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This study aims to address the nationwide gap in AADT data on NFAS roads in U.S. With a 

Spatial Autoregressive Model as a benchmark, two machine-learning approaches, i.e. Artificial 

Neural Network and Random Forest, show notable improvement in the accuracy of estimating 

AADT according to five measures, i.e. MSE, RSQ, RMSE, MAE, and MAPE. A data-mining of 

the built-in environment from three perspectives, i.e. on-road and off-road features, network 

centralities, and neighboring influences, paves the way for AADT estimation, which covers 87 

variables in centrality, neighboring traffic, demographics, employment, land-use diversity, road 

network density, urban design, destination accessibility, etc. Data integration using different 

buffering sizes and statistical analysis of linearity and monotonicity promote the variable 

selection for estimation. When implementing the machine-learning approaches, not only the 

estimation performance is analyzed, but also the relationship between each variable and AADT, 

the interplays among variables, variable importance measures are thoroughly discussed.  
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Chapter 1: Introduction 

Annual average daily traffic (AADT) is an important traffic parameter for 

federal, state, and local transportation agencies in making transportation planning and 

policy decisions. As an indispensable input of highway statistics, AADT is widely used 

for many transportation tasks, such as maintaining and evaluating highway projects, 

making decisions on transportation plans and policies, and conducting various 

transportation research and studies.  

According to 2016 Highway Safety Improvement Program (HSIP) Final Rule, 

State agencies are required to have access to AADT on all paved roads open to public 

travel including Non-Federal Aid–System (NFAS) roads by 2026. In traffic monitoring 

guide, it is stated that AADT should be reported for Highway Performance Monitoring 

System (HPMS). In practice, traffic data mainly come from two data programs. First is 

permanent monitoring of continuous traffic flow 24 hours a day and 7 days a week 

throughout the entire year. Second is temporary monitoring that collects short-duration 

traffic data several times a year or once at several years, usually based on 24-hour, 48-

hour, or 72-hour intervals. Traffic Monitoring Stations (TMS) that collect either 

continuous or short-duration traffic data are therefore distributed throughout the 

country to provide U.S. Traffic Monitoring Location Data. A couple of items are 

gathered, including traffic counts along with speed, vehicle class and vehicle weight.  
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Figure 1-1 Distribution of traffic monitoring stations in USA 

As shown in figure 1-1, 7430 Traffic Monitoring Stations that collect 

continuous or short-duration traffic data are working throughout the country as of 2015.  

Yet, there are around four million miles of highways according to National 

Transportation Statistics. A huge supply-demand gap obviously exists between data 

needs and available stations. Indeed, these TMSs provide consistent and well-

structured traffic data at national level. However, implementing this program 

everywhere in the highway network is too prohibitive to be realistic. Roads of higher 

functional classes such as arterials are prioritized as a result. Data gap still exists on a 

large proportion of the highways, which is particularly serious on Non-federal Aid 

System (NFAS) roadways, that is rural minor collectors and locals in both rural and 

urban areas defined as FSystem = 6 and 7 respectively according to the Chapter 3 of 

2016 HPMS Field Manual. Highway Statistics 2016 reports the annual Vehicle Miles 

Traveled (VMT) by functional classes, which shows that NFAS roads consist of a large 

portion of VMT. As table 1-1 shows, NFAS roads account for 15.1% of the annual 



3 

 

VMT, which is only second to urban interstate (17.66%) and urban other freeways and 

expressways (15.14%). As for lane miles, functional class local has a percentage of 

45.7% in rural areas and 19.85% in urban areas. NFAS roads in total have a proportion 

as high as 71.4%. It is entirely conceivable that NFAS roads play an important role in 

carrying on personal and freight flows in our daily life.  

Table 1-1 Vehicle miles traveled and lane miles on NFAS roads and others 

Area Functional class VMT (millions) Lane miles 

Rural Interstate 247152 (7.75%) 119158 (1.36%) 

Other freeways and expressways 34434 (1.08%) 24542 (0.28%) 

Other principal arterial 190090 (5.96%) 231532 (2.64%) 

Minor arterial 143525 (4.50%) 276684 (3.15%) 

Major collector 160066 (5.02%) 818994 (9.33%) 

Minor collector (NFAS) 47674 (1.49%) 517439 (5.90%) 

Local (NFAS) 127634 (4.00%) 4010341 (45.70%) 

Urban Interstate 563112 (17.66%) 105457 (1.20%) 

Other freeways and expressways 250325 (7.85%) 58943 (0.67%) 

Other principal arterial 482923 (15.14%) 237381 (2.71%) 

Minor arterial 411774 (12.91%) 296203 (3.38%) 

Major collector  207354 (6.50%) 278414 (3.17%) 

Minor collector 16487 (0.52%) 58584 (0.67%) 

Local (NFAS) 306424 (9.61%) 1741865 (19.85%) 

Notes: 1. NFAS roads account for 15.1% of total VMT, 

            2. NFAS roads account for 71.4% of total lane miles, 

            3. Data source is Highway Statistics 2016.   

 

Filling the data gaps has been challenging transportation agencies, practitioners 

and researchers for a long time. There is still no uniform methodology for AADT 

estimation on lower-level roads. Traditional methods utilize the short-duration traffic 

counts data to estimate AADT through developing adjustment factors, which is usually 

called factoring method. It is popularized for its being simple and easy to be applied. 

Generally, all roads first need to be classified into homogeneous groups based on a 

certain criteria such as functional class and the geographical units (e.g. counties). Then 
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within each group, the continuous TMSs serve as the source of adjustment factors to 

convert the short-duration traffic data into AADT. There is no doubt that the accuracy 

of this method heavily depends on the grouping process. This method is more effective 

on high-volume roads than low-volume roads since continuous TMSs are mainly 

located at roads of higher functional classes. Still, AADT estimation on NFAS roads 

with a desirable accuracy level is a difficult research problem. Researchers have been 

putting efforts on this topic by leveraging various methodologies. Statistical regression 

modeling is a major branch, which models the data generation process of AADT by 

capturing its distribution patterns such as Gaussian distribution and binomial 

distribution. Strong evidence from inferential tests enables it to yield good estimation 

results but in most of the time this is not the case in practice. This limits the performance 

of parametric models, where nonparametric modeling such as Artificial Neural 

Network (ANN) and Random Forest (RF) from machine learning family comes for 

AADT estimation. The reasons why machine learning outperforms others regarding 

this research topic are summarized as below.  

A. Machine learning algorithms first and foremost perform well in terms of 

accuracy, 

B. The relationship in real world among the features are usually non-linear. 

Sometimes it is too complicated to be modeled by mathematical models, 

where machine learning algorithms can handle high-order relationships,  

C. Unlike parametric approaches, machine learning methods do not necessitate 

any statistical assumptions making it fairly flexible to be applied to data with 

or without a certain distribution pattern,  
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D. Machine learning algorithms are good at handling large-volume data just like 

NFAS roads in a time-efficient way. Not only statewide estimation but also 

nationwide estimation becomes feasible,  

E. Machine learning algorithms are tolerant of data noises, while statistical 

models are sensitive to the disturbances from noisy data,  

F. The application of machine learning algorithms is simple and easy benefiting 

from many well-developed and straightforward packages,  

G. With more and more techniques that demystify the inner structures of trained 

model, machine learning gains more and more interpretability instead of 

being a complete black box. 

 Encountered with the limited data availability of traffic data, external databases 

are fully utilized to help estimate AADT. To some extent, traffic volume represents the 

strength of daily activities, which is closely related to the social demographic features 

of personals and the environment characteristics such as land use pattern, urban design, 

accessibility, road design, etc. Accordingly, as much as possible measures of the built-

in environment are thoroughly analyzed to provide valuable inputs for AADT 

estimation. In this study, a total of 79 features from Smart Location Database (SLD), a 

well-structured nationwide database on built-in environment, are extracted for analysis. 

Additionally, the centrality of roads in the whole transportation network directly 

influences its capacity of delivering traffic. For example, if the shortest paths in the 

network are frequently passing one road, the traffic volume of this specific road should 

be higher than normal roads. Being enlightened from social network theory, this study 

makes a bold trial of employing centrality measures of road segment to help improve 
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AADT estimation. Furthermore, the interaction among the roads regarding traffic 

volume is not negligible and hence spatial dependence analysis among roads initiates 

the involvement of neighboring traffic features. In summary, all kinds of features from 

built-in environment are fully discussed to extract strong predictive factors as much as 

possible. Different ways of integrating spatial data are also compared to enhance the 

predictive power of variables. Finally, twelve predictors distinguish themselves to act 

as the potentially good predictors for AADT estimation. This feature exploration 

process provides an informational guide on future similar studies in this field.   

Results show that machine learning algorithms, i.e. ensembling ANNs and RF, 

in this study, achieve high accuracy level measured from multiple ways including Mean 

Squared Error (MSE), R Squared Value (RSQ), Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). A spatial 

autoregressive model, which is believed to be the best statistical model from literature 

review, is built as a benchmark model to be compared with the machine learning 

algorithms. Even though it works well, it is not as good as the ensembling artificial 

neural networks and random forest.  

In summary, this study has the following objectives.  

1. To develop a simple and easy, time-efficient and cost-effective procedure 

for conducting nationwide AADT estimation on NFAS roads and ensure a 

desirable accuracy meanwhile,  
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2. To consolidate public domain databases including HPMS data and SLD, 

both of which are ready-to-use, well-structured, comprehensive, and 

nationwide for a practical application purpose,  

3. To conduct a deep data mining of built-in environment features from all 

kinds of aspects to provide potentially valuable predictors for AADT 

estimation as much as possible, 

4. To analyze the relationship, either non-linear or linear, between features and 

AADT during feature selection process and to compare several spatial data 

integration methods based on the relationship analysis results, 

5. To not only apply machine learning algorithms, i.e. artificial neural network 

and random forest, but also demystify the interactions among the features, 

6. To compare the performance of artificial neural network and random forest 

with a benchmark model – a spatial autoregressive model.  
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Chapter 2: Literature review 

2.1 Traditional factoring methods 

The procedure for AADT estimation on lower-level roads by traditional 

factoring methods involves three steps. First, homogeneous permanent traffic count 

stations are classified into multiple groups. Then short-term traffic count stations are 

assigned to these groups. The continuous traffic monitoring data collected by 

permanent traffic count stations provide all types of factors, including hourly, daily, 

weekly, and monthly expansion factors. These factors are used for converting the short-

duration traffic counts into AADT. This method is widely used across the country for 

its simplicity, effectiveness, and relatively low cost. However, the traditional factoring 

method has many deficiencies. Rossi et al. (1) summarizes error sources of factoring 

approach: determining the number of groups, identifying groups of road sections, and 

applying wrong expansion factors. Moreover, accuracy of AADT estimation based on 

factoring approach is very sensitive to the assignment of STTCs to PTC groups (2). 

Inappropriate assignments could lead to high estimation error. Additionally, assigning 

STTCs has always been a difficulty of this approach. Even though assignment methods, 

such as agglomerative hierarchical clustering method, k-means clustering method, etc. 

have been proposed to improve accuracy, they all have various deficiencies (1). 

2.2 Statistical regression models 

Many researchers propose regression models for AADT estimation and find 

that factors such as population, area type (rural or urban), per capita income, and 

roadway characteristics, etc. are significantly correlated with AADT (3, 4, 5). Zhao and 
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Chung (3) build linear regression models to estimate the AADT in Broward County, 

Florida using land-use and accessibility measures. They find that functional class 

(transformed nominal variables with numeric values) and number of lanes are 

significant factors in the estimation of AADT. Xia et al. (4) also suggest that roadway 

characteristics such as number of lanes and area type are significant factors in AADT 

estimation. 

Zhao and Park (6) apply a geographically weighted regression (GWR) model 

to estimate the AADT of Broward County in Florida. Compared with an ordinary linear 

regression model, GWR allows the parameters of regression model to be locally-unique 

instead of globally-uniform. Spatial nonstationarity, meaning the relationship between 

independents and the dependent varies across the study area, is considered in the GWR 

model. Eom et al. (7) improve the general regression model by incorporating spatial 

statistical process. Three semivariogram models (i.e. Guassian, exponential, and 

spherical semivariogram) are compared for analyzing the spatial autocorrelation of data 

points; two interpolation methods (i.e.( ordinary Kriging and universal Kriging) are 

compared for estimating unknown data points. Shamo et al. (8) apply a linear spatial 

interpolation to interpolating the AADT in Washington State, in which different 

combinations of kriging techniques and variogram models are compared. This spatial 

modeling stands out for its capturing the spatial relationship among data points by 

geostatistical procedures. However, the feasibility of the interpolation method depends 

on not-sparsely-distributed spatial data points. Therefore, its applicability to estimating 

AADT on local roads at the link level lacks feasibility. Geol et al. (9) demonstrat that 

a correlation-based method can yield better estimates than traditional methods if traffic 
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volumes of road sections are significantly correlated with that of nearby roads. They 

propose a generalized-least-squares (GLS)-estimation-based method and apply it to 

Ohio intercity network, which is generated by Monte Carlo simulation. Even though 

the performance of this method in real network needs further investigation, it provides 

insights on the correlation issue among AADTs. Accordingly, some generalized 

regression models (10-12) and spatial statistical models (6-8, 13) were explored for 

estimating AADT. 

2.3 Spatial statistical models 

Spatial autoregressive models (SAM) (e.g. spatial lag model (SLM) and spatial 

error model (SEM)) give insights into the spatial autocorrelations in an OLS model of 

AADT estimation. They are more powerful techniques than GWR and they do not have 

the drawback like the Kriging-based method. Besides, SAM can be applied in various 

settings as long as spatial autocorrelations cannot be ignored in a normal regression 

model for AADT estimation. In this paper, spatial autoregressive models are set as the 

benchmark model for comparison purpose with machine learning algorithms. There are 

various spatial-statistical techniques utilized as revealed in the literature to estimate the 

AADT on different roadway functional classifications. For example, clusters of roads 

with similar volume level and functional classification can be created and used to apply 

spatial interpolation such as kriging, inverse distance weighting (IDW), neural 

neighbor (NN), and trend technique (29). Also, geographically-weighted regression 

models (GWR) have been proposed and applied for AADT estimation in a few recent 

studies. GWR model assumes that land-use and demographical variables are non-

stationary across space, which means the statistical properties (mean, variance, etc.) of 
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variables are different among various locations. Therefore, the relationship between 

predictors and the response varies; this means that the parameters of dependent 

variables should not be fixed. At different locations, the influence of predictors on the 

response varies. For example, car ownership may have a greater influence on AADT 

at location A than location B. Then, its estimated parameter at location A could be 

larger than that at location B. The GWR model allows the parameters to be locally- 

rather than globally-estimated to reflect the mentioned non-stationarity. Local 

estimations mean that the parameters are more often determined by nearby observations 

than farther ones. In this way, local variations can be taken into consideration when 

exploring the relationship between independents and the dependent. Additionally, an 

important assumption for the GWR model is that the error terms are independent and 

identically distributed with zero means and constant variance. In the GWR model, a 

weighted window is moved over the data to estimate a set of parameters for each data 

point. Bi-square function and Gaussian function are two commonly-used weighting 

functions for the GWR model with one critical parameter – bandwidth.  

The spatial-statistical method has several advantages. First, it considers the 

spatial non-stationarity of land-use and demographical variables, which is more 

reasonable than ordinary regression models when estimating the AADT. In addition, 

this methodology is economical in its data requirements because it uses existing traffic 

counts and does not require collection of additional count data. Moreover, spatial-

statistical models can be implemented easily in standard GIS software packages that 

are readily available to local-road agencies. The methodology can also be updated 

easily in the future after the agencies receive new traffic-count data. Finally, the 
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methodology is straightforward and does not require complex procedures. It can be 

transferred and adapted rather easily to jurisdictions in other states to estimate their 

local-road AADTs. 

2.4 Machine learning algorithms 

In machine learning field, ANN and RF are two commonly used algorithms for 

prediction tasks. Karlaftis and Vlahogianni (14) thoroughly analyze the application of 

ANN in transportation research: ANN has been successfully applied as a data analytic 

method for solving transportation problems because of “their modeling flexibility, their 

learning and generalization ability, their adaptability, and their-generally-good 

predictive ability” (14). As summarized by Karlaftis and Vlahogianni (14), parameters 

of ANN are very adaptable. It is also good at addressing outliers  and missing values 

and absorbing noises. ANN method is very practical in reality since no assumption is 

required and their nonlinear structure can capture complicated data patterns and model 

complex relationships (15). Duddu and Pulugurtha (11) implement a neural network 

model using back-propagation (BP) learning algorithm to estimate AADT and found 

that prediction results are better than that of the negative binomial count statistical 

model. Sharma et al. (16) also used a BP neural network to estimate AADT by setting 

hourly traffic volume factors as inputs. Zarei etc. use Random Forest as the prediction 

model for short-term traffic flow prediction (21). Hamner uses RF to predict travel flow 

in six and thirty minutes (22).  
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Chapter 3: Data processing 

Data processing includes feature selection and feature engineering. The former 

involves three sections: on-road and off-road features, network centrality analysis, and 

spatial dependence analysis. The latter involves outlier detection and normalization. 

The local roads being analyzed in this research are the locals in rural and urban areas 

and minor collectors in rural only areas as defined as FSystem =  6 and FSystem = 7 

respectively by FHWA according to HPMS field manual. All local roads for the entire 

United States are used for analysis. After data cleaning, there are 10490 road segments 

with reported AADT values for modeling specification and validation.  

Two public domain databases are employed for AADT estimation in this 

research: 2012 HPMS data and 2012 SLD. The reason for choosing 2012 HPMS data 

is for the consistency with 2012 SLD to extract the most representative predictors. 

HPMS data provides nationwide AADT on each road segment as well as roadway 

attributes. The SLD is developed by the Environmental Protection Agency (EPA) for 

the entire U.S. and provides data on built-in environment characteristics such as 

demographics, employment, land use entropy, urban design, density, and destination 

accessibility at Census Block Group (CBG) level. For this part of feature selection, the 

way of merging CBG-based SLD features with the link-based AADT and road 

attributes affects estimation results as well. A state-of-the-practice way is building 

buffers, but there is no study examining the most appropriate size of the buffering. 

Thus, different buffer sizes are investigated and compared. These two databases 

provides 79 on-road and off-road features for analysis. Furthermore, network centrality 
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analysis based on social network theory is conducted for exploring useful predictors. 

The shapefile from HPMS is used for building transportation network. The HPMS data 

is also used for spatial dependence analysis. 

3.1 Feature selection 

3.1.1 On-road and off-road features 

In order to improve local AADT estimation as much as possible, external 

databases, including SLD and HPMS databases, are fully utilized to provide influential 

predictors. Even though previous studies have already applied some built-in 

environment factors for AADT estimation, no study so far has fully investigated all 

potential predictors and especially their rationality. From the perspective of providing 

theoretical basics and practical guides, a long list of variables from SLD and HPMS 

datasets (i.e. 79 variables in total) is extracted and analyzed in terms of their potential 

relationship with AADT.  

Simply speaking, either linear relationship or non-linear relationship exists 

between the predictors and AADT. Considering that common statistical methods are 

parametric-based while machine-learning methods does not necessitate a specific 

distribution of the variables, both Pearson Correlation Coefficient (r) and Spearman 

Rank-order Correlation Coefficient (rs) are employed to present the performance of all 

predictors. Pearson correlation measures the strength of linearity between two 

variables. Its coefficient falls into the range of minus 1 to 1. The closer the coefficient 

is to zero, the less linearity the test indicates. Spearman correlation measures the 

monotonicity between two variables in a non-linear way and it does not necessitate a 
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Gaussian distribution for both variables. For this research, detecting a statistically 

significant monotonicity by Spearman test contributes a lot to the predictor selection 

whether such correlation is linear or not since machine learning algorithms applied in 

this study are able to give full play to theirs advantage of handling non-linear 

relationships. It seems like Spearman correlation test is enough for selecting variables 

but Pearson correlation is also necessary since Spearman test might underestimate the 

linear correlation. In other words, the variables that show significant linearity by 

Pearson test might show insignificant association by Spearman test. Thus, both tools 

are utilized to select predictors.  

Table 3-1 summarizes the linearity analysis results and table 3-2 summarizes 

the monotonicity analysis results. In general, built-in environment factors do not show 

an obvious linear correlation with AADT, by obvious it means the coefficient value is 

below 0.5 or above -0.5. This conclusion is expected since it is quite probable that a 

complex rather than a linear relationship exists between a predictor and the AADT. As 

shown from the results of Spearman Correlation test, non-linear relationships indeed 

widely exist between the built-in environment factors and AADT with a Spearman 

coefficient higher than 0.5 or smaller than -0.5.  

Among the 79 factors from SLD and HPMS, 77 are continuous variables and 2 

are dummy variables. The two dummy variables are UrbanCode (1 for rural sections, 

2 for small urban sections, and 3 for urban sections), and FSystem (6 for minor 

collectors in rural area and 7 for locals in both rural and urban areas). Only the variables 



16 

 

with relative notable correlations are presented and discussed in this study. In the 

summary tables, the scheme of grouping is consistent with that of SLD. 

Table 3-1 Linearity analysis by different buffers 

Type Groups Feature r Groups Feature r Mean 

1-mile  

buffer 

demograp

hics* 

autoown2p 0.412 road 

traits** 

throughlane 0.409 0.329 

counthu 0.319 urbancode 0.367 

workers 0.313 fsystem -0.321 

rhiwagewk 0.310 density* d1c8ret10 0.368 

rmedwagew 0.305 urban 

design* 

d3a 0.340 

autoown1 0.304 d3aao 0.321 

totpop 0.304 d3amm 0.308 

hh 0.301 d3bpo3 0.303 

employme

nt* 

e5ent10 0.322 d3apo 0.302 

e8ent10 0.322    

2-mile 

buffer 

demograp

hics* 

autoown2p 0.419 density* d1c8ret10 0.411 0.357 

urban 

design* 

d3a 0.361 d1c5ent10 0.317 

d3bpo3 0.356 road 

traits** 

throughlane 0.409 

d3apo 0.355 urbancode 0.367 

d3amm 0.334 fsystem -0.321 

d3b 0.332 employm

ent* 

e5ent10 0.349 

d3bmm3 0.320 e8ent10 0.349 

3-mile  

buffer 

road 

traits** 

throughlane 0.409 urban 

design* 

d3apo 0.391 0.296 

urbancode 0.367 d3bpo3 0.391 

fsystem -0.321 d3b 0.370 

density* d1c8ret10 0.366 d3amm 0.356 

   d3bmm3 0.333 

Notes: *: the data source is smart location database, 

           **: the data source is highway performance monitoring system, 

           r: Pearson correlation coefficient, 

           Sample size is 10772. 

 

Table 3-2 Monotonicity analysis by different buffers 

Type Groups Feature rs Groups Feature rs Mean 

1-mile  

buffer 

density* d1c8ret10 0.572 demogra

phics* 

autoown2p 0.472 0.450 

d1a 0.430 hh 0.436 

d1b 0.427 rhiwagewk 0.432 

road traits** fsystem -0.534 counthu 0.431 

urban_code 0.461 totpop 0.426 

accessibility* d5ae 0.485 autoown1 0.402 

d5ar 0.470 urban 

design* 

d3a 0.407 

diversity* d2aephhm -0.409 d3bpo3 0.401 

density* d1c8ret10 0.598 fsystem -0.534 0.467 
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2-mile 

buffer 

accessibility* d5ae 0.436 road 

traits** 

urbancode 0.461 

d5ar 0.421 urban 

design* 

d3a 0.402 

demographics* autoown2p 0.421    

3-mile  

buffer 

density* d1c8ret10 0.624 urban 

design* 

d3a 0.429 0.454 

road traits** fsystem -0.534 d3bao 0.428 

urbancode 0.461 d3apo 0.428 

diversity* d2awrkemp 0.409 d3aao 0.412 

accessibility* d5ae 0.409 d3bpo3 0.405 

Notes: *: the data source is smart location database, 

           **: the data source is highway performance monitoring system, 

           1, 2, 3 … : the rank of correlation, 

           rs: Spearman coefficient, 

           Sample size is 10,772. 

 

 

The way of integrating spatial data doubtlessly influences the inner relationship 

among features. Integrated features based on single buffers of different sizes are 

discussed.  

3.1.1.1 Feature analysis based on 1-mile buffers 

Regarding the Pearson test results of 1-mile based buffering, the most 

significant one is AutoOwn2P, which is the number of households in CBG that own 

two or more automobiles. This variable makes a lot sense since the more automobiles 

a household has the more traffic it generates. ThroughLane (number of through lanes), 

a major attribute of road geometry, directly influences traffic volume. D1C8Ret10 

measures the gross retail (8-tier) employment density (jobs/acre) on unprotected land. 

It ranks third in terms of the strength of linearity with AADT. It is interesting that there 

are eight types of employment density including retail, office, industrial, service, 

entertainment, education, health care, and public sector but only retail employment 

density has a noticeable linear correlation with AADT. UrbanCode measures the 
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urbanization degree of the area. The more urbanized the area is, the more traffic volume 

there is as shown from results in the table 3-1 and table 3-2. From the group of urban 

design, D3a (total road network density) shows a relatively clear linear correlation with 

AADT, which is not difficult to understand in view of the definition of D3a. 

As for machine learning algorithms, linearity between the predictors and 

response variables is not a prerequisite. As long as a significant correlation is presented 

from a statistical test such as spearman correlation test, this predictor cannot be ignored. 

As shown in table 3-2, some variables are significantly correlated with AADT with a 

Spearman coefficient higher than 0.45 or smaller than -0.5. D1C8Ret10 is the gross 

retail (8-tier) employment density (jobs/acre) on unprotected land, which ranks third 

regarding the linearity with AADT with a p-coefficient of 0.367549. Its non-linear 

correlation with AADT seems to be more obvious because of a quite high Spearman 

coefficient of 0.571981. Similarly, FSystem, AutoOwn2P, and UrbanCode also show 

high non-linear correlation with a Spearman coefficient of -0.534167, 0.471896 and 

0.460472 respectively. Although they also outperform others in Pearson test, their non-

linear correlation with AADT is more statistically significant than the linear 

correlation. Besides, two new groups of factors present non-linear correlation with 

AADT including destination accessibility and land use diversity. Destination 

accessibility in SLD measures number of jobs or working-age population within a 45-

minute commute through automobile or transit (refer to SLD guide). Among the 12 

variables on destination accessibility, D5ae (working age population within 45 minutes 

auto travel time, network travel time-decay weighted) and D5ar (jobs within 45 minutes 

auto travel time, network travel time-decay weighted) present obvious association with 
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AADT for a Spearman coefficient of 0.484990 and 0.469602. Land use diversity 

measures the entropy of mixed land use. There are various measures included in SLD, 

among which D2AEPHHM shows the most noteworthy association with AADT. It 

measures the diversity of employment and household. Detailed information can refer 

to the SLD user guide. It has a Spearman coefficient of -0.408495, which means the 

more diverse (i.e. equally mixed) the area is the less traffic there is. According to the 

calculation of D2AEPHHM in SLD, it is probable that households or some types of 

employment have a major influence on traffic volume. When the entropy gets larger, 

this influence gets weaker.  

3.1.1.2 Feature analysis based on 2-mile buffers 

It is noteworthy that data merging based on 2-mile single buffers yields more 

notable strength of linearity. Except that UrbanCode and FSystem remain the same 

Pearson coefficient value, all the other variables present a higher positive Pearson 

coefficient compared with the results from 1-mile based buffering. The average 

strength of linearity is calculated by averaging the absolute values of all Pearson 

coefficients. This yields 0.3571, which is higher than that in the case of 1-mile buffers, 

i.e. 0.3289. In consideration of linear relationship, 2-mile buffers are recommended. 

Among the 14 presented variables, 11 of which are overlapped with the variables 

showing significant linearity using the data merging method of 1-mile buffers, which 

shows the stability of these predictors.  

There are fewer variables that have a Spearman coefficient higher than 0.4 or 

smaller than -0.4 than the other two cases (i.e. 1-mile based and 3-mile based 
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buffering). However, the average strength of association with AADT under 2-mile 

buffering is the largest, i.e. 0.4674 compared with 0.4495 (1-mile buffering) and 0.4538 

(3-mile buffering). For this reason, 2-mile buffering outperforms the other two data 

merging ways. Among the variables with 2-mile buffering, all of the eight variables, 

including D1C8Ret10, D5ae, D5ar, AutoOwn2P, FSystem, UrbanCode, and D3a, 

present notable correlations with AADT in cases of both 1-mile and 2-mile buffering. 

These variables worth considering for their consistently showing the correlation with 

AADT. For reducing redundancy purpose, D5ar can be ignored for its similarity with 

D5ae. D5ar measures the jobs within 45 minutes auto travel time, network travel time-

decay weighted and D5ae measures the working age population within 45 minutes auto 

travel time, network travel time-decay weighted.  

3.1.1.3 Feature analysis based on 3-mile buffers 

Once again, ThroughLane, UrbanCode, D1C8Ret10, and D3apo prove to be the 

ones with significant linear correlation with AADT just like the case in 1-mile buffering 

and 2-mile buffering. However, AutoOwn2P, D3a, and E5ENT10, all of which show 

strong linearity in cases of both the 1-mile and 2-mile buffering, do not show a notable 

linearity at all in the case of 3-mile buffers. What’s more, the average strength of 

linearity based on 3-mile buffering is only 0.2958, which is smaller than that under the 

other two cases.  

Familiar variables, D1C8Ret10, FSystem, UrbanCode, D2AEPHHM, D5ae, 

and D3a, appear again. The stability of these predictors distinguishes themselves as 

good candidate variables for AADT estimation. Similarly, D1C8Ret10 ranks the first 
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in terms of the strength of correlation with AADT just like the other two cases. In 

Pearson tests, this factor shows relatively high linear correlation than other factors as 

well. FSystem and UrbanCode’ Spearman coefficients do not change with the data 

merging methods since they are the attributes along with the road segment from HPMS 

dataset. Data merging only applies to the polygon-based attributes from SLD database. 

D2AWRKEMP is a new variable, which only occurs in 3-mile based buffering tests. It 

measures the land use diversity, which is the household workers per job by CBG. 

With the criteria of reducing redundancy, variables with similar definitions and 

probably high correlations with each other should not be completely included. 

Additional attention needs to be paid to testing the multicollinearity among predictors 

when the model to be applied has dependency prerequisite of predictors, such as 

regression models. Take demographics as an example, the variable counthu measures 

housing units and HH measures occupied housing units. Workers is the number of 

workers in CBG (home location). Totpop is the population. These four variables 

provide similar information to an extent. Besides, rhiwagewk is the number of workers 

earning $3333/month or more (home location) and rmedwagew is the number of 

workers earning more than $1250/month but less than $3333/month (home location). 

Only one of the two factors should be sufficient for analysis. Since AutoOwn2P shows 

a significant linear association with AADT, autoown1 (number of households in CBG 

that own one automobile) becomes a negligible predictor. The group of urban design 

measures the density of street network (D3a, D3aao, D4amm, D3apo) and street 

intersection (D3bpo3, D3b, D3bmm3). D3a measures the total road network density); 

D3aao, D3amm, and D3apo measure the network density by facility orientations (auto-
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oriented, multi-modal, pedestrian-oriented, respectively). It is unnecessary to 

implement all these variables. Under different ways of buffering, D3a and D3apo 

should be sufficient for modeling. D3b measures the total intersection density; D3bpo3, 

D3bmm3 measure the intersection density by different intersection types (pedestrian-

oriented with 3 legs and multi-modal with 3 legs). In comparison with D3a-related 

variables, all D3b related variables show less linearity for all cases of buffering.  

In view of variable stability, some variables are also recommended for 

application. For example, FSystem (6 for minor collectors in rural area and 7 for locals 

in both rural and urban areas) shows evident linear correlation in all three cases. It 

makes a common sense because minor collectors usually have more traffic volume than 

locals just like their definitions. E5ENT10 (entertainment jobs within a 5-tier 

employment classification scheme) also show notable linear correlation with AADT in 

all cases. It has exactly the same Pearson coefficient value as E8ENT10 (Entertainment 

jobs within an 8-tier employment classification scheme). Only E5ENT10 is kept for 

analysis to reduce variable redundancy. Among all types of jobs, only the number of 

entertainment jobs shows evident association with traffic volume. It presents the 

strength of entertainment activities to some extent. 

3.1.2 Network centrality analysis 

In addition to on-road and off-road characteristics, the road network plays a role 

in influencing traffic flows. Suppose that the importance level of a road section or an 

intersection in the road network can reflect traffic volume to some extent. Specifically, 

if a road segment is frequently passed through by the shortest paths of node pairs in the 
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network, its traffic volume is expected to be higher than other links. If an intersection 

is connected with multiple legs, its importance is apparent. So how about the segments 

that are connected with multiple segments? In social network theory, there have been 

well-established methods for evaluating the centrality of a node or an edge in a network. 

Given an edge, the edge betweenness can be measured by the fraction of total shortest 

paths that go through this edge (Brandes, 2001). This theory is adopted to assess the 

centrality of road segments in transportation network. Degree centrality measures the 

importance of a node by the number of edges that it connects (Shaw, 1954). Similarly, 

the degree centrality of a road segment in this study is defined as the number of roads 

that the road of interest connects to. Due to a great number of edges (6,140,687 in total) 

and nodes in the national transportation network, the whole network is divided into 

subnetworks by States to save computation time.  

3.1.2.1 Edge betweenness and AADT 

Results in table 3-3 show that for some states, the association between edge 

betweenness and AADT is prominent for nine states with a Spearman coefficient of 

around 0.5 or more, including Maine, New York, New Jersey, Oklahoma, West 

Virginia, North Dakota, Mississippi, Arizona, and Delaware. Figure 3-1 is the 

comparison between edge betweenness and AADT for the State of Marine, which 

shows a quite similar distribution. For the States listed in table 3-3, the correlation 

between edge betweennness and AADT is obvious while for other states such 

relationship is not. There are some reasons. Firstly, the centrality measurement is very 

sensitive to the completeness of network. An incomplete network hurts the analysis. 

The transportation network used in this study is the shape file from HPMS, which is 
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not complete especially for local roads. Further improvement needs a more complete 

network. Secondly, the traffic volume is a reflection of the real world, which involves 

directional flows. The network used for analysis is the central line without directions. 

Further improvement can be adding the directions. Thirdly, for the purpose of saving 

computation time, the whole network is divided into 52 subnetworks for each state, 

which causes loss of accuracy since interstate connections are not included in network 

analysis. Moreover, future improvement could compute the edge betweenness based 

on OD matrix instead of all node-pairs in the network.  

Table 0-3 Association strength between edge betweenness and AADT by States 

State rs r State rs r State rs r 

Maine 0.573 0.247 Mississippi 0.493 0.107 Connecticut 0.366 0.184 
New York 0.543 0.026 Arizona 0.490 0.211 Maryland 0.336 0.010 
New 

Jersey 

0.521 0.220 Delaware 0.469 0.148 Illinois 0.314 0.043 

Oklahoma 0.512 0.062 South 

Carolina 

0.432 0.375 Pennsylvania 0.314 0.240 

West 

Virginia 

0.508 0.234 Wyoming 0.390 0.122 Nevada -

0.368 

- 

0.176 

North 

Dakota 

0.499 0.269 District of 

Columbia 

0.385 0.161 Others  < 0.3 < 0.3 

Note: the analysis is based on the whole road network for each State  
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Figure 0-1 Edge betweenness and AADT of Marine 

3.1.2.2 Degree centrality and AADT 

As presented in table 3-4, the degree centrality of thirty-six states shows a 

signficant correlation with AADT with a Spearman coefficient (rs) greater than 0.5. 

And ten States’ Spearman coefficients are greater than 0.4. The degree centrality is 

worth considering for AADT estimation based on the results in table 3-4. Taking 

Missouri as an example, the degree centrality and AADT of it are plotted in figure 3-2. 

A similar pattern can be clearly detected. Among these two centrality measures, only 

degree centrality is selected for the modeling section.  

Table 0-4 Association strength between the degree centrality and AADT by States 

State rs r State rs r State rs r 

Missouri 0.722 0.473 West Virginia 0.615 0.557 California 0.515 0.347 

Tennessee 0.705 0.457 Minnesota 0.603 0.310 Massacusetts 0.507 0.290 

Kentucky 0.691 0.492 RhodeIsland 0.601 0.390 New 

Hampshire 

0.499 0.457 

Mississippi 0.687 0.513 Iowa 0.598 0.368 Maryland 0.489 0.298 

Arkanas 0.682 0.488 South 

Carolina 

0.590 0.447 Arizona 0.489 0.349 

Virginia 0.665 0.456 North Dakota 0.577 0.460 Louisiana 0.488 0.348 

Indiana 0.663 0.383 Washington 0.570 0.301 Colorado 0.465 0.266 

New 

Mexico 

0.657 0.364 Maine 0.566 0.444 Wyoming 0.460 0.385 
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Texas 0.657 0.402 Utah 0.558 0.317 Vermont 0.448 0.346 

Hawaii 0.643 0.440 Connecticut 0.556 0.363 Florida 0.426 0.299 

Deleware 0.643 0.481 New Jersey 0.547 0.329 Oregon 0.417 0.236 
Pennsylvania 0.641 0.506 Idaho 0.543 0.330 Illinois 0.416 0.200 

Wisconsin 0.637 0.381 South Dakota 0.538 0.359 Michigan 0.399 0.228 

District 0.637 0.301 Alabama 0.538 0.356 Georgia 0.360 0.175 

North 

Carolina 

0.636 0.459 Nebraska 0.531 0.316 Montana 0.302 0.187 

New York 0.619 0.397 Kansas 0.527 0.373 PA_NHS NA NA 

Oklahoma 0.617 0.474 Ohio 0.527 0.325 Others <0.2 <0.2 

Note: 1. the analysis is based on the whole road network for each State, 

          2. There’s no result for PA_NHS because of data problem. 

  

Figure 0-2 Degree centrality and AADT of Missouri 

3.1.3 Spatial autocorrelation analysis 

The traffic volume on one road segment is probably correlated with that on the 

neighboring segments. A Moran’s I test on the dependent variable AADT confirms that 

spatial autocorrelation statistically does exist in the road network. Even though such 

spatial dependence issue cannot undermine the performance of machine learning 

algorithms because of the non-parametric nature of machine learning, taking care of 

this issue could help improve estimation accuracy. Therefore, several features 

regarding surrounding traffic features are investigated. It turns out that Naadt67 and 

Naadt5 are two neighboring factors that significantly correlate with AADT.  
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3.1.3.1 Global Moran’s I test  

The Moran’s Index is developed by Moran in 1950. It is a generally used tool 

for testing the spatial autocorrelation. Given the AADT values of roadways and their 

geographical locations, the Moran’s I test statistic is applied. Moran scatter plot (Figure 

3-3) below shows the linear correlation between the AADT on one road (x-axis) and 

the AADTs on the surrounding roads (y-axis). The lagged-AADT (y-axis) here are 

calculated using K-Nearest Neighbors method with K = 10 and the neighbors’ AADT 

are weighted by the inversed distance with power = 1. In other words, it is assumed 

that the AADT on one road is influenced by AADTs on at most 10 nearest neighboring 

roads and the influence of a neighbor decreases as the distance increases. The Moran’s 

Index is 0.623 (the slope of the regression line), which is the strength of spatial 

autocorrelation. The points are concentrated on the upper-right quadrant indicating a 

positive spatial autocorrelation - a clustering of similar values. The Moran’s I test 

statistic is quite significant because of a very small p-value of 2.2e-16. It is fairly 

convincing to reject the null hypothesis that the spatial distribution of AADTs is purely 

random. Under null hypothesis, i.e. without any spatial autocorrelation, the expected 

value of Moran’s I is -7.5e-05 while the actual value is 0.623 and the variance is 1.4e-

05. In summary, the positive spatial autocorrelation (clustering of similar values) 

among AADT values is not only strong (strength is 0.623) but also highly significant 

(99% confidence level).  



28 

 

 

Figure 0-3 Moran scatter plot 

3.1.3.2 Exploration of surrounding traffic features 

This section investigates various surrounding features to consider spatial 

influence. Results in table 3-5 shows that the closest observed AADT of local roads 

has a stronger influence than that of higher level roads. The distance to the closest major 

collector also positively influences AADT. These two features are selected as the model 

inputs for AADT estimation.  
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Table 0-5 Correlation strength between surrounding traffic features with AADT 

Feature Definition r rs 

Naadt67 The AADT value of the nearest local road in all area or 

minor collector in urban area only (FSystem = 6, 7) 

0.840 0.905 

Naadt The AADT of the nearest road with (FSystem < 6) 0.153 0.202 

Ndist5 The Euclidean distance to the nearest major collector 

(FSystem = 5) 

0.094 0.315 

Num0fRd Number of road sections within a distance of 2 mile -0.227 -0.236 

Maxaadt The max AADT value of nearby roads within a distance of 

2 mile 

0.279 0.042 

Avgaadt The average AADT value of nearby roads within a 

distance of 2 mile 

0.039 -0.127 

Note: sample size is 13335 for Naadt67, Ndist5, and Num0fRd2. For others, sample size is 

3888 or 3397.  

3.2 Feature engineering 

Based on previous sections regarding on-road and off-road features, network 

centrality, and spatial dependence analysis, 12 candidate variables are selected from 87 

features, which are summarized in table 3-6 along with Pearson correlation coefficient 

and Spearman coefficient and their definitions.  
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Table 0-6 Candidate features for modeling inputs 

Feature Definition rs r 

Naadt67 The AADT value of the nearest local road in all area or 

minor collector in urban area only (FSystem = 6, 7) 

0.91 0.84 

D1C8Ret10 The gross retail employment density, jobs/acre, under 

8-tier classification on unprotected land 

0.60 0.41 

UrbanCode 1 for rural sections, 2 for small urban sections, and 3 for 

urban sections 

0.46 0.37 

FSystem 6 for minor collectors in rural area and 7 for locals in both 

rural and urban areas 

-0.53 -0.32 

Degree Number of road segments that are connected with -0.44 -0.28 

D5ae Working age population within 45 minutes auto travel 

time, network travel time-decay weighted 

0.44 0.14 

AutoOwn2P Number of households in CBG that own two or more 

automobiles 

0.42 0.42 

D5ar Number of jobs within 45 minutes auto travel time, 

network travel time-decay weighted 

0.42 0.15 

ThroughLane Number of through lanes 0.35 0.41 

D3a Total road network density 0.40 0.36 

E5ENT10 Entertainment jobs within a 5-tier employment 

classification scheme 

0.18 0.35 

Ndist5 The Euclidean distance to the nearest major collector 

(FSystem = 5) 

0.32 0.09 

Note: rs: Spearman coefficient, 

          r: Pearson coefficient 

 

Feature engineering paves the way for implementing machine-learning 

algorithms. It covers a series of techniques such as addressing missing and abnormal 

values, transforming data by logarithm or powers, normalizing or standardizing, one-

hot encoding of nominal variable, etc. Following the feature selection process, all 

selected features from either HPMS data or SLD are integrated together, which yields 

a cross-sectional dataset consisting of 10490 observations without missing values. 

Then the Interquartile Range Rule, i.e. (Q1-1.5*IQR, Q3+1.5*IQR), is used to remove 

the outliers of AADT values and 464 observations are removed. Data transformation is 

not included to retain the interpretability of the results. Although scaling is not 

necessary for random forest modeling, it is necessary for the artificial neural network. 
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For comparison purpose, all features are scaled using min-max normalization and then 

increased by 0.1 to avoid zero values.  
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Chapter 4: Spatial autoregressive model: a benchmark 

4.1 Ordinary least squares (OLS) model 

4.1.1 Model specification 

Beginning with an OLS model, the relationship between AADT and the twelve 

selected predictors is investigated. The two dummy variables, i.e. FSystem and 

UrbanCode, are treated as numerous variables in this linear model to keep the ordering 

information. Modeling results are summarized in table 4-1. For a linear regression 

model, all selected predictors are statistically significant except for AutoOwn2P 

(number of households in CBG that own two or more automobiles). D1C8Ret10, D3a, 

E5ENT10, ThroughLane, FSystem, UrbanCode, Naadty67 have quite significant 

coefficients at 99% confidence level. The other four predictors have significant 

coefficients at 95% confidence level.  

Table 4-1 Summary of linear regression results 

Predictors Estimates CI p 

(Intercept) 4469.48 3623.04 ~ 5315.92 < 0.001 

D1C8Ret10 919.26 672.92 ~ 1165.59 < 0.001 

D3a 27.76 13.93 ~ 41.59 < 0.001 

AutoOwn2P 0.00 -0.01 ~ 0.02 0.766 

E5ENT10 -0.06 -0.06 ~ -0.05 < 0.001 

D5ar 0.00 0.00 ~ 0.00 0.019 

D5ae -0.00 -0.00 ~ -0.00 0.041 

ThroughLane 200.28 143.63 ~ 256.92 < 0.001 

FSystem -746.91 -890.44 ~ -603.38 < 0.001 

UrbanCode 165.28 94.23 ~ 236.32 < 0.001 

Naadt67 0.60 0.58 ~ 0.61 < 0.001 

Ndist5 -645.93 -1168.59 ~ -123.28 0.015 

Degree 35.79 6.67 ~ 64.91 0.016 

R2/R2 adjusted 0.669/0.667   
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4.1.2 Multicollinearity and variance inflation factor (VIF) 

To reduce the variable redundancy and improve the performance of OLS and 

spatial autoregressive model, the multicollinearity among the twelve selected variables 

is tested by VIF. Table 4-2 summarizes the results. D5ar and D5ae are two concerning 

predictors with very high VIF values. For the improved OLS and spatial autoregressive 

model, these two variables are excluded while they are kept when applying machine-

learning algorithms.  

Table 4-2 Multicollinearity test results with VIF 

Predictors VIF Predictors VIF 

D1C8Ret10 3.09 ThroughLane 1.16 

D3a 6.12 FSystem 4.12 

AutoOwn2P 4.78 UrbanCode 2.11 

E5ENT10 1.53 Naadt67 1.56 

D5ar 49.03 Ndist5 1.34 

D5ae 45.66 Degree 3.66 

 

4.1.3 Improved OLS model 

After removing the two predictors, i.e. D5ar and D5ae, and an insignificant 

predictor, i.e. AutoOwn2P, a new linear regression model is built, results of which are 

shown in table 4-3. With the improved regression model, R2 remains around 0.67. 

Table 4-3 Summary of the improved linear regression results 

Predictors Estimates CI p 

(Intercept) 4475.06 3630.45 ~ 5319.67 < 0.001 

D1C8Ret10 1085.92 871.29 ~ 1300.55 < 0.001 

D3a 28.96 19.43 ~ 38.49 < 0.001 

E5ENT10 -0.06 -0.06 ~ -0.05 < 0.001 

ThroughLane 194.59 138.27 ~ 250.91 < 0.001 

FSystem -745.39 -888.31 ~ -602.47 < 0.001 

UrbanCode 160.61 89.75 ~ 231.46 < 0.001 

Naadt67 0.60 0.58 ~ 0.61 < 0.001 

Ndist5 -730.00 -1245.06 ~ -214.94 0.005 
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Degree 35.66 6.66 ~ 64.66 0.016 

R2/R2 adjusted 0.667/0.667   

4.2 Spatial autoregressive model 

It is intuitive that ADDT values are spatially autocorrelated. A Moran’s I test 

on the dependent variable AADT confirms spatial autocorrelation and the need to 

proceed with a spatial autoregressive model. Therefore, spatial autoregressive models 

are developed to deal with the existing spatial dependence issue. There are two 

common types of spatial dependence, i.e. spatial lag and spatial error.  

4.2.1 Spatial error model 

When the error terms of the population regression equation are auto-correlated, 

the independence assumption of the error terms is violated and thus the spatial error 

model could be used to deal with the unknown random factors (nuisance spatial 

dependence). The spatial error model is defined with the equation: 

y = λWε + 𝑋𝛽 + 𝜀,    𝜀~N(0, 𝜎2)                       

where: λ= nuisance parameter, W= spatial weights matrix, ε = error term, X = 

matrix of predictor variables, β = the coefficient matrix for the predictor variables. 

4.2.2 Spatial lag model 

Another approach is the spatial lag model (SLM) that can be used when the 

dependent variable in place i is influenced by independent variables in both place i and 

other places. This kind of spatial dependence not only violates the independence 

assumption of error terms, but also undermines the assumption of independent 

observations. Three types of spatial interactions must be addressed in a spatial lag 
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model: interaction effects among individual road segments (endogenous effects), 

exogenous group characteristics (contextual effects), and observed or unobserved 

characteristics that road segments have in common (correlated effects). SLM aims to 

handle spatially-lagged dependent variable by weighting neighboring values. SLM is 

specified by the equation: 

y = ρWy + 𝑋𝛽 + 𝜀,    𝜀~N(0, 𝜎2) 

where: ρ = spatial autoregressive coefficient, W = spatial weights matrix, X = 

the matrix of predictor variables, β = the coefficient matrix for the predictor variables, 

ε = the random error which follows a normal distribution. 

4.2.3 Spatial autocorrelation diagnostics 

Spatial weights matrix is generated by k-nearest neighbors method. Figure 4-1 

shows the procedure for selecting the type of spatial autoregressive model. As it 

indicates, in the first step, an ordinary least square model is developed, followed by a 

spatial dependence diagnostic of OLS’s error terms. These diagnostics calculate the 

Lagrange Multiplier of Error (LM-Error), Lagrange Multiplier of Lag (LM-Lag), 

Robust Lagrange Multiplier of Error (Robust LM-Error), and Robust Lagrange 

Multiplier of Lag (Robust LM-Lag). Based on the values of these diagnostics, the most 

appropriate model is selected.  
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Figure 4-1 Procedure for selecting a spatial autoregressive model 

Five tests are performed to assess the spatial dependence and detect the type of 

spatial autocorrelation (table 4-4). First, Moran’s I test shows a significant positive 

spatial autocorrelation, i.e. roads with similar AADT values tend to form a cluster. 

Results of LM tests for a missing spatially-lagged dependent variable and dependent 

errors show significant LM-Lag and LM-Error values, indicating the presence of both 

spatial error and spatial lag. Robust LM-Lag indicates spatial lag dependence 

conditioned on missing spatial errors. Robust LM-Error indicates spatial error 

conditioned on the presence of spatial lagged dependent variable. Both LM and Robust 

LM tests are significant. Since LM-Lag indicator (p-value < 0.001) is more significant 

than LM-Error indicator (p-value = 0.03), spatial lag model is selected.  

Table 4-4 Results of spatial autocorrelation diagnostics 

Tests Value p 

Moran’s I 0.625 < 0.001 

Lagrange Multiplier (lag) 1064.15 < 0.001 

Robust LM (lag) 1461.80 < 0.001 

Lagrange Multiplier (error) 4.66 0.03083 

Robust LM (error) 402.32 < 0.001 
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4.2.4 Maximum Likelihood Estimation of the Spatial Lag Model 

As shown in table 4-5, the ρ value (spatial autoregressive coefficient of spatial 

lag model) is quite significant with a p-value of an asymptotic t-test smaller than 2.22e-

16. The likelihood ratio test on ρ is also quite significant with a p-value smaller than 

2.22e-16. Compared with the OLS model, the AIC of spatial lag model is 138470, 

which is better than that of the OLS, i.e. 140650. The spatial lag model performs better 

than the OLS model.  

Table 4-5 Summary of spatial lag model 

Predictors Estimate  Std. Error p 

(Intercept) 1537 374.33 < 0.001 

D1C8Ret10 319 97.82 0.001 

D3a 10.46 4.21 0.013 

E5ENT10 -0.02 -0.003 < 0.001 

ThroughLane 170.16 23.96 < 0.001 

FSystem -321.81 63.10 < 0.001 

UrbanCode 20.73 30.89 0.5 

Naadt67 0.33 0.0072 < 0.001 

Ndist5 -609.35 226.32 0.007 

Degree 49.43 12.61 < 0.001 

Rho: 0.55463  

LR test value: 2187.8, p-value: < 2.22e-16  

Asymptotic standard error: 0.010312, z-value: 53.787, p-value: < 2.22e-16 

AIC: 138470, (AIC for lm: 140650) 
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Chapter5: Implementation of Machine learning algorithms 

5.1 Ensembling artificial neural networks 

5.1.1 Architecture design 

The ANN model imitates a brain’s biological neural network. It can learn from 

training process and no specific rules are needed for a learning task. A neural network 

consists of neurons (nodes) and edges (links) (Figure 5-1). Each neuron has a value and 

each link is assigned by a weight; computational process happens on links from input 

layer to hidden layer and then to output layer by weighting the values of the previous 

layer. The output is an aggregated sum of values through numerous non-linear 

transferring processes from layer to layer. Then there are two types of neural networks: 

feedforward and feedback. Feedforward neural network is nonrecurrent without any 

cycling while feedback neural network adjusts the weights based on the output’s bias 

from target. For this study, a three-layer-based neural network work is applied 

including an input layer, a hidden layer, and an output layer. The Levenberg-Marquardt 

(LM) algorithm, also known as the damped least-squares method, is used to tune the 

weights. It works specifically with loss functions in the form of a sum of squared errors. 

The learning rate of LM algorithm is 0.1. Studies show that adding more layers seldom 

significantly improve the performance; one hidden layer is sufficient in most 

circumstances. Number of neurons in the hidden layer is nine based on a rule-of-thumb.  
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Figure 5-1 Structure of ensembling artificial neural networks 

In order to improve the model robustness, an ensemble of ten neural networks 

are simultaneously trained. On the one hand, the overfitting problem can be detected 

through performance variation among the ten neural networks. On the other hand, 

averaging the estimations from multiple ANNs reduces the risk of overfitting and 

random disturbances. Each neural network is trained by a random sample of size 5614 

from the original training dataset of size 8020, i.e. 70% sampling rate. These ten ANN 

models are applied to the same validation set to calculate the accuracy. The average of 

all estimations from the ten ANNs is the final estimation.  

5.1.2 Training results and variable importance measure 

The ensembling artificial neural networks consist of ten independent neural 

networks, each of which is trained by a random sample from the training dataset. The 

black links denote positive coefficients and the gray links represent negative 

coefficients. The strength of the linkage is presented by the width of the links. After 

training, all ten neural networks are shown in figure 5-2. The importance of each 
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variables is shown through the color depth. The greener the node is, the more important 

the input feature is.   

Figure 5-2 Architecture of artificial neural networks after training 
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Figure 5-3 An example of trained neural network and importance rank of inputs 

Figure 5-4 depicts the importance rank of input features of each trained ANN 

in the order of average importance rank. The importance of an input features is 

measured by the sum of all weights connecting the given input feature and the output 

AADT (Garson, 1991; Goh, 1995). The five most important input features for ANNs 

are D5ar (number of jobs within 45 minutes auto travel time), D5ae (working age 

population within 45 minutes auto travel time), FSystem (functional class), Naadt67 

(the AADT of nearest NFAS road), and Ndist5 (the distance to the nearest major 

collector).  
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Figure 5-4 Importance rank of input features of ANN 

5.1.3 Accuracy measures 

Five measures are employed to evaluate the accuracy level: Mean Squared Error 

(MSE), R Squared Value (RSQ), Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), and Mean Absolute Percentage Error (MAPE). Both the accuracy of 

individual ANNs and the combined ANNs is plotted in figure 5-5. The difference 

among the ten individual neural networks is minimal. Even though some particular 

neural networks behave better than the combined network, the main benefit of 

assembling the ANNs is to improve the model’s stability and robustness.  
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Figure 5-5 Performance of ensembling ANNs 

5.2 Random forest  

Random forest regression gains increasing popularity in prediction or 

estimation studies by virtue of many merits. Not only it usually achieves a high 

accuracy level but also it has good interpretability. Moreover, overfitting issue does not 

bother it because of its robust architecture derived from ensemble learning theory. 

Recently, various methods have been developed to demystify Random Forest such as 

variable importance measures and partial dependence plots (PDPs).  

5.2.1 Architecture design 

As depicted in figure 5-6, a random forest consists of a predefined number of 

decision trees – ntree, the magnitude of which is usually in hundreds. Each tree 

randomly extracts a portion of the original dataset in a way of bootstrap resampling 
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(sampling with replacement). Then each tree independently makes its own estimation 

using randomly selected features. The number of features that each node can select is 

controlled by the second model parameter – mtry. Finally, a voting process takes the 

estimations from all trees into account and makes the final decision usually by 

unweighted averaging, which is a bagging process that ensembles hundreds of tree 

models. Random forest benefits from this bagging feature to provide a more stable and 

accurate estimation. Adjusting the two parameters, ntree and mtry, contributes to 

improving the predictive performance. Since the parameter mtry influences the 

accuracy of each individual tree and simultaneously determines the correlation among 

the trees in an opposite direction, the model is more sensitive to the mtry value.  

 

 

Figure 5-6 Architecture of random forest 

5.2.2 Training results  

The whole dataset is divided into training and testing part with a ratio of 80% 

to 20%. Multiple combinations of ntree and mtry are tested and theirs prediction 
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performances are compared as shown in figure 5-7. It is obvious that setting mtry as 

three generates the best result no matter what ntree is. Besides, Mean Squared Residuals 

(MSE) is the minimal and R Squared value (RSQ) is the maximal when ntree is 500 

and mtry equals 3. Thus, this specification of parameters is used for modeling.  

 

Figure 5-7 Training results of random forest 

With three features randomly selected for each node, the random forest is built 

up on 500 trees through the training dataset. The learning curves in figure 5-8 show 

how MSE and RSQ change with more trees joining in. When there were 100 trees, the 

learning curves gradually stabilize to a constant level. After 500 trees are built, MSE 

decreases to 0.01142 and RSQ gets as high as 0.8161 meaning that 81.61% total 

variance can be explained. The model achieves a high goodness of fit.  
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Figure 5-8 Learning curves on MSE and RSQ of the trained random forest 

5.2.3 Interactions between predictors and AADT 

How each predictor interacts with the response variable AADT needs further 

investigation. In 2001, Friedman proposed Partial Dependence Plots, which can 

visualize the marginal effect of a single predictor on the output of a machine-learning 

model, such as Random forest and Support Vector Machine, while averaging the effects 

of all other predictors. Along with the changes of a predictor, how is the response 

variable changing is plotted through PDP. The larger the range that PDP varies over 

along y-axis, the more influential the predictor is. Besides, various interactions 

including not just linear correlation are shown from figure 5-9. Among all 12 

predictors, only FSystem shows a complete negative effect on AADT, which makes a 

lot sense because FSystem=6 represents minor collectors in rural area and FSystem=7 

is locals with less traffic. For D1C8Ret10, D5ar, and D5ae, they show a strong 

sensitivity at the very beginning and then they become stabilized. The PDP of 

UrbanCode shows that the urban code increase from 2 (small urban sections) to 3 
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(urban sections) brings about a larger increase of AADT compared with the change 

from 1 (rural sections) to 2 (small urban sections). Other predictors overall show a 

positive influence on AADT even though some fluctuations occur.  

 

Figure 5-9 Partial dependence plots 

5.2.4 Variable importance measures 

Multiple methods are utilized to assess the importance of predicting features. 

First, a widely used measurement, that is percentage increase in mean squared error 

when permuting a single predictor, is applied. Second, according to the inherent 

structure of random forest, several methods from various aspects quantify the 

importance of predictors. Two representative methods, including times of splitting the 

root node and mean of minimal depth, are used and discussed. Finally, the importance 

ranks from these three different methods are summed up, through which a list of 

predicting features in order of priority is given.  
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5.2.4.1 Permutation-based measure 

In a random forest, the contribution rate of each predictor can be measured from 

each tree. Then all these contributions are averaged and sometimes further normalized 

with the standard deviation. This yields the final importance score for a predictor. As 

for random forest regression, one widely used measure of importance is the percentage 

increase in mean squared error after permuting the predictor of interest. Using this 

measurement, the importance of all twelve predictors is plotted in figure 5-10. The most 

important predictor is the AADT value of the nearest local road segment, which is 

intuitive because of significant spatial dependence as discussed before. Then 

D1C8Ret10 (the gross retail employment density in number of jobs per acre under 8-

tier classification on unprotected land), D3a (total road network density), D5ar (jobs 

within 45 minutes auto travel time, network travel time-decay weighted) ranks second, 

third, and forth with an importance measure around 50%.  
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Figure 5-10 Importance measure by %MSE upon permutation 

5.2.4.2 Times of splitting the root node 

As for a single tree, only the significant variables can appear in the tree. Result 

shows that each predictor is in all 500 trees, which means all selected features are of 

significance. The sequence that the predictors occur from top to bottom represents the 

rank of importance. The first feature that splits the root node provides the most 

information gain. It is the most significant variable because it outperforms all other 

predictors regarding subdividing the whole dataset into homogeneous subsets. All 12 

predictors are in all 500 trees. However, the splitting feature of the root node varies 

among the trees as shown from figure 5-11. Naadt67 is the most frequent one to split 

the root node of 129 trees, followed by AutoOwn2P occurring at the root node of 102 

trees. D1C8Ret10 ranks third by splitting 82 times at the top of the tree. Other variables, 

including D5ae, FSystem, D5ar, UrbanCode, D3a, also become the most important 

feature for multiple times. Yet, Degree, Ndist5, and ThroughLane just appear several 

times at the top of the tree and E5ENT10 never acts as the top feature in any of the 500 

trees.  
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Figure 5-11 Importance measure by times of splitting the root node 

5.2.4.3 Distribution of minimal depth and its mean 

In addition, the sequence that features present from top to bottom of the tree 

represents the rank of importance. The closer to the root the feature is, the more 

important it is. Accordingly, the minimal depth of a given feature is defined as the 

number of edges along the path that connects the root node with the nearest maximal 

subtree of the given feature. Figure 5-12 shows the distribution of minimal depth 

among the 500 trees for each predictor. Naadt67 has a mean minimal depth of 1.3, 

which is consistent with the fact that it splits the root node most frequently, i.e. 129 

times. For the left 371 trees, Naadt67 mainly serves as the secondary or tertiary feature 

though it is not the primary feature. Besides, it never gets five edges away from the 

root node. From the analysis above, E5ENT10 never splits a root node. However, its 
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importance is not negligible considering that it frequently occurs at the shallow part of 

the tree with a minimal depth of two or three in most cases. In comparison, UrbanCode 

seems to be the least important. Its closest maximal subtree is usually around five edges 

away from the root and its mean minimal depth, i.e. 4.18, ranks last. Apart from 

UrbanCode, FSystem is another feature whose closest position to the root still goes as 

far as nine edges away. Nevertheless, its mean minimal depth is as low as 2.32 because 

most of the time its closest maximal subtree starts at the nodes that are two or three 

edges away from the root. All other nine predictors seem to be important as well 

because in most trees their first presence is no more than four edges away from the 

root. In very few cases, they deep into the tree with a minimal depth of six or more. 

Overall, the twelve selected features performs well among the 500 trees.  



52 

 

 

 

 

Figure 5-12 Distribution of minimal depth and mean of predicting features 

5.2.4.4 Importance rank of predictors  

A comprehensive investigation on variable importance is conducted from one 

accuracy-based method, i.e. percentage increase of MSE conditional on permuting the 

given predictor, and two tree-based methods, i.e. times of splitting the root node, and 

mean minimal depth. Considering all these aspects, the twelve predictors are given 

priority in order of summed importance rank as shown in the table 5-1 below.  
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Table 5-1 Importance rank of predictors 

Rank Predictor Rank Predictor Rank Predictor 

1st Naadt67 5th D5ar 9th Degree 

2nd D1C8Ret10 6th FSystem 10th E5ENT10 

3rd AutoOwn2P 7th D3a 11th UrbanCode 

4th D5ae 8th Ndist5 12th ThroughLane 

 

5.2.5 Interactions among the predictors 

Furthermore, the multidimensional analysis of variable importance indicates 

that all twelve features occur in each of the 500 trees but the roles they play differ from 

tree to tree. Inspecting the interactions among predictors promotes understanding the 

relationship between predictors and the response variable AADT. Conditional minimal 

depth is a proposed measurement for investigating the interactions between predictors. 

By definition, the conditional minimal depth of a given predictor X1 conditional on 

another given predictor X2 is the minimal depth of X1 in the closest maximal subtree 

of X2 minus one. If no node in the X2 maximal subtree splits using X1, then the mean 

depth of maximal subtrees of X2 in the forest is set as the conditional minimal depth 

of X1 conditional on X2. Features, such as Naadt67, D1C8Ret10, and AutoOwn2P, 

frequently split the root node and dominate in the upper part of the tree. Setting these 

features as the conditioning variables contributes to a better knowledge of inner 

interactions within the forest. Six conditioning variables were selected by the order of 

priority: Naadt67, D1C8Ret10, AutoOwn2P, D5ae, D5ar, and FSystem. There are 72 

interactions in total with twelve predictors conditioning on the six selected predictors. 

36 most frequent interactions are plotted in figure 5-13 from left to right. One 

interaction of X1 conditioning on X2 is denoted as X1|X2. In general, most variables 

become more important when conditioning on some other variables. There are nine 
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non-conditioning variables, four of which are not the selected conditioning variables: 

E5ENT10, D3a, Ndist5 and Degree. Even though they are relatively unimportant for 

the whole trees, they become important when conditioning on other variables. 

E5ENT10 and D3a are two evident examples. The unconditional mean minimal depth 

of E5ENT10 is 3.24. However, when conditioning on D1C8Ret10, its mean minimal 

depth is only 1.82. This means that E5ENT10 becomes quite important after 

D1C8Ret10 splits a node. Besides, such conditional importance varies with different 

conditioning variables. E5ENT10 is less important when conditioning on AutoOwn2P 

with a mean minimal depth of 2.57. The red line presents the minimum of conditional 

mean minimal depth across all interactions. The interaction of Naadt67 | Naadt67 has 

a mean minimal depth of 0.9, which means that after Naadt67 splits a node it is followed 

by Naadt67 once again in many instances. Among the six conditioning variables, only 

FSystem does not act as a non-conditioning variable, suggesting that it is more 

important without conditioning on others. Yet, the interactions with FSystem being the 

conditioning variable are very frequent. As for D5ae, only D3a becomes more 

important when conditional on it while D1C8Ret10 and D5ae becomes less important.  
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Figure 5-13 Interactions among predictors 

5.3 Validation 

 For comparison purpose, the spatial lag model is included as a benchmark. Five 

accuracy measures in total are calculated for OLS, SLM, ANN, and RF. The estimated 

AADT values are transformed back to the real value. Results in table 5-2 show that 

Random Forest performs the best in each accuracy measure, which is followed by the 

Artificial Neural Network. Machine learning algorithms produce noticeably better 

AADT estimations than OLS and SLM in terms of all accuracy measures. Although 

SLM is excellent for its handling spatial dependence issue, the estimation result of it 

still shows a very high mean absolute percentage error (MAPE), i.e. 1.13 and it 

provides limited improvement when compared with OLS. There is only a 5% decrease 

of MSE, an 8% increase of RSQ, and a 2% increase of RMSE. When comparing the 

two machine learning algorithms with SLM, the estimation results are notably 

improved. The estimation result of RF shows a 57% decrease of MAPE, a 37% 
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decrease of MAE, a 29% decrease of MSE, a 16% decrease of RMSE, and a 10% 

increase of RSQ. The estimation result of ANN shows a 48% decrease of MAPE, a 

28% decrease of MAE, a 20% decrease of MSE, an 11% decrease of RMSE, and an 

8% increase of RSQ. These performance measures demonstrate that Random Forest 

and Artificial Neural Network make better estimations than Spatial Lag Model and 

Ordinary Least Squares model and Random Forest outperforms Artificial Neural 

Network in all accuracy measures.  

Table 5-2 Accuracy measures of RM, ANN, SLM, and OLS 

Model MSE =  

∑(𝒀 − 𝒀∗)𝟐

𝒏
 

RSQ = 

𝟏 −
∑(𝒀 − 𝒀∗)𝟐

∑(𝒀 − 𝒀̅)𝟐
 

RMSE =

 √
𝟏

𝒏
∑(𝒀 − 𝒀∗)𝟐 

MAE =  
∑ |𝒀 − 𝒀∗|

𝒏
 

MAPE = 

 
∑ |

𝒀 − 𝒀∗

𝒀 |

𝒏
 

RF 1379990 

(-29%) 

0.81  

(+10%) 

1174.73  

(-16%) 

545.80 

(-37%) 

0.49 

(-57%) 

ANN 1566888 

(-20%) 

0.79  

(+8%) 

1251.75 

(-11%) 

623.25 

(-28%) 

0.59 

(-48%) 

SLM 

(benchmark) 

1957185 0.73  1398.99 866.42 1.13 

OLS 2050093 

(+5%) 

0.67  

(-8%) 

1431.82 

(+2%) 

849.25 

(-2%) 

1.13 

(0%) 
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Chapter 6: Conclusion 

This thesis studies the estimation of annual average daily traffic on NFAS roads 

in USA at national level. Great efforts are made step by step to refine each procedure.  

A deep data mining of built-in environment features for predicting inputs is the 

first major part. Instead of directly applying the variables used by previous studies, 

which is what most studies usually do, this study analyzes a long list of features (87 in 

total) and compares their strength of linearity and non-linearity with AADT. These 87 

features are from three perspectives: on-road and off-road features, network centrality 

measures based on social network theory, and neighboring traffic characteristics 

through Spatial dependence analysis. Specifically, the built-in environment factors 

analyzed in this study covers demographics, employment, density, land use diversity, 

urban design, transit service, destination accessibility, network centrality, and 

influences from neighboring traffic. As of now, this is the most comprehensive study 

on built-in environment factors in terms of the potential predictive power of estimating 

AADT. Through relationship analysis, either linear or non-linear correlation, 12 out of 

87 features are selected as the modeling inputs based on statistical tests. By referencing 

the relationship analysis results, more features can be included after lowering the 

threshold. Results show that all of the 12 selected features play an important role in 

estimating AADT. This is indicated by multiple variable importance measures after 

machine learning models are trained. This part of work provides an informational 

guidance for researchers to select useful features for AADT estimation. Besides, the 

data used for feature selection are two public domain databases, i.e. Smart Location 
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Database and Highway Performance Monitoring System data. Benefiting from the 

nationwide coverage and good structure of these two databases, an extensive and 

widespread application of the method becomes feasible and flexible from small 

geographical units such counties, census tracts, etc. to large study areas such as State 

and national level.  

Modeling through machine learning is the second part of work. Instead of a 

simple application of machine learning algorithms, the trained model is demystified 

from multiple perspectives such as the inner structure after training, the importance 

measures of predictors, the associations between each predictor and AADT, and the 

interactions among input features. First, both ANN and RF, two popularly used 

machine-learning algorithms for prediction, are used for AADT estimation. To increase 

the robustness of artificial neural network modeling, the ensemble theory, a core 

structure of random forest, is applied by building up a group of artificial neural 

networks. Estimation results are more reliable and stable for this assembling structure. 

Final estimation results show that both ANN and RF perform well in terms of accuracy. 

A spatial lag model is built as a benchmark model. Significant improvements in all five 

accuracy measures including MSE, RSQ, RMSE, MAE, and MAPE can be seen when 

ANN and RF are compared with the spatial lag model. For example, RF shows a 57% 

decrease of MAPE and ANN shows a 28% decrease of MAE in comparison with the 

benchmark model. Additionally, RF performs better than ANN in all accuracy 

measures. Second, the mysterious mask of machine learning algorithms, usually named 

as black box algorithms is unveiled largely. How input features interact with AADT 

are analyzed through partial dependence plots. Not only the positive or negative 
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correlation are depicted but also the sensitivity of each input feature to AADT is 

presented. This enhances the understanding of how predictors act on the AADT. 

Besides, how the neurons transfer or interplay with each other in the layers of neural 

network and the importance rank of input features are visualized. Both the strength of 

interaction and sign (i.e. positive or negative) along the links between neurons are 

clearly presented as well. For random forest modeling, multiple variable importance 

measures are utilized, including the percentage increase in MSE upon permuting a 

given feature, number of root nodes that the given feature splits, and mean minimal 

depth. All selected predictors show their importance from different aspects. To further 

uncover the interactions among the features, conditional mean minimal depth is 

analyzed for each predictor, which shows that some features depend on the presence of 

other features to make a difference. It is implied that feature selection should also value 

the combinations of some features. 
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