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In GI Science, one of the most important interoperability issues relates to  land 

use and land cover (LULC) data, because it is a key to the evaluation of LULC’s 

many environmental impacts throughout the globe (Foley et al. 2005).  Accordingly, 

this research aims to address the interoperability of LULC information derived by 

different authorities using different classificatory approaches.  

LULC data are described by LULC classification systems.  The interoperability 

of LULC data hinges on the semantic integration of LULC classification systems.  

Existing works on semantically integrating LULC classification systems has a major 

drawback in finding comparable semantic representations from textual descriptions.  

To tackle this problem, we borrowed the method of comparing documents in 

information retrieval, and applied it to comparing LULC category names and 

descriptions.  The results showed notable improvement compared to previous work.  



  

However, lexical semantic methods are not able fully to solve the semantic 

heterogeneities in LULC classification systems: the confounding conflict – LULC 

categories under similar labels and descriptions have different LULC status in reality, 

resulting in a naming conflict – LULC categories under different labels can represent 

similar LULC type. Without confirmation of their actual land cover status from 

remote sensing, lexical semantic method cannot achieve reliable matching.  

To discover confounding conflicts and reconcile naming conflicts, we 

developed an innovative method by applying remote sensing to the integration of 

LULC classification systems. Remote sensing is a means of observation of actual 

LULC status of individual parcels.  We calculated parcel level statistics from spectral 

and textural data, and used these statistics to calculate category similarity.  The 

matching results showed this approach fulfilled its goal of overcoming semantic 

heterogeneities and achieved more reliable and accurate matching between LULC 

classifications in the majority of cases.  

To overcome the limitations of both methods, we combined the two by 

aggregating their output similarities, and achieved better integration.  LULC 

categories that display noticeable differences between lexical semantics and remote 

sensing once again remind us of semantic heterogeneities in LULC classification 

systems that must be overcome before LULC data from different sources become 

fully interoperable. 
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Chapter 1: Introduction 
Over the past decades, the technology of collecting geospatial data has 

developing fast (Goodchild 1997, Butenuth et al. 2007), and has led to rapid 

accumulation of geospatial data.  For example, Landsat 5 and Landsat 7 contribute 

over 400 images per day to the Earth Resources Observation Systems (EROS) data 

archive, and Landsat 5 alone has gathered more than 700,000 images since its launch 

in 1984.  Also many state administrations collect LU data often through a 

combination of ground datat collection and interpretation of aerial photographs The 

abundance of geospatial data collection leads to more distributed and heterogeneous 

sources.  

Meanwhile, in the context of geographic information services (Kuhn 2005), 

users need to share geospatial data from multiple data sources (Elwood 2008).  

Interoperability of geospatial data is of decisive importance to answering many 

fundamental geographical research questions, such as the impact of human activities 

on global change. Any single data source is not adequate to capture this complexity, 

and the interoperability of geospatial data is strongly required.  

Interoperability may be depicted by six levels of heterogeneity (Figure 1.1) 

(Sheth 1999).  Among them, semantic heterogeneity is widely considered to be the 

main challenge in achieving interoperability (Rodriguez et al. 1999, Sboui et al. 2007). 

A consideration of ontology provides a possible solution to this problem.  
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Figure 2.1 Levels of heterogeneity / interoperability  

(Bishr 1998) 

1.1 Ontological View on Semantic Integration 

Semantics refers to the meanings of symbols (e.g. words) (Wood 1975).  

Jackendoff (1983) commented that semantics,  “bridges the theory of language and 

the theories of other cognitive capacities”.  A similar definition but in simpler words, 

by Agarwal (2005) pointed out that semantics implies the meaning attached to 

concepts.  

Semantic heterogeneity originated from the different conceptualization of the 

physical existence.  Ontology, which is the theory of physical existence, should be 

introduced to solve heterogeneity problems.  Ironically, ontology, proposed as a 

solution to semantic heterogeneities, has semantic heterogeneities in itself. We will 

first give a brief review of different understandings of ontology, and then clarify the 

use of ontology in this research.  
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1.1.1 Defining Ontology  

The term ontology has different definitions and usages in different contexts 

(Agarwal 2005, Guarino 1995, 1998).  As a branch of philosophy, ontology is the 

theory about the nature of being, including the categorization of being and their 

relations.  There are many research works defining ontology.  For example, 

ontologies attempt to clarify and set the explicit knowledge of the domain they 

describe (Kavouras 2005); ontology is an explicit specification of a shared 

conceptualization (Torres et al. 2009); ontology is a particular knowledge base that 

describes facts that are always true for a community of users (Guarino 1998); 

ontology can be a simple taxonomy, a lexicon, or a thesaurus, or even a fully 

axiomatized theory (Fonseca et al. 2002); ontology is the method to extract a 

catalogue of things or entities that exist in a domain (Sowa 2000). 

Despite the wording variance, these definitions of ontology mainly differentiate 

on whether human conceptualization and physical existence are detached.  From one 

viewpoint, ontology does not only recognize existence, but also specifies the 

conceptualization (Torres et al. 2009) shared by a group of people, such as 

geographic information community (Bishr et al. 1999).  Here ontology incorporates 

epistemology, and this so-called epistemological ontology is defined as a theory about 

how a given individual, group, language, or science conceptualizes a given domain 

(Fonseca et al. 2002).  

Engineering-oriented ontology is developed from the epistemological view of 

ontology. From engineering perspective, ontology is a strictly pragmatic enterprise 

(Smith and Mark 2001). In AI-related contexts, for example, ontology is a 
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classification with a rich set of semantic relationships (among terms) that support 

reasoning (Soergel 2005). 

From a philosophical perspective, Agarwal (2005) believes, if the ontology is 

recognized as THE concept of a being, then the use of plural ‘ontologies’ is irrelevant 

as there can be only one ontology.  Hence, ontology alignment is irrelevant.  However, 

knowledge engineers and artificial intelligence scientists (e.g. Euzenat and Shvaiko) 

think engineering-oriented ontology is not the representative of a singular overriding 

truth, but corresponds to individual and inevitably different conceptualization 

processes.  The use of plural ontologies is relevant, and ontology alignment becomes 

necessary. 

From the other point of view, ontology should solely represent physical 

existence that is independent from human conceptualization (Smith 2004). In 

scientific endeavor, where realism–materialism is adopted as the doctrine, physical 

existence and human conceptualization are detached, and this detachment enables 

ontology’s independence from human conceptualization. By representing existence 

rather than concept, ontology has the power to solve semantic heterogeneity problem. 

This study as a semantic integration attempt uses this power through embracing a 

unique view of ontology (section 1.1.3). 

1.1.2 Ontology Enabling Semantic Integration  

Based on ontology, semantics are expressed as symbols, and difference in the 

expressing process leads to semantic heterogeneity; semantic integration aims to 

eliminate semantic heterogeneities. Semantic heterogeneity is formally defined as the 
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variance of semantically related objects in different data sources (Kashyap and Sheth 

1998).  Different types of semantic heterogeneity include (Goh 1997): 1) confounding 

conflicts occur when information items seem to have the same meaning, but differ in 

reality (Figure 1.2 (a)); 2) naming conflicts occur when the naming schemes of the 

information differ largely (Figure 1.2 (b)); 3) scaling and units conflicts occur when 

different reference systems are used to measure a value. The scaling and units conflict 

is straightforward and less challenging.  To overcome the first and second type of 

heterogeneity, a consideration of ontology is indispensible.  

 

Figure 1.2 Semantic heterogeneity 

In reality, two groups of physical existences A and B are conceptualized to 

concepts A and B, then semantically expressed as texts. 

Philosophical ontology and engineering-oriented ontology solve semantic 

heterogeneity in theory and in practice respectively.  In theory, we define ontology as 

a representation of existence, and it provides the philosophical foundation of semantic 

integration.  Based on ontology (independent of conceptualization), semantics are 

expressed differently from person to person.  This difference in expression leads to 

the semantic heterogeneity problem. Therefore, when semantic heterogeneity has to 
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be overcome, there always is ontology serving as a base that heterogeneous semantic 

expressions can return to.  To sum up, philosophical ontology makes semantic 

integration theoretically feasible.  

In practice, ontology is used as an explicit specification of a conceptualization 

namely “a theory of a given domain which can be accepted and reused by all 

information gatherers in that domain” (Smith and Mark 2001).  Based on this use of 

ontology, ontological engineering was developed. An ontology, in this sense, 

concerns itself not at all with the question of ontological realism, that is, the question 

whether its conceptualizations are true of some independently existing reality.  Rather, 

it starts with conceptualizations, and goes from there to a description of the 

corresponding domain of objects (Smith and Mark 2001). With this function, 

ontologies (plural only meaningful in this sense) can be used in an integration task to 

describe the semantics of the information sources (Wache et al. 2001).  Developing 

an information system always relies on ontology implicitly or explicitly; making it 

explicit avoids conflicts between the ontological concepts and implementation 

(Fonseca et al. 2002).  Having (engineering-oriented) ontologies defined explicitly, 

semantic integration is accomplished based on ontological matching (or rebuilding) 

(Uitermark et al. 1999, Fonseca et al. 2002, Lin and Ludascher 2003, Kavouras 2005, 

Durbha et al. 2009). 

1.1.3 Ontology Built on Universals 

In this semantic integration effort, we adopt Barry Smith’s definition of ontology 

as the representation of universals (Smith 2004).  The unique advantage of this 
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definition lies in its key – universal, and we will start explaining it by differentiating 

category and concept.  

Category and concept are different.  Concept is the information item that linked 

to cognitive semantics.  Category, on the other hand, is a grouping of existences in the 

real world.  A concept may have no instances in the real world (i.e. abstract concept), 

and a category may be a random selection of existences and links to no semantics.  

Smith and Mark (2001) pointed out that each ‘valid’ scientific concept must have 

instances; otherwise it is worthless in terms of scientific research as scientific 

research is meant to find rules.  Based on this point of view, Smith (2004) introduced 

universal as the invariant in reality deduced from the commonality of instances, and 

defined ontology as the representation of universals.  By his definition, universal must 

link to semantics as concept does.  At the same time, universal must have instances as 

a category does, and each universal stands for the commonality of its instances.  

The main advantage of considering concepts as universals is that we could 

incorporate instance level information in semantic integration.  Semantic integration 

aims to determine the relations between concepts, and this is based on the 

measurement of their semantic similarities (Euzenat and Shvaiko 2007).  

Acknowledging concept as universal, we could measure the similarity between 

concepts not only by comparing their semantic expression (e.g. text, semantic 

taxonomy) (illustrated as approach 1 in Figure 1.3), but also by comparing their 

instances (approach 2 in Figure 1.3).  The semantic integration methods using 

instance level information are termed extensional methods, in contrast to the 
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intensional methods that concerned with concept-level (i.e. concept definitions) 

and/or schema-level (i.e. hierarchy in taxonomy) information.  

 

Figure 1.3 Semantic integration approaches: intensional approach (1) and 

extensional approach (2) 

1.2 Semantic Integration of LULC Information 

One of the most important issues of interoperability is needed in LULC data. 

LULC has environmental impacts on many different aspects throughout the globe; 

examples include the global carbon cycle, global climate, atmospheric composition, 

regional climates (through changing surface energy and water balance), the 

hydrologic cycle, anthropogenic nutrient inputs to the biosphere from fertilizers and 

atmospheric pollutants, water quality, coastal and freshwater ecosystems, biodiversity 

(through the loss, modification, and fragmentation of habitats), degradation of soil 

and water, overexploitation of native species, and local food supply (Foley et al. 

2005).  Evaluating the impacts of LULC requires the integration of multiple LULC 

data sources, as a single source cannot provide adequate accuracy or geographic 

coverage.  
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This research aims to address a fundamental geographical question: how it is 

possible to integrate and compare LULC information derived by different authorities 

using very different classificatory approaches. We start by reviewing current semantic 

integration methods in Geographic Information Science (GI Science).  

1.2.1 Semantic Integration Methods in GI Science 

Semantic integration is achieved through ontology alignment, which requires the 

measurement of similarities between concepts. Similarity theory was originally 

developed for psychological models to explain human-similarity judgment. 

Schwering (2008) summarized five main categories of semantic similarity 

measurements and illustrated the potential application in GI Science of each category. 

Based on different notions on the knowledge representation and similarity calculation, 

these categories are geometric, feature-based, network, alignment and 

transformational methods. A similar categorization can also be found in Goldstone 

and Son’s work (2005). In addition to these methods, recent research incorporates the 

information theory in the similarity measurement.  

Geometric model 

The geometric model uses a distance in a multidimensional space to represent 

similarity (Rips et al. 1973, Gardenfors 2000). Each dimension of the space 

corresponds to a quantitative property of concept, with the property value being 

proportional to the dimensional coordinate. A concept is then projected to a vector. 

Based on this multidimensional vector space representation of semantics, the 

similarity is measured as the linear decay function of the distance between vectors.  
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When applying the geometric model, it is necessary to quantify properties of 

each concept, and an underlying assumption is all properties (dimensions in the 

vector space) are independent. 

Feature-based model 

The feature-based model is widely used (Kavouras et al. 2005, Rodriguez and 

Egenhofer 2004) since invented in the 1970s (Tversky 1977). Semantic features are 

defined as a concept’s distinguishing classifiers, such as attributes, functions, and 

parts (Miller 1990). The “universe of discourse” (Feng and Flewelling 2004), which 

maintains a complete collection of features that can represent all concepts in current 

context, is built. Then a common model, a contrast model, or a ratio model (Tversky 

1977) can be employed to compute similarity from shared and different features.  

The feature-based model cannot handle disjoint similarity i.e. where there are no 

shared features. Also it is impossible to find a complete set of characteristic attributes 

describing a real world object. The major problem is to choose representative 

attributes (Kuhn 1995).  

Network model 

The network model is always an intuitive choice when the concepts to be 

compared form a taxonomy-like structure, in which nodes represent concepts, and 

edges represent semantic relations between concepts (Sunna and Cruz 2007).  

Semantic similarity is measured by the shortest path between nodes (concepts) 

(Collins and Quillian 1969).  Traditional semantic relations attach much importance 

to hyponymy and hypernymy, but do not consider mereological (part-of) relations, 



 

 11 

 

which describe the relation between parts and whole.  Mereological (or partial) 

relation is introduced to the semantic network in Guarino’s work (1995).  

The network model is determined by the predefined semantic network 

architecture. Resnik (1995) pointed out that the network model and the edge-counting 

method rely on the notion that “links in the taxonomy represent uniform distances”, 

which is usually not true: “there is a wide variability in the ‘distance’ covered by a 

single taxonomic link, particularly when certain sub-taxonomies are much denser 

than others (Resnik 1995)”.  

Alignment model 

Developed from feature-based model, the alignment model not only measures 

the feature-based similarity, but also considers the alignment of features and includes 

it into similarity measurement (Goldstone 1994). The alignment model is applied to 

spatial scene comparison, where objects are considered to be features and the spatial 

relation between objects contributes matching. 

Information-theoretic model  

Many recent approaches incorporate information in measuring semantic 

similarity. Lin (1998) proposed an information-theoretic definition of similarity, 

derived from a set of assumptions on similarity in the way the entropy/information is 

defined. Based on the notion that shared information corresponds to similarity, Lin 

formally defines the similarity (sim) between A and B as  

2 log ( ( , ))
( , )

log ( ( , ))

P common A B
sim A B

P description A B
=

, 
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in which common(A,B) is the amount of information needed to describe the 

commonality of A and B, description(A,B) is the information needed to fully describe 

both A and B. Based on Lin’s similarity in taxonomy, Resnik (1999) proposed a 

measure of semantic similarity using WordNet (Fellbaum 1998). Formally, Resnik 

defines the similarity (sim) between concept c1 and c2 as  

1 2

1 2
( , )

( , ) max [ log ( )]
c S c c

sim c c p c
∈

= −
, 

where S(c1,c2) is the set of concepts that subsume both c1 and c2, or in WordNet, set 

of hyponyms of both c1 and c2, and p(c) is the probability of c’s occurrence.  

Extensional methods 

The discussion above summarized widely used semantic integration methods 

adopting an intensional approach, as all their knowledge representations, including 

quantitative properties, position in taxonomy, features, and occurrence pattern all 

relates to a concept rather than instances. 

There are also a few works using information specific to instances. For example, 

Ehrig et al. (2005) developed a comprehensive framework for measuring similarity 

within a single ontology. Their framework is defined in three layers on which the 

similarity between concepts can be measured using instance level, conceptual, and 

contextual information respectively. Then the similarity is aggregated as a weighed 

average of the individual similarities from each layer.  Based on Ehrig et al.’s work, 

Albertoni and De Martino (2008) proposed an asymmetric similarity assessment 

among instances belonging to the same ontology.  
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1.2.2 Two Approaches to Semantically Integrating LULC Classification 

Systems 

LULC data are described by LULC classification systems. The interoperability 

of LULC data depends on the semantic integration of LULC classification systems. A 

typical LULC classification system organizes LULC categories in a taxonomic 

structure, in which each category is defined by a name (label) and often followed by a 

textual description.  

From the above review on semantic integration methods, we find not all 

integration methods are applicable to LULC classification systems, because external 

references or repositories commonly used in generic semantic methods are not 

available in the study of LULC. For example, a corpus for training purposes is 

essential to the information-theoretic model. But in the study of LULC, a general 

purpose corpus is not applicable, because LULC category descriptions, written and 

read by land use experts on the purpose of a scientific specification, are different from 

a general-purpose corpus in terms of vocabulary, word sense and frequency, and the 

length of paragraphs.  

As for the network model, the soundness of semantic hierarchy (taxonomy) 

determines the performance of similarity measurement. While upper ontology (an 

ontology describing shared concepts across knowledge domains), such as Cyc 

(http://www.cyc.com/), DOLCE (http://www.loa-cnr.it/DOLCE.html), and WordNet, 

is too general to compare concepts from a narrow domain such as LULC, no domain 

ontology exists in LULC because “a lot of effort is required to construct ontology 

from scratch not just from a technical point of view but more importantly the process 
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of knowledge extraction from domain experts and arriving at a consensus view” 

(Bhogal et al. 2007). The design and construction of domain ontology is labor 

intensive, time consuming and difficult (Kashyap, 2001).  

Ruling out information-theoretic model and network model, many research 

works in semantic integration of LULC information are based on the use of features. 

In chapter 2, we will further discuss the applicability and drawbacks of these methods, 

and then propose a new information retrieval approach to semantically integrate 

LULC classification systems, which can overcome current methods’ limitation in 

applicability and improve the performance.   

Adopting Smith’s definition of ontology (Smith 2004) (section 1.1.3), we find 

that LULC categories are universals. A LULC category, not only as a real world 

concept implies semantics, but also is populated by individual parcels of its kind, 

which are directly monitored by modern earth observing technologies, such as remote 

sensing. Hence, as explained in section 1.1.3 and illustrated in Figure 1.3, in addition 

to an intensional method that uses semantic expressions, an extensional method that 

uses the remote sensing information attached to parcels should be available.  

However, existing methods of semantic integration of LULC information 

regrettably have not taken the important advantage of remote sensing.  In chapter 3, 

we will present a remote sensing based approach to the semantic integration of LULC 

classification systems. We will use spectral and textural information derived from 

time series remotely sensed data to calculate the similarity between LULC parcels, 

and adopt an extensional approach to measure similarity between LULC categories. 

Then in chapter 4, we will test the generality of the remote sensing based method on 
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more LULC information. In chapter 5, we will try to optimize the matching algorithm 

by refining the input and reduce procedure errors.  

In chapter 6, we will present the improved matching result through integrating 

both intensional and extensional approaches.  More importantly, we will prove, by 

combining the two approaches, we can have the ability to discover confounding 

conflicts and reconcile naming conflicts. Conclusions and future directions will be 

given in chapter 7.  
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Chapter 2: Employing Information Retrieval Methods to 

Improve Semantic Integration of LULC Data 

2.1 Introduction 

The interoperability of land use and land cover (LULC) data derived by different 

state authorities using different classificatory approaches is crucial to accurately 

capture regional land use dynamics, which has an impact on environment and socio-

economics (Foley et al. 2005). Data interoperability requires different levels of 

integration (Sheth 1999). Among them, semantic integration is widely considered 

challenging (Rodriguez et al. 1999, Sboui et al. 2007), and will be the focus of this 

dissertation.  

LULC data are described by LULC classification systems. A typical LULC 

classification system organizes LULC categories in a taxonomy structure, in which 

each category is defined by a name (label) and a textual description. The semantics of 

LULC data are expressed in textual definitions (names and descriptions). Therefore, 

semantically integrating different LULC data requires us to compare the definitions 

of LULC categories in different classification systems. The originality of the 

approach in this chapter is to apply methods in modern information retrieval to 

achieve this comparison. Thanks to this application, not only better integration results 

will be achieved, but also, unlike existing methods, our method does not rely on 

comparable characteristics, which are difficult to extract from textual descriptions.  

But before we jump into the discussion on methodology, it is necessary to take a 

brief review on current semantic integration methods in Geographic Information 

Science (GI Science) and their applicability in LULC classification systems.  
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2.1.1 Semantic Integration in GI Science 

Semantic integration aims to determine the relations between concepts, and this 

is based on the measurement of their semantic similarities (Euzenat and Shvaiko 

2007). Similarity theory was originally developed for psychological models to 

explain human similarity judgment. Schwering (2008) summarized five categories of 

semantic similarity measurement and exemplify the potential application in GI 

Science of each category of measurement. Based on different notions on the 

knowledge representation and similarity, the categories are geometric, feature, 

network, alignment and transformational methods. In addition to these methods, 

recent research incorporates information in the similarity measurement. Table 2.1 

listed the representative works for each type of methods, and a detailed specification 

of each model’s knowledge representation and similarity calculation can be found in 

section 1.2.1.  

Table 2.1 Methods to compare geospatial universals 

Model Representative work 

Geometric model Rips et al. 1973, Gardenfors 2000,  

Schwering & Raubal 2005-2 

Feature-based model Kavouras et al. 2005, Rodriguez & Egenhofer 2004,  

Ahlqvist 2005, 2008 

Network model Sunna & Cruz 2007 

Alignment model Goldstone 1994 

Information-theoretic 

model 

Lin 1998, Resnik 1999 

2.1.2 Distinctiveness of LULC Category Descriptions  

In section 1.2.2, we explained that not all generic semantic methods are 

applicable to the integration of the LULC classification systems, because external 

references or repositories commonly used in generic semantic methods (such as a 



 

 18 

 

corpus or domain ontology) are not available in this ad hoc semantic integration. 

Hence, many research works in semantic integration of LULC classification systems 

are based on the use of features.  

FAO (Mücher et al., 1993) proposed a parametric land cover classification 

system, in which categories are defined by a combination of a set of independent 

diagnostic criteria or classifiers. Gregorio and Jansen (1998) claimed that any land 

cover identified anywhere in the world can be readily accommodated in this 

parametric classification. However, this claim is over-optimistic, since translating 

existing systems will be difficult itself, not to mention the errors introduced in the 

translation.  

Different from FAO’s “top-down” approach, many attempts of integrating 

existing LULC classification systems adopt a “bottom-up” approach. Based on Miller 

et al.’s work (1990) that categorized features into attributes, functions, and parts, 

Kavouras et al. (2005) extracted features from the textual description of a LULC 

category. Feng and Flewelling (2004) extended this model by assigning weight, 

which is calculated from classification taxonomy, to each feature. Rodriguez and 

colleagues (Rodriguez et al. 1999, Rodriguez & Egenhofer 2003, 2004) extended the 

model by introducing asymmetry in the similarity calculation. Adopting features 

defined by FAO (Mücher et al., 1993), Ahlqvist (2008) developed a fuzzy sets based 

approach to quantify semantic change between two categories in NLCD 1992 and 

2001 systems.  

Approaching similarity measurement differently, Sunna and Cruz (2007) 

focused on local structure (parents and siblings of a concept) of the taxonomy 
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structure, and used it as the contextual information in semantic similarity 

measurement. However, this method is limited because it relied on initial similarity 

values, which must be calculated using other similarity measurements beforehand.  

Kavouras and Kokla (2002) proposed a concept lattice based approach to 

formalize the comparison of land use categories using their subcategories and 

attributes. However, the requirement of a clear, non-overlapped and unambiguous 

identification of the attributes is difficult to meet.  

In a nutshell, these semantic integration methods’ using textual description has a 

major drawback: it is rather difficult to define comparable semantic representations, 

either the “features” in feature-based model, the “attributes” in concept lattice, or the 

“dimensions” in geometric model. Natural language processing (NLP) techniques are 

employed to automate this process, but satisfactory results are only obtained in 

narrowly restricted domains (Cunningham et al. 2002, Peng & McCallum 2006). 

Kuhn (1995) has pointed out the problem of choosing representative characteristics to 

describe a real world object. But in addition to Kuhn’s concern, when integrating 

LULC classification systems, pre-selected representative characteristics may not even 

be explicitly defined in category descriptions, not to mention being extracted and 

used in comparison.  

To tackle this problem, we borrowed the method of comparing documents in 

information retrieval, and applied it to the semantic integration of LULC 

classification system. Information retrieval is finding material (usually documents) of 

an unstructured nature (usually text) that satisfied an information need from within 

large collections (usually stored on computers) (Manning et al. 2008). Since the 
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emergence of World Wide Web, information retrieval has been developing fast in 

recent years, and always been providing the theoretical foundation to modern web 

search engines. Bag-of-words representation and cosine similarity is the basics of 

information retrieval and the heart of search engine. The success of today’s search 

engines justified their capability of comparing documents, which suggests the 

rationale of applying them to the comparison of textual descriptions of LULC 

categories. In the rest of this chapter, section 2.2 will specify what the information 

retrieval method is and how it can be applied to our integration problem, and several 

variations of the algorithm are introduced along the way. Section 2.3 will present the 

result and summarize advantages and drawbacks of our approach. 

2.2 Methodology  

Adopting an information retrieval approach, category descriptions are first 

represented in bag-of-words model (2.2.1). Then a vector space model (VSM) is built 

upon term frequency and inverse document frequency in the collection of LULC 

category descriptions. A cosine similarity between category descriptions is then 

calculated (2.2.2). In section 2.2.3 and 2.2.4, two possible optimizations on 

emphasizing keywords (2.2.3) and incorporating semantic relatedness (2.2.4) are 

discussed.  

2.2.1 Bag-of-Words Model 

The bag-of-words model (Harris 1954) is a simplifying model representing 

documents. In this model, a text (i.e. a paragraph of LULC description) is represented 

as an unordered collection of words appeared in the text, disregarding grammar, 
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structure, and the order of words (Manning et al. 2008). This simple representation is 

successful in information retrieval, because it is effective in indexing, invert indexing, 

and document comparison. However, the bag-of-words representation has no 

consideration of the structure, syntax and semantics.  

Noise Word Filter 

In the bag-of-words model, noise words, or “stop words”, are words that are 

common, short, and functioning words, such as the, is, at, which and on. These words 

are of little semantic importance, but may bias the similarity measurement. Noise 

words need to be filtered out. There are two ways to build the noise word list. Either 

it can be defined by experts (human input), or automatically generated by analyzing 

the frequency of words in training corpus. In this research, there is no applicable 

corpus for training purposes, and the noise word list is pre-defined manually.  

Morphological Analysis 

Morphological variance can also confuse the bag-of-words model. The popular 

morphological analysis in search engine is stemming, among which Porter stemmer 

(Porter 1980) is popular. Porter stemmer is a rule based stemmer, which apply a 

group of rules to an input word and transform it to a stem.  

Despite its wide application in information retrieval, stemmer is not applicable in 

this research because of two reasons. First, stems may not be words. For example, the 

word ‘capability’ will be stemmed to ‘capabl’, which is not a word. In information 

retrieval, this is not a problem, because the system is based on string rather than 

semantics. As long as the stemmer conflates the morphological variances (e.g. 

capability and capabilities) to the same string (capabl), the information retrieval 
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system can use this string to do the indexing, invert indexing, and execute queries. 

However, stems are not enough in this research because one of our optimization will 

consider the semantics by querying words in WordNet, in which entries need to be 

well-spelled words. 

Second, stemmer has the error of omission and commission. The error of 

omission happens when the simple rule-based stemming conflates morphological 

variances of one word into different stems. For example, the word ‘explain’ and 

‘explanation’ will be stemmed to ‘explain’ and ‘explan’ respectively. The error of 

commission happens when the stemming conflates morphological variances of 

different words into one same stem. For example, both ‘university’ and ‘universe’ 

will be stemmed to ‘univers’. Omission and commission will bring irreversible error 

to the system.  

The other type of morphological analyzer is lexicon-based, in which each word 

is queried in a huge predefined morphological variance list, and then its 

morphological root is returned. A lexicon-based morphological analyzer is accurate, 

but cumbersome and inefficient.  

To combine the advantages of both approaches, this research adopts a hybrid 

morphological analyzer called “Morphy”, which is used in the WordNet (Fellbaum 

1998). WordNet is a widely used, broad-coverage semantic network for English, 

developed at the Cognitive Science Laboratory of the Princeton University. 

“Morphy” consists of an exception list and detachment rules. When an inflectional 

word comes, it will first be searched in the exception list, and if found, its base form 

will be returned. If there are no matches in the exception list, a set of detachment 
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rules are employed to detect the inflectional ending and substitute it with the base 

form. The output from applying each rule is checked in WordNet, and will be 

returned as base form if its spelling is right. Some variances, such as ‘axes’, can have 

more than one base form (i.e. ‘axe’ and ‘axis’), the first base form is returned. Thus 

the rules are ordered by popularity.  

In section 2.3, as an effort of optimization, we employed syntactic parsing, 

negation detection, and extraction strategy to locate noun phrases, and ultimately, the 

keywords. In this effort, the category description is no longer treated as a plain bag-

of-words; instead, the structure and syntax are considered. Only after the keyword 

extraction, the bag-of-words representation is again adopted to represent the category 

description.  

2.2.2 Weighting Words and Cosine Similarity 

Having each category description represented as a bag of words, the frequency 

of each word is then calculated. Clearly, all words in the description are not equally 

important in comparing two categories: the word that is mentioned more often in a 

description is more important to describing that category, thus, if shared by two 

categories, a word with high occurrence brings more weight to the similarity 

measurement.  

Towards this end, a weight, which reflects the number of occurrences of a word 

in a description, is assigned to each word in each description. Then a score between a 

word t and a description d, based on the weight of t in d can be simply defined as the 

number of occurrences of word t in document d. This weighting scheme is referred to 
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as “term frequency” and is denoted tft,d, with the subscripts denoting the word and the 

description in order (Manning et al. 2008). 

In addition to term frequency, another consideration is that the discriminating 

power of each word varies depending on its occurrence in the whole collection of 

category descriptions: the more often a word is seen in the collection, the less 

discriminating power it has. A mechanism is needed to follow this trend. An 

immediate thought is to scale down the weights of words with high collection 

frequency by the total number of occurrences of a word in the collection. However, 

this collection-wide statistic is proven by many experiments to be less effective than 

document-level statistic, i.e. the number of descriptions containing a specific word. 

Towards this end, the inverse document frequency (idf) of a term t is defined as 

follows:  

t

t
df

N
idf log= , 

in which N denotes the total number of descriptions in a collection, and dft denotes 

description frequency, defined to be the number of descriptions in the collection that 

contains the word t. By its definition, the idf of a rare word is high, whereas the idf of 

a frequent word is low.  

Combining the term frequency and inverse document frequency, the composite 

weighting scheme tf-idf assigns to word t in description d a weight given by  

tdtdt idftftfidf ×= ,, . 

Then each description builds a document vector from its bag of words, with one 

component corresponding to a word in the collection, together with the tf-idf weight 
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for each component. If a word does not occur in the description, the weight for the 

corresponding component is 0. Based on document vector, the similarity between 

description dk and description dl is defined as the cosine of the angle between the two 

corresponding document vectors 
kd
r

 and 
ld
r
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in which wi,k is the tf-idf weight for word i in description k. 

2.2.3 Optimization – Emphasizing Keywords  

The classic bag-of-words model excludes stop words in the representation based 

on statistics or human input rather than semantics, and the weighting scheme is based 

on occurrences but semantics. In this section, we try to develop a word weighting 

scheme considering semantics.  

Consider the following LULC category description: “Urban areas whose use 

does not require structures, or urban areas where non-conforming uses characterized 

by open land have become isolated.” Intuitively, despite the high idf value, the word 

“require” should not be considered as important as word “open” or “urban” in terms 

of representing the category. To select words carrying more representation power, 
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namely keywords, we set a bunch of testing rules based on desired characteristics of a 

keyword.  

Keywords must be positive 

In the context of describing LULC categories, negated and exclusive words do 

not conform with the intention of the concept. For example, in the description of 

Beaches: “extensive shoreline areas of sand and gravel accumulation, with no 

vegetative cover or other land use”, the negated part “vegetative cover or other land 

use” falls out of the scope of the concept, and therefore should not be considered 

when extracting keywords. An example of exclusion can be found in the category 

description: “Included are golf courses, parks, recreation areas (except areas 

associated with schools or other institutions), cemeteries, and entrapped agricultural 

and undeveloped land within urban areas.” In this sentence, the phrase “areas 

associated with schools or other institutions” are excluded from the description of the 

category, and hence would be excluded from keywords selection.  

Keywords are in noun phrases 

In English, a noun phrase (NP) consists of the center noun(s) and the modifier(s), 

both of which are indispensable in expressing the complete meaning. For example, a 

NP ‘single family’ has the center word ‘family’ and its modifier ‘single’. It takes both 

‘family’ and ‘single’ to complete the semantics.  

In the context of describing LULC categories, the use of verbs and adverbs is 

mostly just for syntactic purpose. Other parts of speech, such as the pronouns and 

conjunctions, also contribute little to category semantics. The NPs carry most of the 

semantics of a category, and therefore should be used to extract keywords. For 
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example, category “Phragmites Dominate Urban Area” has the description: “This 

category contains urban areas where the common reed, Phragmites australis 

dominates.” and the NPs in the description are “this category”, “urban areas”, and 

“the common reed, phragmites australis”, carrying the complete semantics. Words 

outside NPs, i.e. “contain” and “where”, are of little semantic importance.  

NO “Noise words” in keywords 

In the context of describing LULC categories, words like land, use, area, etc., 

although not in a general purpose stop word list, are used so pervasively that they 

drown out real informative words. Moreover, even if words like “land” are not found 

in a paragraph of description, still no extra information is gained. These words’ 

occurrence in this context is pervasive, predictable, and therefore of little semantic 

importance. Hence, these words should also be excluded from keyword selection.  

Figure 2.1 shows the workflow and main steps of keyword extraction. The whole 

process, divided into 6 consequential modules, will be discussed in order.  

Preprocessing 

Preprocessing is the preliminary processing of textual description to prepare it as 

formal as possible in order to be accurately parsed by a syntactic parser. Steps in 

preprocessing include: formatting structural heterogeneity, consolidating the word 

and symbol use, and breaking the paragraph into sentences to facilitate parsing. To 

avoid introducing errors, it is important to confine preprocessing on format level. The 

syntax and semantics of the texts do not change in preprocessing.  

In consolidating word and symbol use, compound words, semantically 

indivisibles, are broken into single words. For example, “military_installation” will 
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be broken into “military” and “installation”. But in terms of semantics, the whole (e.g. 

military installation) is more than the sum of its parts (military and installation). 

Hence, compounds must be restored in later stages.  

 

Figure 2.1 Flowchart of Keyword Extraction  

Parsing 

In natural language processing (NLP), parsing, or more formally, syntactic 

analysis, is the process of analyzing a sequence of words to determine their 

grammatical structure with respect to a given formal grammar. Given a sequence of 

words, a parser assigns each word a part of speech (POS) tag (i.e. noun, verb, 

adjective, pronoun, etc.), forms units like subject, verb, object, and determines the 

relations between these units according to some grammar formalism. In this research, 

Preprocessing 

Parsing 

Negation Detection 

NP Extraction 

Noise Word Filter 

Morphological Analyzer 

Keywords 

Textual description 
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the Berkeley Parser (Klein and Manning 2001) is adopted, because it is one of the 

most accurate and fastest parsers for a variety of languages, including English.  

Negation Detection  

One characteristic of keywords is the positivity. In the context of describing 

LULC categories, negated and exclusive phrases do not conform with the intention of 

the concept. Negation and exclusion indicator words (i.e. not, no, except, excluding, 

excluded, etc.) are located. Then the scope of negation or exclusion is decided, and 

content within the scope will be discarded from keyword extraction. Algorithm such 

as NegEx2 (Chapman et al. 2001) decides the negated scope without parsing, but it is 

less accurate. As we already have parsed sentences, finding the scope is 

straightforward and accurate – it is the immediate syntactic component containing a 

negation/exclusion indicator. 

Noun Phrase Extraction 

The noun phrases are marked during parsing, and only noun phrases falling out 

of the scope of negation and exclusion will be extracted.  

For a nesting NP (a NP that contains one or more other NP(s)), we need to 

decide which NP within should be used to extract keywords. For example, NP 

“schools or other institutions” is a nesting NP, which contains NP “schools” and NP 

“other institutions”. Selecting NPs to extract keywords is on the tradeoff between two 

processing gains. On one hand, the list of keywords should be kept short, otherwise 

using keyword is not different from the traditional bag-of-words model. To this end, 

we should use the NPs on the deepest nesting level to extract the keywords. On the 

other hand, the list of keywords should be complete. During the process of narrowing 
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down to NPs on the deepest level, semantics loss due to the elimination of potential 

keywords is hard to avoid. Finding a one-size-fits-all strategy to extract minimum 

NPs without losing semantics is hard. Considering the semantics loss is irreversible, 

our approach is to keep all NPs (in the nesting), and to remove redundant keywords in 

a later processing.  

In a parsed sentence, the scopes of NPs and the negated or exclusive parts will 

never overlap, because the English grammar, which is context-free, allows nesting but 

not overlapping. As the scope of a negation or exclusion word is within its direct 

component, NPs fall within this scope will, as a whole, be removed. A NP containing 

the negated or excluded scope will only have its negated or excluded part taken out, 

while the rest remains.  

Compound Restoration 

A NP consists of a central word and one or several modifiers. The structure of 

NP is analyzed to restore compound words. There are two types of structures, the flat 

structure and the nesting structure. A NP in flat structure has no NPs or other 

components nested, and the central word is the rightmost noun. The potential 

compound is generated by adding different combinations of modifiers in front of the 

central noun. Then the potential compound is searched in WordNet, and if found, the 

compound is restored. The searching starts from the potential compound with all 

modifiers, and if not found, it is shortened by discarding the farthest modifier and 

searched again until found. A nesting NP contains other NP(s) at some position, and 

can be treated recursively.  
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At this point, keywords are extracted from textual descriptions of LULC 

categories. A way to emphasize keywords in comparing descriptions is to assign 

heavier weights to keywords. In this research, we multiply the weights of keywords 

by 1.5 to emphasize their importance. In section 2.5, this keyword-enhanced model is 

compared with the model without keyword enhancement and the model using only 

keywords.  

2.2.4 Optimization – Incorporating Semantics in Similarity Calculation  

In the classic dot product of document vectors (section 2.2.2), an underlying 

assumption is that the components in the vector space are pair wise orthogonal. This 

means all words, corresponding to components, are independent, and the semantic 

relatedness (synonym, hyponym, or meronym) between any two words is negligible.  

However, this assumption is over-simplifying the reality, as there are word 

mismatches between documents. For example, we may want to compare two LULC 

categories “retail” and “commercial”, and assumedly both of the two contain only one 

word, i.e. “retail” and “commercial” respectively. Using classic dot product equation, 

the similarity between these two categories is 0, because they do not share words 

based on string match. However, term “retail” and “commercial” are not independent 

but related semantically. Therefore, incorporating semantic relatedness between the 

terms in the vector space model and/or similarity calculation becomes necessary (Chu 

et al. 2002). 
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Unsuitability of Expansion  

In information retrieval, expansion is the process of expanding the terms in a 

document to match additional documents, and it is widely used to deal with word 

mismatch. In the previous example, if we expand the words retail and commercial by 

adding in their related terms e.g. shopping, the similarity between the two will be 

correctly increased. 

Expansion can be achieved by human or by machine. Basic expansion involves 

techniques such as: adding in synonyms, hypernyms, and meronyms (Buscaldi 2005). 

More delicate expansion techniques have two approaches: global knowledge and 

local feedback. Global knowledge approach analyzes the corpus to discover word 

relationships, while local feedback approach analyzes documents retrieved by the 

initial query (Xu 1996). Bhogal et al. (2007) then separated global knowledge into 

two categories. One is corpus dependant knowledge (e.g. language model, like word-

word co-occurrence, trained from corpus); the other is corpus independent knowledge 

(e.g. WordNet).  

Local feedback and corpus dependant knowledge are not feasible in matching 

the LULC classification systems. But it seems corpus independent knowledge might 

be beneficial, because the category descriptions are relative short and may miss terms 

that will be string matched to related descriptions. However, a major hurdle in 

expansion is word sense disambiguation (WSD), because expansion should only 

performed on the intended meaning of keywords, otherwise expansion would 

decrease the precision.  
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WSD is still an open question in the NLP community; several efforts are 

contributing and effective in specific cases (Resnik 1999, Navigi and Velardi 2003). 

And due to the nature of the problem, all WSD methods employ a training process, 

meaning a corpus and/or a thesaurus are needed to provide knowledge about word 

senses based on usage and/or language model (context). Different methods may have 

different requirements on the corpus. While a substantial amount of untagged corpus 

would be adequate for some methods (Yarowsky 1995), some methods may need 

tagged and disambiguated corpus to achieve high accuracy (Mihalcea and Moldovan 

2001). As discussed before, domain specific corpus is not available. But even it is 

available, Voorhees’s experiments (1993) indicate that short statements (such as 

category descriptions) can be difficult to disambiguate because the “is-a” hierarchy is 

not sufficient to reliably select the correct sense of the noun.  

With WSD inapplicable due to lack of corpus or low accuracy, expansion 

method is not a reliable method to handle word mismatch in this research. Instead, it 

is solved by incorporating semantic relation in similarity calculation.  

There are two approaches to quantify the semantic relatedness between two 

words. The first one is based on semantic taxonomy, such as WordNet (Zhou and Wei 

2008), and the second one is based on the co-occurrence of words, termed Latent 

Semantic Analysis (LSA) (Deerwester et al. 1990). In this research, we compare two 

approaches and try to choose the one with better performance on LULC category 

descriptions. 
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Quantifying Semantics Using WordNet 

As introduced in section 2.1.1 network model, given a complete semantic 

network, the semantic similarity between two concepts depends on the shortest 

distance between their corresponding nodes in the network (Rodriguez et al. 1999). 

The shorter the distance, the more similar the two concepts are.  

In WordNet, there are 19 kinds of relations for the nouns and 9 for the adjectives, 

including semantic and lexical relations. In a graph representation of WordNet (Fig 

2.2), in which concepts (called “synsets” in WordNet) are the nodes and semantic 

relations are the edges. Quantitatively, the semantic relatedness is defined to be 

inverse proportional to the number of “hops” along the shortest path between the two 

concepts in WordNet, that is,  

),(

1
),(

ji

ji
ccd

ccs = . 

In the equation, d(ci , cj) is the number of hops between concept ci and cj in 

WordNet. 

 

Figure 2.2 Subgraph of WordNet 
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The breadth-first search algorithm (BFS) is used to find the shortest path 

between two nodes. It is worth noticing that antonyms have opposite contribution to 

semantic similarity and therefore will terminate a search for semantic relatedness 

immediately.  

Now we can calculate the semantic relatedness between concepts, but what we 

need in comparing two LULC descriptions is the semantic relatedness between words. 

For monosemous words, these two are equivalent as there is only one concept behind 

each word. For polysemous words, each of which represents multiple concepts, the 

semantic relatedness between words is set to be the closest semantic relatedness 

among all pair wise conceptual relationships (Resnik 1999). For example, consider 

how the similarity between word “field” and word “agriculture” would be decided. In 

all concepts behind “field”, “a piece of land” has the closet relationship with 

“agriculture”, and using this concept to calculate semantic relatedness is correct in 

this context. The equation computing similarity between term ti and term tj is then as 

follows, 

]
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1
[max),(

)(),(
ji

tCctCc
ji

ccd
tts

jjii ∈∈

= , 

in which C(ti) is the set of all concepts correspond to term ti. 

Adopting the term similarity s(ti , tj), the dot product is extended as follows,  
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in which  

]
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[max),(),(
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== . 

Then if the term similarity is reduced to the Kronecker delta function,  
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the dot product is reduced to classic equation as in 2.2.2.  

Quantifying Semantics Using Latent Semantic Analysis 

Different from the WordNet approach, latent semantic analysis (LSA) is based 

on an assumption that words that are closely related in semantics tend to occur 

together in text, and therefore have similar occurrence distribute through the whole 

collection of documents. Now let us consider a term-document matrix, whose rows 

correspond to terms (words), columns correspond to documents (LULC descriptions), 

and each value corresponds to the occurrence of a term in a document. A technique in 

linear algebra called singular value decomposition (SVD) is employed to decompose 

the matrix and reduce the number of rows (words). SVD is not a total stranger to 

Geography community as it is the counterpart of Eigen decomposition for a non-

square matrix; both decompositions are the foundation of principle component 

analysis (PCA), which has many applications in remotely sensed image processing.  

The output of LSA is a low rank approximation of the original term-document 

matrix. Each description is represented by a low rank vector, based on which the 

cosine similarity between descriptions is calculated. Comparing to the original, the 

low rank approximation is much smaller and less noisy. More importantly, the 
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semantic relatedness of words is considered, as the rank lowering is expected to 

merge the dimensions associated with words that have similar occurrence distribution. 

Returning to the example mentioned at the beginning of this section, a category 

named “commercial” and a category named “retail” will be related, if the word 

“commercial” and “retail” have similar occurrence patterns in the collection of LULC 

descriptions. An implementation of LSA in Python called “Gensim” is used in our 

method (Rehurek and Sojka 2010). 

2.2.5 Summary on Methodology 

In this section, we presented our innovative method to compare LULC 

descriptions, in which the bag-of-words model and cosine similarity are the basics, 

enhanced by two optimizations aiming the distinctiveness of LULC descriptions. In 

the first optimization, we developed the keyword enhancement strategy because a 

LULC description is usually much shorter than a regular document, and keywords 

have a more important role in deciding its concept’s intention. In the second 

optimization of incorporating semantics in similarity calculation, comparing lexical 

semantics in WordNet is the continuation of a previous work (Zhou and Wei 2008) 

done by a collaborator and the author, while the author first introduced latent 

semantic analysis to the semantic integration of LULC classification systems in this 

research. In the next section, we will present the results of applying this method (and 

optimizations) to the integration of LULC classification systems. A discussion based 

on our method’s performance follows.  
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2.3 Results and Discussion 

2.3.1 Experimental Results 

The experiment is to apply the method introduced in section 2.2 to the 

comparison of LULC classification systems used in the State of Maryland (MD 

LULC), Delaware (DE LULC), and New Jersey (NJ LULC) (Appendix I). The MD 

LULC data is prepared by Maryland Department of Planning 

(http://www.mdp.state.md.us/ ) based on aerial photo during year 2001 to 2002. The 

DE LULC data is downloaded from Geospatial One Stop data portal 

(http://gos2.geodata.gov/wps/portal/gos ), prepared by the Office of State Planning 

Coordination (OSPC) of the Budget Development, Planning, and Administration 

Section of the Delaware Office of Management and Budget 

(http://stateplanning.delaware.gov/ ). The NJ LULC data set was prepared by Aerial 

Information Systems, Inc., Redlands, CA, under direction of the New Jersey 

Department of Environmental Protection (NJDEP), Bureau of Geographic 

Information System (BGIS) (http://www.state.nj.us/dep/gis/ ).  

The MD LULC classification system has 22 categories. Each category is defined 

by a name and a paragraph of textual descriptions. In general, there are 20 to 30 

words in the description. The NJ LULC classification system is defined in 79 

categories, and each category contains 40 to 80 words. There are 38 categories in DE 

LULC classification system, and DE LULC is not elaborated by textual descriptions, 

only category names are given.  
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For every pair of categories from different classification systems of the three, the 

similarity values are calculated using the method including variations discussed in 

section 2.2. For a given category, its matching categories are the categories with 

similarity larger than a threshold. Obviously, the threshold controls the matching 

results. A lower threshold leads to more but less accurate matching categories, while 

higher threshold allows less but more accurate matching categories. Matching results 

achieved by algorithm are compared against human evaluation.  

Human evaluation gives matching categories for each category, but not the 

similarity values. The matching categories are decided by graduate students of the 

Department of Geography, University of Maryland College Park. Human evaluators 

match LULC classification systems in a one-way fashion, that is, from the system 

with more categories to the system with fewer categories. For example, to match NJ 

LULC to MD LULC, for each category in NJ LULC classification system, the 

evaluators pick up one matching category or several matching categories from MD 

LULC classification system. If two classification systems (e.g. MD LULC and DE 

LULC) are approximately on the same level, two-way matching is enabled by 

switching the source and target. Therefore, four groups of evaluation are available to 

use NJ to MD (NJ2MD), NJ to DE (NJ2DE), MD to DE (MD2DE), and DE to MD 

(DE2MD). Evaluators are informed that ‘no matches’ is acceptable. The LULC map 

is not revealed to evaluators; therefore evaluators made decisions only based on 

category names and textual descriptions, rather than quantitative methods and direct 

observation on actual lands.  
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An automated semantic based data integration method applied to geospatial data 

portals (Zhou and Wei 2008) is used for comparison purpose. The semantic similarity 

measurement in that research uses a WordNet enriched feature-based model to 

compare “semantic factors” in two LULC categories. The semantic factors are 

keywords extracted by eliminating stop words and negated words from category 

descriptions.  

The metrics to evaluate the algorithm performance is the widely used precision 

recall metrics. Precision can be seen as a measure of exactness or fidelity, whereas 

recall is a measure of completeness. When using precision and recall in matching 

LULC classification systems, the set of possible matches for a given LULC category 

is divided into two sets, one of which is approved by human evaluation and 

considered “correct”. Consider the multiple matches for a single category given by 

human evaluation are in an alternative relationship, recall is calculated as the number 

of categories which are given correct match(es) by algorithm divided by the number 

of all categories. Precision is then computed as the fraction of correct matches 

retrieved by algorithm among all retrieved matches.  

As the threshold increases from 0 to 1 at the interval of 0.01, 100 pairs of recall 

and precision are calculated at each threshold, among which the general trend would 

be decreasing in recall and increasing in precision. Based on these 100 pairs of recall 

and precision, a precision-recall curve will be plotted using the recall as an 

independent variable on X axis, and the precision as a dependent variable on Y axis. 

Examining the entire curve is informative yet its saw-tooth shape is may blur the 

trend. To remove the jiggles, the classic simplification is the 11-point interpolated 
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precision (Manning et. al. 2008), which measures the interpolated precision at the 11 

recall levels of 0.0, 0.1, 0.2, . . . , 1.0. Then an average of this 11-point interpolated 

precision can be used to compare the overall performance of different methods. In 

Figure 2.3, we present the average of 11-point interpolated precision of each 

algorithm variation for matching DE LULC to MD LULC (a), MD LULC to DE 

LULC (b), NJ LULC to MD LULC (c), and NJ LULC to DE LULC (d). 

Both the basic algorithm (the cosine similarity on bag-of-words representations) 

and its potential optimizations (keyword enhancement and semantics incorporation) 

are tested. In Figure 2.3, they are denoted by different labels. The first two letters in 

the label indicate what are in the “bag of words”. “KW” stands for keywords only, 

“AW” for all words without keyword enhancement, “KE” keyword enhancement, and 

“NM” for category name only. As aforementioned, in KE, keywords are enhanced by 

multiplying the occurrence weight by 1.5. The second part of the label indicates the 

similarity measurement: “O” stands for orthogonal (standard) vector space model, 

“WN” stands for using WordNet to quantify lexical semantics, “LSA” stands for 

latent semantic analysis, and “FB” stands for the feature-based model as comparison 

(Zhou and Wei 2008). The number (1, 2, or 3) after label “WN” indicates the 

maximum number of “hops” that will be considered between nodes (words) in 

WordNet.  
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Figure 2.3-a Average precision when matching DE LULC to MD LULC 
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Figure 2.3-b Average precision when matching MD LULC to DE LULC 
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Figure 2.3-c Average precision when matching NJ LULC to MD LULC 
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Figure 2.3-d Average precision when matching NJ LULC to DE LULC 
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2.3.2 Discussion 

Over-performing feature-based model 

In Figure 2.3, one of the most dominant findings is that given the same input, our 

algorithm has a great improvement over feature-based model (FB) in all four groups 

of experiments, no matter which variation of algorithm is in comparison. The 

performance score of feature-based model at best is at around 60% of our algorithm 

without optimizations. This result shows our algorithm can provide integration results 

much close to human evaluations than previous works.  

Always Incorporating Descriptions  

For each algorithm variation, using words in descriptions (AW-) leads to better 

performance than only using words in category names (NM-). This result supports 

our initial underlying assumption: incorporating textual descriptions in semantic 

integration is always favorable.  

Keywords Enhancement 

Removing the under-performers i.e. feature-based model and methods that only 

use words in names, we re-organize the order of methods in Figure 2.3 to better 

capture the comparison between different variations of our method (Figure 2.4).  

When excluding consideration of semantics during similarity measurement, 

methods using keyword enhancement (KE-O) performs better than methods (AW-O) 

without keyword enhancement in all the four experiments, among which the largest 

improvement of 4% happens when matching DE LULC to MD LULC and small 

improvement from 1% to 2% is achieved in other experiments. We expect this result. 
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But using keywords alone (KW-O), the performance is uneven comparing to methods 

without keyword enhancement (AW-O): 3% and 7% drop when matching DE LULC 

to MD LULC and MD LULC to DE LULC, 2% increase when matching NJ LULC to 

MD LULC, and even performance when matching NJ LULC to DE LULC.  

It seems keyword extraction improves the precision by eliminating words of less 

semantic importance, but it is inevitable for the process to drop some meaningful 

words along the way and reduce the conformance rate. As the language in LULC 

category description is supposed to be concise and complete, it is probable the 

information loss due to dropping words overshadows the gain of precision. Methods 

with keyword enhancement (KE-O), on the other hand, emphasized keywords without 

dropping words, and hence optimized the trade-off and gave better performance than 

AW-O. When using WordNet to capture semantic relation within one hop, methods 

with keyword enhancement (KE-WN1) also over-performed regular method (AW-

WN1), while methods using only keywords have an uneven performance. But if we 

extend the semantic relation in WordNet deeper to 2 hops, using only keywords can 

be beneficial occasionally. To better understand this finding, we move ahead to the 

next discussion, in which we will examine the effectiveness of using WordNet and 

LSA to capture semantics in LULC descriptions.  
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Figure 2.4-a Re-organized average precision when matching DE LULC to MD LULC 
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Figure 2.4-b Re-organized average precision when matching MD LULC to DE 

LULC 
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Figure 2.4-c Re-organized average precision when matching NJ LULC to MD 

LULC 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
W
-O

K
E
-O

K
W
-O

A
W
-L
S
A

K
E
-L
S
A

K
W
-L
S
A

A
W
-W

N
1

K
E
-W

N
1

K
W
-W

N
1

A
W
-W

N
2

K
E
-W

N
2

K
W
-W

N
2

A
W
-W

N
3

K
E
-W

N
3

K
W
-W

N
3

A
v
g
 P
re
c

 

Figure 2.4-d Re-organized average precision when matching NJ LULC to DE 

LULC 
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LSA or WordNet 

As discussed in 2.2.4, we employed two approaches, which are respectively 

based on LSA and WordNet, to incorporate semantics in comparing LULC 

descriptions. As results shown in Figure 2.4, either approach optimizes the methods 

and leads to better matching results than method using standard cosine similarity in 

all four experiments. Moreover, methods using LSA give the best performance in 

three experiments except matching NJ LULC to DE LULC, in which methods using 

WordNet prevailed. 

For methods using WordNet, as the searching digs deeper in lexical relations, 

semantically remote words are more likely to be connected, which in turn links 

categories that are not considered to have a relation in LULC classification systems. 

For example, in WordNet, the word “service” and “home” are related within three 

hops in WordNet, which will lead to a false relation between Commercial and 

Residential categories. As the set of retrieved matches expands, more false matches 

are returned and decrease the precision. Using only keywords instead of keyword 

enhancement in comparison can reduce false relations when the search depth is 2, but 

when searching depth is 3 (-WN3), it was hard to defend the performance from many 

false relations. 

Another issue when using WordNet to quantify semantic relatedness in LULC 

descriptions is that important topical relations in LULC descriptions may be omitted 

in WordNet. WordNet is a repository built upon “is-a” and “part-of” relations. 

Although there is a ‘domain of synset – TOPIC’ relation defined in WordNet, it is 

largely diluted in the whole vocabulary. Therefore, many topical relations that are 
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important in measuring LULC concepts’ semantic similarity are not acknowledged in 

WordNet. For example, in the context of LULC, closely related words – “agriculture” 

and “cropland”, are not linked by WordNet, because neither “is-a” nor “part-of” can 

describe their topical relation.  

These two issues restrict the WordNet’s adaptability in comparing LULC 

descriptions. After all, WordNet is designed to relate concepts in general. 

Hypothetically, a well developed subset of WordNet containing words frequently 

used in LULC context and incorporating more topical relations could provide a better 

semantic reference, but building such an ad-hoc WordNet is not easier than manual 

semantic integration.  

The model based on LSA, on the contrary, does not have these drawbacks 

because it is built upon the word frequency and co-occurrence in the LULC context. 

In general, it has superior performance. But when matching NJ LULC to DE LULC, 

although beating standard cosine similarity, LSA methods does not perform as well as 

methods using WordNet. After looking into the matching result, we find the reason 

rooting in the limitation of LSA’s fundamental assumption. LSA assumes that 

semantic related words tend to occur together in text. This assumption is generally 

true but not in all circumstances, especially when two LULC categories are defined in 

different but semantically related words, which are rarely seen outside the two 

descriptions. For example, Saline Marshes in NJ LULC should be matched to 

Wetland DE, as marsh is a kind of wetland. Method using WordNet captured the 

semantic relation between marsh and wetland, while LSA missed it due to the lack of 
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co-occurrence of term marsh and term wetland in the whole collection of LULC 

descriptions.  

2.4 Conclusion on Lexical Semantic Integration 

Our algorithm shows animprovement over previous feature-based method in all 

four of experiments: the 11-point interpolated precision of feature-based model at its 

best experiment reaches only 60% of our basic method’s precision.  

Based on all four experiments in this research, we recommend the methods using 

LSA, which over-performed other methods in three of four LULC classification 

matching experimetns. The benefit of keyword enhancement over LSA-based 

methods is not obvious (less than 3%), because denoising is already achieved in the 

low-ranking process of LSA. Considering LSA’s mechanism, we believe the larger 

collection of LULC descriptions is in comparison, the better LSA will perform. But if 

LULC category descriptions are too brief and the whole collection of descriptions is 

too small, using co-occurrences may not be able to reconcile word mismatches (e.g. 

marsh and wetland). In this circumstance, the combination of keyword enhancement 

and using WordNet to quantify semantic relatedness should be working.  

However, in the example mentioned before, lexical methods using LSA did not 

match Saline Marsh to Wetland due to word mismatch. Goh (1997) described this 

incompatibility of concepts because of word mismatch as one type of semantic 

heterogeneity, and termed it “naming conflict”. Naming conflicts do not only happen 

in LSA based methods, but can also be found in WordNet based methods. For 

example, human evaluators consider Recreational of DE LULC and Open Urban 
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Land of MD LULC to be similar. However, all the lexical methods were lost in 

naming conflicts and none of them achieved this match.  

More importantly, all integration methods using lexical semantics have a strong 

limitation. They are depending on how LULC categories are defined (in text) rather 

than how they are used in the field, but the usage of a LULC category does not 

necessarily follow its definition (Duckham & Worboys 2005). For example, the 

LULC category Wetland appeared in both MD LULC and DE LULC classification 

systems are matched together by human and algorithm. But by observing parcels 

labeled as Wetland in MD and DE, we find their main difference. Wetlands in MD 

always contain more water and less vegetation, and only resemble some of wetlands 

in DE, while other DE Wetland parcels are highly vegetated and resemble forests. 

Therefore Wetland MD is more like a subcategory of Wetland DE. Two concepts 

using same or similar labels are actually different, this underlying semantic 

heterogeneity is termed “confounding conflict” by Goh (1997). In the study of LULC, 

the confounding conflict may lead to severe cognitive problems when they are 

covered up by lexical semantic methods.  

To overcome semantic heterogeneities that are not solvable using lexical 

semantic methods, we will further our research beyond lexical semantics into actual 

LULC status, and focus on using remotely sensed data to translate semantic 

heterogeneous LULC classification systems in the next chapter.  
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Chapter 3: Overcoming Semantic Heterogeneity Using Remote 

Sensing 

3.1 Introduction 

In chapter 2, we tried to compare and match LULC classification systems using 

lexical information contained in category name and descriptions. Our method is based 

on bag-of-words model and cosine similarity enhanced by LSA or WordNet, and the 

results showed great improvement comparing to previous feature-based model. 

However, we also found out that lexical semantic methods are having difficulties 

solving the semantic heterogeneities happened between different classificatory 

approaches.  

In general sense, semantic heterogeneities are categorized into three types (Goh 

1997). The Naming conflict means the naming schemes of the information differ. The 

Confounding conflict happens when information items (e.g. LULC labels) seem to 

have the same meaning, but differ in reality. The Scaling and units conflict happens 

when different reference systems are used to measure a value. The goal of semantic 

integration is to eliminate all three types of semantic heterogeneity. Comparing to the 

confounding conflict and naming conflict, the scaling and units conflict is 

straightforward and less difficult to solve. The focus of most research on semantic 

integration, including this one, is therefore on the first two types of semantic 

heterogeneities. 

In LULC classification systems, the confounding conflict happens when labels 

and descriptions of two LULC categories seem to represent same or similar LULC 

status, but in reality different. For example, category wetland represents how 
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complicated and semantically heterogeneous a LULC concept can be. Due to 

variations in vegetation species and coverage, water table height and period, parcels 

labeled as wetland in different areas can be way different in actual land cover status. 

It might be too easy for a lexical method to match Wetland MD to Wetland DE, 

without the consideration of the potential difference in their conceptual intensions. In 

Figure 3.1, although sharing the same label, wetland parcels in MD and DE have very 

different seasonal NDVI curves (calculated from time series Landsat ETM+ imagery 

from July 2001 to august 2002 path 14 row 33). To better understand the cause of this 

difference, a further discussion can be found in section 3.3.5. But intuitively, we can 

tell the two Wetland categories are different and inappropriate to be used 

interchangeably.  
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Figure 3.1 Average seasonal NDVI of Wetland parcels in MD and DE 

On the other hand, the naming conflict happens when LULC categories under 

different labels represent same or similar LULC type from observation. For example, 

human evaluators consider Recreational of DE LULC and Open Urban Land of MD 
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LULC to be similar categories. However, different naming schemes make the lexical 

methods lost in naming conflicts and none of them achieved this match.  

To discover confounding conflicts and reconcile naming conflicts, first, we need 

to know if two LULC categories are seemingly different or similar, then one step 

forward, we need to know if they are different or similar in reality. Our method in 

chapter 3 aimed to answer the first question and provided better solutions than 

previous methods. But answering the second question is beyond the capability of 

lexical methods and therefore calling for innovative approaches.  

Fortunately, LULC status is observed by remote sensing, which provides a 

different way of understanding LULC categorization and how each category is used 

on the ground. It is logic to incorporate remote sensing into the integration of LULC 

classification systems. Before the discussion of how to incorporate remotely sensed 

data, we ought to briefly review the relation between remote sensing and LULC, 

through which we will find the reason and theoretical support of our method.  

3.1.1 Remote sensing as a tool of understanding LULC 

Remotely sensed data are increasingly used to describe LULC in the form of 

LULC mapping. As a means of observation on Earth, the remote sensing sensor 

measures the amount and spectral distribution of the solar energy reflected from the 

earth surface to infer the nature of the reflecting surface. A fundamental assumption 

here is that each type of earth surface (different types of vegetation, soil or sand, 

water, man-made surface, and so on) has an “individual and characteristic manner of 

interacting with incident radiation” that is described by the spectral response of that 
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surface (Mather 2004). Generally, this assumption is reasonable and its validity is 

proven by decades of research in the remote sensing of environment. The spectral 

response curve of a piece of earth surface, which indicates its individuality, is termed 

the spectral signature, which is the foundation of the LULC mapping based on remote 

sensing. As remote sensing has such a great impact on LULC mapping, modern 

LULC classification systems are designed to use with remotely sensed data 

(Anderson 1976). 

Now the remote sensing research community has become the provider of LULC 

information to a wider society. However, it is reported that the remote sensing 

community has concentrated too much on technical issues but not enough on 

semantic and ontological issues (Comber et al. 2004). Different disciplines or 

different agencies have different perceptions of land use categorization, which lead to 

semantically heterogeneous LULC classification systems. Interoperability of the 

LULC data will be impossible without the semantic integration of classification 

systems. 

A typical LULC classification system organizes categories in a taxonomy 

structure, in which each category is defined by a name (i.e. label) and a paragraph of 

description explaining the name. The textual information extracted from names and 

descriptions is usually used in lexical methods (Kavouras et al 2005, Feng and 

Flewelling 2004, Rodriguez et al 1999, Rodriguez & Egenhofer 2003, 2004, Ahlqvist 

2008, Kavouras and Kokla 2002) to integrate LULC classification systems. But all 

these methods have common problems: 1) it is difficult to quantify lexical semantics 

and convert them into comparable attributes; and 2) these methods are vulnerable to 
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semantic heterogeneities. The first problem makes these methods difficult to use and 

even more difficult to automate. In chapter 3, we developed a new method using 

information retrieval techniques that aimed to solve this problem. But the second 

problem can be more severe because it may lead to deep conceptual ambiguities – the 

use of a LULC classification system does not reflect its definition (Duckham & 

Worboys 2005).  

Recognizing this problem, Worboys and Duckham (2002) sought in spatiality 

for solutions. They believe a universal set of ‘semantic atoms’ exists among 

heterogeneous data sources, and semantic heterogeneity is entirely due to different 

groupings of the atoms. To integrate two classification systems of the same 

geographic area, Duckham and Worboys (2005) overlaid and intersected the different 

LULC maps, which splits land parcels into fragments. Each fragment is labeled by 

two categories from two classification systems. Based on this fragmentary land parcel 

map, Duckham and Worboys adopted a definition of semantic relations between two 

LULC categories based on how many fragments are shared by these two categories. 

Although acknowledging the importance of spatial attributes, Duckham and 

Worboys’s method is geographically restricted: their method can only integrate 

LULC classifications mapping the same area.  

Durbha and King (2005) introduce ontology to enable content-based image 

retrieval in remote sensing archives. First Durbha and King apply an unsupervised 

segmentation algorithm (Deng and Manjunath 2001) to extract homogeneous objects 

from remote sensing data archive. Then the objects are labeled by concepts in the 

ontology pre-developed from Anderson classification system (Anderson et al. 1976). 
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Based on the reasoning function supported by Web Ontology Language (OWL-DL) 

(Wache et al. 2001), the semantic-enabled content-based image retrieval is realized. 

Similar method is then applied to semantic reconciliation in data archives (Durbha et 

al. 2009). Worth noting is that Durbha and King’s (2005) work, although in a 

different field, suggests a potential solution to the integration of LULC classification 

systems: reusing the remotely sensed data that have been widely used in LULC 

mapping. 

3.1.2 Remote sensing to overcome semantic heterogeneity in LULC  

Given its important role in LULC mapping, we believe using remotely sensed 

data to describe LULC categories can overcome semantic heterogeneities, because 

the difference in actual LULC status, either expected (between semantically different 

categories) or unexpected (between semantically same or similar categories), 

corresponds to different pixel values in the remotely sensed images due to spectral 

signature. Remotely sensed data have two distinctive advantages in understanding 

and comparing LULC categories: 1) an objective observation on the physical LULC 

status and 2) a quantitatively comparable measurement across LULC categories from 

different classification systems in different locations. Based on these two advantages, 

we now can answer the question if two LULC categories are different or similar in 

reality, and sweep the restriction of only comparing LULC classifications in same 

geographical areas incurred in Duckham and Worboys (2005)’s method.  

In this chapter, we will present a remote sensing based approach to the semantic 

integration of LULC classification systems. Our method will use spectral and textural 

information derived from time series remotely sensed data to measure similarity 
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between LULC categories from different classification systems, and then discovers 

confounding conflicts and reconciles naming conflicts. Adopting this approach can 

not only automate the integration process, but also provide more reliable integration 

results. In the rest of this chapter, we will detail our method in section 3.2, and 

present the matching result and compare it with human evaluations in section 3.3. 

Then a conclusive remark in section 3.4 will follow. 

3.2 Methodology 

In LULC mapping, the semantics of each category is employed to label the 

geospatial data, either on pixel basis or parcel basis. In other words, LULC mapping 

is the process of endowing the LULC semantics to the geospatial data (mostly 

remotely sensed) and producing LULC maps, in which each labeled parcel embodies 

the semantics of its LULC category. By this logic, overlaying LULC map on 

remotely sensed image and exploring the parcel level data patterns is a 

straightforward way to restore the link between semantics and remotely sensed data. 

Hence, our method compares the semantics of different LULC categories via the 

parcel level patterns in spectral and textural. The method is demonstrated through the 

experiment of matching LULC classification systems of Maryland (MD LULC) and 

Delaware (DE LULC).  

3.2.1 Study area and LULC data 

The study area, eastern Maryland and Delaware, is covered by a single Landsat 

scene (Path 14; Row 33) (Figure 3.2). As adjacent areas, eastern Maryland and 

Delaware have similar LULC types due to similar climate, topography, and 
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hydrology, but these similar LULC types are defined in different classificatory 

approaches (Figure 3.3). 

 

 

Figure 3.2 Study area: MD and DE covered by Landsat scene path 14; row 33 
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Figure 3.3 Taxonomy of MD and DE LULC Classification Systems 

The Maryland LULC (MD LULC) data is prepared by Maryland Department of 

Planning (MDP: http://www.mdp.state.md.us/) and obtained from their website, and 

the Delaware LULC (DE LULC) data is prepared by the Office of State Planning 

Coordination (OSPC) of the Budget Development, Planning, and Administration 

Section of the Delaware Office of Management and Budget 

(http://stateplanning.delaware.gov/), and obtained from Geospatial One Stop data 

portal (http://gos2.geodata.gov/wps/portal/gos). Both LULC datasets are created from 

aerial photo during year 2001 to 2002. The detailed classification systems used in two 

LULC maps are shown in Appendix I. Both classification systems are defined in 

taxonomy (Figure 3.3), in which level 0 categories, denoted by MD LANDS and DE 

LANDS, representing the generic concept of land, contain all land parcels. Level 1 

categories are categories directly subsumed by level 0 categories, and so on so forth. 

There are 4 different levels (0-3) of categories in both classification systems, among 
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which level 1 and level 2 approximately correspond to same levels in the Anderson 

system (Anderson 1976). All cateogries in both classifications have parcels covered 

by Landsat scene path 14 row 33. 

3.2.2 Assessment of the LULC classification systems  

Before the matching process begins, a thorough assessment of the LULC 

classification systems is needed to discover the conceptual ambiguities and errors. 

Otherwise, these ambiguities and errors will never be found but inherited to the 

matching process and make the integration error-prone. 

An expert in LULC may have different ways to decide how well a LULC 

classification system is defined, but there is a rudimentary form to create 

classifications termed “facet analysis” (Ranganathan 1967). It provides a collection of 

rigid rules, which all classification systems should follow. Facet analysis is invented 

by information scientist Ranganathan in the 1930’s, and primarily used to create 

classifications for the document collections in technical, scientific, and social 

scientific fields. In this tradition, facets are, in Wynar and Taylor’s words (1992), 

"clearly defined, mutually exclusive, and collectively exhaustive aspects, properties, 

or characteristics of a class or specific subject.” In simple words, facets are the 

characteristics of division. Ranganathan’s facet analysis consists of three planes, each 

of which has several canons, postulates, and principles. Cannons are the rules must be 

followed by all classification systems, while postulates and principles are strong 

recommendations.  
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Ranganathan’s original facet analysis is presented as a detailed series of 46 

canons, 13 postulates and 22 principles, many of which are beyond the scope of this 

research. Spiteri (1998) proposed a simplified model for facet analysis by combining 

and simplifying of Ranganathan’s canons, postulates, and principles, and the 

principles defined by the Classification Research Group (CRG). In this study, the 

assessment of LULC classification systems is based on Spiteri’s simplified facet 

analysis.   

PRINCIPLES FOR THE IDEA PLANE 

Principles for Choice of Facets 

a) Principle of Differentiation 

This principle advises that when dividing an entity, facets should have the ability 

to distinguish clearly among its component parts. In the LULC mapping, it means that 

for a land parcel, it should be decisive in determining which one and only one 

category this parcel belongs to. The definition of MD LULC classification system 

follows this principle well at level 1 categories. But at level 2, conceptual ambiguity 

is observed. For example, the definition of Mixed Forest poses a question on the 

differentiation between the mixed forest, and the deciduous and/or evergreen forest. 

Its definition says neither deciduous nor evergreen species dominate, and mixed 

forest is a combination of both. This is a vague definition as it did not define 

“dominate”.  

The DE LULC classification system has several mixed categories, such as mixed 

urban, mixed rangeland, and mixed forest. As in the Anderson’s LULC classification 
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system (Anderson 1976), DE LULC uses a threshold of 1/3 intermixture area to 

separate mixed from “pure” parcels, although accurate delineation of intermixture 

area might still be unclear. 

b) Principle of Relevance 

This principle advises that the choice of facets should reflect the purpose of 

classification. Both MD and DE LULC classification systems are produced and used 

by state urban planning authorities. The principle of relevance is followed in both 

systems, and can possibly explain some of the unbalanced extension of the 

classification system. Both classification systems have the highest level 3 

subcategories for the category of residential, but do not divide level 1 category of 

wetland, because further categorizing wetland, an extremely important and 

notoriously complicated concept in LULC, is beyond the focus of urban planning.  

c) Principle of Ascertainability 

This principle advises that facets should be definite and ascertained, which was 

explained by Spiteri, for example, the date of death is inappropriate to use as a facet 

to divide live people, because it is unknown. Similarly, in LULC mapping, 

categorizing lands should be based on current status rather than planned uses in future. 

MD and DE LULC classification systems followed this principle.  

d) Principle of Permanence 

This principle advises that facets should reflect the permanent qualities of the 

entity to be divided, which means, for example, color is not applicable to classifying 

the chameleons. However, this reasonable principle is not easy to follow in LULC 
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classification systems, because the LULC status, which is the basis of all facets, can 

change especially for transitional land uses. The impact of LULC change is expected 

to see in the integration results.    

e) Principle of Homogeneity and Principle of Mutual Exclusivity 

These two principles advise that each facet used to divide entities should 

represent only one characteristic of division and mutually exclusive among each other. 

These two principles ensure on each specific facet each component part is 

homogeneous, but mutually exclusive among each other. Each item in the 

classification has its own unique place (Spiteri 1998).  

These two principles are strong restrictions. Homogeneity and mutual 

exclusivity are both relative to the discriminating power. Using a higher 

discriminating power, homogeneous categories can be divided further more. On the 

contrary, a lower discriminating power blurs the boundary between originally mutual 

exclusive subcategories. If we reasonably assume the same discriminating power is 

used through out the entire LULC mapping process, some LULC categories in MD 

and DE classification systems are less homogeneous than others. To this end, 

Wetland, again, as the only level 1 “leaf” category (no subcategories) in both systems 

stands out. It is obviously under-defined and may cause semantic heterogeneity. 

Different subcategories of Commercial in DE classification system, on the contrary, 

are more questionable on their mutual exclusivity.       
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f) Principle of Fundamental Categories 

Different from Ranganathan’s PMEST formula (Personality, Matter, Energy, 

Space and Time), this principle advises that there exist no fundamental categories (of 

facets) to all subjects. Facets should be derived based upon the nature of the subject 

being classified (Spiteri 1998). Every LULC classification system by nature is a good 

practice of this principle.  

Canon of Exhaustiveness 

In Ranganathan’s original facet analysis (1967), the canon of exhaustiveness 

states that all classes and sub-classes in a classification system should present all 

aspects of their parent universe. This canon is excluded in Spiteri’s simplified facet 

analysis, because Spiteri (1998) argues that the exhaustiveness is rather “difficult to 

determine and maintain”. Spiteri is right about the difficulty, and it is reasonable to 

remove a hard-to-follow principle from the must-follows. However, exhaustiveness 

should be recommended, because without exhaustive subcategories, it is inevitable to 

see some items of the parent category but belong to none of its subcategories, which 

is a logical flaw.    

Some LULC classification systems, such as the Anderson system (Anderson 

1976), escape this predicament by adding in a “catch-all” subcategory, such as Other 

urban or built-up land. Setting up a “catch all” is good when it comes to assigning 

every and each land parcel a subcategory to avoid logical flaw. But the semantic 

clarity of this “catch-all” category is very much a challenge. DE LULC classification 

system is a modified Anderson system, and there is a catch-all category Other Urban 

or Built-up for urban land uses in the system. But in addition to this catch-call 
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category, DE LULC includes urban categories such as Recreational and Utility, 

which in Anderson system composes the main part of the Other Urban or Built-up. 

Now the category of Other Urban or Built-up in DE LULC has an unclear intension, 

and is difficult for human evaluators to find a match in MD LULC. 

Principles for Citation Order of Facets and Foci 

a) Principle of Relevant Succession 

This principle advises that the order of facets should reflect their natural scopes 

in the classification system. In LULC classification systems, this principle is usually 

well followed: parent categories represent broader LULC concepts than subcategories. 

The MD and DE LULC classification systems follow this principle closely.  

Principle of Consistent Succession 

This principle advises that the order of facets should not be modified once it is 

established, unless there is a change in the purpose, subject, or scope of the 

classification (Spiteri 1998). This principle is followed by MD and DE LULC 

classification systems.  

Spiteri’s simplified facet analysis (Spiteri 1998) also has the principles for the 

verbal and notational planes, which are about naming and coding the classification 

systems. These principles are beyond the scope of this research. 

In Spiteri’s simplified facet analysis on MD and DE LULC classification 

systems, several conceptual ambiguities are discovered. Solving these ambiguities are 

out of the reach of any lexical semantic methods, and the impact of these ambiguities 

on integration is estimated in the following result and discussion section (section 3.3).  
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3.2.3 Remote sensing data selection 

Geospatial data are the direct observation of geospatial entities, such as land 

parcels. Each type of geospatial dataset, raster or vector, provides a unique 

perspective of observation and information into the nature of the geographical 

phenomenon (Durbha et al. 2009). In theory, every type of available geospatial data 

could be beneficial in terms of bringing the unique information into the algorithm. 

But in practical terms, each type of remotely sensed data has its individual scope of 

application, which is determined by the spatial, temporal, spectral, and radiometric 

resolution. In this study, we select the time series Landsat 7 ETM+ imagery to be the 

remotely sensed data source (Table 3.1) based on the following considerations.  

Spatial resolution 

Landsat ETM+ has eight channels covering the visible, near- and mid-infrared, 

and the thermal infrared, including a panchromatic channel. The panchromatic 

channel has a spatial resolution of 15 m, the thermal infrared channel has a spatial 

resolution of 60 m, and the rest six spectral channels have a spatial resolution of 30 m. 

In this study area, most parcels have an area larger than 10000 square meters. They 

can be captured by Landsat ETM+. Another consideration is the swath width. A 

Landsat ETM+ scene has a swath width of 185 km, which can cover the whole study 

area. It is practically beneficial that single scene coverage can save lots of efforts to 

balance the impact of the solar and sensor variation if using different scenes.  

Temporal resolution 
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Landsat 7 has a repeat coverage interval of 16 days. At this temporal resolution, 

a time series of images are available to capture the phonological phenomenon, which 

is very important to differentiate vegetated LULC types. Even when clouds 

substantially occupy in the images on some dates, it is not difficult to find alternatives 

from a 2-3 years of collection. 

Spectral and radiometric resolution 

Landsat 7 ETM+ is an earth observing instrument. It is a proper choice for this 

research because it is designed to discriminate different LULC types via its eight 

spectral bands covering a rich range from visible to short-wave infrared in the 

electromagnetic spectrum.  

Data availability 

The method discussed in this chapter is data-oriented. The data availability is an 

important concern when the method is to be applied to broader and different areas. 

Landsat has a global coverage at the same spatial and temporal resolution, which 

enables this integration method to be applied to almost everywhere in the World, even 

across different continents, where lexical semantic methods are largely disabled 

because the LULC classification systems can be defined in different languages. 

Table 3.1 lists the Landsat data used in comparing MD and DE LULC 

classification systems, including eight spectral bands (including thermal low gain 

(band 61) and high gain (band 62)) and one panchromatic band on eight different 

dates, scattered through a year time (2001-2002). In addition to spectral measurement, 

textural measurement Grey Level Co-occurrence Matrix (GLCM) (Haralick et 
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al.1973) is also included. The GLCM measurements used in this study are contrast, 

correlation, entropy, and mean, calculated from 2001-07-10 Landsat NDVI and 

panchromatic image, respectively. 

Table 3.1 External geospatial data 

Data (parcel level mean and standard deviation) 

ETM+ Band 1-8 2001-07-10  

ETM+ Band 1-8 2001-09-12 

ETM+ Band 1-8 2001-10-30 

ETM+ Band 1-8 2001-11-15 

ETM+ Band 1-8 2002-02-19 

ETM+ Band 1-8 2002-03-23 

ETM+ Band 1-8 2002-05-10 

ETM+ Band 1-8 2002-08-14 

GLCM texture: Contrast, calculated from NDVI 2001-07-10 

GLCM texture: Correlation, calculated from NDVI 2001-07-10 

GLCM texture: Entropy, calculated from NDVI 2001-07-10 

GLCM texture: Mean, calculated from NDVI 2001-07-10 

GLCM texture: Contrast, calculated from Band 8 2001-07-10 

GLCM texture: Correlation, calculated from Band 8 2001-07-10 

GLCM texture: Entropy, calculated from Band 8 2001-07-10 

GLCM texture: Mean, calculated from Band 8 2001-07-10 

3.2.4 Preprocessing  

Preprocessing involves the correction of deficiencies and the removal of flaws 

present in the data. It is carried out before the data are used for a particular purpose 

(Mather 2004). In this study, preprocessing includes geo-referencing (if necessary) 

and removal of pixels on the parcel edges. 

The accurate registration is required to overlay LULC map on remotely sensed 

images. Geometric errors in registration lead to the displacement of pixels in land 
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parcels when overlaying LULC map on images, and then the data pattern extracted 

from pixels in each parcel are subject to mistakes due to the pixel displacement. To 

avoid this problem, registration is carried out if LULC maps and images do not fit 

well.  

The pixels on parcel boundaries need to be removed because these pixels tend to 

cross the boundary and become mixed of multiple LULC types. To remove these 

pixels, the LULC map is rasterized on the same spatial resolution of the remotely 

sensed data. Then in this rasterized LULC map, pixels on parcel boundaries are 

assigned a different value than the value of pixels that fall completely within parcels. 

This boundary raster is then overlaid on each remotely sensed image. And through a 

raster calculation, pixels on the boundaries of parcels are picked and removed from 

each remotely sensed image and textural image.  

3.2.5 Parcel level statistics 

In remote sensing, object-based methods (Walter 2004) consider groups of 

pixels that represent existing objects rather than single pixels as inseparable units in 

processing. The advantage of this object-based approach is obvious: real world LULC 

is not delineated into tiny squares but into parcels, that is, objects. Adopting the 

object-based approach, parcel level statistics rather than pixel values, will be used to 

compare different LULC categories.  

In the integration of MD LULC and DE LULC, mean and standard deviation of 

the pixels within each land parcel are calculated from 9 Landsat bands on 8 different 

dates plus 2 textural bands. That is, for each parcel, there are 160 feature values in 
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total. If we imagine a vector space with each dimension corresponds to a feature 

value, each parcel projects to a point in this 160-dimentional vector space, and a 

LULC category is a cluster of points, each point corresponding to a parcel in this 

category. Now the spectral, textural and temporal information are all included in this 

calculation.  

3.2.6 Extensional approach to similarity  

Based on parcel level statistics, the similarity between LULC categories is 

calculated via an extensional approach – estimating similarity of concepts by 

comparing their instances. From an ontological point of view, all “valid” scientific 

concepts must have instances; otherwise it is worthless in terms of scientific research, 

since scientific research is meant to find rules (Smith 2004). Instances, whose 

commonality is reflected in the concept, provide important information in semantic 

integration. The semantic integration methods using instance level information are 

termed extensional methods, in contrast to the intensional methods that concerned 

with only concept-level (i.e. concept definitions) and/or schema-level (i.e. hierarchy 

in taxonomy) information. In this study, each LULC category (also a concept) was 

instantiated by individual land parcels, therefore instance level (parcel level) 

information and an extensional approach is applicable to the similarity measurement 

of LULC categories.   

Extensional similarity is measured in matching source LULC classification 

system to the target. This matching is one-way matching, but two-way matching can 

be achieved by simply switching the source and the target. However, it is common 

that LULC classification systems to be compared are not on the same level, which 
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means two way matching is not always reasonable. For instance, subcategories such 

as reservoir, ocean, natural lake, waterway are easily matched to its parent category 

water. However, it is not reasonable to match water to any one of its subcategories. In 

this study, DE LULC and MD LULC are approximately on the same level, and two 

way matching is possible.  

3.2.7 Use of SVM classifier  

In order to match DE LULC to MD LULC, if the algorithm can assign a DE 

LULC category to a parcel in MD LULC map, which among all the DE LULC 

categories has the most similar statistics to the MD parcel, a parcel-level match from 

the MD parcel to a DE LULC category is established. As a MD LULC parcel belongs 

to a MD LULC category, when it is matched to a DE LULC category by algorithm, 

this parcel-level match contributes to the match between the two categories. 

Quantitatively, the number of parcel-level matches indicates the strength of the 

category match, that is, the similarity of the two categories. Now the similarity 

measurement hinges on finding the assignment that maximizes the similarity (or 

minimizes the distance) between every DE LULC parcel and MD LULC categories in 

a high dimensional vector space. The problem becomes a typical supervised 

classification problem: a classifier can be trained from categorical parcel level 

statistics in MD LULC, and applied to DE LULC parcels.  

Among all the classifiers available, Support Vector Machine (SVM) classifier 

(Cortes and Vapnik 1995, Huang et al. 2002) is selected, because of its superiority in 

classifying high dimensional dataset. The SVM implementation provided by LibSVM 

package (Fan et al. 2005) embedded in Weka software (Hall et al. 2009) is used in the 
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algorithm. Thanks to its unique max-margin mechanism, SVM classifier has an 

extraordinary tolerance of errors in the training data (Song 2010), but with a side 

effect of sensitivity to disproportional training data. This side effect and its impact on 

integration will be discussed in section 3.3.5.   

3.2.8 Refining SVM inputs 

Before parcel level statistics can be used in a SVM classifier, an examination of 

its separability among all LULC categories would be essential, required by the 

Principle of Differentiation. A 10-fold cross-validation is carried out using SVM 

classifier on all parcel level statistics of MD and DE respectively, and the percentage 

of correctly classified parcels is a little lower than 50% in both MD and DE cross-

validations. As training the SVM classifier should use representative parcels, the 

correctly classified parcels in cross-validation follow the patterns of their categories 

closely, and become the candidate training data set.  

The low percentage of correctly classified parcels is because of two possible 

reasons: data quality flaws and varied parcels of same LULC category. Either reason 

may cause outliers - parcels scattered from the center of its category in the spectral 

space, which will confuse the boundary between categories, and then lead to 

mismatches in the integration. By filtering out outlier (scattered) parcels, the rest will 

be more cohesive and representative for their category. It is worth noticing that out 

task here is not to find all representative parcels, but to guarantee the training set is 

representative. This means outliers must be removed from candidate training set (if 

there are any), but false removal of several representative parcels is not a main 

concern.   
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The method of finding scattered parcels is studied in multivariate outlier 

detection (Rousseeuw and Zomeren 1990), and an implementation in R written by 

Professor Rand Wilcox (https://r-forge.r-project.org/projects/wrs/) is available. 

Rousseeuw and Zomeren’s method picks outliers based on the Minimum Volume 

Ellipsoid (MVE) estimator, which is superior to classic Mahalanobis distance in its 

robustness. Not like Mahalanobis distance, MVE estimator is not easily biased by a 

small cluster of outliers. 

By removing outliers from the parcels that are correctly classified in cross-

validation, we have the representative parcels for each category that are ready to be 

used in SVM classifier for training purposes. In a new round of cross-validation runs 

on this training set, the percentage of correctly classified rises to more than 95% in 

both MD and DE training datasets.  

3.3 Results and discussion  

The two way matching results are showed in Table 3.2 (a) DE LULC to MD 

LULC and (b) MD LULC to DE LULC. In both tables, categories are denoted by 

codes introduced in Appendix I. The columns from left to right mean 1) DE (a), MD 

(b) LULC categories, 2) match(es) in MD (a) or DE (b) LULC by human evaluators, 

3) conforming matches, and 4) non-conforming matches. Here conforming matches 

are the algorithm matches that conform to human evaluations, while non-conforming 

matches are those that do not conform to human evaluations. The number in the 

parentheses after each algorithm result (in column 3 and 4) is the similarity of that 

match, calculated as the ratio of the number of parcels in this match to the number of 

all parcels in the source category. For example, the match Warehs to Indstrl (0.545) in 
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Table 3.1 (a), means 54.5% of all parcels of DE LULC category Warehouse (Warehs) 

are matched to MD LULC Industrial (Indstrl) category, and it suggests a similarity of 

0.545 between the two categories.  

3.3.1 Human evaluation 

Human evaluation gives matching categories for each LULC category, rather 

than the similarity. The evaluation was done by graduate students of the Department 

of Geography, University of Maryland College Park. Five evaluators are asked to find 

a matching category or categories from MD classification system for each DE LULC 

category, and the other way around. Evaluators were informed that ‘no match’ is 

acceptable in their results.  The LULC data, however, is not given to evaluators. 

Human evaluators make decisions only based on category name, description, and a 

priori knowledge. Among 5 interpretation results, for each category, if no less than 2 

votes from 5 evaluators agree on one match, the match is considered to be human 

interpretation result.  
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Table 3.2 Results of Matching DE LULC to MD LULC (a), and MD LULC to 

DE LULC (b).  

a 

MATCHED MD LULC  

ALGORITHM 
DE 
LULC HUMAN 

CONFORMING NON-CONFORMING 

SinFam LowRes,MedRes 
LowRes(0.198) 
MedRes(0.183)  

Pasture(0.116) OpenUrb(0.101)  

MultFam MedRes,HighRes HighRes(0.484)  Comm(0.315)  

MblHm HighRes HighRes(0.157)  
LowRes(0.129) Comm(0.106) 

OpenUrb(0.106) MedRes(0.219)  

Retail Comm Comm(0.372)  HighRes(0.108) Indstrl(0.412)  

VclAct 
Indstrl,Comm 

 

Indstrl(0.625)  

Comm(0.25) 
 

JunkYrd Indstrl,Comm 
Indstrl(0.3) 

Comm(0.3)   

HighRes(0.1) MedRes(0.133)  

 

Warehs Indstrl,Comm 
Indstrl(0.545) 

Comm(0.272)   
 

OthrCom Comm Comm(0.315)  
Brush(0.105) LowRes(0.105)  

Indstrl(0.315)  

Indstrl Indstrl Indstrl(0.716)  Comm(0.221)  

Utility OpenUrb,Indstrl Indstrl(0.111)  Pasture(0.154) Comm(0.259)  

MixUrb Comm,OpenUrb Comm(0.372)  Indstrl(0.177) Inst(0.124)  

OthrUrb Comm  Pasture(0.187) Crop(0.119)  

Inst Inst Inst(0.161)  
Indstrl(0.318) Comm(0.258)  

HighRes(0.120)  

Recreat OpenUrb OpenUrb(0.115)  
Inst(0.107) Comm(0.155)  

AgrBldg(0.163) Indstrl(0.119)  

Crop Crop Crop(0.502)  FeedOp(0.121) Pasture(0.151)  

Pasture Pasture Pasture(0.314)  Crop(0.314) AgrBldg(0.169)  

IdleFld OpenUrb,Brush  LowRes(0.209) Pasture(0.321)  

OrchHrt OrchHrt  
LowRes(0.111) Crop(0.222)  

Pasture(0.177) DeciF(0.177)  

Feedlot FeedOp FeedOp(0.428)  Indstrl(0.381)  

Frmstd AgrBldg AgrBldg(0.168)  
Pasture(0.122) FeedOp(0.186)  

Indstrl(0.122)  



 

 77 

 

MATCHED MD LULC  

ALGORITHM 
DE 
LULC HUMAN 

CONFORMING NON-CONFORMING 

OthrAgr Crop,AgrBldg Crop(0.105)  
Pasture(0.105) Indstrl(0.263)  

FeedOp(0.473)  

HerbRng Pasture,Brush Pasture(0.281)   

ShrbRng Brush,Pasture Brush(0.218)  LowRes(0.231) DeciF(0.258)  

MixRng Brush,Pasture Brush(0.144)  
DeciF(0.152) LowRes(0.289)  

MedRes(0.115)  

DecFrst DeciF DeciF(0.608)  Brush(0.102) LowRes(0.133)  

EvrgrnF EvrgrnF EvrgrnF(0.729)   

MixFrst MxFrst MxFrst(0.242)  
Brush(0.142) EvrgrnF(0.107)  

DeciF(0.288) LowRes(0.103)  

ClrCut BrGrnd,Brush Brush(0.147)  
FeedOp(0.107) Pasture(0.203)  

Crop(0.350)  

Watrway Water Water(0.869)   

NtrlLk Water Water(0.739)  Wetland(0.173)  

Rsrvr Water Water(0.789)   

BayCove Water Water(0.934)   

Wetland Wetland Wetland(0.123)  
Brush(0.157) DeciF(0.317)  

MxFrst(0.159)  

Beach Beach Beach(0.714)  Indstrl(0.285)  

InldSnd BrGrnd  Indstrl(0.6) Beach(0.28)  

Extr Extr  Indstrl(0.606) Comm(0.181)  

Trans Crop,Brush,BrGrnd  FeedOp(0.131) Indstrl(0.356)  

b 

MATCHED DE LULC 

ALGORITHM 
MD 
LULC HUMAN 

CONFORMING NON-CONFORMING 

LowRes SinFam SinFam(0.382)  MixRng(0.150)  

MedRes MultFam,SinFam SinFam(0.374)  MixRng(0.108)  

HighRes MultFam,MblHm 
MultFam(0.313)  

MblHm(0.120) 
SinFam(0.177)  

Comm 
Retail,OthrCom, 

MixUrb, 

MixUrb(0.157) 
Retail(0.174)  

 

Indstrl 
Indstrl,JunkYrd, 

Warehs 
Indstrl(0.276)  Retail(0.160)  

Inst Inst  SinFam(0.134) MixUrb(0.111)  
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MATCHED DE LULC 

ALGORITHM 
MD 
LULC HUMAN 

CONFORMING NON-CONFORMING 

Extr Extr Extr(0.215)  SinFam(0.169)  

OpenUrb Recreat Recreat(0.146)  SinFam(0.213)  

Crop Crop,OthrAgr Crop(0.414)  SinFam(0.131)  

Pasture Pasture Pasture(0.121)  SinFam(0.154) Crop(0.181)  

OrchHrt OrchHrt OrchHrt(0.109)  
Crop(0.140) Trans(0.171)  

Pasture(0.125) SinFam(0.140)  

FeedOp Feedlot Feedlot(0.297)  Crop(0.133) Frmstd(0.126)  

AgrBldg Frmstd Frmstd(0.103)  
Crop(0.162) Feedlot(0.159) 

Pasture(0.115)  

DeciF DecFrst DecFrst(0.204)  
MixFrst(0.152) ShrbRng(0.162)  

MixRng(0.179)  

EvrgrnF EvrgrnF EvrgrnF(0.423)  ShrbRng(0.113) MixFrst(0.136)  

MxFrst MixFrst MixFrst(0.305)  ShrbRng(0.165) MixRng(0.127)  

Brush 

ShrbRng,MixRng, 

IdleFld,ClrCut, 

HerbRng,Trans 

ShrbRng(0.202)  EvrgrnF(0.159)  

Water 
Watrway,Rsrvr, 

NtrlLk,BayCove 

Rsrvr(0.330)  

BayCove(0.25)  
 

Wetland Wetland  
MixRng(0.228) Watrway(0.112)  

Rsrvr(0.110)  

Beach Beach Beach(0.2)  
Retail(0.2) BayCove(0.2)  

InldSnd(0.2) Indstrl(0.2)  

BrGrnd InldSnd,VclAct  Pasture(0.101) MixRng(0.101)  
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3.3.2 Evaluation Metrics 

Algorithm matches with the similarity less than a threshold of 0.1 are considered 

to be noises and discarded. Here the threshold has an impact on the matching results. 

A higher threshold truncates more matches, most of which are non-conforming 

matches as they have lower similarities. A lower threshold, on the contrary, allows 

more matches in the table, and returns a more complete matching result. To compare 

the algorithm matches with human matches under a changing threshold, we introduce 

a modified precision-recall metric.  

Precision-recall evaluation metric is widely used in information retrieval. It is a 

two-fold metric: the precision is a measure of exactness or fidelity, whereas the recall 

is a measure of completeness. In the matching of LULC classification systems, the 

precision follows its original definition as the fraction of conforming matches among 

all algorithm matches, but recall is a little different. By original definition, recall is 

the fraction of conforming matches among all human matches. However, the problem 

is multiple human matches for a category are in an alternative relationship, which 

means either one (or more than one) of the matches are correct, and the matches are 

not in an exclusive relationship. For example, according to human evaluation, the 

matches of DE LULC category MultFam should be MedRes or HighRes in MD 

LULC, which suggests DE LULC category Multiple Family Residential (MultFam) 

can either match to Medium Density Residential (MedRes) or to High Density 

Residential (HighRes). It does not specify Multiple Family Residential should match 

to one or both of the two. Instead, all three scenarios of matching (MedRes only, 

HighRes only, and both) are acceptable. Hence, the original definition of recall is not 
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applicable as the number of human matches is not determinative. We modify the 

original definition of recall to be dividing the number of categories with conforming 

match(es) by the number of categories with human match(es), and call it conformance 

rate. Instead of the original definition of recall, the modified recall or the 

conformance rate metric is used in this study to measure how complete the algorithm 

compares to human evaluations.  

A single measure named F measure will trade off precision versus conformance 

rate. It is defined as the harmonic mean of conformance rate and precision 

CP

PC
F

+
=

2
 

where P is the precision and C is the conformance rate (Manning et al. 2008).  

As the threshold increases from 0 to 1 at the interval of 0.01, 100 pairs of 

conformance rate and precision are calculated at each threshold, among which the 

general trend would be decreasing in conformance rate and increasing in precision, 

because increasing threshold leads to more exact but less complete integration results. 

Based on these 100 pairs of conformance rate and precision, a precision-conformance 

curve will be plotted using the conformance rate as an independent variable on X axis, 

and the precision as a dependent variable on Y axis. Examining the entire curve is 

informative yet complicated. The classic simplification is the 11-point interpolated 

average precision (Manning et. al. 2009), which measures the interpolated precision 

at the 11 recall levels of 0.0, 0.1, 0.2, . . . , 1.0.  
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3.3.3 Conformance of Human Evaluations 

Before the evaluation of the algorithm, it is necessary to examine to what extent 

human evaluators agree with each other, because this will provide an upper limit of 

algorithm’s performance.  

Matches reported by each evaluator are compared with the summary evaluation 

(matches upon which no less than two evaluators agree), and the F measure of this 

comparison is calculated.  When matching MD LULC to DE LULC, the average 

conformance rate is 0.98, the average precision is 0.82, and the average F measure is 

0.89.  If we choose the least agreed evaluation, the conformance rate is 0.91, the 

precision is 0.66, and the F measure is 0.77.  When matching DE LULC to MD 

LULC, the average conformance rate, precision, and F measure is 0.87, 0.94, and 

0.90, respectively.  The least agreed evaluation has a conformance rate of 0.72 and 

precision of 1.0, while its F measure is 0.84.  

In the results, the average of conformance rate and precision is fairly high, which 

suggests evaluators can retrieve similar matches and agree with each other well in 

most of cases. But the relatively low F measure from the least agreed evaluation 

suggests matching LULC classifications can be challenging even for experts.  This 

the need to improve the  training interpreters.  

3.3.4 Performance Measurement  

An automated lexical-semantics-based integration method applied to geospatial 

data portals (Zhou and Wei 2008) is applied to the MD and DE LULC data set, and 

the integration results are presented for comparison purpose. This work measures 
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semantic similarity of two LULC categories by comparing “semantic factors” in the 

textual descriptions of categories in a feature-based model, where the “semantic 

factors” are meaningful keywords extracted from category descriptions excluding 

stop words and negated words.  

In Figure 3.4, the precision-conformance curve is plotted using 11-point 

interpolated precisions. The method introduced in this chapter has a better precision 

at all 11 conformance rates in both DE to MD and MD to DE experiments. When 

matching DE LULC to MD LULC, feature based model has the average of the 11 

precisions of 0.34 and F measure of 0.16.  Using our remote sensing method, the 

average precision increased to 0.66 and the F measure is 0.50. When matching MD to 

DE, our remote sensing based method reaches an average precision of 0.61, and F 

measure of 0.48, while feature-based model has an average precision of 0.35 and F 

measure of 0.17. As remote sensing is the observation on physical LULC status and 

the human evaluation is only based on textual definitions, the conforming matches 

serve as the bridge between observation and semantics. The better performance over 

previous lexical semantic methods suggests this proposed approach’s feasibility in 

integrating LULC classification systems. However, comparing to F measure (about 

0.90) of matching different human evaluations, remote sensing method is still limited. 

The next section will look into non-conforming matches and discuss the causes 

behind them.  
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Figure 3.4 Precision-conformance curve of Matching DE LULC to MD LULC 

(a), and MD LULC to DE LULC (b). RS stands for remote sensing, means the 

method introduced in this chapter. TXT stands for textual method, means the lexical 

semantic method in (Zhou and Wei 2008).  
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3.3.5 Discussion on non-Conforming matches 

Inspired by Resnik’s work on semantic similarity measurement in taxonomy 

(Resnik 1999), the degree of the difference between human and algorithm matches 

can be measured by the level of their minimal common upper category. The more 

semantically heterogeneous the non-conforming match is, the lower level it is 

measured. For example, DE LULC category Mobile Home Park is matched to MD 

LULC category High Density Residential by human and Medium Density Residential 

by algorithm. This difference is quantified by the level of the minimal common upper 

category of High Density Residential and Medium Density Residential, which is 

Residential on level 2. 

Using this measurement, the average level of all non-conforming matches in the 

two way matching is close to 0.8, which means most of the non-conformance happens 

between level 2 categories. Among all non-conforming matches, the category of 

Wetland in MD LULC and DE LULC is the most semantically heterogeneous. 

Human evaluators easily achieved consent on the match of Wetland in MD LULC to 

Wetland in DE LULC based on their same names and similar descriptions, but many 

parcel level matches found by algorithm are at level-0 non-conformance: Wetland of 

DE LULC are similar to Deciduous Forest and Brush of MD LULC, while Wetland 

MD are matched to Mixed Rangeland and water body in DE. This heterogeneity is 

discussed in the following section addressing the reasons of non-conformance. 

It is worth mentioning that despite the above quantitative measure of the 

semantic heterogeneity, the correspondence between categories in different areas will 

have differential impacts depending on the applications. For example, in a LULC 
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classification used by urban planners (e.g. MD LULC), matching open urban land to 

pasture would be at highest level 0 heterogeneity, but in a regional runoff model, this 

mismatch is mostly acceptable. Therefore, the evaluation of semantic heterogeneity 

should also consider the application. But as we cannot predict the future application 

of integrated LULC classification, we will just stick to the original application of the 

source LULC classification, based on which aforementioned quantitative measure is 

developed. 

In an extensional approach, the causes of mismatch or non-conformance are 

found in individual non-conforming parcels. Unfortunately, it is impractical to go 

through all non-conforming parcels, and find out the reason of its non-conformance. 

Instead, 10% of non-conforming parcels are selected on a stratified random sampling 

basis, and examined on original Landsat imagery as well as high resolution remote 

sensing imagery provided by ESRI World Imagery. The stratified sampling makes a 

random 10% sampling within the parcels of each non-conforming match, and it 

ensures every non-conforming match is studied. By examining the Landsat image and 

high resolution image on selected parcels, five main causes leading to non-

conformance are separated. They are 1) conceptual ambiguity, 2) LULC data quality, 

3) LULC change, 4) limitation of remote sensing, and 5) procedure error. Among 

these five causes, the conceptual ambiguity and the LULC data quality is controlled 

by the producer of the LULC map. Arguably, producer should update the LULC map 

according to the current LULC change, but it is not always feasible in reality because 

LULC change may still be happening at the time of LULC mapping. The limitation of 

remote sensing and the procedure error are on the user side. The limitation of remote 
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sensing leads non-conforming matches because of insufficient discriminating power 

of the Landsat or remote sensing in general. The procedure error is errors brought by 

our matching algorithm.  

Conceptual ambiguity 

As pointed out in the assessment of MD and DE LULC classification systems 

(section 3.3.2), there are some conceptual ambiguities in the production of the LULC 

classification systems and maps, and these conceptual ambiguities lead to the latent 

semantic heterogeneities (both confounding conflicts and naming conflicts) that are 

embodied by the non-conforming matches. The only way to discover these non-

conforming matches and underlying semantic heterogeneities would be using remote 

sensing. This is the goal of our research in this chapter, and makes our remote-

sensing-based method indispensable.  

In section 3.2.2, we found out that the use of mixed and “catch-all” categories is 

inevitable to reflect the complexity of LULC in reality and to keep the inner logic of 

classification systems. For example, Mixed Forest is used to categorize forest lands 

with intermixture of evergreen and deciduous forest species, and Other Urban and 

Built-up Land functions as the safe net to catch all urban land parcels belong to none 

of the pre-listed subcategories. However, allowing intermixture within a category is 

against the principle of homogeneity and will increase the possibility of non-

conformance. As a result, for a mixed category, we are not surprised to see the 

individual components of the intermixture are matched together. For example, Mixed 

Forest DE is matched to Evergreen Forest MD and Deciduous Forest MD; Mixed 

Urban and Built-up Land DE is matched to Commercial MD, Industrial MD, and 
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Institutional MD. Although considered non-conforming, these matches are helpful to 

understand the constituents of the mixed and “catch-all” categories in comparison.  

The conceptual ambiguity can happen in under-defined LULC categories, which 

will ultimately cause non-conforming matches. When matching DE LULC to MD 

LULC, the foremost noticeable under-defined category is the level 1 category 

Wetland. As a notoriously complicated LULC type, wetland parcels can be 

dominated by woody vegetation (forested wetland), or dominated by wetland 

herbaceous vegetation or non-vegetated at all. Obviously, they are very different 

LULC subtypes. DE LULC adopts the definition of Wetland in Anderson system 

(Anderson 1976), which defines wetlands as “the areas where the water table is at, 

near, or above the land surface for a significant part of most years.” It is also pointed 

out in Anderson system that “wetlands frequently are associated with topographic 

lows”. MD LULC defines Wetland briefly as “forested or non-forested wetlands, 

including tidal flats, tidal and non-tidal marshes, and upland swamps and wet areas.” 

From their definition, Wetlands in MD and DE both contain forested and non-

forested wetlands and therefore should be considered similar. But are these two 

Wetlands also similar on the ground?   

Algorithm matching result suggests different: Wetland of DE LULC are more 

similar to Deciduous/Mixed Forest and Brush of MD LULC, while Wetland MD are 

matched to Mixed Rangeland and water body in DE. It seems that DE Wetland is 

much woodier than MD Wetland. This finding is confirmed by average seasonable 

NDVI changes of Wetland parcels in MD and DE (Figure 3.1).  
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Now a closer examination on the actual LULC status of individual Wetland 

parcels is needed to provide insight into the semantic heterogeneity of Wetlands in 

DE LULC and MD LULC. Appendix II cell 1 presents a Wetland parcel in DE, 

which matched to Deciduous Forest MD. From the high resolution remotely sensed 

image, it is clear that the parcel is forested and in the middle of a larger Deciduous 

Forest parcel, where the vegetation cover shows no variation crossing the boundary. 

Actually, according to the definition of Forested Wetland in the Anderson system, the 

vegetation cover is not a decisive discriminating characteristic between forested 

wetland and forestland. Instead, wetlands are frequently associated with topographic 

lows and therefore have a “water table at, near, or above the land surface for a 

significant part of most years”, which we wonder could be detected and mapped by 

the use of seasonal imagery. To this end, the temporal NDVI curves of the Wetland 

parcel in Appendix II cell 1 and its adjacent Deciduous Forest parcel should be 

different and separable. But as plotted in Figure 3.5, the two NDVI curves are too 

similar to separate. Furthermore, this is not an isolated case, 32% of all Wetland 

parcels in DE matched to Deciduous Forest MD, 16% to Mixed Forest MD, and 

another 16% to Brush MD. This non-conformance between definition and reality is 

either because not all topographically low forested lands are inundated with water and 

become wetlands, or the inundation below the canopy cannot be seen in remotely 

sensed images.   
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Figure 3.5 Seasonal NDVI of adjacent Wetland and Deciduous Forest parcels 

Whichever the reason on the ground, it is certainly difficult to separate forested 

wetlands from general forestlands in remotely sensed images. Also, forested wetland 

parcels usually have features of the forestland, such as high percentage of canopy 

coverage, which make it legitimate to label them as forest. However, despite the 

practical difficulty and an easy “workaround”, 24.4% of the total parcels in DE 

LULC map are labeled as Wetland, much higher than 9.4% in MD LULC map. Why 

does the DE authority bother to label so many Forested Wetland parcels in their 

LULC map?  

Their motivation is explained in the Anderson classification system used by the 

DE authority: “the wet condition is of much interest to land managers and planning 

groups and is so important as an environmental surrogate and control, such lands are 

classified as Forested Wetland.” In simple words, parcels featuring both Forest and 

Wetland are labeled as Wetland because Wetland is of more environmental 

importance. Here this strategy of labeling parcels featuring multiple LULC types, 
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termed the multiple labeling strategy, will become a cause of non-conformance. In 

MD LULC, Wetlands are not empowered the same priority over Forest Lands as in 

DE LULC. This difference in multiple labeling strategy leads to very much different 

Wetland parcels in reality, and then the confounding conflict in the concept of 

Wetland between MD LULC and DE LULC. Again, this semantic heterogeneity 

cannot be discovered by lexical semantic methods.   

Since most Wetland parcels in DE are too woody to match to MD Wetland, in 

the other way around it is difficult for Wetland MD to find a right match in DE LULC, 

because Wetland parcels in DE are treated as a whole to train the SVM classifier, 

which means only features of the majority (as forested wetland) count. Hence, 

Wetland MD is constrainedly matched to Mixed Rangeland (Appendix II cell 2) and 

Water (cell 3) in DE LULC based on the ratio of vegetation and water in the parcel. 

This result does not necessarily indicate a high similarity between Wetland MD or 

Mixed Rangeland or Water DE. Instead, it is only because, on the parcel level, the 

SVM classifier always gives out matching even the similarity is low.  

This mechanism of the SVM classifier leads to another question, namely how to 

identify LULC types that simply do not match? Let us consider a LULC category in 

one area that has no match to any category in another. If it has heterogeneous parcels, 

although SVM has to match each of its parcel to a category, then parcels will be 

dispersed to multiple different categories, while each match has only a few parcels 

and therefore a low similarity, and hence can be easily filtered using a slightly higher 

threshold. But if the category is homogeneous, most its parcels will be forced to 

match to one or two categories. In this case, these inappropriate matches, with 
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potentially decent similarity values, are highly likely to be noisy and decrease the 

conformance rate and precision. To fix this problem, we could use classifiers that 

actually give the similarity when matching a parcel to each target category, and stop 

matching if none of the similarity values is high enough. A potential candidate of this 

classifier is maximum likelihood classifier, recommended in Song (2010). Clearly 

more work is needed to establish robust procedures to identify non-conforming 

classes between regions. 

Multiple labeling also explains several non-conforming matches involving both 

natural and urban LULC types.  In some cases, human activities change the land 

cover so much that the features of the original land cover type are permanently 

removed (e.g. commercial or industrial). But in other cases, features of the original 

land cover may survive some extent of human employment. In these cases, although 

land parcel has the features of both urban and its original natural LULC; it is always 

labeled as the urban LULC category. For example, many Single Family Residential 

land parcels in MD developed on rangelands still keep a feature of rangelands. In the 

parcel shown in Appendix II 4, the development in the parcel happens along the 

parcel boundary, and most of the rangeland area remains intact. Algorithm matches 

such parcels to Mixed Rangeland in DE LULC judging its primary land cover status, 

which is considered to be a mismatch by human evaluation. Multiple labeling is also 

found in non-conforming matches such as Farmstead DE to Pasture MD (Appendix II 

5), and Agricultural Building MD to Pasture DE (Appendix II 6), because agricultural 

structures are often built on and surrounded by agricultural lands, including croplands 

or pasture lands. 
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For similar LULC categories, deciding the semantic relationship (e.g. which one 

is a broader concept) between them can be difficult through the interpretation of 

textual descriptions, because it is hard to quantify semantics and convert them into 

comparable attributes (section 3.1). Approaching the problem differently, the 

extensional method employed in two way matching provides estimation on the 

semantic relationship via the set inclusion and intersection between some LULC 

categories. For example, Table 3.3, extracted from Table 3.2, presents the two-way 

matching for Deciduous Forest and Evergreen Forest. When matching is from DE 

LULC to MD LULC, Evergreen Forest DE matched to Evergreen Forest MD entirely 

(except less similar (<10%) matches). When matching is from MD LULC to DE 

LULC, only part of Evergreen Forest MD matched to Evergreen Forest DE, while the 

rest matched to Shrub Rangeland DE or Mixed Forest DE (Figure 3.6). Combining 

these two pieces of information, we can make estimation that Evergreen Forest DE is 

subsumed by Evergreen Forest MD – it has a narrower conceptual scope. The 

categories of Deciduous Forest are a little complicated, as neither the DE category nor 

the MD category is clearly subsumed by the other, but instead, they are overlapped 

(Figure 3.7). But still, as much higher fraction of Deciduous Forest DE parcels are 

matched to Deciduous Forest MD than the other way around, Deciduous Forest in 

MD LULC should have a broader scope. 
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Table 3.3 Results of Matching Deciduous Forest and Evergreen Forest 

a 

MATCHED MD LULC 

ALGORITHM 

DE 

LULC 
HUMAN 

CONFORMING NON-CONFORMING 

DecFrst DeciF DeciF(0.608)  Brush(0.102) LowRes(0.133)  

EvrgrnF EvrgrnF EvrgrnF(0.729)    

b 

MATCHED DE LULC 

ALGORITHM 

MD 

LULC 
HUMAN 

CONFORMING NON-CONFORMING 

DeciF DecFrst DecFrst(0.204)  MixFrst(0.152) 

ShrbRng(0.162)  

MixRng(0.179)  

EvrgrnF EvrgrnF EvrgrnF(0.423)  ShrbRng(0.113) 

MixFrst(0.136)  

 

 

Figure 3.6 Set Inclusion of Evergreen Forest  
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Figure 3.7 Set Intersection of Deciduous Forest  

Data Quality  

After separating conceptual ambiguities, the next cause of non-conforming 

matches relates to the data quality of LULC maps. Ideally, a concept is represented by 

the commonality of all its instances, and every instance exemplifies the intension of 

the concept. However, in a real world, errors are pervasive: they will happen on the 

conceptual level as conceptual ambiguities, and they will happen in instances as data 

errors and will undermine the representative power of instances as an important 

means to understand the concept. If we consider a LULC category as a concept, then 

a land parcel is an instance of this concept, and therefore each parcel is expected to 

comply with the categorical definition. However, as errors in the delineation and 

labeling of land parcels are inevitable, non-conforming matches resulted from these 

errors are also inevitable.  

A common data quality issue reflected in LULC mapping roots in mistakes 

during the delineation process. Mistakes in locating the boundary of a parcel can 

change its LULC status and lead to non-conforming matches. For example, as shown 

in Appendix II cell 7, the water body that naturally located in the center of a wetland 

parcel is not excluded during delineation. These wetland parcels in MD then have a 
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strong feature of water in their LULC status, and are matched to Waterway or 

Reservoir of DE LULC.  

In some cases, when discerning the boundary of land parcels, producers of the 

LULC map did not exclude artificial structures from land parcels that by definition 

should be “structure-free” and caused mismatches. For example, a Pasture parcel in 

Maryland is shown in Appendix II cell 8. This parcel is labeled as Pasture, which is 

the primary LULC type of the parcel. However, several buildings are included in the 

parcel, which make it more similar to Single Family Dwellings DE. This parcel may 

also represent an omission of the multiple labeling strategy, under which it should be 

labeled by the use of the building rather than the pasture land occupying the main part 

of it. There is a procedure error rooted in the SVM classifier that should also be held 

accountable for this non-conforming match, and we will discuss it in the following 

paragraphs on procedure errors.  

A common type of data errors in the parcel boundary delineation is caused by 

map displacement. Appendix II cell 9 and 10 shows a displaced Deciduous Forest 

parcel in MD matched to Mixed Rangeland DE, because part of the parcel is in the 

neighboring rangeland area. Eliminating mixed/transitional pixels on parcel 

boundaries always helps algorithm tolerate errors due to the displacement. But for a 

rather displaced small parcel, such as the one in Appendix II cell 10, the elimination 

does not work correctly. Pixels eliminated on the edge are not the actual transitional 

pixels, while the actual transitional pixels are kept and lead to non-conforming 

matches. This displacement is not due to mis-registration (geometric errors should be 

corrected in the preprocessing phase), but attributes to sporadic producer errors. 
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Based on scrutinizing sampling data (10% of all non-conforming parcels), the 

displacement leads to limited number (around 5%) of non-conforming parcels in 

random locations. For all parcels in the map, this percentage should be lower because 

data quality issues happen more frequently on non-conforming parcels than 

conforming parcels.  

LULC Change 

LULC change detection is one of the earliest remote sensing applications. LULC 

change within a land parcel leads to the difference between the actual LULC status 

and its labeled category. This difference can be detected by the algorithm, and leads 

to non-conforming matches. LULC change can happen to any LULC type, but some 

types, such as Transitional, Bare ground, or Clear-cut, are especially vulnerable. For 

example, in Appendix II cell 11, newly grown crops change the LULC status of a 

Clear-cut parcel in DE to cropland. The algorithm detected this change and matched it 

to Cropland MD. This parcel is an example of deforestation and agricultural 

expansion. On the contrary, vegetation growth on unmanaged lands leads to LULC 

change and non-conforming matches such as Bare Ground MD to Mixed Rangeland 

DE (Appendix II cell 12), Brush MD to Evergreen Forest DE (cell 13), Shrub 

Rangeland DE to Deciduous Forest MD (cell 14), and Mixed Rangeland DE to 

Deciduous Forest (cell 15).   

Deforestation and urbanization, another type of widely observed LULC changes, 

are also found in our study area. In Appendix II cell 16, the canopy cover of the 

Mixed Forest parcel greatly decreases due to development, and finally the parcel is 

disqualified from forestland. This parcel is matched to Mixed Rangeland instead.  
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 Limitation of Remote Sensing 

A substantial amount (42% of all non-conforming parcels in matching DE 

LULC to MD LULC, 34% in matching MD LULC to DE LULC) of non-conforming 

parcels are due to the limitation of remote sensing’s ability of deciding the 

relationship between observed land cover status and its actual land use. Land cover 

and land use are different concepts. Land cover emphasizes the physical cover of the 

land (Turner et al. 1995), while land use emphasizes the human employment of land 

resources (Vink 1975, FAO 1995). Remote sensing observes land cover, and human 

activities on lands are interpreted based on this observation.  

In LULC mapping, land cover functions as a “surrogate” (Anderson 1976) 

standing between remote sensing and land use. However, this surrogating relationship 

is not always decisive for all land cover and land use types. Even largely reduced by 

employing time series imagery and textural data, the uncertainty persists in this 

surrogating relationship, and will lead to non-conforming matches in the matching 

result, especially those with high level non-conformance.  

This limitation of remote sensing is especially common when separating urban 

land use categories. After all, remote sensing cannot tell the use of individual 

buildings and structures directly. For example, a DE parcel used for Retail, as shown 

in Appendix II cell 17, is matched to MD LULC category High Density Residential. 

In urban areas, remote sensing, even at the highest spatial resolution, is not capable of 

mapping land uses accurately.   

It is possible this limitation can attribute to the insufficient spatial resolution of 

Landsat ETM+. This argument brings up several preventives that have been taken to 
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alleviate the influence and make up the insufficiency. First, mixed pixels on parcel 

boundaries are removed. Second, image time series is incorporated as an important 

measurement of vegetation phenology. Third, textural information is also 

incorporated, which is especially helpful in separating LULC categories with similar 

color in remote sensing images but different patterns, such as agricultural lands 

(Appendix cell 18) and rangelands (cell 19).  

It seems the limitation of spatial resolution can be easily fixed by incorporating 

higher resolution data. But in practice it is actually much more complicated, because 

high resolution remote sensing has issues in data coverage and availability, and 

sacrifices temporal and spectral abundance.  

Another approach to break this limitation goes beyond remote sensing. For 

example, to separate agricultural lands, such as Orchards/Nurseries/Horticulture, 

Pasture, and Cropland, remote sensing alone is not enough. GIS data about soil types, 

topography, and local climatology need to be incorporated. By combining specific 

GIS data such as building information with remote sensing, Wu et al. (2009) 

successfully separate urban land uses in Austin, Texas. In addition to GIS data, 

lexical semantics also hold the key to solving this problem. For example, while it is 

very difficult to separate Feeding Lots from Farmsteads in remote sensing, the most 

naïve natural language processing (e.g. string comparison) is adequate to tell the 

difference and match them correctly. The following chapter has the discussion on 

combining lexical semantics with remote sensing.  
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Procedure Error  

Procedure error is the algorithm error rooted in the matching process and 

irrelevant to conceptual ambiguity, data quality, LULC change or the limitation of 

remote sensing. As our method is completely automated, there is no room for 

uncertainties and human factors in the whole algorithm, and this makes the algorithm 

deterministic. Now it may seem a little paradoxical to discuss procedure error, 

because if there are procedure errors in the algorithm, why the errors are not fixed in 

the first place? The answer is procedure errors are the inevitable byproduct resulted 

from the core functions of the algorithm. There are two types of procedure errors 

isolated in the algorithm, the first one relates to the side effects of the SVM classifier 

and the second one concerns the removal of pixels on parcel boundaries.   

In the matching results, an interesting finding is the categories of Low Density 

Residential MD and Single Family Dwellings DE seem to be two popular choices in 

matching, even for categories that seem semantically and spectrally different from the 

two. When matching MD LULC to DE LULC, 7 various categories, ranging from 

High Density Residential to Pasture, have more than 10% of all their parcels matched 

to Single Family Dwellings of DE LULC. Also when matching DE LULC to MD 

LULC, 6 various categories, such as Mobile Home Parks and Mixed Forest, matched 

to Low Density Residential MD with a similarity of more than 10%. 

This interesting finding cannot be explained by causes discussed before. It 

concerns the mechanism of support vector machine (SVM) classifier (Cortes and 

Vapnik 1995) used in the algorithm (section 3.3.7). Despite the complicated 

mathematics behind SVM, its main idea is quite straightforward: finding a hyperplane 
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to separate the instances into two classes, which can maximize the margin between 

the two separated classes. In his comprehensive study of various classifiers, Kuan 

(2010) pointed out that SVM classifier generally over-performs other classifiers in 

terms of accuracy and error tolerance. This is the reason why SVM is chosen to be the 

classifier in this study.  

However, this effective design of SVM also leads to an unwanted side-effect. As 

Kuan (2010) pointed out, “when a class is given more training data, the hyperplanes 

around this class will be pushed outwards, eroding other classes (Kuan 2010).” This 

eroded class therefore attracts more matches. The eroded class, Single Family 

Residential, constitutes 12% of all parcels in DE LULC map, and Low Density 

Dwellings constitutes 19% of all parcels in MD. In addition to the quantitative 

advantage, these two categories also have high priority in multiple labeling, which 

means a variety of original land covers, such as Rangeland, Forest, or Wetland, will 

be observed in these categories. The variety of land cover status means a large 

deviation and therefore much erosion in the spectral space, and leads to many non-

conforming matches to Low Density Dwellings MD and Single Family Residential 

DE. Kuan (2010) discussed the influence of class proportions in the training set on 

the classification result, but an almighty optimization strategy is yet to come. 

The second type of procedure errors relates to the removal of pixels on parcel 

boundaries. As discussed before, this removal is necessary and beneficial to 

increasing the accuracy. However, for a parcel in a long and narrow shape (Appendix 

II cell 20), pixels to be removed on the parcel boundary compose a large portion of 

the whole parcel. Therefore, losing a substantial amount of its pixels, the Deciduous 
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Forest parcel (Appendix II cell 21) becomes unidentifiable and matched to Low 

Density Residential incorrectly. An easy fix to this error is to only consider parcels 

large enough and in relatively regular shapes. Further discussion of this remedy can 

be found in chapter 5.    

Table 3.4 Percentage of non-conforming parcels attribute to different causes  

 Conceptual 

Ambiguity 

Data Quality LULC 

Change 

Limitation  

of RS 

Procedure 

Error 

DEtoMD 45.4% 0.1% 4.2% 41.8% 8.5% 

MDtoDE 35.7% 15.1% 10.8% 34.3% 4.1% 

Calculated from 10% sampling of all non-conforming parcels, the percentage of 

parcels attribute to each of the five causes are shown in Table 3.4. In the table, we can 

see Conceptual Ambiguity and Limitation of Remote Sensing are two main causes 

that are responsible for 87.2% of non-conforming parcels in the matching from DE 

LULC to MD LULC, and 70% from MD LULC to DE LULC. DE LULC map is 

better representing the actual LULC status of the time than MD LULC map, because 

only 0.1% non-conforming matches attribute to data quality issues of the DE LULC 

map and 4.2% non-conforming matches are caused by unrecorded LULC changes, 

while these two numbers are 15.1% and 10.8% for MD LULC. Procedure errors are 

responsible for only a few cases of non-conformance in this two-way matching.  

The isolation of different causes of non-conformance is necessary. Conceptual 

ambiguity is on the conceptual level, where the latent semantic heterogeneity occurs 

and goes all the way down to non-conforming matches. Having conceptual 

ambiguities isolated, data quality is the issue that the semantics or the intension of 

concept is not represented by LULC data correctly, due to mistakes in producing 
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maps and/or LULC change. These are the causes of non-conformance on the producer 

side. On the user side, non-conformance is caused by the limitation of remote sensing 

(or particularly Landsat ETM+) and procedure errors.  

After different causes separated, non-conformance on the producer side or the 

user side should be treated differently. On one hand, finding the non-conformance on 

the producer side is the purpose of remote-sensing-based algorithm. Conceptual 

ambiguities reflect the difference between how a LULC concept is defined in text and 

how it is used on the ground, and provide a valuable insight needed in the semantic 

integration of LULC classification systems. Finding issues on data quality and LULC 

change are more helpful to the ultimate goal – geospatial data interoperability. On the 

other hand, non-conformance on user side needs to be eliminated. Further discussion 

on this is in the following chapter 5. 

3.4 Conclusions 

In this chapter, we presented the method of applying remote sensing to the 

integration of LULC classification systems. Remote sensing is a means of observation 

on actual LULC status, and it observes individual parcels. We therefore calculated 

parcel level statistics from spectral and textural data, and imported these statistics of 

parcels from different areas in a SVM classifier as training and testing respectively. 

Then an extensional similarity measurement is adopted to calculate category 

similarity from parcel level matches, and the matching categories are compared with 

human evaluations, which are based on names and descriptions.  
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The matching results showed this remote sensing based approach largely 

improved performance over the previous lexical semantic method (Zhou and Wei 

2008): the average of 11-point precision has improved from 0.34 to 0.66 when 

matching DE LULC to MD LULC, and from 0.35 to 0.61 when matching MD LULC 

to DE LULC.  

More importantly, remote sensing based method discovered and reduced 

semantic heterogeneities between LULC descriptions. Based on discovering 

confounding conflicts, the method estimated the semantic relation between LULC 

categories. Since the method compares LULC categories by their actual LULC status 

via remote sensing rather than potential confusing names, it naturally has the 

capability to reconcile naming conflicts. With semantic heterogeneities discovered 

and reduced, remote sensing here served as the translation between semantic 

heterogeneous LULC classification systems, and hence enabled LULC data 

interoperability, which is the foundation of regional LULC dynamics analysis.  

From examining mismatched parcels on high resolution imagery, five causes 

leading to non-conformance between algorithm and human evaluation are separated. 

They are 1) conceptual ambiguity, 2) LULC data quality, 3) LULC change, 4) 

limitation of remote sensing, and 5) procedure error. Among these five causes, 

conceptual ambiguity, source of semantic heterogeneities, is responsible for the 

majority (45% and 36%) of all non-conforming parcels in the experiments of 

matching DE to MD and MD to DE.  

Conceptual ambiguity, LULC data quality, and LULC change are controlled by 

the producers of the LULC map, and the limitation of remote sensing and the 
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procedure error are on the user side. Producer side and user side non-conformance 

should be separated and treated differently. Discovering producer side non-

conformance (mainly caused by semantic heterogeneities in LULC classifications and 

defects in LULC data) is one important purpose of remote sensing based matching 

algorithm. Reducing the impact of user side non-conformance helps producer side 

non-conformance stand out. The method of reducing user side non-conformance will 

be discussed in chapter 5.  

In this chapter, our method is illustrated by matching MD LULC and DE LULC. 

In the next chapter, we will test the method’s geographical generality by 

incorporating LULC classification system from New Jersey area.  
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Chapter 4: Generality of Integration Based on Remote Sensing  

4.1 Introduction 

In chapter 3, we proposed using remote sensing to overcome semantic 

heterogeneities between different LULC classification systems. The method is 

demonstrated by matching MD LULC and DE LULC, and the matching results 

showed our remote sensing based approach successfully matched semantic 

heterogeneous LULC classification systems used in MD and DE.  

But in order for this remote sensing based matching to be meaningful in LULC 

study, one successful example of integration is not enough. Instead, we need to know 

if the matching method based on remote sensing can be applied to other classification 

systems and how well it will perform. Namely, does it have the geographical 

generality needed in LULC study?   

In terms of methodology, there is not a single step in the algorithm that is 

location specific or related to geographical limitation. Instead, the geographical 

generality of a remote sensing based matching method will depend on the availability 

and applicability of remote sensing data. If remote sensing is able to translate between 

the LULC classification definitions, matching based on remote sensing can be applied 

to LULC information from even remote areas, where lexical semantic methods is 

powerless due to the linguistic barrier. Landsat data, as the data of choice of the 

method in chapter 3, has a global coverage, and it is designed to provide observation 

on Earth surface, especially LULC. Hence, the data availability and applicability 

would not limit the geographic generality of this method.  
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LULC depends on many factors, such as soil type, climate, topography, 

hydrology, et al., and it varies geographically. If the LULC classifications in two 

places are greatly heterogeneous due to one or several of these factors rather than 

mere naming conflicts, we could expect the matching result contain many 

confounding conflicts and hence become less conforming to human evaluations that 

are based on textual descriptions. 

Based on the discussion above, we make a hypothesis that the matching method 

based on remote sensing has the geographical generality and is able to produce 

integration results conforming to human evaluation, if two areas have similar 

geographical factors. In this chapter, we will test this hypothesis by adding a new 

LULC classification system used by the State of New Jersey (NJ LULC) (Figure 4.1, 

Appendix I) to the testing datasets, and compare it with MD LULC and DE LULC. 

As adjacent areas, NJ LULC has similar soil type, climate, hydrology, and 

topography as MD LULC and DE LULC. 

4.2 Study area and data 

In Figure 4.2, we can see the southern New Jersey is covered by the Landsat 

scene path 14 row 33, the same scene used in matching DE LULC and MD LULC. 

Although the matching algorithm is not location specific, it does require the study 

area is covered by same or similar sensors. Choosing this adjacent New Jersey area 

enables the reuse of previous Landsat images and textural data (Table 4.1).  
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Figure 4.1 Taxonomy of NJ LULC classification system 
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The originator of NJ LULC is the New Jersey Department of Environmental 

Protection (NJDEP), Office of Information Resources Management (OIRM), Bureau 

of Geographic Information Systems (BGIS). Using a modified Anderson 

classification system, “the 2002 NJ LULC data was created by comparing the 

1995/97 LULC map from NJDEP's geographical information systems database to 

2002 color infrared (CIR) imagery and delineating areas of change 

(http://www.state.nj.us/dep/gis/digidownload/metadata/lulc02/w01lu02.htm).” 

 

Figure 4.2 Study area: NJ covered by Landsat scene path 14; row 33 
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4.3 Assessment of the NJ LULC classification system 

In the taxonomy presented in Figure 4.1, the categories with meaningful names 

are used in the LULC map, while those denoted only by numeric codes are not used 

in the LULC map but as space holders in the taxonomy. Obviously, these space 

holders represent meaningful LULC concepts. A complete description of all 

categories of NJ LULC, either used in LULC map or just as space holders in the 

taxonomy can be found on the official website of the State of New Jersey: 

http://www.state.nj.us/dep/gis/digidownload/metadata/lulc02/anderson2002.html.  

An obvious difference between NJ LULC and DE or MD LULC is that NJ 

LULC is more finely divided than MD and DE LULC. About half of the NJ LULC 

categories actually used in map are on level 3; level 2 and level 4 categories compose 

the other half. But in MD LULC and DE LULC, most categories in use are on level 2, 

along with several level 3 categories. Wetland, as the level 1 category in both MD 

LULC and DE LULC classification systems, is further divided in NJ LULC.  

As introduced in section 3.3.2, an assessment based on Spiteri’s simplified 

model for facet analysis is performed to locate the potential conceptual ambiguities 

and errors in NJ LULC classification system. Same principles in section 3.3.2 are 

tested on the categories of NJ LULC. 

PRINCIPLES FOR THE IDEA PLANE 

Principles for Choice of Facets 

a) Principle of Differentiation 
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This principle advises that categories in a classification system should be clearly 

separated, and therefore each land parcel belongs to a specific category with total 

certainty. NJ LULC categories (including mixed categories) follow this principle well. 

Theoretically, there will be no difficulties to assign the appropriate category of NJ 

LULC to each parcel, as long as the parcel is described thoroughly. However, since 

NJ LULC is not designed to use with specific remotely sensed data, a parcel, 

especially which belongs to high level categories, might not be fully described by 

Landsat. In these cases, conceptually separable does not mean separable at a specific 

mapping scale, and therefore the confusion between high level categories may be 

observed in the matching result.  

b) Principle of Relevance 

This principle advises that the choice of facets should reflect the purpose of the 

classification. NJ LULC data is originated by environmental protection authorities to 

provide information for regulators, planners, and others interested in LULC changes. 

Extending the Anderson system to level 4, NJ LULC classification system fulfills its 

purpose well. 

c) Principle of Ascertainability 

NJ LULC classification system is built upon definite and ascertained facets. 

d) Principle of Permanence 

It is nearly impossible to find permanent qualities in remote sensing that can be 

used to categorize the parcels that are undergoing LULC change. As usual, the impact 

of LULC change in NJ LULC is inevitable to see in the integration results.    
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e) Principle of Homogeneity and Principle of Mutual Exclusivity 

Homogeneity and mutual exclusivity are both relative to the discriminating 

power. Under a consistent discriminating power, the principles of homogeneity and 

mutual exclusivity require each category to be homogeneous but mutually exclusive 

among each other. In NJ LULC, however, using a parent category and its direct 

subcategories to label the LULC map broke the conceptual homogeneity and mutual 

exclusivity. For example, category Other Urban or Built-up Land (1700), Cemetery 

(1710) and Cemetery on Wetland (1711) are all used in NJ LULC map. This 

confusing categorization broke the homogeneity of category Other Urban or Built-up 

Land and category Cemetery, and destroyed the mutual exclusivity between each two 

of the three. Several more similar confusing categorizations are observed in NJ LULC. 

A logical explanation to this embedded categorization is that a parcel, if assigned to 

any subcategory, will be excluded from the parent category. However, NJ LULC did 

not explicitly define this mutual exclusivity. In matching NJ LULC to MD and DE 

LULC, although logically flawed, this type of confusion will not cause serious non-

conformances because it happens to high level categories while categories in MD and 

DE LULC are mainly on level 2. That is, if a parent category and its subcategories of 

NJ LULC all match to a same category in MD or DE LULC, their inner mutual 

exclusivity is not considered any more.  

f) Principle of Fundamental Categories 

As a modified Anderson classification system, NJ LULC classification system is 

built on the facets related to the nature of LULC analysis.   
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Canon of Exhaustiveness 

To ensure the exhaustiveness, “catch-all” subcategories, such as Other Urban or 

Built-up Land, Other Agriculture, and Undifferentiated Barren Land are included in 

NJ LULC classification systems. Normally, the semantic purity of the “catch-all” 

categories is very much a challenge. In NJ LULC, however, the intension of these 

“catch-all” categories is clearly defined by the well-written category descriptions and 

the fully developed taxonomy. 

Principles for Citation Order of Facets and Foci 

a) Principle of Relevant Succession 

The hierarchy of NJ LULC classification system reflects the natural scopes of 

each level of categories. 

b) Principle of Consistent Succession 

The order of facets used in NJ LULC classification system is not modified after 

established. 

The result of the assessment shows, except some logic flaws resulted form 

overlapping super category and subcategories, NJ LULC in general is well 

categorized and documented. However, as aforementioned, NJ LULC classification 

system is not designed to use with specific remotely sensed data, and conceptually 

separable high level categories may not still be separable in Landsat images, and non-

conformance due to this inseparability will show in matching results. Furthermore, it 

is important to point out that since the matching process involves at least two LULC 

classification systems, reliable integration is not only based on the soundness of 
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classification on the source side (NJ LULC), but also on the target side (MD LULC 

and DE LULC). All confusions in MD and DE LULC definitions (see section 3.3.2) 

will also have an impact on the integration.  

4.4 Matching Results 

As before, the human evaluation gives matching categories for each category 

rather than the similarity value. Human evaluators match LULC classification 

systems in a one-way fashion: from the system with higher level categories to the 

system with lower level categories, in this case, from NJ LULC to MD or DE LULC. 

The matching result is shown in Table 4.1 (a) NJ LULC to MD LULC and (b) 

NJ LULC to DE LULC. In both tables, categories are denoted by codes introduced in 

Appendix I. The columns from left to right mean 1) NJ LULC categories, 2) match(es) 

in MD (a) or DE (b) LULC by human evaluators, 3) conforming matches (algorithm 

and human match same), and 4) non-conforming matches (algorithm and human 

match different). The number in the parentheses after each algorithm result (in 

column 3 and 4) is the similarity of that match, calculated as the ratio of the number 

of parcels in this match to the number of all parcels in the source category.  
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Table 4.1 Results of Matching NJ LULC to MD LULC (a), and NJ LULC to DE 

LULC (b).  

a  

MATCHED MD LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

HighRes HighRes HighRes(0.511)  Indstrl(0.116) Comm(0.186)  

MedRes MedRes MedRes(0.317)  Comm(0.139) HighRes(0.211)  

LowRes LowRes LowRes(0.190)  Brush(0.143) MedRes(0.270)  

RurlRes LowRes LowRes(0.192)  MedRes(0.157) Brush(0.163)  

MixRes 
LowRes MedRes  
HighRes 

 Wetland(0.5) OpenUrb(0.5)  

Comm Comm Comm(0.361)  HighRes(0.296) Indstrl(0.229)  

Milit Inst  Indstrl(0.636) HighRes(0.181)  

Indstrl Indstrl Indstrl(0.577)  HighRes(0.118) Comm(0.211)  

Transp   
Indstrl(0.275) Wetland(0.120)  
HighRes(0.147) Comm(0.178)  

Road   
Comm(0.193) HighRes(0.387)  
Wetland(0.129) MedRes(0.193)  

Bridge   Water(1.0) 

Airport   HighRes(0.189) Indstrl(0.405)  

WtlndWa Brush Wetland 
Brush(0.370) 
Wetland(0.191)  

DeciF(0.131) LowRes(0.101)  

UpldWaD   
OpenUrb(0.117) Inst(0.117)  
Comm(0.176) LowRes(0.117)  
HighRes(0.176)  

UpldWa Brush Brush(0.310)  Pasture(0.132) LowRes(0.152)  

StrmBas   
Indstrl(0.181) HighRes(0.163)  
Comm(0.228)  

ICCmplx Indstrl Comm  HighRes(1.0)  

MixUrb ALL URBAN 
Comm(0.313) 
HighRes(0.509)  

 

OthrUrb BrGrnd OpenUrb  
HighRes(0.166) Indstrl(0.133)  
Comm(0.207)  

Cemet OpenUrb OpenUrb(0.103)  Pasture(0.151) AgrBldg(0.103)  

WtCemet OpenUrb Wetland  AgrBldg(0.5) Pasture(0.5)  

Phrg   
Wetland(0.5) HighRes(0.25) 
Comm(0.25)  

MngWtld Pasture Wetland Pasture(0.222)  Comm(0.111) HighRes(0.126)  

Recreat OpenUrb  
HighRes(0.109) Comm(0.157)  
Indstrl(0.220)  

Athlet Inst Inst(0.107)  
Comm(0.123) Indstrl(0.256)  
FeedOp(0.194)  

Stadium Inst  HighRes(0.263) Indstrl(0.526)  

MngWtRe OpenUrb Wetland OpenUrb(0.148)  
Pasture(0.172) AgrBldg(0.111)  
Inst(0.111)  

CrpPstr Crop Pasture 
Pasture(0.221) 
Crop(0.169)  

FeedOp(0.124)  
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MATCHED MD LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

AgriWet 
Crop Pasture  
Wetland 

Crop(0.137) 
Pasture(0.210)  

FeedOp(0.110) AgrBldg(0.146)  

FmAgrWt Wetland Brush Brush(0.163)  
Pasture(0.236) LowRes(0.221)  
DeciF(0.105)  

OrchHrt OrchHrt  
AgrBldg(0.138) FeedOp(0.112)  
Indstrl(0.129) Crop(0.107)  
Pasture(0.113)  

FeedOp FeedOp  Comm(0.102) Indstrl(0.346)  

OthrAgr 
FeedOp AgrBldg  
GdnCrop 

AgrBldg(0.124) 
FeedOp(0.105)  

Pasture(0.142) Indstrl(0.186)  

DeciF10 DeciF Brush Brush(0.352)  MedRes(0.102) LowRes(0.121)  

DeciF50 DeciF DeciF(0.175)  Brush(0.383) LowRes(0.134)  

ConiF10 EvrgrnF Brush 
EvrgrnF(0.340) 
Brush(0.392)  

 

ConiF50 EvrgrnF EvrgrnF(0.675)  Brush(0.126)  

Plant EvrgrnF EvrgrnF(0.751)   

MxCnF10 
MxFrst EvrgrnF  
Brush 

Brush(0.419) 
EvrgrnF(0.276)  

 

MxCon50 MxFrst EvrgrnF EvrgrnF(0.468)  Brush(0.326)  

MxDec10 
MxFrst DeciF  
Brush 

Brush(0.483)  EvrgrnF(0.170)  

MxDec50 MxFrst DeciF  EvrgrnF(0.206) Brush(0.514)  

OldFld Brush Brush(0.129)  Comm(0.108) Pasture(0.166)  

PhrgOld Brush Brush(0.103)  MedRes(0.103) Wetland(0.517)  

DecBrsh Brush Brush(0.254)  LowRes(0.165) DeciF(0.123)  

ConBrsh Brush Brush(0.273)  EvrgrnF(0.274)  

MxBrush Brush Brush(0.342)  LowRes(0.157)  

BrUplnd BrGrnd  Brush(0.416) EvrgrnF(0.5)  

Stream Water Water(0.125)  
Brush(0.125) EvrgrnF(0.333)  
Wetland(0.375)  

NatLake Water Water(0.289)  Wetland(0.5)  

Rsrvr Water Water(0.594)  Wetland(0.152)  

TdlRiv Water Wetland 
Water(0.728) 
Wetland(0.221)  

 

TdlBay Water Water(0.767)  Wetland(0.125)  

Dredge Water Water(0.294)  HighRes(0.176) Wetland(0.441)  

Ocean Water Water(0.619)  Wetland(0.142)  

SlMrsh Wetland Wetland(0.638)  Water(0.247)  

SlMrshV Wetland Wetland(0.603)  EvrgrnF(0.116)  

FrMrsh Wetland Wetland(0.595)  Water(0.107)  

VegDune Wetland Wetland(0.204)  Comm(0.108) Indstrl(0.397)  

PhrgCWt Wetland Wetland(0.677)   

DecWdWt Wetland DeciF DeciF(0.149)  Brush(0.283) EvrgrnF(0.254)  

ConWdWt Wetland EvrgrnF EvrgrnF(0.831)   

CedarWt EvrgrnF Wetland EvrgrnF(0.905)   

DecBrWt Brush Wetland 
Brush(0.25) 
Wetland(0.219)  

EvrgrnF(0.225)  
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MATCHED MD LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

ConBrWt Brush Wetland 
Wetland(0.114) 
Brush(0.179)  

EvrgrnF(0.507)  

MxBrWtD 
DeciF MxFrst  
Wetland 

Wetland(0.171)  EvrgrnF(0.336) Brush(0.254)  

MxBrWtC 
EvrgrnF MxFrst  
Wetland 

Wetland(0.211) 
EvrgrnF(0.382)  

Brush(0.236)  

HrbWtNT Brush Wetland 
Wetland(0.340) 
Brush(0.151)  

 

PhrgWet Wetland Wetland(0.462)  Brush(0.148) EvrgrnF(0.118)  

MxFrWtD 
DeciF MxFrst  
Wetland 

 EvrgrnF(0.519) Brush(0.249)  

MxFrWtC 
EvrgrnF MxFrst  
Wetland 

EvrgrnF(0.701)  Brush(0.149)  

BrndWet BrGrnd Wetland Wetland(0.5)  EvrgrnF(0.5)  

Beach Beach Beach(0.305)  HighRes(0.186) Indstrl(0.238)  

BrGrnd BrGrnd   

Extr Extr  Beach(0.142) Indstrl(0.630)  

AltLnd   Indstrl(0.278) Comm(0.245)  

DstrbWt Wetland Wetland(0.292)  Indstrl(0.102) Brush(0.116)  

Transi OpenUrb BrGrnd  Indstrl(0.384) Comm(0.103)  

Barren BrGrnd  Indstrl(0.705)  

b 

MATCHED DE LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

HighRes MultFam MblHm 
MultFam(0.433) 
MblHm(0.140)  

Indstrl(0.125)  

MedRes SinFam MblHm 
SinFam(0.227) 
MblHm(0.150)  

MultFam(0.183) MixRng(0.128)  

LowRes SinFam SinFam(0.202)  MixRng(0.228)  

RurlRes SinFam SinFam(0.152)  MixRng(0.189)  

MixRes 
SinFam MultFam 
MblHm 

MblHm(0.5)  Watrway(0.5)  

Comm 
Retail VclAct  
Warehs OthrCom 

Retail(0.159)  MultFam(0.328) Indstrl(0.107)  

Milit Inst  
Retail(0.363) InldSnd(0.181)  
MultFam(0.181)  

Indstrl Indstrl Indstrl(0.316)  Warehs(0.134) Retail(0.131)  

Transp   
Indstrl(0.124) MultFam(0.125)  
Retail(0.110)  

Road   SinFam(0.150) MultFam(0.473)  

Bridge   BayCove(1.0)  

Airport   
MultFam(0.175) Feedlot(0.108)  
Indstrl(0.202)  

WtlndWa Wetland Wetland(0.179)  
MixRng(0.153) ShrbRng(0.280)  
EvrgrnF(0.161)  

UpldWaD   
MixRng(0.117) Feedlot(0.117)  
SinFam(0.176) MblHm(0.117)  
MixUrb(0.176) Frmstd(0.176)  
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MATCHED DE LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

UpldWa ShrbRng MixRng 
MixRng(0.165) 
ShrbRng(0.317)  

 

StrmBas   MultFam(0.157)  

ICCmplx 
INDUSTRIAL &  
COMMERCIAL 

 MultFam(1.0)  

MixUrb MixUrb  MultFam(0.490)  

OthrUrb OthrUrb  MultFam(0.138)  

Cemet OthrUrb OthrUrb(0.124)  Frmstd(0.117) SinFam(0.137)  

WtCemet OthrUrb Wetland  OrchHrt(0.5) Frmstd(0.5)  

Phrg   
Utility(0.25) MultFam(0.5)  
MblHm(0.25)  

MngWtld 
Pasture HerbRng 
Wetland 

HerbRng(0.111) 
Pasture(0.126)  

 

Recreat Recreat Recreat(0.103)   

Athlet Inst  Feedlot(0.164) Recreat(0.107)  

Stadium Inst  
Indstrl(0.263) InldSnd(0.105)  
MultFam(0.157)  

MngWtRe Wetland Recreat Recreat(0.222)  Pasture(0.123)  

CrpPstr Crop Pasture 
Pasture(0.104) 
Crop(0.156)  

 

AgriWet 
Crop Pasture 
Wetland 

Crop(0.191) 
Pasture(0.110)  

 

FmAgrWt 
IdleFld Wetland  
HerbRng ShrbRng  
MixRng 

IdleFld(0.2) 
MixRng(0.173) 
ShrbRng(0.268)  

 

OrchHrt OrchHrt  Crop(0.107) Trans(0.113)  

FeedOp Feedlot Feedlot(0.204)  Frmstd(0.183) Indstrl(0.102)  

OthrAgr 
OrchHrt Feedlot  
OthrAgr 

Feedlot(0.122)  Frmstd(0.134)  

DeciF10 
DecFrst ShrbRng  
MixRng 

ShrbRng(0.196) 
MixRng(0.192)  

Wetland(0.198)  

DeciF50 DecFrst  
Wetland(0.254) MixRng(0.189)  
ShrbRng(0.216)  

ConiF10 
EvrgrnF ShrbRng  
MixRng 

EvrgrnF(0.361) 
ShrbRng(0.152)  

Wetland(0.189)  

ConiF50 EvrgrnF EvrgrnF(0.685)   

Plant EvrgrnF EvrgrnF(0.758)   

MxCnF10 
MixFrst EvrgrnF  
ShrbRng MixRng 

ShrbRng(0.161) 
EvrgrnF(0.233) 
MixRng(0.123)  

Wetland(0.283)  

MxCon50 MixFrst EvrgrnF  EvrgrnF(0.387)  ShrbRng(0.109) Wetland(0.286)  

MxDec10 
MixFrst DecFrst  
ShrbRng MixRng 

ShrbRng(0.183) 
MixRng(0.130)  

Wetland(0.358) EvrgrnF(0.117)  

MxDec50 MixFrst DecFrst  
EvrgrnF(0.132) ShrbRng(0.166)  
Wetland(0.432) MixRng(0.103)  

OldFld 
HerbRng MixRng  
ShrbRng ClrCut 

MixRng(0.104) 
ClrCut(0.113)  

 

PhrgOld HerbRng MixRng MixRng(0.344)  ShrbRng(0.103)  

DecBrsh ShrbRng MixRng 
MixRng(0.195) 
ShrbRng(0.231)  

Wetland(0.114)  

ConBrsh ShrbRng MixRng 
ShrbRng(0.141) 
MixRng(0.130)  

EvrgrnF(0.307)  
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MATCHED DE LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

MxBrush 
HerbRng ShrbRng  
MixRng 

ShrbRng(0.243) 
MixRng(0.180)  

Wetland(0.157)  

BrUplnd ClrCut Trans  EvrgrnF(0.333) Wetland(0.416)  

Stream Watrway  
EvrgrnF(0.25) Wetland(0.333)  
NtrlLk(0.291)  

NatLake NtrlLk NtrlLk(0.421)  MixRng(0.105) Rsrvr(0.131)  

Rsrvr Rsrvr Rsrvr(0.316)  BayCove(0.205) Watrway(0.155)  

TdlRiv BayCove Wetland BayCove(0.533)  Rsrvr(0.133) Watrway(0.236)  

TdlBay BayCove BayCove(0.678)  Watrway(0.178)  

Dredge Rsrvr Watrway Watrway(0.705)  BayCove(0.117)  

Ocean BayCove BayCove(0.761)  Indstrl(0.142)  

SlMrsh Wetland  
EvrgrnF(0.139) Watrway(0.146)  
BayCove(0.538)  

SlMrshV Wetland  
EvrgrnF(0.185) Watrway(0.190)  
MixRng(0.159)  

FrMrsh Wetland  
Watrway(0.227) MixRng(0.161)  
BayCove(0.105)  

VegDune Wetland InldSnd InldSnd(0.277)  Indstrl(0.132) MultFam(0.144)  

PhrgCWt Wetland  
Watrway(0.219) EvrgrnF(0.189)  
MixRng(0.193)  

DecWdWt Wetland DecFrst Wetland(0.426)  MixRng(0.141) EvrgrnF(0.119)  

ConWdWt Wetland EvrgrnF 
EvrgrnF(0.783) 
Wetland(0.103)  

 

CedarWt EvrgrnF Wetland EvrgrnF(0.893)   

DecBrWt 
ShrbRng Wetland  
MixRng 

Wetland(0.215) 
ShrbRng(0.105) 
MixRng(0.171)  

EvrgrnF(0.215)  

ConBrWt 
ShrbRng Wetland  
MixRng 

 EvrgrnF(0.534)  

MxBrWtD 
ShrbRng Wetland  
DecFrst MixRng 

Wetland(0.223) 
ShrbRng(0.109) 
MixRng(0.143)  

EvrgrnF(0.302)  

MxBrWtC 
ShrbRng Wetland  
EvrgrnF MixRng 

Wetland(0.205) 
EvrgrnF(0.370) 
MixRng(0.176)  

 

HrbWtNT Wetland HerbRng  
ShrbRng(0.105) EvrgrnF(0.128)  
MixRng(0.145)  

PhrgWet HerbRng Wetland  
Watrway(0.135) EvrgrnF(0.192)  
ShrbRng(0.130) MixRng(0.205)  

MxFrWtD 
Wetland DecFrst  
MixFrst 

Wetland(0.469)  EvrgrnF(0.301)  

MxFrWtC 
Wetland EvrgrnF  
MixFrst 

Wetland(0.305) 
EvrgrnF(0.539)  

 

BrndWet HerbRng Wetland Wetland(0.5)  NtrlLk(0.5)  

Beach Beach Beach(0.149)  
Watrway(0.126) Indstrl(0.246)  
BayCove(0.104) InldSnd(0.208)  

BrGrnd    

Extr Extr Extr(0.275)  Indstrl(0.153) InldSnd(0.178)  

AltLnd    

DstrbWt Wetland  EvrgrnF(0.147)  

Transi Trans  Feedlot(0.121)  
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MATCHED DE LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

Barren InldSnd InldSnd(0.235)  Extr(0.220) Trans(0.132)  
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Matches in Table 4.1 with the similarity less than a threshold of 0.1 are 

considered to be noises and discarded. We use the precision-conformance metric, 

introduced in section 3.4.2, to evaluate the algorithm to human matches. The 11-point 

interpolated precision (Manning et al. 2009) is presented in Figure 4.3 (a) matching 

NJ LULC to MD LULC, and (b) matching NJ LULC to DE LULC. The algorithm is 

compared with an automated feature based semantic integration method applied to 

geospatial data portals (Zhou and Wei 2008). As shown in Figure 4.3, our integration 

method based on remote sensing has a much better overall performance than previous 

feature-based method in both NJ to MD and NJ to DE experiments. When matching 

NJ LULC to MD LULC, the conformance rate is 78%, and when matching NJ LULC 

to DE LULC, the conformance rate is 70% (both numbers are calculated when 

threshold is set to 0.1). 
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Figure 4.3 Precision-conformance curve of Matching NJ LULC to MD LULC 

(a), and NJ LULC to DE LULC (b). RS stands for our remote sensing based 

integration method. TXT stands for the lexical semantic method in (Zhou and Wei 

2008). 

4.5 Discussion on Non-conformance 

The disparity of non-conforming matches is measured by the level of their 

minimal common upper category. The average disparity level of matching NJ to MD 

is about 0.50 and 0.41 for NJ to DE. A value near 0.5 means that about half of the 

non-conforming matches happen on level 2 and the other half on level 1, given there 

are very few level 3 non-conforming matches. If we look at the level 0 non-

conforming matches, we can find several of them are caused by errors in parcel 

delineation. For example, Beach parcels in NJ are mistakenly matched to Bays and 

Coves of DE LULC (Appendix II 27) due to wrong parcel boundaries. But for most 

of the level 0 non-conforming matches, two main categories are observed. The first 
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category includes mismatches between urban and non-urban categories, which are 

caused by several causes discussed in section 3.3.5. The second main category 

involves the conceptual ambiguities in the definition of Wetland. As before, a random 

10% sampling for each non-conforming match is used to quantify the impact of each 

cause on integration.  

Level 0 non-conforming matches 

55% of level 0 non-conforming matches are categorized as the urban/non-urban 

mismatch, when matching NJ LULC to MD LULC. There are several reasons 

responsible for this type of mismatch, among which multiple labeling (section 3.4.3) 

is commonly observed. For example, Residential (Single Unit, Low Density) of NJ 

LULC is matched to Brush of MD LULC (Appendix II 22), because some residential 

areas are built on bushy areas that still preserve the features of brush land.  

On the other hand, matching non-urban parcels to urban categories is more 

complicated. For example, some parcels of NJ LULC category Mixed 

Deciduous/Coniferous Brush/Shrubland are matched to Low-Density Residential of 

MD LULC. Multiple labeling alone cannot explain this type of match. Although 

Low-density Residential lands can be similar to Mixed Deciduous/Coniferous 

Brush/Shrubland, it is hard to explain why these Mixed Deciduous/Coniferous 

Brush/Shrubland parcels are not matched to conforming categories, such as Brush 

land. Behind this are several reasons. First, as aforementioned, a substantial amount 

of MD Low-density residential parcels are in brush or shrub land, and this explains 

the spectral similarity. Second, if there is a noticeable non-vegetated “hole” (e.g. bare 

soil) in a brush parcel, Landsat data are not able to accurately tell if it is a bare ground 
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or a building top (section 3.4.3, Limitation of Remote Sensing). In these cases, Low-

Density Residential is a more preferable category for these brush parcels. Third, a 

SVM classifier’s side effect introduced in the procedure error part of section 3.4.3 

also contributes to this non-conforming match. When training a SVM classifier, a 

category (such as Low-Density Residential) with large and heterogeneous training 

samples tends to push the hyperplane outward and therefore becomes a more 

preferable category to match. The combination of these three factors leads to the 

match from several non-urban types in NJ to urban categories of MD LULC.  

Other causes of urban/non-urban mismatches include land use change and 

procedure error. Land use change may convert previous non-urban parcels to urban 

areas. For example, Transitional Areas (sites under construction) parcels matched to 

Industrial after the construction is complete (Appendix II 24). A kind of procedure 

errors that relates to the removal of pixels on parcel boundaries is also partially 

responsible for several mismatches involving LULC parcels that usually are long and 

narrow in shape. For example, some Dredged Lagoon parcels in NJ are matched to 

Low-Density Residential of MD LULC (Appendix II 25 and 26). This is a strange 

mismatch, because spectrally they should be way different. We look at the parcels of 

this mismatch and find out that Dredged Lagoon parcels are always too narrow to be 

effectively captured by Landsat ETM+, and mixed pixels are pervasive in the parcels. 

In this case, removing pixels on edges cannot “purify” pixels, but has uncertain 

effects on the matching. An easy fix of this problem is to discard small parcels from 

the matching process, and our next chapter will discuss the results of this experiment.  
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When matching NJ LULC to DE LULC, urban/non-urban non-conforming 

matches constitute a proportion of 27% of all level 0 non-conforming matches. The 

majority (62%) of level 0 non-conforming matches between NJ LULC and DE LULC 

are caused by the semantic heterogeneity between the definitions of the category and 

sub-categories of wetland. NJ LULC has a rather detailed definition of wetland 

(Figure 4.1, Appendix I). On the contrary, as pointed out in section 3.3.2, DE LULC 

has an ambiguous definition of Wetland, which induced many non-conforming 

matches when integrating MD LULC and DE LULC. The integration of MD and DE 

LULC suggests that the majority of Wetland parcels in DE LULC are highly 

vegetated as forestland, and therefore non-forested wetland parcels in MD are 

difficult to find a right match in DE LULC. Similarly, when matching NJ LULC to 

DE LULC, a substantial amount of forestland parcels are matched to Wetland DE 

LULC, while non-forested wetland parcels (e.g. different kinds of marsh lands) in NJ 

are matched to water bodies, because there are no similar categories for them in DE 

LULC. Figure 4.4 shows the seasonal NDVI of a parcel of Mixed Forest (More 

Deciduous with High Crown Closure) in NJ, along with the average seasonal NDVI 

of Deciduous Forest and Wetland in DE. This parcel is matched to Wetland DE by 

algorithm, and its NDVI curve explains this result. A further divided Wetland 

category in DE LULC should help increasing the matching accuracy, but as it is 

currently aggregated to be a level 1 category, all mismatches are considered level 0 

non-conformance. On the other hand, ambiguously aggregated as well, Wetland in 

MD LULC happens to be more similar to the non-forested subcategories than forested 

subcategories of Wetland in NJ LULC. In Figure 4.5, the seasonal NDVI of a parcel 
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of Deciduous Wooded Wetlands NJ is more similar to the NDVI of Evergreen Forest 

than Wetland in MD. It is interesting to observe in the figure that the NDVI curve of 

Deciduous Wooded Wetlands has a dip on September 12th, which is the sign of water 

inundation. 
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Figure 4.4 Seasonal NDVI curves of Mixed Forest (More Deciduous with High 

Crown Closure) NJ LULC, denoted as MixDeci50 NJ, and Deciduous Forest and 

Wetland of DE LULC. 
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Figure 4.5 Seasonal NDVI curves of Deciduous Wooded Wetlands, denoted as 

DecWdWt, and Wetland and Evergreen Forest of MD LULC 

Level 1 non-conforming matches 

By definition, level 1 non-conforming matches are among level 2 subcategories 

under each one of the level 1 categories. They are more commonly caused by the 

limitation of remote sensing in LULC mapping, and anticipated when locating the 

possible semantic heterogeneities in NJ LULC (section 4.3). For example, algorithm 

matching Athletic Fields (Schools) NJ to Recreational DE is disapproved by human 

evaluators because Athletic Fields (Schools) NJ are always associated with schools, 

but Recreational DE by definition must not. Industrial parcels in NJ are matched by 

algorithm to Commercial MD and Retail Sales/Wholesale/Professional Services DE. 

Beaches NJ and Inland Natural Sandy Areas DE are matched by algorithm. 

Identifying and correcting these mismatches is beyond the capability of Landsat or 

remote sensing in general.  
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But for some level 2 categories that are separable using remote sensing, non-

conforming matches actually provided insight into how the category is used in the 

field. For example, in NJ LULC, Deciduous Forest (High Crown Closure) contains 

deciduous stands with crown closures greater than 50%, and the majority of 

deciduous forests in New Jersey should be in this category, said in the category 

definition. Based on this definition, human evaluation undoubtedly matches this 

category to Deciduous Forest in MD and DE LULC. However, our algorithm matches 

38.3% of its parcels to Brush MD, much higher than 17.5% to Deciduous Forest MD, 

and for DE LULC, our algorithm matches 40.5% to Rangeland DE and 25.4% to 

Wetland DE, while less than 10% (lower than predefined threshold) to Deciduous 

Forest DE. High resolution remotely sensed imagery shows that these Deciduous 

Forest (High Crown Closure) parcels do not have 50% canopy coverage as defined 

(Appendix II 28). Figure 4.6 shows the seasonal NDVI of a Deciduous Forest (High 

Crown Closure) parcel and explains why it is more similar to Brush rather than 

Deciduous Forest of MD LULC. 
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Figure 4.6 Seasonal NDVI curves of Deciduous Forest (High Crown Closure) of 

NJ LULC, denoted as DeciF50 NJ, and Brush and Deciduous Forest of MD LULC 

4.6 Conclusion on Generality 

Remote sensing is a widely used data source of LULC mapping because of 

spectral signature: the difference in actual LULC status corresponds to different pixel 

values in the remotely sensed images. Based on the spectral signature, we proposed 

using remote sensing to compare LULC categories via their actual LULC status 

observed by remote sensing sensors. Therefore, the generality of remote-sensing-

based integration of LULC classification systems depends on two factors: the 

availability and applicability of remote sensing data and the comparability of LULC 

categories.  

Experimentally, as showed in Figure 4.3, the matches found by the remote 

sensing based method are much more conforming to human evaluations than those of 
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feature-based method in previous work (Zhou and Wei 2008) in all our experiments 

involving MD LULC, DE LULC, and NJ LULC. This result confirmed the generality 

of using remote sensing to integrate LULC classifications in neighboring regions.  

However, if a method is data driven, it may be limited if data availability and 

quality cannot be assured. Our method depends on remotely sensed data to provide a 

consistent measurement on LULC status, which makes the requirement on data 

generality two-fold. Firstly, the LULC classifications in comparison must be in areas 

covered by same/similar type of remotely sensed data. This is one of the reasons why 

we use Landsat data: it has a global coverage. Secondly, remotely sensed data in use 

must be consistent regarding to the relation between land cover and reflectance values, 

which means if multiple scenes are involved, the effects of the atmosphere, sensor, 

and sun on land surface reflectance must be corrected. Just recently (June 2001), the 

Global Land Cover Facility (GLCF) at the University of Maryland College Park has 

launched the first global surface reflectance dataset based on the Landsat series of 

satellites (http://landcover.org/data/gls_SR/). These global reflectance data are 

important data sources to enable the remote sensing based algorithm to be applied 

globally. In future, it will be very interesting to incorporate these data in our method 

and use them to integrate LULC classifications on continental and global scales.  

To deal with these larger areas, the remote-sensing-based method has the 

potential to serve as a translation between classification systems in distant areas.  The 

use of different languages poses an additional problem. But this linguistic barrier 

could be considered as a special type of semantic heterogeneity, which lexical 

semantic methods (except machine translation), including our information retrieval 
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method, may or may not be able to handle. Remote sensing, however, in this case, 

could provide valuable translation between different languages in a LULC study.  

However, it is very possible that LULC status, either at a continental scale or for 

distant areas around the globe (potentially in different languages), will not be 

comparable due to multiple factors including environmental factors such as climate 

and hydrology, and topography and also due to different land use practices resulting 

in non-comparable land use types.. Consequently these LULC classifications could be 

too heterogeneous to be integrated directly. Therefore, applying our remote sensing 

method at such very broad scales would be difficult to accomplish.  Instead, in the 

future we may need to look for an expansion strategy, such that more comparable 

classifications from neighboring regions should be first compared and integrated: the 

integration will then progressively incorporate more comparable classifications and 

gradually grow to a continental scope.  

For distant areas between which there are no obvious gradations in land use 

types (e.g. between the US and China and Brazil), the application of our remote 

sensing method will be more challenging.  In this case, the direct application of 

remote sensing method can still disclose semantic heterogeneities, mostly in form of 

compounding conflicts, but achieving a highly reliable matching is likely to be 

difficult. To attack this problem more experiments will be needed, and this is one of 

many reasons why the newly launched global surface reflectance data are essential. 
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Chapter 5: Using Large Parcels to Reduce User Side Non-

conformance 

5.1 Introduction  

In chapter 3, we separated five main reasons leading to non-conformance 

between algorithm and human evaluation, and they are 1) conceptual ambiguity, 2) 

LULC data quality, 3) LULC change, 4) limitation of remote sensing, and 5) 

procedure error. Among these five causes, conceptual ambiguity, LULC data quality, 

and LULC change are controlled by the producers of the LULC map, and the 

limitation of remote sensing and the procedure error are on the user side. The 

limitation of remote sensing leads to non-conforming matches because of insufficient 

discriminating power of Landsat or remote sensing in general. The procedure error is 

brought by the matching algorithm itself.  

Producer side and user side non-conformance should be separated and treated 

differently. Discovering producer side non-conformance (mainly caused by semantic 

heterogeneities in LULC classifications and defects in LULC maps) is one of the 

purposes of remote sensing based matching algorithm. Reducing the impact of user 

side non-conformance helps producer side non-conformance stand out.  

On the user side, a main kind of procedure error originates from the excessive 

removal of pixels on parcel boundaries. If a parcel is small and/or in a long and 

narrow shape, pixels to be removed on the boundary compose a large proportion of 

all pixels, and without pixels on boundary the parcel then becomes unidentifiable in 

the matching algorithm because of lack of usable pixels.  
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A solution to this problem is to refine the parcel level statistics to only consider 

large parcels and employ the matching algorithm on this refined statistics. For large 

parcels, the removal of pixels on boundary is no more than eliminating potential 

mixed pixels of different LULC types, and will benefit the accuracy. The other 

important reason to use large parcels is because they are much easier to be accurately 

described by Landsat, which in turn will enhance the discriminating power of Landsat 

data and benefit the accuracy as well.  

In this chapter we will implement the similarity measurement using statistics 

calculated from large parcels in section 5.2, and in section 5.3 we will compare the 

integration results with the integration we got in chapter 3 and 4. Then in section 5.4, 

we will present a method to determine semantic relation between LULC categories 

based on two way matching. The conclusion of this chapter is given in section 5.5. 

5.2 Methodology  

In this research, we define large parcels to be the parcels that are large enough to 

contain 50 or more Landsat ETM+ pixels. In implementation, we adopt the same 

methodology as in chapter 3 but only include large parcels in calculating parcel level 

statistics. Then from the representative and accurately separable parcels (section 3.2.8) 

in the source LULC map, we select large parcels to train a SVM classifier, which is 

later employed to classify all large parcels in the target LULC map to obtain parcel 

level matches. The similarity between LULC categories is calculated via an 

extensional approach – estimating similarity of concepts by counting their parcel 

level matches. Different from previous calculation in chapter 3, this time only parcel 

level matches between large parcels are considered.  
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From the discussion above, we know using large parcels in the matching 

algorithm can successfully reduce the chance of procedure errors. Now the non-

conforming matches are more likely caused by producer side reasons, such as 

conceptual ambiguities or the complicated relation between labeled land use and its 

actual land cover. Moreover, the spatial resolution of Landsat ETM+ images and its 

derived textural data is sufficient for large parcels to be accurately captured, which 

means the data representation of LULC categories and therefore the matching results 

will now reflect the actual land cover status more closely, and this will have a 

contribution in reducing the uncertainty between remote sensing and actual land 

cover status. 

However, a better data representation of land cover does not simplify the 

relationship between land cover and land use, which is occupied by conceptual 

ambiguities, such as the multiple labeling. As Comber et al. (2005) pointed out, 

LULC classification systems are “not determined by the reflectance properties of land 

cover and their inferred relationship with biology alone; rather their specification 

combines policy objectives at regional, national or international levels with the 

individual and institutional objectives of those charged with creating the derived land 

cover map to inform policy.” Comber et al. (2005) then concluded that political 

processes have an influence on LULC classification systems as profound as do 

technical aspects, but its influence has never been disclosed to the data users.  

We therefore should understand the goal of reducing user side non-conformance 

(via better data representation) is not to only achieve a matching result that is more 

conforming to human evaluations, but instead via emphasizing the producer side non-
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conformance, we can also disclose the semantic heterogeneities happened between 

LULC classification systems.  

5.3 Comparison of Results 

The algorithm matching results using large parcels are shown in Table 5.1 a (DE 

LULC to MD LULC), b (MD LULC to DE LULC), c (NJ LULC to MD LULC) and 

d (NJ LULC to DE LULC). In four tables, categories are denoted by codes introduced 

in Appendix I. The columns from left to right mean 1) Source LULC categories, 2) 

match(es) in target LULC by human evaluators, 3) conforming matches (algorithm 

and human match same), 4) non-conforming matches (algorithm and human match 

different), 5) conforming matches using large parcels, and 6) non-conforming 

matches using large parcels. The number in the parentheses after each algorithm 

result (in columns 3 to 6) is the similarity of that match, calculated as the ratio of the 

number of parcels in this match to the number of all considered parcels in the source 

category.  
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Table 5.1 Results of Matching Using Large Parcels 

a 

MATCHED MD LULC 

By ALGORITHM USING LARGE PARCEL DE 
LULC By 

HUMAN CONFORMING 
NON- 
CONFORMING 

CONFORMING 
NON- 
CONFORMING 

SinFam 
LowRes 
MedRes 

LowRes(0.198) 
MedRes(0.183)  

Pasture(0.116) 
OpenUrb(0.101)  

MedRes(0.492) 
LowRes(0.232)  

 

MultFam 
MedRes 
HighRes 

HighRes(0.484)  Comm(0.315)  
MedRes(0.238) 
HighRes(0.476)  

Comm(0.190)  

MblHm HighRes HighRes(0.157)  

LowRes(0.129) 
Comm(0.106) 
OpenUrb(0.106) 
MedRes(0.219)  

HighRes(0.1)  
MedRes(0.625) 
LowRes(0.1)  

Retail Comm Comm(0.372)  
HighRes(0.108) 
Indstrl(0.412)  

Comm(0.464)  Indstrl(0.5)  

Indstrl Indstrl Indstrl(0.716)  Comm(0.221)  Indstrl(0.718)  Comm(0.218)  

MixUrb 

LowRes 
MedRes 
HighRes 
Comm 
Indstrl 
Inst 

Indstrl(0.177) 
Inst(0.124) 
Comm(0.372)  

 

Inst(0.115) 
MedRes(0.115) 
Indstrl(0.192) 
Comm(0.5)  

 

OthrUrb OpenUrb  
Pasture(0.187) 
Crop(0.119)  

 
Crop(0.434) 
Extr(0.130)  

Inst Inst Inst(0.161)  
Indstrl(0.318) 
Comm(0.258) 
HighRes(0.120)  

Inst(0.166)  
Comm(0.166) 
Extr(0.2) 
Indstrl(0.333)  

Recreat OpenUrb OpenUrb(0.115)  

Inst(0.107) 
Comm(0.155) 
AgrBldg(0.163) 
Indstrl(0.119)  

OpenUrb(0.386)  
Crop(0.159) 
LowRes(0.113) 
Inst(0.113)  

Crop Crop Crop(0.502)  
FeedOp(0.121) 
Pasture(0.151)  

Crop(0.862)   

Pasture Pasture Pasture(0.314)  
Crop(0.314) 
AgrBldg(0.169)  

Pasture(0.3)  
Crop(0.5) 
Indstrl(0.1) 
FeedOp(0.1)  

OrchHrt   

LowRes(0.111) 
Crop(0.222) 
Pasture(0.177) 
DeciF(0.177)  

 

LowRes(0.111) 
GdnCrop(0.111) 
DeciF(0.222) 
Crop(0.555)  

OthrAgr 
Crop 
AgrBldg 

Crop(0.105)  
Pasture(0.105) 
Indstrl(0.263) 
FeedOp(0.473)  

AgrBldg(1.0)   

ShrbRng 
Brush 
Pasture 

Brush(0.218)  
LowRes(0.231) 
DeciF(0.258)  

Brush(0.467)  
EvrgrnF(0.145) 
DeciF(0.225)  

MixRng 
Brush 
Pasture 

Brush(0.144)  
DeciF(0.152) 
LowRes(0.289) 
MedRes(0.115)  

Brush(0.25)  
DeciF(0.5) 
LowRes(0.25)  

DecFrst DeciF DeciF(0.608)  
Brush(0.102) 
LowRes(0.133)  

DeciF(0.980)   

EvrgrnF EvrgrnF EvrgrnF(0.729)   EvrgrnF(0.945)   

MixFrst MxFrst MxFrst(0.242)  

Brush(0.142) 
EvrgrnF(0.107) 
DeciF(0.288) 
LowRes(0.103)  

MxFrst(0.551)  DeciF(0.332)  

ClrCut Brush Brush(0.147)  FeedOp(0.107) Brush(0.259)  Crop(0.740)  
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MATCHED MD LULC 

By ALGORITHM USING LARGE PARCEL DE 
LULC By 

HUMAN CONFORMING 
NON- 
CONFORMING 

CONFORMING 
NON- 
CONFORMING 

Pasture(0.203) 
Crop(0.350)  

Rsrvr Water Water(0.789)   Water(0.823)  Wetland(0.117)  

BayCove Water Water(0.934)   Water(1.0)   

Wetland Wetland Wetland(0.123)  
Brush(0.157) 
DeciF(0.317) 
MxFrst(0.159)  

Wetland(0.238)  
DeciF(0.309) 
EvrgrnF(0.103) 
MxFrst(0.298)  

Beach Beach Beach(0.714)  Indstrl(0.285)  Beach(1.0)   

InldSnd   
Indstrl(0.6) 
Beach(0.28)  

 
Indstrl(0.4) 
Beach(0.6)  

Extr Extr  
Indstrl(0.606) 
Comm(0.181)  

 
Beach(0.166) 
Wetland(0.166) 
Indstrl(0.583)  

Trans 
Crop 
Brush 

 
FeedOp(0.131) 
Indstrl(0.356)  

Crop(0.190)  
GdnCrop(0.190) 
FeedOp(0.142) 
Indstrl(0.380)  

 

b 

MATCHED DE LULC 

By ALGORITHM USING LARGE PARCEL MD 
LULC By 

HUMAN CONFORMING 
NON- 
CONFORMING 

CONFORMING 
NON- 
CONFORMING 

LowRes SinFam SinFam(0.382)  MixRng(0.150)  SinFam(0.663)  MixRng(0.149)  

MedRes 
MultFam 
SinFam 

SinFam(0.374)  MixRng(0.108)  SinFam(0.496)  
MixUrb(0.100) 
MblHm(0.158)  

HighRes 
MultFam 
MblHm 

MblHm(0.120) 
MultFam(0.313)  

SinFam(0.177)  
MultFam(0.25) 
MblHm(0.2)  

SinFam(0.25) 
Indstrl(0.1) 
Retail(0.15)  

Comm 
Retail 
MixUrb  

MixUrb(0.157) 
Retail(0.174)  

 
MixUrb(0.104) 
Retail(0.388)  

Indstrl(0.179)  

Indstrl Indstrl Indstrl(0.276)  Retail(0.160)  Indstrl(0.392)  
Inst(0.142) 
Retail(0.107) 
Extr(0.178)  

Inst Inst  
SinFam(0.134) 
MixUrb(0.111)  

Inst(0.312)  
SinFam(0.208) 
MixUrb(0.125)  

Extr Extr Extr(0.215)  SinFam(0.169)  Extr(0.375)  
SinFam(0.187) 
Trans(0.125)  

OpenUrb Recreat Recreat(0.146)  SinFam(0.213)  Recreat(0.333)  
Pasture(0.111) 
SinFam(0.4)  

Crop 
Crop 
OthrAgr 

Crop(0.414)  SinFam(0.131)  Crop(0.682)   

Pasture Pasture Pasture(0.121)  
SinFam(0.154) 
Crop(0.181)  

Pasture(0.18)  
SinFam(0.13) 
Crop(0.45)  

FeedOp   
Crop(0.133) 
Frmstd(0.126) 
Feedlot(0.297)  

 

Pasture(0.142) 
MixUrb(0.142) 
Extr(0.142) 
Recreat(0.142) 
Trans(0.285) 
Crop(0.142)  

AgrBldg   
Crop(0.162) 
Frmstd(0.103) 
Feedlot(0.159) 

 
Feedlot(0.166) 
Pasture(0.416)  
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MATCHED DE LULC 

By ALGORITHM USING LARGE PARCEL MD 
LULC By 

HUMAN CONFORMING 
NON- 
CONFORMING 

CONFORMING 
NON- 
CONFORMING 

Pasture(0.115)  

GdnCrop   
Trans(0.129) 
Pasture(0.129) 
Crop(0.225)  

 
Trans(0.25) 
Crop(0.333)  

DeciF DecFrst DecFrst(0.204)  
MixFrst(0.152) 
ShrbRng(0.162) 
MixRng(0.179)  

DecFrst(0.354)  
Wetland(0.116) 
MixFrst(0.230) 
ShrbRng(0.147)  

EvrgrnF EvrgrnF EvrgrnF(0.423)  
ShrbRng(0.113) 
MixFrst(0.136)  

EvrgrnF(0.566)  MixFrst(0.215)  

MxFrst MixFrst MixFrst(0.305)  
ShrbRng(0.165) 
MixRng(0.127)  

MixFrst(0.505)  
ShrbRng(0.139) 
Wetland(0.101)  

Brush 

ShrbRng 
MixRng 
ClrCut 
Trans 

ShrbRng(0.202)  EvrgrnF(0.159)  
ShrbRng(0.264) 
ClrCut(0.160)  

EvrgrnF(0.217)  

Water 
Rsrvr 
BayCove 

Rsrvr(0.330) 
BayCove(0.25)  

 
Rsrvr(0.156) 
BayCove(0.75)  

 

Wetland Wetland  
MixRng(0.228) 
Watrway(0.112) 
Rsrvr(0.110)  

 

MixRng(0.173) 
EvrgrnF(0.212) 
BayCove(0.177) 
SinFam(0.154)  

Beach Beach Beach(0.2)  

Retail(0.2) 
BayCove(0.2) 
InldSnd(0.2) 
Indstrl(0.2)  

Beach(0.5)  InldSnd(0.5)  

 

c 

MATCHED MD LULC 

By ALGORITHM USING LARGE PARCEL NJ LULC By 
HUMAN CONFORMING 

NON- 
CONFORMING 

CONFORMING 
NON- 
CONFORMING 

HighRes HighRes HighRes(0.511)  
Indstrl(0.116) 
Comm(0.186)  

HighRes(0.838)   

MedRes MedRes MedRes(0.317)  
Comm(0.139) 
HighRes(0.211)  

MedRes(0.845)   

LowRes LowRes LowRes(0.190)  
Brush(0.143) 
MedRes(0.270)  

LowRes(0.444)  
Brush(0.111) 
MedRes(0.444)  

RurlRes LowRes LowRes(0.192)  
MedRes(0.157) 
Brush(0.163)  

LowRes(1.0)   

Comm Comm Comm(0.361)  
HighRes(0.296) 
Indstrl(0.229)  

 
HighRes(0.5) 
Extr(0.25) 
Indstrl(0.25)  

Indstrl Indstrl Indstrl(0.577)  
HighRes(0.118) 
Comm(0.211)  

Indstrl(0.5)  HighRes(0.5)  

Road   

Comm(0.193) 
HighRes(0.387) 
Wetland(0.129) 
MedRes(0.193)  

 
Brush(0.5) 
Comm(0.5)  

Airport   
HighRes(0.189) 
Indstrl(0.405)  

 Indstrl(1.0)  

UpldWa Brush Brush(0.310)  
Pasture(0.132) 
LowRes(0.152)  

 
MedRes(0.333) 
DeciF(0.333) 
LowRes(0.333)  
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MATCHED MD LULC 

By ALGORITHM USING LARGE PARCEL NJ LULC By 
HUMAN CONFORMING 

NON- 
CONFORMING 

CONFORMING 
NON- 
CONFORMING 

OthrUrb OpenUrb  
HighRes(0.166) 
Indstrl(0.133) 
Comm(0.207)  

 
FeedOp(0.285) 
LowRes(0.142) 
Crop(0.571)  

Cemet OpenUrb OpenUrb(0.103)  
Pasture(0.151) 
AgrBldg(0.103)  

 Crop(1.0)  

Recreat OpenUrb  
HighRes(0.109) 
Comm(0.157) 
Indstrl(0.220)  

OpenUrb(0.363)  
Inst(0.136) 
AgrBldg(0.181)  

Athlet Inst Inst(0.107)  
Comm(0.123) 
Indstrl(0.256) 
FeedOp(0.194)  

Inst(0.333)  
Crop(0.333) 
AgrBldg(0.333)  

Stadium Inst  
HighRes(0.263) 
Indstrl(0.526)  

 Indstrl(1.0)  

CrpPstr 
Crop 
Pasture 

Pasture(0.221) 
Crop(0.169)  

FeedOp(0.124)  Crop(0.577)  Indstrl(0.141)  

AgriWet 
Crop 
Pasture 
Wetland 

Crop(0.137) 
Pasture(0.210)  

FeedOp(0.110) 
AgrBldg(0.146)  

Crop(0.437)  
Indstrl(0.187) 
FeedOp(0.125) 
AgrBldg(0.25)  

OrchHrt   

AgrBldg(0.138) 
FeedOp(0.112) 
Indstrl(0.129) 
Crop(0.107) 
Pasture(0.113)  

 
AgrBldg(0.190) 
Crop(0.428)  

OthrAgr 
FeedOp 
AgrBldg 
GdnCrop 

AgrBldg(0.124) 
FeedOp(0.105)  

Pasture(0.142) 
Indstrl(0.186)  

AgrBldg(0.5) 
Crop(0.5)  

 

DeciF10 
DeciF 
Brush 

Brush(0.352)  
MedRes(0.102) 
LowRes(0.121)  

Brush(0.133) 
DeciF(0.266)  

MxFrst(0.6)  

DeciF50 DeciF DeciF(0.175)  
Brush(0.383) 
LowRes(0.134)  

DeciF(0.579)  Brush(0.305)  

ConiF10 
EvrgrnF 
Brush 

EvrgrnF(0.340) 
Brush(0.392)  

 
EvrgrnF(0.428) 
Brush(0.571)  

 

ConiF50 EvrgrnF EvrgrnF(0.675)  Brush(0.126)  EvrgrnF(0.95)   

Plant EvrgrnF EvrgrnF(0.751)   EvrgrnF(1.0)   

MxCnF10 
MxFrst 
EvrgrnF 
Brush 

Brush(0.419) 
EvrgrnF(0.276)  

 
MxFrst(0.25) 
Brush(0.25) 
EvrgrnF(0.5)  

 

MxCon50 
MxFrst 
EvrgrnF 

EvrgrnF(0.468)  Brush(0.326)  EvrgrnF(0.628)  Brush(0.318)  

MxDec10 
MxFrst 
DeciF 
Brush 

Brush(0.483)  EvrgrnF(0.170)  
MxFrst(0.222) 
DeciF(0.111) 
Brush(0.444)  

EvrgrnF(0.222)  

MxDec50 
MxFrst 
DeciF 

 
EvrgrnF(0.206) 
Brush(0.514)  

MxFrst(0.106)  
EvrgrnF(0.147) 
Brush(0.692)  

OldFld Brush Brush(0.129)  
Comm(0.108) 
Pasture(0.166)  

Brush(0.333)  
MedRes(0.333) 
Crop(0.333)  

DecBrsh Brush Brush(0.254)  
LowRes(0.165) 
DeciF(0.123)  

Brush(0.8)  DeciF(0.2)  

ConBrsh Brush Brush(0.273)  EvrgrnF(0.274)   EvrgrnF(1.0)  

MxBrush Brush Brush(0.342)  LowRes(0.157)  Brush(0.705)  EvrgrnF(0.176)  

Rsrvr Water Water(0.594)  Wetland(0.152)  Water(0.972)   

TdlRiv 
Water 
Wetland 

Water(0.728) 
Wetland(0.221)  

 Water(0.954)   

TdlBay Water Water(0.767)  Wetland(0.125)  Water(1.0)   

Ocean Water Water(0.619)  Wetland(0.142)  Water(1.0)   
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MATCHED MD LULC 

By ALGORITHM USING LARGE PARCEL NJ LULC By 
HUMAN CONFORMING 

NON- 
CONFORMING 

CONFORMING 
NON- 
CONFORMING 

SlMrsh Wetland Wetland(0.638)  Water(0.247)  Wetland(0.911)   

SlMrshV Wetland Wetland(0.603)  EvrgrnF(0.116)  Wetland(0.8)  EvrgrnF(0.2)  

FrMrsh Wetland Wetland(0.595)  Water(0.107)  Wetland(1.0)   

VegDune Wetland Wetland(0.204)  
Comm(0.108) 
Indstrl(0.397)  

 
Beach(0.2) 
Indstrl(0.6) 
Comm(0.2)  

PhrgCWt Wetland Wetland(0.677)   Wetland(0.794)  EvrgrnF(0.117)  

DecWdWt 
Wetland 
DeciF 

DeciF(0.149)  
Brush(0.283) 
EvrgrnF(0.254)  

DeciF(0.246)  
MxFrst(0.188) 
EvrgrnF(0.492)  

ConWdWt 
Wetland 
EvrgrnF 

EvrgrnF(0.831)   EvrgrnF(0.833)   

CedarWt 
EvrgrnF 
Wetland 

EvrgrnF(0.905)   EvrgrnF(1.0)   

DecBrWt 
Brush 
Wetland 

Brush(0.25) 
Wetland(0.219)  

EvrgrnF(0.225)  Brush(0.333)  EvrgrnF(0.666)  

ConBrWt 
Brush 
Wetland 

Wetland(0.114) 
Brush(0.179)  

EvrgrnF(0.507)   EvrgrnF(1.0)  

MxBrWtC 
EvrgrnF 
MxFrst 
Wetland 

Wetland(0.211) 
EvrgrnF(0.382)  

Brush(0.236)  MxFrst(0.666)  Brush(0.333)  

HrbWtNT 
Brush 
Wetland 

Wetland(0.340) 
Brush(0.151)  

 
Wetland(0.4) 
Brush(0.2)  

Extr(0.2) 
DeciF(0.2)  

PhrgWet Wetland Wetland(0.462)  
Brush(0.148) 
EvrgrnF(0.118)  

 
Brush(0.333) 
DeciF(0.666)  

MxFrWtD 
DeciF 
MxFrst 
Wetland 

 
EvrgrnF(0.519) 
Brush(0.249)  

MxFrst(0.172)  
EvrgrnF(0.586) 
Brush(0.206)  

MxFrWtC 
EvrgrnF 
MxFrst 
Wetland 

EvrgrnF(0.701)  Brush(0.149)  EvrgrnF(0.830)   

Beach Beach Beach(0.305)  
HighRes(0.186) 
Indstrl(0.238)  

Beach(0.5)  
Water(0.125) 
Indstrl(0.25) 
Extr(0.125)  

Extr Extr  
Beach(0.142) 
Indstrl(0.630)  

 
Beach(0.7) 
Indstrl(0.3)  

AltLnd   
Indstrl(0.278) 
Comm(0.245)  

 

Indstrl(0.5) 
FeedOp(0.166) 
Crop(0.166) 
GdnCrop(0.166)  

AltLnd1      

AltLnd2      

DstrbWt Wetland Wetland(0.292)  
Indstrl(0.102) 
Brush(0.116)  

Wetland(1.0)   

 

d 

MATCHED DE LULC 

By ALGORITHM USING LARGE PARCEL NJ LULC By 
HUMAN CONFORMING 

NON- 
CONFORMING 

CONFORMING 
NON- 
CONFORMING 

HighRes 
MultFam 
MblHm 

MultFam(0.433) 
MblHm(0.140)  

Indstrl(0.125)  
MultFam(0.354) 
MblHm(0.387)  

Indstrl(0.193)  
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MATCHED DE LULC 

By ALGORITHM USING LARGE PARCEL NJ LULC By 
HUMAN CONFORMING 

NON- 
CONFORMING 

CONFORMING 
NON- 
CONFORMING 

MedRes 
SinFam 
MblHm 

SinFam(0.227) 
MblHm(0.150)  

MultFam(0.183) 
MixRng(0.128)  

SinFam(0.714) 
MblHm(0.142)  

MultFam(0.130)  

LowRes SinFam SinFam(0.202)  MixRng(0.228)  SinFam(1.0)   

RurlRes SinFam SinFam(0.152)  MixRng(0.189)  SinFam(1.0)   

Comm Retail Retail(0.159)  
MultFam(0.328) 
Indstrl(0.107)  

Retail(0.5)  Indstrl(0.5)  

Indstrl Indstrl Indstrl(0.316)  
Warehs(0.134) 
Retail(0.131)  

Indstrl(1.0)   

Road   
SinFam(0.150) 
MultFam(0.473)  

 
MixUrb(0.5) 
EvrgrnF(0.5)  

Airport   
MultFam(0.175) 
Feedlot(0.108) 
Indstrl(0.202)  

 Indstrl(1.0)  

UpldWa 
ShrbRng 
MixRng 

MixRng(0.165) 
ShrbRng(0.317)  

  SinFam(1.0)  

OthrUrb OthrUrb  MultFam(0.138)  OthrUrb(0.142)  

OthrAgr(0.142) 
SinFam(0.285) 
ClrCut(0.142) 
Crop(0.285)  

Cemet OthrUrb OthrUrb(0.124)  
Frmstd(0.117) 
SinFam(0.137)  

 Crop(1.0)  

Recreat Recreat Recreat(0.103)   Recreat(0.5)  SinFam(0.227)  

Athlet Inst  
Feedlot(0.164) 
Recreat(0.107)  

Inst(0.333)  
Crop(0.333) 
SinFam(0.333)  

Stadium Inst  
Indstrl(0.263) 
InldSnd(0.105) 
MultFam(0.157)  

Inst(1.0)   

CrpPstr 
Crop 
Pasture 

Pasture(0.104) 
Crop(0.156)  

 Crop(0.656)  Trans(0.171)  

AgriWet 
Crop 
Pasture 
Wetland 

Crop(0.191) 
Pasture(0.110)  

 Crop(0.812)  Trans(0.125)  

OrchHrt OrchHrt  
Crop(0.107) 
Trans(0.113)  

 
Crop(0.476) 
Trans(0.253)  

OthrAgr 
OrchHrt 
OthrAgr 

 
Feedlot(0.122) 
Frmstd(0.134)  

OthrAgr(0.5)  Trans(0.5)  

DeciF10 
DecFrst 
ShrbRng 
MixRng 

ShrbRng(0.196) 
MixRng(0.192)  

Wetland(0.198)  ShrbRng(0.133)  
Wetland(0.533) 
MixFrst(0.266)  

DeciF50 DecFrst  
Wetland(0.254) 
MixRng(0.189) 
ShrbRng(0.216)  

DecFrst(0.194)  
MixFrst(0.182) 
Wetland(0.503)  

ConiF10 
EvrgrnF 
ShrbRng 
MixRng 

EvrgrnF(0.361) 
ShrbRng(0.152)  

Wetland(0.189)  
ShrbRng(0.285) 
EvrgrnF(0.428)  

Wetland(0.285)  

ConiF50 EvrgrnF EvrgrnF(0.685)   EvrgrnF(0.98)   

Plant 
OrchHrt 
EvrgrnF 

EvrgrnF(0.758)   EvrgrnF(1.0)   

MxCnF10 

MixFrst 
EvrgrnF 
ShrbRng 
MixRng 

ShrbRng(0.161) 
EvrgrnF(0.233) 
MixRng(0.123)  

Wetland(0.283)  EvrgrnF(0.25)  Wetland(0.75)  

MxCon50 
MixFrst 
EvrgrnF  

EvrgrnF(0.387)  
ShrbRng(0.109) 
Wetland(0.286)  

EvrgrnF(0.787)  Wetland(0.150)  

MxDec10 
MixFrst 
DecFrst 

ShrbRng(0.183) 
MixRng(0.130)  

Wetland(0.358) 
EvrgrnF(0.117)  

ShrbRng(0.222) 
MixFrst(0.111)  

Wetland(0.555) 
EvrgrnF(0.111)  
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MATCHED DE LULC 

By ALGORITHM USING LARGE PARCEL NJ LULC By 
HUMAN CONFORMING 

NON- 
CONFORMING 

CONFORMING 
NON- 
CONFORMING 

ShrbRng 
MixRng 

MxDec50 
MixFrst 
DecFrst 

 

EvrgrnF(0.132) 
ShrbRng(0.166) 
Wetland(0.432) 
MixRng(0.103)  

 
Wetland(0.633) 
EvrgrnF(0.100) 
ShrbRng(0.230)  

OldFld 
MixRng 
ClrCut 

MixRng(0.104) 
ClrCut(0.113)  

 ClrCut(0.333)  Crop(0.666)  

DecBrsh 
ShrbRng 
MixRng 

MixRng(0.195) 
ShrbRng(0.231)  

Wetland(0.114)  ShrbRng(0.2)  Wetland(0.8)  

ConBrsh 
ShrbRng 
MixRng 

ShrbRng(0.141) 
MixRng(0.130)  

EvrgrnF(0.307)   EvrgrnF(1.0)  

MxBrush 
ShrbRng 
MixRng 

ShrbRng(0.243) 
MixRng(0.180)  

Wetland(0.157)  ShrbRng(0.117)  
EvrgrnF(0.176) 
Wetland(0.588)  

Rsrvr Rsrvr Rsrvr(0.316)  
BayCove(0.205) 
Watrway(0.155)  

 BayCove(1.0)  

TdlRiv 
BayCove 
Wetland 

BayCove(0.533)  
Rsrvr(0.133) 
Watrway(0.236)  

BayCove(0.863)  Rsrvr(0.121)  

TdlBay BayCove BayCove(0.678)  Watrway(0.178)  BayCove(1.0)   

Ocean BayCove BayCove(0.761)  Indstrl(0.142)  BayCove(1.0)   

SlMrsh Wetland  
EvrgrnF(0.139) 
Watrway(0.146) 
BayCove(0.538)  

 
EvrgrnF(0.723) 
BayCove(0.171)  

SlMrshV Wetland  
EvrgrnF(0.185) 
Watrway(0.190) 
MixRng(0.159)  

 
MblHm(0.2) 
EvrgrnF(0.8)  

FrMrsh Wetland  
Watrway(0.227) 
MixRng(0.161) 
BayCove(0.105)  

 
SinFam(0.285) 
EvrgrnF(0.571) 
MixRng(0.142)  

VegDune 
Wetland 
InldSnd 

InldSnd(0.277)  
Indstrl(0.132) 
MultFam(0.144)  

InldSnd(0.4)  
MixUrb(0.2) 
Indstrl(0.4)  

PhrgCWt Wetland  
Watrway(0.219) 
EvrgrnF(0.189) 
MixRng(0.193)  

 
SinFam(0.117) 
ShrbRng(0.205) 
EvrgrnF(0.5)  

DecWdWt 
Wetland 
DecFrst 

Wetland(0.426)  
MixRng(0.141) 
EvrgrnF(0.119)  

Wetland(0.768)  EvrgrnF(0.173)  

ConWdWt 
Wetland 
EvrgrnF 

EvrgrnF(0.783) 
Wetland(0.103)  

 
Wetland(0.119) 
EvrgrnF(0.880)  

 

CedarWt 
EvrgrnF 
Wetland 

EvrgrnF(0.893)   EvrgrnF(1.0)   

DecBrWt 
ShrbRng 
Wetland 
MixRng 

Wetland(0.215) 
ShrbRng(0.105) 
MixRng(0.171)  

EvrgrnF(0.215)  Wetland(0.333)  EvrgrnF(0.666)  

ConBrWt 
ShrbRng 
Wetland 
MixRng 

 EvrgrnF(0.534)  Wetland(0.4)  EvrgrnF(0.6)  

MxBrWtC 

ShrbRng 
Wetland 
EvrgrnF 
MixRng 

Wetland(0.205) 
EvrgrnF(0.370) 
MixRng(0.176)  

 
Wetland(0.333) 
EvrgrnF(0.666)  

 

HrbWtNT Wetland  
ShrbRng(0.105) 
EvrgrnF(0.128) 
MixRng(0.145)  

 

BayCove(0.2) 
SinFam(0.2) 
EvrgrnF(0.2) 
OrchHrt(0.2) 
OthrUrb(0.2)  

PhrgWet Wetland  
Watrway(0.135) 
EvrgrnF(0.192) 

Wetland(0.333)  ShrbRng(0.666)  
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MATCHED DE LULC 

By ALGORITHM USING LARGE PARCEL NJ LULC By 
HUMAN CONFORMING 

NON- 
CONFORMING 

CONFORMING 
NON- 
CONFORMING 

ShrbRng(0.130) 
MixRng(0.205)  

MxFrWtD 
Wetland 
DecFrst 
MixFrst 

Wetland(0.469)  EvrgrnF(0.301)  
MixFrst(0.103) 
Wetland(0.620)  

EvrgrnF(0.206)  

MxFrWtC 
Wetland 
EvrgrnF 
MixFrst 

Wetland(0.305) 
EvrgrnF(0.539)  

 
EvrgrnF(0.615) 
Wetland(0.369)  

 

Beach Beach Beach(0.149)  

Watrway(0.126) 
Indstrl(0.246) 
BayCove(0.104) 
InldSnd(0.208)  

Beach(0.125)  

OthrAgr(0.125) 
InldSnd(0.5) 
BayCove(0.125) 
Indstrl(0.125)  

Extr Extr Extr(0.275)  
Indstrl(0.153) 
InldSnd(0.178)  

Extr(0.1)  
Beach(0.3) 
InldSnd(0.6)  

AltLnd     

Indstrl(0.333) 
MixUrb(0.166) 
MblHm(0.166) 
Inst(0.166) 
Crop(0.166)  

AltLnd1      

AltLnd2      

DstrbWt Wetland  EvrgrnF(0.147)   SinFam(1.0)  
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Table 5.2 Conformance Rate and Precision Comparison 

All Parcels Large Parcels   

Conformance Precision F Conformance Precision F 

DE to MD 0.84  0.35 0.49 0.76 0.42 0.54 

MD to DE 0.82 0.34 0.48 0.77 0.31 0.44 

NJ to MD 0.78 0.38 0.51 0.56 0.46 0.50 

NJ to DE 0.70  0.42 0.53 0.56 0.42 0.48 

The comparison of the conformance rate and precision between experiments 

using large parcels only and all parcels is given in Table 5.2. Using large parcels, the 

matching algorithm has a decreased conformance rate but an increased precision (at a 

threshold of 0.1) for all categories in all four experiments. However, in each MD 

LULC, DE LULC, and NJ LULC dataset there are several categories that do not have 

any parcels containing 50 or more Landsat ETM+ pixels (listed in Table 5.3). In other 

word, these categories contain no parcels qualified to participate the matching process, 

and will be considered “null”. For these “null” categories, the extensional matching 

algorithm could never find a match for them, and these “no matches” will have a 

negative influence on the conformance rate. A more fair comparison between 

matching results using all parcels or large parcels only should therefore only include 

those “non-null” categories (Table 5.4). In this new comparison, using large parcels 

increased conformance rate in three of four experiments, and the precisions either 

increase as well or basically remain intact. F measure values, as trade-off between 

conformance rate and precision, have increased in all four experiments. It is 

inevitable that the matching result is incomplete when categories that have no large 

representative parcels are excluded, but as many small parcels are in urban areas, all 

major forest and wetland categories, which are of special interest in environment 
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analysis and resource management, contain qualified large parcels and were included 

in the matching process.  

Table 5.3 Categories Containing No Large Parcels 

MD 

LULC 

Orchards/vineyards/horticulture  

Bare ground 

DE 

LULC 

Vehicle Related Activities 

Junk/Salvage Yards 

Warehouses and Temporary Storage 

Other Commercial 

Utilities 

Idle Fields 

Confined Feeding Operations/Feedlots/Holding 

Farmsteads and Farm Related Buildings 

Herbaceous Rangeland 

Waterways/Streams/Canals 

Natural Lakes and Ponds 

NJ LULC Mixed Residential  

Military Installations  

Transportation/Communication/Utilities  

Bridge Over Water(WATER)  

Wetland Rights-of-Way(WETLANDS)  

Upland Rights-of-Way, Developed  

Stormwater Basin  

Industrial and Commercial Complexes  

Mixed Urban or Built-up Land  

Cemetery on Wetland(WETLANDS)  

Phragmites Dominate Urban Area  

Managed Wetland  in Maintained Lawn Green space(WETLANDS)  

Managed Wetland  in Built-up Maintained Rec Area(WETLANDS)  

Former Agricultural Wetlands (Becoming Shrubby not Built-

up)(WETLANDS)  

Confined Feeding Operations  

Phragmites Dominate Old Field  

Severe Burned Upland Vegetation  

Streams and Canals  

Natural Lakes  

Dredged Lagoon  

Mixed Scrub/Shrub Wetlands (Deciduous Dom.)  

Severe Burned Wetlands  

Bare Exposed Rock, Rockslides, etc.  

Transitional Areas (sites under construction)  

Undifferentiated Barren Lands 
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Table 5.4 Conformance Rate and Precision Comparison (Non-null Categories) 

All Parcels Large Parcels  

Conformance Precision F Conformance Precision F 

DE to MD 0.88 0.33 0.48 0.92 0.46 0.61 

MD to DE 0.88 0.41 0.56 0.94 0.40 0.56 

NJ to MD 0.88 0.43 0.57 0.80 0.47 0.59 

NJ to DE 0.71 0.42 0.52 0.77 0.42  0.54 

5.4 Interpreting the Results – Determining Semantic Relation between LULC 

Categories 

Our experiment results confirmed that using large parcels in the algorithm can 

reduce the user side causes of non-conformance, and fewer causes lead to less variety 

in non-conforming matches. For example, Cropland DE is one of the main 

agricultural categories. It has 1996 parcels, and 617 large parcels contain 50 or more 

pixels. Using all parcels in the matching algorithm, 50.2% Cropland parcels in DE are 

matched to Cropland MD, 12.1% to Feeding Operation MD, and 15.1% to Pasture 

MD. But when using only large parcels, the matching result converges: 86.2% 

Cropland parcels in DE are matched to Cropland MD, while no non-conforming 

matches are reaching a threshold of 0.1.  

This convergence in matching candidates makes vague category integration clear. 

The analysis to extract semantic relations between LULC categories, based on the 

inclusion and intersection of sets of matching parcels (Figure 3.6 and 3.7), can now 

be generalized to all forest and wetland categories. For example, in the discussion in 

section 3.3.5, we concluded that Evergreen Forest DE is subsumed by Evergreen 

Forest MD. Now using large parcels in the matching algorithm, the subsuming 

semantic relation between Deciduous Forest categories in DE and MD became clear 
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as well. Deciduous Forest MD as a concept and a category is broader than Deciduous 

Forest DE, because of the variety in its land cover status (partially similar to Mixed 

Forest DE, and Shrub/Brush Rangeland DE). MD LULC and DE LULC have similar 

concepts of Mixed Forest, but Mixed Forest DE might be more vegetated than Mixed 

Forest MD, because some of the Mixed Forest parcels in MD matched to Shrub/Brush 

Rangeland DE. As for the rangeland categories, Brush MD is similar to Shrub/Brush 

Rangeland more than Mixed Rangeland in DE LULC. The semantic heterogeneity of 

Wetland between MD LULC and DE LULC is already discussed in chapter 4, and an 

analysis based on similarities in Table 5.1 leads to a similar conclusion: Wetland DE 

contains much more vegetated parcels than Wetland MD does. 

In NJ LULC, forest parcels are divided according to the combination of crown 

closure and dominant species into nine categories, which are Deciduous Forest (Low 

Crown Closure), Deciduous Forest (High Crown Closure), Coniferous Forest (Low 

Crown Closure), Coniferous Forest (High Crown Closure), Plantation, Mixed Forest 

(More Coniferous with Low Crown Closure), Mixed Forest (More Coniferous with 

High Crown Closure), Mixed Forest (More Deciduous with Low Crown Closure), 

and Mixed Forest (More Deciduous with High Crown Closure). In Table 5.1, we can 

see some parcels in the low crown closure forest categories are matched to Brush MD 

and Shrub/Brush Rangeland DE. But in general, the subsuming relations stand 

between subcategories with high and low crown closure and their parent categories’ 

(Deciduous and Coniferous Forest) counterparts in MD LULC, except Mixed Forest 

(More Deciduous with Low Crown Closure) and Mixed Forest (More Deciduous with 

High Crown Closure), which appear more like brush rather than forest in MD. On the 
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other hand, forest LULC matching between NJ LULC and DE LULC is complicated 

by Wetland DE. As found in chapter 3, many Wetland parcels in DE are substantially 

forested and cannot be separated from forestlands by remote sensing. As a result, 

Wetland DE attracted many non-conforming matches from forestland categories in 

NJ.  

The subsuming semantic relation also stands between Brush MD and NJ brush 

subcategories, except that most Coniferous Brush/Shrubland NJ parcels seem more 

similar to Evergreen Forest in both MD and DE. As before, Wetland DE biased the 

matching result of several brush categories (i.e. Deciduous Brush/Shrubland and 

Mixed Deciduous/Coniferous Brush/Shrubland) from NJ LULC to DE LULC.  

Judging from the matches of NJ wetland subcategories, we can determine that 

Coastal Wetland of NJ LULC (this concept is defined in classification but not used in 

map) is approximately equivalent to Wetland MD, as its subsumed subcategories, i.e. 

Saline Marshes (Low marsh vegetation), Saline Marshes (High marsh vegetation), 

Freshwater Tidal Marshes, and Phragmites Dominate Coastal Wetlands, all display 

very high similarities to Wetland MD. The only exception is Vegetated Dune 

Communities, which has a special sandy cover. As for the Interior Wetland of NJ 

LULC (also defined in classification but not used in map) and its subcategories 

(Deciduous Wooded Wetlands, Coniferous Wooded Wetlands, et al.), Evergreen 

Forest and Brush MD are more similar to them in terms of their common high 

vegetation coverage. When matching NJ LULC to DE LULC, however, Interior 

Wetland subcategories are naturally matched to Wetland DE, while Coastal Wetland 

categories are difficult to find an appropriate match. In the result, Evergreen Forest, 
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instead of Wetland, is selected as the match for most Coastal Wetland parcels in NJ. 

However, it is worth noticing that this matching does not necessarily indicate an 

actual similarity in land cover status between Coastal Wetland NJ and Evergreen 

Forest DE, but more a result of the mechanism of SVM classifier, which on the parcel 

level constrainedly match a parcel to one and only one LULC category. For many 

Coastal Wetland parcels in NJ, Evergreen Forest DE is merely a reluctant choice, 

because SVM classifier constrainedly match parcel to a category and Evergreen 

Forest DE is the least different.  

5.5 Conclusions 

In this chapter, in order to reduce user side non-conformance caused by 

limitation of remote sensing and procedure errors, we refine the input data of the 

integration method to only include parcels that are large enough to contain 50 or more 

Landsat ETM+ pixels.  

Although several urban LULC categories are disqualified from matching process 

because they do not have enough large parcels, all major forest and wetland 

categories, which are of special interest in environment analysis and resource 

management, contain qualified large parcels and remain in the matching process. For 

most of the classification systems, using large parcels increased the conformance rate 

and/or precision. The largestimprovement in conformance rate (6%) happens in the 

experiments of matching NJ LULC to DE LULC, and the largestimproviment in 

precision (12.5%) happens when matching DE LULC to MD LULC. This 

performance improvement attributes to reducing user side non-conformance, and 

consequently the semantic heterogeneity is further exposed. 



 

 149 

 

As we can see in original matching results, the semantic relation between LULC 

categories is complicated by semantic heterogeneities. In original matching results, 

rather than simple subsuming, related LULC categories tend to overlap and intertwine 

together because of user side non-conformance, and this makes a straightforward 

hierarchical semantic integration difficult to extract. By using only large parcels, we 

effectively refined parcel level statistics and made a more reliable data representation 

of LULC categories, based on which the extraction of underlining semantic relations 

is achieved. Although semantic relations cannot be built between every two urban 

categories because of lack of large parcels in urban areas, the semantic integration of 

major forest and wetland categories were achieved. This integration is of great 

importance in the study of LULC, because it enables the indispensible data 

interoperability that supports the regional environment analysis and resource 

management. 
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Chapter 6: Integrating Lexical Semantic and Remote Sensing 

Results 

6.1 Necessity of Integrating Results 

In chapter 1, we introduced the view of ontology that it is built on universals 

(Smith 2004), and pointed out LULC categories are universals. A LULC category, on 

one hand implies semantics as a real world concept, on the other hand is populated by 

individual parcels of its kind, which are directly monitored by modern earth 

observing technologies, such as remote sensing. Hence, we adapt figure 1.3 to the 

integration of LULC classifications as figure 6.1, in which an intensional method uses 

descriptions of LULC categories and an extensional method uses the remote sensing 

information attached to parcels. These two methods are implemented in chapter 2 and 

chapter 3 respectively.  

 

Figure 6.1 Semantic integration approaches in LULC classifications: intensional 

approach (1) and extensional approach (2) 

Textual description and remote sensing are two different angles to understanding 

a LULC category, and as discussed in chapter 2 and 3, methods using either one of 

1 

Observation Observation 

Parcels  
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of B 
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Description 1 Description 2 
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  Semantics   Semantics 

RS RS       2 



 

 151 

 

the two data sources are capable of matching LULC classifications at a satisfactory 

accuracy. But from the matching results, we found either method has limitations that 

can be compensated by the other. Specifically, lexical semantic method has 

difficulties with semantic heterogeneities, including naming conflicts and 

confounding conflicts, where remote sensing can serve as an independent source to 

discriminate.  

On the other hand, having an independent source is also important to the remote 

sensing approach. Remote sensing observes ground land cover, which is the surrogate 

of actual land use. Uncertainty in this surrogacy leads to the limitation of remote 

sensing based integration. Differentiating some LULC categories (e.g. Farmstead and 

Feeding Lot) is beyond the capability of remote sensing, while the most naïve natural 

language processing (e.g. string comparison) technique is adequate to tell the 

difference and match them correctly.  

Recognizing the necessity of combining the two information sources, in this 

chapter, we will discuss different approaches to integrate the two information sources 

to improving the matching of LULC classification systems.  

6.2 A Simple But Effective Approach – Weighted Sum 

As explained in section 2.1.1, semantic integration aims to determine the 

relations between concepts, and this is based on the measurement of their semantic 

similarities (Euzenat and Shvaiko 2007). The integration methods introduced in 

chapter 2 and 3, although using different data sources and methodology, have their 
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outputs in the same form of similarity values. Hence, integration of the two methods 

can be achieved by employing compound similarity.  

Compound similarity is concerned with the aggregation of different similarities 

(Euzenat and Shvaiko 2007). In chapter 5 of this book, Euzenat and Shvaiko 

summarized several different strategies to aggregate dissimilarities or distances. It is 

worth noticing these strategies can also be used to aggregate similarities. One of the 

most common families of distances is the Minkowski distance (Kruskal 1964). 

Comparing to other distances, Minkowski distance is well suited to independent 

dimensions and tend to balance the values between dimensions (Euzenat and Shvaiko 

2007). The definition of Minkowski distance is as follows 

 p

n

i

p

ii xxxxMinkowskioxx ∑
=

′=′∈′∀
1

),(),(,, δ , 

in which o is a set of objects which can be analyzed in n dimensions, and δ(xi,xi’) is 

the distance between two objects along the dimension i. Minkowski distance is a 

generalization of the widely used Euclidean distance (when p=2) and Manhattan 

distance (when p=1).  

In some circumstances, several dimensions are more important than others. Their 

importance can be reflected in higher weights assigned to corresponding dimensions. 

By assigning weights to each dimension in Manhattan distance, we get weighted sum, 

defined as follows  

∑
=

′×=′∈′∀

n

i

iii xxwxxsumweightedoxx
1

),(),(_,, δ ,  

in which δ(xi,xi’) is the distance between two objects along the dimension i, and wi is 

the weight of that dimension. 



 

 153 

 

6.2.1 Aggregated Matching Results 

As an instance of the Minkowski distances, it is important to reiterate that the 

weighted sum is applicable only when 1) the objects to be aggregated are in exactly 

the same unit and 2) the dimensions are independent.  

In this research, we want to aggregate similarity values between LULC 

categories measured by two different methods. These two methods use different 

information sources (lexical semantics and remote sensing), and therefore their 

resultant similarity values are independent. The requirement on independence is 

hereby fulfilled. As for the first requirement, similarity values are unitless, but to 

ensure the comparability, the similarity from lexical semantics is normalized using 

the same strategy as in the remote sensing approach: the similarity values of matching 

one source category to different target categories are normalized, so that they sum up 

to 1.  

Under this normalization strategy in remote sensing approach, the similarity of 

comparing A to B is not necessarily equal to the similarity of comparing B to A. This 

non-commutativity may seem paradoxical at first sight, but it reflects the complexity 

in real world LULC classifications. Previous analysis in section 3.3.5 shows that non-

commutative similarity values between two LULC categories are the result of the 

difference in categories’ conceptual scopes or levels in semantic hierarchy. For 

example, when matching DE LULC to MD LULC, a majority of Evergreen Forest 

parcels in DE matched to Evergreen Forest MD, but when matching MD LULC to 

DE LULC, only half of the Evergreen Forest parcels in MD matched to Evergreen 

Forest DE, while the rest matched to Shrub Rangeland DE or Mixed Forest DE. 
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Accordingly, the similarity value of comparing Evergreen Forest DE to Evergreen 

Forest MD, which is decided by the ratio of parcels in this match to all parcels for 

category Evergreen Forest DE, is 0.73, and the similarity is 0.42 when comparing 

Evergreen Forest MD to Evergreen Forest DE. Combining these two pieces of 

information, we can make estimation that Evergreen Forest DE is subsumed by 

Evergreen Forest MD. Actually, only based on non-commutative similarity 

calculations, we can discover the hierarchical semantic relationship between LULC 

categories.  

As introduced in chapter 2, there are several algorithm variations of the lexical 

approach. We selected the method using Latent Semantic Analysis with keyword 

enhanced (KE-LSA), because it has a consistent good performance in all 4 

experiments. Actually, our experiments showed the choice of algorithm does not 

impact the results very much (less than 5%), because all variations of lexical methods 

generate highly similar results, but greatly different from the results of remote sensing 

based methods.  

Initially, we assign a same weight of 0.5 to the similarities calculated using 

lexical semantics (hereafter noted as SIMSem) and remote sensing (hereafter noted as 

SIMRS). The matching result is presented in Table 6.1 a (DE LULC to MD LULC), b 

(MD LULC to DE LULC), c (NJ LULC to MD LULC) and d (NJ LULC to DE 

LULC). In four tables, categories are denoted by codes introduced in Appendix I. The 

columns from left to right mean 1) Source LULC categories, 2) match(es) in target 

LULC by human evaluators, 3) conforming matches (algorithm and human match 

same), and 4) non-conforming matches (algorithm and human match different). The 
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number in the parentheses after each algorithm result (in columns 3 and 4) is the 

similarity of that match, calculated from weighted sum of SIMRS and SIMSem. As 

before, matches with a compound similarity less than 0.1 are considered less 

important and discarded from the table.  
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Table 6.1 Matching Results Using Weighted Sum  

a 

MATCHED MD LULC 

by ALGORITHM DE LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

SinFam 
LowRes 
MedRes 

LowRes(0.330) 
MedRes(0.281)  

 

MultFam 
MedRes 
HighRes 

MedRes(0.181) 
HighRes(0.278)  

Comm(0.165) LowRes(0.280)  

MblHm HighRes HighRes(0.321)  
OpenUrb(0.131) Indstrl(0.163) 
MedRes(0.109)  

Retail Comm Comm(0.671)  Indstrl(0.206)  

VclAct 
Indstrl 
Comm 

Comm(0.134) 
Indstrl(0.347)  

Extr(0.372)  

JunkYrd 
Indstrl 
Comm 

Indstrl(0.330) 
Comm(0.267)  

MedRes(0.125)  

Warehs 
Indstrl 
Comm 

Comm(0.173) 
Indstrl(0.541)  

Inst(0.124)  

OthrCom Comm Comm(0.419)  
AgrBldg(0.102) OrchHrt(0.110) 
Indstrl(0.157)  

Indstrl Indstrl Indstrl(0.821)  Comm(0.136)  

Utility 
OpenUrb 
Indstrl 

Indstrl(0.222)  Pasture(0.122) Comm(0.129)  

MixUrb 
All Urban 
but 
OpenUrb 

Inst(0.141) 
Comm(0.194)  

MxFrst(0.139) OpenUrb(0.173)  

OthrUrb 
BrGrnd 
OpenUrb 

OpenUrb(0.262)  Inst(0.147) AgrBldg(0.186)  

Inst Inst Inst(0.528)  Indstrl(0.162) Comm(0.129)  

Recreat OpenUrb   Comm(0.128) AgrBldg(0.128)  

Crop Crop Crop(0.713)    

Pasture Pasture Pasture(0.584)  Crop(0.157)  

IdleFld 
OpenUrb 
Brush 

Brush(0.400)  
LowRes(0.104) Crop(0.112) 
Pasture(0.160)  

OrchHrt OrchHrt OrchHrt(0.482)  Crop(0.111)  

Feedlot FeedOp FeedOp(0.625)  Indstrl(0.190)  

Frmstd AgrBldg AgrBldg(0.473)  Inst(0.100)  

OthrAgr 
Crop 
AgrBldg 

  
Indstrl(0.131) FeedOp(0.239) 
Brush(0.445)  

HerbRng 
Pasture 
Brush 

Pasture(0.140)    

ShrbRng 
Brush 
Pasture 

Brush(0.477)  LowRes(0.115) DeciF(0.129)  

MixRng 
Brush 
Pasture 

  LowRes(0.144) MxFrst(0.436)  

DecFrst DeciF DeciF(0.507)  MxFrst(0.211)  

EvrgrnF EvrgrnF EvrgrnF(0.540)  MxFrst(0.237) DeciF(0.114)  

MixFrst MxFrst MxFrst(0.406)  EvrgrnF(0.147) DeciF(0.250)  

ClrCut 
BrGrnd 
Brush 

Brush(0.506)  Pasture(0.101) Crop(0.197)  

Watrway Water Water(0.795)    
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MATCHED MD LULC 

by ALGORITHM DE LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

NtrlLk Water Water(0.466)  EvrgrnF(0.166) AgrBldg(0.172)  

Rsrvr Water Water(0.809)    

BayCove Water Water(0.888)    

Wetland Wetland Wetland(0.546)  DeciF(0.162)  

Beach Beach Beach(0.694)  Water(0.142) Indstrl(0.144)  

InldSnd BrGrnd   
Crop(0.108) Indstrl(0.3) 
Beach(0.275)  

Extr Extr   
Indstrl(0.365) Water(0.154) 
Crop(0.120)  

Trans 
Crop Brush 
BrGrnd 

  
FeedOp(0.121) GdnCrop(0.116) 
OpenUrb(0.102) Indstrl(0.187)  

b 

MATCHED DE LULC 

by ALGORITHM MD LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

LowRes SinFam SinFam(0.398)  MultFam(0.188)  

MedRes 
MultFam 
SinFam 

SinFam(0.432) 
MultFam(0.189)  

  

HighRes 
MultFam 
MblHm 

MblHm(0.312) 
MultFam(0.230)  

SinFam(0.234)  

Comm 
Retail 
OthrCom 
MixUrb  

OthrCom(0.136) 
Retail(0.234)  

  

Indstrl 
Indstrl 
JunkYrd 
Warehs 

Warehs(0.165) 
JunkYrd(0.122) 
Indstrl(0.302)  

  

Inst Inst Inst(0.287)  MixUrb(0.109)  

Extr Extr Extr(0.107)  VclAct(0.304) Feedlot(0.134)  

OpenUrb Recreat   
SinFam(0.106) MixUrb(0.235) 
OthrUrb(0.251)  

Crop 
Crop 
OthrAgr 

Crop(0.418)  TruckCrp(0.178)  

Pasture Pasture Pasture(0.538)    

OrchHrt OrchHrt OrchHrt(0.383)    

FeedOp Feedlot Feedlot(0.610)    

AgrBldg Frmstd Frmstd(0.251)    

GdnCrop TruckCrp TruckCrp(0.434)  Crop(0.112)  

DeciF DecFrst DecFrst(0.312)  MixFrst(0.182) EvrgrnF(0.150)  

EvrgrnF EvrgrnF EvrgrnF(0.421)  MixFrst(0.165)  

MxFrst MixFrst MixFrst(0.285)  
MixRng(0.150) DecFrst(0.120) 
EvrgrnF(0.149)  

Brush 

ShrbRng 
HerbRng 
MixRng 
IdleFld 
ClrCut  

ClrCut(0.209) 
IdleFld(0.102) 
ShrbRng(0.193)  

  

Water 
Watrway 
Rsrvr NtrlLk 

Watrway(0.125) 
Rsrvr(0.283) 
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MATCHED DE LULC 

by ALGORITHM MD LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

BayCove BayCove(0.221)  

Wetland Wetland Wetland(0.418)  MixRng(0.121)  

Beach Beach Beach(0.408)  
Retail(0.1) BayCove(0.1) 
InldSnd(0.126) Indstrl(0.1)  

BrGrnd 
InldSnd 
VclAct 

  Extr(0.284)  

 

c 

MATCHED MD LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

HighRes HighRes HighRes(0.386)  
Comm(0.100) MedRes(0.132) 
LowRes(0.115)  

MedRes MedRes MedRes(0.269)  LowRes(0.128) HighRes(0.193)  

LowRes LowRes LowRes(0.189)  HighRes(0.128) MedRes(0.231)  

RurlRes LowRes LowRes(0.174)  MedRes(0.159) Brush(0.110)  

MixRes 
LowRes 
MedRes 
HighRes 

  OpenUrb(0.303) Wetland(0.260)  

Comm Comm Comm(0.291)  HighRes(0.164) Indstrl(0.137)  

Milit Inst   Indstrl(0.332)  

Indstrl Indstrl Indstrl(0.385)  Comm(0.134)  

Transp    Indstrl(0.153) Comm(0.116)  

Road    
Comm(0.126) HighRes(0.209) 
MedRes(0.110)  

Bridge    Water(0.719)  

Airport    AgrBldg(0.116) Indstrl(0.244)  

WtlndWa 
Brush 
Wetland 

Brush(0.230) 
Wetland(0.161)  

  

UpldWaD    OpenUrb(0.146) Comm(0.127)  

UpldWa Brush Brush(0.203)  OpenUrb(0.103)  

StrmBas    
Indstrl(0.112) HighRes(0.103) 
Comm(0.176)  

ICCmplx 
Indstrl 
Comm 

  HighRes(0.510)  

MixUrb 

LowRes 
MedRes 
HighRes 
Comm 
Indstrl Inst 

Comm(0.192) 
HighRes(0.266)  

OpenUrb(0.122)  

OthrUrb 
BrGrnd 
OpenUrb 

OpenUrb(0.122)  HighRes(0.100) Comm(0.151)  

Cemet OpenUrb OpenUrb(0.168)    

WtCemet 
OpenUrb 
Wetland 

OpenUrb(0.104)  AgrBldg(0.272) Pasture(0.259)  

Phrg    
OpenUrb(0.144) Wetland(0.262) 
HighRes(0.132) Comm(0.174)  
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MATCHED MD LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

MngWtld 
Pasture 
Wetland 

Pasture(0.117)  OpenUrb(0.101)  

Recreat OpenUrb OpenUrb(0.122)  
Inst(0.104) Comm(0.124) 
Indstrl(0.123)  

Athlet Inst Inst(0.158)  Indstrl(0.186)  

Stadium Inst Inst(0.116)  HighRes(0.138) Indstrl(0.282)  

MngWtRe 
OpenUrb 
Wetland 

OpenUrb(0.132)    

CrpPstr Crop Pasture 
Pasture(0.149) 
Crop(0.224)  

  

AgriWet 
Crop Pasture 
Wetland 

Pasture(0.112)  AgrBldg(0.154)  

FmAgrWt 
Wetland 
Brush 

Brush(0.123)  LowRes(0.120) Pasture(0.118)  

OrchHrt OrchHrt OrchHrt(0.151)  AgrBldg(0.109)  

FeedOp FeedOp FeedOp(0.135)  Indstrl(0.192)  

OthrAgr 
FeedOp 
AgrBldg 
GdnCrop 

AgrBldg(0.148)  Brush(0.107) Indstrl(0.109)  

DeciF10 DeciF Brush 
DeciF(0.134) 
Brush(0.205)  

MxFrst(0.137)  

DeciF50 DeciF DeciF(0.256)  MxFrst(0.208) Brush(0.196)  

ConiF10 
EvrgrnF 
Brush 

EvrgrnF(0.262) 
Brush(0.242)  

DeciF(0.134)  

ConiF50 EvrgrnF EvrgrnF(0.425)  Brush(0.107) DeciF(0.126)  

Plant 
OrchHrt 
EvrgrnF 

EvrgrnF(0.436)  Brush(0.180)  

MxCnF10 
MxFrst 
EvrgrnF 
Brush 

MxFrst(0.208) 
EvrgrnF(0.200) 
Brush(0.256)  

DeciF(0.134)  

MxCon50 
MxFrst 
EvrgrnF 

EvrgrnF(0.291) 
MxFrst(0.193)  

DeciF(0.115) Brush(0.207)  

MxDec10 
MxFrst 
DeciF Brush 

DeciF(0.172) 
Brush(0.275) 
MxFrst(0.214)  

EvrgrnF(0.137)  

MxDec50 
MxFrst 
DeciF 

MxFrst(0.207) 
DeciF(0.165)  

EvrgrnF(0.152) Brush(0.289)  

OldFld Brush Brush(0.182)    

PhrgOld Brush Brush(0.127)  Wetland(0.268)  

DecBrsh Brush Brush(0.214)  DeciF(0.126)  

ConBrsh Brush Brush(0.196)  EvrgrnF(0.175)  

MxBrush Brush Brush(0.235)  DeciF(0.142) MxFrst(0.154)  

BrUplnd BrGrnd   Brush(0.283) EvrgrnF(0.279)  

Stream Water Water(0.155)  
EvrgrnF(0.215) Wetland(0.202) 
Brush(0.124)  

NatLake Water Water(0.264)  Wetland(0.254)  

Rsrvr Water Water(0.506)    

TdlRiv 
Water 
Wetland 

Water(0.496) 
Wetland(0.324)  

  

TdlBay Water Water(0.503)  Wetland(0.224)  

Dredge Water Water(0.227)  HighRes(0.120) Wetland(0.286)  
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MATCHED MD LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

Ocean Water Water(0.545)  Wetland(0.118)  

SlMrsh Wetland Wetland(0.370)  Water(0.123)  

SlMrshV Wetland Wetland(0.346)  Brush(0.104)  

FrMrsh Wetland Wetland(0.494)    

VegDune Wetland Wetland(0.122)  Indstrl(0.216)  

PhrgCWt Wetland Wetland(0.465)    

DecWdWt 
Wetland 
DeciF 

Wetland(0.171) 
DeciF(0.176)  

MxFrst(0.138) Brush(0.170) 
EvrgrnF(0.173)  

ConWdWt 
Wetland 
EvrgrnF 

EvrgrnF(0.483)    

CedarWt 
EvrgrnF 
Wetland 

EvrgrnF(0.624) 
Wetland(0.187)  

  

DecBrWt 
Brush 
Wetland 

Wetland(0.200) 
Brush(0.200)  

DeciF(0.172) MxFrst(0.100) 
EvrgrnF(0.159)  

ConBrWt 
Brush 
Wetland 

Wetland(0.215) 
Brush(0.197)  

DeciF(0.103) EvrgrnF(0.335)  

MxBrWtD 
DeciF 
MxFrst 
Wetland 

DeciF(0.159) 
Wetland(0.179) 
MxFrst(0.196)  

EvrgrnF(0.213) Brush(0.144)  

MxBrWtC 
EvrgrnF 
MxFrst 
Wetland 

MxFrst(0.201) 
Wetland(0.231) 
EvrgrnF(0.250)  

Brush(0.142)  

HrbWtNT 
Brush 
Wetland 

Wetland(0.326) 
Brush(0.146)  

  

PhrgWet Wetland Wetland(0.358)  Brush(0.105) EvrgrnF(0.101)  

MxFrWtD 
DeciF 
MxFrst 
Wetland 

DeciF(0.148) 
MxFrst(0.201) 
Wetland(0.155)  

EvrgrnF(0.312) Brush(0.139)  

MxFrWtC 
EvrgrnF 
MxFrst 
Wetland 

MxFrst(0.180) 
Wetland(0.178) 
EvrgrnF(0.416)  

  

BrndWet 
BrGrnd 
Wetland 

Wetland(0.314)  EvrgrnF(0.270)  

Beach Beach Beach(0.385)  Indstrl(0.119) Water(0.175)  

BrGrnd BrGrnd BrGrnd(0.150)    

Extr Extr Extr(0.130)  Indstrl(0.325) Beach(0.104)  

AltLnd    
OpenUrb(0.129) Indstrl(0.155) 
Comm(0.156)  

DstrbWt Wetland Wetland(0.224)  Brush(0.104)  

Transi 
OpenUrb 
BrGrnd 

  Indstrl(0.231)  

Barren BrGrnd   Indstrl(0.364)  

 

d 

MATCHED DE LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

HighRes MultFam MultFam(0.402)  SinFam(0.215)  
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MATCHED DE LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

MblHm 

MedRes 
SinFam 
MblHm 

SinFam(0.277)  OthrUrb(0.130) MixUrb(0.120)  

LowRes SinFam SinFam(0.368)  MixRng(0.114)  

RurlRes SinFam SinFam(0.382)    

MixRes 
SinFam 
MultFam 
MblHm 

MblHm(0.251)  
MixUrb(0.114) Watrway(0.250) 
MixRng(0.199) MixFrst(0.163)  

Comm 

Retail 
VclAct 
Warehs 
OthrCom 

OthrCom(0.275) 
Retail(0.145)  

MultFam(0.164)  

Milit Inst   Retail(0.238)  

Indstrl Indstrl Indstrl(0.583)    

Transp    Utility(0.359)  

Road    
OthrCom(0.268) Indstrl(0.242) 
MultFam(0.236)  

Bridge    BayCove(0.5)  

Airport    
Frmstd(0.133) OthrUrb(0.116) 
Warehs(0.184) Indstrl(0.101)  

WtlndWa Wetland Wetland(0.265)  
NtrlLk(0.118) InldSnd(0.172) 
ShrbRng(0.164)  

UpldWaD    ClrCut(0.195) MixUrb(0.158)  

UpldWa 
ShrbRng 
MixRng 

ShrbRng(0.181)  InldSnd(0.124) ClrCut(0.179)  

StrmBas    OthrCom(0.434)  

ICCmplx 
Indstrl 
OthrCom 

OthrCom(0.189) 
Indstrl(0.176)  

MultFam(0.500)  

MixUrb MixUrb MixUrb(0.168)  OthrUrb(0.116) MultFam(0.245)  

OthrUrb OthrUrb OthrUrb(0.199)  OthrCom(0.104) MixUrb(0.172)  

Cemet OthrUrb OthrUrb(0.139)  MultFam(0.117) SinFam(0.159)  

WtCemet 
OthrUrb 
Wetland 

Wetland(0.247)  OrchHrt(0.25) Frmstd(0.25)  

Phrg    
Utility(0.125) MultFam(0.25) 
MblHm(0.128) OthrUrb(0.212) 
MixUrb(0.174)  

MngWtld 
Pasture 
HerbRng 
Wetland 

Wetland(0.277)    

Recreat Recreat Recreat(0.375)    

Athlet Inst   Recreat(0.131) IdleFld(0.229)  

Stadium Inst   
Frmstd(0.223) OthrCom(0.155) 
MblHm(0.155) Indstrl(0.131)  

MngWtRe 
Wetland 
Recreat 

Wetland(0.185) 
Recreat(0.158)  

MixUrb(0.109)  

CrpPstr Crop Pasture Crop(0.436)  TruckCrp(0.104)  

AgriWet 
Crop Pasture 
Wetland 

Wetland(0.310)  InldSnd(0.102)  

FmAgrWt 

IdleFld 
Wetland 
HerbRng 
ShrbRng 

Wetland(0.213) 
IdleFld(0.1) 
ShrbRng(0.173)  

MixUrb(0.115) OthrUrb(0.144)  
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MATCHED DE LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

MixRng 

OrchHrt OrchHrt OrchHrt(0.355)    

FeedOp Feedlot Feedlot(0.502)  Frmstd(0.181)  

OthrAgr 
OrchHrt 
Feedlot 
OthrAgr 

OthrAgr(0.307)  IdleFld(0.184)  

DeciF10 
DecFrst 
ShrbRng 
MixRng 

ShrbRng(0.100) 
DecFrst(0.225)  

MixFrst(0.134) EvrgrnF(0.153)  

DeciF50 DecFrst DecFrst(0.278)  
Wetland(0.129) EvrgrnF(0.142) 
MixFrst(0.140) ShrbRng(0.108)  

ConiF10 
EvrgrnF 
ShrbRng 
MixRng 

EvrgrnF(0.328)  DecFrst(0.128)  

ConiF50 EvrgrnF EvrgrnF(0.481)  DecFrst(0.122)  

Plant 
OrchHrt 
EvrgrnF 

EvrgrnF(0.379) 
OrchHrt(0.171)  

OthrAgr(0.280)  

MxCnF10 
MixFrst 
EvrgrnF 

EvrgrnF(0.169) 
MixFrst(0.165)  

DecFrst(0.119) Wetland(0.141) 
MixRng(0.176)  

MxCon50 
MixFrst 
EvrgrnF 

EvrgrnF(0.245) 
MixFrst(0.157)  

DecFrst(0.113) MixRng(0.152) 
Wetland(0.143)  

MxDec10 

MixFrst 
DecFrst 
ShrbRng 
MixRng 

MixFrst(0.141) 
DecFrst(0.179) 
MixRng(0.162)  

Wetland(0.179) EvrgrnF(0.102)  

MxDec50 
MixFrst 
DecFrst 

MixFrst(0.145) 
DecFrst(0.175)  

EvrgrnF(0.109) Wetland(0.216) 
MixRng(0.146)  

OldFld 
HerbRng 
MixRng 
ClrCut 

  ShrbRng(0.419) IdleFld(0.148)  

PhrgOld 
HerbRng 
MixRng 

MixRng(0.174)  ShrbRng(0.182) IdleFld(0.205)  

DecBrsh 
ShrbRng 
MixRng 

ShrbRng(0.322)  DecFrst(0.158)  

ConBrsh 
ShrbRng 
MixRng 

ShrbRng(0.159)  
NtrlLk(0.108) EvrgrnF(0.156) 
InldSnd(0.160)  

MxBrush 
HerbRng 
ShrbRng 
MixRng 

ShrbRng(0.197) 
MixRng(0.171)  

  

BrUplnd 
ClrCut 
Trans 

  
MixFrst(0.131) EvrgrnF(0.319) 
Wetland(0.208) DecFrst(0.135)  

Stream Watrway Watrway(0.250)  
EvrgrnF(0.125) Wetland(0.166) 
NtrlLk(0.145)  

NatLake NtrlLk NtrlLk(0.421)  InldSnd(0.158) Rsrvr(0.189)  

Rsrvr Rsrvr Rsrvr(0.322)  
BayCove(0.102) NtrlLk(0.224) 
OthrAgr(0.107)  

TdlRiv 
BayCove 
Wetland 

BayCove(0.483)  Beach(0.105) Watrway(0.118)  

TdlBay BayCove BayCove(0.780)    

Dredge 
Rsrvr 
Watrway 

Watrway(0.525)  Wetland(0.136) MblHm(0.190)  

Ocean BayCove BayCove(0.583)  Beach(0.175)  

SlMrsh Wetland   MblHm(0.132) BayCove(0.300)  

SlMrshV Wetland   Watrway(0.131)  
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MATCHED DE LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

FrMrsh Wetland Wetland(0.256)  Watrway(0.113) Beach(0.215)  

VegDune 
Wetland 
InldSnd 

InldSnd(0.138)  Beach(0.410)  

PhrgCWt Wetland Wetland(0.424)  Watrway(0.118)  

DecWdWt 
Wetland 
DecFrst 

Wetland(0.449) 
DecFrst(0.150)  

MixRng(0.120)  

ConWdWt 
Wetland 
EvrgrnF 

EvrgrnF(0.391) 
Wetland(0.335)  

  

CedarWt 
EvrgrnF 
Wetland 

EvrgrnF(0.446) 
Wetland(0.410)  

  

DecBrWt 
ShrbRng 
Wetland 
MixRng 

Wetland(0.233) 
ShrbRng(0.245)  

EvrgrnF(0.108) DecFrst(0.147)  

ConBrWt 
ShrbRng 
Wetland 
MixRng 

Wetland(0.205) 
ShrbRng(0.311)  

EvrgrnF(0.274)  

MxBrWtD 

ShrbRng 
Wetland 
DecFrst 
MixRng 

DecFrst(0.119) 
Wetland(0.228) 
ShrbRng(0.138) 
MixRng(0.146)  

EvrgrnF(0.151)  

MxBrWtC 

ShrbRng 
Wetland 
EvrgrnF 
MixRng 

ShrbRng(0.148) 
Wetland(0.248) 
EvrgrnF(0.185) 
MixRng(0.178)  

  

HrbWtNT 
Wetland 
HerbRng 

Wetland(0.317)  NtrlLk(0.105) IdleFld(0.132)  

PhrgWet 
HerbRng 
Wetland 

Wetland(0.467)  MixRng(0.103)  

MxFrWtD 
Wetland 
DecFrst 
MixFrst 

DecFrst(0.131) 
Wetland(0.372)  

EvrgrnF(0.151) MixRng(0.109)  

MxFrWtC 
Wetland 
EvrgrnF 
MixFrst 

Wetland(0.323) 
EvrgrnF(0.274)  

MixRng(0.111)  

BrndWet 
HerbRng 
Wetland 

Wetland(0.679)  NtrlLk(0.250)  

Beach Beach Beach(0.395)  
Indstrl(0.125) BayCove(0.158) 
InldSnd(0.104)  

BrGrnd    JunkYrd(0.181)  

Extr Extr Extr(0.137)  
Feedlot(0.139) Frmstd(0.165) 
VclAct(0.231)  

AltLnd    Rsrvr(0.109) VclAct(0.211)  

DstrbWt Wetland Wetland(0.229)  Trans(0.168)  

Transi Trans Trans(0.367)  Indstrl(0.117)  

Barren InldSnd InldSnd(0.118)  Extr(0.119) VclAct(0.435)  
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As shown in Table 6.2 and Figure 6.1, the matching result of weighted sum 

(WtdSum) has better conformance rate (Conf) and precision (Prec) (defined in section 

4.3.2) than those of either the remote sensing based method (RS) or the lexical 

semantics based method (KE-LSA). In the experiments of matching MD LULC to 

DE LULC, NJ LULC to MD LULC, and NJ LULC to DE LULC, the conformance 

rate is higher than 90% with a precision at about 50%. This means, combining lexical 

semantics and remote sensing, our method is capable of finding correct matches for 

90% of the categories at a precision of 50%. As a comparison, in its best performed 

experiment, previous feature-based method (Zhou and Wei 2008) finds correct 

matches for 50% of the categories at a precision of 30%. Also included is the single 

measure named F measure that trades off precision versus conformance rate. It is 

defined as the harmonic mean of conformance rate and precision 

CP

PC
F

+
=

2
, 

where P is the precision and C is the conformance rate(Manning et al. 2008). The F 

measure confirmed the improvement of performance. Comparing to average the F 

measure values among human evaluations (0.90 for DE2MD, 0.89 for MD2DE), 

weighted sum strategy still need substantial improvement.But for the experiment of 

matching MD LULC to DE LULC, the difference of F measure between weighted 

sum (0.70) and least agreed evaluation (0.77) is reduced.  

As explained in 6.1, from a theoretical point of view, we anticipate the potential 

advantages from combining two independent data sources. The advantage is two-fold. 

First, two data sources can be mutually complementary: the missing pieces in one 
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source can be picked up by the other, and the integration should therefore be more 

complete. Second, as data sources contain noises, having several independent data 

sources enables the mutual validation, which is important to separate information 

from noise. Intuitively, same piece of information extracted from multiple 

independent data sources are much more likely to be true, while a piece of 

information extracted from one data source but disapproved by other sources more 

likely turns out to be noise.  

Table 6.2 Performance of Weighted Sum 

Conformance Rate Precision F Measure  

KE-LSA RS  WtdSum KE-LSA RS  WtdSum KE-LSA RS  WtdSum 

DE2MD 0.78  0.84  0.84  0.40  0.35  0.37  0.53  0.50  0.52  

MD2DE 0.86  0.82  0.91  0.46  0.34  0.57  0.60  0.48  0.70  

NJ2MD 0.92  0.77  0.92  0.48  0.38  0.50  0.63  0.51  0.64  

NJ2DE 0.81  0.70  0.90  0.37  0.40  0.45  0.51  0.51  0.59 

 

Performance

0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1

K
E-
LS
A R

S

W
td
S
um

K
E-
LS
A R

S

W
td
S
um

K
E-
LS
A R

S

W
td
S
um

K
E-
LS
A R

S

W
td
S
um

DE2MD MD2DE NJ2MD NJ2DE

Conf

Prec

 

Figure 6.2 Performance of Weighted Sum 

By examining the matching result, we find weighted sum, although plain and 

simple, is capable of realizing these theoretical advantages, and gives better 

performance than using lexical semantics or remote sensing alone (table 6.2). For 

example, when matching NJ LULC to MD LULC, the lexical semantic method 
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missed the match from Saline Marshes (Low marsh vegetation) to Wetland. But in 

remotely sensed data, parcels of these two categories have very similar spectral 

responses and therefore are matched together at high similarity value. When 

calculating the weighted sum, despite the low SIMSem, Saline Marshes (Low marsh 

vegetation) NJ and Wetland MD are correctly matched together because of the high 

SIMRS. This is one of several examples of how combining independent data sources 

can further complete the matching results.  

At the same time, we observe more cases in which combining data sources 

demonstrates the advantage of denoising matching results. For example, when 

matching NJ LULC to DE LULC, although both lexical semantic method and remote 

sensing method correctly match category Orchards, Vineyards, Nurseries, 

Horticultural Areas, and Sod Farms of NJ LULC to Orchards/Nurseries/Horticulture 

of DE LULC, they both mistakenly include several mismatches, such as Truck Crops 

picked up by lexical method and Cropland and Pasture picked up by remote sensing 

method. It is worth noticing mismatching orchards to cropland or pasture in remote 

sensing is not very surprising, and it is already “warned” in some early work 

(Anderson 1976): “many of these (Orchard) areas may be included in another 

category, generally Cropland and Pasture, when identification is made by use of 

small-scale imagery alone.” Anderson also pointed out that “identification (of 

Orchards) may be aided by recognition of the combination of soil qualities, 

topography, and local climatological factors needed for these operations.” In this 

research, instead of soil, topography, and local climatology, we will use lexical 

semantics to aid the separation and improve the accuracy. Then in the matching result 
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for orchard using weighted sum, Truck Crops, Cropland, and Pasture are all excluded 

as their compound similarities are below the threshold.  

From Table 6.2 and Figure 6.2, we can see an obvious improved performance in 

the matching results, and concludes that weighted sum is an effective strategy to 

aggregate similarities from different measurements, even without any optimization on 

weights. In the next section, we will try to figure out whether there is a way to 

optimize the weights to further improve the matching results.   

6.2.2 Optimizing Weights 

In 6.2.1, we discussed the matching results using the weighted sum of SIMRS and 

SIMSem. Using evenly assigned weight of 0.5, the compound similarity leads to 

matching results that have an obvious improvement over the results from either of the 

two. But is there a space for further improvement by adjusting the weights?  

Intuitively, we want to assign a higher weight to the similarity leading to better 

performance. But as shown in previous chapters, both similarity measurements have 

limitations, and their performance will fluctuate among different LULC categories in 

different classification systems. Therefore, a fixed or global weighting of the two 

similarities is not feasible. Instead, a good weighting scheme should be specific to 

each category.  

By comparing to human evaluation, we define Net Conforming Similarity (NCS) 

to measure a method’s performance on each LULC category. For each given category 

ci, the equation is defined as follows 
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where Cconf is the collection of all conforming matches of the given category ci, 

Cnon is the collection of all non-conforming matches, Sij is the similarity for category 

ci and its match category cj, and lj is the level of minimal common upper category of 

non-conforming match cj and any one of the matches given by human evaluation. By 

its definition, given a LULC category NCS measures the conformity (with human 

evaluation) of matches found by an integration algorithm. For conforming matches, 

their contribution to NCS is positive, weighted by their similarity. For non-

conforming matches, their contribution is negative, weighted by similarity and how 

deviant from human evaluation each non-conforming match is. For example, in table 

6.3, for Multiple Family DE, algorithm found four matches in MD LULC, in which 

Medium Density Residential and High Density Residential are conforming to human 

evaluation and Commercial and Low Density Residential are not. The first part of 

NCS is the sum of conforming similarity, calculated as 0.181 plus 0.278 equals to 

0.459. For the second part, we first find the minimal common upper category for each 

non-conforming match and matches from human evaluation. For category 

Commercial, it shares minimal common upper category Urban and Built-up with 

Medium Density Residential from human evaluation. Urban and Built-up is a level 1 

category. Therefore category Commercial’s contribution is its similarity 0.165 

divided by 2
1
 equals to 0.0825. As the minimal common upper category of Low 

Density Residential and either of the human matches is Residential, a level 2 category, 
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its contribution is its similarity 0.280 divided by 2
2
 equals 0.07. Then the NCS for 

Multiple Family Residential in DE LULC is calculated as 0.3065.  

Table 6.3 Matching Multiple Family DE to MD LULC 

MATCHED MD LULC 

by ALGORITHM 

DE 

LULC by 

HUMAN CONFORMING NON-CONFORMING 

MultFam MedRes 

HighRes 

MedRes(0.181) 

HighRes(0.278)  

Comm(0.165) 

LowRes(0.280)  

Now it seems we could assign different weight to SIMSem and SIMRS according to 

their NCS values for each LULC category; higher weight goes to the similarity with a 

higher NCS value. However, in the process of matching LULC classification systems, 

complete human matching is not present; otherwise the matching process is redundant. 

The approach of weighting similarities by directly comparing their resultant matches 

to human evaluation is not feasible. Instead, we need to find some indicator to predict 

the performance of similarity measurements without human evaluations.  

Data Approach 

We attempted two approaches to find an indicator. First, we tried to summarize 

the indicator from experimental data. Within this approach, two hypotheses that may 

lead to indicators are made and tested. The first hypothesis is as a high similarity 

suggests more confidence from the algorithm in this match, it is more likely to be true 

(conforming to human evaluations). As all similarity values of matching a source 

category to all its targets sum up to 1, a higher similarity among leads to a higher 

variance. This hypothesis predicts that a higher variance in the similarity values 

indicates a better performance from the algorithm.  
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We tested this hypothesis in all the matching experiments, and the results only 

support this hypothesis to a limited extent. In Figure 6.3, x axis is the variance, y axis 

is the NCS, and each source category in matching represents a dot in the graph. There 

seems to be a faint correlation between the variance and NCS, but the correlation is 

not strong enough to be discovered statistically or to be used as an indicator of 

potential performance.  
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Figure 6.3 Distribution of NCS along variance 

A second potential indicator is designed for SIMRS only. In previous section 3.2.8, 

to find typical parcels to represent its category and serve as the input to train a SVM 

classifier, we first removed parcels that are outcasts in spectral space, and then 

performed a cross validation and keep those unaffected: a parcel’s label assigned in 

the cross validation is same as its original label. Parcels that can survive these two 

filtering processes are considered representative and constitute the training set. Our 

hypothesis is then the higher percentage of representative parcels (survived the two 

steps), the better chance a similarity measurement could work on this category (high 

NCS).  
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However, this hypothesis is also difficult to be supported by experiments. In 

Figure 6.4, x axis is the percentage of representative parcels, y axis is the NCS, and 

each source category in matching represents a dot in the graph. As we can observe 

and quantitatively test, there is no obvious trend or correlation in the graph. 

Comparing to the variance of output similarities, the percentage of representative 

parcels is even less likely to be related to the performance. A possible explanation to 

this non-correlation is that the process of finding representative parcels is a “quality 

before quantity” process, and many less representative parcels that are not calculated 

in the percentage, are actually classified to conforming matches and still benefit NCS.  

-1

0

1

0 20 40 60 80 100

Rep%

N
C
S

 

Figure 6.4 Distribution of NCS along the percentage of representative parcels 

Based on the above discussion, trying to predict the performance by exploring 

input data or output similarities is difficult. However, at this point, we do not rule out 

the possibility that solid correlation might emerge in future matching attempts, but in 

this research, we need to find an alternative strategy to optimize the weights. 
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Domain Knowledge Approach 

Different from data approach, a knowledge approach tries to apply domain 

knowledge to our weighting problem. As explained in previous chapters, remote 

sensing has a limitation when discriminating urban land uses, because the use of 

artificial parcels is usually difficult to decide from observations alone. At the same 

time, the semantic heterogeneity is a serious problem for non-urban categories, where 

a remote sensing method and a lexical semantic method are both indispensable. Based 

on this consideration, we make a hypothesis that urban land use categories are more 

accurately matched by lexical semantic methods, while the remote sensing method 

will contribute more on non-urban categories. Hence, we propose an uneven 

weighting scheme that will assign a higher weight to the SIMSem and a lower weight to 

SIMRS when matching urban categories, and will assign the original weighting to both 

similarities when matching non-urban categories.  

The experiment of matching the NJ LULC to the MD LULC shows the 

performance is improved when assigning the weight of 0.6 to SIMSem and the weight 

of 0.4 to SIMRS for urban categories.  We tested this weighting scheme in other 

experiments, and observed better performance in matching NJ LULC to DE LULC 

and DE LULC to MD LULC, but performance dropped when matching MD LULC to 

DE LULC (Table 6.4). In order to understand under what circumstances uneven 

weighting will work, we compare lexical semantic and remote sensing methods’ 

performances on each category when matching NJ LULC to MD LULC and MD 

LULC to DE LULC. 
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Table 6.4 Performance using domain knowledge driven weighting (uneven) and 

even weighting 

Conformance rate Precision F Measure  

Even Uneven Even Uneven Even Uneven 

DE2MD 0.84 0.84 0.37 0.38 0.52 0.53 

MD2DE 0.91 0.86 0.57 0.5 0.70 0.63 

NJ2MD 0.91 0.93 0.5 0.5 0.64 0.65 

NJ2DE 0.9 0.9 0.44 0.45 0.59 0.6 

Figure 6.5 compares the NCS values using two methods to match (a) NJ LULC 

to MD LULC and (b) MD LULC to DE LULC, in which a dark grey bar corresponds 

to an urban category and a light grey bar corresponds to a non-urban category. When 

the remote sensing method (RS) performs better than lexical semantic method (Sem), 

the bar is upward, and otherwise it is downward. The height of the bar corresponds to 

the difference of NCS between two methods on the category.  

From the figures, we can see matching NJ LULC to MD LULC follows our 

assumption very well. The lexical semantic method has obvious advantages over the 

remote sensing method in matching urban categories; while the two methods perform 

equally well for non-urban categories. In this case, the uneven weighting leads to an 

improvement in performance. As for matching MD LULC to DE LULC, however, 

the hypothesis cannot stand because the remote sensing method has an overall better 

performance than the lexical semantic method, and an uneven weighting is no longer 

needed and will lead to a performance drop.   

The causation behind rejecting the hypothesis is quite straightforward. As listed 

in Appendix I, MD LULC has the fewest categories and the simplest urban 

classification, which can be handled well by remote sensing. But if a LULC 
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classification system has more detailed urban categories, such as DE LULC and NJ 

LULC, uneven weighting is more likely to be beneficial.  

 

Figure 6.5 (a) Comparing NCS using remote sensing and lexical semantics to 

match NJ LULC to MD LULC 

 

 

Figure 6.5 (b) Comparing NCS using remote sensing and lexical semantics to 

match MD LULC to DE LULC 
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6.3 Balancing Completeness and Accuracy 

The methods introduced in this dissertation, either based on lexical semantics or 

remote sensing, are both completely automated, which means human input or 

interference are not involved before and during the matching process. But different 

applications of LULC data, e.g. environmental resource management or urban 

planning, have different emphases on integrating classification systems. Hence, 

human expertise, absent in previous stages, will be needed to evaluate integrated 

classification systems and make adjustment in the matching results to make it suitable 

to specific needs. To accommodate human adjustments, it is useful to expanding the 

pool of candidate matches, which should be larger than the matching provided by 

weighted sum.  

As aforementioned, two independent sources can be used as mutual 

complementation, and this leads to an accommodative scenario of aggregating SIMSem 

and SIMRS, in which we pick the higher value from the two to maximize the 

completeness Then in the matching result, this strategy works as logical disjunction: 

if either SIMSem or SIMRS is greater than the threshold, the match will be recognized. 

Unsurprisingly, the results (Table 6.5) show a high conformance rate (91% - 97%) 

but a low precision (27% - 35%) (Table 6.6).  
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Table 6.5 Matching Results Using Logical Disjunction and Conjunction (in bold)  

a 

MATCHED MD LULC 

by ALGORITHM 
DE 
LULC by HUMAN 

CONFORMING NON-CONFORMING 

SinFam LowRes MedRes 
LowRes 
MedRes  

Pasture HighRes OpenUrb  

MultFam MedRes HighRes MedRes HighRes  Comm LowRes  

MblHm HighRes HighRes  
LowRes Comm OpenUrb 
Indstrl MedRes  

Retail Comm Comm  HighRes Indstrl  

VclAct Indstrl Comm Comm Indstrl  Extr  

JunkYrd Indstrl Comm Indstrl Comm  HighRes LowRes MedRes  

Warehs Indstrl Comm Comm Indstrl  AgrBldg Inst  

OthrCom Comm Comm  
Brush AgrBldg LowRes 
OrchHrt Indstrl  

Indstrl Indstrl Indstrl  Comm  

Utility OpenUrb Indstrl Indstrl  Pasture Comm Crop  

MixUrb 
Any urban except 
OpenUrb 

Indstrl Inst 
Comm  

MxFrst OpenUrb AgrBldg  

OthrUrb BrGrnd OpenUrb OpenUrb  Inst Pasture Crop AgrBldg  

Inst Inst Inst  Indstrl Comm HighRes  

Recreat OpenUrb OpenUrb  
OrchHrt GdnCrop Inst 
Comm AgrBldg Indstrl 
Water  

Crop Crop Crop  FeedOp Pasture  

Pasture Pasture Pasture  Crop AgrBldg Brush  

IdleFld OpenUrb Brush Brush  LowRes Crop Pasture  

OrchHrt OrchHrt OrchHrt  LowRes Crop Pasture DeciF  

Feedlot FeedOp FeedOp  Indstrl Extr  

Frmstd AgrBldg AgrBldg  Pasture FeedOp Inst Indstrl  

OthrAgr Crop AgrBldg Crop  
Pasture Indstrl FeedOp 
Brush  

HerbRng Pasture Brush Pasture    

ShrbRng Brush Pasture Brush  LowRes DeciF  

MixRng Brush Pasture Brush  
DeciF LowRes MedRes 
MxFrst  

DecFrst DeciF DeciF  
EvrgrnF MxFrst Brush 
LowRes  

EvrgrnF EvrgrnF EvrgrnF  MxFrst DeciF  

MixFrst MxFrst MxFrst  
Brush EvrgrnF DeciF 
LowRes  

ClrCut BrGrnd Brush Brush  FeedOp Pasture Crop  

Watrway Water Water    

NtrlLk Water Water  EvrgrnF AgrBldg Wetland  

Rsrvr Water Water    

BayCove Water Water    
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MATCHED MD LULC 

by ALGORITHM 
DE 
LULC by HUMAN 

CONFORMING NON-CONFORMING 

Wetland Wetland Wetland  Brush DeciF MxFrst  

Beach Beach Beach  Water Indstrl  

InldSnd BrGrnd   Crop Indstrl Beach Water  

Extr Extr   
Beach Indstrl Water Comm 
Crop  

Trans Crop Brush BrGrnd   
FeedOp GdnCrop OpenUrb 
Indstrl  

 

b 

MATCHED DE LULC 

by ALGORITHM 
MD 
LULC by HUMAN 

CONFORMING NON-CONFORMING 

LowRes SinFam SinFam  JunkYrd MultFam MixRng  

MedRes MultFam SinFam SinFam MultFam  MixRng JunkYrd  

HighRes MultFam MblHm 
MblHm 
MultFam  

SinFam  

Comm 
Retail OthrCom 
MixUrb  

MixUrb OthrCom 
Retail  

JunkYrd  

Indstrl 
Indstrl JunkYrd 
Warehs 

Warehs JunkYrd 
Indstrl  

Retail  

Inst Inst Inst  
Warehs SinFam MixUrb 
OthrUrb  

Extr Extr Extr  SinFam VclAct Feedlot  

OpenUrb Recreat Recreat  
SinFam MixUrb OthrUrb 
MblHm  

Crop Crop OthrAgr Crop  Extr TruckCrp SinFam  

Pasture Pasture Pasture  SinFam Crop  

OrchHrt OrchHrt OrchHrt  
Crop TruckCrp Trans 
Pasture OthrCom SinFam  

FeedOp Feedlot Feedlot  Crop Frmstd  

AgrBldg Frmstd Frmstd  
Crop OthrCom Feedlot 
OthrUrb Pasture Warehs  

GdnCrop TruckCrp TruckCrp  Trans Pasture Crop  

DeciF DecFrst DecFrst  
MixFrst ShrbRng EvrgrnF 
MixRng  

EvrgrnF EvrgrnF EvrgrnF  
NtrlLk ShrbRng MixFrst 
DecFrst  

MxFrst MixFrst MixFrst  
ShrbRng MixRng DecFrst 
EvrgrnF  

Brush 
ShrbRng MixRng 
IdleFld ClrCut 
HerbRng Trans 

ClrCut IdleFld 
ShrbRng  

OthrAgr EvrgrnF  

Water 
Watrway Rsrvr 
NtrlLk BayCove 

Watrway Rsrvr 
BayCove  

Extr Beach  

Wetland Wetland Wetland  MixRng Watrway Rsrvr  

Beach Beach Beach  
Retail BayCove Extr 
InldSnd Indstrl  

BrGrnd InldSnd VclAct   Extr Pasture MixRng  
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c 

MATCHED MD LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

HighRes HighRes HighRes  
Indstrl Comm MedRes 
LowRes  

MedRes MedRes MedRes  Comm LowRes HighRes  

LowRes LowRes LowRes  HighRes Brush MedRes  

RurlRes LowRes LowRes  MedRes Brush HighRes  

MixRes 
LowRes MedRes 
HighRes 

HighRes  OpenUrb Wetland MxFrst  

Comm Comm Comm  OpenUrb HighRes Indstrl  

Milit Inst Inst  
Indstrl HighRes OpenUrb 
Brush Beach  

Indstrl Indstrl Indstrl  OpenUrb HighRes Comm  

Transp    
Wetland OpenUrb Indstrl 
HighRes Comm  

Road    
Brush Comm HighRes 
Wetland MedRes  

Bridge    Water OpenUrb Brush  

Airport    
Inst HighRes AgrBldg 
Indstrl  

WtlndWa Brush Wetland Wetland Brush  OpenUrb LowRes DeciF  

UpldWaD    
Inst LowRes HighRes 
OpenUrb Comm  

UpldWa Brush Brush  Pasture LowRes OpenUrb  

StrmBas    
Indstrl Brush HighRes 
Comm  

ICCmplx Indstrl Comm Comm Indstrl  HighRes AgrBldg  

MixUrb 
LowRes MedRes 
HighRes Comm 
Indstrl Inst 

Comm HighRes  MxFrst OpenUrb  

OthrUrb BrGrnd OpenUrb OpenUrb  HighRes Comm Indstrl  

Cemet OpenUrb OpenUrb  Pasture AgrBldg  

WtCemet OpenUrb Wetland OpenUrb Wetland  AgrBldg Pasture  

Phrg    
OpenUrb Wetland HighRes 
Comm  

MngWtld Pasture Wetland Wetland Pasture  HighRes OpenUrb Comm  

Recreat OpenUrb OpenUrb  
Inst HighRes Comm Indstrl 
Brush  

Athlet Inst Inst  
Comm Brush Indstrl 
FeedOp  

Stadium Inst Inst  HighRes Indstrl AgrBldg  

MngWtRe OpenUrb Wetland 
Wetland 
OpenUrb  

AgrBldg Inst Pasture  

CrpPstr Crop Pasture Pasture Crop  FeedOp GdnCrop  

AgriWet 
Crop Pasture 
Wetland 

Crop Wetland 
Pasture  

OpenUrb FeedOp AgrBldg  

FmAgrWt Wetland Brush Wetland Brush  
DeciF AgrBldg LowRes 
Pasture  
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MATCHED MD LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

OrchHrt OrchHrt OrchHrt  
AgrBldg FeedOp Crop 
Indstrl Pasture  

FeedOp FeedOp FeedOp  MxFrst Comm Indstrl  

OthrAgr 
FeedOp AgrBldg 
GdnCrop 

AgrBldg FeedOp  
Brush Pasture OpenUrb 
Indstrl  

DeciF10 DeciF Brush DeciF Brush  
MedRes EvrgrnF MxFrst 
LowRes  

DeciF50 DeciF DeciF  
MxFrst Brush LowRes 
HighRes EvrgrnF  

ConiF10 EvrgrnF Brush EvrgrnF Brush  DeciF MxFrst  

ConiF50 EvrgrnF EvrgrnF  
HighRes Brush MxFrst 
DeciF  

Plant OrchHrt EvrgrnF EvrgrnF  DeciF Brush  

MxCnF10 
MxFrst EvrgrnF 
Brush 

MxFrst EvrgrnF 
Brush  

DeciF  

MxCon50 MxFrst EvrgrnF EvrgrnF MxFrst  DeciF Brush HighRes  

MxDec10 MxFrst DeciF Brush 
DeciF Brush 
MxFrst  

EvrgrnF  

MxDec50 MxFrst DeciF MxFrst DeciF  EvrgrnF Brush  

OldFld Brush Brush  Comm Pasture  

PhrgOld Brush Brush  
EvrgrnF OpenUrb Crop 
MedRes Wetland  

DecBrsh Brush Brush  MxFrst LowRes DeciF  

ConBrsh Brush Brush  EvrgrnF  

MxBrush Brush Brush  DeciF LowRes MxFrst  

BrUplnd BrGrnd   
Brush MxFrst EvrgrnF 
OpenUrb  

Stream Water Water  
EvrgrnF Wetland Brush 
OpenUrb  

NatLake Water Water  EvrgrnF Wetland  

Rsrvr Water Water  Wetland  

TdlRiv Water Wetland Water Wetland    

TdlBay Water Water  Wetland OpenUrb  

Dredge Water Water  HighRes Wetland  

Ocean Water Water  OpenUrb Wetland  

SlMrsh Wetland Wetland  
Water Brush LowRes 
MxFrst  

SlMrshV Wetland Wetland  Brush EvrgrnF HighRes  

FrMrsh Wetland Wetland  Water  

VegDune Wetland Wetland  
Indstrl OpenUrb Comm 
EvrgrnF  

PhrgCWt Wetland Wetland    

DecWdWt Wetland DeciF Wetland DeciF  MxFrst Brush EvrgrnF  

ConWdWt Wetland EvrgrnF EvrgrnF Wetland  Brush DeciF MxFrst  

CedarWt EvrgrnF Wetland EvrgrnF Wetland  Brush  

DecBrWt Brush Wetland Wetland Brush  DeciF MxFrst EvrgrnF  

ConBrWt Brush Wetland Wetland Brush  DeciF EvrgrnF  

MxBrWtD DeciF MxFrst DeciF Wetland EvrgrnF Brush  
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MATCHED MD LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

Wetland MxFrst  

MxBrWtC 
EvrgrnF MxFrst 
Wetland 

MxFrst Wetland 
EvrgrnF  

Brush DeciF  

HrbWtNT Brush Wetland Wetland Brush  MxFrst  

PhrgWet Wetland Wetland  Brush EvrgrnF  

MxFrWtD 
DeciF MxFrst 
Wetland 

DeciF MxFrst 
Wetland  

EvrgrnF Brush  

MxFrWtC 
EvrgrnF MxFrst 
Wetland 

MxFrst Wetland 
EvrgrnF  

Brush DeciF  

BrndWet BrGrnd Wetland Wetland  
MxFrst EvrgrnF Brush 
OpenUrb  

Beach Beach Beach  HighRes Indstrl Water  

BrGrnd BrGrnd BrGrnd    

Extr Extr Extr  Indstrl Beach  

AltLnd    OpenUrb Indstrl Comm  

DstrbWt Wetland Wetland  OpenUrb Indstrl Brush  

Transi OpenUrb BrGrnd OpenUrb  Indstrl Comm  

Barren BrGrnd   
Beach Indstrl OpenUrb 
Brush  

d 

MATCHED DE LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

HighRes MultFam MblHm MultFam MblHm  Indstrl SinFam  

MedRes SinFam MblHm SinFam MblHm  
OthrUrb MultFam MixRng 
MixUrb  

LowRes SinFam SinFam  OthrUrb MixRng  

RurlRes SinFam SinFam  MixRng MultFam  

MixRes 
SinFam MultFam 
MblHm 

MblHm  
MixUrb Watrway MixRng 
MixFrst  

Comm 
Retail VclAct 
Warehs OthrCom 

OthrCom Retail  MultFam Frmstd Indstrl  

Milit Inst   
Retail Rsrvr InldSnd 
MultFam  

Indstrl Indstrl Indstrl  Warehs Retail  

Transp    
MixUrb Utility OthrUrb 
Indstrl MultFam Retail  

Road    
SinFam OthrCom Indstrl 
MultFam  

Bridge    IdleFld BayCove VclAct  

Airport    
Frmstd OthrUrb MultFam 
Warehs Feedlot MixUrb 
Indstrl  

WtlndWa Wetland Wetland  
MixRng NtrlLk InldSnd 
ShrbRng EvrgrnF  

UpldWaD    

MixRng Feedlot InldSnd 
ClrCut SinFam MblHm 
OthrUrb MixUrb Frmstd 
ShrbRng  
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MATCHED DE LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

UpldWa ShrbRng MixRng MixRng ShrbRng  
OthrUrb InldSnd ClrCut 
NtrlLk  

StrmBas    OthrCom MultFam  

ICCmplx 
Indstrl Retail VclAct 
Warehs OthrCom 

OthrCom Indstrl  MultFam  

MixUrb MixUrb MixUrb  
OthrUrb MixFrst MixRng 
MultFam  

OthrUrb OthrUrb OthrUrb  
Recreat OthrCom MixUrb 
MultFam  

Cemet OthrUrb OthrUrb  
MultFam Frmstd MixUrb 
SinFam  

WtCemet OthrUrb Wetland OthrUrb Wetland  
SinFam OrchHrt Frmstd 
MultFam  

Phrg    
Utility MultFam MblHm 
OthrUrb MixUrb  

MngWtld 
Pasture HerbRng 
Wetland 

HerbRng Wetland 
Pasture  

Indstrl OthrCom InldSnd  

Recreat Recreat Recreat  VclAct IdleFld  

Athlet Inst   
MblHm Indstrl Feedlot 
Recreat OthrCom IdleFld  

Stadium Inst   
Frmstd OthrCom MblHm 
Indstrl InldSnd MultFam  

MngWtRe Wetland Recreat Wetland Recreat  MixUrb Pasture OthrUrb  

CrpPstr Crop Pasture Pasture Crop  TruckCrp  

AgriWet 
Crop Pasture 
Wetland 

Crop Wetland 
Pasture  

InldSnd NtrlLk  

FmAgrWt 
IdleFld Wetland 
HerbRng ShrbRng 
MixRng 

Wetland IdleFld 
MixRng ShrbRng  

MixUrb OthrUrb  

OrchHrt OrchHrt OrchHrt  Crop Trans OthrCom  

FeedOp Feedlot Feedlot  Frmstd Indstrl  

OthrAgr 
OrchHrt Feedlot 
OthrAgr 

Feedlot OthrAgr  IdleFld Frmstd  

DeciF10 
DecFrst ShrbRng 
MixRng 

ShrbRng MixRng 
DecFrst  

MixFrst EvrgrnF Wetland  

DeciF50 DecFrst DecFrst  
Wetland EvrgrnF MixFrst 
MixRng ShrbRng  

ConiF10 
EvrgrnF ShrbRng 
MixRng 

EvrgrnF ShrbRng  
Wetland NtrlLk DecFrst 
MixFrst InldSnd  

ConiF50 EvrgrnF EvrgrnF  MixFrst InldSnd DecFrst  

Plant OrchHrt EvrgrnF EvrgrnF OrchHrt  OthrAgr  

MxCnF10 MixFrst EvrgrnF EvrgrnF MixFrst  
DecFrst ShrbRng Wetland 
MixUrb MixRng  

MxCon50 MixFrst EvrgrnF EvrgrnF MixFrst  
DecFrst ShrbRng MixUrb 
MixRng Wetland  

MxDec10 
MixFrst DecFrst 
ShrbRng MixRng 

ShrbRng MixFrst 
DecFrst MixRng  

Wetland MixUrb EvrgrnF  

MxDec50 MixFrst DecFrst MixFrst DecFrst  
EvrgrnF MixUrb ShrbRng 
Wetland MixRng  

OldFld 
HerbRng MixRng 
ClrCut 

MixRng ClrCut  ShrbRng IdleFld  

PhrgOld HerbRng MixRng MixRng  ShrbRng IdleFld  

DecBrsh ShrbRng MixRng MixRng ShrbRng  
NtrlLk InldSnd DecFrst 
Wetland  
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MATCHED DE LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

ConBrsh ShrbRng MixRng ShrbRng MixRng  NtrlLk EvrgrnF InldSnd  

MxBrush 
HerbRng ShrbRng 
MixRng 

ShrbRng MixRng  
DecFrst MixFrst InldSnd 
Wetland  

BrUplnd ClrCut Trans   
MixFrst EvrgrnF Wetland 
DecFrst  

Stream Watrway Watrway  
EvrgrnF Wetland Rsrvr 
OthrUrb MixUrb NtrlLk  

NatLake NtrlLk NtrlLk  InldSnd MixRng Rsrvr  

Rsrvr Rsrvr Rsrvr  
BayCove NtrlLk Watrway 
OthrAgr  

TdlRiv BayCove Wetland BayCove  
InldSnd Rsrvr NtrlLk Beach 
Watrway  

TdlBay BayCove BayCove  Watrway  

Dredge Rsrvr Watrway Watrway  Wetland MblHm BayCove  

Ocean BayCove BayCove  Beach Indstrl  

SlMrsh Wetland   
EvrgrnF VclAct MblHm 
MixUrb OthrUrb Watrway 
BayCove  

SlMrshV Wetland   
SinFam EvrgrnF MultFam 
Watrway Crop Extr MixRng  

FrMrsh Wetland Wetland  
Watrway MixRng BayCove 
Beach  

VegDune Wetland InldSnd InldSnd  Indstrl Beach MultFam  

PhrgCWt Wetland Wetland  Watrway EvrgrnF MixRng  

DecWdWt Wetland DecFrst Wetland DecFrst  MixRng EvrgrnF  

ConWdWt Wetland EvrgrnF EvrgrnF Wetland  MixFrst MixUrb MixRng  

CedarWt EvrgrnF Wetland EvrgrnF Wetland  ShrbRng  

DecBrWt 
ShrbRng Wetland 
MixRng 

Wetland ShrbRng 
MixRng  

EvrgrnF DecFrst  

ConBrWt 
ShrbRng Wetland 
MixRng 

Wetland ShrbRng  EvrgrnF  

MxBrWtD 
ShrbRng Wetland 
DecFrst MixRng 

DecFrst Wetland 
ShrbRng MixRng  

EvrgrnF MixFrst  

MxBrWtC 
ShrbRng Wetland 
EvrgrnF MixRng 

ShrbRng Wetland 
EvrgrnF MixRng  

MixUrb MixFrst  

HrbWtNT Wetland HerbRng Wetland  
ShrbRng NtrlLk EvrgrnF 
IdleFld MixRng  

PhrgWet HerbRng Wetland Wetland  
Watrway EvrgrnF ShrbRng 
MixRng  

MxFrWtD 
Wetland DecFrst 
MixFrst 

DecFrst MixFrst 
Wetland  

EvrgrnF MixRng  

MxFrWtC 
Wetland EvrgrnF 
MixFrst 

Wetland EvrgrnF 
MixFrst  

MixRng MixUrb  

BrndWet HerbRng Wetland Wetland  NtrlLk  

Beach Beach Beach  
Watrway Indstrl BayCove 
InldSnd  

BrGrnd    MblHm JunkYrd Frmstd  

Extr Extr Extr  
Indstrl Feedlot InldSnd 
Frmstd VclAct  

AltLnd    
MixUrb OthrUrb Rsrvr 
VclAct  

DstrbWt Wetland Wetland  EvrgrnF Trans InldSnd  
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MATCHED DE LULC 

by ALGORITHM NJ LULC 
by HUMAN 

CONFORMING NON-CONFORMING 

Transi Trans Trans  OthrCom Feedlot Indstrl  

Barren InldSnd InldSnd  Extr VclAct Trans  

 



 

 184 

 

On the contrary, as independent sources can be used to validate each other, in a 

tight scenario, we pick the lower similarity of the two to maximize the accuracy. In 

the matching result, this strategy works as logical conjunction: only if both SIMSem 

and SIMRS are greater than the threshold, the match will be recognized. This time the 

results (bold in Table 6.5) show a rather high precision (77% - 80%) with a small 

sacrifice of the conformance rate. Adopting the F measure defined as the harmonic 

mean of conformance rate (C) and precision (P) 

CP

PC
F

+
=

2
,  

the logical conjunction strategy beats both lexical semantic and remote sensing 

methods and all other aggregation schemes (Figure 6.6), because it offers evenly high 

conformance rate and precision. Having more improved the F measure (0.60-0.75) 

than all other aggregating strategies, the remote sensing method, and the information 

retrieval method alone, a logical conjunction (adopting the minimum similarity) is the 

recommended method to achieve both high completeness and high exactness when 

matching LULC classifications. Especially, when matching the MD LULC to DE 

LULC, a logical conjunction has achieved a F measure of 0.75, which is very close to 

the least agreed human evaluation at 0.77. However, although it is a better solution 

than previous works, conformance rate at 64% with precision at 78% suggests there 

are still substantial improvements in our algorithm needed for this fully automated 

algorithm to be totally reliable in a real world task.  

On the other hand, despite algorhtmic improveiments that are progressively 

harder to achieve as performance gets better, only a small amount of human inputs in 
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the algorithm can provide a more reliable matching. Having a pool of candidates in 

the accommodative scenario, human experts will be able to refine the matching 

results according to their requirements. At the same time, they could be much more 

confident on the matches recognized by both lexical semantics and remote sensing 

methods.  

Table 6.6 Performance in accommodative (Max) and tight (Min) scenarios 

Conformance rate Precision F  

Min Max Min Max Min Max 

DE2MD 0.68 0.92 0.77 0.288912 0.72 0.42 

MD2DE 0.73 0.95 0.78 0.31 0.75 0.47 

NJ2MD 0.65 0.97 0.78 0.35 0.71 0.52 

NJ2DE 0.49 0.91 0.80 0.33 0.60 0.48 
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Figure 6.6 Performance of different compound similarities, i.e. logical 

conjunction (Min), logical disjunction (Max), and weighted sum (WS) 

6.4 Awareness of Semantic Heterogeneities 

Previously in this chapter, we developed different ways to aggregate SIMSem and 

SIMRS, and then compared their resultant matching with human evaluation to decide 

how well each aggregation method performs. However, as mentioned multiple times 
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in previous chapters, using lexical semantics to match LULC categories, including 

human evaluation, are potentially vulnerable to semantic heterogeneities. Therefore, 

in addition to providing a matching result that is more conforming to human 

evaluation (which we achieved in 6.2 and 6.3), we need to take the other advantage of 

possessing two independent sources to locate semantic heterogeneities.  

There are two main types of semantic heterogeneities, which are naming 

conflicts and confounding conflicts (Goh 1997). Naming conflicts happen when 

LULC categories under different labels represent same or similar LULC from 

observation, while confounding conflicts happen when labels and descriptions of two 

LULC categories seem to describe same or similar LULC status, but in reality they 

are different. As discussed in section 2.3, both types have an impact on matching 

LULC classification systems. 

Fortunately, at this point we already have the information needed to discover 

confounding conflicts and reconcile naming conflicts. In chapter 2, we compared 

every two LULC categories using lexical semantics, and the similarity reflects how 

similar two categories are in text (names and descriptions). Then in chapter 4, we 

compared each two LULC categories using remote sensing, and the similarity reflects 

how similar two categories are in terms of actual land cover status. By comparing the 

two results, we could know if LULC categories have names and descriptions 

consistent to their actual LULC status. Inconsistency usually indicates semantic 

heterogeneity, and locating inconsistency is important to discover semantic 

heterogeneities and prevent severe conceptual mistakes in future applications.  
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The inconsistency between LULC categories’ textual definition and actual status 

will be captured by calculating the difference between SIMSem and SIMRS. Table 6.7 

listed 10 most inconsistent matches (5 positive and 5 negative) for each experiment, 

in which the difference is calculated as SIMRS minus SIMSem. A positive value means 

the two categories in matching in more similar in actual status than in text, which may 

fulfill a naming conflict, and a negative value means the opposite – a potential 

confounding conflict, two categories in matching in more similar in text than in actual 

status. A high value represents greater disparity between actual status and text on that 

match.   

In Table 6.7, we can see many pairs of semantically heterogeneous categories 

that have been discussed in previous chapters. Given detailed discussions in chapter 2 

and 3, we are not surprised to see LULC concepts that are well known to be 

complicated, such as Wetland and Forest, dominated the list.  

Among matches whose SIMRS is higher than SIMSem, naming conflicts can 

explain many of those, such as Vehicle Related Activities DE to Industrial MD, 

Natural Lake DE to Water MD, and Plantation NJ to Evergreen Forest MD. Other 

matches root in the limitation of remote sensing, where lexical semantic method can 

make a finer discrimination. For example, Industrial and Commercial Complexes NJ 

is matched to Multi Family Dwellings DE due to highly similar land cover status 

from observation, while their land use is actually different. The confusion between 

forested wetland (e.g. Coniferous Wooded Wetlands and Atlantic White Cedar 

Wetlands in NJ) and forest (e.g. Evergreen Forest in DE) is included in this type of 

inconsistency. Surprisingly, remote sensing saw more similarity in Extractive MD to 



 

 188 

 

Extraction DE than the lexical semantic method did. This results from a drawback of 

using latent semantics rather than “real” semantics. Despite their obvious semantic 

relation, term extractive and term extraction do not share occurrences in current 

context and therefore are not considered related in latent semantics.  

Table 6.7 Difference between SIMRS and SIMSem 

a 

DE LULC MD 

LULC 

SIMRS – 

 SIMSem 

DE LULC MD 

LULC 

SIMRS – 

 SIMSem 

InldSnd Indstrl 0.600  OrchHrt OrchHrt -0.921  

VclAct Indstrl 0.555  OthrAgr Brush -0.892  

NtrlLk Water 0.546  MixRng MxFrst -0.859  

Extr Indstrl 0.482  Wetland Wetland -0.845  

OthrAgr FeedOp 0.469  IdleFld Brush -0.749  

b 

MD 

LULC 

DE LULC SIMRS – 

 SIMSem 

MD 

LULC 

DE LULC SIMRS – 

 SIMSem 

Extr Extr 0.215  Pasture Pasture -0.834  

Wetland MixRng 0.214  Wetland Wetland -0.802  

OpenUrb SinFam 0.213  FeedOp Feedlot -0.626  

Beach Retail 0.200  Extr VclAct -0.609  

Beach BayCove 0.200  OrchHrt OrchHrt -0.549  

c 

NJ LULC MD 

LULC 

SIMRS – 

 SIMSem 

NJ LULC MD 

LULC 

SIMRS – 

 SIMSem 

ICCmplx HighRes 0.978  MxCnF10 MxFrst -0.335  

ConWdWt EvrgrnF 0.695  MxDec10 MxFrst -0.324  

Barren Indstrl 0.683  MxBrWtD MxFrst -0.324  

Plant EvrgrnF 0.630  DeciF50 MxFrst -0.319  

Extr Indstrl 0.610  MxBrWtC MxFrst -0.313  
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d 

NJ LULC DE LULC SIMRS – 

 SIMSem 

NJ LULC DE LULC SIMRS – 

 SIMSem 

Bridge BayCove 1.000  Barren VclAct -0.870  

ICCmplx MultFam 0.998  PhrgWet Wetland -0.834  

CedarWt EvrgrnF 0.893  PhrgCWt Wetland -0.823  

ConWdWt EvrgrnF 0.783  VegDune Beach -0.772  

Plant EvrgrnF 0.759  CedarWt Wetland -0.769  

As for matches whose SIMSem is higher than SIMRS, confounding conflict is the 

main cause, especially for those involving wetland or forest. Confounding conflicts 

originated from different understanding of same LULC concepts, and can be too 

subtle to be captured by lexical semantic method. Although sharing same or similar 

names and descriptions, some categories in different classification systems have very 

different land cover statuses, e.g. Wetland MD and Wetland DE, which can be 

observed in remote sensing.  

This list, again, reminds us of semantic heterogeneities in LULC classification 

systems that need to be overcome before LULC data from different sources become 

interoperable. While comparing the textual definitions of these categories is just 

telling one side of the story, remote sensing will serve as an important second source 

to differentiate or reconcile them.  

6.5 Conclusions and Recommendations  

Textual description and remote sensing are two different angles to understanding 

a LULC category, and methods using either one of the two data sources were 

implemented to match LULC classifications. But as we found out in previous 

chapters, both methods have limitations. Lexical semantic method is vulnerable to 
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semantic heterogeneities, while differentiating some LULC categories is simply 

beyond the capability of remote sensing. 

To overcome the limitations of each method when used alone, we took the 

advantages of combining the two together. The advantage is two-fold. First, two 

methods can be mutually complementary: the missing pieces in one can be picked up 

by the other, and make the matching more complete. Second, two methods enables 

the mutual validation, which is important to separate information from noise.  

Semantic integration aims at determining the relations between concepts, which 

is based on the measurement of their semantic similarities. The integration of the two 

methods can be achieved by aggregating the output similarities. We first adopted 

weighted sum as the aggregating strategy, and by examining the matching result, we 

find weighted sum gives higher f measure than the better performed lexical semantics 

or remote sensing method alone (10.0% maximum, 5.3% on average). Benefits of 

mutual complementation (9.0% maximum, and 3.7% on average increase in 

conformance rate) and mutual validation (11% maximum, 4.3% on average increase 

in precision) are both observed in weighted sum’s improved matching results, even 

without any optimization on weights.  

After attempts to optimize weighting by exploring methods’ input data and 

output similarities, we realized better weighting should involve domain knowledge. 

Given remote sensing’s limitation on discriminating urban land uses, we proposed an 

uneven weighting scheme that assigned a higher weight to the similarity of semantics 

and a lower weight to similarity of remote sensing when matching urban categories, 

and kept an even weighting (0.5) to both when matching non-urban categories. The 
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performance is slightly improved (1%) under this weighting in majority of cases, 

although exceptions may happen when a LULC classification has very few and 

simple urban categories, which can be separated well in remote sensing.  

If weighted sum is the straightforward answer to the question what is the 

integrated matching result, a pool of candidate matches with recommendations is the 

detailed answer, based on which human adjustments according to specific 

requirements can be made. Mutual complementation between independent sources 

leads to an accommodative scenario, in which the higher value from the two 

similarities is chosen to maximize the completeness, and a highly conforming (94% 

on average) but less precise (32% on average) matching result is achieved. On the 

contrary, in a tight scenario lead by mutual validation, the lower similarity is chosen 

to ensure the accuracy, and the result shows a high precision (78% on average) with 

only small sacrifice in the conformance rate (63% on average). Either the weighted 

sum or a tight scenario achieves improved matching results over the Last but not least, 

we listed categories with largest differences between similarity of semantics and 

similarity of remote sensing. Many semantic heterogeneous categories discussed in 

previous chapters are on the list, which once again reminds us of semantic 

heterogeneities in LULC classification systems that must to be overcome before 

LULC data from different sources become interoperable.  
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Chapter 7: Conclusions and Future Directions 

7.1 Reason of Integrating LULC Information  

In GI Science, one of a most important interoperability issue needs to be 

resolved for LULC data, LULC is of vital importance because of its environmental 

impacts on many aspects of the Earth system throughout the globe (Foley et al. 2005),. 

Accordingly, this research aims to address the interoperability of LULC information 

derived by different authorities using very different classificatory approaches.  

Interoperability is impaired by six levels of heterogeneity (Sheth 1999). Among 

them, semantic heterogeneity is the main challenge. Semantic heterogeneity 

originated from the different conceptualization of physical existence. Ontology is the 

theory of physical existence, and serves as a base to which heterogeneous semantic 

expressions can return. It makes semantic integration possible.  

In this dissertation, we adopted Barry Smith’s definition of ontology as the 

representation of universals (Smith 2004).  Inspired by considering LULC categories 

as universal, we calculated the similarity between categories not only by comparing 

their semantic expression (e.g. text and semantic taxonomy), but also by comparing 

their individual parcels, which are directly monitored by modern earth observing 

technologies, such as remote sensing. 

7.2 Summary of Methodology and Findings  

LULC data are described by LULC classification systems. The interoperability 

of LULC data depends on the semantic integration of LULC classification systems. A 

typical LULC classification system organizes LULC categories in a taxonomy 
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structure, in which each category is defined by a name (label) and often followed by a 

textual description.  

Existing works on semantically integrating LULC classification systems has a 

major drawback: it is rather difficult to define comparable semantic representations 

from textual descriptions. To tackle this problem, we borrowed the method of 

comparing documents in information retrieval, and applied it to the semantic 

integration of LULC classification system. We tried to compare and match LULC 

classification systems using lexical information contained in category name and 

descriptions. Our method is based on bag-of-words model and cosine similarity 

enhanced by LSA or WordNet, and the results showed large improvement (about 

70%) compared to previous feature-based models.  

However, this is just solving half of the problem. Lexical semantic methods are 

not able to solve the semantic heterogeneities happening between different 

classificatory approaches. In LULC classification systems, confounding conflict 

happens when labels and descriptions of two LULC categories seem to represent 

same or similar LULC status, but in reality different. Confounding conflicts are 

widely observed in complicated land use concepts, such as wetland. Due to variations 

in vegetation species and coverage, water table height and period, parcels labeled as 

wetland in different areas can be way different in actual land cover status. Lexical 

semantic methods, however, are easily disguised by same label and similar concept 

description to discover this type of semantic heterogeneity. The naming conflict 

happens when LULC categories under different labels represent same or similar 
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LULC type from observation. Without confirmation of their actual land cover status, 

lexical semantic method cannot achieve reliable matching.  

To discover confounding conflicts and reconcile naming conflicts, we not only 

need to know if two LULC categories are seemingly different or similar, but also one 

step forward, we need to know if they are different or similar in reality, which is why 

a method of applying remote sensing to the integration of LULC classification 

systems is important.  

Remote sensing is a means of observation on actual LULC status of individual 

parcels. We calculated parcel level statistics from spectral and textural data, and used 

these statistics of parcels from different areas in a SVM classifier as training and 

testing respectively. Then an extensional similarity measurement is adopted to 

calculate category similarity from parcel level matches. The matching results showed 

this remote sensing based approach fulfilled its goal – to overcome semantic 

heterogeneities and achieve more reliable and accurate matching between LULC 

descriptions in the majority of situations.  

The generality of remote-sensing-based integration of LULC classification 

systems depends on two factors: the availability and applicability of remote sensing 

data and the comparability of LULC categories. As for data availability, the LULC 

classifications in comparison must be in areas covered by same/similar type of 

remotely sensed data. This explains the reason of using Landsat data: it has a global 

coverage. As for data applicability, remotely sensed data in use must represent a 

consistent relation between land cover and reflectance values, which means if 

multiple scenes are involved, the effects of the atmosphere, sensor, and sun on land 
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surface reflectance must be corrected. The experiments suggest our remote sensing 

method has the geospatial generality in neighboring areas. To deal with these larger 

areas, the remote-sensing-based method has the potential to serve as a translation 

between classification systems in distant areas, but a strategy of adaptation is needed 

to be developed in future works. 

The integration method based on remote sensing is limited by the capability of 

remote sensing, which cause 34%-42% non-conformance (compared to human 

evaluation) in our matching result. In order to overcome the limitation, we refined the 

input data of the integration method to only include parcels that are large enough to 

contain 50 or more Landsat ETM+ pixels. The result shows using large parcels has 

increased the conformance rate (9.0% maximum, and 3.7% on average) and/or the 

precision (11% maximum, 4.3% on average) for most LULC categories, except for a 

few of urban LULC categories that do not have any large parcels. All major forest 

and wetland categories, which are of special interest in environment analysis and 

resource management, contain qualified large parcels and were included in the 

matching process.  

Moreover, by using only large parcels, we effectively refined parcel level 

statistics and made a more reliable data representation of LULC categories, based on 

which the extraction of underlining semantic relations is achieved.  

To overcome the limitations of either lexical semantic or remote sensing based 

method, we combined the two together by aggregating their output similarities. We 

first adopted weighted sum as the aggregating strategy, and by examining the 

matching result, we find weighted sum gives better performance than the better 
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performed lexical semantics or remote sensing method alone (10.0% maximum, 5.3% 

on average increase in f measure). Benefits of mutual complementation (9.0% 

maximum, and 3.7% on average increase in conformance rate) and mutual validation 

(11% maximum, 4.3% on average increase in precision) are both observed in 

weighted sum’s improved matching results. Then in order to accommodate human 

adjustments according to specific requirements, we introduced an accommodative 

scenario, in which the higher value from the two similarities is chosen to maximize 

the completeness, and a tight scenario, in which the lower similarity is chosen to 

ensure the accuracy. As expected, a highly conforming (94%) but less precise (32%) 

matching result is achieved in an accommodative scenario, while a high precision 

(78%) with only small sacrifice of the conformance rate (63%) is achieved in a tight 

scenario. In our best experiment, the F measure achieved in a tight scenario (0.75) is 

close to that of the least agreed human evaluation (0.77). This indicates our 

methodology’s effectiveness. 

Last but not least, we studied LULC categories with largest differences between 

lexical semantics and remote sensing, many of which are discussed in previous 

chapters. This, once again, reminds us of semantic heterogeneities in LULC 

classification systems that must to be overcome before LULC data from different 

sources become interoperable and serve as the key to understanding Earth system and 

global change.  
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7.3 Future Direction – Potential Global LULC Data Interoperability 

Just recently (June 2001), the Global Land Cover Facility (GLCF) at the 

University of Maryland College Park has launched the first global surface reflectance 

dataset (GLS SR) based on the Landsat series of satellites (GLCF and GSFC 2011).  

Retrieved from remotely sensed images, surface reflectance is corrected for 

atmospheric effects to approximate the reflectance just above the Earth's surface. 

Without any artifacts from the atmosphere or illumination and viewing geometry, 

surface reflectance not only provides an accurate observation on land cover, but also 

largely increases the consistency between remotely sensed images at different times 

and locations.  

Surface reflectance has been a standard for MODIS. GLS SR is the very first 

global surface reflectance product based on Landsat data, at a spatial resolution 8 

times finer than that of previous MODIS surface reflectance. 

GLS SR will provide “the primary input for essentially all higher-level surface 

geophysical parameters” (GLS SR website: http://www.glcf.umd.edu/data/gls_SR/), 

and open doors to many new applications, including the semantic integration of 

LULC information introduced in this dissertation. With GLS SR data’s global 

availability and consistency, our remote-sensing-based method has the potential to  

serve as a translation between semantic heterogeneous classifications in distant areas, 

even they are defined in different languages.  

However, it is very possible that LULC status, either at a continental scale or for 

distant areas around the globe, will be too heterogeneous to be integrated directly. 
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Therefore, in the future we will look for an expansion strategy, such that more 

comparable classifications from neighboring regions should be first compared and 

integrated: the integration will then progressively incorporate more comparable 

classifications and gradually grow to a continental scope.  
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Appendices 

Appendix I 

====MARYLAND CATEGORIES==== 

Low-density 

residential(LowRes) 

Detached single-family/duplex dwelling units, yards and associated areas. 

Areas of more than 90 percent single-family/duplex dwelling units, with lot 

sizes of less than five acres but at least one-half acre (.2 dwelling units/acre to 

2 dwelling units/acre).  

Medium-density 

residential(MedRes) 

Detached single-family/duplex, attached single-unit row housing, yards, and 

associated areas. Areas of more than 90 percent single-family/duplex units and 

attached single-unit row housing, with lot sizes of less than one-half acre but 

at least one-eighth acre (2 dwelling units/acre to 8 dwelling units/acre).  

High-density 

residential(HighRes) 

Attached single-unit row housing, garden apartments, high-rise 

apartments/condominiums, mobile home and trailer parks. Areas of more than 

90 percent high-density residential units, with more than 8 dwelling units per 

acre.  

Commercial(Comm) Retail and wholesale services. Areas used primarily for the sale of products 

and services, including associated yards and parking areas.  

Industrial(Indstrl) Manufacturing and industrial parks, including associated warehouses, storage 

yards, research laboratories, and parking areas.  

Institutional(Inst) Elementary and secondary schools, middle schools, junior and senior high 

schools, public and private colleges and universities, military installations 

(built-up areas only, including buildings and storage, training, and similar 

areas), churches, medical and health facilities, correctional facilities, and 

government offices and facilities that are clearly separable from the 

surrounding land cover.  

Extractive(Extr) Surface mining operations, including sand and gravel pits, quarries, coal 

surface mines, and deep coal mines. Status of activity (active vs. abandoned) is 

not distinguished.  

Open urban land(OpenUrb) Urban areas whose use does not require structures, or urban areas where non-

conforming uses characterized by open land have become isolated. Included 

are golf courses, parks, recreation areas (except areas associated with schools 

or other institutions), cemeteries, and entrapped agricultural and undeveloped 

land within urban areas.  

Cropland(Cropland) Field crops and forage crops.  

Pasture((Pasture) Land used for pasture, both permanent and rotated; grass.  

Orchards/vineyards/horticulture 

(OrchVineHort) 

Areas of intensively managed commercial bush and tree crops, including areas 

used for fruit production, vineyards, sod and seed farms, nurseries, and green 

houses.  

Feeding operations(FeedOp) Cattle feed lots, holding lots for animals, hog feeding lots, poultry houses.  

Agricultural building(AgrBldg) Agricultural building breeding and training facilities, storage facilities, built-

up areas associated with a farmstead, small farm ponds, commercial fishing 

areas.  

Row and garden crops 

(RowGdnCrop) 

Intensively managed truck and vegetable farms and associated areas.  

Deciduous forest(DeciFrst) Forested areas in which the trees characteristically lose their leaves at the end 

of the growing season. Included are such species as oak, hickory, aspen, 

sycamore, birch, yellow poplar, elm, maple, and cypress.  

Evergreen forest(EvrgrnFrst) Forested areas in which the trees are characterized by persistent foliage 

throughout the year. Included are such species as white pine, pond pine, 

hemlock, southern white cedar, and red pine.  
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====MARYLAND CATEGORIES==== 

Mixed forest(MixFrst) Forested areas in which neither deciduous nor evergreen species dominate, but 

in which there is a combination of both types.  

Brush(Brush) Areas which do not produce timber or other wood products but may have cut-

over timber stands, abandoned agriculture fields, or pasture. These areas are 

characterized by vegetation types such as sumac, vines, rose, brambles, and 

tree seedlings.  

Water(Water) Rivers, waterways, reservoirs, ponds, bays, estuaries, and ocean.  

Wetlands(Wetland) Forested or non-forested wetlands, including tidal flats, tidal and non-tidal 

marshes, and upland swamps and wet areas.  

Bare ground(BareGrnd) Areas of exposed ground caused naturally, by construction, or by other 

cultural processes.  

 

====DELAWARE CATEGORIES==== 

Single Family Dwellings(SinFam) 

Multi Family Dwellings(MultFam) 

Mobile home Parks/Courts(MblHm) 

Retail Sales/Wholesale/Professional Services(Retail) 

Vehicle Related Activities(VehicleAct) 

Junk/Salvage Yards(JunkYard) 

Warehouses and Temporary Storage(Warehouse) 

Other Commercial(OtherComm) 

Industrial(Indstrl) 

Utilities(Utility) 

Mixed Urban or Built-up Land(MixUrb) 

Other Urban or Built-up Land(OtherUrb) 

Institutional/Governmental(Inst) 

Recreational(Recreate) 

Cropland(Cropland) 

Pasture(Pasture) 

Idle Fields(IdleFld) 

Truck Crops(TruckCrop) 

Orchards/Nurseries/Horticulture(OrchNursHorti) 

Confined Feeding Operations/Feedlots/Holding(Feedlot) 

Farmsteads and Farm Related Buildings(Farmstead) 

Other Agriculture(OtherAgr) 

Herbaceous Rangeland(HerbRng) 

Shrub/Brush Rangeland(ShrubRng) 

Mixed Rangeland(MixRng) 

Deciduous Forest(DeciFrst) 

Evergreen Forest(EvrgrnFrst) 

Mixed Forest(MixFrst) 

Clear-cut(ClrCut) 

Waterways/Streams/Canals(Waterway) 

Natural Lakes and Ponds(NtrlLk) 

Man-made Reservoirs and Impoundments(Rsrvr) 

Bays and Coves(BayCove) 

Wetlands(Wetland) 

Beaches and River Banks(Beach) 

Inland Natural Sandy Areas(InlandSand) 
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====DELAWARE CATEGORIES==== 

Extraction(Extr) 

Transitional(Trans) 

 

==== New Jersey Categories ==== 

1110 HighRes  

Residential (High Density 

or Multiple Dwelling) This category contains either high-density single units or multiple dwelling 

units on 1/8 to 1/5-acre lots. These areas are found in the densely populated 

urban zones and generally are characterized by impervious surface coverage of 

~65%. 

1120 MedRes  

Residential (Single Unit 

Medium Density) This category is comprised of residential urban/suburban neighborhoods 

greater than 1/8 acre and up to and including 1/2 acre lots. These areas 

generally contain impervious surface areas of ~30-35%. 

1130 LowRes  

Residential (Single Unit 

Low Density) This category contains single unit residential neighborhoods with areas greater 

than 1/2 acre up to and including 1-acre lots. These areas generally contain 

impervious surface areas of ~20-25%. 

1140 RurlRes  

Residential (Rural Single 

Unit) This category contains single unit residential neighborhoods with areas 

between 1 acre and up to and including 2-acre lots. These areas generally 

contain impervious surface areas of ~15-20% or less. This type is found in 

sparsely populated regions surrounded by or adjacent to forested or 

agricultural lands. Also included are estates or modern sub-divisions with 

large lot sizes providing a density less than or equal to 1 dwelling unit per 

acre. Impervious surface areas in the more rural settings can be as low as 5%. 

1150 MixRes  

Mixed Residential The mixed residential category is used for an area where various residential 

uses occur and the individual uses cannot be separated at mapping scale (1 

acre). Where more than 1/3 intermixture of other residential use or uses occurs 

in a specific area, it is classified as mixed residential. Where the inter-mixtures 

of other residential land use or uses total less than 1/3 of the specified area, the 

dominant land use category is applied. Impervious surface coverage in these 

areas can vary significantly. 

1200 Comm  

Commercial and Services 
Areas that contain structures predominantly used for the sale of products and 

services are classified as Commercial and Services. The main building, 

secondary structures and supporting areas such as parking lots, driveways and 

landscaped areas are also placed under this category, (unless the landscaped 

areas are greater than 1 acre in size in which case they are put into a separate 

category). Sometimes non-commercial uses such as residential or industrial 

intermix with commercial uses making it difficult to identify the predominant 

land use. These categories are not separated out; but, if they exceed 1/3 of the 

total commercial area, the Mixed Urban category (16) is used. Often, specific 

uses of some commercial and services buildings cannot be easily identified 

from photography alone. Some supplemental information is required. These 

areas generally have a high percentage of impervious surface coverage. Any of 

the specific uses listed below may be included in the 1200 category, with the 

exception of Military Installations which are delineated separately under the 

code 1211. 

1211 Milit  

Military Installations Included in this category are portions of former military installations, that have 

been de-commissioned and sold. New development of these areas has not yet 

begun, so particular use can be determined from the photography. Many of the 

undeveloped portions of these former military sites may remain as preserved 

undeveloped open space. Developed areas may be re-developed for other uses. 

However, in all cases, the new intended use is not discernible from the latest 

available photography, or other ancillary data.  

1300 Indstrl  

Industrial This category encompasses a great variety of structure types and land uses. 

Light and heavy industry are comprised of land uses where manufacturing, 

assembly or processing of products takes place. Power generation is included 

here because of its similarity to heavy industry. These areas generally have a 
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==== New Jersey Categories ==== 

high percentage of impervious surface coverage. 

1400 Transp  

Transportation/Communica

tion/Utilities The transportation, communication, and utilities land uses are often associated 

with the other Urban or Built-up categories, but are often found in other 

categories. However, they often do not meet minimum mappable size and are 

considered an integral part of the land use in which they occur. The presence 

of major transportation routes, utilities such as sewage treatment plants and 

power lines, power substations, and communication facilities greatly influence 

both the present and potential uses of an area. These areas generally have a 

high percentage of impervious surface coverage. 

1410 Road  

Major Roadway 
Major roadways include limited access highways that typically contain at least 

two lanes in each direction, separated by a concrete barrier or median strip. 

There are usually no cross streets or traffic lights, and access is limited to 

ramps. Included in this category are service (rest) areas, right-of-ways, 

interchanges, maintained hillsides, other service and terminal facilities and 

portions of local roads. Examples are interstates, U.S. highways and freeways. 

Limited access highways are characterized by 'diamon' and 'clover-leaf' 

patterns of ramps, crossroads intersecting via underpasses or overpasses, and 

the lack of adjacent residential, commercial or industrial development with 

direct connections to the highway. Limited access highways right-of-way are 

often bounded by fences or drainage paths. 

1419 Bridge  

Bridge Over 

Water(WATER) Bridges over water are characterized by having significance in the delineation 

of watercourses flowing below. Any bridge or portion of roadway constructed 

over a mappable open water body has been identified and characterized as 

water. Although the bridge surface is impervious, the structure does not impact 

or alter the impervious nature of the water flowing below. 

1440 Airport  

Airport Facilities Airport facilities are characterized by the presence of long, linear runway 

surfaces and adjacent areas cleared of vegetation and other obstructions. 

Typical moderate to large-sized airports contain parallel primary runways, 

smaller parallel taxi strips, intervening land, aircraft parking aprons, hangars, 

terminals, service buildings, navigation aids, fuel storage areas, parking lots, 

and limited buffer zones. This category also includes heliports and land 

associated with seaplane bases. It does not include other built-up land of small 

airports. 

1461 WtlndWa  

Wetland Rights-of-

Way(WETLANDS) 
Included in this category are rights-of-way that exist in former wetland areas, 

and which still exhibit evidence of soil saturation on the photography. Because 

of alterations associated with creating the rights-of-way and the periodic 

clearing, these areas may not support the typical natural wetland vegetation 

found in adjacent unaltered natural areas. They may, however, support 

shrubby forms of the surrounding vegetation. They do, however, exist in areas 

shown on the Natural Resources Conservation Service soil surveys to have 

hydric soils, and exhibit the darker tonal signatures associated with saturated 

soils on the photography. Colors of these areas will vary generally from blue-

gray to black on winter CIR film and dark gray to black on panchromatic film. 

Textures will generally be smooth to slightly rough depending on whether the 

dominant vegetation is low herbaceous species or taller shrubs. 

1462 UpldWaD  

Upland Rights-of-Way 

Developed Included in this category are Rights-of-Way in uplands that exist in developed 

areas. These areas looked well maintained, usually in mowed grass, but are not 

part of adjacent land use. It should include areas adjacent to urban or 

agricultural areas but not visibly used in connection with any agricultural or 

urban land use. They may contain access roads and have a clear separation 

from surrounding land use. Because of alterations associated with maintaining 

these portions of the rights-of-way, these areas may not support typical natural 

vegetation. Textures will generally be smooth due to the lack of low 

herbaceous species or taller shrubs. 
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==== New Jersey Categories ==== 

1463 UpldWa  

Upland Rights-of-Way 

Undeveloped Included in this category are Rights-of-Way in uplands that usually exist in 

undeveloped non-urban areas. They typically support shrubby forms of the 

surrounding vegetation, which may be periodically cut or mowed back. 

Because of alterations associated with creating the rights-of-way, these areas 

may support the natural vegetation found in adjacent unaltered natural areas. It 

should also include areas adjacent to agricultural areas but not visibly used in 

connection with any agricultural or urban land use. Textures will generally be 

smooth to slightly rough depending on whether the dominant vegetation is low 

herbaceous species or taller shrubs.  

1499 StrmBas  

Stormwater Basin This category consists of stormwater management basins or areas identified as 

serving the function of a surface water collection site. They are typically 

associated with new commercial and residential areas. They may contain water 

and show varying degrees of management or vegetation. 

1500 ICCmplx  

Industrial and Commercial 

Complexes 
The Industrial and Commercial Complexes category includes those industrial 

and commercial land uses that typically occur together or in close proximity. 

These areas are commonly referred to as 'Industrial or Commercial Parks.' The 

major types of business establishments located in these planned industrial and 

commercial parks are light manufacturing, administration offices, research and 

development facilities, and computer systems companies. Also found here are 

facilities for warehousing, wholesaling, retailing and distributing. Industrial 

and Commercial Complexes are usually located in suburban or rural areas. 

The key identifying feature is the planned layout of buildings exhibiting the 

same or very similar construction. Other identifying features include well kept 

lawns and landscaped areas, ample parking areas and common roadways 

connecting buildings that also provide access to major highways. The lack of 

smokestacks, storage tanks, raw materials or finished products, and waste 

signifies that no heavy industries are present. These areas generally have a 

high percentage of impervious surface coverage (~85%) and some may be up 

to 100%. 

1600 MixUrb  

Mixed Urban or Built-up 

Land 
This category includes those urban or built-up areas for which uses cannot be 

separated into individual categories at the mapping scale employed. Areas are 

identified under the mixed urban category when more than one-third 

intermixture of another use or uses is evident. Uses considered in mixed urban 

include primarily residential, commercial/service, industrial and 

transportation/communication/utility. Not included in the category are areas 

considered part of a definable commercial strip as described under 1202. In 

addition, open land that could be classified for any agricultural use would not 

be included in the mixed urban category. Level 3 divisions of the Mixed 

Urban category involve separating the mixed areas based on the predominant 

use in the intermixture, if one is evident. 

1700 OthrUrb  

Other Urban or Built-up 

Land 
Included are undeveloped, open lands within, adjacent to or associated with 

urban areas. Some structures may be visible, as in the case of abandoned 

residential or commercial sites that have not yet been redeveloped. The land 

cover in these areas may be brush-covered or grassy. Large, managed, 

maintained lawns common to some residential areas, and those open areas of 

commercial/service complexes, educational installations, etc., are also 

included. Undeveloped, but maintained lawns in urban parks are also part of 

this category, if a specific recreational use is not evident. In addition, areas 

that have been partially developed or redeveloped but remain unfinished are 

included. Cemeteries were included in this category in 1986 & 1995, but were 

separated out for 2002. 

1710 Cemet  

Cemetery These areas represent large tracts of primarily open land within urban areas. 

Large cemeteries can be identified by layout of driveways, lots, mausoleums 

and marking stones. Cemeteries associated with small towns, individual 
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==== New Jersey Categories ==== 

churches or family estates may not be easily identifiable. Supplemental 

information is often needed to identify these smaller cemeteries. 

1711 WtCemet  

Cemetery on 

Wetland(WETLANDS) These areas represent large tracts of primarily open land within urban or rural 

areas on land identified as wetland. Large cemeteries can be identified by 

layout of driveways, lots, mausoleums and marking stones. Cemeteries 

associated with small towns, individual churches or family estates may not be 

easily identifiable. Supplemental information is often needed to identify these 

smaller cemeteries. 

1741 Phrg  

Phragmites Dominate 

Urban Area This category contains urban areas where the common reed, Phragmites 

australis dominates. The photographic signatures for these areas are rough and 

puffy and range in color from tan to silvery pale white.  

1750 MngWtld  

Managed Wetland in 

Maintained Lawn Green 

space(WETLANDS) 
Included in this category are former natural wetland areas that now are part of 

an altered managed landscape, but which still exhibit signs of soil saturation 

on the imagery. These areas do not support typical wetland vegetation, but are 

vegetated primarily by grasses and other planted vegetation that may be 

routinely mowed. Examples of this category would be maintained open lawns 

and storm water swales in residential, commercial or industrial areas. None of 

the wetlands included in this category are routinely inundated, although the 

swales may be on occasion. These altered wetlands exist on areas shown on 

the US Soil Conservation Service soil surveys to have hydric soils.  

1800 Recreat  

Recreational Land Under this category are included those areas which have been specifically 

developed for recreational activities, if these areas are open to the general 

public. Any facilities that are part of a resort complex and open only to patrons 

of the hotel or motel are not mapped under category 18, but under Commercial 

and Services category. Facilities mapped as recreational land may charge user 

fees to the public, such as public golf courses; or, they may be free to the 

public, such as ball fields on public school grounds. Level III divisions of this 

category involve identifying the predominant recreational uses of the areas. 

1804 Athlet  

Athletic Fields (Schools) Included in this category are a variety of recreational facilities which are not 

part of established parks, such as baseball fields, tennis courts, basketball 

courts, and playgrounds. These may be associated with schools. Industrial and 

commercial firms, or a community housing development. 

1810 Stadium  

Stadium Theaters Cultural 

Centers and Zoos Included in this category is any entertainment facility that is developed for 

public use. Stadiums, outdoor concert halls, racetracks (horse and car), drive-

in theaters, amusement parks, and zoos are the primary facilities involved. 

Such facilities are primarily commercial, although some public recreation 

areas may be found. Not included are similar facilities on private property, 

such as horse tracks within private farms, that are open to the public. Parking 

areas, driveways, and support buildings are mapped in this category. 

1850 MngWtRe  

Managed Wetland in Built-

up Maintained Rec 

Area(WETLANDS) 
Included in this category are former natural wetland areas that now are part of 

an altered managed recreational area, but which still exhibit signs of soil 

saturation on the imagery. These areas do not support typical wetland 

vegetation, but are vegetated primarily by grasses and other planted vegetation 

that may be routinely mowed. Examples of this category would be saturated 

portions of golf courses, and fields used for baseball and other sports in 

designated recreation areas. None of the wetlands included in this category are 

routinely inundated, although portions may be on occasion. These altered 

wetlands exist on areas shown on the US Soil Conservation Service soil 

surveys to have hydric soils.  

2100 CrpPstr  

Cropland and Pastureland This Level II category contains agricultural lands managed for the production 

of both row and field crops and for the grazing of cattle, sheep and horses. 

Also included in this category are croplands left fallow or planted with soil 

improvement grasses and legumes. Cropland and pastureland can easily be 

distinguished from other land uses with large-scale imagery. 
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2140 AgriWet  

Agricultural Wetlands 

(Cranberry Farms & 

Modified 

Uplands)(WETLANDS) 
Included in this category are lands under cultivation that are modified former 

wetland areas, and which still exhibit evidence of soil saturation on the 

photography. These lands will exhibit the textural signature characteristics 

described for the other agricultural categories, but will have darker color and 

tonal signatures. Colors will range from blue-gray to black on winter CIR film 

and dark gray to black on panchromatic film. In addition, these agricultural 

wetlands also exist in areas shown on soil surveys of the Natural Resources 

Conservation Service to have hydric soils. In the 2002 update all Cranberry 

farmland have been combined into this code, regardless of the presence of 

water. 

2150 FmAgrWt  

Former Agricultural 

Wetlands (Becoming 

Shrubby not Built-

up)(WETLANDS) This category was added to identify areas coded as 2140 in the baseline data 

set, but which do not appear to be under active cultivation in subsequent years. 

These areas have not undergone any other alterations, such as filling, grading 

or development, and may again be returned to the 2140 category if the 

farmland is again place under cultivation. However, these wetlands may 

continue to develop into a scrub/shrub wetland area if active cultivation is not 

resumed. As areas in a state of flux, they have been given a separate code. 

2200 OrchHrt  

Orchards Vineyards 

Nurseries Horticultural 

Areas Sod Farms This Level II category contains agricultural areas, which are intensively 

managed for production of fruits, trees, ornamental plants, and vegetable 

seedlings. Wholesale greenhouses where plants are grown are also included in 

this category as are orchards, nurseries, cranberry farms and blueberry farms 

vineyards, sod and seed farms, and commercial greenhouses. Areas delineated 

include actively cultivated lands as well as land associated with the operations 

as, uncultivated lands, dirt roads, dikes, etc. 

2300 FeedOp  

Confined Feeding 

Operations This Level II category contains specialized livestock and poultry production 

enterprises and other specialty farms. These operations have high populations 

in relatively small areas, resulting in a concentration of waste material. Since 

this concentrated animal waste is a critical environmental concern, these areas 

warranted a specific Level II category. Normal structures [barns] associated 

with a farmstead are not mapped in this category. 

2400 OthrAgr  

Other Agriculture This category contains other miscellaneous agricultural areas, including 

experimental fields, horse farms and isolated dikes and access roads. 

4110 DeciF10  

Deciduous Forest (Low 

Crown Closure) This category contains deciduous forest stands that have crown closure greater 

than 10%, but less than 50%. Crown closure is the percentage of a forest area 

occupied by the vertical projections of tree crowns. Crown closure percentages 

provide a reasonable estimate of stand density. An ocular estimate of percent 

crown closure is made while viewing the area stereoscopically. The ocular 

judgement is a reliable estimate since the category levels for closure are 

relatively broad: 10-50% and > 50%. This procedure will also be followed to 

determine percent crown closure in the other categories. 

4120 DeciF50  

Deciduous Forest (High 

Crown Closure) This category contains deciduous stands with crown closures greater than 

50%. The majority of the deciduous forests in New Jersey will be in this 

category. 

4210 ConiF10  

Coniferous Forest (Low 

Crown Closure) This category contains natural coniferous stands with crown closure> 10%, but 

less than 50%. Context: This Level II category includes forested lands which 

contain coniferous tree species. The stand must be 20 feet high and must be 

stocked by at least 75% conifers to be labeled as a coniferous stand. 

Coniferous species are those trees commonly known as evergreens. They do 

not lose their leaves (needless) at the end of the growing season but retain 

them through the year. Conifers can easily be distinguished from deciduous 

trees on wintertime color infrared photography because of their high infrared 

reflectance due to their leaf retention. 

4220 ConiF50  

Coniferous Forest (High 

This category contains natural coniferous stands with crown closure > 50%. 

Context: This Level II category includes forested lands which contain 
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Crown Closure) coniferous tree species. The stand must be 20 feet high and must be stocked by 

at least 75% conifers to be labeled as a coniferous stand. Coniferous species 

are those trees commonly known as evergreens. They do not lose their leaves 

(needless) at the end of the growing season but retain them through the year. 

Conifers can easily be distinguished from deciduous trees on wintertime color 

infrared photography because of their high infrared reflectance due to their 

leaf retention. 

4230 Plant  

Plantation This category contains conifer stands that have been artificially planted. These 

include stands planted for timber harvesting or aesthetics. Crown closure 

estimates will not be determined for plantations. Plantations appear as uniform 

blocks (usually rectangular) of conifers.Other planted stands of conifers, such 

as Christmas tree farms, will not be included in this category but in the nursery 

category under Agriculture. 

4311 MxCnF10  

Mixed Forest (More 

Coniferous with Low 

Crown Closure) This category contains stands of mixed coniferous and deciduous trees with 

the coniferous species > 50% and with crown closures between 10% and 50%. 

Context: This category contains stands of mixed coniferous and deciduous 

trees. The percentage of coniferous trees is higher than the deciduous (>50% 

of the stand) but the coniferous species do not dominate the stand (<75%). 

4312 MxCon50  

Mixed Forest (More 

Coniferous with High 

Crown Closure) This category contains stands of mixed coniferous and deciduous trees with 

the coniferous species > 50% and with crown closures > 50%. Context: This 

category contains stands of mixed coniferous and deciduous trees. The 

percentage of coniferous trees is higher than the deciduous (>50% of the 

stand) but the coniferous species do not dominate the stand (<75%). 

4321 MxDec10  

Mixed Forest (More 

Deciduous with Low 

Crown Closure) This category contains stands of mixed deciduous and coniferous trees with 

the deciduous species > 50% and crown closures between 10% and 50%. 

Context: This category contains stands of mixed deciduous and coniferous 

trees. The percentage of deciduous trees is higher than the coniferous (> 50%), 

but the deciduous species do not dominate the stand (< 75%). 

4322 MxDec50  

Mixed Forest (More 

Deciduous with High 

Crown Closure) This category contains stands of mixed deciduous and coniferous trees with 

the deciduous species > 50% and crown closures > 50%. Context: This 

category contains stands of mixed deciduous and coniferous trees. The 

percentage of deciduous trees is higher than the coniferous (> 50%), but the 

deciduous species do not dominate the stand (< 75%). 

4410 OldFld  

Old Field (Low Brush 

Covered) This category includes open areas that have less than 25% brush cover. The 

predominant cover types are grasses, herbaceous species, tree seedlings and/or 

saplings. Old fields are distinguished from inactive farmland (2130) by the 

amount of brush cover. If a field contains few woody stems (<5%), it should 

be placed in the inactive farmland category. An area should be placed in the 

Old Field category if the amount of brush cover requires extensive brush 

removal before plowing. In some cases, it may not be established that the 

previous use was agricultural. Context: BRUSH/SHRUBLAND 

4411 PhrgOld  

Phragmites Dominate Old 

Field This category contains open fields where the common reed, Phragmites 

australis dominates. The photographic signatures for these areas are rough and 

puffy and range in color from tan to silvery pale white. Context: Brush 

Shrubland 

4420 DecBrsh  

Deciduous 

Brush/Shrubland This category contains natural forested areas with deciduous species less than 

20 feet in height. An area must have greater than 25% brush cover to be placed 

in this category. This category also contains inactive agricultural areas that 

have been grown over with brush. There are photographic signature 

differences between brushland and the pole or saw-timber stage trees 

(Categories 4100, 4200, 4300). Besides the obvious height difference visible 

on stereo viewing, larger trees display much larger crown diameters than 

brushland areas. 

4430 ConBrsh  This category contains natural forested areas with coniferous species less than 
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Coniferous 

Brush/Shrubland 20 feet high. This category is for natural areas; therefore, Christmas tree farms 

should be placed in the Nursery category (223). 

4440 MxBrush  

Mixed 

Deciduous/Coniferous 

Brush/Shrubland This category contains natural forested areas less than 20 feet in height with a 

mixture of coniferous and deciduous trees. 

4500 BrUplnd  

Severe Burned Upland 

Vegetation 
Included in this category are naturally vegetated upland areas which have been 

altered by intense burning. These burned areas have not re-vegetated 

sufficiently on the photography, or at the time of any field inspection 

undertaken to support a mapping effort, to make a determination of the type of 

vegetation that will re-appear in the burned area. The pre-burn cover type may 

be any of those listed above in the 4000 series. Where sufficient re-vegetation 

has occurred to determine a post-burn cover type, the burned area is given the 

appropriate land cover code. However, where the re-vegetation has been 

insufficient, the 4500 code has been applied. Note that many different upland 

forest types may be included in this category. 

5100 Stream  

Streams and Canals This category includes river, creeks, canals and other linear water bodies that 

have a minimum width of 80 feet. For watercourses interrupted by control 

structures, the impoundments are placed in other appropriate water categories 

(see below), and the impoundment structures are included in the Urban or 

Built-up category. Remote sensing of these features is not difficult. Colors on 

infrared photography range from light blue to black, and on the black & white 

photography the tones range from medium gray to black. The signature can be 

smooth or rippled depending on the conditions at the time of the photography. 

The greatest difficulty occurs when overhanging vegetation or shadows 

obscure the extent of the watercourse. 

5200 NatLake  

Natural Lakes Water bodies larger than three acres that are non-flowing and naturally 

enclosed, including regulated natural lakes but excluding reservoirs, are placed 

in this category. Islands less than three (3) acres are included in the water area. 

To identify this feature accurately, it is important to remember natural lakes 

are the results of ground water seepage and surface run-off of precipitation, 

whereas reservoirs are the result of man-made impoundments and are 

maintained primarily by linear watercourses. Remote sensing of this feature, 

once again is simple. The signatures and attendant problems are discussed 

under category 5100. 

5300 Rsrvr  

Artificial Lakes 
Artificial impoundments of water larger than three (3) acres used for 

irrigation, flood control, municipal water supplies, recreation, landscaping and 

hydro-electric power or the result of an active extractive operation are 

included in this category. Dams, bulkheads, spillways and other water control 

structures should be evident and are critical for accurately identifying these 

features. Also important to remember is that artificial lakes and reservoirs are 

charged primarily through linear WCs. Photo identification should key on the 

non-linear shapes of these features, the water control structures, and the 

signatures discussed in category 5100. All water reservoirs supporting 

cranberry operations will be included; however, water within dikes will be 

included in the agriculture codes for the 2002 update. 

5410 TdlRiv  

Tidal Rivers Inland Bays 

and other Tidal Waters Included in this category are the tidal portions of watercourses, enclosed tidal 

bays, and other tidal water bodies such as tidal pools, ponds and natural 

lagoons. The tidal watercourses may include everything from smaller entirely 

tidal features commonly draining tidal marsh systems, to the tidal portions of 

intermediate and large features such as the Mullica River, the Raritan River, 

and even the Delaware River. Enclosed tidal bays are those open water tidal 

features existing commonly behind barrier island systems. These bays 

generally have a restricted opening to larger tidal features such as Delaware 
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Bay or the Atlantic Ocean. While these features are regularly flushed, portions 

of these enclosed bays may have complex flushing patterns due to the 

relatively small outlets. These small bays provide important finfish, shellfish 

and waterfowl habitat, as well as important recreational potential. Tidal pools 

and ponds generally will be found in the interior portions of regularly flowed 

tidal marshes, but these water bodies themselves may not be flooded on every 

tidal cycle. 

5411 TdlBay  

Open Tidal Bays Included in this category are large tidal water bodies such as Delaware and 

Raritan Bays, which have large unrestricted openings directly to the Atlantic 

Ocean. 

5420 Dredge  

Dredged Lagoon Artificial dredged lagoons are networks of rectangular dredged areas, 

containing water, usually associated with residential development or mobile 

home development. Dredged lagoons are generally in sites of former wetlands 

and have characteristically bulkheaded shorelines. They usually feed into a 

central dredged waterway that gives access to open tidal water. 

5430 Ocean  

Atlantic Ocean This category includes only open water off areas of the Atlantic Ocean. (It was 

added to identify open ocean offshore waters from those of tidal bays and 

rivers for water quality analyses). 

6111 SlMrsh  

Saline Marshes (Low 

marsh vegetation) This category contains herbaceous vegetation dominated by Spartina 

alternifloria where the height is <1 foot and is primarily flooded throughout.  

The photographic signature for these areas range in color from blues to red. 

6112 SlMrshV  

Saline Marshes (High 

marsh vegetation) This category contains herbaceous vegetation dominated by Spartina patens 

where the height is 1 foot to 3 feet. The photographic signature for these areas 

range in color from red to pink or pale white. 

6120 FrMrsh  

Freshwater Tidal Marshes These marshes are co-dominated by annual and perennial herbaceous 

vegetation on substrates associated with tidal waters with salinities less than 1 

0/00. Freshwater marsh species are characterized by Nuphar lutea, Peltandra 

virginica, Pontederia cordata, Zizania aquatica, Polygonum punctatum, Bidens 

laevis, and Typha latifolia. Marshes exhibiting this cover are found on the tidal 

Delaware River and tributaries downstream of Trenton to Salem and upstream 

of the saline marshes on the Atlantic drainage watercourses. Non-tidal marshes 

are listed under interior wetlands. The photographic signatures for these areas 

are both smooth-and rough-textured with little elevation. The colors range 

from dark grey to pink on summer infrared photographs. 

6130 VegDune  

Vegetated Dune 

Communities These are areas near the coast that are between saline marsh and open beach. 

The dominant vegetation can be Ammophila breviligulata, Prunus maritimus, 

Rhus radicans, Juniperus virginicus, and Acer rubrum. The areas have open to 

partly closed canopied signatures that are rough in texture and exhibit a red to 

red brown color on summer infrared photographs. 

6141 PhrgCWt  

Phragmites Dominate 

Coastal Wetlands This category contains saline marsh areas where the common reed, Phragmites 

australis dominates. The photographic signatures for these areas are rough and 

puffy and range in color from tan to silvery pale white. Freshwater wetlands 

will have a cowardin code present in the attributes while saline marshes will 

have no cowardin code., 

6210 DecWdWt  

Deciduous Wooded 

Wetlands These wetlands are closed canopy swamps dominated by deciduous trees 

normally associated with watercourses, edges of marshes, and isolated 

wetlands. The important canopy species includes Acer rubrum, Nyssa 

sylvatica, Fraxinus pennsylvanica, Salix nigra, Quercus bicolor, Q. phellos, Q. 

falcata, Liquidambar styraciflua, and Platanus occidentalis. These species 

combine to form a series of mixed hardwood lowland habitats throughout the 

entire state. These species have photographic signatures that exhibit height, 

rough texture, and are dark blue-gray to dark gray or black on winter infrared, 

and gray to dark gray on panchromatic film. 

6220 ConWdWt  These wetlands are closed canopy, dominated by coniferous tree species 
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Coniferous Wooded 

Wetlands associated with watercourses, seeps, and low topographic land. The northern 

areas will support Tsuga canadensis, Larix laricina, and Picea mariana as 

monotypic stands or mixed communities. The southern portion of the State has 

Pinus rigida and P. taeda in monotypic communities or co-dominate with Acer 

rubrum. Other species such as Nyssa sylvatica and Chamaecyparis thyoides 

may also be present. These species have photographic signatures that are 

varied in texture and are red to dark red on winter infrared film and dark gray 

to black on winter panchromatic film. 

6221 CedarWt  

Atlantic White Cedar 

Wetlands These wetlands are predominantly closed canopy, seasonally flooded wetlands 

of southern New Jersey dominated by Atlantic White-cedar, Chamaecyparis 

thyoides. Some other trees such as Acer rubrum and Nyssa sylvatica, and 

shrubs such as Vaccinium corymbosum may also be present. The dense cedar 

cover, however, generally precludes a heavy herbaceous layer. 

6231 DecBrWt 

Deciduous Scrub/Shrub 

Wetlands This brush category will include communities composed primarily of young 

samplings of deciduous tree species such as Acer rubrum, A. negundo, 

Liquidamber stryaciflua, Alnus serrulata, Cornus stolonifer, and C. amomum; 

and woody shrubs such as Vaccinium corymbosum, V. macrocarpon, Spirea 

alba, Viburnum dentatum, Rosa palustris, Myrica pennsylvania, M. gale, 

Clethra alnifolia, Cephalanthus occidentalis and Rhododendron viscosum, 

among others. 

6232 ConBrWt  

Coniferous Scrub/Shrub 

Wetlands This brush category will include communities composed primarily of young 

samplings of coniferous tree species such as Pinus rigida, Larix larcinia, Tusga 

canadensis, and Picea mariana, and shrubs such as Chamaedaphne calyculata, 

and Kalmia angustifolia. 

6233 MxBrWtD  

Mixed Scrub/Shrub 

Wetlands (Deciduous 

Dom.) Included in this category are brush and bog wetlands with a mixture of 

deciduous and coniferous species, with the deciduous species > 50% but < 

75%. Species will be similar to those described under 6231 and 6232. 

6234 MxBrWtC  

Mixed Scrub/Shrub 

Wetlands (Coniferous 

Dom.) Included in this category are brush and bog wetlands with a mixture of 

deciduous and coniferous species, with the coniferous species > 50% but < 

75%. Species will be similar to those described under 6231 and 6232. 

6240 HrbWtNT  

Herbaceous Wetlands 

(Non-Tidal) 
These are wetlands dominated by various herbaceous species that are not 

connected or associated with tidal waters. Lake edges, open flood plains and 

abandoned wetland agricultural fields are locations for this cover type. Leersia 

oryzoides, Phalaris arundinacea, Nuphar lutea, Polygonum arifolium, P. 

sagittatum, Typha latifolia and Phragmites are species that may dominate this 

cover type. Bog herbaceous vegetation will be covered by this section includes 

numerous Cyperaceae genera, Juncus sp. and the carnivorous genera of 

Drosera and Sarracenia. This cover type will have a similar photographic 

signature as 6120, varied texture, and light blue-gray or tan color on winter 

infrared and light gray on the panchromatic photograph. 

6241 PhrgWet  

Phragmites Dominate 

Interior Wetlands This category contains fresh marsh areas where the common reed, Phragmites 

australis dominates. The photographic signatures for these areas are rough and 

puffy and range in color from tan to silvery pale white. Freshwater wetlands 

will have a cowardin code present in the attributes while saline marshes will 

have no cowardin code. 

6251 MxFrWtD  

Mixed Forested Wetlands 

(Deciduous Dom.) Included in this category are brush and bog wetlands with a mixture of 

deciduous and coniferous species, with the deciduous species > 50% but < 

75%. Species will be similar to those described under 6231 and 6232. 

6252 MxFrWtC  

Mixed Forested Wetlands 

(Coniferous Dom.) Included in this category are brush and bog wetlands with a mixture of 

deciduous and coniferous species, with the coniferous species > 50% but < 

75%. Species will be similar to those described under 6231 and 6232. 

6500 BrndWet  Included in this category are naturally vegetated wetland areas which have 
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Severe Burned Wetlands been altered by intense burning at the time of the land cover analysis. These 

burned areas have not re-vegetated sufficiently on the photography, or at the 

time of any field inspection undertaken to support a mapping effort, to make a 

determination of the type of vegetation that will re-appear in the burned area. 

The pre-burn cover type may be any of those listed above in the 6200 series. 

Where sufficient re-vegetation has occurred to determine a post-burn cover 

type, the burned area is given the appropriate land cover code. However, 

where the re-vegetation has been insufficient, the 6500 code has been applied. 

Note that many different wetland types may be included in this category. 

7100 Beach  

Beaches Beaches are predominantly composed of sand and may occur at the land-water 

interface of oceans, bays and estuaries. Beaches are generally elongated non-

vegetated buffering systems subject to the action of waves and tides. 

7200 BrGrnd  

Bare Exposed Rock 

Rockslides etc. Areas lacking vegetation and composed of rock or rock faces are included in 

this category. Exposed rock from highway construction is not included in this 

category. 

7300 Extr  

Extractive Mining Extractive operations include a wide variety of mining activities, both surface 

and subsurface. Included are stone quarries, gravel, sand and clay pits, and 

limestone quarries to mention a few. Extractive industries are characterized by 

disturbed ground usually with depth, extractive machinery, buildings and 

roads for and with heavy equipment. Open mining areas frequently contain 

water. Extractive mining areas may be large as stone quarries or small as 

borrow pits. 

7400 AltLnd  

Altered Lands Altered lands are areas outside of an urban setting that have been changed due 

to man's activities other than for mining. 

7430 DstrbWt  

Disturbed Wetlands 

(Modified) 
Included in this category are former natural wetlands that have been altered by 

some form of clearing, leveling, grading, filling and/or excavating, but which 

still exhibit obvious signs of soil saturation on the imagery. Because of the 

alterations, these areas do not generally support typical wetland vegetation, 

and may in fact be unvegetated. They do, however, exist in areas shown on the 

US Soil Conservation Service soil surveys to have hydric soils, and exhibit the 

darker tonal signatures associated with saturated soils on the photography. 

Colors of these areas will vary from gray to blue-gray to black on winter CIR 

film and gray to black on panchromatic film. These areas may be in transition 

to a use or associated with a transitional development. 

7500 Transi  

Transitional Areas (sites 

under construction) This category encompasses lands on which site preparation for a variety of 

development types has begun. However, the future land use has not been 

realized. Included are residential, commercial and industrial areas under 

construction. Also, areas that are under construction for unknown use and 

abandoned structures are included. These areas are usually sparsely vegetated. 

7600 Barren  

Undifferentiated Barren 

Lands Undifferentiated barren lands encompass cleared lands that have no apparent 

site preparation or any indication of past activities. Such areas vary in shape 

and size but generally possess little vegetation, exposing the soil or surface 

material only. Ancillary information also gives no indication of former uses. 
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