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The vaccinia virus expression system was developed into a scaleable recombinant 

protein production process in perfused mammalian cell culture.  Growth of anchorage 

dependent HeLa cells on microcarriers and the suspension adapted HeLa S3 cell line 

were studied in bioreactor cultures utilizing the ATF System or hollow fiber filter, 

respectively, for perfusion.  Recombinant vaccinia virus expressing enhanced green 

fluorescent protein (EGFP) as a model protein was used to study the effects of several 

process parameters on expression.  These included multiplicity of infection (MOI), 

volume during infection, serum concentration during infection, inducer concentration, 

timing of inducer addition relative to infection, and dissolved oxygen and temperature 

during the protein production phase.  Increases in protein yield were made as each of 

these parameters was studied.  The microcarrier based system reached 20 mg/l EGFP 

while the suspension based system achieved 27 mg/l under the conditions found 



  

through experiment.  A second virus containing the gene for gp120, an HIV envelope 

coat protein with complex post-translational modifications, was produced in 

microcarrier based bioreactor culture with HeLa cells.  The protein produced was 

purified and analyzed for post-translational modifications which found that half of the 

molecular weight was contributed through N-linked glycans.  The reactor culture 

produced 10.5 mg/l gp120 at 96 hours post infection with an ID50 of 3.1µg/ml.  A 

survey of expression, using both EGFP and gp120 expressing viruses, was conducted 

on several mammalian cell lines which may be more appropriate for commercial 

manufacturing processes.  Results varied, depending on the protein produced, with 

HeLa cells producing the most EGFP and BS-C-1 the most gp120.  293 cells 

performed fairly well in both cases and their use in other manufacturing processes 

and ability to grow in serum-free suspension culture lead to a recommendation that 

they be considered for further process development.  These studies have provided 

insight into the vaccinia virus expression system as a potentially large-scale 

production method for complex human proteins.  Further optimization of the process 

could continue to increase the yields and potentially bring this viral process into the 

arena of available technologies for production.      
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CHAPTER 1:  Introduction and Background 

1.1  Recombinant Protein Production 

Recombinant protein production is a method for generating large quantities of 

proteins which cannot be obtained from natural sources, especially proteins used as 

human therapeutics.  Generation of these proteins is accomplished by genetically 

engineering a cell line or vector to introduce the gene for the protein of interest into a 

cellular system and have those cells use their metabolic machinery to mass produce 

the protein.  The simplest method of production is fermentation with procaryotes such 

as Escherichia coli (E. coli).  It is attractive due to the short fermentation time and 

high yield but is limited to simple, unmodified proteins because prokaryotes do not 

posses the machinery to perform post-translational modifications.  Eukaryotic yeasts 

such as Pichia pastoris (P. pastoris) or Saccharomyces cerevisiae (S. cerevisiae) can 

be used to introduce some post-translational processing, but these often result in 

proteins with high mannose structures, different from those found on human proteins.  

Insect cells offer more post-translational processing, but proteins made in these cells 

are also not produced in the same manner as human proteins due to differences in N-

linked glycosylation and sialylation (Fang et al. 2000; Palomares et al. 2003; Percival 

et al. 1997), without significant metabolic engineering of the host cells (Ailor and 

Betenbaugh 1999; Ailor et al. 2000; Chang et al. 2003; Hollister et al. 2002; Hollister 

et al. 1998; Jarvis 2003; Jarvis et al. 1998; Palomares et al. 2003).  

Production of complex human proteins with the most appropriate post-

translational modifications is best achieved through the use of mammalian or, 
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specifically, human cell lines. These processing modifications are often required for 

proper activity of the protein (Delorme et al. 1992; Eckhardt et al. 2002; Li et al. 

1993; Lifely et al. 1995; Nishikawa et al. 2000; Perrin et al. 1998). Transient DNA 

transfection can be used to obtain small quantities of proteins in a short period of time 

in mammalian cell culture, but for larger amounts and long-term production, stable 

transfection is required.  Development of a stable cell line can be long and laborious, 

increasing the cost of the product.  In order to overcome some of these limitations, 

viral vectors can be used with strong promoter elements to increase the yield of 

recombinant protein.  The viral based insect cell-baculovirus expression system has 

been shown to produce high levels of recombinant protein (Hu and Bentley 1999; 

Taticek et al. 2001; Taticek and Shuler 1997).  Although viral infection and protein 

expression is a transient process, it has several advantages.  Some viruses can shut-

down host functions and protein synthesis in order to devote more resources to viral 

processes (Broder and Earl 1999; Cacoullos and Bablanian 1993), including 

recombinant protein production.  Also, multiple cell lines can be tested for production 

characteristics without the long time required for cell line development.   

An investigation of the vaccinia virus expression system as a potentially large-

scale recombinant protein production method was chosen for this work because we 

wished to explore a viral expression method that could produce complex human 

proteins.  In order to increase the expression level of recombinant protein in this viral 

system, a vector utilizing the controllable T7 promoter was utilized and methods to 

increase the cell density prior to infection were evaluated.   
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1.2  Background 

1.2.1  Vaccinia Virus 

Vaccinia virus is an orthopoxvirus of the family Poxviridae.  It is closely 

related to the virus that causes Smallpox and has traditionally been used as the live 

viral vaccine against Smallpox.  Vaccinia has a wide host range that includes most 

mammalian species as well as humans (Broder and Earl 1999), allowing for infection 

of many mammalian cell lines.  Its use as a gene delivery vector in animal species  

(Brochier et al. 1991; Hanlon et al. 1998; Kieny et al. 1984; Wiktor et al. 1984) and 

humans (Cooney et al. 1991; Cooney et al. 1993; Gomella et al. 2001; Graham et al. 

1992; Hanke et al. 2002; McAneny et al. 1996; McClain et al. 2000; Zajac et al. 

2003) has been under investigation for several years.  The genetic material of vaccinia 

is comprised of a linear double stranded DNA molecule, approximately 200,000 bp 

(Moss 1996), with terminal hairpins and inverted repeats (Fenner et al. 1989).  

Researchers have found several regions within the genome that can accept 

interruptions of the sequence with recombinant DNA and still function effectively 

(Timiryasova et al. 1993).  These include the thymidine kinase (TK) gene, the 

hemaglutinin (HA) gene, and others.  Additionally, other researchers have shown that 

the genome can accept large genetic inserts, up to 25,000 bp of DNA without loss of 

function (Smith and Moss 1983).  

Vaccinia has the ability to shut down host cell protein synthesis after infection 

and, therefore, force the devotion of resources toward viral proteins and the 

recombinant protein associated with the virus (Broder and Earl 1999; Cacoullos and 

Bablanian 1993).  It also has the unique feature that it brings its own protein 
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production machinery into the cell for transcription of viral and recombinant proteins 

within the cytoplasm (Moss 1996).  Because of this, the recombinant gene does not 

need to enter the nucleus to be transcribed, nor does the mRNA need to be transported 

out of the nucleus to be translated.  These transport phenomena may limit the size of 

protein which can be produced through transfection methods or other viral systems 

which do not have this feature (Moss 1996).  These unique features of vaccinia virus 

allow for post-translational modifications that follow the human processing pathway 

and for large recombinant gene inserts. 

Due to the infectivity of vaccinia, there are concerns for workers exposed to 

the virus.  Biosafety Level II precautions must be taken when working with 

unattenuated strains and workers should be vaccinated.  The Western Reserve (WR) 

strain used in this research is mostly cell associated and therefore large amounts of 

free virus are not present suspended in the culture medium (Blasco and Moss 1992), 

but this is still considered an infective strain and precautions must be taken.   

1.2.2  Vaccinia/lac Operon/T7 RNA polymerase/EMC leader (VOTE) 

Vaccinia virus is available with several different promoter elements that 

contain natural vaccinia promoters, synthetic promoters, common mammalian 

promoters such as CMV, or the T7 promoter system.  The VOTE vaccinia virus 

expression system was originally designed by Ward (Ward et al. 1995) and is based 

on the T7 promoter.  It is composed of two elements available from their laboratory.  

These include the WR strain of vaccinia modified with an insertion into the TK gene, 

vT7lacOI, and a plasmid, pVOTE, which contains several elements and a multiple 

cloning site (MCS) for recombinant gene insertion.  A diagram of the system, 
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modified from Ward (Ward et al. 1995), is shown in Figure 1-1.  The left portion is 

contained in the segment inserted into the TK region of vT7lacOI.  It contains the 

bacteriophage T7 RNA polymerase gene (T7 gene 1) under the control of a late 

vaccinia promoter.  Additionally, there is a lac O repressor binding site upstream of 

the polymerase gene that is used to reduce leaky expression by binding active 

repressor units and blocking transcription.  The lac repressor is produced within this 

same region from the lac I gene under a vaccinia early/late promoter.  The right side 

of Figure 1-1 contains the second element of this system, available in a plasmid, 

pVOTE.1 or pVOTE.2 with differing restriction endonuclease sites in the MCS.  It is 

flanked by left and right sequences of the HA gene to allow homologous 

recombination when transfected into a vaccinia infected cell.  The plasmid is used as 

a cloning vector where the DNA of the recombinant gene to be produced is inserted.  

It contains the E. coli gpt gene under the vaccinia early/late promoter that allows for 

selection of recombinant virus.  It also has a segment with the T7 promoter followed 

by a stem-loop/lacO (SLO) sequence that will be bound by active repressor molecules 

when in the uninduced state.  This is then followed by an encephalomyocarditis 

(EMC) leader to enhance translatability and stability, and the gene of interest is 

cloned immediately downstream of this segment.  Additionally, a triple terminator 

was included in order to stop transcription of open reading frame insertions.  

The recombinant gene of interest is cloned into the plasmid vector and then 

transfected into a cell line infected with vT7lacOI.  This results in recombinant virus 

due to homologous recombination with the HA flanking regions on the plasmid and 

the HA gene in the vaccinia genome.  Recombinant virus must then be isolated under  
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Figure 1-1  VOTE Elements 

VOTE gene elements are shown in the uninduced (top) and induced (bottom) state.  

The left portion is contained within the TK gene of the vaccinia genome and the right 

portion is contained in the HA gene.  The gpt gene is controlled by the vaccinia 

early/late promoter to allow selection of the recombinant gene.  In the uninduced 

state, lac I is produced by an early/late promoter and produces repressor monomers 

that form active repressor tetramer units.  These bind to the lac O and SLO regions to 

stop transcription of the T7 gene 1 and the target gene, if leaky expression of T7 

polymerase should occur.  When induced, the repressor cannot form active units and 

the lac O and SLO are unbound.  This allows the late vaccinia promoter (PL) to 

produce T7 RNA polymerase that then binds to the T7 promoter.  The target gene is 

then transcribed from the SLO to the triple terminator (TT).  Translation of the target 

gene mRNA is enhanced by the EMC leader.  Figure reproduced with permission 

(Ward et al. 1995) Copyright  (1995) National Academy of Sciences, U.S.A. 
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selective conditions for the gpt gene by plaque isolation.  It is then amplified and 

purified to make a viral stock. 

1.2.3  HeLa Cells  

HeLa cells, originally derived from a human cervical adenocarcinoma (Gey et 

al. 1952; Jones et al. 1971), are available as an anchorage dependent (ATCC CL-2) or 

a suspension adapted cell line, HeLa S3 (ATCC CL-2.2).  These cells have been used 

extensively in research to produce small quantities of proteins with the vaccinia virus 

expression system.  Due to the base of available literature with these cells, and 

because they have proven successful in producing various proteins (Davis et al. 1996; 

Hu et al. 2000; Jun et al. 1996) our initial work focused on them as the host cell line.  

1.2.4  Cell Culture 

Methods of cell culture for recombinant protein production are available with 

various reactor configurations.  The choice of production system depends largely on 

the resources available and recombinant product characteristics, particularly the 

location of expression, intracellular or secreted (Bleckwenn and Shiloach 2004).  In 

small-scale work, tissue culture flasks are the primary method of cell growth for 

anchorage dependent cells whereas small shake or spinner flasks are the choice for 

suspension cells.  These methods are scaleable to a certain point, but eventually reach 

size limitations and must be modified for large-scale work.  Large-scale anchorage 

dependent methods include stacked plate systems, packed bed, fluidized bed, hollow 

fiber, or microcarrier culture in stirred tank bioreactors with suspension culture 
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usually performed in traditional stirred tank bioreactors (Sambanis and Hu 1993; 

Zhang et al. 1993).   

Microcarrier culture was chosen in this work as the method of growth for the 

anchorage dependent HeLa cells in a stirred tank bioreactor.  Microcarriers are small, 

usually spherical, beads made of a variety of materials onto which the anchorage 

dependent cells can attach.  The material of construction varies from glass, plastic, 

polymer, cross-linked dextran and others, with surfaces often coated with collagen, 

fibronectin, or positively charged to aid in cell attraction.  The carriers are designed to 

be suspended in liquid culture medium with mixing, but most will settle within a few 

minutes after stopping agitation.  By utilizing microcarriers, we can provide a solid 

support for the cells to attach and grow, but can suspend the cell covered carriers in 

liquid culture medium and treat the culture in much the same manner as cell 

suspension culture, with a few modifications.   

1.2.5  Bioreactor Technology and Perfusion (Microcarrier and Suspension) 

There are four main modes of operation of a bioreactor.  These are batch, 

where all nutrients for growth are present at the beginning of the run and no medium 

replenishment occurs; fed-batch, where the culture is run in batch mode until 

nutrients become limiting and then a feed solution is gradually added to the reactor; 

perfusion, where a cell separation device is used to retain all the cells in the reactor 

while medium is constantly removed and replaced; or continuous, where culture, 

including cells and medium, is constantly removed and fresh medium is added to the 

reactor (Bleckwenn and Shiloach 2004).  The mode which results in the highest cell 

density with cell culture is usually perfusion.  This is because it allows for both 
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addition of nutrients and removal of harmful waste products, unlike batch and fed-

batch.  Additionally, it is preferred over continuous culture because the slow growth 

rate of mammalian cells, relative to prokaryotes, makes continuous mode difficult to 

implement without causing washout (complete removal of all cells from the culture).  

Microcarrier and cell suspension based culture in a bioreactor can initially be run in 

batch mode.  Eventually, feeding, to supply nutrients for continued growth, and 

removal of waste products becomes necessary.  There are several systems available to 

aid in the perfusion of culture in a stirred tank bioreactor.  These include hollow fiber, 

spin filter, acoustic filter, and others.  These methods generally work well for single 

cell suspension culture (Woodside et al. 1998), but are often not suitable for work 

with microcarriers because they can clog and often require pumping the culture 

through tubing to the device, crushing and damaging the carriers and cells.  A system 

involving alternating tangential flow (ATF) external to the reactor was made 

available for our use from Refine Technologies (East Hanover, NJ).  It contains a 

screen module to retain the cell-covered microcarriers while removing medium from 

the culture.  It uses the alternating motion of a diaphragm to pull the culture into and 

push it out of the center of the unit through stainless steel tubing, avoiding pumping 

the culture through tubing.  By alternating the direction of flow of the culture, buildup 

of microcarriers on the screen module is mostly prevented, reducing clogging 

problems with this filter. This system was investigated as a means of perfusion in the 

microcarrier system so the reactor culture could reach high cell density prior to 

infection.  
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1.2.6  Enhanced Green Fluorescent Protein 

Enhanced green fluorescent protein (EGFP) is a modified version of green 

fluorescent protein (GFP).  GFP was originally cloned from the jellyfish Aequorea 

victoria (Chalfie et al. 1994).  It is a naturally fluorescing protein that is non-toxic and 

requires no co-factors to produce fluorescence (Chalfie et al. 1994; Crameri et al. 

1996).  It is a fairly stable molecule (Chalfie et al. 1994) and has thus proven very 

useful in various biological studies as a visible tag.  EGFP differs slightly from the 

native protein in that it has been human codon usage optimized and the wavelength of 

excitation and emission are different (Clontech Laboratories 2000).  EGFP has a 

maximum excitation wavelength at 488 nm and an emission maximum at 509 nm.   

GFP variants have been used in a variety of organisms including E. coli, yeast, 

insect cells, insect larvae, and mammalian cell culture as model proteins to study 

production conditions (Albano et al. 1998; Cha et al. 1997; Kirsch et al. 2003; 

Meissner et al. 2001).  Previous researchers have also used GFP as fusion proteins 

with other genes of interest to track protein production (Albano et al. 1998; Cha et al. 

1999a; Cha et al. 1999b; Cha et al. 1999c; Cha et al. 2000; Crameri et al. 1996; 

DeLisa et al. 1999; Laukkanen et al. 1996; Li et al. 2000; Wu et al. 2000).  In several 

of these cases, fluorescence measurements have been shown to correlate well with the 

expression levels of the fusion protein. 

1.2.7  gp120 

gp120 is an HIV-1 envelope glycoprotein that has been considered a potential 

vaccine candidate against HIV infection (Cooney et al. 1991; Cooney et al. 1993; 

Graham et al. 1992; Hanke et al. 2002).  It is approximately 120 kDa with 23 N-
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linked glycosylation sites that account for about half the molecular weight and are 

required for functionality (Li et al. 1993).  It was previously produced in a T7 

vaccinia virus system in a packed bed reactor (Hu et al. 2000).  The production level 

reached was 2-3 µg/106 cells.  The system required a co-infection of two viruses, one 

containing the T7 polymerase gene and the other containing gp120 under control of 

the T7 promoter.  It was shown to produce the correctly processed protein. 

1.2.8  Project Overview / Summary 

The initial research objectives for this project were as follows: 

1) Construct vaccinia virus strain with the gene for EGFP reporter protein  

2) Study the growth of anchorage dependent HeLa cells on various 

microcarriers to achieve high cell density growth 

3) Define the growth conditions for HeLa cells in bioreactor perfusion 

culture 

4) Investigate the infection and expression conditions with EGFP virus 

5) Construct vaccinia virus strain with the gene for gp120 protein 

6) Produce gp120 protein in bioreactor culture 

7) Analyze the post-translational processing and activity of recombinant 

gp120 

8) Develop and define a bioreactor production strategy using the recombinant 

vaccinia virus system with anchorage dependent HeLa cells 
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Through the course of this research project, the following additional objectives were 

added: 

9) Investigate production strategies with the EGFP virus in the suspension 

adapted HeLa S3 cell line  

10) Define growth conditions for the HeLa S3 suspension cells in perfused 

bioreactor culture using a hollow fiber filtration device 

11)  Compare expression levels of EGFP and gp120 proteins with these 

vaccinia viruses in several cell lines with consideration for regulatory 

acceptability 

 

The work presented here is divided into several chapters which comprise 

papers submitted individually for publication.  Chapter 2 begins with the construction 

of a recombinant vaccinia virus, expressing EGFP as a reporter protein.  This virus 

was used to investigate several parameters related to infection for their effect on 

protein expression in tissue flask HeLa cell culture.  These were MOI, volume during 

infection, and serum concentration during infection.  MOI can have a significant 

effect on expression of recombinant viral protein.  A lowered volume during infection 

may alter the infection kinetics by increasing the chances of a virus particle 

encountering a cell.   Serum proteins may interfere with the binding of virus particles 

to the cell surface.  In addition to these parameters, evaluation of several commercial 

microcarriers was performed to find the most appropriate microcarrier for growth of 

anchorage dependent HeLa cells and infection with vaccinia virus.   
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This work was continued in Chapter 3 with an experiment to determine the 

best concentration of microcarriers for growth and infection of the cells.  More 

process parameters were studied in this work with the use of the EGFP reporter virus 

which included length of the infection phase and inducer concentration and timing of 

its addition relative to infection.  These two parameters have a direct effect on the 

expression of recombinant protein via control of the promoter.  Evaluation of MOI 

was performed for microcarrier culture with the conditions defined for growth of 

HeLa cells.  This was a re-evaluation of this parameter due to differences in the 

infection kinetics between the static tissue flask culture, studied previously, and the 

dynamic microcarrier based environment evaluated here.  The investigation of 

microcarrier based spinner flask culture was then extended to evaluate dissolved 

oxygen (DO) and temperature during the protein production phase for their effect on 

protein expression.  Sufficient oxygen supply may be necessary for optimum 

expression levels, but high levels could lead to decreased productivity through 

increases in protease activity or changes in the post-translational modifications of the 

protein, possibly affecting biological activity.  A reduced temperature may play a role 

in slowing the cytopathic effects from viral infection, potentially leading to a higher 

overall level of protein production.    

Chapter 4 begins with a description of the concerns for scale-up of this 

process.  The issues were each addressed, starting with a description of the bioreactor 

system and perfusion device used to obtain high cell density prior to infection.  A 

method of in-vessel trypsinization was studied to provide a scaleable alternative to 

harvesting cells from tissue culture flasks for seeding of the bioreactor.  The results 
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obtained from previous chapters were used to define the production process, but DO 

and temperature were revaluated in the bioreactor because these parameters were 

better isolated in this controlled environment.  This chapter concludes with 

construction of a gp120 expressing virus and production of this protein in bioreactor 

culture.  Examination of the purified protein to determine the extent of post-

translational modifications and activity was also performed to verify the correct 

processing of a complex protein.   

The work was further expanded in Chapter 5 to the suspension adapted HeLa 

S3 cell line.  Here, several parameters were revisited with the EGFP reporter virus to 

determine the best levels at which to produce protein in spinner flask culture.  MOI 

and temperature during production were studied because differences in the way single 

cells are infected versus microcarrier attached cells and a slightly higher growth rate 

than the anchorage dependent HeLa cells warranted more study in this suspension 

system.  The results were then translated to the bioreactor scale where growth 

conditions were defined for perfusion culture using a hollow fiber filter.  Infection of 

the culture for production of EGFP was performed according to the results of the 

spinner flask experiments and previous work with the anchorage dependent cells.    

Chapter 6 then concludes the experimental results portion of this work with an 

evaluation of several mammalian cell lines for their expression levels of two proteins.  

EGFP was produced in the cytoplasm of the infected cells and gp120 was produced 

and secreted into the medium of infected cultures.  The expression levels and post-

translational modifications were compared between HeLa, BS-C-1, Vero, MRC-5, 

and 293 cells. 
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Chapter 7 summarizes the results found from these experiments and describes 

suggestions for future directions with this expression method. 
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CHAPTER 2:  Exploring Vaccinia Virus as a Tool for Large 

Scale Recombinant Protein Expression1 

2.1  Summary 

A recombinant vaccinia virus was engineered to express enhanced green 

fluorescent protein (EGFP) under control of the T7 promoter using the VOTE 

expression system (Ward et al. 1995) in HeLa cells.  Infection of HeLa cells with this 

virus and induction with IPTG demonstrated the utility of this construct for easily 

measuring protein expression.  This construct was used to evaluate several production 

parameters, specifically, multiplicity of infection (MOI), volume during infection and 

serum concentration during the infection phase.  In static culture, increasing 

multiplicity of infection was found to increase expression of EGFP up to a plateau 

around MOI of 1.0. Expression was also shown to increase with decreasing volume 

during the infection phase.  Serum concentration during the infection phase was only 

marginally significant from 0 to 7.5%.  Cytodex® 3 microcarriers were found to have 

the best characteristics for HeLa cell growth.  These cells were grown and infected in 

microcarrier spinner flask culture and the maximum expression was 2.2 µg EGFP/106 

cells at the time of infection, demonstrating the ability of this system to successfully 

express recombinant proteins at larger scale. 

                                                 
1 Reproduced with permission from Bleckwenn NA, Bentley WE, Shiloach J. 2003. 
Exploring vaccinia virus as a tool for large-scale recombinant protein expression. 
Biotechnology Progress 19(1):130-136. Copyright 2003 American Chemical Society. 
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2.2  Introduction 

 Production of proteins in recombinant systems is the preferred method for 

generating human therapeutics and several methods are available.  The use of bacteria 

such as Escherichia coli (E. coli) is currently the simplest method because of the 

short fermentation time and high yield.  But prokaryotic organisms are often unable to 

perform post-translational modifications that may be required for complex human 

protein activity.  To produce these proteins, eukaryotic cells such as yeast, insect, or 

mammalian cells may be utilized.  Although systems such as insect cells can produce 

large quantities of protein, they rarely make identical post-translational modifications 

to the proteins as are found in human cells (Fang et al. 2000; Percival et al. 1997) 

without significant metabolic engineering effort (Ailor and Betenbaugh 1999; Ailor et 

al. 1999; Ailor et al. 2000).  A human cell line is likely to achieve authentic 

processing of human proteins with minimal reengineering. 

An alternative mammalian production strategy for use as a bioreactor-scale 

production method is investigated in this work.  This method employs vaccinia virus 

to introduce the recombinant gene.  Vaccinia virus is an orthopoxvirus, of the family 

Poxviridae, which is related to the virus that causes Smallpox.  Traditionally, vaccinia 

has been used as the live viral vaccine agent against Smallpox infection until 

worldwide eradication of the disease in the 1970’s.  Vaccinia virus has several 

interesting characteristics.  First, the virus replicates in the cytoplasm of the infected 

cell and carries all of the necessary machinery for transcription into the cytoplasm of 

the infected cell (Moss 1996).  Therefore, the viral genes (and any recombinant genes 

the virus carries) are not required to enter the nucleus of the infected cell to be 
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transcribed.  Likewise, there is no need for transport of the mRNA transcripts out of 

the nucleus for translation.  These nuclear transport phenomena are thought to limit 

the size of a recombinant gene that can be produced by more traditional mammalian 

cell expression methods such as transfection (Moss 1996).  The second feature of 

interest for vaccinia is the wide host range.  This virus can infect most mammalian 

species including humans (Broder and Earl 1999).  Because of this, human cell 

culture can be used to produce recombinant human proteins that may be more 

authentically processed because the post-translational processing pathways of the host 

cell line are used.   The infectious nature of vaccinia virus should be taken into 

consideration, as vaccination of researchers and other employees who may be 

exposed is necessary.  In order to reduce this risk, less infective strains could be used 

such as the modified vaccinia virus Ankara (MVA), which was found to be less 

infective and pathogenic to humans due to its long passage history in chick embryo 

fibroblast cells (Carroll and Moss 1997; Sutter and Moss 1992).  These less infective 

strains could be engineered to produce recombinant proteins in much the same way as 

the more infective strains, but because most of the available complex expression 

systems were created with the more common infectious strains, the work described 

here was carried out using the Western Reserve (WR) strain of vaccinia for which 

Biosafety Level 2 procedures should be observed. 

 The production of recombinant protein using this vaccinia system was 

evaluated with a reporter virus strain carrying the gene for enhanced green fluorescent 

protein, EGFP.  This protein is a modified version of green fluorescent protein 

originally isolated from the jellyfish, Aquorea Victoria (Chalfie et al. 1994).  EGFP is 
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easily visualized within live cells using a fluorescent microscope and can also be 

quantified using a fluorescent spectrophotometer.  Many other researchers have used 

green fluorescent proteins as reporters to study production in various systems such as 

E. coli (Albano et al. 1998; Cha et al. 2000; DeLisa et al. 1999; Wu et al. 2000), 

yeast (Li et al. 2000), insect cells (Cha et al. 1999c; Laukkanen et al. 1996), insect 

larvae (Cha et al. 1999b; Cha et al. 1997), or mammalian cells (Crameri et al. 1996).  

This makes EGFP an ideal candidate for use as a reporter protein to study various 

production parameters in this system. 

 A key element of this production system is the use of the VOTE (vaccinia 

virus/lac operon/T7 RNA polymerase/EMC) vaccinia expression system (Ward et al. 

1995).  This system allows the use of a single virus that contains the elements 

necessary for T7 promoter controlled expression of the recombinant gene.  

Additionally, use of the lacO and a stem loop lacO (SLO) sequence provide tight 

control of expression through the addition of the inducing agent isopropyl-β-d-

thiogalactopyranoside (IPTG) (Ward et al. 1995).  The encephalomyocarditis (EMC) 

virus RNA leader has also been included to enhance stability and translatability of the 

recombinant transcripts (Ward et al. 1995).  This system has an advantage over 

previously studied vaccinia production systems in that it requires the use of only a 

single virus to achieve T7 promoter controlled expression.  Previous systems required 

dual infection wherein one virus contained the T7 RNA polymerase gene and another 

contained the recombinant gene under control of the T7 promoter (Barrett et al. 1989; 

Hu et al. 2000).  Additionally, the T7 promoter can potentially produce higher levels 
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of protein than the available native or synthetic promoters for vaccinia (Fuerst et al. 

1987; Fuerst et al. 1986). 

 To achieve high productivity, high cell density prior to virus infection is 

needed.  HeLa cells have been chosen because they are a human continuous cell line 

that can reach relatively high cell densities.  Although a suspension adapted cell line 

is available, the attachment dependent strain was chosen, due to the nature of the 

vaccinia strain used, which requires cell-to-cell contact for spread of the virus 

infection (Blasco and Moss 1992).  The attachment dependent nature of this line may 

enhance infection spread by offering more cell-to-cell contact.  Additionally, higher 

cell densities may be achieved in bioreactor culture with attachment dependent cells 

adhering to a solid surface, such as microcarriers, than with the suspension adapted 

cells.  

Several methods are available for growth of attachment dependent cells at a 

large-scale, all of which involve attachment to a solid substrate.   Reactor types such 

as cell factories, hollow fiber, packed bed, or microcarrier suspension culture can be 

used (Sambanis and Hu).  For this work, microcarrier culture has been chosen 

because one can use a traditional stirred tank vessel without investment in a new type 

of reactor, and cells can also be easily sampled from the culture for cell density 

measurements, which can be difficult with other reactor types.   

 In this work, we describe the implementation of the above components to 

study several production parameters, specifically multiplicity of infection (MOI, 

pfu/cell), volume during infection phase and serum concentration during the infection 

phase, for the expression of recombinant proteins. 
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2.3  Materials and Methods 

2.3.1  Cell Type and Maintenance 

 HeLa cells (ATCC CCL-2) and BS-C-1 cells (ATCC CCL-26) were grown in 

tissue culture flasks and passaged every 3-4 days in Dulbecco’s modified Eagle’s 

medium with 4.5 g/l glucose (DMEM, Biofluids, Rockville, MD) and 10% fetal 

bovine serum (FBS, Biofluids).   

2.3.2  Cell Growth on Microcarriers 

 Cell growth on microcarriers in 150 ml spinner flasks (Corning, Acton, MA) 

was achieved by seeding HeLa cells with microcarriers prepared according to 

manufacturers’ directions.  During seeding, a reduced media volume was used and an 

intermittent stirring protocol was followed, where the agitation was run at 50 rpm for 

30 seconds every 20 minutes, for four hours.  At the end of the seeding stage, media 

was added to the final volume and the agitation was set to run at 50 rpm, 

continuously. 

2.3.3  Virus Construction and Stock Preparation 

 A reporter virus expressing the EGFP gene under control of the T7 promoter 

was constructed as follows (Figure 2-1).  The plasmid pEGFP-N1 was obtained from 

Clontech (Palo Alto, CA).  PCR primers were designed to allow amplification of the 

EGFP gene with Acc65 I and Not I restriction sites (5’- GAA TTC TGC AGT CGA 

CGG TAC C-3’ and 5’-GTC GCG GCC GCG TAC TTG TAC AGC TCG TCC-3’).  

This PCR product was then inserted into a pCR®4-TOPO® vector (Invitrogen, 

Carlsbad, CA).  A restriction digest using Acc65 I and Not I (NEB, Beverly, MA) was  
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Figure 2-1  Plasmid Construction 

EGFP=enhanced green fluorescent protein gene, HIS=histidine tag gene, gpt=gpt 

selection gene, P(E/L)= vaccinia 7.5 early/late promoter, P(T7)= T7 promoter, 

SLO=stem loop lac O, EMC= encephalomyocarditis virus RNA leader, TT=triple 

terminator 
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performed on this plasmid to isolate the EGFP fragment, which was then inserted into 

the Acc65 I and Not I digested pSecTag2 A plasmid (Invitrogen).  Sequencing of the 

EGFP insert and 6×histidine tag (6×HIS) region confirmed the correct frame and 

gene sequence.  The resulting plasmid was denoted pNB006. 

PCR primers were designed to allow amplification of the EGFP plus 6×HIS 

from pNB006 with Nde I and EcoR I restriction sites (5’-CAT ATG GTG AGC AAG 

GGC GAG-3’ and 5’-GGG TTT GAA TTC AAT GAT GAT GAT G-3’).  The 

digested PCR product was then inserted into the pVOTE.2 vector (kindly supplied by 

B. Moss, NIAID, NIH) at the Nde I and EcoR I digestion sites.  The resulting vector 

plasmid, denoted pNB009, was checked by sequencing the region containing EGFP 

and 6×HIS.   

A recombinant vaccinia virus was then generated in a monolayer of HeLa 

cells in a T-25cm2 flask, by infecting cells with vT7lacOI (kindly provided by B. 

Moss, NIAID, NIH) at an MOI of 0.05 and then transfected with 5 µg pNB009 

plasmid DNA using Lipofectamine Plus (Invitrogen).  Recombinant vaccinia virus 

was isolated via gpt selective pressure and plaque purification was performed using 

infected BS-C-1 cells with agarose gel overlays (Moss and Earl 2000).  The gpt gene 

is contained on the pVOTE.2 plasmid near the recombinant gene for EGFP, and 

therefore, selection for the gpt gene also selects for the recombinant gene.   PCR 

analysis verified the presence of the recombinant virus and absence of vT7lacOI 

without the insert using the following primers 5’-CGG TGT CTG TAT GAT CTT 

CTA-3’ with 5’-TGA GTG CTT GGT ATA AGG AGC CC-3’ (designed by Terri 
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Shors, NIAID, NIH) and 5’-GCT TTG TTA GCA GCC GGA TC-3’ with 5’-GGA 

AAG AGT CAA ATG GCT CTC C-3’.   

 Amplified recombinant virus was purified by ultra centrifugation (Beckman 

Coulter, Palo Alto, CA) at 32,000×g for 80 minutes on a 36% sucrose cushion.  The 

viral pellet was suspended in 10 mM Tris pH 9.0 and aliquots were frozen at -70°C.  

The recombinant virus is denoted vNB009. 

 Titer determination was performed by serially diluting trypsinized stock virus 

and infecting wells of BS-C-1 monolayers in 6-well plates, in duplicate (Moss and 

Earl 2000).  Dilutions from 10-6 to 10-11 were plated and the entire titer procedure was 

performed three times.  After three days of incubation at 37°C, 5% CO2, the cells 

were stained with a 37% formaldehyde, 5% ethanol solution containing crystal violet.  

Plaques were counted and the titer was determined by the average of the three sets.   

2.3.4  Analytical Methods 

2.3.4.1  Cell Counts and Viability Measurements 

 Viability assays were performed by 0.4% trypan blue (Sigma, St. Louis, MO) 

exclusion staining.  Cell counts were performed by counting cell suspension samples 

with a hemacytometer (Baxter Scientific, McGaw Park, IL).  Cells from microcarrier 

samples were prepared for these measurements by centrifuging a sample at 300×g for 

1 minute.  Aspiration of media and washing of the cell and microcarrier pellet with D-

PBS with calcium and magnesium (Invitrogen) followed.  The pellets were then 

resuspended in 1× trypsin-EDTA solution (Gibco, Cat. No. 25200072) and incubated 

at 37°C for 30 minutes with vortexing every 10 minutes.  An equal volume of 
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DMEM+10% FBS was then added and the resulting cell suspension was used for 

counting and trypan blue exclusion staining. 

2.3.4.2  Glucose and Lactate Measurements 

 Glucose and lactate were measured from media samples with a YSI 2700 

Biochemistry Analyzer (Yellow Springs Instrument Company, Yellow Springs, OH). 

2.3.4.3  Fluorescence Measurements 

Fluorescence measurements for the MOI evaluation were performed in 96-

well black walled plates with cover glass bottoms (Nunc 164588, Naperville IL).  A 

SpectraMax Gemini fluorescence spectrophotometer (Molecular Devices, Sunnyvale, 

CA) was utilized in well-scan mode with 9 spatial readings per well and 6 overall 

readings per well which were averaged for each well and reported in relative 

fluorescence units (RFU).  The wavelength settings were an excitation of 485 nm and 

emission of 512 nm with an auto cutoff filter of 495 nm.   

Fluorescence measurements for all other experiments were made on samples 

and compared to standards of rEGFP (Clontech) in either lysis buffer (100 mM Tris 

pH 7.4 with 1× Complete™ protease inhibitor (Boehringer Mannheim GmbH, 

Germany) and 0.5% Triton X-100) or DMEM+10% FBS without phenol red.  The 

readings were converted to EGFP expression units of µg/106 cells at infection using 

the standard curves and cell count measurements.  A SpectraMax Gemini 

fluorescence spectrophotometer (Molecular Devices, Sunnyvale, CA) was utilized 

with wavelength settings at an excitation of 485 nm and emission of 512 nm with an 

auto cutoff filter of 495 nm.  Ninety-six-well black plates (Fisher Scientific, 

Pittsburgh, PA) were used to measure both media and pellet samples.   
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2.3.4.4  Virus Expression Verification 

Approximately one million HeLa cells in wells of a 6-well plate were infected 

at a MOI of 1.0 with vNB009 in 0.5 ml of DMEM without phenol red with 2.5% FBS 

and 1.0 mM IPTG for one hour with rocking of the plate at 15 minute intervals in a 

37°C, 5% CO2, humidified incubator.   At the end of the infection period, the media 

volume was increased to 2.5 ml (DMEM with 10% FBS and 1 mM IPTG) and 

incubated for 43 hours.  Additionally, one well was left uninfected and another was 

infected with the recombinant virus, but did not contain the inducing agent IPTG.  

Visualization of the cells was performed with a fluorescence microscope (DM IRB, 

Leica, Wetzlar, Germany) equipped with a FITC filter (Chroma, Brattleboro, VT).  

The images were recorded using digital photography (Kodak MDS 290 system, 

Fisher Scientific) at 200× magnification. 

2.3.4.5  96-well Multiplicity of Infection Evaluation 

Confluent HeLa cells were harvested from T-162cm2 flasks and counted.  The 

cells were divided into 0.5 ml aliquots with 4.0x106 cells/tube and incubated in 

serum-free DMEM at 37°C with the appropriate amount of vNB009 virus for 

infections at MOI 0.0, 0.01, 0.025, 0.05, 0.075, 0.10, 0.25, 0.50, 0.75, 1.0, 2.0, and 

5.0.  The incubation was performed in the presence of 1.0 mM IPTG for one hour 

with gentle agitation every 15 minutes.  At the end of the incubation, 3.5 ml 

DMEM+10% FBS with 1.0 mM IPTG was added and 1x105 cells were seeded into 

eight wells per MOI in four 96-well black walled plates with cover glass bottoms 

(Nunc 164588, Naperville IL), which were incubated at 37°C, 5% CO2 in a 

humidified incubator.  At 24, 40, 44, and 48 hours post infection, a plate was removed 
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and fluorescence measurements made directly on the intact cells and media in the 

plate.  

2.3.4.6  6-well Parameter Evaluations 

 HeLa cells were harvested from confluent T-162cm2 flasks and seeded into 6-

well tissue culture plates at a density of 1.25x105 cells per well in 2 ml of 

DMEM+10% FBS without phenol red.  They were grown at 37°C, 5% CO2 in a 

humidified incubator for two days.  Cells were infected with vNB009 recombinant 

virus (MOI of 0.5, 1.0, 1.5, 2.0, 3.0, or 4.0) prepared in DMEM with appropriate 

amounts of FBS (0, 2.5, 5.0, or 7.5%).  Each well was infected with an appropriate 

volume (0.5 or 1.5 ml) for one hour with rocking of the plates at 15 minute intervals 

to prevent drying of the cells.   Entire wells were sacrificed for each sample where the 

cells were scraped and collected into a tube and pelleted by centrifugation (2,500×g, 5 

minutes).  Supernatant was removed and the pellet was frozen at -70°C.   

 The pellets were later analyzed for fluorescence by thawing to room 

temperature and resuspending in 250 µl lysis buffer.  The samples were incubated at 

37°C for 15 minutes with rigorous vortexing twice and then centrifuged (15,000×g, 5 

minutes) to pellet debris.  One hundred microliter samples of the supernatant were 

transferred to 96-well black plates for fluorescence measurements.   

2.3.4.7  Spinner Flask Infections 

 Cells were grown to confluency in T-162cm2 tissue culture flasks and counted 

after harvesting with cell dissociation solution.   Cytodex® 3 microcarriers were 

prepared according to manufacturer’s instructions and 0.2 g were placed in 125 ml 

spinner flasks in a reduced volume of 50 ml of DMEM+10% FBS without phenol red.   
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HeLa cells were then seeded into the flasks by adding 10 ml of 1x106 cells/ml.  The 

flasks were placed in an incubator at 37°C, 5% CO2, in humidified conditions with 

stirring at 50 rpm for 30 seconds every 20 minutes for four hours.  The volume was 

then adjusted to 100 ml with DMEM+10% FBS without phenol red, leaving 1x105 

cell/ml and 2 g/l Cytodex® 3 in each flask.  Flasks were then incubated at 37°C, 5% 

CO2, in humidified conditions with stirring at 50 rpm.  Samples were taken daily for 

cell count, viability, glucose and lactate.  Feeding was performed, as deemed 

necessary by glucose and lactate measurements, by removing the flasks from the 

agitation source and allowing the microcarriers with cells to settle.  A portion of the 

media was then removed and replaced with fresh media.     

Cells were infected at day five when the cell density was approximately 1 to 

1.5 x106 cells/ml.   Infection was then carried out in a reduced volume of 50 ml, 

which approximates the cell to media volume ratio used for infection in 6-well plates 

of 0.5 ml/well.  The infection was done in serum-free media with 1 mM IPTG at 50 

rpm for one hour.  The volume was then increased to 100 ml with media and serum 

was added to a final 10% FBS.  Samples were taken at several times where cells on 

microcarriers were centrifuged (300×g), supernatant removed to a second tube and 

both were frozen at -70°C.  Cell count and viability measurements were made as 

previously described around 24 and 48 hours post infection.   

Fluorescence measurements were made on both media and pellet samples.  

Pellets were resuspended in 250 µl lysis buffer.  The suspension was then incubated 

at 37°C for 15 minutes with vigorous vortexing twice.  The debris was pelleted by 

centrifugation (15,000×g, 5 minutes) and supernatant was used for fluorescence 
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measurements.   Standards of rEGFP were prepared in both media and the lysis 

solution used above.  Media and lysed pellet samples of 100 µl were transferred to 

96-well black plates along with both sets of standards.  Measurements of the EGFP 

fluorescence were made as described previously. 

2.4  Results and Discussion 

2.4.1  EGFP Expression  

 Construction of a recombinant vaccinia virus encoding for the production of 

EGFP was performed as described in the Materials and Methods section.  In brief, the 

EGFP gene was amplified from pEGFP-N1 (Clontech) and combined with the 

histidine tag region of pSecTag2.A (Invitrogen).  This segment was then inserted into 

the pVOTE.2 vector (B. Moss, NIAID, NIH) that contains the T7 promoter and gpt 

selection gene (Figure 2-1).   This final plasmid, pNB009, was transfected into HeLa 

cells, which were previously infected with vT7lacOI (B. Moss, NIAID, NIH).  The 

virus vT7lacOI is an engineered vaccinia virus that carries the T7 RNA polymerase 

and lac I genes.  The recombinant virus, denoted vNB009, resulting from 

homologous recombination of the pNB009 plasmid and vT7lacOI was plaque purified 

under selective pressure for the gpt gene, amplified in HeLa cells, and purified by 

sucrose cushion centrifugation.   

EGFP expression was verified by infection of HeLa cell monolayers with 

vNB009 at an MOI of 1.0 and induction with 1 mM IPTG in 6-well tissue culture 

plates.  Figure 2-2 shows images taken with a fluorescence microscope.  It is apparent 

by the appearance of many green fluorescing cells, Panel A, that expression is indeed  
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Figure 2-2  Fluorescence Images of Infection with vNB009 

Panel A, HeLa cells infected with vNB009 and induced with 1 mM IPTG.  Panel B, 

cells infected with vNB009.  Panel C, cells without infection or induction.   

Images taken with a Kodak EDAS Digital microscopy system on a Leica DM IRB 

fluorescent microscope with a FITC filter at 200× magnification. 
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occurring when the cells are infected with the recombinant virus and induced with 

IPTG.   Cells that are infected but not induced, Panel B, show a very low level of 

green fluorescence, indicating that expression of EGFP is tightly controlled by the 

addition of the inducer.  Additionally, the absence of green fluorescence in the 

uninfected cells, Panel C, demonstrates a negligible background fluorescence of the 

HeLa cells.  Thus, EGFP expression using the VOTE system in vaccinia is possible 

and furthermore is tightly controlled by the presence of the inducing agent. 

2.4.2  Multiplicity of Infection Evaluation 

 Expression levels of EGFP at varying MOI were examined in 96-well culture 

plates (Figure 2-3). Several samples were taken during the protein production stage 

and the maximum level for each MOI was plotted.  The data show a sharp increase in 

the EGFP expression, which levels off upon approaching an MOI of 1.0.  This 

indicates that the expression may not appreciably increase with more than one virus 

particle per cell, which agrees with what is known about the inability of vaccinia 

virus to superinfect cells (Christen et al. 1990), such as is found with insect cell 

baculovirus (MOI>10) (Wang et al. 1993). 

2.4.3  Evaluation of MOI, Volume and Serum Concentration During Infection of 

HeLa Cells In Static Plate Culture  

MOI, volume, and serum concentration during the 1 h infection phase were 

evaluated using a set of factorial experiments which indicated that the best expression 

in 6-well plates was obtained at a volume of 0.5 ml, a serum concentration of 0% FBS 

during the infection phase, and a MOI of 1.0.  The first experiment conducted was 
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Figure 2-3  EGFP Expression at Varying MOI 

Maximum EGFP expression levels in relative fluorescence units (RFU) obtained from 

infection and induction of HeLa cells in 96-well plate culture.  Eight samples were 

taken per MOI at several times after infection and the average of the maximum 

expression points are plotted with standard errors. 
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arranged as a 23 factorial treatment structure that was used to evaluate maximum 

EGFP production for all combinations of levels for each parameter (Table 2-1).  MOI 

was studied at levels of 0.5 and 1.5, volumes of 0.5 and 1.5 ml and serum 

concentrations of 2.5 and 5.0% FBS.  ANOVA analysis was performed on the 

maximum expression levels and no interactions among the variables were found, so 

the effects were considered separately.  The analysis showed that EGFP expression 

was statistically higher at an MOI of 1.5 than at an MOI of 0.5 (p=0.010), indicating 

that an examination of other MOIs would be needed to establish the MOI where 

maximum expression occurs. Additionally, the expression of EGFP was found to be 

statistically higher at a volume during the infection phase of 0.5 ml versus 1.5 ml 

(p=0.012).  This phenomenon has been seen by other researchers where lowering the 

volume is believed to enhance infection by increasing the rate of binding (Dee and 

Shuler 1997b).  Because 0.5 ml was the practical lower limit for infection in 6-well 

plates due to the thin layer of media that can cause the cells to dry out, it was the final 

level chosen and further evaluation of this parameter in 6-well plates was deemed 

unnecessary.  Recombinant protein expression was not found to be significantly 

different for the two serum concentrations tested during the infection phase 

(p=0.224).  This may have been due to the small range tested.  Another evaluation, 

with a wider range of serum concentration values, was needed to firmly establish the 

absence of an effect of serum.    

 A 42 factorial treatment structure was designed to test a wider range of both 

MOI and serum concentration during the infection phase in 6-well plates (Figure 2-4). 

Serum concentration was tested at 0, 2.5, 5.0 and 7.5% FBS and MOI at 1.0, 2.0, 3.0,  
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Table 2-1  Evaluation of MOI, Volume and Serum Concentration During 

Infection Phase 

 

MOI 
(pfu/cell) 

Volume During 
Infection Phase 

(ml) 

Serum Concentration 
During Infection 

Phase (%) 

Maximum EGFP 
(µg/106 cells at 

infection) 

Uninduced Control 

1.0 0.5 2.5 

 

0.05 

0.5 0.5 2.5 3.66 

0.5 0.5 5.0 2.88 

1.5 0.5 2.5 4.03 

1.5 0.5 5.0 4.05 

0.5 1.5 2.5 2.20 

0.5 1.5 5.0 1.88 

1.5 1.5 2.5 3.57 

1.5 1.5 5.0 3.04 

SEp=0.30 

 



 

 36 
 

Figure 2-4  Evaluation of MOI and Serum Concentration During Infection 

Phase 

Maximum EGFP expression levels, in duplicate, obtained from infection and 

induction of HeLa cells in 6-well plates.  The pooled standard error obtained from 

ANOVA analysis of this data was 1.36. 
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and 4.0.  ANOVA analysis was performed on the maximum measured expression 

levels for each treatment combination.  Again, no significant interactions among the 

variables were found, therefore only main effects were considered.  The results show 

that the effect of serum was marginally significant (p=0.054) on the expression of 

EGFP, which indicates that lower levels of serum can be used during infection.  

Expression of EGFP was not found to be statistically affected by MOI within the 

region tested (p=0.278).  This finding agrees with the results suggested by the 96-well 

multiplicity of infection evaluation where a plateau of expression appeared to occur 

around an MOI of 1.0 and more than one infectious virus particle per cell may not 

significantly increase the level of EGFP expression. 

2.4.4  Microcarrier Selection Process 

An analysis of several microcarriers was performed, types and some descriptive 

details are displayed in Table 2-2.  The critical parameters for selection were the 

ability of the cells to attach to the microcarriers under agitation, the cell growth 

profile, the cell layering characteristics, and the maximum supported cell density.   

 The first experiment was performed in 6-well, low binding plates on a rotary 

shaker at 50 rpm.  Cells were seeded into plates in the presence of microcarriers and 

microscopic visualization of the attachment and spreading of the cells was performed.  

Once the cells were grown to confluency, a cell removal and counting procedure was 

followed to determine the ability of the microcarriers to allow an easy sampling 

procedure.  Based on these two criteria, four of the microcarriers were deemed 

unacceptable and were removed from future study (Cultispher-G, Cultispher-S, and  
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Table 2-2  Microcarrier Characteristics 

Microcarrier Material 
Recommended 
Concentration 

(g/l) 

Biosilon® 169159 (Nunc) Globular plastic 23.5 

Biosilon® 169191 (Nunc) Globular plastic 23.5 

Cultispher-G (Percell) Cross-linked gelatin 1.0 

Cultispher-S (Percell) Cross-linked gelatin 1.0 

Cytodex® 1 (Pharmacia) Cross-linked dextran, positively 
charged 1.0 

Cytodex® 3 (Pharmacia) Cross-linked dextran, collagen 
coated 1.0 

Cytopore™ 2 (Pharmacia) Macroporous, cross-linked 
dextran, positive charge 1.0 

FACT FC102-915 
(SoloHill) 

Copolymer, charged gelatin 
coated 20.0 

FACT FC102-1521 
(SoloHill) 

Copolymer, charged gelatin 
coated 20.0 

Gelatin C102-915 
(SoloHill) Copolymer, gelatin coated 20.0 

Gelatin C102-1521 
(SoloHill) Copolymer, gelatin coated 20.0 

Hillex (SoloHill) Trimethylamine (semiporous) 20.0 
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the two Gelatin microcarriers from SoloHill).  The other eight microcarriers were 

retained for further evaluation.   

 These microcarriers were tested in 125 ml spinner flasks.  Flasks were 

prepared with microcarriers at the concentration recommended by each manufacturer 

and seeded with 1x105 cells/ml.  Samples were taken daily for cell count and viability 

measurements.  Three of the microcarriers tested, Cytodex® 1, Cytodex® 3 and 

Biosilon® 169191 lead to cell densities above 1.0x106 cells/ml (data not shown).  

These three microcarriers were evaluated further at a concentration of 20 g/l, (which 

was near the upper region of several of the brands tested), and with HeLa cells seeded 

to a density of 2x105 cells/ml.    All three microcarriers had exponential growth 

profiles (data not shown) with maximum cell densities of 3.7x106 ± 0.41x106, 3.0x106 

± 0.13x106 and 3.1x106 ± 0.32x106 for Biosilon® 169191, Cytodex® 1 and Cytodex® 

3, respectively.   The Biosilon® microcarriers were observed to allow the cells to form 

thick layers on the surface.  This was considered an undesirable characteristic because 

during infection, the inner cells would likely not be infected in the primary infection, 

and therefore may affect the overall expression kinetics.  Based on all these findings, 

and because the growth of HeLa on Cytodex® 3 during growth was slightly higher 

than on Cytodex® 1, Cytodex® 3 microcarriers were found to be the most appropriate 

microcarrier for this work. 

2.4.5  Infection and Expression from HeLa cells on Microcarriers 

EGFP expression from HeLa cells grown on microcarriers in spinner flasks at 

varying levels of MOI was examined (Figure 2-5).  The evaluated levels of MOI were 

0.0, 1.0, 2.0, and 3.0.  The volume during infection was reduced to approximately the  
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Figure 2-5  MOI Effect on EGFP Expression from HeLa Cells Grown on 

Microcarriers in Spinner Flasks 

EGFP expression levels from HeLa cells on Cytodex® 3 microcarriers in 125 ml 

spinner flasks infected with vNB009 and induced with 1 mM IPTG.  Solid lines and 

filled symbols, intracellular EGFP measurements.  Dashed lines and open symbols, 

extracellular EGFP measurements.  Triangles, MOI=0.0; diamonds, MOI=1.0;  

circles, MOI=2.0; squares, MOI=3.0.   
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same volume ratio (media volume/cell) found best in monolayer culture and the 

infection was performed in serum-free media.  Glucose and lactate were measured 

throughout the growth and production phases (data not shown).  Up to 48 hpi, the 

levels were kept within an acceptable range for growth by feeding once at 24 hpi.  

After 48 hpi, most cultures showed a significant amount of cell lysis due to the 

cytopathic affects of the virus that made feeding the culture unrealistic.   

The expression results show that although the errors are fairly wide, maximum 

expression appears to occur at MOI 3.0.  This result was not found to be significantly 

different from MOI of 1.0 or 2.0 upon ANOVA analysis.  The large variance and the 

difference with the optimum MOI obtained from static culture experiments can be 

explained by the dynamic nature of the microcarrier system and by the fact that 

infection was done during late log phase for the microcarriers versus early log phase 

for the stationary cultures, where infection may be more efficient. Additionally, the 

method of cell counts on microcarriers may not be the most accurate, particularly at 

higher cell densities, leading to a higher variability.  In the future, other methods of 

cell counting will be investigated, such as nuclei counts (van Wezel 1973), to 

minimize this source of variation.  

Taking the above into consideration, the results show that both infection and 

expression occur with this method of production.  These parameters will be further 

studied in spinner flask microcarrier culture to optimize conditions and reduce the 

controllable sources of variation.    
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2.5  Conclusions 

The method of recombinant protein production described here has shown encouraging 

results. In particular, lowered volume during the infection phase helped to increase 

expression.  No serum during the infection phase was needed to ensure infection and 

expression of EGFP.  Additionally, an MOI near 1.0 was found to provide adequate 

infection and higher amounts of virus were found ineffective for increasing protein 

production in static plate cultures.  Future work will be directed at optimizing the 

conditions of expression in microcarrier cultures, including bioreactor cultures.  Other 

factors that may affect expression such as inducer concentration and timing of inducer 

addition will also be investigated.  To further exploit the versatility of this expression 

method, studies are underway to evaluate different cell lines such as HEK-293, BHK-

21, WI 38, or Vero infected with this vaccinia virus construct.  Other protein 

candidates that require complex post-translational processing are also being 

engineered into vaccinia constructs with the same promoter and expression elements 

and will be tested with these cell lines to determine the best expression and 

processing profile. 
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CHAPTER 3:  Evaluation of Production Parameters with the 

Vaccinia Virus Expression System Using Microcarrier Attached 

HeLa Cells2 

3.1  Summary 

Parameters which affect production of the recombinant reporter protein, 

EGFP, in the T7 promoter based VOTE vaccinia virus-HeLa cell expression system 

were examined.  Anchorage dependent HeLa cells were grown on 5 g/l Cytodex® 3 

microcarriers, which were found to provide the optimum conditions for growth and 

infection.  Length of infection phase, inducer concentration and timing of its addition 

relative to infection were evaluated in 6-well plate cultures.  One hour infection with 

1.0 mM IPTG added at the time of infection provided a robust process.  Examination 

of the multiplicity of infection (MOI) in the dynamic environment of microcarrier 

culture indicated a need for an increase in the number of virus particles per cell to 5.0, 

higher than needed for complete infection in tissue flask culture.  Additionally, 

dissolved oxygen level and temperature during protein production phase were 

evaluated for their effect on EGFP expression in microcarrier spinner flask culture.  

Increased dissolved oxygen from 30% to 50%, and decreased temperature from 37°C 

to 31°C, showed a slight increase in production over the course of the production 

phase.  The level of production achieved with this system reached approximately 17 

µg EGFP/106 infected cells.     
                                                 
2 Bleckwenn NA, Bentley WE, Shiloach J. 2004. Evaluation of production parameters 
with the vaccinia virus expression system using microcarrier attached HeLa cells. 
Submitted 2004. 
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3.2  Introduction 

Vaccinia virus infection of HeLa cell culture has shown potential as a 

recombinant protein production method (Bleckwenn et al. 2003).  The current 

literature on growth and infection of HeLa cells in large-scale culture is limited 

(Barrett et al. 1989; Hu et al. 2000).  This study investigates microcarrier based 

culture of HeLa cells in spinner flasks to obtain basic information on how to best 

cultivate and infect these cells to express recombinant proteins.  Microcarriers 

provide solid support onto which anchorage dependent cells attach and grow 

(Croughan et al. 2000; Hawboldt et al. 1994; Iyer et al. 1999; Kang et al. 2000), but 

also the carriers can be suspended in culture medium and treated similarly to 

suspension culture, which makes this method of cultivation amenable to scale-up in 

conventional stirred tank bioreactors.   

Enhanced green fluorescent protein (EGFP) was used as a model protein with 

this viral expression system.  Green fluorescent protein has previously been used as a 

model for studying protein production with other expression methods, such as E. coli 

(Cha et al. 1999d; DeLisa et al. 1999), the insect cell or insect larvae-baculovirus 

system (Cha et al. 1999a; Cha et al. 1999b; Cha et al. 1999c; Cha et al. 1997; 

Laukkanen et al. 1996), and mammalian cell systems (Durocher et al. 2002; Sen et al. 

2003), because its expression levels are easily quantified via fluorescence 

spectrophotometry.  The VOTE vaccinia expression system (Ward et al. 1995) was 

used to control expression of the EGFP reporter gene, where the gene is introduced 

into the cytoplasm of the cell via the viral infection and protein is made upon 

induction with isopropyl-β-D-thiogalactopyranoside (IPTG).  The VOTE construct is 
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a T7 promoter based system (Alexander et al. 1992) where all the control components 

are present in a single virus, unlike other vaccinia constructs that require dual 

infection (Fuerst et al. 1987; Hu et al. 2000).  Expression is tightly controlled by the 

addition of the inducing agent, IPTG, allowing for controlled expression of the 

protein of interest, which is advantageous when the protein to be produced is 

detrimental to the cell.   

Previous work in our lab evaluated several basic infection characteristics with 

this reporter virus in small-scale tissue flask experiments, which included multiplicity 

of infection (MOI), and both volume of medium and serum concentration during the 

infection phase.  Additionally, an examination of twelve commercial microcarriers for 

growth and cell sampling potential found that Cytodex® 3 possessed the most 

appropriate characteristics.  These conditions were used to infect microcarrier based 

spinner flask cultures at MOI from 0 to 3.0 where MOI of 3.0 reached 2.2 µg/106 

cells at infection.  This maximum was not statistically different from the maximums 

for MOI 1.0 or 2.0 and an evaluation of a wider range of MOI was suggested 

(Bleckwenn et al. 2003).   

The process parameters that can affect protein yield in a production system are 

numerous.  This study evaluates several key parameters for the establishment of cells 

and expression of recombinant proteins with the VOTE vaccinia expression system.  

The parameters evaluated include the concentration of microcarriers for the 

anchorage dependent HeLa cells, induction conditions, a wider range of multiplicity 

of infection (MOI) in the microcarrier based system, dissolved oxygen (DO) level 
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during the protein production phase, and temperature during the protein production 

phase.   

3.3  Materials and Methods 

3.3.1  Cell Line Maintenance and Expansion 

HeLa cells (ATCC CCL-2) were maintained in tissue culture flasks and were 

passaged every 3-4 days in Dulbecco’s modified Eagle’s medium with 4.5 g/l glucose 

(DMEM, Biosource, Camarillo, CA) and 10% fetal bovine serum (FBS, Biosource). 

In preparation for seeding well plates or microcarriers for experiments, confluent 

HeLa cells in multiple T-162 cm2 tissue culture flasks were harvested using cell 

dissociation solution (Hanks’ based, Invitrogen, Carlsbad, CA) and counted as 

described below.  Medium used for all experiments was composed of DMEM with 

4.5 g/l glucose without phenol red and supplemented with 4 mM L-glutamine 

(Biosource) and 10% FBS unless otherwise specified. 

Cytodex® 3 microcarriers (Amersham Biosciences, Piscataway, NJ) were 

prepared according to manufacturer’s instructions which involved washing with PBS, 

sterilization by autoclaving, and washing again with culture medium.  To seed the 

microcarriers, cells were harvested from tissue culture flasks and combined with 

Cytodex® 3 microcarriers in 250 ml siliconized spinner flasks with paddles (Bellco 

Glass, Inc., Vineland, NJ), at a final concentration of 1×105 cell/ml.  An initial 

reduced volume of 100 ml was used with an agitation profile of 30 seconds on at 50 

rpm and 20 minutes off, in a 37°C humidified incubator with 5% CO2 for four hours.  

At the end of the four hour seeding phase, medium was added to the final 200 ml 
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working volume and the agitation was set to a constant 50 rpm.  Samples were taken 

daily for cell count and viability.  The cultures were fed as needed by allowing the 

cell bound microcarriers to settle, removing a portion of the spent medium and 

replacing it with an equal volume of fresh medium.   

3.3.2  Viral Stock Preparation 

Construction of the reporter virus, vNB009, containing the gene for EGFP 

with a C-terminal histidine tag (6×HIS), along with viral purification and titer 

determination of the stock was described previously (Bleckwenn et al. 2003).   

3.3.3  Cell Count and Viability Measurements  

A cell suspension sample for cell count and viability determinations from 

microcarrier cultures was prepared by centrifugation of a 1.0 ml sample at 300×g for 

5 minutes.  The supernatant was then aspirated and the sample washed with 0.5 ml of 

D-PBS with calcium and magnesium (Invitrogen).  The pellet was then resupsended 

in 0.5 ml of 1× trypsin-EDTA solution (Invitrogen) and incubated for 30 minutes at 

37°C with vortexing every 10 minutes.  An equal volume of DMEM+10% FBS was 

added and the sample was mixed.  The resulting solution was used for cell count and 

viability measurements using 0.4% trypan blue exclusion staining (Sigma, St. Louis, 

MO) on a hemacytometer.  

3.3.4  Nutrient and Metabolite Measurements 

Medium samples from experiments were used to measure glucose and lactate 

with a YSI 2700 Biochemistry Analyzer (Yellow Springs Instrument Co., Yellow 

Springs, OH).   
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3.3.5  Fluorescence Analysis of EGFP Expression 

Fluorescence measurements were made according to Bleckwenn et al. (2003).  

Briefly, pellet samples were resuspended and lysed in lysis buffer (100 mM Tris pH 

7.4, with 1× Complete protease inhibitor (Boehringer Mannheim GmbH, Germany) 

and 0.5% Triton X-100).  Fluorescence measurements of the supernatant from pellet 

lysis and culture medium were made in 96-well black plates (Fisher Scientific, 

Pittsburg, PA) using a SpectraMax Gemini fluorescence spectrophotometer 

(Molecular Devices, Sunnyvale, CA) with excitation at 485nm, emission at 512 nm 

and an auto cutoff filter of 495 nm against standards of rEGFP (Clontech BD 

Biosciences, Palo Alto, CA). 

3.4  Results 

3.4.1  Microcarrier Density Evaluation  

The effect of Cytodex® 3 microcarrier concentration on viable cell density and 

coverage of the carriers was initially tested at 5, 10, 15 and 20 g/l in 200 ml spinner 

flask cultures in duplicate, but did not show significant differences in maximum cell 

density (P= 0.64, data not shown).  A lower range of microcarrier concentrations was 

then tested at 2, 4, 6 and 8 g/l to determine the optimum microcarrier density.  Viable 

cell density as a function of time is shown in Figure 3-1 for these carrier 

concentrations.  The 2 g/l concentration appeared to lag behind the others at about 

120 hours after seeding and the carriers were completely confluent upon visual 

inspection (data not shown). The concentrations of 4, 6, and 8 g/l follow 

approximately the same growth profile and reached approximately the same  
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Figure 3-1  Growth of HeLa Cells on Cytodex® 3 Microcarriers 

Viable cell densities from spinner flask cultures (200 ml) of microcarrier attached 

HeLa cells were grown on various concentrations of Cytodex® 3 microcarriers. 
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maximum cell density, around 2.5 to 3.5×106 cells/ml.  Visual inspection of the 

coverage of cells on the carriers (data not shown), revealed that a concentration 

between 4 and 6 g/l appeared to allow single layer growth, while reaching confluency 

between 150 and 175 hours after seeding. 

3.4.2  Effect of Infection Duration on EGFP Production  

The effect of the length of the infection phase on EGFP production is seen in 

Figure 3-2.  The infection was carried out in a reduced volume of serum-free medium, 

0.5 ml, with 1.0 mM IPTG in 6-well plate culture where the cell concentration at 

infection was 2.00±0.13×106 cells/well.  Virus vNB009 was added to the cells to 

infect at an MOI of 1.0.  Plates were incubated, for 15, 30, 60, 120, or 240 minutes, at 

which time medium was added to bring the volume to 2.5 ml with the serum 

concentration brought to 10% FBS and inducer to 1.0 mM IPTG, completing the 

infection phase.  Infected cells were incubated for 36, 42 and 48 hours for each 

infection length (e.g. 3 samples, 5 infection lengths). The maximum intracellular 

EGFP expression levels of the three time points sampled for each infection length 

were averaged for duplicate wells.  The results show a minimum infection time of one 

hour for maximum protein expression.   

3.4.3  Effect of IPTG Concentration and Timing of Its Addition Relative to 

Infection on EGFP Production 

A 6×3 factorial treatment structure experiment was performed on HeLa cells 

in 6-well plates.  The concentrations of IPTG inducer tested were 0.0, 0.1, 0.5, 1.0, 

2.0, and 5.0 mM.  Inducer was added to the medium either one hour prior to infection,  
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Figure 3-2  Effect of Infection Duration on Reporter Protein Expression 

Six-well plate cultures of HeLa cells were infected at an MOI of 1.0 for varying 

amounts of time.  After the infection period, fresh medium, FBS, and IPTG were 

added. 
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at the time of infection, or one hour after infection.  The cells were prepared and 

infected in the same manner as previously described, at an MOI of 1.0 in a reduced 

volume of serum-free medium, and for 1 hour as found from Figure 3-2.  At the end 

of the one hour infection phase, the medium was increased and serum added to 10% 

FBS with the appropriate IPTG level.  The maximum intracellular expression levels 

found for each well were averaged over duplicate wells (Figure 3-3).  There was no 

interaction between the two tested parameters (P=0.12) and no significant differences 

were found between the times evaluated for addition of the inducer (P=0.82).  

However, the differences in IPTG concentration were statistically significant 

(P<0.0001) and maximum expression levels were achieved with IPTG concentrations 

of 0.5 mM and above.   

3.4.4  Multiplicity of Infection in Microcarrier Culture Spinner Flasks  

Multiplicity of infection was evaluated in triplicate spinner flask cultures of 

microcarrier attached HeLa cells.  Cultures were infected 5 days after seeding when 

the cell density was 1.22±0.083×106 cells/ml.  The cells were washed with serum-free 

medium, the volume was reduced to 70 ml for infection in serum-free medium 

containing 1.0 mM IPTG.    Trypsinized vNB009 virus was then added to the culture 

and the flasks were incubated at 37°C, 5% CO2 at 50 rpm for one hour.  At the end of 

this infection phase, medium, FBS and IPTG were added to a final volume of 200 ml, 

10% FBS, and 1.0 mM IPTG.  Samples of pellet, containing cells and carriers, and 

supernatant were taken up to 66 hpi.  Medium (100 ml) was exchanged with fresh 

medium at 24 hpi to maintain the level of glucose above 1.0 g/l and the concentration 

of lactate below 2.0 g/l.  The expression levels of EGFP over the course of the protein  
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Figure 3-3  Effect of IPTG Concentration and Timing of Its Addition Relative to 

Infection on Protein Expression 

A factorial treatment structure design of experiment was used to determine the effects 

IPTG concentration and the timing of its addition relative to infection on protein 

expression.  The timing of addition is separated into three separate lines as the 

concentration of IPTG is plotted along the x-axis. 
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production phase are depicted in Figure 3-4, where intracellular levels are shown in 

Panel A and extracellular levels in Panel B.  Although there are not significant 

differences in the maximum intracellular expression levels for MOI 0.5 and above (P 

≥ 0.36), it appears that MOI 5.0 and 10.0 were slightly better in the initial 40 hours, 

after which 0.5 and 1.0 increased to the same levels.  The maximum obtained was 2.6 

µg/106 infected cells.  The extracellular levels of EGFP began to increase as the 

intracellular values began to peak and then decline.  Their levels were approximately 

equal for MOI 0.5 to 10.0, but were lower for MOI 0.1. 

3.4.5  Effect of Dissolved Oxygen Level on Protein Production 

The effect of dissolved oxygen concentration on protein expression was 

studied in spinner flask cultures infected at MOI 5.0 for one hour with 1.0 mM IPTG 

added at infection.  At the end of the infection phase, medium was added to bring the 

culture volume to 200 ml with 10% FBS and 1 mM IPTG.  Each flask was mixed 

well and varying amounts of culture (including medium, cells, and microcarriers), 

were removed to achieve volumes of 50, 100, 150, and 200 ml while maintaining the 

same microcarrier concentration and cell density.  These volumes correspond to 

surface area to volume (SA/V) ratios of 1.08, 0.54, 0.36, and 0.27 cm-1, respectively, 

and allow for a rough comparison of changing dissolved oxygen levels.  Samples 

from the cultures for metabolite and protein analysis were taken up to 66 hpi and 

feeding of the culture was performed at 24 hpi.  Figure 3-5 shows the intracellular 

expression levels.  From this data, the maximum level of production was found with 

an SA/V ratio of 0.54 cm-1 at 3.13 µg/106 infected cells.  Both higher and lower SA/V 

ratios show lower rates of production and maximum levels of expression.   
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Figure 3-4  EGFP Expression vs. MOI in Microcarrier Spinner Flask Cultures 

200 ml spinner flask cultures containing HeLa cells attached to microcarriers were 

infected at various MOI. 
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Figure 3-5  Effect of Dissolved Oxygen Level on Protein Production 

Different surface area to volume ratios were used to approximate differences in 

dissolved oxygen level.  Cultures of volume 50, 100, 150, and 200 ml were grown in 

250 ml spinner flasks. 
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3.4.6  Effect of Temperature on Protein Production  

An evaluation of process temperature during the protein production phase was 

made in spinner flask cultures containing microcarrier attached HeLa cells.  Cells 

were seeded onto microcarriers and infected as before at an MOI of 5.0 with 1.0 mM 

IPTG, then brought to 200 ml after the one hour infection phase.  The temperatures 

were then adjusted to 25, 28, 31, or 34°C, with 37°C (± 0.5°C) tested previously in 

the dissolved oxygen experiment.  The intracellular expression profiles of the reporter 

protein for the different temperatures followed the same general trend, shown in 

Figure 3-6.  At 34°C maximum expression was achieved ~48 hpi, while the 

maximum for 31°C occurred ~80 hpi, and later for 28 and 25°C.   The highest 

expression level was achieved at 31°C, at 17.2±2.24 µg/106 infected cells. 

3.5  Discussion 

The protein production potential of the HeLa cell-VOTE vaccinia expression 

system and its initial characterization were established in our lab (Bleckwenn et al. 

2003).  While the previous study demonstrated to potential for HeLa-VOTE vaccinia, 

several factors remained unexamined.  Specifically, this article describes the 

systematic evaluation of several key parameters affecting growth, and production: 

microcarrier concentration, infection time and duration, and inducer concentration 

and timing of its addition relative to infection.  Also, while our previous study 

identified Cytodex® 3 as most promising, the current work found that 5 g/l of these 

carriers was sufficient in terms of surface area for cell growth and spatial expansion 

after infection.  Since the growth profiles and maximum cell densities were all similar  
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Figure 3-6  Effect of Temperature on Protein Production 

Temperatures were adjusted in microcarrier based spinner flask cultures after the 

infection phase and protein production levels are compared. 
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for the microcarrier densities evaluated, visual inspection of cell coverage on the 

microcarriers, although somewhat subjective, was critical to this evaluation.   

Infection parameters influencing protein expression levels were evaluated in 

6-well plate cultures which included infection duration, inducer concentration, and 

timing of inducer addition relative to the time of infection.  These small-scale 

experiments were more amenable than microcarrier spinner flask cultures for testing a 

larger number of conditions.  The length of the infection phase is critical for most 

viruses to ensure binding of the virus particles and entry into the cells (Chillakuru et 

al. 1991; Locker et al. 2000; Petricevich et al. 2001; Vanderplasschen et al. 1998; 

Vanderplasschen and Smith 1999).  The infection duration experiment performed 

here resulted in an optimal length of infection of one hour, which coincides with the 

value found by other researchers with other vaccinia infection systems (Chillakuru et 

al. 1991; Hu et al. 2000).   

The concentration of the induction agent, IPTG, and the timing of its addition 

relative to infection in this system both play a critical role in protein expression, as 

was evident by the results in Figures 3-2 and 3-3.  Since these two parameters may be 

linked and interact with one another, they were tested together in a 6×3 factorial 

treatment structure experimental design.  Interestingly, no interaction was found 

between inducer concentration and induction time for the ranges tested.  Further, no 

significant difference was found for the timing of inducer addition relative to 

infection, indicating that the transfer of IPTG to the cells was not limiting for the 

timescale on which cell cultures run, relative to protein production.    
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In some cases, certain foreign proteins may be detrimental to the cell and 

could affect protein production and cell culture health, possibly requiring a delayed 

induction time to reach maximum expression levels, but this is not the case for EGFP.  

In addition, the ability to control the time of induction may be beneficial for 

secondary infection processes (Bentley et al. 1994; Hu and Bentley 2000; Hu and 

Bentley 2001), where the culture is initially infected at a very low MOI in order to 

conserve viral stocks.  The small number of initially infected cells at low MOIs would 

serve as virus production factories, rather than protein production factories, to 

produce the virus particles that will infect the remainder of the culture.  To maximize 

the production of virus particles and conserve resources for the infected cells, 

induction of protein expression could be delayed until secondary infection of the 

culture has occurred.  The minimum IPTG concentration required for maximum 

expression showed little difference for concentrations higher than 0.5 mM.  Although 

0.5 mM IPTG was found to be sufficient, the level of expression drops off 

significantly below 0.5 mM IPTG, thus, to ensure that maximal levels of protein 

production are achieved, a value of 1.0 mM was chosen for all future studies.  

Additionally, for convenience, since the timing of inducer addition did not affect 

expression, adding the induction agent at the time of infection was chosen for all 

subsequent work.   

Multiplicity of infection is another parameter that can affect protein 

production.  For insect cells, superinfection of the cells (infection with more than one 

virus particle per cell) can affect the level of protein production (Hu et al. 2003; 

Licari and Bailey 1991).  Cells infected with vaccinia virus are largely incapable of 
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multiple infection past the first hour of exposure to virus (Christen et al. 1990), and 

using an MOI greater than 1.0 did not affect the expression in monolayer plate culture 

(Bleckwenn et al. 2003).  The dynamic nature of microcarrier culture, however, may 

alter the infection kinetics from those seen in plate culture.  Similar results have been 

seen in insect cells in plate versus spinner flask culture (Dalal and Bentley 1999; Dee 

and Shuler 1997a).  Our work with microcarrier based HeLa cell culture found that an 

MOI of 5.0 yielded the highest intracellular expression of EGFP, and although MOI 

10.0 initially followed the same rate of production, the level did not reached the same 

maximum due to an earlier decline in expression, possibly due to an increased 

cytopathic effect and cell lysis.  Lower MOIs did not appear to have the same rate of 

expression as MOI 5.0, and therefore, 5.0 pfu/cell was chosen for all microcarrier 

based work to ensure complete, simultaneous infection and maximal expression of the 

recombinant protein.  Other researchers have also used higher MOIs for vaccinia 

virus infection in large-scale HeLa cell packed bed (Hu et al. 2000) or Vero cell 

microcarrier culture (Barrett et al. 1989). 

Process parameters such as dissolved oxygen and temperature, may also affect 

the final yield of protein.  Providing an ample supply of oxygen is crucial to 

maintaining cell health and protein production and may also affect proper post-

translational processing as was seen with the insect cell baculovirus system  

(Donaldson et al. 1999; Zhang et al. 2002b) and other expression systems (e.g. 

hybridomas, CHO, etc. (Kunkel et al. 2000; Kunkel et al. 1998)).  To determine 

whether supplying more oxygen to the cells would help increase production of the 

recombinant protein, an evaluation in spinner flask culture was performed.  The 
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dissolved oxygen level was varied by adjusting the surface area to volume ratio while 

maintaining constant cell and microcarrier densities.  The results suggest that 

increasing DO increases the level of protein production but only to a certain point 

(e.g. more production obtained at 0.54 cm-1). The level of dissolved oxygen during 

the production phase can play an important role in the health of cells, particularly 

while they are burdened from a viral infection.  Interestingly, vaccinia virus will shut 

down host cell protein production in order to dedicate more resources for producing 

its own proteins and progeny virus (Cacoullos and Bablanian 1993), and in our case, 

production of the recombinant protein.  In utilizing a viral production system, it is 

necessary to reduce the burdens caused by infection and the cytopathic effects of the 

virus as much as possible, to allow for more time to produce the recombinant protein 

before the cells die and lyse. Other researchers using the insect cell baculovirus 

system found optimum levels of DO for protein production in their respective 

systems, but some also found that high levels of DO decreased protein production due 

to an increase in protease activity (Hu and Bentley 1999; Lindsay and Betenbaugh 

1992; Naggie and Bentley 1998).  

Concerning temperature, most mammalian cell lines grow best at 37°C 

(Freshney 2000), and significant deviations above this temperature are devastating to 

the cells.  Lower temperatures are tolerable, but the cells tend to grow slower.  It has 

been found that virus systems such as Semliki Forest Virus (SFV) and adenovirus 

(AV) both produce higher amounts of protein when production occurs at a lowered 

temperature (Jardon and Garnier 2003; Schlaeger and Lundstrom 1998). Insect cell 

baculovirus systems have also shown improvement of protein production with 
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decreased temperatures (Andersen et al. 1996; Gotoh et al. 2004).  It was suggested 

with the SFV system that the lower temperature reduces cytopathic effects of the viral 

infection and allows the cells to remain healthier and producing protein for a longer 

period of time, resulting in higher yield.  In the present work, temperature was 

adjusted after the infection phase to ensure that this change had no affect on the 

kinetics of infection, only on protein production and cytopathic viral effects.  

Importantly, lowering the temperature to 31°C increased the specific yield six-fold 

over the 37°C culture in microcarrier based spinner flasks.   

It is important to note that dissolved oxygen and temperature are not 

independent.  By changing the SA/V, changes in the soluble carbon dioxide can occur 

which could affect the culture pH.  Additionally, changing the incubation temperature 

of spinner flasks, without DO control, affects the level of dissolved oxygen.  

Translating the results obtained from these spinner flask cultures to large-scale 

culture cannot be made directly because altering these parameters in this way cannot 

isolate the variable being studied.  In a more controlled environment, such as a 

bioreactor, the result of changing DO and temperature could be tested in isolation 

from other variables.  The conditions found here, therefore, are sufficient to guide 

further work at the reactor scale. 

3.6  Conclusions 

In summary, the results of the various parameter experiments shown here 

suggest that the optimum conditions for establishing the HeLa cells are to seed and 

grow them on 5 g/l Cytodex® 3 microcarriers.  Infection parameters were also refined 

to increase protein production with the VOTE vaccinia expression system which 
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resulted in an infection at MOI 5.0 for one hour with inducer added at the time of 

infection at a concentration of 1.0 mM IPTG.   By increasing the dissolved oxygen 

through adjustment of the SA/V, and lowering the temperature of the culture to 31°C, 

increases in protein production were seen.  The maximum level of protein production, 

under the conditions tested, lead to a yield of 17-18 µg intracellular EGFP/106 

infected cells when the culture was infected at the conditions described.   
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CHAPTER 4:  Vaccinia Virus Production of Recombinant 

Proteins in a Microcarrier Based Mammalian Cell Bioreactor3 

4.1  Summary 

The HeLa cell-vaccinia virus expression system was evaluated for the 

production of recombinant proteins (enhanced green fluorescent protein (EGFP) and 

HIV envelope coat protein gp120) using microcarriers in 1.5 l perfused bioreactor 

cultures. Perfusion was achieved by use of an alternating tangential flow device 

(ATF), increasing the length of the exponential phase by 50 hours compared to batch 

culture and increasing the maximum cell density to 4.4×106 cell/ml.  A seed train 

expansion method using cells harvested from microcarrier culture and reseeding onto 

fresh carriers was developed.  Enhanced green fluorescent protein (EGFP) was first 

used as a model protein to study process parameters affecting protein yield, 

specifically dissolved oxygen (DO) and temperature during the production phase.  

The highest level of EGFP, 12±1.5 µg/106 infected cells, was obtained at 50% DO 

and 31°C.  These setpoints were then used to produce glycoprotein gp120, which was 

purified and deglycosylated, revealing a significant amount of N-linked 

glycosylation.  Also, biological activity was assayed, revealing an ID50 of 3.1 µg/ml, 

which is comparable to previous reports.   

                                                 
3 Bleckwenn NA, Golding H, Bentley WE, Shiloach J. 2004. Vaccinia virus 
production of recombinant proteins in a microcarrier based mammalian cell 
bioreactor. Submitted 2004. 
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4.2  Introduction 

Recombinant protein expression from cell culture can be accomplished by 

stable or transient integration of DNA into the host cells. Viral vectors provide one 

such method of efficient transient expression and have been used widely (e.g. insect 

cells, insect larvae).  The baculovirus has proven to be very effective at producing 

large quantities of foreign proteins (Bentley et al. 1994; Cha et al. 1999c; Chung et al. 

1993; Licari and Bailey 1991; Lindsay and Betenbaugh 1992; Wickham and 

Nemerow 1993).  Generally though, complex proteins made with this system are not 

processed in the same manner as in mammalian cells, without significantly altering 

the host cells’ post-translational processing machinery (Ailor and Betenbaugh 1999; 

Ailor et al. 1999; Ailor et al. 2000; Fang et al. 2000; Percival et al. 1997).  When 

proper post-translational modifications are necessary, for example, often for proteins 

used as therapeutic agents (Eckhardt et al. 2002; Fenouillet and Jones 1996; Li et al. 

1993), it may be more advantageous to use a mammalian derived host cell line.    

Our lab has postulated that a viral system used with mammalian cell culture, a 

more complex system with innate capabilities for complex post-translational 

processing, might also lead to increased levels of protein production compared to 

stable integration of foreign DNA into the host cell.  Vaccinia virus, an orthopoxvirus 

related to the virus that causes Smallpox, was chosen as the viral vector due to its 

unique characteristics.  This virus has a wide host range (Broder and Earl 1999) and 

its own transcriptional machinery is brought into the cytoplasm of the infected cell 

(Moss 1996).  This feature allows the recombinant protein to be transcribed in the 

cytoplasm, eliminating nuclear transport requirements for the recombinant DNA and 
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mRNA transcripts.  Bypassing these potentially rate-limiting transport steps during 

cell line development and protein production may increase the ability of this system 

to produce larger proteins than those systems which do not have this feature.  

Additionally, it is speculated that the capacity for gene insertions in vaccinia virus is 

up to 25,000 bp of DNA, exceeding the capacity of other mammalian expression 

vectors (Moss 1991; Smith and Moss 1983).  Comparing short term methods of 

production, viral vectors are considered more efficient than DNA transfection 

methods and can be used to infect a large volume of cell culture (Moss 1991). 

Recombinant proteins produced with vaccinia can undergo N- and O-linked 

glycosylation, phosphorylation, myristylation, proteolytic cleavage, polarized 

membrane and nuclear transport, and secretion (Moss 1991).  Researchers have used 

the vaccinia expression system to infect many cell types for production of proteins 

including a nerve growth factor (NGF) (Edwards et al. 1988) and Factor VIII 

(Pavirani et al. 1987), wherein the processing modifications of the cell lines were 

examined.  For both proteins, cell lines were identified which produced and properly 

processed proteins.   

Vaccinia virus has been studied for many years as a method of gene delivery 

in animal species and humans (Brochier et al. 1991; Cooney et al. 1991; Cooney et al. 

1993; Graham et al. 1992; Hanke et al. 2002; Hanlon et al. 1998; Kieny et al. 1984; 

McAneny et al. 1996; McClain et al. 2000; Moss 1996; Wiktor et al. 1984; Zajac et 

al. 2003) and as a research tool for protein production in small-scale (Arp et al. 1996; 

Chakrabarti et al. 1997; Davis et al. 1996).  Few researchers have investigated the 

potential for production of proteins in bioreactors via vaccinia virus infection, with 
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various promoter elements.  A 40 l bioreactor with Vero cells attached to 

microcarriers was used to produce gp160, the full length form of the HIV-1 envelope 

coat protein that contains gp120 (Barrett et al. 1989).  A packed bed bioreactor (1.6 l) 

utilizing a T7 based co-infection scenario with HeLa cells was used to produce gp120 

previously in our lab (Hu et al. 2000).   Both studies achieved production of these 

HIV envelope proteins at 2-3 µg/106 cells. In this report recombinant vaccinia virus 

containing the gene for the reporter protein enhanced green fluorescent protein 

(EGFP) in an inducible T7 promoter based virus construct called the VOTE system 

(Ward et al. 1995) was tested for its potential in large-scale production.  This protein 

was produced earlier at 2.2 µg EGFP/106 cells at infection in spinner flask culture of 

HeLa cells attached to microcarriers (Bleckwenn et al. 2003), similar to the levels 

found by Hu and Barrett (Barrett et al. 1989; Hu et al. 2000).    

 Growth of anchorage dependent mammalian cells at large-scale can be 

accomplished through the use of special reactors such as stacked plate systems, 

packed bed or hollow fiber bioreactors or with microcarriers in a standard stirred tank 

bioreactor (Bleckwenn and Shiloach 2004).  Microcarrier cultures were chosen for 

this work because, once seeded with cells, the carriers are treated similarly to 

suspension culture.  However, media replacement, generation, and harvest of the 

large number of cells needed for seeding the bioreactor may be difficult. 

The work presented here concentrates on defining the proper conditions 

required for the production of recombinant protein from the HeLa cell-vaccinia 

system with microcarrier culture in a stirred tank bioreactor. Methods for media 

replacement, infection, and protein expression were developed using EGFP and were 
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then used to produce gp120.  Production and analysis of these proteins provides new 

insight on the potential of vaccinia for production of complex human proteins.   

4.3  Materials and Methods 

4.3.1  Cell Maintenance and Expansion 

HeLa cells (ATCC CCL-2) were used for all production experiments.  BS-C-1 

cells (ATCC CCL-26) were used for titer determination of viral stocks.  Both were 

maintained in Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/L glucose 

(Biosource, Camarillo, CA) supplemented with 10% fetal bovine serum (FBS, 

Biosource).  The cells were grown in tissue culture flasks and passaged every 3-4 

days.  Cells used for experiments were prepared by expanding the culture to multiple 

tissue culture flasks and were harvested using Hanks’ based cell dissociation solution 

(Invitrogen, Carlsbad, CA) and counted as described below.  Medium used for all 

experimental conditions was composed of DMEM with 4.5 g/L glucose without 

phenol red and supplemented with 4 mM L-glutamine (Biosource) and 10% FBS 

unless otherwise specified.   All bioreactor work included 100 units/ml Penicillin-

Streptomycin (PS, Invitrogen, Carlsbad, CA) to reduce the chance of contamination.  

4.3.2  Cell Count and Viability Measurements 

Cell suspension samples were used to measure cell count and viability using 

0.4% Trypan Blue exclusion staining (Sigma, St. Louis, MO) on a hemacytometer.  

To obtain the suspension samples from the anchorage dependent cells, cells from 

tissue culture flasks were harvested using cell dissociation solution and a suspension 

of these cells were then counted.  Cells from microcarrier based experiments needed 
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to be removed from the carriers before counting and this was accomplished by the 

following trypsinization procedure.  A sample of the microcarrier was centrifuged at 

300×g for 5 minutes.  The supernatant was aspirated and the pellet washed with D-

PBS with 0.9 mM calcium chloride and 0.5 mM magnesium chloride.  The pellet was 

then resupsended in 1× trypsin-EDTA solution and incubated at 37°C for 30 minutes 

with vortexing every 10 minutes.  This sample was mixed with an equal volume of 

DMEM+10% FBS and was then used as the cell suspension sample for counting 

procedures.  A sample of the culture with cells still attached to the carriers was 

visualized via microscopic observation at 100× magnification to estimate the percent 

coverage of the cells on the carriers. 

4.3.3  Nutrient and Metabolite Measurements  

Samples of culture medium were taken from the spinner flasks or bioreactors 

and glucose and lactate were measured on a YSI 2700 Biochemistry Analyzer 

(Yellow Springs Instrument Co., Yellow Springs, OH).   

4.3.4  Seeding and Growth of HeLa Cells on Microcarriers in Spinner Flasks 

Cytodex® 3 microcarriers (Amersham Biosciences, Piscataway, NJ) were 

hydrated and washed in PBS and sterilized for 30 minutes at 121°C.  The carriers 

were then washed in sterile PBS and finally in culture medium.  Spinner flask (250 ml 

Bellco, siliconized) cultures were seeded with 1.0×105 cell/ml onto 5 g/l Cytodex® 3 

microcarriers.  The initial volume of medium was reduced to half (100 ml) and an 

intermittent stirring profile (30 sec on and 20 min off for 4 h) was used to attach the 

HeLa cells to the microcarriers.  After seeding, the volume was restored to 200 ml 
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and the stirring speed was maintained at 50 rpm in a 5% CO2, humidified, 37°C 

incubator.  Cultures were grown and monitored daily for cell density, viability, 

percent coverage of the carriers, glucose and lactate.   

The cultures used in microcarrier seeding were prepared and grown as 

described above with 20×106 HeLa cells seeded onto 5 g/l Cytodex® 3 in 200 ml of 

culture.  These were grown for five days until almost confluent.  The microcarriers 

were then allowed to settle for five minutes, after which 150 ml of medium was 

removed.  The culture was then washed twice with PBS and again reduced to 50 ml 

total volume.  Trypsin-EDTA solution was added (0.25% (v/v) trypsin and 1 mM 

EDTA final).  The spinner flasks were then returned to agitation at 50 rpm for 20 min.  

50 ml medium with 10% serum was then added and the flasks incubated for another 

10 minutes.  Samples were removed and the freely suspended cells counted.  20×106 

cells from these suspensions were then seeded into new spinner flasks with 5 g/l 

Cytodex® 3 microcarriers in the standard reduced volume with agitation profile for 

seeding.  These cultures were monitored for cell count, viability and estimation of 

percent coverage of the carriers.  

4.3.5  Seeding Microcarriers with HeLa Cells and Growth in Bioreactor 

Cytodex® 3 microcarriers (5 g/l) were used for all reactor experiments and 

HeLa cells were seeded at 1.5×105 cells/ml in DMEM+10% FBS into a 2.2 l 

siliconized bioreactor vessel (Bioflow 3000, New Brunswick Scientific, New 

Brunswick, NJ).  The initial seeding volume was reduced to ~500 ml in the reactor 

and an agitation profile was programmed to control the pitched-blade impeller at 50 

rpm for 1 minute (where the carriers and cells would be well mixed) and 20 minutes 
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at 15 rpm (where the carriers would settle).  This was continued for four hours until 

the cells were attached to the carriers.  At the end of this seeding stage, medium was 

brought to 1.5 l and the agitation adjusted to a constant 50 rpm.  The DO and pH were 

controlled at 30% (air saturation) and 7.2 by altering the headspace gas composition.  

Temperature was controlled at 36.5°C. The cells were allowed to grow in batch mode 

for two days, after which perfusion feeding was used to maintain the glucose above 

1.0 g/l and the lactate below 2.0 g/l.  Generally, exchanged medium volumes ranged 

from zero, on the first day of seeding, to half a reactor volume per day, on day five 

before infection, or up to one reactor volume per day for uninfected cultures.   This 

was accomplished through the use of the ATF™ System (ATF, Refine Technology 

Inc., East Hanover, NJ) with a mesh screen module and controlling the filtrate pump 

speed which removed spent medium through the ATF (see Results).  That is, fresh 

medium was added when the level controller signaled to the feed addition pump, 

maintaining a constant reactor volume.   

4.3.6  Infection of Bioreactor Cultures and Protein Production 

Viable cell density determinations were made prior to infection to determine 

the total number of cells in the culture.  Medium without serum, but containing 1.0 

mM IPTG, was exchanged with the culture medium and the volume reduced to ~400 

ml using the ATF.  These medium manipulations took ~1 h.  The amount of virus 

needed for infection at an MOI of 5.0 was trypisinized for 30 minutes at 37°C with 

vortexing every 10 minutes and then diluted in 100 ml of serum-free medium with 1.0 

mM IPTG.  The diluted virus was added to the reactor and the infection phase, in the 

lowered volume of serum-free medium, lasted for 1 h.  The medium was then brought 
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to 1.5 l and the serum concentration back to 10% FBS.  The ATF was run during and 

after infection, but without drawing off filtrate until step feeding occurred at either 24 

or both 24 and 48 hours post infection (hpi).  Samples were taken for analysis.   Cell 

density and viability measurements after infection were not possible because the 

method of removing the cells from the carriers was too harsh for the fragile, infected 

cells, resulting in cell lysis and inaccurate determinations.  Measurements of EGFP 

fluorescence were made on culture medium and lysed pellet samples according to 

Bleckwenn (Bleckwenn et al. 2003).   

4.3.7  gp120 Vaccinia Virus Construction 

Plasmid pTM-DHgp120H (kindly provided by Michael Cho, (Lee et al. 

2000)) was used to create the gp120 containing vaccinia virus following methods 

similar to those described in Bleckwenn (Bleckwenn et al. 2003).  Specifically, Nde I 

(New England Biolabs, Beverly, MA) was used to partially digest plasmid pTH-

DHgp120H to cleave the plasmid at the beginning of the gp120 gene.  The reaction 

mixture was heated to 65°C to stop the reaction and inactivate Nde I, after which the 

mixture was digested with Xho I (New England Biolabs) to completion.  Additionally, 

plasmid pVOTE.2 was cleaved with Nde I and Xho I in sequential digests.  The 

pVOTE.2 digested plasmid was treated with CIP (New England Biolabs).  A 0.9% 

agarose gel was run with the digest samples and the 1536 bp band from pTM-

DHgp120H and 6299 bp band from pVOTE.2 were extracted and purified.  A ligation 

reaction was then performed with these fragments, and the resulting plasmid 

transformed into competent E. coli Top 10F′.   Plasmid pNB014 was isolated from 

culture of this strain and gels of an Nde I and Xho I digest were performed to verify 
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fragment sizes.  Additionally, the plasmid was used for PCR reactions to verify the 

gene sequence. 

Virus vNB014 containing the gp120 and histidine tag (6×HIS) with the VOTE 

elements was created by the following method.  A T-25cm2 flask of confluent HeLa 

cells was infected at an MOI of 0.05 with vT7lacOI for two hours at 37°C in a 5% 

CO2 humidified incubator with periodic rocking.  At the end of the infection, 5 µg of 

pNB014 plasmid, containing the gp120-6×HIS gene, was transfected using 

Lipofectamine Plus (Invitrogen).  The cells were incubated for 3-4 days and then 

recombinant virus was harvested by scraping, centrifuging, and resuspending in 0.5 

ml serum-free medium (DMEM, Biofluids).  The suspension was subjected to three 

cycles of freeze-thaw in a dry ice-ethanol and 37°C waterbath.  The virus preparation 

was then amplified under selective pressure with MPA (25 µg/ml), xanthine (250 

µg/ml) and hypoxanthine (15 µg/ml) (all from Sigma, St. Louis, MO) in a flask of 

HeLa cells and harvested after 3 d infection.  The resulting virus was harvested and 

two rounds of plaque purification on confluent monolayers of HeLa cells with 

selective agents in Minimal Essential Medium (Invitrogen) +10% FBS and 1% 

agarose were performed to isolate the recombinant virus (Bleckwenn et al. 2003).  

Amplification of the virus plaque was performed in 12-well, T-25 cm2, and T-162cm2 

flasks under selective pressure and then finally amplified to ten T-162cm2 flasks with 

no selective agents.  The purity of the recombinant virus was verified by infecting 12-

well culture of HeLa cells and isolating the DNA.  PCR reactions of the resulting 

DNA were performed with primers 5′−CAT ATG AGA GTG ATG GGG ATC AGG 

AAG AAT −3′ forward and 5′−CTC GAG TTA ATG GTG ATG ATG GTG ATG 
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TCT −3′ reverse to verify the presence of the gp120-6×HIS gene segment and with 

primers 5′− CGG TGT CTG TAT GAT CTT CTA C −3′ forward and 5′− TGA GTG 

CTT GGT ATA AGG AGC CC −3′ reverse, (designed by Terri Shors NIAID, NIH), 

to verify the presence of the entire insert containing all of the VOTE promoter control 

elements.  The amplified virus was then purified by 36% sucrose gradient 

centrifugation and resuspended in buffer (10 mM Tris-Cl, pH 9.0).  Titer 

determination was made in triplicate on confluent monolayers of BS-C-1 cells by 

serial dilution of the stock and duplicate plating of a range of dilutions.  Plaques were 

counted and the concentration determined to be 1.93×1010 pfu/ml.  Viral stock 

vNB014 was frozen at -70°C for storage.  Figure 4-1 depicts a schematic 

representation of the virus construction in Panel A and Western blot verification of 

gp120 expression in Panel B.  

4.3.8  gp120 Protein Purification on Nickel Column 

Supernatant from bioreactor cultures were collected at 96 hpi and frozen.  

Supernatant (200 ml) was thawed to 4°C and NP-40 was added to a concentration of 

0.5% to inactivate virus particles and NaH2PO4 (20 mM) and NaCl (500 mM) were 

added.  The solution was stirred overnight at 4°C.  A Hi-Trap HP 1 ml column 

(Amersham Biosciences, Piscataway, NJ) was used on an ACTAprime purification 

unit (Amersham Biosciences).  The column was washed with wash buffer (containing 

50 mM NaH2PO4 20 mM NaCl and 20 mM imidazole).  The protein was then eluted 

with a 10 ml gradient from 20 to 500 mM imidazole.  Fractions (0.5 ml) were 

collected.  The column was then finally washed with wash buffer.  Absorbance 

measurements (A280) were made on the elution and wash fractions to determine the  
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Figure 4-1  gp120 Virus Construction and Expression Verification 

pNB014 plasmid was constructed as shown (Panel A) and used for transfection of 

HeLa cells infected with vT7lacOI to generate recombinant virus containing the 

gp120 gene.  Isolation, amplification, purification, and titering lead to the generation 

of a viral stock, vNB014 (see Methods).  Panel B shows a Western blot of supernatant 

samples from 6-well plate cultures of HeLa cells infected with either vNB014, 

containing the gp120 gene in the right lane, or another virus without the gp120 gene 

as a negative control in the left lane.   
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location of the protein in 96-well UV-plates (Coring Costar, Acton, MA).  The 

fractions were pooled appropriately and run on reducing SDS-PAGE gels for Western 

blotting or quantification using SafeStain (Invitrogen). 

4.3.9  gp120 Western Blot / N- and O-linked Glycosylation / Biological Activity 

Analyses 

Analysis of the gp120 protein for vNB014 infected and control cultures was 

performed by Western blot analysis on supernatant samples, since this protein is 

secreted into the medium.  The reduced samples were run on 4-20% Tris-Glycine 

SDS-PAGE gels and blotted on nitrocellulose membranes.  The membranes were 

blocked with 5% normal donkey serum (KPL, Gaithersburg, MD) in TTBS at 4°C 

overnight, then washed with TTBS and incubated with primary antibody (1:2000)  for 

one hour at room temperature.  The primary antibody, HIV-1 gp160B Antiserum 

(HT3) in Goat (Reagent 188), was obtained  through the AIDS Research and 

Reference Reagent Program, Division of AIDS, NIAID, NIH as well as the gp120 

standard, HIV-1 gp120 CM (Reagent 2003-CM).  The membranes were then washed 

and incubated with secondary antibody, (1:5000) Donkey Anti-Goat IgG (KPL) for   

1 h at rt.  They were then washed a final time and developed with BCIP/NBT 

Phosphatase Substrate (KPL) solution and washed in water and dried.  Scans of the 

Western blots were quantified with the Kodak EDAS system using standards of 

gp120 for comparison.   

Purified gp120 was used for analysis of the glycosylation level of the protein.  

PNGase treatment to remove N-linked glycans and a series of enzymatic reactions to 

remove the O-linked glycans were performed using a deglycosylation kit (E-DEGLY 
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Sigma) and the treated proteins were then run on a reducing SDS-PAGE gel and 

transferred to nitrocellulose for Western blotting as described above. 

A fusion inhibition assay was used to determine the biological activity of the 

DH12 gp120 envelope protein in the manner previously described in Hu (Hu et al. 

2000).  Briefly, 1×105 PM1 target cells (CD4+, CXCR4+, CCR5+) per well were 

incubated for 1 hour at 37°C with serial dilutions of the purified gp120 protein from 

0.3 to 30 mg/ml in duplicate wells of a 96-well plate.  The same number of Tf228 

effector cells, expressing BH10/IIIB gp160, were added to each well and the 

incubation continued at 37°C in a CO2 humidified incubator another for 3-4 hours.  

The absence of soluble envelope protein causes fusion of the two cell types and 

formation of syncytia, which can be inhibited in the presence of soluble gp120 

protein.  The degree of fusion inhibition was determined for each well, scored after 

incubation.  Plotting the degree of inhibition as a function of gp120 concentration 

allowed the determination of the 50% inhibitory dose (ID50) from the fusion-

inhibition curve (Lee et al. 1997). 

4.4  Results 

4.4.1  Seeding Cells From Microcarrier to Microcarrier 

Small-scale experiments were performed in duplicate to determine the 

feasibility of seeding cells from already growing microcarrier culture to fresh 

microcarriers.  HeLa cells were grown either in tissue culture flasks, or on 5 g/l 

Cytodex® 3 microcarriers in spinner flasks.  Cells were removed from the culture 

flasks using cell dissociation solution or from the microcarrier culture via 
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trypsinization inside the spinner flasks and both were seeded into new spinner flasks 

with freshly prepared microcarriers.  Figure 4-2 shows the average growth curves for 

the two types of cultures seeded.    

Regression analysis was performed for each flask independently using an 

exponential equation, VCD=VCD0 eµt, to determine the growth rate, µ, and cell 

density at seeding, VCD0.  The analysis resulted in R2 values of 1.0 and 1.0 for the 

plate seeded cultures and 0.96 and 0.97 for the microcarrier seeded cultures.  

ANOVA analysis showed no significance difference, P=0.083, between the growth 

rates for these two culture types, 0.031 and 0.025 h-1 for plate and microcarrier 

seeded, respectively.   Analysis of the intercepts, or VCD0, showed that the plate 

seeded cultures started with an average VCD of 0.025×106 cells/ml versus the 

microcarrier seeded cultures with VCD 0.071×106 cells/ml.  These values were 

statistically different with P=0.049.   

4.4.2  Growth of Anchorage Dependent HeLa Cells in a Bioreactor  

This work utilizes microcarriers in a traditional stirred tank bioreactor for 

growth of anchorage dependent HeLa cells.  To perfuse the culture, the bioreactor 

was equipped with an alternating tangential flow device (ATF) from Refine 

Technology, Co. (East Hanover, NJ)  The ATF unit is equipped with a nylon mesh 

membrane with pores of approximately 70 µm, that allows media and cell debris to 

pass through, but not microcarriers (Figure 4-3A).  The system works by alternatively 

pulling culture up into the ATF inner chamber via the movement of a diaphragm at 

the top of the unit.  The movement is controlled by alternating air and vacuum cycles. 

The system cycled about four times per minute for a “slow” pull up of the culture into  
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Figure 4-2  Seeding Method Evaluation  

Cytodex® 3 microcarriers were seeded with anchorage dependent HeLa cells 

harvested either from tissue culture plates (circles) or previous microcarrier culture 

(squares).  Exponential growth curves were fit to the average viable cell densities and 

are shown by the solid and dashed lines. 
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the center of the cylindrical mesh filter and a “fast” push of the culture back into the 

reactor to “self-clean” the mesh membrane and allow sufficient mixing with the 

contents of the reactor.  The filtrate side of the mesh membrane is connected to outlet 

tubing and a pump draws off spent medium at a controlled rate.  The time course of a 

single pressure-exhaust cycle as seen through the front sight glass of the ATF is 

shown in Figure 4-3B.  Batch growth of HeLa cells without medium exchange was 

compared to duplicate growth experiments with perfusion via the ATF, results shown 

in Figure 4-4.  Perfusing the culture extended the exponential growth phase by at least 

50 hours and lead to a higher maximum viable cell density of 4.4x106 versus 1.5×106 

cells/ml for the batch culture. 

4.4.3  Dissolved Oxygen Effect on Protein Production in Bioreactor Culture 

The dissolved oxygen level during the protein production phase was tested at 

two levels (30% and 50%), corresponding to estimates from our previous spinner 

flask study (Bleckwenn et al. 2004a). Five days after seeding, the culture (1.5 l, HeLa 

on microcarriers) was infected with vNB009 (with EGFP gene) at an MOI of 5.0 in a 

reduced volume (~0.4 l) of serum-free medium containing 1.0 mM IPTG.  After 

infection (1 h), serum was reintroduced to 10% FBS and the volume restored to 1.5 l.  

At this point the DO setpoint was either maintained at 30% or increased to 50% air 

saturation. The ATF was kept running to prevent drying of cells onto the membrane, 

but filtrate was not removed for the first day after infection.  At 24 hpi, the ATF was 

used to remove 1 l of spent medium and fresh medium with IPTG was added.  Both 

cultures peaked in expression around 50 hpi, but the 50% DO case produced  
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Figure 4-3  Reactor Schematic and Culture Motion with ATF™ System 

A schematic drawing of the system (Panel A) used for all bioreactor experiments is 

shown with the ATF components used for perfusion feeding.  The motion of the 

liquid culture medium is seen through the sightglass on the side of the ATF housing 

(Panel B).  The light gray seen in the back of the view above the liquid culture is the 

cylindrical mesh membrane.  As the diaphragm pulls up with vaccum, the culture 

moves up slowly into the unit in the first five panels, then quickly pushes back into 

the reactor when the diaphragm extends with air pressure.   
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Figure 4-4  Batch Versus Perfusion Growth with ATF™ System  

The viable cell densities are plotted over time for bioreactor culture grown with ATF 

for perfusion feeding (circles) or batch bioreactor culture without feeding (squares). 

 

Time (h)
0 50 100 150 200 250

V
ia

bl
e 

C
el

l D
en

si
ty

(1
06  c

el
l/m

l)

0.0

1.0

2.0

3.0

4.0

5.0

Perfusion

Batch



 

 86 
 

8.0±0.81 µg/106 infected cells compared to 6.0±1.5 for 30% air saturation (Figure 4-

5).  Overall, the cultures at 50% DO produced more EGFP than the cultures at 30%.  

4.4.4  Temperature Effect on Protein Production in Bioreactor Culture 

An evaluation of process temperature during the protein production phase was 

also made.  Our previous study with spinner flasks showed a dramatic increase in 

production at lower temperatures (31°C).  For the bioreactor cultures, cells were 

prepared and infected in the same manner as described previously, but after the 

infection phase, the DO was brought to 50% air saturation and the temperature was 

adjusted to 31°C.  In Figure 4-6, the maximum level of EGFP reached for the 31°C 

culture was 12±1.5 µg/106 infected cells.  Over the time course, the level of EGFP 

remained higher in the 31°C culture than the 36.5°C culture (50% DO data shown in 

Figure 4-5). 

4.4.5  Production of gp120 Protein in Bioreactor Culture 

The virus created to produce gp120 was used to infect microcarrier attached 

HeLa cells in bioreactor culture.  The growth, infection, and protein production 

conditions were chosen based on previous results with the reporter protein, EGFP.  

HeLa cells were grown on Cytodex® 3 microcarriers in a 1.5 l bioreactor utilizing the 

ATF unit for perfusion. Approximately 3×108 cells were infected with vNB014 at an 

MOI of 5.0 at ~400 ml (see above) with 1.0 mM IPTG but no serum.  After the 1 h 

infection, the conditions were reset to those of EGFP (31°C, 1.0 mM IPTG, 50% 

DO).  The run profile is depicted in Figures 4-7A and 4-7B.  A Western blot of the  
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Figure 4-5  Effect of Dissolved Oxygen on Protein Production in Bioreactor 

Intracellular levels of EGFP are compared for bioreactor runs with the dissolved 

oxygen at 30% (circles) or 50% (squares) during the protein production phase. 
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Figure 4-6  Effect of Lowered Temperature During Protein Production in 

Bioreactor  

Intracellular levels of EGFP are shown for bioreactor runs with the temperature 

lowered to 31°C during the protein production phase. 
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Figure 4-7  gp120 Production in Microcarrier Based Reactor with ATF™ 

System  

Online parameter measurements for the reactor used to produce gp120 protein are 

shown in Panel A.  Panel B shows glucose, lactate, and viable cell density 

measurements.  Arrows indicate medium operations and infection.  Panel C shows the 

expression of gp120 over time, quantified against standards of gp120.  Western blot 

samples corresponding to each timepoint in Panel C are shown inside panel D.  
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supernatant samples and the corresponding gp120 band quantification are shown in 

Figures 4-7C and 4-7D. The production run was terminated ~120 hpi when the 

controlled bioreactor parameters, pH and DO, were observed to vary significantly and 

visual inspection revealed less than 5% coverage of cells on the carriers.  The 

maximum expression level reached by this culture was 10.5 mg/l at 120 hpi, 

corresponding to 5.4 µg/106 infected cells.   

4.4.6  Purification of gp120 Protein on IMAC Column 

The gp120 was purified via IMAC column (See Methods).  Supernatant (200 

ml) collected at 96 hpi was treated with NaH2PO4 (20 mM) and NaCl (500 mM) and 

NP-40 (0.5% v/v), to inactivate any virus particles, and then was loaded onto the 

column (1 ml).  The column was washed and the protein was eluted with 10 column 

volumes of a 20 to 500 mM imidazole gradient (Figure 4-8A).  Analysis of the pooled 

fractions by reducing SDS-PAGE and Western blot with gp160 antibody are seen in 

Figure 4-8B and 4-8C.  The partially purified gp120 was concentrated for further 

analysis. 

4.4.7  Analysis of Produced and Purified gp120 Protein – Glycosylation and 

Activity 

The  purified gp120 was subjected to deglycosylation reactions with PNGase, 

to remove N-linked sugar groups, and a set of enzymatic reactions to remove the O-

linked sugar groups.  Comparing the results seen in Figure 4-9 for the purified protein 

and the standard gp120, a drop in the molecular weight of the protein upon PNGase 

digestion revealed proteins around 60 kDa for both cases.  The additional removal of 
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Figure 4-8  Purification of gp120-6×HIS Protein from 96 hpi Culture 

Supernatant  

A280 measurements of collected fractions are shown in Panel A.  Panel B and C show 

reducing SDS-PAGE and Western blot analysis of purification samples, respectively. 

PP= Prior to purification supernatant treated with salts and NP-40 but prior to loading 

on column, FT= Flow through, W1, W2, W3= Pooled wash fractions, E1, E2= Pooled 

elution fractions, PW= Pooled post wash  
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Figure 4-9  Western Blot Analysis of Deglycosylated gp120 Samples  

Purified gp120 and gp120 standard were subjected to deglycosylation reactions then 

analyzed by Western blot. U= Undigested sample, N= PNGase treatment to remove 

N-linked glycans, N/O= Enzymatic treatment to remove both N- and O-linked 

glycans.  The two arrows at the right show the approximate locations of the full 

length gp120, at the top, and the deglycosylated form at about 60 kDa, bottom arrow. 
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Figure 4-10  Fusion-Inhibition Assay for Biological Activity of Purified gp120 

Percent cell fusion inhibition of cells expressing HIV receptors CXCR5 and CCR5 

with cells expressing HIV envelope are plotted for varying concentrations of purified 

gp120 produced from bioreactor culture.  The ID50 dose is calculated from the 

regression line and shown at the location of the arrow. 
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the O-linked sugar groups does not further reduce the molecular weight.  An activity 

assay was performed to verify the function of the produced protein.  Figure 4-10 

shows the fusion-inhibition curve for the gp120 produced and purified as above.  The 

activity of gp120 (50% inhibitory dose, ID50) was calculated to be 3.1 µg/ml. 

4.5  Discussion 

The growth and infection of anchorage dependent cells in large-scale 

bioreactor cultures present some technical difficulties.  A solid support, onto which 

the anchorage dependent cells can attach, must be provided and medium 

manipulations for viral infection must be technically manageable, including complete 

exchange of medium without removing the cells, and the ability to control the 

bioreactor conditions at a lower volume during the infection phase.  This lowered 

volume has been shown to be beneficial to protein expression in plate culture 

(Bleckwenn et al. 2003).  While several systems that support these tasks are available, 

our work has focused on the stirred tank reactor with microcarriers because once the 

carriers are seeded with cells, they can be treated in largely the same manner as cells 

in suspension culture.  A few issues that arise when utilizing microcarrier cultures are 

the method of aeration, the method of cell separation for perfusion feeding, and the 

ability to achieve the proper seed train of anchorage dependent cells (Bleckwenn and 

Shiloach 2004).   

The perfusion methods currently used for suspension culture (hollow fiber, 

acoustic filter, spin filter, and inclined settler) are not suitable for microcarrrier 

culture mainly because they require pumping through tubing, which can clog and 

damage the cells/carriers (Bleckwenn and Shiloach 2004).  Although it is possible to 
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replace the media by allowing the microcarriers to settle at the spinner flask scale, 

this operation mode is not practical for large-scale bioreactors.  To achieve media 

separation, we implemented the ATF system which operates by transferring the cell 

covered carriers directly to the unit through stainless steel tubing.  The action of a 

diaphragm, in response to alternating vacuum and air pressure, pulls the culture to the 

ATF and pushes it back to the reactor.  The ATF houses a mesh screen filter which 

allows the passage of cell debris and medium to the filtrate line, but maintains the 

attached cells and carriers in the reactor.  Spent medium is removed at a controlled 

rate and fresh medium can be added to the reactor.  The ATF can also be used to 

retain the cells during medium exchange and volume reduction in preparation for 

infection.  This method of feeding worked well with the Cytodex® 3 microcarriers 

and HeLa cells used in our work.  It was able to handle the operations of daily feeding 

and 3× volume reduction during infection procedures without clogging or loss of 

function.  Compared to batch culture, this perfusion method increased the cell density 

at infection, thus increasing the volumetric productivity.   

It might be interesting to see whether the ATF is capable of selecting viable 

cells.  That is, it was shown for both hybridoma and CHO cell cultures that the use of 

an inclined settler could preferentially select the smaller nonviable cells for removal 

from the bioreactor (Batt et al. 1990; Searles et al. 1994). The ATF, with its mesh 

screen with pore size around 70 µm, should allow passage of any cells not attached to 

microcarriers.  Because the cells are anchorage dependent, it is likely that the most 

viable cells are attached to carriers and will be retained in the reactor, whereas, 

nonviable cells will detach and could be selectively removed by this cell separation 
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method.  After infection, cells will begin to detach, but are significantly larger than 

uninfected cells due to the formation of large syncytia, and we speculate that they 

might be retained in the reactor.   

Obtaining the large number of anchorage dependent cells needed for seeding a 

bioreactor becomes a significant issue as the scale increases.  For spinner flasks or 

small-scale bioreactor culture, it is possible to harvest the needed cells from multiple 

tissue culture flasks but this approach is not practical for large bioreactors.  To 

overcome this problem, researchers have previously investigated the potential of 

different cell lines to be harvested from the microcarrier and then reseeded onto fresh 

carriers (Barrett et al. 1989).  Interestingly, other researchers have found that Vero 

cells could be seeded from microcarrier to microcarrier by adding fresh microcarriers 

to a culture of confluent carriers and repeating the agitation profile, with no 

trypsinization of the cells (Wang and Fan 1999).  Upon comparison of HeLa cultures 

seeded from harvested tissue culture plates or harvested from carriers and reseeded 

onto fresh carriers, we found that there was no significant decline in growth rate or 

cell density achieved five days after seeding, when infection would occur.  The 

culture seeded from carrier culture, appeared to seed onto the carriers better, 

increasing the initial cell density and thereby maintaining a slightly higher cell 

density than the tissue culture plate seeded culture over the five days tested.  This 

phenomenon suggests a possible adaptation to attachment of the cells on the carriers 

which may be passed on to the next stage in the seed train. 

In addition to increasing cell density, our work focused on two parameters that 

affect protein yield, dissolved oxygen and temperature. The level of dissolved oxygen 
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in bioreactor culture can contribute to high yields of protein (Kunkel et al. 2000; Lin 

et al. 1993; Lin and Miller 1992).  Some researchers have found optimum levels of 

DO increased protein production, but that high levels decreased production due to a 

concurrent increase in proteases in the culture, (Hu and Bentley 1999; Naggie and 

Bentley 1998; Scott et al. 1992; Wang et al. 1996).  In our expression system 

increasing the DO from 30% to 50% during the protein production phase resulted in a 

higher maximum level of intracellular EGFP.  Although these results were only 

minimally different, the higher trend in expression for the 50% DO case, maintained 

throughout the course of the production phase, suggests that expression may benefit 

from increasing DO.  

Most mammalian cell lines grow best at 37°C, and significant deviations 

above this temperature are devastating to the cells (Freshney 2000).  Lower 

temperatures are tolerable, but the cells grow slower.  Interestingly, Schlaeger and 

Lundstrom (Schlaeger and Lundstrom 1998) found higher yield at lowered 

temperature (33°C) with Semliki Forest Virus (SFV) infection.  They suggested that a 

reduction in the cytopathic effects from the viral infection may increase the life of the 

cells and lead to a longer protein production phase, thereby increasing protein yield.  

In the present work, temperature was adjusted after the infection phase to ensure that 

this change had no affect on the kinetics of infection, only on protein production and 

cytopathic viral effects.  Lowering the temperature to 31°C increased specific yield 

fifty percent over the 36.5°C culture yielding about 20 mg/l intracellular EGFP.  This 

modest increase was not as dramatic as that seen in the previous study in spinner flask 

culture (Bleckwenn et al. 2004a).  In this case, lowering the temperature to 31°C also 
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slows the process and draws out protein production over a longer period of time, with 

the maximum occurring about 75 hours after the maximum for the culture at 36.5°C.      

Once the previous experiments had lead to a defined culture process with the 

model protein, EGFP, a virus containing the gene for gp120, a secreted HIV-1 

envelope coat protein with significant post-translational modification, was used to 

infect bioreactor culture and verify the production and processing capabilities of this 

system.  Maximum expression occurred at 120 hpi with a level reaching 10.5 mg/l, 

corresponding to 5.4 µg/106 infected cells which is about double the amount seen 

previously with the vaccinia system (Barrett et al. 1989; Bleckwenn et al. 2003; Hu et 

al. 2000).  The protein was purified using an IMAC column and was treated with 

enzymes to remove N-linked or both N- and O-linked sugar groups.  The results 

revealed that the molecular weight of the protein drops to 60 kDa upon N-linked 

sugar group removal, but does not drop further on O-linked sugar group removal.  

This suggests that the majority of the glycosylation modifications are N-linked for 

this protein.  Additionally, the molecular weight of this treated protein was 

approximately the same as the theoretical amino acid weight for the protein with no 

post-translational modifications (~58 kDa).  A fusion-inhibition assay was used to 

determine the biological activity of the purified gp120 which resulted in an ID50 of 

3.1 µg/ml, similar to that seen by Hu et al (Hu et al. 2000).  This shows that the 

protein was active in binding the receptors CXCR5 and CCR5 and blocking fusion 

with cells expressing HIV envelope. 
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4.6  Conclusions 

The utility of the VOTE vaccinia virus expression system for producing 

protein in mammalian cells has been established.  Several issues relating to the 

practical operations of growing and infecting anchorage dependent cells have been 

addressed through the use of the ATF System for perfusion and medium 

manipulations, which can be scaled up through the use of larger units.  Large-scale 

considerations for seed train manipulations were evaluated and shown to be 

reasonable by the ability of these cells to be seeded from previous microcarrier 

cultures onto fresh carriers.  The controllable process parameters of dissolved oxygen 

and temperature have been studied for their effect on recombinant protein production 

during the production phase and lead to increases in protein yield, albeit more 

conditions and replicates might be warranted for locating an optimum.  

These results indicate that, with proper optimization, the vaccinia virus-HeLa 

expression system can yield high levels of recombinant protein.  The system could be 

further optimized by adjusting other process parameters such as pH or altering 

medium components.  With the basic process parameters defined, a complex protein 

of commercial interest, gp120, was then produced in bioreactor culture.  The protein 

was purified for post-translational modification and biological activity analyses, both 

proved that the protein was glycosylated and active.   
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CHAPTER 5:  Perfusion of Mammalian Cell Suspension 

Bioreactor Culture and Reduced Temperature During 

Production to Increase Protein Yield with the Vaccinia Virus 

Expression System4 

5.1  Summary 

Adaptation of the vaccinia virus expression system to HeLa S3 suspension 

bioreactor culture for the production of recombinant protein was conducted.  

Evaluation of a hollow fiber device for perfusion of suspension culture demonstrated 

its potential for increased cell density prior to infection and lengthened exponential 

growth phase.  The hollow fiber was also used for medium manipulations prior to 

infection.  Two process parameters, multiplicity of infection (MOI) and temperature 

during the protein production phase, were evaluated to determine their effect on 

expression of the reporter protein, EGFP.  An MOI of 1.0 was sufficient for infection 

and lead to the highest level of intracellular EGFP expression.  Reducing the 

temperature to 34°C during the protein production phase increased production of the 

protein two-fold compared to 37°C in spinner flask culture.  Scaling up the process to 

a 1.5 liter bioreactor with hollow fiber perfusion, lead to an overall production level 

of 10.44 µg EGFP/106 infected cells, or 27 mg EGFP per liter.  

                                                 
4 Bleckwenn NA, Bentley WE, Shiloach J. 2004. Perfusion of mammalian cell 
suspension bioreactor culture and reduced temperature during production to increase 
protein yield with the vaccinia virus expression system. Submitted 2004. 
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5.2  Introduction 

Vaccinia vaccinia virus infection has been described previously as a method 

to obtain small quantities of proteins in HeLa S3 cultures (Hooper et al. 1993; Jun et 

al. 1996) and as a gene delivery vector (Cooney et al. 1991; Cooney et al. 1993; 

Gomella et al. 2001; Graham et al. 1992; Hanke et al. 2002; Hanlon et al. 1998; 

McAneny et al. 1996; McClain et al. 2000; Wiktor et al. 1984; Zajac et al. 2003).  To 

begin the process of scaling up this viral expression method for the production of 

large amounts of recombinant proteins, evaluation of cell growth, infection, and 

protein production are required.   

A recombinant vaccinia virus expressing enhanced green fluorescent protein 

(EGFP) controlled by the T7 promoter based VOTE expression system (Ward et al. 

1995) was previously constructed (Bleckwenn et al. 2003).  Infection of microcarrier 

attached HeLa cells grown in spinner flasks with the recombinant vaccinia virus 

produced 2.2 µg EGFP/106 cells at infection (Bleckwenn et al. 2003).  An 

optimization of several of the infection and process parameters such as inducer 

concentration, multiplicity of infection, dissolved oxygen (DO), and temperature lead 

to an increase in the production to about 17 µg EGFP/106 infected cells in spinner 

flask cultures (Bleckwenn et al. 2004a).  Protein levels from bioreactors have been 

lower (e.g. 2-3 µg/106 cells for HIV gp160 and gp120 (Barrett et al. 1989; Hu et al. 

2000)) so we were interested in making process modifications that would increase 

this yield.    

That is, to assess the potential of this system, growth strategies implementing 

hollow fiber perfusion and other production parameters such as multiplicity of 
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infection (MOI) and temperature were evaluated.  Medium replacement via perfusion 

can dramatically boost cell density and yield (Chen et al. 1992; Kyung et al. 1994; 

Zhang et al. 1993).  The MOI also plays an important role in expression.  

Interestingly, previous work showed that the best MOI was different for tissue flask 

and microcarrier cultures (Bleckwenn et al. 2003; Bleckwenn et al. 2004a).  This was 

not unique to vaccinia, differences between tissue plate culture and suspension culture 

were shown in baculovirus/insect cell studies (Dee and Shuler 1997a).  Further, 

lowered temperature during the protein production phase was shown to be beneficial 

for both the Semliki Forest Virus expression system (Schlaeger and Lundstrom 1998) 

and the vaccinia virus expression system in microcarrier based cultures (Bleckwenn 

et al. 2004a).  This may have been due to a reduced cytopathic effect from the virus at 

lowered temperatures, allowing the cells to remain intact and producing protein for a 

longer period of time, although this was not shown.   

Several methods are available for perfusion of suspension culture including 

hollow fiber, spin filter, and acoustic filter (Bleckwenn and Shiloach 2004).  The 

present viral expression method requires that the cell separation device enable rapid 

medium exchanges, such as during the infection process when the serum 

concentration and volume are reduced creating a more effective infection 

environment.  The hollow fiber system is relatively simple, requiring only a filter 

cartridge, tubing, and peristaltic pumps.  Hollow fiber cartridges have been 

successfully used by other laboratories for perfusion of mammalian cell cultures 

(Chen et al. 1992; Kyung et al. 1994; Zhang et al. 1993) and can handle large rates of 
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exchange if sized properly.  This work describes scale-up evaluation of the HeLa S3-

vaccinia protein expression method in a hollow fiber perfusion culture. 

5.3  Materials and Methods 

5.3 1  Cell Maintenance and Expansion 

HeLa S3 cells (ATCC CCL-2.2) were maintained in 200 ml spinner flasks in 

Dulbecco’s Modified Eagle’s Medium (DMEM, Biosource, Camarillo, CA) with 4.5 

g/l glucose, without calcium, supplemented with 4 mM glutamine (Invitrogen, 

Carlsabd, CA) and 10% fetal bovine serum (FBS, Biosource).  The cultures were 

passaged every 3-4 days, reducing the cell density to approximately 2×105 cell/ml 

while retaining at least 10-20% conditioned medium in the new culture.  Cultures 

were expanded into multiple 1000 ml spinner flasks to obtain the number of cells 

needed for seeding bioreactor cultures.   

5.3.2  Cell Density and Viability Measurements 

Samples of cell suspension were taken from cultures and a portion diluted in 

PBS and mixed with 0.4% trypan blue solution (Sigma, St. Louis, MO) for viability 

staining.  The stained solution was then counted using a hemacytometer to determine 

total cell density and viability. 

5.3.3  Metabolite Measurements 

Glucose and lactate measurements were made on supernatant samples from 

spinner flask or bioreactor cultures using a YSI 2700 Biochemistry Analyzer (Yellow 

Springs Instrument Co., Yellow Springs, OH). 
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5.3.4  Spinner Flask Seeding and Growth 

Spinner flask cultures containing 200 ml of culture in 250 ml Bellco spinner 

flasks with stir bar and paddle (Bellco Glass, Inc., Vineland, NJ) were seeded with 

1.0×105 cell/ml.  Agitation speed was set at 50 rpm in a 5% CO2, humidified, 37°C 

incubator.  Cultures were monitored daily for cell density, viability, glucose and 

lactate.   

5.3.5  Suspension Bioreactor Seeding and Growth 

HeLa S3 cells were seeded into a 2.2 l bioreactor (New Brunskwick Scientific, 

New Brunswick, NJ) with a working volume of 1.5 l using the same medium as was 

used for spinner flask culture with the addition of 100 units/ml Penicillin and 100 

µg/ml Streptomycin (Invitrogen) to reduce the chance of contamination.  

Approximately 10-20% of the final reactor volume was conditioned culture medium 

from the seeding spinner flasks to ensure growth of the culture.  Cells were seeded to 

a density of 2×105 cell/ml and grown at 36.5°C, 30% DO based on air saturation at 

36.5°C, and pH 7.2.  Perfusion feeding was achieved for this culture by using a 

hollow fiber cartridge (A/G Technology Corp., Needham, MA) with 0.45 µm pores 

and 1.0 mm inner diameter capillaries through which the culture flowed.  Culture was 

circulated at a rate of about 15 reactor volumes per day and medium exchanged up to 

1.5 reactor volumes per day via level controlled addition of fresh feed.  Aeration was 

achieved through headspace gassing at 1.0 l/min until day 3-4 when the aeration was 

switched to sparging into the culture at 0.3 l/min and 0.1% Pluronic F-68 was added 

to reduce foaming and shear effects.  A schematic of the reactor setup is shown in 

Figure 5-1 which details the arrangement of reactor components and hollow fiber  
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Figure 5-1  Suspension Bioreactor Schematic with Hollow Fiber Unit for 

Perfusion  

A schematic diagram of the cell suspension based bioreactor with the hollow fiber 

unit for perfusion is shown with the probes and control sources for the online 

parameters. 
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perfusion unit.  Samples were taken daily to determine cell density, viability, and 

glucose and lactate concentrations.   

5.3.6  Virus Preparation 

Virus containing the gene for EGFP, vNB009, was constructed as described 

previously (Bleckwenn et al. 2003).  A portion of the viral stock was incubated 1:1 

with 1× trypsin at 37°C for 30 minutes with vigorous vortexing every 10 minutes, to 

break up clumps.  This preparation was then used to infect spinner flask or bioreactor 

culture at the appropriate MOI. 

5.3.7  Infection 

Spinner flask cultures of HeLa S3 cells in exponential phase were mixed to 

obtain a uniform population for infection experiments.  20×106 cells were centrifuged 

at 300×g for 5 minutes for each experimental condition.  Cells were resuspended in 

approximately 20 ml of their conditioned medium.  They were transferred to fresh 

Bellco 250 ml spinner flasks with stir bar and paddle.  Medium was brought to 70 ml 

with serum-free medium and inducer was added to 1.0 mM IPTG.  Virus vNB009 

was added to infect at the appropriate MOI and the flasks were returned to the 

incubator for one hour of infection.  Medium was then brought up to 200ml with 10% 

FBS and 1.0 mM IPTG.  The cultures were incubated and samples taken daily for cell 

count, viability, glucose, lactate, and protein determination.  Feeding was performed 

to keep glucose above 1.0 g/l and lactate below 2.0 g/l at either 24 hpi or both 24 and 

48 hpi by centrifuging half of the culture at 300 ×g for 5 minutes to pellet the cells, 
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aspirating the medium and resuspending them in fresh medium with IPTG.  This 

mixture was then returned to the spinner flask and the culture incubated.   

5.3.8  Production in Bioreactors 

Five days after seeding 2×105 cell/ml into the bioreactor, viable cell density 

measurement was made on the culture to determine the total number of cells.  

Medium without serum or Pluronic F-68 but containing 1.0 mM IPTG was connected 

to the reactor through the feed addition pump.  A hollow fiber cartridge was used to 

perform exchange of the culture supernatant to this serum-free induction medium and 

to reduce the volume in the reactor to about 400 ml.  This exchange and reduction 

process took about five hours to perform.  Trypsinized virus vNB009 was diluted in 

100 ml of serum-free medium and added to the reactor to infect at an MOI of 1.0.  

The infection phase lasted one hour in this reduced serum and volume environment, 

after which the medium volume was brought back to 1.5 liters and serum and 

Pluronic F-68 reintroduced to 10% and 0.1%, respectively.  The temperature and DO 

setpoints were also adjusted at this time to either 34°C or 36.5°C and 50%, 

respectively.  The culture was gradually fed using the hollow fiber for exchange and 

level control for addition of one liter of media between 24 and 48 hpi.  Samples were 

taken periodically and analyzed for glucose, lactate, cell density, viability, and 

recombinant protein expression.     
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5.4  Results 

5.4.1  Effect of MOI on EGFP Production with Suspension HeLa S3 Cells 

As noted earlier, the effects of MOI might change depending on scale and 

reactor configuration.  Here, we first evaluated the MOI in spinner flasks.  Spinner 

flask cultures with suspension HeLa S3 were used to determine the effect of MOI on 

the recombinant protein yield.  Cultures (200 ml) were infected with vaccinia virus 

carrying the EGFP reporter gene, vNB009, at MOI 0.0, 1.0, 5.0, and 10.0 pfu/cell.  

The resulting intracellular EGFP expression values are shown in Figure 5-2A.  MOI 

1.0 had the highest expression level at 1.6±0.11 µg/106 infected cells occurring ~44 

hpi.  This value was statistically higher than that for MOI 10.0, P=0.017, but not MOI 

5, P=0.053, where both MOI 5.0 and 10.0 had maximums occurring ~14 hpi earlier 

than MOI 1.0.  Viable cell densities measured at 24 and 48 hpi are shown in Figure 5-

2B, showing slightly higher cell densities at 24 and 48 hpi for MOI 1.0 as compared 

to  MOI 5.0 or 10.0, although these were not statistically different, P≥0.084.  In all 

three cases, the intracellular EGFP levels drop after reaching their maximums. 

5.4.2  Effect of Temperature on EGFP Expression in HeLa S3 Suspension Culture 

Lowering the culture temperature in a viral expression system may increase 

the protein yield.  Here, we evaluate temperature reduction in spinner flask cultures 

containing 106 HeLa S3 cells/ml infected at an MOI of 1.0 with the recombinant virus 

carrying the EGFP reporter gene. After infection, the flasks were incubated at 25, 28, 

31, 34, and 37°C±0.5°C (37°C culture results were from previous MOI experiment at 

MOI 1.0) and the intracellular EGFP was determined. The expression profiles are  
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Figure 5-2  Effect of Multiplicity of Infection on Production in Spinner Flask 

Cultures 

The intracellular EGFP levels are shown in Panel A for MOI = 0 (circle), 1.0 

(square), 5.0 (triangle), and 10.0 (diamond).  The viable cell densities at 24 and 48 hpi 

are shown in Panel B for MOI = 0 (black), 1.0 (medium gray), 5.0 (dark gray), and 

10.0 (light gray).   
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shown in Figure 5-3A.  Maximum EGFP levels were seen with 34°C at 44 hpi, 31°C 

at 52 hpi, and 28°C at 96 hpi.  The EGFP levels achieved were 3.28 ± 0.080, 2.57 ± 

0.36, and 3.4 ± 0.29 µg/106 infected cells, respectively, all within error of each other, 

P≥0.057.  All three of these temperatures resulted in maximum EGFP levels above 

37°C and 25°C with statistical significance, P≤0.0065.  The percent viability is 

plotted in Figure 5-3B which shows that 25°C and 28°C maintain higher cell 

viabilities than temperatures above 30°C.     

5.4.3  Perfusion Growth of HeLa S3 Suspension Cells 

The growth profile of HeLa S3 suspension cells was determined by growing 

the cells using perfusion mode in a bioreactor equipped with a hollow fiber 

membrane cartridge. The total cells density and the percent viability are shown in 

Figure 5-4.  Exponential growth of the HeLa S3 cells was maintained for about seven 

days in this system with a maximum viable cell density of 1.3×107 cells/ml. 

5.4.4  Production of EGFP in HeLa S3 Suspension Bioreactor with Hollow Fiber 

Perfusion 

EGFP was produced in perfused HeLa S3 bioreactor culture under the 

conditions determined above for the MOI and temperature and compared to a single 

production run at 36.5°C.  The results for the runs at 34°C are shown in Figures 5-5A 

to 5-5D and the comparison of expression in Figure 5-6.  Infection was performed in 

the bioreactor at a cell concentration of 2.9 ± 0.37×106 cell/ml, using an MOI of 1.0, 

and adjusting the temperature during production to either 34°C or 36.5°C.  Figures 5-

5A to 5-5C described the overall production process at 34°C with the online  
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Figure 5-3  Effect of Temperature on Production in Spinner Flask Cultures 

The intracellular EGFP levels are shown in Panel A and viabilities in Panel B for 

temperatures during the production phase of 37°C (square, data from Figure 5-2A), 

34°C (circle), 31°C (downward pointing triangle), 28°C (diamond), and 25°C 

(upward pointing triangle).   
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Figure 5-4  Growth of HeLa S3 Cells in Suspension Bioreactor Culture with 

Hollow Fiber Perfusion Device 

Total cell density (circle) and percent viability (square) are shown over the course of 

a single bioreactor run growing HeLa S3 suspension cells while utilizing a hollow 

fiber cartridge for perfusion of the culture. Error in measurement is less than 12% for 

total cell density, except for one anomalous measurement at 189 hours with 27%, and 

2.5% for viability.   
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parameters for a typical production run in 5-5A, the average glucose and lactate 

values in 5-5B and the average total cell density and percent viability in 5-5C.  

Intracellular and extracellular levels of EGFP are shown in Figure 5-6 for both 

temperatures.  The maximum intracellular EGFP was achieved for the production run 

at 34°C, ~120 hpi at 10.44 ± 0.018 µg/106 infected cells.  This corresponds to 27 

mg/l, which is higher than the level obtained at 36.5°C (at 3.5 µg/106 infected cells).  

In both cases, the intracellular level of EGFP drops after reaching the maximum 

value, and the extracellular concentration increases over time. 

5.5  Discussion 

Vaccinia virus infection of HeLa S3 cells has been used to produce small 

quantities of proteins in spinner flask cultures (Hooper et al. 1993; Jun et al. 1996).  

Scale-up of the process for production in bioreactor culture requires an examination 

of critical process parameters such as multiplicity of infection, temperature, and cell 

density.  Multiplicity of infection, in other viral systems, has been shown to affect 

protein yield (Blasey et al. 1997; Gotoh et al. 2002; Hu and Bentley 2001).  In this 

work, the optimum MOI was found to be 1.0, indicating that only one infectious virus 

particle was needed per cell to achieve maximum expression.  This is less than the 

MOI of 5.0 that was found optimum for the anchorage dependent HeLa cell line in 

microcarrier based culture (Bleckwenn et al. 2004a).  The infection kinetics are 

certainly different for the cell suspension based system than in the microcarrier based 

system.  A similar phenomenon was described previously for baculovirus infection 

where suspension cultures had higher attachment rates for the virus than monolayer 

cultures (Dalal and Bentley 1999; Dee and Shuler 1997a).  Initially, it was thought  
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Figure 5-5  Production Run at 34°C 

The online parameters measured through the data acquisition program are plotted in 

Panel A for a typical run from seeding, through infection, to harvest, with arrows 

showing the onset of infection and initiation of feeding after infection.  Average 

glucose (circle) and lactate (square) values are shown in Panel B over the course of 

the two production runs.  Average total cell density (circle) and percent viability 

(square) values are shown in Panel C over the course of the two production runs.   
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Figure 5-6  Production of EGFP in HeLa S3 Suspension Bioreactor  

Average intracellular (circle with solid line) and extracellular (circle with dashed line) 

levels of EGFP for the average of two production runs at 34°C and intracellular 

(square with solid line) and extracellular (square with dashed line) levels of EGFP for 

a single production run at 36.5°C are shown.
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that the infection in the vaccinia infected suspension system might be less efficient 

than the microcarrier based system because, in order to maintain cell health, a portion 

of conditioned medium containing serum was carried over into the infection medium.  

Previous results with the anchorage dependent HeLa cells showed that the removal of 

serum during infection lead to the highest level of expression (Bleckwenn et al. 

2003).  However, it appeared that the level of serum was reduced sufficiently enough 

to not interfere with infection, which agreed with the results of Bleckwenn that a low 

level of serum, 2.5%, did not dramatically lower the expression.  In the present 

system, MOIs of 5.0 and 10.0 appeared to increase cell death over MOI 1.0, as 

indicated by the lower viable cell densities reported at 24 and 48 hpi, but these results 

were not shown to be statistically significant.  This lower viable cell density may 

partially explain the lower expression at these higher MOI, due to a smaller number 

of cells available for protein production.  

Several researchers have modeled virus systems to gain an understanding 

about the limiting factors for viral infection processes.  Dee et al (Dee and Shuler 

1997a) developed a model for baculovirus infected insect cells which could be 

generalized to other acid-dependent enveloped viruses.  They found that binding of 

the virus to the cell receptor was the rate limiting step.  Chilakuru modeled the 

infection of vaccinia virus, finding that the ionic composition of the medium and 

presence of serum proteins played an important role in adsorption kinetics and cells 

infected during exponential phase yielded more virus particles than those infected in 

lag or stationary phase (Chillakuru et al. 1991).  These results suggest that other 

parameters, such as medium composition, may affect protein expression via the 
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amount of virus binding.  They also support our goal of increasing infection 

efficiency by obtaining a high density of cells in exponential growth phase prior to 

infection.   

Lowering culture temperature in viral systems can lower the cytopathic effect 

and increase protein yield.  Temperatures of 34°C, in the Semliki Forest Virus (SFV) 

system, (Schlaeger and Lundstrom 1998) and 31°C, in the microcarrier based 

vaccinia system (Bleckwenn et al. 2004a) increased protein production compared to 

37°C cultures.  In the HeLa S3 suspension cells it was found that cultures grown at 

28°C after infection produced the largest amount of intracellular EGFP, within error 

of 31°C and 34°C, but because this level of production was reached much later, a 

temperature of 34°C after the infection phase was used for further experiments.  The 

viability of the cultures over time decreased more rapidly for temperatures above 

30°C than for those below, indicating decreased cytopathic effect at lower 

temperatures, leading to slower cell death.  The experiments performed in spinner 

flasks where the cultures were incubated at lower temperatures not only affected the 

temperature of the culture, but also the level of dissolved gases such as oxygen and 

carbon dioxide, thereby, potentially changing the culture pH.  Without isolating 

temperature as the only changed parameter, it is likely that the results obtained from 

these spinner flasks were not due to temperature alone.   

  Of particular importance to a viral infection system is the achievement of high 

cell density of exponentially growing cells, which will very likely increase the 

volumetric productivity. It is particularly important to have healthy, exponentially 

growing cells for efficient infection with vaccinia virus (Chillakuru et al. 1991).  A 
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hollow fiber perfusion method was implemented to generate high cell density cultures 

and to perform the media replacement and volume reduction needed for efficient 

infection.  The maximum viable cell density reached for HeLa S3 cells grown in a 

bioreactor, with a hollow fiber cartridge used for perfusion, was 1.3×107 cell/ml, 

several times higher than what was achieved in batch spinner flask culture.  This 

increase in maximum cell density was also accompanied by an exponential growth 

phase of about seven days.  The growth profile provided a timeframe in which to 

infect the cells from approximately 100-175 h post seeding.  The medium 

manipulations required just prior to infection, to reduce the serum concentration and 

lower the volume in the reactor while maintaining the total number of cells, was 

easily performed with the hollow fiber and could be scaled up with larger hollow 

fiber units as the size of the bioreactor increases.   

EGFP reporter protein was produced in 1.5 liter bioreactor culture using the 

conditions defined by the spinner flask infection experiments and the growth profile 

of HeLa S3 using hollow fiber perfusion feeding.  The expression results indicate that 

the production of EGFP in this perfusion based suspension system attained 10.44 ± 

0.018 µg/106 infected cells.  This was three times the level seen when the production 

temperature was maintained at 36.5°C.  It is also important to notice that the 

maximum level of expression for the bioreactor system occurred about 50-60 hours 

later than the spinner culture at the same temperature, possibly due to controlled 

environment and the cells’ physiological state.  The dramatic increase in production 

at lowered temperature in bioreactor cultures, where temperature was controlled 
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separately from dissolved gases, indicated that temperature plays a significant role in 

protein yield with this expression method. 

5.6  Conclusions 

The Hela S3-vaccinia virus expression system has been used for research 

purposes to make small quantities of proteins.  Through an investigation of some key 

parameters and evaluation of a hollow fiber perfusion method in order to increase cell 

density, the production capacity of this expression method was increased to the 

bioreactor scale at 1.5 liters, and theoretically could be scaled further with increased 

reactor and hollow fiber cartridge size.  This system could be further optimized for 

production purposes by altering other process parameters such as pH or altering 

medium components.  These results provide a starting point for further process 

improvements to this method of, laboratory to pilot scale, protein production. 
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CHAPTER 6:  Comparison of Protein Expression in Multiple 

Mammalian Cell Lines Utilizing the Vaccinia Virus Expression 

System5 

6.1  Summary 

Production of recombinant proteins with the vaccinia virus expression system 

in five mammalian cell lines (HeLa, BS-C-1, Vero, MRC-5, and 293) was 

investigated for protein yield and proper post-translational modifications.  Regulatory 

acceptance of the host cell line was taken into consideration, as well as relevant 

process knowledge for ease of scale-up with the particular cell type.  Two proteins 

were expressed, enhanced green fluorescent protein (EGFP) in the cytoplasm, and 

gp120 secreted into the culture medium.  Because gp120 contained a significant 

amount of post-translational modification, this protein, produced by the different cell 

lines, was further analyzed by PNGase digestion for N-linked glycosylation 

modifications.  HeLa cells produced the most EGFP at 17.2 µg/well with BS-C-1 and 

293 following.  BS-C-1 produced the most gp120 at 28.2 µg/ml with 293 and Vero 

following.  MRC-5 had a very high productivity on a per cell basis, but low cell 

density and slow growth rate made the overall production low.  Based on these results 

and overall process considerations, 293 cells are recommended for further production 

process optimization in a serum-free suspension system. 

                                                 
5 Bleckwenn NA, Bentley WE, Shiloach J. 2004. Comparison of protein expression in 
multiple mammalian cell lines utilizing the vaccinia virus expression system. 
Submitted 2004. 
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6.2  Introduction 

The vaccinia virus expression system has been used to produce protein with 

HeLa (Bleckwenn et al. 2003; Bleckwenn et al. 2004a; Hu et al. 2000) and HeLa S3 

(Jun et al. 1996) cells.  Although these results were promising for a manufacturing 

process based on vaccinia virus infection, concern remained that HeLa cells, and the 

HeLa S3 suspension line derived from them, were inappropriate for manufacture of 

therapeutic proteins.  These cells were originally isolated from a human cervical 

adenocarcinoma (Gey et al. 1952; Jones et al. 1971) and are known to cause cancer 

when injected into mice.  Other researchers produced protein using vaccinia virus 

with Vero cells attached to microcarriers in 40 l culture (Barrett et al. 1989), but only 

at ~2-3 µg gp160/106 cells.  Because of this low level of expression and concerns 

about HeLa as host cells, we carried out an investigation of other cell lines, evaluating 

protein production capability, including several that might be more acceptable to the 

regulatory authorities as a production cell line using the vaccinia expression system.     

The HeLa cell line used in previous work was used as a point of comparison.  

By testing this line under the same conditions as the others, it was possible to make 

direct comparisons between the cell lines at the chosen conditions of infection and 

expression.  This was important because some work had already been done to 

optimize the HeLa cell system with vaccinia, indicating that optimization with each 

cell line could improve production.  The cells chosen for comparison were BS-C-1, 

MRC-5, Vero and 293.  BS-C-1 cells have been used extensively with vaccinia virus 

in plaque assays in order to make titer determinations because they form tight 

monolayers on tissue culture plates and infection results in distinct plaque formation 
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(Moss and Earl 2000).  The cells originated from African green monkey kidney cells 

(Hopps 1963) and their historical use with vaccinia virus suggests they may be useful 

as a point of comparison to more appropriate cell lines for the purpose of recombinant 

protein production.  

MRC-5 cells are currently used by BioReliance Corp. (Rockville, MD) in the 

manufacture of clinical, and potentially commercial, supplies of vaccinia virus for a 

Smallpox vaccine.  This cell line was derived from human lung fibroblasts (Jacobs et 

al. 1970). The cells are anchorage dependent, but have a fairly slow growth rate.  Due 

to the established manufacturing process with these cells for vaccine production, they 

have already been through some of the regulatory hurdles of the approval process.  

Vero cells are also an anchorage dependent cell line, like BS-C-1.  They 

originated from African green monkey kidney cells (Yasumura and Kawakita 1962) 

and were used previously by Barrett (Barrett et al. 1989) to produce HIV-1 gp160 in a 

40 liter microcarrier based bioreactor utilizing vaccinia virus.  These cells are fairly 

easily grown and have a faster growth rate than MRC-5 cells (bi-weekly split ratio 1:3 

to 1:6 versus 1:2 to 1:5 recommended by ATCC Rockville, MD).  They have already 

been shown to produce recombinant proteins via vaccinia virus.  Also, the limited 

culture life of these cells, compared to continuous cell lines, makes them appealing 

for use in commercial manufacturing processes due to the reduced level of concern 

over cancer causing components from the host cell passing along to the final product.  

Hence, Vero cells were also tested. 

 293 cells were derived from human embryonic kidney cells (Graham et al. 

1977) that are not considered immortal.  This cell line was also tested for protein 
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production.  These cells have been used for clinical production of biologic products 

(Farson et al. 1999; Habib et al. 1999) which makes them desirable due to their 

history of use in clinical evaluation.  Additionally, there are several commercially 

available media for adaptation of these cells to serum-free suspension growth.  

Utilizing a defined serum-free medium makes this cell line amenable to large-scale 

production. 

Previous surveys of cell lines for recombinant protein production using 

another virus-mediated expression system have proven successful in that cell lines 

with superior glycosylation characteristics, growth rate, and product yield have been 

found (Davis et al. 1993; Hink et al. 1991; Rhiel et al. 1997; Wickham et al. 1992; 

Zhang et al. 2002a; Zhang et al. 2002b).  We tested protein production of two 

proteins, enhanced green fluorescent protein (EGFP), which is expressed in the 

cytoplasm, and the HIV-1 envelope coat glycoprotein, gp120, which is secreted into 

the culture medium and contains a significant amount of N-linked glycans.  In 

summary, this article describes a production comparison of EGFP and gp120 in the 

HeLa, BS-C-1, Vero, MRC-5 and 293 cell lines using the vaccinia virus expression 

system.  

6.3  Materials and Methods 

6.3.1  Cell Line Growth and Maintenance 

HeLa (ATCC CCL-2), BS-C-1 (ATCC CCL-26), Vero (ATCC CCL-81), 

MRC-5 (ATCC CCL-171), and 293 (ATCC CRL-1573) were all grown in 

Dulbecco’s Modified Essential Medium (DMEM, Biosource, Camarillo, CA) 
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supplemented with 10% fetal bovine serum (FBS) in 75-cm2 tissue culture flasks and 

passaged every 3-4 days.   Vero cells were used within 25 passages, MRC-5 within 

12 passages, and 293 within 25 passages of thawing for experiments. 

6.3.2  Virus Preparation 

Viruses vNB009, producing EGFP, and vNB014, producing gp120, were 

constructed as described previously (Bleckwenn et al. 2003; Bleckwenn et al. 2004b).  

Purified viral stocks were used for all experiments where a portion of the stock was 

incubated with an equivalent volume of 1× trypsin to separate clumps.  This mixture 

was incubated at 37°C for 30 minutes with vigorous vortexing every 10 minutes.  The 

trypsinized stock was then diluted and used to infect cultures at the appropriate 

multiplicity of infection (MOI). 

6.3.3  6-Well Plate Infection and Expression 

Wells of 6-well plates were seeded 2-3 days prior to use in experiments at 

densities which would result in wells just prior to confluent for experiment.  They 

were grown in DMEM+10% FBS.  For infection, one 6-well plate for each cell line 

was sacrificed for cell count determination.  Six wells were prepared, with cells 

removed and resuspended, to determine the number of cells per well.  Specifically, 

the densities used for infection were HeLa at 1.6×106, BS-C-1 at 3.4×106, Vero at 

8.3×105, MRC-5 at 1.7×105, and 293 at 1.2×106cells/well.  The remaining plates were 

then used for infection and assumed to have the same cell densities for each cell line.  

The cells were washed with DMEM without serum and either infected for 1 hour in 

the presence of 1.0 mM IPTG at an MOI of 1.0 with vNB009, vNB014, or mock 
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infected.  Plates were sacrificed for samples at 24, 48, and 72 hpi.  Two wells with 

each virus or uninfected control were harvested at each timepoint.  Cells were scraped 

using the plunger of a 1 cc syringe.  The medium and cells were collected and 

centrifuged for 5 minutes at 1000×g.  Supernatant medium was removed to a separate 

tube and both pellet and medium samples were saved for each well.   

Pictures of cells for each condition were taken with a microscope using 100× 

magnification and a Kodak MDS90 documentation system.  Additionally, 

fluorescence photography of the vNB009 infected cells was also performed using a 

FITC filter.   

6.3.4  EGFP Analysis 

Analysis of EGFP expression in the vNB009 and mock infected cells was 

performed by resuspending the cell pellets for those samples in lysis buffer (100 mM 

Tris pH 7.4, with 1× Complete protease inhibitor (Boehringer Mannheim GmbH, 

Germany) and 0.5% Triton X-100) and incubating for 30 minutes at 37°C.  

Fluorescence intensity was measured on 100 µl samples in 96-well optically black 

plates using a fluorescence spectrophotometer with excitation 485 nm and emission 

512 nm with an auto cutoff filter at 495nm.   Samples of supernatant were compared 

against standards of rEGFP in medium to determine extracellular EGFP.  Readings 

from the lysed pellet samples were compared against standards of recombinant EGFP 

(Clontech) in lysis solution to determine intracellular expression levels of EGFP. 
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6.3.5  gp120 Analysis 

Analysis of the gp120 protein was performed by Western blot after running 

samples on reducing SDS-PAGE gels.  Primary antibody, HIV-1 gp160B Antiserum 

(HT3) in Goat (Reagent 188), from DAIDS, NIAID, NIH produced under contract by 

Repligen, was obtained  through the AIDS Research and Reference Reagent Program, 

Division of AIDS, NIAID, NIH as well as the gp120 standard, HIV-1 gp120 CM 

(Reagent 2003-CM), used in the Western blots.  Scans of the Western blots were 

quantified with Kodak EDAS system   

6.3.6  gp120 Purification and N-linked Glycan Analysis 

Culture supernatants were collected and purified using a Ni-NTA spin 

purification kit (Qiagen).  Briefly, a 10× salt and NP-40 solution was added to the 

supernatants to a final concentration of 0.5% NP-40, 50 mM NaH2PO4 and 300 mM 

NaCl, mixed and incubated overnight at 4°C to inactivate virus.  Imidazole was added 

to 10 mM and the pH adjusted to 8.0.  The Ni-NTA resin column was equilibrated 

with lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0) and 

two aliquots of 500 µl supernatant were cycled through the column twice to bind the 

protein, centrifuged at 100×g for 2 minutes each time.  The column was washed four 

times with 600 µl wash buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, 

pH 8.0).  The protein was then eluted for each sample in two 100 µl fractions with 

elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM Imidazole, pH 8.0), 

centrifuging at 100×g for 1 minute each time.  The two elutions for each cell line 

supernatant were combined and concentrated (Microcon YM-10, 10 kDa cutoff, 5 

min, 14,000×g) resulting in reduction of half the volume.  Concentrated eluates (100 
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µl) were then dialyzed (Amika Dispo-Biodialyzer) into 10 mM Tris at pH 7.0.  

Deglycosylation reactions were performed with PNGase F (Sigma E-DEGLY) in pH 

7.0 buffer for 24 hours at 37°C.  Portions of these reactions were used as samples for 

reducing SDS-PAGE gel and Western blot analysis.  

6.4  Results 

6.4.1  Comparison of EGFP Production in Five Cell Lines 

Six-well plate cultures of HeLa, BS-C-1, Vero, MRC-5, and 293 cells were 

infected with vNB009 vaccinia virus, containing the gene for EGFP, at an MOI of 1.0 

and induced (1.0 mM IPTG) to express EGFP.  Cell pellets were analyzed for EGFP 

expression (Figure 6-1).  The HeLa cell line expressed more EGFP on a per cell basis 

(Figure 6-1A), 10.9 µg/106 infected cells, and overall (Figure 6-1B), reaching 17.2 

µg/well, than any of the other lines tested.  On a per cell basis, MRC-5 cells reached 

about half the specific production as the HeLa cells but because the cell density was 

lower, due to their larger size and slower growth rate, the overall production was low.  

BS-C-1 cells produced 2.6× less EGFP/ml and the 293 about 8× less than HeLa 

(Figure 6-1B).  Visualization of the cells was performed using standard light and 

fluorescence microscopy and images are shown in Figure 6-2.  Evident in these 

photos are the extent of infection between the various cell lines and the relative EGFP 

expression levels.  All the cell lines showed approximately the same degree of 

cytopathic effect from the viral infection, based on the rounding appearance and 

detachment from the culture plates.  Note the apparent differences in the protein 

expression level agree well with the quantitative results of Figure 6-1.   
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Figure 6-1   EGFP Expression in Five Cell Lines 

Intracellular EGFP expression profiles are shown for the five cell lines tested: HeLa 

(circle), BS-C-1 (square), Vero (upward pointing triangle), MRC-5 (downward 

pointing triangle), and 293 (diamond).  Results are presented on a per cell basis, Panel 

A, and in terms of overall production per well, Panel B.   
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Figure 6-2  Microscopic Images of Cell Lines 

Pictures of the various cells lines are shown infected with EGFP or gp120 producing 

virus, or mock infected under 100× magnification at 24, 48, and 72 hpi.  Fluorescence 

images are shown for EGFP expressing cultures only because this protein is only 

present in these cultures and the others do not contain any fluorescing proteins.    
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6.4.2  Comparison of gp120 Production in Five Cell Lines 

The infection protocol used for EGFP production was also performed with all 

five cell lines using vaccinia virus vNB014 to produce gp120 protein.  The gp120 

production was followed by Western blot analysis (as opposed to EGFP 

fluorescence).  Figure 6-3 shows the quantified Western results on a per cell basis 

(Panel A), and the overall production (Panel B).  On a per cell basis, MRC-5 cells 

outperformed the others, reaching 142 µg/106 infected cells, but as before, due to the 

lower cell density and slow growth rate they did not perform as well on an overall 

basis.  Vero and 293 cells were next with 2 to 3-fold less gp120.  The overall 

production results showed that BS-C-1 was superior at 28.2 µg/ml (19.9 µg/ml 293, 

16.8 µg/ml Vero, 9.75 µg/ml MRC-5, and 6.76 µg/ml HeLa). 

6.4.3  Initial gp120 Glycan Analysis 

Figure 6-4A depicts a Western blot comparison of each of these cell lines at 

72 hpi.  There was a difference in the appearance of the bands, where 293 and Vero 

produced gp120 with slightly sharper bands than the other cell lines.  Purified gp120 

from all five cell lines was subjected to PNGase F treatment to remove the N-linked 

glycans from the protein.  Previous results in HeLa cells revealed the N-linked 

glycans contributed about half the molecular weight of the protein (Hu et al. 2000).  

SDS-PAGE and Western blot analysis of the results of these digestions are shown in 

Figure 6-4B.  The PNGase treatment trimmed the proteins down to approximately 60 

kDa.  Note, the PNGase F digested bands appeared significantly sharper than the 

undigested bands for all cell lines.     
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Figure 6-3  gp120 Expression in Five Cell Lines  

Secreted gp120 expression profiles are shown for the five cell lines tested: 

HeLa (circle), BS-C-1 (square), Vero (upward pointing triangle), MRC-5 (downward 

pointing triangle), and 293 (diamond).  Results are presented on a per cell basis, Panel 

A, and in terms of overall production per milliliter of medium, Panel B.   
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Figure 6-4  Western Blot Analysis of gp120 Production at 72 hpi 

Western blot analysis is shown in Panel A for  the 72 hpi supernatant samples from 

cultures infected with virus expressing gp120 protein (+) for each cell line, next to 

supernatants from cultures infected with virus expressing EGFP (-), as negative 

controls. The left most lane shows gp120 standard.  Western blot analysis is shown in 

Panel B for the concentrated, purified, supernatant samples taken at 72 hpi from 

cultures infected with virus expressing gp120 protein for each cell line.  Each sample 

is either untreated (U) or treated with PNGase (P) to remove N-linked glycans from 

the protein.  gp120 standard, untreated and treated, is shown in the left most lanes.   

The upper arrow on the right indicates the position of the undigested protein, whereas 

the lower arrow on the right indicates the position of the PNGase digested gp120. 
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Note, microscopy images of the infected cells are also shown in Figure 6-2.  

The degree of cytopathic effect (as evident by cell rounding and detachment from the 

culture plate) from this virus among the cell lines was roughly equivalent, and 

showed approximately the same level of infection, similar to the results of EGFP. 

6.5  Discussion 

Production of recombinant proteins with the vaccinia virus expression system 

is advantageous because multiple cell lines can be screened for levels of expression 

and proper post-translational modifications without having to generate multiple 

recombinant cell lines.  Additionally, vaccinia virus may be able to produce very 

large proteins (the genome is fairly large, 200,000 bp).  That is, other researchers 

have speculated that vaccinia can accommodate an insert up to 25,000 bp without 

hindering the viral and protein production processes (Smith and Moss 1983).   

Our results have demonstrated that vaccinia can produce  both intracellular 

and secreted proteins in several cell lines, some of which have been used for clinical 

production processes.  Interestingly, our results (which were not optimized) revealed 

that peak production was not consistent under these conditions, BS-C-1 cells were 

best in terms of gp120 but HeLa were best for EGFP.  This may be due, in part, to the 

location of expression, (e.g. EGFP was produced intracellularly and gp120 was 

secreted).  Also, because EGFP does not require post-translational modifications, 

protein expression is not limited by these processing pathways.   

Differences in protein structure via varying glycosylation patterns were also revealed 

after comparing the tightness of the Western bands prior to and upon PNGase F 
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digestion.  The tightness is affected either by the heterogeneity of the amino acid 

sequence as a result of truncation or because of heterogeneity of post-translational 

modifications.  The protein bands appear to span a molecular weight range of about 

90 to 120 kDa.  If the width of the expression bands were caused by truncation of the 

amino acid structure of the protein, the bands would also appear with a range 

covering 50 kDa upon deglycosylation analysis.  But upon treatment with PNGase, 

the width of the bands drops to only about a 10 kDa span at 60 kDa molecular weight, 

which is close to the theoretical molecular weight calculated for the amino acid 

sequence without any post-translational processing of 58 kDa.  This suggests 

heterogeneity in the glycosylation patterns of the gp120 produced by these cell lines.  

Although defined and consistent heterogeneities of glycosylation structure are 

somewhat expected and may be accepted in production processes, often, only one 

particular structure is the active form. It is desirable to produce only the active form 

in order to increase potency of the compound and reduce dosage.      

6.6  Conclusions 

In summary, the vaccinia virus expression system has been shown to produce 

both intracellular and secreted proteins in various cell lines.  Complex post-

translational modifications were compared among the cell lines tested and could 

further be evaluated in other mammalian cell lines.  The results from overall 

expression of both gp120 and EGFP, as well as other process considerations, 

suggested that investigation and optimization of a 293 based process, where the host 

cells could be adapted to serum-free suspension growth, was warranted for further 

advancement of this expression method for production purposes.
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CHAPTER 7:  Conclusions and Future Directions 

7.1  Concluding Remarks 

The vaccinia virus expression system offers a method of recombinant protein 

production for complex proteins of significant size.  The work presented here has 

evaluated several aspects of the infection and production process and the ability to 

scale these up to bioreactor culture.  The overall objective to develop a recombinant 

protein production process was achieved, but has left room for further improvements.  

The work was performed with incremental improvements to the understanding of the 

process and the overall results of what was discovered follows. 

Chapter 2 focused on the construction of the reporter protein virus and an 

initial investigation of infection and expression conditions in small-scale experiments.  

Six-well plate HeLa cultures were used to study multiplicity of infection (MOI), 

volume during infection, and serum concentration during infection for their effect on 

EGFP expression level.  Maximum expression was achieved at an MOI of 1.0 with a 

0.5 ml infection volume in serum-free medium.  Additionally, twelve commercial 

microcarriers were evaluated for attachment and growth characteristics with HeLa 

cells.  Cytodex® 3 were found to be the most appropriate and were used to support 

growth of HeLa cells in spinner flask culture which, after infection with the reporter 

virus, produced 2.2 µg EGFP/106 cells at infection. 

Chapter 3 delved deeper into the infection and expression conditions through 

investigation of other parameters and infection of microcarrier based culture in 

spinner flasks.  Length of the infection phase, inducer concentration and timing of its 
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addition relative to infection were evaluated in 6-well plate HeLa cultures.  One hour 

infection with 1.0 mM IPTG added at the time of infection provided a robust process.  

Evaluation of the best concentration of Cytodex® 3 microcarriers for growth of HeLa 

was performed and found 5 g/l to provide sufficient surface area for growth. MOI was 

reevaluated in the dynamic microcarrier culture environment which indicated a need 

for an increased number of virus particles per cell to 5.0, higher than that determined 

in Chapter 2 for plate culture.  Dissolved oxygen level and temperature during the 

protein production phase were evaluated for their effect on EGFP expression in 

microcarrier spinner flask culture.  Increasing dissolved oxygen to 50%, and 

decreasing temperature to 31°C, showed an increase in production over the course of 

the production phase.  The level of production achieved with this system reached ~17 

µg EGFP/106 infected cells.     

Chapter 4 expanded the process into perfused bioreactor culture and examined 

the effects of scaling up this viral process.  Perfusion growth of HeLa cells on 

microcarriers was studied with an alternating tangential flow device (ATF) which 

increased the length of the exponential phase and the maximum cell density, to 

4.4×106 cell/ml, compared to batch culture.  Concerns about seed train expansion 

were addressed by demonstrating that an in-flask trypsinization procedure could be 

used to provide the cells for seeding.  Dissolved oxygen and temperature were 

revisited in the large-scale environment because these parameters could be better 

understood in a system which isolates and separately controls these parameters.  A 

process where the DO and temperature were adjusted after infection to 50% and 

31°C, respectively, produced the highest level of EGFP, 12±1.5 µg/106 infected cells.  
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The defined process was then used to produce gp120, an HIV-1 envelope coat protein 

with complex post-translational modifications.  The purified protein was digested for 

glycosylation analysis, showing a significant amount of N-linked glycans and 

biological activity was determined by a fusion-inhibition assay resulting in an ID50 of 

3.1 µg/ml.   

Chapter 5 describes an investigation of the HeLa S3 suspension adapted cell 

line for production of recombinant proteins with vaccinia virus.  Cell suspension 

processes are more common and easier to implement in most bioprocess laboratories.  

A hollow fiber device was used for perfusion feeding of the bioreactor culture, in 

much the same way as the ATF was used for microcarrier culture.  Two process 

parameters were reevaluated in suspension culture in spinner flasks to determine if 

their effect varied from the microcarrier based system.  These were MOI and 

temperature.  Single cell suspension culture was thought to have different infection 

kinetics than microcarrier based culture.  The growth rate of HeLa S3 was somewhat 

higher than anchorage dependent HeLa cells, potentially altering the balance of 

reduced cytopathic effect from lowered temperature with lowered overall processing. 

An MOI of 1.0 lead to the highest level of intracellular expression of EGFP while 

reducing the temperature to 34°C during the protein production phase also increased 

production of the protein two-fold over the 37°C culture.  Scaling up the process to 

bioreactor culture with hollow fiber perfusion, lead to an overall production level of 

10.44 µg EGFP/106 infected cells, or 27 mg EGFP/l.  

The HeLa cell line is potentially inappropriate for regulatory approvable 

processes due to its ability to cause tumors when injected into mice.  Therefore, 
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Chapter 6 evaluated the production of both EGFP and gp120 protein, produced in the 

cytoplasm and secreted into the medium, respectively, with five mammalian cell lines 

(HeLa, BS-C-1, Vero, MRC-5, and 293).  HeLa cells produced the most EGFP at 

17.2 µg/well with BS-C-1 and 293 following.  BS-C-1 produced the most gp120 at 

28.2 µg/ml with 293 and Vero following.  MRC-5 had a very high productivity on a 

per cell basis, but low cell density and slow growth rate made the overall production 

low.  Significant amounts of N-linked glycosylation modifications were found on the 

gp120 protein produced, based on PNGase digestion.   These results and 

consideration of other processing factors lead to a recommendation for further 

production process optimization in a serum-free suspension system using 293 cells. 

The work reported here demonstrates the capacity for the VOTE vaccinia 

virus expression system in production of recombinant proteins.  Various infection and 

expression related parameters were studied to continually increase production levels 

with this virus.  Additionally, some concerns raised by other researchers during 

presentations of this work about transfer of the process and suitability of 

manufacturing were addressed in Chapters 5 and 6.  Overall, we were able to achieve 

production of both intracellular and complex secreted proteins by this method and 

showed the appropriate processing and activity of the gp120 produced.   

7.2  Future Directions 

7.2.1  Scale-up of Microcarrier and Suspension Processes 

Future research could be aimed at further increasing the size of bioreactor 

system for production.  Both microcarrier and suspension based bioreactor systems 
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should be able to increase in size through the use of larger bioreactor vessels.  The 

perfusion methods should also be scaleable with larger ATF or hollow fiber systems.  

Particular care will need to be taken during the infection process to ensure that 

controllable process parameters are not affected by the reduction in volume, as this 

will depend on the location of the various probes in the bioreactor and their ability to 

take accurate measurements during these medium manipulations.  These changes may 

also affect the process because they may take longer to perform at large-scale, and 

this will need to be taken into consideration when planning the infection and feeding 

timing.   

7.2.2  293 Serum-Free Suspension Growth and Vaccinia Virus Infection 

Some investigation of the growth of 293 cells in a serum-free suspension 

environment with a commercially available medium has already been performed in 

our lab, reaching 1.1×107 viable cell/ml.  This work could be utilized and infection 

conditions reevaluated with this cell line in serum-free suspension culture.  It may be 

necessary to either use DMEM without serum as the infection medium or contact the 

supplier of the serum-free medium to remove any serum like components and 

Pluronic F-68 from the medium for the infection phase, as these may prove to 

interfere with infection in the same manner as serum.  Bioreactor growth should be 

similar to other suspension processes such as the HeLa S3 and the results obtained 

from those experiences provide a starting point for optimization of a 293 based 

process. 
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7.2.3  CHO Cell Vaccinia Infection 

One industrially significant cell line that is an exception to the wide host range 

of wild-type vaccinia virus is the Chinese Hamster Ovary (CHO) cell line, commonly 

used for manufacturing processes.  Some work has been done by other researchers to 

overcome this host range restriction of vaccinia.  This was accomplished by inserting 

the cowpox hr (host range) gene into a recombinant vaccinia virus and resulted in 

permissive infection and production of recombinant chloramphenicol 

acetyltransferase (RamseyEwing and Moss 1996).  This vaccinia expression system 

was not inducible although it was controlled by the T7 promoter through which the 

T7 polymerase was produced via a vaccinia promoter.  Construction of a recombinant 

vaccinia with the VOTE, inducible, expression system containing a multiple cloning 

site would bring this virus construct in line with that used for the work described here.  

An investigation and optimization of a vaccinia based production process with the 

CHO cell line infected with this VOTE-CHO construct could prove more useful than 

other cell lines because of the broad knowledge available for CHO based processes.    

7.2.4  Manipulation of the Vaccinia Genome 

A newly emerging area of study with vaccinia virus is looking into the change 

of regulation of genes upon vaccinia virus infection (Guerra et al. 2003).  By utilizing 

the results obtained from these types of studies, researchers may be able to remove 

non-essential genes, thereby increasing the capacity for larger inserts.  There is also 

the potential to find genes which can be controlled to reduce the infectivity or 

cytophathic effects of the virus, leading to safer viral vectors that are permissive to 

commercial cell lines, longer production capability, and higher yields.  An interesting 
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possibility would be to genetically engineer the promoters controlling the genes 

regulating cytopathic effect or infection, thereby allowing inducible control of these 

processes.  This could result in a process where infection is only allowed during the 

prescribed period to allow generation of viral stocks or for the initial infection of a 

protein production process.  Through control of the cytopathic effects, which may be 

linked to infectivity, we could allow infection early in the culture, and then turn off 

the genes causing death in the cells while still allowing the viral and cellular 

machinery the opportunity to produce and process more protein.  This concept would 

be similar to using baculovirus to infect mammalian cell culture where the virus will 

infect and produce protein, but not cause cell death (Condreay et al. 1999; Hu et al. 

2003).  
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