. 

Specific phase – the phase of a product’s lifecycle when products proliferate around a 
dominant design and ever more emphasis is given to process innovation.  There is 
little product differentiation and competition in mass markets is based primarily on 
cost and quality.  See Table 2-1. 
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Spillover – an innovation that originates outside the sectoral system – in other industries, 
institutions or other countries.  Spillovers may involve either a transfer of knowledge 
(knowledge spillovers) or economic benefits (rent spillovers).  This research is 
concerned with knowledge spillovers that arise outside the motor vehicle sector. 

Strategic niche management (SNM) – the creation, development, and controlled phase-
out of protected spaces for the development and use of promising technologies by 
means of experimentation.  SNM is a policy recommendation that arises from the 
quasi-evolutionary literature. 

Synthetic innovation – “creating new and enhanced technological products and 
processes with previously unattained performance by combining components, 
knowledge, and capabilities in ways that deliver synergism” (Rycroft and Kash, 
1999). 

Technological nexus – the set of institutional linkages between selection and variation.  
Agents acting in the technological nexus role link selection and variation by 
translating information from both realms; shaping interactions; and harmonizing 
social and market needs with the results of scientific and technological research.  
These actions result in the mutual adaptation of the technology and institutions. 

TIEC – technical, institutional, and ecological complex – the larger system within which 
a sectoral system is embedded and which serves as the sectoral system’s environment.  
It includes physical artifacts, agents, and institutions; elements include meso- and 
macro-level constructs including physical infrastructures, regimes, regionally or 
nationally established rules, cultural values and culturally learned patterns of 
behavior, etc.  See section 2.6 and Figure 2-3. 

Transitional phase – the phase of a product’s lifecycle when a dominant design begins 
to coalesce as users’ needs, product features, design, and components become 
standardized.  The product diffuses into mass markets.  Innovation slows, becomes 
incremental, and is focused on cost reduction and quality enhancements.  See Table 
2-1. 

Variation – the purposive and guided, yet inherently stochastic, generation of diversity 
or novelty through human creativity and of the discovery of new possibilities for 
action.
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