
MULTIPLE SCATTERING FROM N SPHERES USING MULTIPOLE REEXPANSION

NAIL A. GUMEROV AND RAMANI DURAISWAMI ∗

Abstract. A semi-analytical technique for the solution of problems of wave scattering from multiple spheres is developed.
This technique extensively uses the theory for the translation and rotation of Helmholtz multipoles that was developed in our
earlier work (Gumerov & Duraiswami, 2001). Results are verified by comparison with commercial boundary element software.
The method developed is likely to be very useful in developing fast algorithms for many important problems, including those
arising in simulations of composite media and multiphase flow.

Key words. multiple scattering, Helmholtz equation, spherical harmonics, Multipole expansions

1. Introduction. Numerous practical problems of acoustic and electromagnetic wave propagation re-
quire computation of the field scattered by multiple objects. Examples include scattering of acoustic waves
by objects (e.g., the scattering of sound by humans and the environment), light scattering by clouds and
environment, electromagnetic waves in composite materials and the human body, pressure waves in disperse
systems (aerosols, emulsions, bubbly liquids), etc. Fast and reliable solution of forward scattering problems
are especially required for solving inverse problems arising, for example, in medical tomography, mine de-
tection, and radar. Our interest is in the modeling the cues that arise due to scattering of sound and light,
and to use this information in simulating audio and video reality (Duraiswami et al, 2000).

In many cases the scatterers are spheres, or can be modeled as such. Such modeling is convenient for
parametrization of large problems, since each sphere can be characterized by a few (say five) parameters,
such as the three Cartesian coordinates of its center, its radius, and its impedance. This impedance will
in general be a complex quantity, and characterizes the absorbing/reflecting properties of the body/surface.
For example, we are exploring the modeling of the human head and body using two spheres representing
respectively the head and the torso. In fluid mechanical problems, bubbles or dust particles can be assumed
spherical (Gumerov et al (1988), Duraiswami and Prosperetti (1995)).

Starting with the multisphere representation, we can also deal with the effect of perfectly reflecting
surfaces, such as walls in flow channels, room walls and the floor by replacing such surfaces with image
spheres. For example, the acoustic field in a rectangular room with reflecting walls and a single scattering
sphere inside can be modelled by a set of image sources and spheres (Duraiswami et al, 2001).

However, analytical solutions of the 3-D wave equation or the Helmholtz equation are available for
only very limited configurations of sphere geometries and boundary conditions. Usually, such solutions are
represented as infinite series of special functions (such as in the simplest case of a single sphere). In addition,
only in the cases of a single sphere and two spheres is it possible to introduce separable systems of curvilinear
coordinates for which the sphere surface(s) coincide with a coordinate surface, leading to simplified treatment
of boundary conditions. These cases cannot cover the case of, say three or more spheres, but are useful as
they provide an idea on the physics of scattering by spherical objects. In the general case one can expect
only numerical, or approximate solutions.

Numerical methods for solution of the Helmholtz equation in arbitrary domains, such as boundary-
element methods (BEM), finite-element methods (FEM), or finite difference methods (FDM), are well known
and extensively used in research and commercial applications. Despite the relative advantages of these
methods they all share a common deficiency related to the necessity of discretization of either the boundary
surfaces, or of the complete space. Discretization introduces a characteristic size (or length scale) l∗ of
the surface or spatial element. For accurate and stable computations the change of discretization length
l∗ must not affect the results of computations of the scattered field. This leads to a requirement that this
size theoretically should be much smaller than the wavelength λ, l∗ ¿ λ. Practically this condition is l∗ <
Bλ,where B is some constant smaller than 1. If computations are required for high frequencies (or short
waves), this condition of stability/accuracy leads to very fine surface or spatial meshes. For example, for 20
kHz sound in air in normal conditions the wavelength is 1.7 cm. To compute scattering of such sound by
a typical human head of diameter D = 17 cm the length of one surface element should be “much smaller”
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Fig. 2.1. The multiple scattering problem considered in this paper.

than 1.7 cm, say 6 times smaller than 1.7 cm, i.e. 60 times smaller than the diameter of the head. The total
surface of the head is πD2 and so the number of square elements should be of order π (D/l∗)

2 ∼ 12000, this
gives a 24000 element discretization of the head surface in case if triangular elements are used in BEM. Such
discretization require inversion of large size element inter-influence matrices and are costly in terms of CPU
time and memory, and cannot still be realized using even high end workstations.

For simplified geometries, such as multiple spheres, the scattering problem can be solved more efficiently
using semi-analytical techniques. In the present report we develop such a method, which in some sense
is analytical since it is based on solutions in the form of infinite series. At the same time the method is
numerical, since in the simple form presented here, it requires inversion of a large size matrix for determining
coefficients in the series, to satisfy boundary conditions on multiple spheres. The solution is based on
decomposing the contributions of each scatterer to the total field, representation of each contribution in the
form of series of spherical multipoles of the Helmholtz equation, and reexpansion of each multipole near the
center of each sphere to satisfy boundary conditions. This procedure produces infinite linear systems in the
coefficients of the expansions. This system can be solved numerically by truncation of the series.

We have developed software implementing this solution. We employ recently developed procedures of
fast and stable computation of general multipole translation coefficients using recurrence relations (Gumerov
& Duraiswami, 2001).1 We compare results of computations with numerical and analytical solutions, and
demonstrate the computational efficiency of our method with commercial BEM software. The results showed
that the developed method compares favorably with commercial software in both accuracy and speed up of
computations (in some cases by several orders of magnitude).

2. Statement of the Problem. Consider the problem of sound scattering by N spheres with radii
a1, ..., aN situated in an infinite 3 dimensional space as shown in Fig. 2.1. The coordinates of the center of
each sphere are denoted as r0p = (x0p, y0p, z0p), p = 1, ..., N . The scattering problem in the frequency domain
is reduced to solution of the Helmholtz equation for complex potential ψ (r),

∇2ψ + k2ψ = 0, (2.1)

1Since this reference will be repeated many times, in the sequel it will be written as (GD2001).
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with the following impedance boundary conditions on the surface Sp of the pth sphere:µ
∂ψ

∂n
+ iσpψ

¶¯̄̄̄
Sp

= 0, p = 1, ..., N, (2.2)

where k is the wavenumber and σj are constants characterizing impedance of each sphere, and i =
√−1. In

the particular case of sound-hard surfaces (σp = 0) we have the Neumann boundary conditions,

∂ψ/∂n|Sp = 0, (2.3)

and in the case of sound soft surfaces (σp =∞) we have the Dirichlet boundary conditions,
ψ|Sp = 0. (2.4)

Far from the region occupied by the spheres the complex potential tends to the potential of the incident
wave ψin (r):

ψ (r)|r→∞ → ψin (r) . (2.5)

Usually the potential is represented in the form:

ψ (r) = ψin (r) + ψscat (r) , (2.6)

where ψscat (r) is the potential of the scattered field. Far from the region occupied by spheres the scattered
field should satisfy the Sommerfeld radiation condition:

lim
r→∞ r

µ
∂ψscat
∂r

− ikψscat
¶
= 0. (2.7)

3. Solution Using Multipole Translation Reexpansion.

3.1. Decomposition of the Scattered Field. Due to the linearity of the problem the scattered field
can be represented in the form

ψscat (r) =
NX
p=1

ψp (r) , (3.1)

where ψp (r) can be thought of as the field scattered by the pth sphere. Each potential ψp (r) is a regular
outside the pth sphere and satisfies the Sommerfeld radiation condition

lim
r→∞ r

µ
∂ψp
∂r

− ikψp
¶
= 0, p = 1, ..., N. (3.2)

3.2. Multipole Expansion. Let us introduce N reference frames connected with the center of each
sphere. In spherical polar coordinates r− r0p = rp = (rp, θp,ϕp), solution of the Helmholtz equation that
satisfy the radiation condition can be represented in the form

ψp (r) =
∞X
n=0

nX
m=−n

A(p)mn Smn (rp) , p = 1, ..., N. (3.3)

Here A(p)mn are coefficients, Smn (r) is a multipole of order n and degree m :

Smn (rp) = hn(krp)Y
m
n (θp,ϕp), p = 1, ..., N, (3.4)

hn (kr) are spherical Hankel functions of the 1st kind that satisfy the Sommerfeld condition, and Y mn (θ,φ)
are orthonormal spherical harmonics, which also can be represented in the form

Y mn (θ,ϕ) = (−1)m
s
2n+ 1

4π

(n− |m|)!
(n+ |m|)!P

|m|
n (cos θ)eimϕ, (3.5)

n = 0, 1, 2, ..., m = −n, ..., n,
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Fig. 3.1. Notation denoting the different reference frames used in the multipole re-expansion technique.

where Pmn (µ) are the associated Legendre functions.
The problem now is to determine coefficients A(p)mn so that the complete potential

ψ (r) = ψin (r) +
NX
p=1

∞X
n=0

nX
m=−n

A(p)mn Smn (rp) (3.6)

satisfies all the boundary conditions on the surface of each sphere.

3.3. Multipole Reexpansion. To solve this problem let us consider the qth sphere. Near the center
of this sphere, r = r0q, all the potentials ψp (r) , are regular for p 6= q. Each multipole Smn (rp) , p 6= q can be
then re-expanded into a series near this center, |rq| 6

¯̄
r0p − r0q

¯̄
as follows:

Smn (rp) =
∞X
l=0

lX
s=−l

(S|R)smln
¡
r0pq
¢
Rsl (rq) , p, q = 1, ..., N, p 6= q. (3.7)

Here Rmn (rq) are regular elementary solutions of the Helmholtz equation in spherical coordinates connected
with the qth sphere:

Rmn (rq) = jn(krq)Y
m
n (θq,ϕq), p = 1, ..., N, (3.8)

where jn (kr) are spherical Bessel functions of the first kind. The coefficients (S|R)smln
¡
r0pq
¢
are the translation

reexpansion coefficients, and depend on the relative locations of the pth and qth spheres, r0pq. Since r =
rp + r

0
p = rq + r

0
q, we have

rp = rq + r
0
pq, r0pq = r

0
q − r0p = rp − rq, (3.9)

where r0pq is the vector directed from the center of the pth sphere to the center of the qth sphere. Detailed
investigation of multipole reexpansion coefficients, their computation, their properties, and methods for
efficient evaluation are considered in GD2001.

Near this center of expansion the incident field can be also represented using a similar series, the radius
of convergence for which is not smaller than the radius of the qth sphere:

ψin (r) =
∞X
l=0

lX
s=−l

C
(in)s
l

¡
r0q
¢
Rsl (rq) . (3.10)
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Substituting local expansions (3.7) and (3.10) into (3.6) we obtain the following representation of the field
near r = r0q

ψ (r) =
∞X
l=0

lX
s=−l

C
(in)s
l

¡
r0q
¢
Rsl (rq) +

∞X
n=0

nX
m=−n

A(q)mn Smn (rq) +
NX
p=1
p6=q

∞X
n=0

nX
m=−n

A(p)mn

∞X
l=0

lX
s=−l

(S|R)smln
¡
r0pq
¢
Rsl (rq) .

Let us change the order of summation in the latter term and substitute expressions for Smn and Rmn , (3.7)
and (3.8). This expression then can be rewritten as

ψ (r) =
∞X
l=0

lX
s=−l

h
B
(q)s
l jl (krq) +A

(q)s
l hl (krq)

i
Y sl (θq,ϕq), (3.11)

B
(q)s
l (r01, ..., r

0
N) = C

(in)s
l

¡
r0q
¢
+

NX
p=1
p6=q

∞X
n=0

nX
m=−n

(S|R)smln
¡
r0pq
¢
A(p)mn . (3.12)

3.4. Boundary Conditions. From these equations we have the following relations for the boundary
values of ψ and its normal derivative on the surface of the qth sphere

ψ|Sq =
∞X
l=0

lX
s=−l

h
B
(q)s
l jl (kaq) +A

(q)s
l hl (kaq)

i
Y sl (θq,ϕq), (3.13)

∂ψ

∂n

¯̄̄̄
Sq

= k
∞X
l=0

lX
s=−l

h
B
(q)s
l j0l (kaq) +A

(q)s
l h0l (kaq)

i
Y sl (θq,ϕq), (3.14)

Satisfying boundary condition (2.2) on the surface of the qth sphere, we have

∞X
l=0

lX
s=−l

n
B
(q)s
l [kj0l (kaq) + iσqjl (kaq)] +A

(q)s
l [kh0l (kaq) + iσqhl (kaq)]

o
Y sl (θq,ϕq) = 0. (3.15)

Orthogonality of the surface harmonics yields:

B
(q)s
l [kj0l (kaq) + iσqjl (kaq)] +A

(q)s
l [kh0l (kaq) + iσqhl (kaq)] = 0, l = 0, 1, ..., s = −l, ..., l. (3.16)

Note that the boundary values of ψ|Sq and ∂ψ/∂n|Sq can be expressed in terms of coefficients A
(q)s
l , since

B
(q)s
l = −A(q)sl

kh0l (kaq) + iσqhl (kaq)
kj0l (kaq) + iσqjl (kaq)

, l = 0, 1, ..., s = −l, ..., l. (3.17)

and formulae (3.13) and (3.14) yield

ψ|Sq =
∞X
l=0

lX
s=−l

·
hl (kaq)− jl (kaq) kh

0
l (kaq) + iσqhl (kaq)

kj0l (kaq) + iσqjl (kaq)

¸
A
(q)s
l Y sl (θq,ϕq), (3.18)

∂ψ

∂n

¯̄̄̄
Sq

= k
∞X
l=0

lX
s=−l

·
h0l (kaq)− j0l (kaq)

kh0l (kaq) + iσqhl (kaq)
kj0l (kaq) + iσqjl (kaq)

¸
A
(q)s
l Y sl (θq,ϕq). (3.19)

These relations can be also rewritten in a compact form using theWronskian for the spherical Bessel functions,

W {jl(ka), hl(ka)} = jl(ka)h0l(ka)− j0l(ka)hl(ka) = i(ka)−2 (3.20)
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as

ψ|Sq =
1

ika2q

∞X
l=0

lX
s=−l

A
(q)s
l Y sl (θq,ϕq)

kj0l (kaq) + iσqjl (kaq)
, (3.21)

∂ψ

∂n

¯̄̄̄
Sq

= − σq
ka2q

∞X
l=0

lX
s=−l

A
(q)s
l Y sl (θq,ϕq)

kj0l (kaq) + iσqjl (kaq)
= −iσq ψ|Sq . (3.22)

For the particular case of a sound-hard spheres (σq = 0) this gives

ψ|Sq =
1

ik2a2q

∞X
l=0

lX
s=−l

A
(q)s
l Y sl (θq,ϕq)

j0l (kaq)
,

∂ψ

∂n

¯̄̄̄
Sq

= 0, (3.23)

while for sound-soft (σq =∞) we have

ψ|Sq = 0,
∂ψ

∂n

¯̄̄̄
Sq

=
i

ka2q

∞X
l=0

lX
s=−l

A
(q)s
l Y sl (θq,ϕq)

jl (kaq)
. (3.24)

3.5. Matrix Representation. To determine the boundary values of the potential and/or its normal
derivative and obtain a spatial distribution according (3.6) we need to determine the coefficients A(q)sl in
equations (3.16) and (3.12), which are valid for any sphere, q = 1, ..., N.

These equations form a linear system that may be represented in standard matrix-vector form. This can
be accomplished in different ways according to the problem.

First, we note that coefficients of expansions to spherical harmonics, such as Amn , n = 0, 1, 2, ...;m =
−n, ..., n, can be aligned into one column vector, e.g.

A =
¡
A00, A

−1
1 , A

0
1, A

1
1, A

−2
2 ,A−12 , A

0
2, A

1
2, A

2
2, ...

¢T
, (3.25)

where the superscript T denotes the transpose. In this representation the elements of the vector A are
related to coefficients Amn by

At = A
m
n , t = (n+ 1)2 − (n−m), n = 0, 1, 2, ...; m = −n, ..., n; t = 1, 2, ... (3.26)

The same reduction in dimension can be applied to coefficients of reexpansion, (S|R)smln . Instead of a 4
dimensional matrix the coefficients can be packed in a 2 dimensional matrix as

(S|R) =


(S|R)0000 (S|R)0−101 (S|R)0001 (S|R)0101 (S|R)0−202 ...
(S|R)−1010 (S|R)−1−111 (S|R)−1011 (S|R)−1111 (S|R)−1−212 ...
(S|R)0010 (S|R)0−111 (S|R)0011 (S|R)0111 (S|R)0−212 ...
(S|R)1010 (S|R)1−111 (S|R)1011 (S|R)1111 (S|R)1−212 ...
(S|R)−2020 (S|R)−2−121 (S|R)−2021 (S|R)−2121 (S|R)−2−222 ...

... ... ... ... ... ...

 , (3.27)

with the following correspondence of the matrix elements and coefficients:

(S|R)rt = (S|R)smln , r = (l + 1)2 − (l − s), t = (n+ 1)2 − (n−m) (3.28)

l, n = 0, 1, 2, ...; m = −n, ..., n; s = −l, ..., l.

Using this representation we introduce the following vectors and matrices

A(q) =
n
A
(q)
t

oT
, D(q) =

n
D
(q)
t

oT
, L(qp) =

n
L
(qp)
rt

o
, (3.29)

q = 1, ..., N, p = 1, ..., N.
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where

A
(q)
t = A(q)mn , (3.30)

D
(q)
t = − kj

0
n (kaq) + iσqjn (kaq)

kh0n (kaq) + iσqhn (kaq)
C(in)mn

¡
r0q
¢
,

L
(qp)
rt =

kj0l (kaq) + iσqjl (kaq)
kh0l (kaq) + iσqhl (kaq)

(S|R)smln
¡
r0pq
¢
, for p 6= q,

L
(qq)
rt = δrt,

t = (n+ 1)2 − (n−m), n = 0, 1, 2, ...; m = −n, ..., n;
r = (l+ 1)2 − (l − s), l = 0, 1, 2, ...; s = −l, ..., l.
q = 1, ..., N, p = 1, ..., N,

where δrt is the Kronecker delta, δrt = 0 for r 6= t and δrr = 1.
Equations (3.16) and (3.12) then can be represented in the form

NX
p=1

L(qp)A(p) = D(q), q = 1, ..., N. (3.31)

This system of equations can be represented as a single equation of the form

LA = D, (3.32)

where the total matrices and vectors can be formed as

L =


L(11) L(12) ... L(1N)

L(21) L(22) ... L(2N)

... ... ... ...
L(N1) L(N2) ... L(NN)

 , A =


A(1)

A(2)

...
A(N)

 , D =


D(1)

D(2)

...
D(N)

 . (3.33)

This linear system can be solved numerically using standard routines, such as LU-decomposition.
An important issue is the truncation of the infinite series and corresponding truncation of the associated

matrices. A first solution is that we select a number M of modes to retain for each expansion. This number
is selected via a heuristic based on the magnitude of the smallest retained term. In this case n = 0, 1, ...,M,
m = −n, ..., n, then the length of each vector A(p) and D(p) will be (M+1)2, and the size of each sub-matrix
L(qp) will be (M + 1)2 × (M + 1)2, the size of the total vectors A and D will be N(M + 1)2 and the size of
the total matrix L will be N(M + 1)2 ×N(M + 1)2.

Several areas of research are ongoing to improve the solution procedure. We are currently investigating
the use of fast multipole methods to solve these equations iteratively. Also, we are trying to put the heuristics
used for truncation of the series on a more firm basis.

3.6. Computation of Multipole Reexpansion Coefficients. The (S|R)-multipole translation co-
efficients can be computed in different ways including via numerical evaluation of integral representations,
or using the Clebsch-Gordan or 3-j Wigner symbols (e.g. see Epton & Dembart, 1994, Koc et al., 1999). For
fast, stable, exact and efficient computations of the entire matrix of the reexpansion coefficients we used a
method based on recurrence relations, which we have developed. We refer the reader to GD2001 for proofs
and details, and only provide necessary relations and initial values for using the recurrence procedures here.

All the (S|R)smln
¡
r0pq
¢
translation reexpansion coefficients can be computed in the following way. First,

we compute so-called “sectorial coefficients” of type (S|R)sml|m| and (S|R)sm|s|n using the following relations:

b−m−1m+1 (S|R)s,m+1l,m+1 = b
−s
l (S|R)s−1,ml−1,m − bs−1l+1 (S|R)s−1,ml+1,m , (3.34)

l = 0, 1, ... s = −l, ..., l, m = 0, 1, 2, ....

b−m−1m+1 (S|R)s,−m−1l,m+1 = bsl (S|R)s+1,−ml−1,m − b−s−1l+1 (S|R)s+1,−ml+1,m , (3.35)

l = 0, 1, ... s = −l, ..., l, m = 0, 1, 2, ....
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where

bmn =


q

(n−m−1)(n−m)
(2n−1)(2n+1) , 0 6m 6 n,

−
q

(n−m−1)(n−m)
(2n−1)(2n+1) , −n 6 m < 0

0, |m| > n,
, (3.36)

and the recurrence process starts with

(S|R)s0l0
¡
r0pq
¢
=
p
(4π) (−1)l S−sl

¡
r0pq
¢
, (S|R)0m0n

¡
r0pq
¢
=
p
(4π)Smn

¡
r0pq
¢
. (3.37)

Due to the symmetry relation

(S|R)−m,−s|m|l = (−1)l+m (S|R)sml|m| , (3.38)

l = 0, 1, 2, ..., s = −l, ..., l, m = −n, ..., n,
all of the sectorial coefficients (S|R)sm|s|n can be obtained from the coefficients (S|R)sml|m| .

Once the sectorial coefficients are computed all other coefficients can be derived from them using the
following recurrence relation, which does not change the degrees s,m of the reexpansion coefficients:

amn−1 (S|R)sml,n−1 − amn (S|R)sml,n+1 = asl (S|R)sml+1,n − asl−1 (S|R)sml−1,n , (3.39)

l, n = 0, 1, ... s = −l, ..., l, m = −n, ..., n,
where

amn =

( q
(n+1+|m|)(n+1−|m|)

(2n+1)(2n+3) , n > |m| ,
0, |m| > n.

. (3.40)

Due to symmetry

(S|R)smln = (−1)n+l (S|R)−m,−snl , (3.41)

l, n = 0, 1, ... s = −l, ..., l, m = −n, ..., n.
only those coefficients with l > n need be computed using recurrence relations.

Also, the (S|R) coefficients for any pair of spheres p an q need be computed only for the vector r0pq, since
for the opposite directed vector we have:

(S|R)smln
¡
r0qp
¢
= (−1)l+n (S|R)smln

¡
r0pq
¢
, l, n = 0, 1, ..., m = −n, ..., n. (3.42)

4. General Computational Algorithm. A flow chart of the computational algorithm is shown in
Fig. 4.1.

Software based on this algorithm was developed and entitled MultisphereHelmholtz. Results of tests
using this software are discussed below.

5. Coaxial Spheres. The case of two spheres is interesting, since on one hand the scattered fields due
to the two spheres interact with each other (multiple scattering), while on the other the interaction is still
simple enough that it can be investigated in more and understood more intuitively than the general case
of N spheres. Additionally, in this case, the computation of the reexpansion matrices can be simplified by
proper selection of the reference frames. Indeed, for two spheres we can introduce a reference frame which
has its z axis directed from the center of one sphere to the center of the other sphere. Since the reexpansion
coefficients depend only on the relative locations of the spheres, for this frame orientation, there will be no
angular dependence of these coefficients. The same statement holds for the case when there are N spheres
arranged along a line, taken to be the z axis. In these particular cases, the general reexpansion formula (3.7)
simplifies to

Smn (rp) =
∞X

l=|m|
(S|R)mmln

¡
r0pq
¢
Rml (rq) , p = 1, ..., N, p 6= q. (5.1)
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An Algorihm for Solution of the General Problem for N spheres

Specify Parameters of N spheres
(locations, sizes, and impedances) 

Specify Wavenumber k 
and series/matrices truncation number M(k).
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Fig. 4.1. Flow chart of the general computational algorithm.

The coefficients

(S|R)mln
¡
r0pq
¢
= (S|R)mmln

¡
r0pq
¢
, l, n = 0, 1, ..., m = −n, ..., n, (5.2)

satisfy general recurrence relations and can be computed using the general algorithm we have developed.
However, the simpler relations that take advantage of the co-axiality of the spheres result in faster compu-
tation, and provide substantially lower dimensional matrices. The recurrence relations and computational
algorithm of the coaxial reexpansion coefficients can be found in our report (GD2001).

Note that the sign of coefficients (S|R)mln
¡
r0pq
¢
depends on the direction of the vector r0pq. To be definite

we select by convention that notation r0pq corresponds to r0pq and r0qp corresponds to r0qp = −r0pq. Since
(S|R)mmln

¡
r0pq
¢
= (−1)l+n (S|R)mmln

¡−r0pq¢ = (−1)l+n (S|R)mmln ¡
r0qp
¢
(see GD2001), we will have:

(S|R)mln
¡
r0pq
¢
= (−1)l+n (S|R)mln

¡
r0qp
¢
, l, n = 0, 1, ..., m = −n, ..., n. (5.3)

5.1. Matrix Representation. According (5.1) harmonics of each degree m can be considered inde-
pendently. Equations (3.12) and (3.16) can be rewritten in the form:

kj0l (kaq) + iσqjl (kaq)
kh0l (kaq) + iσqhl (kaq)

NX
p=1
p6=q

∞X
n=|m|

(S|R)mln
¡
r0pq
¢
A(p)mn +A

(q)m
l = D

(q)m
l , (5.4)

m = 0,±1,±2, ..., l = |m| , |m|+ 1, ..., q = 1, ...,N,

where

D
(q)m
l = − kj

0
l (kaq) + iσqjl (kaq)

kh0l (kaq) + iσqhl (kaq)
C
(in)m
l

¡
r0q
¢
, m = 0,±1,±2, ..., l = |m| , |m|+ 1, ..., q = 1, ..., N.

(5.5)
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This linear system can be represented in the following form

NX
p=1

L(qp)mA(p)m = D(q)m, m = 0,±1,±2, ..., q = 1, ..., N, (5.6)

where the vectors A(q)m and D(q)m and matrices L(qp)m are packed as follows

A(q) =
n
A(q)mn

oT
, D(q)m =

n
D(q)mn

oT
, L(qp)m =

n
L
(qp)m
ln

o
, (5.7)

q = 1, ..., N, p = 1, ..., N, m = 0,±1,±2, ..., l, n = |m| , |m|+ 1, ...
with the individual matrix elements given by

L
(qp)m
ln =

kj0l (kaq) + iσqjl (kaq)
kh0l (kaq) + iσqhl (kaq)

(S|R)mln
¡
r0pq
¢
, for p 6= q, (5.8)

L
(qq)m
ln = δln.

Since all equations can be considered separately for each m, the linear system (5.6) can be written as

LmAm = Dm, m = 0,±1,±2, ..., (5.9)

where

Lm=


L(11)m L(12)m ... L(1N)m

L(21)m L(22)m ... L(2N)m

... ... ... ...
L(N1)m L(N2)m ... L(NN)m

 , Am=


A(1)m

A(2)m

...
A(N)m

 , Dm=


D(1)m

D(2)m

...
D(N)m

 . (5.10)

As in the general case considered above, the infinite series and matrices should be truncated for numerical
computation. If we limit ourselves to the first M modes in each expansion of spherical harmonics, so that
m = 0,±1, ...,±M, n = |m| , |m|+1, ...,M, then the length of each vector A(p)m and D(p)m is M +1− |m| ,
the dimensions of each matrix L(qp)m is (M + 1 − |m|) × (M + 1 − |m|), the size of the total vectors Am

and Dm are N(M +1− |m|) and the size of the total matrix Lm is N(M +1− |m|)×N(M +1− |m|). The
problem then is reduced to solution of 2M +1 independent linear systems for each m. Note that the coaxial,
or diagonal, translation coefficients (S|R)mln

¡
r0pq
¢
are symmetrical with respect to the sign of the degree m,

(S|R)mln
¡
r0pq
¢
= (S|R)−mln

¡
r0pq
¢
(see GD2001). Therefore the matrices Lm are also symmetrical (see (5.8))

Lm = L−m, m = 0, 1, 2, ..., (5.11)

and can be computed only for non-negative m. At the same time the right-hand side vector Dm, generally
speaking, does not coincide with D−m, so that the solution Am can be different from A−m.

Let us compare the number of operations required for determination of all expansion coefficients A(q)mn ,
m = 0,±1, ..., ,±M, n = |m| , |m|+1, ...,M, q = 1, ..., N, using the general algorithm and using the algorithm
for coaxial spheres. Assuming that a standard solver requires CK3 operations to solve a linear system with
matrix K ×K, where C is some constant, we can find solution using general algorithm for

N
(general)
operations = CN

3(M + 1)6 (5.12)

operations. Using the algorithm for coaxial spheres we will spend CN3(M + 1− |m|)3 operations to obtain
A
(q)m
n for each m = 0,±1, ..., ,±M. The total number of operations will be therefore

N
(coaxial)
operations = CN

3
MX

m=−M
(M + 1− |m|)3 = CN3

"
(M + 1)3 + 2

MX
m=1

m3

#
(5.13)

= CN3

·
(M + 1)3 +

1

2
M2 (M + 1)2

¸
=
1

2
CN3

h
(M + 1)4 + (M + 1)2

i
.
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Therefore, for M À 1, we have

N
(general)
operations

N
(coaxial)
operations

∼ 2M2. (5.14)

which shows much higher efficiency of the algorithm for coaxial spheres.
Note also that in the case of coaxial spheres the number of the multipole reexpansion coefficients that

need to be computed for each pair p 6= q requires O(M3) operations, while in general case such computations
can be performed in O(M4) operations (see GD2001). These numbers are smaller than the leading order
term in the complexity, that required for solution of linear equations, and thus evaluations (5.12)-(5.14)
provide a comparison between two methods.

5.2. Rotation of the Reference Frame. The above expressions for coaxial spheres assume that the
z axis coincides with the direction from the center of one of the spheres to the center of some other sphere. If
coordinates of spheres are specified in original reference frame, with axis z oriented arbitrarily with respect
to the line connected the sphere centers we can rotate them so that the new reference frame is convenient
for use with the coaxial algorithm. Therefore we consider two reference frames: the original reference frame
and the reference frame which axis z is directed say from sphere 1 to sphere 2. Denote the coordinates of
an arbitrary point in the original reference frame as (x, y, z) and the coordinates of the same point in the
rotated reference frame, with the same origin, as (bx, by, bz). Denote the unit coordinate vectors of the original
coordinates as (ix, ix, iz) and the unit vectors of the rotated reference frame as (ibx, iby, ibz). By definition, we
have the following representations for an arbitrary vector r :

r =xix + yiy + ziz = bxibx + byiby + bzibz. (5.15)

Coordinates (x, y, z) and (bx, by, bz) are connected with the rotation matrix Q : bxbybz
 = Q

 x
y
z

 ,
 x
y
z

 = Q∗

 bxbybz
 , (5.16)

where

Q =

 ibx · ix ibx · iy ibx · iz
iby · ix iby · iy iby · iz
ibz · ix ibz · iy ibz · iz

 , Q∗ = Q−1 =

 ibx · ix iby · ix ibz · ix
ibx · iy iby · iy ibz · iy
ibx · iz iby · iz ibz · iz

 . (5.17)

By definition

ibz = r12
|r12| =

r12
r12

= exix + eyiy + eziz, e2x + e
2
y + e

2
z = 1, (5.18)

where ex, ey, and ez are the direction cosines of ibz, and
ex =

r12 · ix
r12

, ey =
r12 · iy
r12

, ez =
r12 · iz
r12

. (5.19)

As it is shown in our previous report (GD2001) in this case the rotation matrix can be computed as a
composition of two rotations:

Q =

 cosφ − sinφ 0
sinφ cosφ 0
0 0 1



− eyq

(e2x+e2y)
exq
(e2x+e2y)

0

− ezexq
(e2x+e2y)

− ezeyq
(e2x+e2y)

q¡
e2x + e

2
y

¢
ex ey ez

 , (5.20)

where φ is an arbitrary angle, meaning that any rotation around the ibz preserves ibz and satisfies our require-
ment for a convenient reference frame. Particularly, for φ = 0, the first multiplier in the right hand side of
(5.20) is the identity matrix.

Obviously all relations for coaxial spheres and expansion coefficients A(p)mn should be then treated in
the rotated reference frame, which formally means addition of hats over all coordinates in the expressions
derived. All spherical harmonics and multipoles represent solutions in the rotated reference frame and the
incident field expansion coefficients C(in)ml should also be found in the (ibx, iby, ibz) system of coordinates.
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5.3. Computation of Coaxial Reexpansion Coefficients. Due to the symmetry relations (see
(3.42) and (5.2)) and

(S|R)mln = (S|R)−mln , m = 0, 1, 2, ... (5.21)

the coaxial coefficients (S|R)mln
¡
r0pq
¢
can be computed only for l > n > m > 0. The process of filling of the

matrix {(S|R)mln} can be performed efficiently using recurrence relations that first fill the layers with respect
to the orders l and n followed by advancement with respect to the degree m. If such a filling procedure is
selected then the first step is filling of the layer m = 0. The initial value depends on the orientation of r0pq
vector relative to the axis iz (or ibz if rotation is performed), and is given by

(S|R)0l0
¡
r0pq
¢
=(S|R)00l0

¡
r0pq
¢
=
p
(4π)(−1)lS0l

¡
r0pq
¢
=
p
(2l + 1)hl(kr

0
pq), (5.22)

where

²lpq =

Ã
−r

0
pq · iz¯̄
r0pq
¯̄ !l = ½ (−1)l, for r0pq · iz =

¯̄
r0pq
¯̄

1, for r0pq · iz = −
¯̄
r0pq
¯̄ . (5.23)

For advancement with respect to m it is convenient to use (5.4) for n = m,

b−m−1m+1 (S|R)m+1l,m+1 = b
−m−1
l (S|R)ml−1,m − bml+1 (S|R)ml+1,m , l = m+ 1,m+ 2, ..., (5.24)

with b’s given by (3.36) and obtain other (S|R)m+1ln using (3.39).
For the case the axis is directed in the opposite direction, the coefficients will have alternating signs.

This is easy to establish using the definition (5.2) and the symmetries (3.42), (5.3), and (5.21).

5.4. Computational Algorithm. The computational algorithm for the case of coaxial spheres almost
repeats the general algorithm. Peculiarities include rotation of the reference frame and the packing of
the system matrix to reduce the memory complexity. Note that since computations are performed in the
reference frame (ibx, iby, ibz), all vectors and surface harmonics are represented in that frame. With respect to
the computational reference frame, vectors such as r should be treated by applying the rotation matrix Q
to them. To store the matrix (and its LU-decomposition) in an optimal way we use a multi-index packing
in a one-dimensional array. The algorithm was realized in software entitled MultisphereHelmholtzCoaxial.
The code was validated by comparisons with the general code MultisphereHelmholtz. Since both codes
produced the same results in the case of coaxial spheres, no more discussions on comparisons of the results
will provided in this report. As expected MultisphereHelmholtzCoaxial showed better performance compared
to MultisphereHelmholtz to achieve the same accuracy (the same truncation number) in terms of CPU time
and memory.

6. Typical Incident Fields. Below we consider explicit expressions for multipole expansion coefficients
C
(in)s
l

¡
r0q
¢
(see (3.10)) for several typical incident fields encountered in practical problems.

6.1. Monopole Source. In the case of a monopole source located at r = rsource, the incident field
corresponds to the fundamental solution of the Helmholtz equation

ψin (r) = QGk (r− rsource) = Q eik|r−rsource|

4π |r− rsource| , (6.1)

where Q is the source intensity (complex, if the phase Φ is not zero)

Q = |Q| eiΦ. (6.2)

Expansion of this function near the center of the qth sphere r = r0q (see also Fig. 2) can be found elsewhere
(e.g., Morse & Feshbach, 1953)

ψin (r) = Qik
∞X
n=0

nX
m=−n

S−mn
¡
rsource − r0q

¢
Rmn (rq) , |rq| 6

¯̄
rsource − r0q

¯̄
. (6.3)

Comparing (3.10) and (6.3) we obtain

C(in)mn

¡
r0q
¢
= QikS−mn

¡
rsource − r0q

¢
. (6.4)
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6.2. Multiple Monopole Sources. This type of incident field is encountered not only when the field
is generated by several real sources, but also when additional sources appear as images, as when planes of
symmetry bound the domain. For example if we have a single sphere near an infinite rigid wall, and where
the incident field is generated by a single monopole source, the problem in the half-space is equivalent to
the problem in the whole space, but for two spheres and two sources. The image sphere and source are
symmetrical to the real sphere and source with respect to this plane.

More generally, the incident field generated by Ns sources is

ψin (r) =
NsX
α=1

QαGk

³
r− r(s)α

´
, (6.5)

where Qα and r
(s)
α are respectively the complex intensities and location of the αth source (α = 1, ...,Ns).

Using the expansion for a single source (6.3) near the center of the qth sphere r = r0q, and superposing the
field due to all sources, we have

ψin (r) = ik
∞X
n=0

nX
m=−n

NsX
α=1

QαS
−m
n

³
r(s)α − r0q

´
Rmn (rq) , |rq| 6

¯̄̄
r(s)α − r0q

¯̄̄
. (6.6)

Comparing (3.10) and (6.3) we obtain

C(in)mn

¡
r0q
¢
= ik

NsX
α=1

QαS
−m
n

³
r(s)α − r0q

´
. (6.7)

6.3. Plane Wave. The case of sound scattering by a rigid sphere placed in a plane wave was considered
by Lord Rayleigh in the 19th century (Strutt, 1904, 1945). We include this case for generality and to provide
some formulae for arbitrary locations of the origin of the reference frame. The incident field of the plane
wave is described by

ψin (r) = Qe
ik·r, (6.8)

where

k =(kx, ky, kz) , k2x + k
2
y + k

2
z = k

2, (6.9)

is the wave vector, and Q is the complex amplitude of the wave (6.2).
Expansion of the field in spherical harmonics near the center of the qth sphere r = r0q can be obtained

from the solution for monopole source, Equations (6.1) and (6.3), where we use an asymptotic expansion of
the spherical Hankel function at large distances between the source and the sphere:

ψin (r) = 4πQ

·
rsource

eik|r−rsource|

4π |r− rsource|
¸
rsource−→∞

= 4πQ

"
rsourceik

∞X
n=0

nX
m=−n

S−mn
¡
rsource − r0q

¢
Rmn (rq)

#
rsource−→∞

(6.10)

= 4πQ

"
ikrsource

∞X
n=0

nX
m=−n

hn (krq,source)Y
−m
n (θq,source,ϕq,source)R

m
n (rq)

#
rsource−→∞

= 4πQeikrq,source
∞X
n=0

nX
m=−n

i−nY −mn (θq,source,ϕq,source)R
m
n (rq)

= 4πQeikrq,source
∞X
n=0

nX
m=−n

(−1)ni−nY −mn (θk,ϕk)R
m
n (rq) .

Here rq,source = rsource−r0q, and the angles θk = π−θ0q,source and ϕk = π+ϕ0q,source determine the direction
of the wave from the infinitely located source, and therefore they can be obtained from the known wave
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vector (6.9) as

sin θk cosϕk = kx/k, (6.11)

sin θk sinϕk = ky/k,

cos θk = kz/k.

Now we note that r = r0q + rq (see Fig. 2). If we put rq = 0 in (6.10) and use Rsl (0) =
q

1
4π δl0δs0, we find

that

ψin
¡
r0q
¢
= Qeikrq,source , (6.12)

and, more generally,

ψin (r) = 4πψin
¡
r0q
¢ ∞X
n=0

nX
m=−n

(−1)ni−nY −mn (θk,ϕk)R
m
n (rq) . (6.13)

On the other hand, using definition (6.8)

ψin
¡
r0q
¢
= Qeik·r

0
q . (6.14)

Comparing (3.10) with (6.13) and (6.14), we obtain the following expression for C(in)mn (r01) as

C(in)mn

¡
r0q
¢
= 4πQeik·r

0
q(−1)ni−nY −mn (θk,ϕk). (6.15)

This result can be easily generalized to the case where the incident field is obtained from the superposition
of Nw plane waves:

ψin (r) =
NwX
α=1

Qαe
ikα·r, kα=(kα,x, kα,y, kα,z) , k2α,x + k

2
α,y + k

2
α,z = k

2. (6.16)

with intensities Qα and incident angles θ
(α)
k ,ϕ

(α)
k , corresponding to the wave vectors kα (α = 1, ..., Nw, see

(6.11)). In this case we have

C(in)mn

¡
r0q
¢
= 4π(−1)ni−n

NwX
α=1

Qαe
ikα·r0qY −mn (θ

(α)
k ,ϕ

(α)
k ). (6.17)

6.4. Multipole Sources. The case of multipole sources is a practical one to consider, since real sources
of sound (loudspeakers, turbulent vortices, etc.) usually have not only monopole, but also dipole, and
quadrupole components. More generally, for the case of a multipole source of order n and degree m we have

ψin (r) = QS
m
n (r− rsource) , (6.18)

where rsource is the location of the source, and Q is its complex amplitude. In this case, for determination of
the expansion of the incident field near the center of the qth sphere we can use results obtained for multipole
reexpansion (3.7)

Smn (r− rsource) =
∞X
l=0

lX
s=−l

(S|R)smln
¡
r0q − rsource

¢
Rsl (rq) . (6.19)

Coefficients C(in)sl

¡
r0q
¢
then simply become

C
(in)s
l

¡
r0q
¢
= Q(S|R)smln

¡
r0q − rsource

¢
. (6.20)
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This result can be generalized to the incident field generated by Ns multipole sources, where each source
has its own intensity Qα, location r

(s)
α , order nα, and degree mα (α = 1, ..., Ns) as

ψin (r) =
NsX
α=1

QαS
mα
nα

³
r− r(s)α

´
, (6.21)

For such a field, the coefficients C(in)sl

¡
r0q
¢
can be computed as follows

C
(in)s
l

¡
r0q
¢
=

NsX
α=1

Qα(S|R)smα

lnα

³
r0q − r(s)α

´
. (6.22)

Note that this formula covers many practical cases, where the field is generated by different types of sources
and their images due to the presence of planes or other reflecting surfaces, if a representation of the type
(6.21) is available for the particular geometry of the problem.

7. Example Problems. We apply our method to several example problems. First, we compare the
semi-analytical solution we obtain with the purely numerical solutions obtained with the aid of the boundary
element method (BEM) to determine the accuracy of solution, and identify problems that will be addressed
in subsequent studies.

7.1. Single Sphere. For the case of single sphere there is no need to solve a linear system to account
for the influence of neighboring spheres. However, this case is important from a practical point of view.
We include this case for demonstration of the solution, comparison with the BEM, error evaluations, and to
provide analytical solution for the problem of the field generated by an arbitrary multipole in the presence
of a sphere.

In the case of single sphere (N = 1, q = 1) from (3.30) - (3.33) we have L(1) = I,A(1) =D(1), or

A(1)mn = − kj
0
n (ka) + iσjn (ka)

kh0n (ka) + iσhn (ka)
C(in)mn (r01) , (7.1)

Here and below in the case of a single sphere we will drop subscript 1 for σ and a, while keeping them for
the coordinates. Substituting this expression into (3.21) and (3.22), we obtain expressions for the potential
and its normal derivative on the sphere surface as

ψ|S1 = −
1

ika2

∞X
l=0

lX
s=−l

C
(in)s
l (r01)Y sl (θ1,ϕ1)
kh0l (ka) + iσhl (ka)

, (7.2)

∂ψ

∂n

¯̄̄̄
S1

=
σ

ka2

∞X
l=0

lX
s=−l

C
(in)s
l (r01)Y sl (θ1,ϕ1)
kh0l (ka) + iσhl (ka)

= −iσ ψ|S1 . (7.3)

The coefficients C(in)mn (r01) are determined using (3.10) and depend on the incident field. We consider the
following particular cases for the incident field.

7.1.1. Monopole Source. A simplification of general formula for C(in)mn (6.4) is possible, since the
problem for monopole source and a single sphere is axisymmetric relative to the axis connecting the center
of the sphere and the location of the source. In this case selecting the axis z1 to be the axis of symmetry,
we have

C(in)mn = Qikδm0hn (k |rsource − r01|)Y 0n (0, 0) = Qikδm0
r
2n+ 1

4π
hn (kd) = Qikδm0

r
2n+ 1

4π
hn (kd) , (7.4)

where d is the distance between the source and the center of the sphere. In this most simplified case of the
reference frame selection, expressions for the surface values of the potential and its derivative (7.2) and (7.3)
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Fig. 7.1. Typical computational mesh and output for the potential on the sphere surface using the BEM (Comet 4.0,
Collins & Aikman Automotive Interior Systems).

become

ψ|S1 = −
Q

4πa2

∞X
l=0

(2l + 1)hl (kd)Pl(cos θ1)

kh0l (ka) + iσhl (ka)
, (7.5)

∂ψ

∂n

¯̄̄̄
S1

=
iQσ1
4πa2

∞X
l=0

(2l + 1)hl (kd)Pl(cos θ1)

kh0l (ka) + iσhl (ka)
= −iσ ψ|S1 . (7.6)

For the particular case of a sound-hard (σ1 = 0) surfaces this gives

ψ|S1 = −
Q

4πka2

∞X
l=0

(2l + 1)
hl (kd)

h0l (ka)
Pl(cos θ1),

∂ψ

∂n

¯̄̄̄
Sq

= 0, (7.7)

while for sound-soft (σ1 =∞) surfaces we have

ψ|S1 = 0,
∂ψ

∂n

¯̄̄̄
S1

=
Q

4πa2

∞X
l=0

(2l + 1)
hl (kd)

hl (ka)
Pl(cos θ1). (7.8)

These formulae are classical and can be found elsewhere (e.g. see Hanish, 1981, pp.123-125).

7.1.2. Results of Computations. To test our software MultisphereHelmholtz for the case of a single
sphere we compared results of computations of the potential on the surface with those provided by expression
(7.7) and that obtained using the Boundary Element Method (BEM), as realized in the commercial software
package COMET 4.0 from Collins and Aikman Automotive Interior Systems, Plymouth, MI. A typical
output from this software package is shown in Fig. 7.1. The solution of the Helmholtz equation in a domain
specified by a triangular surface mesh, and prescribed locations of the sources is shown.

The figures below illustrate comparisons of so-called “Head related transfer function” (HRTF) (see, e.g.,
Duda & Martens, 1998) computed using different methods. The HRTF is measured in dB and represents
the ratio of the amplitude of the acoustic field at specified location of the surface to the amplitude of the
incident field at the center of the sphere:

HRTF = 20 lg

¯̄̄̄
ψ|S1

ψin (r01)

¯̄̄̄
. (7.9)
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Fig. 7.2. The head related transfer function (HRTF) for a single sphere of radius a = 8.25 cm and a monopole source,
located at a distance d/a = 10 from the center of the sphere for spheres of different impedances σ/k (shown near curves). The
continuous and dashed lines show results of computations using MultiSphereHelmholtz with truncation number M = 8. Circles
and diamonds respectively show the results of Duda & Martens (1998) and of BEM computations for σ = 0. In the latter the
sphere surface was discretized using 2700 linear elements.

This function for a single sphere was investigated by Duda & Martens (1998), who used solution (7.7) for
this purpose. They also provided a Matlab code for computations of the HRTF with truncation based on
evaluation of the subsequent terms in the series (Duda, 2000).

Figure 7.2 shows good agreement between computations using all methods. In this example we include
also computations for different impedances of the sphere.

We also tested the results of computations obtained using different truncation numbers. The original
code of Duda & Martens (1998) uses truncation based on comparison of subsequent terms in the series (in
this particular case the series was truncated when the ratio of such terms is smaller than 10−6). Experiments
with MultisphereHelmholtz showed that excellent agreement with these results is achieved, if the truncation
number is selected using the formula (heuristic)

M = [eka] , e = 2.71828... (7.10)

which shows that it increases with the wavenumber. For large ka good agreement was observed for M >£
1
2eka

¤
,while differences were visible for smallerM. For moderate ka such differences appeared for truncation

numbers below the value provided in (7.10).

7.2. Two Spheres. Since there is no closed analytical solution for two spheres in a simple form,
we compared numerical results obtained by using both our codes MultisphereHelmholtz and Multisphere-
HelmholtzCoaxial, and the BEM computations. As an example problem we considered computation of the
HRTF for the so-called “Snowman model”, used for simplified study of the generation of head pose related
cues in an acoustic field.

The model consists of two spheres, which are touching at one point. In computations the ratio of sphere
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Fig. 7.3. Computations of the HRTF for a sound-hard sphere (σ = 0) using the Duda & Martens (1998) solution with
evaluation of the residual term in the series, and MultiSphereHelmholtz with automatic selection of the truncation number and
M = 40 (for frequency 20 kHz). Other parameters are as in Fig 7.2.

Fig. 7.4. An example of BEM (COMET 4.0) computations of potential distribution over the surface of two spheres
(Snowman model) generated by a monopole source. Each sphere surface is discretized to 2700 triangular elements. The ratio
of sphere radii is 1.3253 and they touch in one point.

radii was taken to be 1.3253. 2 The origin of the reference frame was located at the center of the smaller
sphere ( the “head”) and the direction of the y-axis was from the larger sphere (“torso”) to the head.
The z−axis was directed towards a monopole source, generating the incident field, which was located at the

2Duda et al (2001) have performed measurements with a similar configuration. Comparison of simulations with these
experiments will be reported shortly.
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Fig. 7.5. Comparison of the HRTF angular dependence over the surface of a smaller sphere computed for the two sphere
geometry shown in Fig. 7.4 using the BEM and Multipole reexpansion technique (MultipoleHelmholtz). Both spheres have zero
impedance.

distance of 10 radii from the smaller sphere. The frequency of the incident wave nondimensionalized with the
radius of the smaller sphere corresponded to ka1 = 3.0255. The mesh for computations using BEM contained
5400 triangular elements (2700 elements for each sphere) and was obtained by mapping of the surface of
the cube onto each sphere. A picture of this “Snowman” with computational mesh and distribution of the
acoustic pressure is shown in Figure 7.4. In the computations the impedances of both spheres were set to
zero (“sound-hard” surfaces).

For computations using MultisphereHelmholtz the truncation number was automatically set to

M =

·
1

2
ekr012

¸
(7.11)

For given above values of a2/a1 and ka1 this provided M = 9, so that the total number of modes n in the
multipole expansion was 10 for each sphere (or 100 Amn coefficients for each sphere).

Figure 7.5 shows a comparison between the BEM and the MultisphereHelmholtz computational results
for the HRTF calculated for sphere 1 according equation (7.9). Each curve corresponds to a fixed value
of the spherical polar angle θ1 and demonstrates dependence on the angle ϕ1. Note that dependence on
the angle ϕ1 is only due to the presence of the sphere 2. Indeed in the absence of the torso, the potential
distribution over the sphere 1 surface is axisymmetric (see the previous case of a single sphere), and there
is no dependence on ϕ1. The comparison shows a good agreement between the results obtained by different
methods (the results produced by MultisphereHelmholtz and MultisphereHelmholtzCoaxial are on top of
each other). Some small dispersion of the points obtained using BEM is due to the mesh discretization of
the sphere surface, which normally can be avoided by additional smoothing/interpolation procedures. For
the BEM results shown in the figure we did not apply such smoothing, but selected for plotting the values of
potential at the element centers located within some small prescribed distance from a specified surface point
(θ1,ϕ1). It is also noticeable that MultisphereHelmholtz far outperformed BEM computationally, both in
much higher speed and memory usage.

Figure 7.6 demonstrate computations of the HRTF for the Snowmanmodel with the parameters described
above, but for higher frequency, and different impedances of the larger sphere (which can somehow model
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Fig. 7.6. Angular dependence of the HRTF over the surface of the sound-hard smaller sphere for the geometry shown
in Fig. 7.4 for different impedances of the larger sphere. Results computed using the MultisphereHelmholtz code with the
automatically selected truncation number Nt = 31.

the presence of clothes). For the given geometry parameters the automatically selected truncation number
was Nt = 31. This number is large enough to observe a substantial difference in speed of computations and
memory usage by MultisphereHelmholtz and MultisphereHelmholtzCoaxial (see evaluation (5.14), where
M = Nt).

Proper selection of the truncation number is important issue for applications of multipole translation
techniques. Figure 7.7 shows convergence of computations with increasing truncation numbers for the HRTF
at any specified point on the surface (θ1 = 60◦ and ϕ1 = 0◦ in the case shown in the figure). Computations
with low truncation numbers may provide poor accuracy. At some truncation number (which depends on
the frequency) the computational results stabilize (note that the HRTF depends on the frequency, and so for
each frequency we have its own horizontal asymptote). Further increase of the truncation number increases
both the accuracy of the results and computational time/memory, since the matrix size grows proportionally
as N4

t in the general case, and as N
3
t for coaxial spheres (so there is a trade-off issue). However, at some

truncation numbers, which slightly exceed the value provided by (7.11), computations usually encounter
difficulties connected with exponential growth of portions of the terms in the expansions, leading to overflow
related errors. These are the spherical Hankel functions of large order, hn

¡
kr0pq

¢
, entering the reexpansion

system matrix. Asymptotic expansion of the Hankel function at large n and fixed kr012 shows, that the
growth starts at n ∼ 1

2ekr
0
12. This is used as the basis for automatic selection of the truncation number

(7.11). Of course, this limitation is purely based on the order of computation, and the product of terms
remain finite, and calculations can be performed for larger Nt than given by (7.11). To develop software
using such sums of finite terms additional study of the truncated tails of the series at large n is needed, and
a proper implementation remains to be developed.

The computations presented in Figure 7.7 show that the actual stabilization occurs at smaller Nts than
the one given by (7.11) (where we have for ka1 = 1, 5, 10, 20, 30 the following values: Nt = 3, 15, 31, 63, 94,
respectively. Results of our numerical experiments show that for large kr012 reasonable accuracy can be
achieved at M∗ ∼ 1

2Mmax, where Mmax is provided by equation (7.11). At the same time, for lower kr012
formula (7.11) provides values which cannot be reduced, and accurate computations can be achieved with
M slightly larger than Mmin, with Mmin is provided by equation (7.11).
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Fig. 7.7. Dependences of compuations of the HRTF for two sphere geometry (see Fig. 7.4) on the multipole series
truncation number for different non-dimensional wavenumbers.

Note that in our previous paper (GD2001b) we also presented results of the computation of the HRTF
for a sphere near a rigid wall. In this case the rigid wall could be replaced by an image sphere and an image
source and the coaxial multipole reexpansion can be used. The problem of sound scattering by a sphere near
a rigid wall is in some sense a simplified general problem for two spheres, since both the real and the image
spheres in this case have the same radius and impedance. For this case, the coefficients of the multipole
expansions near each sphere A(1)mn and A(2)mn are symmetrical and the dimension of the system can be
reduced using this symmetry by a factor of two. In that paper, we also provided a study and discussion
of the influence of the distance between the sphere and the wall and frequency of the field on the HRTF.
Selected results of the HRTF for the Snowman model including comparisons with experimental data were
also presented in Gumerov et al (2001).

7.3. Three Arbitrarily Located Spheres. If the cases of one and two spheres can be covered using
simplified codes, the case of three non-coaxial spheres requires the general three-dimensional multipole
translation developed in GD2001. As in the case of two spheres discussed above, we compared results
of computations for three spheres using MultisphereHelmholtz and the COMET commercial BEM software.

For this computational example we placed an additional sphere (#3) to the case of the Snowman model,
described above. The radius of the sphere was equal to the radius of the head, and it may model some
object of the size of the head placed between the sound source and the listener. The distance between the
centers of spheres #1 and #3 was the same as the distance between the centers of spheres #1 and #2. The
parameters of the incident field were the same as.forthe snowman case. The mesh for computations using
the BEM contained 5184 triangular elements, 1728 elements for each sphere and was obtained by mapping
of the surface of the cube to each sphere. A picture of this configuration with computational mesh and
distribution of the acoustic pressure is shown in Figure 7.8. In computations the impedances of all three
spheres were set to zero.

Results of comparisons between BEM and MultisphereHelmholtz computations with M = 9 are shown
in Figure 7.9. The comparison is as good as in the case of two spheres. Since Figures 7.5 and 7.9 represent
similar dependences, we can notice that the presence of the third sphere reduced (at some points by 3-4 dB)
the amplitude of the sound field on sphere 1. This is a clear physical effect, since sphere 1 was situated in
the acoustic shadow of sphere 3.
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Fig. 7.8. An example of BEM (COMET 4.0) computations of the potential distribution over the surface of three spheres
generated by a monopole source. Each sphere surface is discretized to 1728 triangular elements. Two spheres of relative radii 1
(#1) and 1.3253 (#2) touch in one point and the ceneter of the third sphere (#3) of relative radius 1 is located at the distance
2.3253 from the center of sphere #1 on the line connected the source and the center of sphere #1.
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Fig. 7.9. Comparison of the HRTF angular dependence over the surface of smaller sphere computed for the three sphere
geometry shown in Fig. 7.4 using the BEM and Multipole reexpansion technique (MultipoleHelmholtz). All three spheres have
zero impedance.
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Fig. 7.10. A sketch of the problem geometry for sound propagation through a screen of spherical particles.

7.4. Many Spheres. The case of sound and electromagnetic wave scattering (both described by the
Helmholtz equation) by many arbitrarily located spheres has numerous practical and theoretical applica-
tions, including acoustics and hydrodynamics of multiphase flows, sound propagation in composite materials,
electromagnetic waves in clouds, and inverse problems, such as the detection of buried objects, medical to-
mography, etc. There is also a need to evaluate the acoustic scattering by multiple spheres in room acoustics,
where the walls of the room are replaced by image spheres.

Let us consider the problem of sound scattering by a screen of spherical particles. The geometry of
the problem is shown in Figure 7.10. Here the incident field is generated by a monopole source located at
distance d from a flat particle screen of thickness δ. A microphone, measuring the acoustic pressure is located
behind the screen at the same distance as the source. N spheres with the same acoustic impedance (in the
examples below we set σ = 0), but with possibly different sizes are distributed according to some distribution
density over their radii, and, have locations of their centers within a box δ × h× h representing the screen.
The objective is to evaluate the effect of the screen on the sound propagation.

This effect can be evaluated using a “Screen Transfer Function” (STF), which we define as

STF = 20 lg

¯̄̄̄
ψ (r0mic)
ψin (r0mic)

¯̄̄̄
, (7.12)

where r0mic is the radius-vector of the microphone location and which is measured in decibels.
Two examples of computations with many spheres are presented below. In the first example we placed

16 spheres with uniform random distribution of their dimensionless radii from amin = 0.5 to amax = 1.5.
Dimensionless parameters of the screen were d = 10, δ = 5, and h = 50. The sphere centers were distributed
uniformly within the screen. The view of this screen in the yz-plane is shown in Figure 7.11. In computations
we took three different wavenumbers, ka = 1, ka = 3, and ka = 5, where a is the length scale (the
characteristic sphere radius). Computations were performed using MultisphereHelmholtz with increasing
truncation number Nt. Dependences of the STF on Nt at various ka are and results are shown in Figure
7.12. It is seen that results converge to some value depending on ka. This type of check shows that for the
given geometry relatively low truncation numbers can be used, which are much smaller than given by (7.11),
where instead of r012 some representative intersphere distance r0pq is selected. We noticed however, that in
some cases when we have many spheres with very different intersphere distances (from touching spheres,
to spheres located at large kr0pq), stabilization of computation only occurs at higher truncation numbers
than prescribed by (7.11). Thus, at this point we can recommend to conduct several numerical experiments
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0.5 < a < 1.5.
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Fig. 7.12. Convergence test for the problem of sound scattering by a screen of 16 randomly sized spheres with random
location of their centers (as shown in Figure 7.11). Three different curves computed at different ka,where a is the mean of the
sphere radii distribution.

and check if the results are stable to variations in the truncation number to ensure its proper selection. A
separate analytical study of the truncation number selection problem is required.

In the second example we put a regular monolayer screen (d = 10, δ = 0, and h = 50) of 121 spheres of
the same radii a = 1, which centers form a regular grid in plane x = d (see Figure 7.13). Again we compared
results obtained with the aid of MultisphereHelmholtz at increasingM and different wavenumbers and found
fast convergence (see Figure 7.14).



Multiple Scattering from N Spheres 25

-30

-15

0

15

30

-30 -15 0 15 30
Y

Z

Fig. 7.13. The view of a scattering screen of 121 spheres of the same size a = 1 and location of their centers at the nodes
of a square grid −25 < y < 25, −25 < z < 25 with the grid size ∆y = ∆z = 5.
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Fig. 7.14. Convergence test for the problem of sound scattering by a screen of 121 equal sized spheres located at the nodes
of a regular grid (as shown in Figure 7.13). Three different curves are computed at different ka indicated near the curves.

8. Conclusions and Future Work. We have developed an analytical solution for sound, electromag-
netic, or other wave propagation described by the Helmholtz equation for the case of N spheres of various
radii and impedances arbitrary located in three dimensional space. This analytical solution uses a multipole
reexpansion technique and involves infinite series and requires inversion of infinite matrices. We developed
codes (MultisphereHelmholtz and MultisphereHelmholtzCoaxial) which are capable of computing the cor-
responding approximate solutions, based on these series and matrix truncations. These use the multipole
reexpansion techniques described in our previous report (GD2001). We validated the codes by comparison
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with previous analytical solutions for a single-sound hard sphere, with computational results for two and
three spheres obtained using the Boundary Element Method with fine discretization of the surfaces (thou-
sands of elements), and by convergence of the results obtained with different truncation numbers in the case
of large numbers of spheres.

Concerning the performance of the codes we make the following conclusions:
• For good performance of the codes the truncation number, depending on the wavenumber, sphere
sizes, and intersphere distances should be selected properly. In case the truncation mumber is
properly selected, the codes showed high accuracy, and substantial speed-up in comparison to the
Boundary Element Method.

• In cases when the centers of the spheres are located on a line (which is always true for two spheres,
and can be realized in particular problems for N spheres) computations using a coaxial multipole
reexpansion can be performed with higher efficiency, than in the general case. The CPU time and
memory usage in the case of high truncation numbers (high frequencies or wave numbers) is much
smaller using relations for coaxial multipole translation.

The objectives of the present study were to develop a solution for wave scattering by multiple spheres
and to realize efficient computational algorithms for the problem, since we had a practical need for this
solution. Based on our results, we propose the following as possibilities for future work:

• The present method takes into account all cross-influences between the spheres to equal degree.
Efficient evaluation of the fields scattered by spheres remote from a considered object can be very
useful and practical. This can enable reduction of the number of coefficients, the size of the linear
system or make its properties convenient for efficient computation (e.g. make it sparse, block-
structured, and so on). This also can enable reduction of truncation number, since it depends on
the intersphere distances, and the influence of the remote objects happens through high harmonics
that, generally speaking, requires unnecessary increase of the truncation numbers.

• Evaluate theoretically error bounds of truncation. Provide computationally efficient way for evalu-
ation of truncated “tails” of the series of multipoles in the problem of N spheres.

• Consider application of “diagonalization” procedures, such as rotation-coaxial translation multipole
reexpansion operators (GD2001), to the problem of N -spheres. This may lead to increase of
computational efficiency in general case (in the present study we developed/implemented this method
only for coaxial spheres).

• Analyze the present code MultisphereHelmholtz with a purpose to increase it efficiency using parallel
computing. For example, since the system matrix consists of blocks, characterizing influence of one
sphere to another, such block can be computed independently on the other blocks. For N spheres,
up to 1

2N(N − 1) parallel processes can be used to compute the system matrix. This also will lead
efficiency in memory usage, since it will not require storage of harmonics for each pair of spheres.

• Due to the efficiency of solutions using multipole expansions consider modifications of the problem
for N spheres for non-spherical objects to enable multipole reexpansion technique.
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