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Construct shift is a term used to describe the change of tests in the construct they 

intend to measure. In tests across multiple grades where curriculum change occurs, 

construct shift is expected to exist. This presents a problem to many VAM models that 

assume scores across multiple grades are on a common developmental scale, since these 

scores cannot be placed on the same scale through vertical scaling. There are three 

methods currently available to deal with construct shift: the CU method ignores construct 

shift, carry out the vertical scaling process with a unidimensional IRT model, and directly 

use the vertically scaled scores in specific VAM models that require vertical scaling; the 

CB method models construct shift, carry out the vertical scaling process with a bifactor 

model and use the scores on the general factor in specific VAM models that require



 
 

vertical scaling; the SU method does not use vertical scaling but directly applies the 

scores at each grade in the generalized persistence (GP) model. A simulation study was 

conducted to compare the impacts of construct shift upon teacher rank ordering 

estimation with those three methods.  

Results suggest that the performances of all three methods are subject to the 

influence of magnitude of construct shift and choice of teacher effect persistence pattern. 

The CB and the CU methods perform similarly, while the SU method is superior to them 

in most simulation conditions. Only with large magnitude of construct shift is the CB 

method slightly better than the SU method in terms of the last year’s teacher effect 

estimation. The CB method performs better than the CU method with large magnitude of 

construct shift, while they perform similarly with small or medium magnitude of 

construct shift. It is concluded that the SU method performs the best among those three 

methods and is recommend for use in practice. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 The 2002 No Child Left Behind (NCLB) Act, which “marks decisive shift away 

from evaluating districts and schools on the basis of inputs to judging them on the basis 

of outcomes” (Braun & Wainer, 2007), stipulates that all students in grades 3-8 and one 

high school grade be tested in reading and mathematics by 2006 and in science by 2008. 

As a result, testing of students in k-12 setting with standardized assessment has grown 

rapidly during the past decade. States and districts have been actively expanding their 

testing program and data system, which usually includes student achievement data across 

multiple years and linkages between students and teachers. In 2009, the Obama 

administration announced the Race to the Top Assessment Program to fund states’ 

development of valid and informative assessments to ensure that students gain the 

knowledge and skills needed for college and workplace readiness. It is anticipated that 

statewide testing programs and the corresponding data system will continue to grow.  

 While such longitudinal data can be used to track students’ growth, the linkage 

between the teacher and the students makes the evaluation of educational effectiveness of 

teachers and schools possible. Value-added modeling (VAM), a family of statistical 

models that use students’ scores as the outcome variable and estimate the contribution of 

teachers or schools to learning, is a popular approach that is gaining momentum recently. 

It is believed that VAM provides a fair comparison of teachers or schools with proper 

control of the effects due to the demographic and other relevant covariates of their 

students, thus it is superior to other approaches that only consider the proportion of 
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students reaching adequate yearly progress (AYP) at one time point while ignoring the 

cohort differences. Consequently, VAM finds applications in teacher and school 

evaluation: it has been explored to determine teacher pay and bonuses (Lissitz, 2005; 

McCaffrey, Lockwood, Koretz, & Hamilton, 2003; Sanders, Saxton, & Horn, 1997), 

support school decisions (Fitz-Gibbon, 1997), and even to certify and promote teachers 

(Gordon, Kane, & Staiger, 2006). 

1.2 Current State of VAM Research 

 A VAM can be written as a mathematical equation where the left side is students’ 

test score and the right side describes how the test score can be discomposed into 

different parts such as teacher effect, random error, and relevant covariates such as 

background and prior scores. Despite a large number of studies on the applications of 

VAM in school and teacher evaluation, most VAM studies focus on the right side of the 

equation while the left side receives little attention. As nicely summarized by Briggs and 

Weeks (2009), those studies focusing on the right side of the equation fall into four main 

categories: whether teacher effect parameters persist undiminished (McCaffrey et al. 

2004); whether covariates at student, teacher, or school level should be included (Ballou, 

Sanders, and Wright 2004); whether teacher effect estimates should be treated as fixed or 

random (Harris 2008); whether causal inference can be made in regards to teacher effect 

estimates (Rubin, Stuart, and Zanutto 2004; Raudenbush 2004).  

No doubt the right side of the VAM equation is of vital importance if VAM is 

expected to produce valid estimates of teacher or school effects. However, no matter how 

statistically sound the right side is, VAM can only be as good as the test scores used as 
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the outcome variables in VAM. Koretz (2008) stated that the utility of the teacher effect 

estimates out of VAMs depends on the left side - the test score quality.  

The test scores currently used in the VAM studies are usually scale scores, which 

are transformations of the scores based on certain measurement models (CTT or IRT). 

There are potentially two main issues with the test scores. One is the measurement error, 

which, regardless of the measurement models, is relevant to all VAMs. The other issue is 

related to the common scale built based on vertical scaling, a psychometric procedure 

which puts the scores across grades on the same developmental scale. There are two 

concerns associated with vertical scaling in the VAM context. The first one is that when 

the assumptions of vertical scaling are satisfied, the teacher effect estimates may still vary 

depending on the vertical scaling method. McCaffrey et al. (2003) suspected that VAM 

estimates might be sensitive to different vertical scaling methods. Briggs et al. (2008) 

showed empirically that such a concern was not unwarranted. The other concern is when 

vertical scaling is used across multiple grades, the assumptions of unidimensionality and 

construct invariance are likely to be violated. The violation of construct invariance is 

especially troubling since the basic idea of VAM is to compute teacher effect based on 

student growth across grades on a common scale, which should remain constant in order 

to have a meaningful discussion about growth and change. Numerous researchers have 

expressed concerns over the potential threats that a changing measure can pose to validity 

(Bereiter, 1963; Lord, 1963; Angoff, 1971; Bergman, Eklund, & Magnusson, 1991; 

Williamson, Appelbaum, & Epanchin, 1991; Willett, 1997; Bryk, Thum, Easton, & 

Luppescu, 1998; Linn, 2001; Thum, 2012). In the context of VAM, tests at different 

grades are the measures used to quantify student growth, which are used to evaluate 
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teacher effect. If the tests themselves across grades do not measure the same latent 

construct and construct equivalence is not achieved, it seems reasonable to question the 

validity and accuracy of VAM estimates. 

 Construct shift, a term synonymous with the violation of construct invariance, is 

often used to describe the change of tests in the construct they intend to measure. In tests 

commonly used in the K-12 setting, construct shift may be a common phenomenon. 

Some states, such as Pennsylvania, use criterion-referenced tests that are not designed to 

construct a common developmental scale across grades. Essentially, the tests are not 

linked and the tests of higher grades may have very limited overlap with those of lower 

grades in terms of content coverage. When content coverage differs across adjacent 

grades, it seems reasonable to suspect that such tests are affected by construct shift. 

 Even for tests that are designed to be linked to construct a common 

developmental scale, it is still hard to believe that construct remains equivalent across 

multiple grades (Hamilton, McCaffrey, & Koretz, 2006; Reckase, 2004; Schmidt, 

Houang, & McKnight, 2005). Schmidt et al. (2005) demonstrated the high likelihood of 

construct shift along a vertical scale using the following figure:  
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Figure 1.1 Illustration of Math Curriculum Change across Multiple Grades 

 

The first noticeable observation about the above figure is that although math 

might be the single umbrella term to describe what the tests intend to measure, it does not 

necessarily suggest unidimensionality and actually consists of different subcontent 

domains: numbers, measurement, geometry, algebra, and data across different grades.  In 

other words, math becomes a composite of different content strands, which may represent 

different constructs that require different cognitive processes. For this reason, math might 

be perceived as multidimensional. Another observation is that from grades 2 through 8, 

the proportion of different content strands change and there is a major shift in terms of 

content coverage. Schmidt et al. (2005) drew the conclusion that “math is not math”. In 

other words, math taught at different grades does not contain the same content areas and 

the content coverage differs as well. This can be well illustrated with the comparison of 

grade 2 and grade 8 in the above figure: the grade 2 math is composed of data, geometry, 

measurement, and numbers, while the grade 8 math replaces measurement with algebra. 
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Such a shift in content coverage is likely to cause construct shift, This example might be 

considered as a typical scenario of construct shift due to changes in content coverage 

where some old content (measurement) is dropped out and new content (algebra) is added 

in the math curriculum, although it should be noted that construct shift may also occur 

only due to changes in the coverage proportion of different content areas across different 

grades though the content areas remain the same.   

 Depending on the subject area, the magnitude of construct shift seems to vary. 

Skaggs and Lisstz (1988) suggested that reading tests seemed to be more unidimendional 

across grades and the assumption of construct invariance may reasonably hold. Wang and 

Jiao (2009) found evidence for the construct invariance across grades of a reading test in 

a K-12 setting. Reckase and Martineau (2004) suggested that for science tests the 

assumption of construct invariance across grades is more likely to be violated due to the 

drastic shift of content. It should be noted that in real settings, the assumption of 

construct invariance might be violated to varying degrees, depending on the subject area 

and the number of grade levels involved.  

If multidimensionality occurs without construct shift, which means the content 

mix of the tested subject remains the same, unidimensional vertical scaling is not an 

option.  Wang (1986) showed that when unidimensional IRT models were applied to test 

items that were multidimensional, the result was the linear composite of those dimensions 

in the data. Reckase (2004) warned that “projecting the complex data onto a line results 

in the loss of information and when that linear scale is extended over many grade levels, 

the loss of information might be extensive.” Literature provides some guidance on how to 

conduct multidimensional vertical scaling when the assumption of construct invariance 
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holds (Beguin & Hanson, 2001; Beguin, Hanson, & Glas, 2000; Patz & Yao, 2007; 

Simon, 2008).   

When multidimensionality is combined with construct shift, those 

multidimensional vertical scaling methods are not applicable because they assume 

construct invariance. This presents a challenge to the use of VAM since many VAM 

models require that test scores are vertically scaled, and lack of available vertical scaling 

methods in the case of construct shift leaves researchers with two options: one is to 

ignore construct shift and proceed assuming that construct shift should not be a problem; 

the other is to develop some statistical procedures to address construct shift accordingly. 

Martineau (2006) found that when construct shift is ignored in VAM, teacher estimates 

may be severely biased. Therefore, the first option is not acceptable. 

In terms of the second option, there have been some methodological advances 

more recently. Mariano et al. (2010) realized that in previous persistence VAM models, 

the assumption that a teacher’s effect in the current year should correlate perfectly with 

the effect in the later years is overly restrictive in the case of construct shift. To address 

this problem, they developed a “generalized persistence” (GP) model that relaxes this 

overly restrictive assumption of perfect correlation and stated that the GP model does not 

assume vertical scaling and deals with the issue of construct shift. If the GP model is 

shown to be superior or similar to other VAM models that require vertical scaling in 

terms of teacher effect estimation, it is certainly attractive since all the pitfalls inherent 

with vertical scaling upon which the practitioners and researchers might stumble can be 

circumvented without sacrificing the model performance. To show this, however, a 

comparison between the GP model and other VAM models that require vertical scaling 
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has to be conducted. Mariano et al. (2010) directly generated scale scores and imperfectly 

correlated teacher values to simulation the scenario of construct shift. Without the item 

level data it is simply impossible to carry out vertical scaling and make such a 

comparison.  

 While Mariano et al.’s study focused on the modeling issue in the VAM 

framework, Li (2012) used the bifactor model to simulate a scenario of construct shift at 

the item level and proposed a full-information bifactor model used in the vertical scaling 

process to investigate the recovery of the bifactor model parameters. Comparing to the 

conventional MIRT models, the bifactor model seems to be a convenient and innovative 

framework to model growth in the context of construct shift. With the conventional 

MIRT models, there are a series of difficult questions remaining to be answered when 

conceptualizing growth with latent dimensions dropping out or entering the latent 

constructs across grades: If a latent dimension drops out, should it be modeled as part of 

the growth? If yes, what should its value be in the next grade? If a latent dimension enters 

due to the introduction of new content area, how should it be modeled? Should its value 

at previous years be set at zero or negative infinity? Li circumvented those difficult 

questions by proposing a bifactor model framework in which growth only occurs on the 

general dimension and all the grade-specific dimensions are irrelevant in regards to 

growth. Although it may seem unrealistic to assume that growth only occurs on the 

general dimension but not on the grade-specific dimensions, the bifactor model at least 

offers a convenient framework to model growth in the context of multidimensionality and 

construct shift. Li showed that compared to the conventional method of fitting a 

unidimensional IRT model and thus ignoring construct shift, the bifactor model method 
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recovers the item parameters and person parameters more accurately. However, she 

limited her study in the IRT framework and did not apply her proposed method in the 

VAM context.  

 

1.3 Statement of the Problem 

 Many testing programs use IRT as the measurement model and consequently test 

scores used in VAMs are predominantly IRT scale scores. However, there seems to be a 

disconnection in the literature between studies focusing on IRT and those on VAM. On 

the IRT side, despite the advances in multidimensional vertical scaling methodology, 

seldom are those methods applied in the VAM context to investigate their impacts upon 

teacher effect estimation. On the VAM side, despite the abundance of IRT models and 

relevant literature, VAM researchers tend to directly generate the scale score at the test 

level, ignoring that in practice the scale score comes from the item level response data, 

which are usually assumed to follow a specific IRT model. This practice presents a 

challenge to investigate the effect of the psychometric properties of test scores upon the 

parameter estimates in VAM since many psychometric issues are investigated at the item 

level by utilizing the item level data. 

With the bifactor model as the true measurement model driving the item level 

responses, this study combines the IRT framework and the VAM in a simulation to 

investigate how different methods impact the teacher effect estimates in VAM when 

faced with construct shift. Specifically, it compares the performance of the relatively new 

GP model with the other VAM models that require vertical scaling in scenarios where 
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construct shift occurs. In addition, the GP model is applied in an empirical data set to 

evaluate its performance.   
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CHAPTER 2: LITERATURE REVIEW 
 

 This chapter is organized as follows: the first section reviews the definition of 

teacher effect in VAM and the current VAM models with a focus on the persistence 

models and ends with a discussion of challenges and issues facing VAM researchers. The 

second section reviews the current IRT vertical scaling methodologies with an emphasis 

on the bifactor model method. The last section summarizes the gap in current literature. 

 

2.1 VAM and Teacher Effect 

2.1.1 Definition of Teacher Effect 

 In VAM, the estimate of teacher effect is a measure of a teacher’s contribution to 

student growth and learning. The contribution is often referred as a causal effect in the 

sense that the contribution made by the teacher causes the growth of the students. 

McCaffrey et al. (2004) defined teacher effect in this way: “Conceptually, the teacher 

effect on a student is defined as the difference between the student’s achievement after 

being in the teacher’s class compared with his/her achievement in another plausible 

setting, such as with a teacher of average effectiveness.” They also suggested that in 

order to make inferences about such a causal effect, the following issues have to be 

clarified. 

 The first issue is the definition of a plausible alternative with which a student’s 

growth with the current teacher is compared. If other teachers are the plausible alternative, 

are they in the same school, in the same district, in the same state? Or should they include 

all teachers teaching similar students? Do we consider a particular teacher or the average 
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of them? In current practices teacher effects are often estimated at the district level, 

which means the plausible alternative is the average teacher in the district level. 

 Which students should be considered? This is the second relevant question when 

defining teacher effect. Due to the probable existence of teacher student interaction, 

teacher effects are likely to be non-constant across students. If so, which effects should be 

considered? If an average of effects is to be considered, which population of students 

should be averaged?  Answers to those questions affect the definition of teacher effect. 

 Another issue meriting consideration is the confounding of teacher effect and the 

indirect effect of school or school district that affect students through teachers. Meyer 

(1997) suggested that it is impossible to isolate the teacher effect from such indirect 

effects. Whether agreeing with him or not, when one defines teacher effect, an explicit 

definition is needed in this regard. 

 The last issue is the possibility that teacher effects vary across time. There is 

empirical evidence that teacher effects change due to increment of teaching experience, 

change of class sizes, and other external factors (Shkolniket al., 2002; Rivkin, Hanushek, 

and Kain, 2000; Kane & Staiger, 2001). Without a constant single teacher effect, it 

should be explicitly stated in regards to the teacher effect, may it be the current year 

effect, the average effect of recent years, or the trend in the effect.  

  

2.1.2 Main VAM Models 

 McCaffrey et al. (2003) classified the main VAM models into the following 

categories: covariate adjustment models, gain score models, and multivariate models.  
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2.1.2.1 Covariate Adjustment Models 

 One unique characteristic of the covariate adjustment models (Diggle, Liang, & 

Zeger, 1996; Meyer, 1997; Rowan, Correnti, & Miller, 2002) is that test scores appear on 

the right side of equation.  Specifically, prior scores are used as predictors, along with 

other covariates, to predict the current score. The mathematical equation of covariate 

adjustment models, as used by Rowan et al. (2002), is as follows: 

                      
                          (1) 

In this equation,      and       are student i’s test scores at grade g and grade g-1;    is 

the grade-specific mean;    and     are the time invariant and time varying covariates 

from student I, with    and    
  being the corresponding vector of coefficients of those 

covariates;    is the teacher’s effect upon student i’s score at grade g, which is above and 

beyond   , and it can be either fixed or random in a normal distribution;     is the 

residual error term. Both     (when considered as a random effect) and     are assumed to 

be i.i.d normal random variables with a mean of 0. While this model is often used with 

two years of data, when there are more than two years of data there is an important 

assumption: the residual errors across years are independent. McCaffrey et al. (2003) 

stated that “If the model is extended to allow for correlation among the residual errors 

across years, then standard mixed model estimation would yield biased estimates of fixed 

effects because of the correlation between the covariate and the residual error term.” 

 One of the main advantages of the covariate adjustment model is its intuitiveness 

and easy applicability. Another main advantage is that it does not require vertical scaling. 

Green (2010) concludes that “this is particularly beneficial for school systems using a 

mixture of norm-referenced and/or criterion-referenced tests, where reported student 
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scores from the two types of instruments reflect different measurements: either relative 

academic performance or proficiency on predetermined criteria, respectively.” Its main 

disadvantage is that this model, by only including the test score of the previous year in 

the equation, fails to take into consideration students test scores in prior years. Another 

disadvantage is its stringent requirement of data completeness: only students with 

complete record can be used for model estimation. 

 

2.1.2.2 Gain Score Models 

 Gain score models can be seen as a special case of covariate adjustment models 

when the scores have been vertically scaled and thus put on the same development scale 

(Rowan et al., 2002; Shkolnik, Hikawa, Suttorp, Lockwood, Stecher, & Bohrnstedt, 

2002). Its mathematical equation is as follows: 

                         
                               (2) 

It is quite straightforward why this model is a special case of the previous one: By 

setting  , the coefficient of       in the covariate adjustment model, to be 1 and moving 

      from the right side to the left side of the equation, the gain score model is derived. 

All the model assumptions remain the same. 

 It should be worth reiterating that while gain score models seem to be the product 

of a simple mathematical manipulation of the covariate adjustment model, it has a much 

more stringent requirement in terms of the psychometric properties of the test scores. 

Since only the difference of two scores on the same scale makes sense, vertical scaling is 

a necessity in this model, which, as will be reviewed in the second part of the literature, 

may bring unintended consequences. 
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2.1.2.3 Multivariate Models 

 A main feature that distinguishes the multivariate models from the previous two 

models is the simultaneous modeling of all student scores. While computationally 

intensive, multivariate models provide much flexibility such as omission of covariates, 

ability to utilize records with missing data, consideration of the persistence of teacher 

effect. There are mainly three kinds of multivariate models: cross-classified models, 

layered model, and persistence models. 

2.1.2.3.1 Cross-Classified Models  

 Cross-classified models are developed by Raudenbush and Bryk (2002) to model 

cross-grade correlations and the impact of persisting teacher effects on test scores. The 

mathematic equation is as follows: 

 

                    

                                

                                         

                                                

 In those equations,    ,    ,    , and     are scores for student i in grades 0 to 3. 

Grade 0 here represents the base time point for the growth model, where   is equal to 0. 

The  s are the residual errors that are assumed to be i.i.d. normally distributed with mean 

of 0. The  s are the teacher effect that is also assumed to be normally distributed with a 

constant variance across grades. A linear trend                  is used to 

model student growth, and similar to hierarchical models, the random intercepts    and 

slopes    are assumed to be normally distributed with mean of 0 and variance and 
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covariance terms. It should be noted that in cross-classified models, student scores are 

decomposed into two parts: the linear growth of students and the teacher effects, and the 

teacher effects persist undiminished into the future years. Take grade 2 as an example,  

    (             )  (  
       

           )      

where the terms in the parenthesis model student i’s linear growth, and those in the 

second parenthesis is the accumulated teacher effect from grade 0, grade 1, and grade 2. 

 

2.1.2.3.2 Layered Model 

 Sanders et al. (1997) developed the Tennessee Value-Added Assessment System 

(TVAAS) model to estimate teacher effects. It is also known as layered model “because 

the model for later years adds layers to the model for earlier years” (McCaffrey, et al., 

2004). Its mathematic equations for grade 0 to 3 are as follows: 

                  

                         

                                

                                       

 In those equations,    is the grade-specific mean, while    ,   , and     remain 

the same as in the cross-classified models. Similar to the cross-classified models, the  s 

are assumed to be normally distributed and independent across students, and the  s are 

assumed to be normally distributed and independent. The variance-covariance matrix of 

the  s is unrestricted, while across students the variance-covariance parameters are 

constrained to be the same. In addition, the variances of teacher effects in the layered 

model are allowed to vary across grades. The main difference between the layered model 
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and the cross-classified model is that instead of using a linear growth model to represent 

grade difference, the layered models use the grade specific mean   ; therefore, the 

student i’s score can be decomposed into the grade specific mean and the accumulated 

teacher effects, which is also assumed to persist undiminished into future years. 

 It should be noted that the above equations are limited to the scenario of a single 

subject and cohort of students from one system, and they can be extended to model 

multiple subject and cohorts of students from multiple systems.  

 

2.1.2.3.3 Persistence Models 

 McCaffrey et al. (2004) summarized the relations among the aforementioned 

models and the persistence models. Specifically, they showed that if restrictions are 

applied to the overall time trend and/or the distribution of residual errors, the gain score 

models and the cross-classified models become special cases of the layered model. With 

restrictions imposed upon the persistence parameter and without covariates, the layered 

model becomes a special case of the persistence model. The covariate adjustment models 

and the gain score models can both be viewed as special cases of the persistence model 

with restrictions on the distribution of residual errors and the persistence parameters. This 

section review starts with the “Generalized Persistence” (GP) model (Mariano et al., 

2010), the most general persistence model, then reviews other persistence models and 

shows that they are all special cases of the GP model. 
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2.1.2.3.3.1 GP Model  

 In GP models, student scores are calculated based on the sum of teacher effects 

across years. Since different students may change teachers every year and have different 

membership in multiple group units, GP models are also referred to as “multiple 

membership” models (Browne, Goldstein, &Rasbash, 2001; Rasbash & Browne, 2001). 

Assuming a single cohort of students and a single subject, the mathematical equation of 

the GP model is as follows: 

       ∑                . 

 In this equation,     is the test score of student i in year t,    is the year-specific 

mean, and    is the residual error.     is a vector of teacher effects at year t, and      is the 

persistence parameter which is equal to 1 when      , and between the range of 0 to 1 

when     . Here it is assumed that each student has only one teacher each year for the 

sake of simplicity. 

 The residual error terms     =(         ) are assumed to be normally distributed 

random variables, independent across students. They have a mean of 0 and an 

unstructured covariance matrix ∑: 

      (  ∑). 

 For each grade t, the current and future effects of the teachers teaching grade t 

with a Kt  - dimensional multivariate normal distribution with mean vector 0 and 

unstructured covariance matrix Γt: 

       (    ). 
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 It is assumed that the vectors of teachers’ effects are independent across both 

teachers at the same grade and teachers at different grades. Moreover, they are 

independent of the residual errors. 

 The primary innovation of the GP model is its relaxation of the assumption that 

the current and future effects of a teacher are perfectly correlated. All the previous 

persistence models, including the “complete persistence” (CP) model (Raudenbush & 

Bryk, 2002; Sanders et al., 1997; Harris & Sass, 2006) and the “variable persistence” (VP) 

model (McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004; Lockwood, McCaffrey, 

Mariano, & Setodji, 2007), assume a perfect correlation between the current and future 

effects of a teacher. When construct shift occurs across grades, which means that the tests 

of different grades are measuring different constructs, this assumption seems overly 

restrictive and unrealistic, since the current effect of a teacher on a construct in grade g  

cannot be perfectly correlated to the future effect of him or her on a different construct. 

Realizing the restrictiveness of the assumption of perfect correlation, Mariano et al. 

allowed in the GP model the current and future effects of teachers to have an arbitrary 

covariance structure that is estimated from the data, and they claim that the GP model “is 

flexible enough to accommodate both teacher effect decay and scale changes, including 

content shift, across tests from different grades”. However, they did not use simulations 

to empirically compare the GP model with other persistence models when construct shift 

occurs. 

 The GP model can be extended to include time invariant and time varying student 

background variables    : 

              ∑        
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2.1.2.3.3.2 ZP Model, CP Model, and VP Model 

 The ZP model, CP model, and VP model have the same mathematical equation as 

the GP model. The “zero persistence” (ZP) model is a special case of the GP model in the 

sense that             . In other words, the teacher effect does not persist into future 

years. The CP model is another special case of the GP model since it constrains 

            ., which means the teacher effect persists undiminished into future years. 

In the VP model,              , which means that a teacher’s future effects are 

simple rescaling of the proximal year effect. Therefore, the VP model is also a special 

case of the GP model. 

 The fact that the GP model is a generalized case of the ZP model, the CP model, 

and the VP model can also be shown through the different assumptions about the 

covariance matrix   , which can be decomposed as 

     
   

    
   

. 

In this equation,   
   

is a nonnegative diagonal matrix of the variances of grade t teacher 

effects in each outcome year t ≥ t* and Ct is the nonnegative definite correlation matrix of 

those effects. 

 The GP model places no constraints on both the    and   , which means that the 

variance of the teacher effects are allowed to vary and the correlation set to be arbitrary. 

For the ZP model, the CP model, and the VP model,    is constrained to be J, a matrix of 

all 1s indicating the perfect correlation. These three models are different from each other 

in the sense that the ZP model constrains   to be only one parameter – the variance of the 

proximal teacher effect due to no teacher effect persistence, the CP model constrains the 
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diagonal parameter of    to be the same, and in the VP model the diagonal parameters of 

   are just the product of the square of the persistence parameter and the teacher effect in 

the preceding year. 

 

2.1.2.3.3.3 Estimation of Persistence Models 

 Following Lockwood, McCaffrey, Mariano, and Setodji (2007), Mariano et al. 

(2010) also adopted the Bayesain framework (Carlin & Louis, 2000; Gelman, Carlin, 

Stern, & Rubin, 1995; Gilks, Richardson, & Spiegelhalter, 1996) for the estimation of 

teacher effects in the GP model and implemented it using WinBUGS (Lunn, Thomas, 

Best, & Spiegelhalter, 2000). Specifically, they used independent, minimally informative, 

natural semiconjugate (Gelman et al., 1995) priors of low precision normal distributions 

for each   , the grade specific mean parameter and a Wishart distribution for ∑   with 

T+1 degrees of freedom. For each g, other than assuming that   
  

 is distributed Wishart, 

they showed that using Wishart as the prior for     with t+1 degrees of freedom is 

superior since when the variances of the proximal teacher effect and the future teacher 

effects differ considerably, the correlation parameters are quite sensitive to even the 

minimally informative Wishart priors for   
  

. With the choice of the above priors for the 

unknown parameters, they successfully estimated the GP model using Markov chain 

Monte Carlo (MCMC) methods in WinBUGS. 

 Karl, Yang, and Lohr (2012) tackled the estimation issue of multiple membership 

linear mixed models such as the GP model using the frequentist approach. Specifically, 

they developed a method to compute maximum likelihood estimates with an EM 

algorithm. This method takes advantage of matrix sparcity and only inverts a matrix with 
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dimensions depending on the number of random effects other than on the total number of 

observations. Comparing to the Bayesian estimation framework, this estimation method 

produces standard errors that will not be influenced by the choice of priors. They 

implement this estimation method in the R (R Development Core Team, 2012) package 

GPvam (Karl et al., 2012).  

 

2.1.2.4 Challenges Facing VAM Researchers 

2.1.2.4.1 Non-random Assignment of Students 

 Under experimental conditions, teacher effect estimation is a much simpler 

problem since with random assignment of students, the confounding variables are 

randomly distributed across class and therefore teachers are fairly treated regardless of 

the classes they teach.  

 In reality, students are not randomly assigned to different classes. For example, 

Goldhaber and Anthony (2004) found that successful teachers tend to be able to select 

their students. If students are sorted based on their prior academic performance, students 

with similar abilities tend to be in the same class. This non-random assignment of 

students causes the student performance to be correlated with classrooms, and it is not 

easy for the current VAM models to separate compositional effects due to students 

clustering from teacher effects (Murphy, 2012). Rothstein (2009) shows that when 

students are systematically sorted into classes, the higher test scores cannot be easily 

attributed to either the teacher effects or the student characteristics. There is belief among 

the VAM critics that this issue of non-random assignment might not be compensated by 

the current statistical models, even with prior scores included as the covariates.  
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2.1.2.4.2 Correct Model Specification 

  While it is agreed that no model is correct, the bulk of VAM literature investigate 

the issue of correct model specification. As nicely summarized by Briggs and Weeks 

(2009), most VAM studies fall into the following categories:  

1) Should teacher effect parameters be specified such that they persist over time, 

or should they be allowed to decay (McCaffrey et al. 2004)?  

2) Should student, teacher, or school covariates be included (Ballou, Sanders, and 

Wright 2004)?  

3) Should value-added effects be modeled as fixed or random (Harris 2008)?  

4) Can value-added estimates be given a causal interpretation (Rubin, Stuart, and 

Zanutto 2004; Raudenbush 2004)?” 

While the fourth point seems to be related to the issue of non-random assignment, the 

other three points are all relevant to the issues of correct model specification. Several 

studies (Briggs & Domingue, 2011; McCaffrey et al., 2004; Tekwe et al., 2004) show 

that different model specifications lead to different teacher effect estimates. Another even 

thornier issue related to model specification is the inadvertent omission of causative 

variables, which may cause biased estimates (Hibpshman, 2004). Although McCaffrey et 

al. (2003) note that if the VAM models are reasonably robust to the omission of variables, 

as long as they are randomly distributed. This precondition, however, is not realistic 

considering the non-random assignment of students. This is an even bigger problem 

because “determining whether causative variables are omitted in practice is impossible” 

(Murphy, 2012). 
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2.1.2.5 Use of VAM in Policy and Practice 

 Due to the aforementioned challenges facing VAM, it is not recommended to be 

used for high – stake decisions, although there is no evidence that VAM would be more 

detrimental than the currently employed methods for accountability purposes (McCaffrey 

et al., 2003). For low-stake and diagnostic purposes, VAM are useful in the sense that it 

may help identify the most and the least effect teachers, which can be used by 

administrators as starting points for thorough review. When the stakes increased, VAM 

should not be used alone to make inferences; instead, it should be used as one of the 

multiple indicators to inform decision makers. Nevertheless, in stake-attached settings 

VAM should be used in an extremely cautious manner. McCaffrey et al. (2003) 

suggested that sensitivity analyses should be conducted to investigate the effect upon 

students, teachers, and schools. 

  

2.2 IRT Vertical Scaling 

Kolen and Brennan (2004) provide the following definition of vertical scaling: 

To measure student growth, performance on each of the test level is related 

to a single score scale. The process used for associating performance on each test 

level to a single score scale is vertical scaling and the resulting scale is a 

developmental score scale. 

 This definition can be further elaborated as follows. First, it explicitly states that 

the purpose of vertical scaling is to measure student growth, although they did not define 

the seemingly vague term “growth”. Second, the product of vertical scaling is a 
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developmental score scale called vertical scale, which is assumed to exist. Similarly, 

Lissitz and Huynh (2003) define vertical scale as “a single (unidimensional) scale that 

summarizes the achievement of students”.  

 Despite the seemingly simple definition, vertical scaling is complicated. As stated 

by Kolen and Brennan (2004), “…vertical scaling is a very complex process that is 

affected by many factors. These factors likely interact with one another to produce 

characteristics of a particular scale. The research record provides little guidance as to 

what methods and procedures work best for vertical scaling.” What is worse is that 

“research does not provide a definitive answer concerning the characteristics of growth 

on educational tests.” 

 While there are traditional and IRT vertical scaling methods, this review mainly 

focuses on the latter. IRT is a commonly used framework in today’s large-scale testing 

and also the measurement model used in this study. The main factors that affect IRT 

vertical scaling usually include vertical scaling designs, choice of IRT models, different 

calibration methods, and different scoring methods. 

 

2.2.1 Vertical Scaling Designs 

 According to Kolen and Brennan (2004), there are three basic data collection 

designs in vertical scaling: common item design, equivalent groups design, and scaling 

test design. In the common item design, examinees of different grades are administered 

the test forms of a corresponding level. Since different groups of examinees are from 

different grades and considered non-equivalent, a common set of items to the two 
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adjacent grades, are placed on the same positions of different forms and presented to 

examinees of two adjacent grades. Those common items are later used to link those two 

forms based on the common-item linking procedure (Kolen & Brennan, 2004). In the 

equivalent groups design, test forms corresponding to the grade or one level below are 

randomly assigned to examinees. Since those groups of examinees are considered 

equivalent, different forms can be linked through the random equating design. In the 

scaling test design, a test covering the content across all of the grade levels is 

administered to students of all grades, who also take the test corresponding to their own 

level. The scaling test is used to link different test forms of each grade level. 

 

2.2.2 Choice of an IRT Model 

2.2.2.1 Unidimensional IRT Model 

 In a two-parameter logistic (2PL) UIRT model, the probability of answering a 

dichotomous item is 

 (    |        )  
 

        (  (     )) 
 

where    is examinee j’s latent ability,    is the discrimination parameter of item i, and     

is the difficulty parameter of item i. If    is constrained to be equal across items, the 2PL 

UIRT model becomes a 1PL UIRT model. If a guessing parameter is incorporated into 

the above equation, the 2PL UIRT model becomes a 3PL UIRT model which has the 

following equation: 
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 (    |        )     
    

        (  (     )) 
 

where    is the guessing parameter of item i and the other terms remain the same as in the 

2PL UIRT model. These UIRT models are unidimensional in the sense that only one 

latent trait is measured. 

2.2.2.2 Multidimensional IRT Model 

 By assuming the existence of a vector of latent abilities, Reckase (1985) extended 

the 2PL UIRT model to a 2PL multidimensional IRT (MIRT) model which models the 

probability of a correct item response as  

 (    |        )  
 

        (                      ) 
 

where    is a vector of latent abilities of examinee j,    is a vector of discrimination 

parameters of item i, and    is a scalar of item i, which can be calculated using the 

following formula: 

      √   
     

       
  

Here    is the difficulty of item i. It should be noted that regardless of the number of 

latent abilities in MIRT models, there is always one difficulty parameter with a 

corresponding number of discrimination parameters.  Another point that should be noted 

is that MIRT models do not constraint the latent abilities to be independent, and the 

correlations among latent abilities are freely estimated. 
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2.2.2.3 Bifactor Model: A Special Case of MIRT Model 

Gibbons and Hedeker (1992) derived a factor model for dichotomous item 

response data based on the work of Holzinger and Swineford (1937).  In the bi-factor 

model the probability of answering a dichotomous item correctly can be modeled as 

 (    |        )  
 

        (              ) 
 

where    is the general ability and      is the discrimination parameter of item i for this 

general ability,    is the grade specific ability and     is the discrimination parameter of 

item i for this grade specific ability,   is a scalar parameter related to the overall item 

difficulty parameter. Orthogonality between the general ability and any grade specific 

ability is assumed. The main computational advantage of the bifactor model is that 

regardless of the overall number of dimensions involved, each item only loads on two 

dimensions, which makes it similar to a two-dimension factor model in terms of the 

computational intensiveness. 

 Based on the above discussion, the bifactor model can be conceptualized as a 

MIRT model which place constraints on the number of latent dimensions each item loads 

on and the relation among the latent dimensions.  

2.2.2.4 IRT Models in Vertical Scaling 

 The validity of IRT related vertical scaling methods is based on the satisfaction of 

respective IRT model assumptions, such as dimensionality, local independence, and 

model fit. The unidimensional IRT model seems to fit nicely in the assumption of vertical 

scaling of the existence of a one-dimension scale, which might explain the dominant 
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choice of unidimensional IRT model in vertical scaling. However, in reality tests are 

often multidimensional, and relatively much fewer studies chose multidimensional IRT 

models (Beguin & Hanson, 2001; Beguin, Hanson, & Glas, 2000; Patz & Yao, 2007; 

Simon, 2008).  Li (2012) proposed to use a bifactor IRT model to deal with construct 

shift that often occurs with the change of content across multiple grades. 

 

2.2.3 Different Calibration Methods 

 Concurrent calibration requires just one computer run to establish a common scale 

and simultaneously estimate parameters for all items at all the grades involved. Separate 

calibration, however, requires one computer run for each grade and links the scales 

produced within each grade through the common items between adjacent grades. 

Common IRT linking method include the Mean-Mean (MM) method (Loyd & Hoover, 

1980), the Mean-Sigma (MS) method (Marco, 1977), the Stocking and Lord test 

characteristic curve method (TCC; Stocking & Lord, 1983). Another calibration method, 

which is a hybrid of the previous two, requires a concurrent calibration between the non-

overlapping adjacent grades first and then uses one of the linking methods employed in 

separate calibration to create the common scale.   

 

2.2.4 Different Scoring Methods 

Scoring refers to estimation of examinee proficiency. A decision has to be made 

concerning whether scoring of examinees’ latent ability is based on number correct 

scoring or pattern scoring. If pattern scoring is used, it has to be decided whether to use 
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maximum likelihood or Bayesian estimation (EAP, MAP). Based on Kolen & Brennan 

(2004), “the decision of how to estimate examinee proficiency can have a significant 

effect on the properties of the resulting scale scores”. 

2.2.5 The Precarious Nature of Vertical Scaling 

Numerous studies using either real data sets or simulations (Harris & Hoover, 1987; 

Holmes, 1982; Loyd & Hoover, 1980; Marco, Petersen, & Stewart, 1983; Slinde & Linn, 

1978, 1979; Kolen, 1981; Marco et al., 1983; Skaggs & Lissitz, 1986a; Sykes & Yen, 

2000; Tong, 2005; Harris, 1991; Tong, 2005; Camilli, Yamamoto, & Wang, 1993; 

Pomplun, Omar, & Custer, 2004; Williams, Pommerich, & Thissen 1998; Chin, Kim, & 

Nering, 2006; Karkee et al., 2003; Karkee, Wang, & Green, 2006; Meng, Kolen, & 

Lohman, 2006; Tong & Kolen, 2006; Yen, 1985; Hendrickson, Cao, Chae, & Li, 2006; 

Kim, Lee, & Kim, 2008) show that different combinations of those aforementioned 

factors, as well as other factors such as choice of software, have impact upon the 

resulting vertical scale.. Kolen and Brennan (2004) list the most influential factors as the 

following: the design for data collection; the complexity (dimensionality) of the subject 

matter area; the curriculum dependence of the subject matter area; test characteristics, 

including average item difficulty and discriminations, and relationships of the item 

characteristics to group proficiency; item types, such as multiple-choice and constructed 

response items; grade levels; nonlinear scale transformation following implementation of 

a scaling method.  

Briggs (2008) further investigated these issues in the value-added model framework. 

His study results show that with different combination of those aforementioned vertical 

scaling procedures, very different conclusions can be drawn concerning estimates of 
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teacher effects and school effects. He concluded his study by saying “…the variability of 

score along a vertical scale is very sensitive to the way the scale has been created. This 

can be problematic when change along the scale is given an absolute or criterion-based 

interpretation. Hence it would seem that state considering the application of growth to 

standard models should be especially cognizant of psychometric decisions being made in 

establishing their vertical scales. These seemingly esoteric decisions appear to have 

potentially substantial impact on students and schools.” However, he only considered the 

unidimensional IRT models. 

 

2.2.6 Vertical Scaling with Multidimensionality 

Li (2012) noticed that there is an unbalance in the literature in terms of 

investigating the violation of the two assumptions of vertical scaling: unidimensionality 

and construct invariance. A bulk of the literature, including the cited studies in the 

previous paragraphs, focuses on the ideal situation when both assumptions are assumed 

to be met. Only a few studies (Beguin & Hanson, 2001; Beguin, Hanson, & Glas, 2000; 

Patz & Yao, 2007; Simon, 2008) investigate vertical scaling methods under the scenario 

of multidensionality and construct invariance, and even fewer studies to investigate 

vertical scaling methods under the scenario of multidmeneisonality and construct shift (Li, 

2012). Specifically, Li uses a bifactor model (Gibbons & Hedeker, 1992) that models the 

general dimension across grades and treats the noise dimension as grade specific to 

model construct shift, and the magnitude of construct shift is represented by the variance 

of the grade specific dimensions. Combined with common item design and concurrent 

calibration, Li explored the use of a bifactor model and compared that to the use of 
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unidimensional IRT model in vertical scaling with different magnitudes of construct shift. 

Under the simulation conditions investigated in her study, she drew the following 

conclusions: 

1. The item parameters of the bifactor model were well recovered, but those of 

the general dimension were recovered better than the grade specific 

dimensions. 

2. With unidimenisonal IRT model, item discrimination parameters were 

overestimated. 

3. The bifactor model recovered the person parameters better. 

4. Group mean estimates for the bifactor model were better. 

 

2.3 Gap in Current Literature and Research Questions 

2.3.1 Gap in Current Literature 

 As mentioned in chapter 1, literature on VAM seems to be lacking in regards to 

the impact of psychometric properties of the test scores upon teacher effect estimates. 

One of the reasons for the lack of attention may be because the current simulation studies 

used in the VAM context usually directly generated the scale scores and applied them in 

different VAMs without taking into consideration that the test scores used to evaluate 

teachers in practice come from the item level response data. Direct generation of the scale 

scores causes the difficulty to create scenarios with different psychometric problems, and 

as a result, the impact of different psychometric issues of the scores upon teacher effect 

estimate in VAM remains untapped. This study intends to fill the gap, combining IRT 
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and VAM in data simulation by generating item level response data with IRT models 

while using VAM to estimate the teacher effect based on the IRT scale scores coming out 

of scoring the item level response data. The main advantage of this combination is since 

the data are generated at the item level, the psychometric properties of the test scores can 

be easily manipulated.  

Before Li’s study (2012), there were no studies that provided advice on how to 

generate item level response data with construct shift, not to mention how to create 

vertically scaled scores when faced with construct shift. Li’s bifactor model vertical 

scaling method (2012) not only provides an innovative vertical scaling method but also 

offers a convenient framework to generate multidimensional data of construct shift. 

However, this method has never been used in the VAM context before and it remains 

unknown how the superiority of Li’s bifactor model vertical scaling method to the 

traditional unidimensional model vertical method is transferred to VAMs and 

consequently impact the teacher effect estimates. 

 The GP model (Mariano et al., 2010) is claimed to be able to circumvent the 

issue of vertical scaling when faced with construct shift by relaxing the assumption of 

perfect correlation of the current and persisting future effects of teachers and hence 

requires no vertical scaling. They simulated the scenario of construct shift by generating a 

set of imperfectly correlated values that represent the proximal and future teacher effects. 

If the GP model can estimate teacher effects accurately, it should be superior to the other 

persistence models requiring vertical scaling due to its the precarious nature.  However, 

they did not use any IRT models to generate data at the item level; therefore, it is 
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impossible to compare the performance of the GP model with other persistence models 

that require vertically scaled scores and hence item level data.  

In addition, they used an empirical data set to empirically show that the relaxation 

of the assumption of perfect correlation is reasonable and the GP model provides the best 

model fit among all persistence models. They also found that the teacher effect estimates 

between the GP model and the VP model were extremely highly correlated. As a result, 

they concluded that for that specific data set they used, choosing the VP model over the 

theoretically superior GP model might not be problematic in terms of the proximal 

teacher effect estimates. However, they stated that “the results here are based on a single 

data set of assessment scores purported to be developmentally scaled. It is important for 

future work to carry out similar investigations with other data sets, particularly those with 

tests that are not on a vertical scale, to understand how generalizable our findings may be.” 

 

2.3.2 Research Questions 

Based on the above summary, this study focuses on evaluation of the GP model 

and intends to answer the following research questions: 

1. Does the GP model provide accurate teacher effect estimates without vertical 

scaling when data is generated from the bifactor IRT model to simulate the 

scenario of construct shift? 

2. Which method performs better: the bifactor model vertical scaling method 

combined with VAM models that assume vertical scaling or the GP model 

that does not assume vertical scaling? 
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3. With tests that are not vertically scaled, are Mariano et al.’s findings 

generalizable? 

4. Does the bifactor model yield a more accurate teacher effect estimate than the 

unidimensional model in the case of construct shift? 

 

These four questions are addressed in the following chapters. Chapter 3 describes 

the simulation designed to answer question 1, question 2, and question 4, and chapter 4 

presents the results of the simulation study. Chapter 5 focuses on question 3, fitting the 

GP model in an empirical dataset where scores are not vertically scaled. This dissertation 

ends with a discussion of the main findings and the suggestions for future research. 

 

 

 

 

 

 

 

 

 



 

36 
 

CHAPTER 3: METHODOLOGY 

 Chapter II reviewed the background relevant to the current study, the objectives 

of which were to investigate the performance of the GP model with test scores of 

construct shift, the performance of the bifactor model vertical scaling method in the 

VAM context, and to compare both to the current method of ignoring the construct shift 

and using the unidimensional vertical scaling method, which served as the baseline model. 

To meet these research objectives, a simulation study was designed to answer three of the 

four research questions listed at the end of chapter II: 

1) Does the GP model provide accurate teacher effect estimate without vertical 

scaling when data are generated from the bifactor IRT model to simulate the 

scenario of construct shift? 

2) Which method performs better: the bifactor model vertical scaling method 

combined with VAM models that assume vertical scaling or the GP model that 

does not assume vertical scaling? 

4) Does the bifactor model vertical scaling method yield more accurate teacher 

effect estimate than the unidimensional model vertical scaling method in the case 

of construct shift? 

Part I of this chapter provides a description of the simulation study used to answer the 

above questions, and Part II describes the empirical data set that is used to answer the 

third research question listed in chapter 2: 

3) With tests that are not vertically scaled, are Mariano et al.’s findings 

generalizable? 
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3.1 Fixed Factors of the Simulation Study 

 There are six fixed factors in this simulation study: sample size, generating IRT 

model, common item design, test length, number of common items and concurrent 

calibration.  

 Sample size is fixed at 1,000. In VAM simulation studies, the class size is often 

set at 25. Assuming there are 40 classes in a school district, the sample size is therefore 

40*25=1,000. It is also assumed that there are 40 comparable teachers, each teaching one 

of the classes. 

 The bifactor model is the measurement model used to generate the item level data. 

As mentioned in the previous chapters, it is a convenient framework to simulate construct 

shift and is also the only multidimensional IRT model in which a vertical scaling method 

exists to deal with construct shift. The general factor that is common to different grades is 

assumed to capture teacher effects, and it is assumed that teacher effects are irrelevant to 

the grade specific factors.  

 Common item design is used in the vertical scaling process. Relatively easy to 

implement, common item design is the most commonly used data design approach in 

commercial and state testing programs. 

 The test length is fixed at 60 items, and the number of common items is 18.  

Those 2 factors are fixed because the focus was not on vertical scaling technique per se 

but on the teacher effect estimation. Kolen and Brennan (2004) suggested that the 

minimum number of common items should be 20%, and based on this suggestion Li used 

20%, 30% and 40%. 30% was chosen to be the percentage of common items in this study. 
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 The concurrent calibration is preferred over the separate calibration due to reasons 

such as avoiding linking errors and the use of a larger sample size.( Kolen & Brennan, 

2004; Simon, 2008). Li also used concurrent calibration and she justified her choice by 

stating that the main focus of her study is to investigate whether the bifactor model 

vertical scaling method improves parameter estimation when the bifactor model is the 

correct model. According to Kolen and Brennan (2004), concurrent calibration is better 

than separate calibration when the model is correctly specified. Although Li’s rationale 

for her choice does not apply in the current study, the concurrent calibration is also 

chosen here to be consistent with her study to more easily translate into the teacher effect 

estimates in VAM in this study. 

3.2 Manipulated Factors of the Simulation Study 

 Table 1 lists the details of the proposed simulation study. As can be seen from the 

table, there are a total of 27 manipulated conditions, each of which has 100 replications. 

Specifically, the 3 levels of teacher effect persistence patterns are ZP, CP, and VP with 

the persistence parameter between two adjacent years set to be 0.5. This value is chosen 

to represent a medium persistence effect, to be distinguished from 0 and 1, which are the 

values of the persistence parameter in ZP and CP. The magnitude of the construct shift is 

represented with the variances of the grade specific dimensions, and the 3 levels of 

variance are chosen to be 0.25, 0.5, and 1 to represent small, medium, and large construct 

shift. The 3 vertical scaling methods are the traditional unidimensional IRT vertical 

scaling method, the bifactor model vertical scaling method, and the use of GP model that 

assumes no vertical scaling. In Table 3.1 each of the simulation conditions is described in 

detail. 
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Table 3.1 Simulation Manipulated Conditions 

Conditions Number of Levels 

Teacher Effect Persistence Patterns 3 

Magnitude of Construct Shift 3 

Vertical Scaling Method 3 

Total 27 

 

3.2.1 Teacher Effect Persistence Patterns 

 The mathematical equation of the VP model is as follows: 

              ∑        

    

     

where     is the test score for student i in year t, and    is the year specific mean,     is a 

covariate vector containing both time variant and varying background variables, and     is 

a vector of teacher effects at year   .  If we ignore the covariates, the (VP) model can be 

simplified to: 

       ∑            

    

 

The value of      changes with the change of t: when    = t,      =1, indicating the 

current teacher effect; when       t,      <1, indicating the diminishing effect of a prior 

teacher. For example, if a student’s current grade mean score is s, the teacher who taught 

him 2 years ago had an effect of      then and the persisting effect now is 0.25*    

(  (   )      ), the teacher who taught him 1 years ago had an effect of      then and 

the persisting effect now is 0.5*    (  (   )     ), and the current teacher has an effect 
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of   , then the student’s score at the end of this year would be s+0.25*   +0.5*   +   

plus some random error. 

The ZP model is a special case of VP because      is constrained to be 0, and the 

current teacher effect will not persist into future years. For example, if a student’s current 

grade mean score is s, the teacher who taught him 2 years ago had an effect of      and 

the teacher who taught him 1 years ago had an effect of      , and the current teacher has 

an effect of   , then the student’s score at the end of this year would be s+   plus some 

random error. 

The CP model is another special case of VP because      is constrained to be 1, 

which means the current teacher effect will persist undiminished into future years. For 

example, if a student’s current grade mean score is s, the teacher who taught him 2 years 

ago had an effect of      and the teacher who taught him 1 years ago had an effect of      , 

and the current teacher has an effect of   , then the student’s score at the end of this year 

would be s+   +   +    plus some random error. 

 Therefore, the above three models can be seen as the VP model where the 

persistence parameter is constrained to be 3 values: 0.5, 0, and 1. These three models are 

adapted to model student growth patterns due to different teacher effect persistence in 

this study. It should be noted that in the original models the teacher effects are modeled 

using the scale score units, while in this study the teacher effects are directly placed on 

the latent ability scale of the general dimension in the bifactor model. In the remaining 

part of this dissertation, CP, VP, and ZP refer to the persistence pattern being 

manipulated in the data generation process, in order to be differentiated from the CP 

model, the VP model, and the ZP model.    

Specifically, the general dimension    represents student common ability across 

grades, the first grade-specific dimension    represents grade 3 specific ability at the end 

of grade 3, the second grade-specific dimension    represents grade 4 specific ability at 

the end of grade 4, and the last grade-specific dimension    represents grade 5 specific 

ability at the end of grade 5. The persistence parameter     is set equal to 0.5,     equal 

to 0.25, and      equal to 0.5 with VP. In other words, the teacher effect is set to persist at 
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a decrease rate of 0.5, which is considered a medium persistence effect. Table 3.2 lists the 

student ability at the end of each grade with these three persistence patterns, where   ,   , 

and    are teacher effect at grade 3, 4 and 5.  

 

Table 3.2 Student Ability on the General Dimension at Each Grade 

Models Grade 3 Grade 4 Grade 5 

VP                                          

ZP                              

CP                                  

 

The grade specific dimensions were assumed not to be affected by teacher effect. The 

bifactor IRT model combined these values on the general dimension with their 

corresponding values on the grade specific dimensions to generate the item level data. 

 

3.2.2 Magnitude of Construct Shift 

 To represent the magnitude of the testlet effect, Li, Bolt, and Fu (2006) and 

Rijmen (2010) manipulated the variances of the testlet factors in the testlet model, which 

is a constrained version of the bifactor model. Inspired by their studies, Li (2012) 

manipulated the variances of the grade specific dimensions to represent the magnitude of 

construct shift. Specifically, she used 0.25, 0.5, and 1 as the variance values to represent 

small, medium, and large magnitude of construct shift. Those values were also used in 

this simulation study. 
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3.2.3 Vertical Scaling Method 

 With the traditional unidimensional IRT vertical scaling method, 

multidimensionality and construct shift are ignored and this condition represents a 

scenario where the measurement model is misspecified: the generating model is a bifactor 

model while the estimating model is a UIRT model. This condition can be considered 

analogous to the common practice of applying UIRT vertical scaling across grades while 

it is believed the test scores at different grades represent different multidimensional 

constructs. Using a common item design, this method uses a 2PL IRT model for the 

concurrent calibration. The calibrated item parameters are used to score the students, and 

student scores are then used in the VAM model same as the generating VAM model for 

teacher effect estimates. For example, if the ZP model was used to generate the 

persistence pattern on the general dimension, the ZP model was used to estimate teacher 

effects. The estimation VAM model and generating VAM model were the same in order 

to avoid confounding effects of VAM model misspecification and ignorance of construct 

shift – measurement model misspecification. Since this method involves concurrent 

calibration with a unidimensional IRT model, it will be abbreviated as the CU 

(concurrent and unidimensional) method in the remaining part. 

 With the GP model method, since no vertical scaling is required, the item 

parameters for each grade were separately calibrated using a unidimensional 2PL IRT 

model. These separately calibrated item parameters were directly used to score students. 

Without any vertical scaling procedure, these student scores were used in the GP model 

to estimate teacher effects. This method has a less stringent assumption than the previous 

one in that it does not assume the constructs in different grades remain invariant, 
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although it does misspecify the measurement model by assuming unidimensionality of 

test scores. The most attractive feature of the GP model is its ability to recover the 

teacher effect even in the face of construct shift, which is the focus of this study. Since 

this method uses separate calibrations for each grade, it will be abbreviated as the SU 

(separate and unidimensional) method in the remaining part.  

 With the bifactor model vertical scaling method, the item parameters were 

concurrently calibrated using a multi-group bifactor model; it will be abbreviated as the 

CB (concurrent and bifactor) method in the remaining part. The calibrated item 

parameters were then used to score students, and student scores on the general dimension 

were used in the VAM model same as the generating VAM model for teacher effect 

estimates. It is expected that since the CB method does not involve model 

misspecification, it should be superior to the CU method. A more interesting comparison 

is between the SU method and the CB method: the CB method does not involve model 

misspecification but introduces error with vertical scaling, while the SU method does not 

introduce vertical-scaling-related error but misspecifies the measurement model.  

 

3.3 Data Generation 

 Item response data are generated based on the bifactor model, with the growth on 

the general factor based on different persistence models. The generation of the ability 

parameters, the item parameters, and the item response data are discussed in the 

following section. 
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3.3.1 Ability Parameter Generation 

 It should be noted that two sets of students are generated. The first set is only used 

for the item parameter calibration and not used for the teacher effect estimate. Assuming 

there are 3 independent cohorts of students at grade 3, 4, and 5, with each cohort having 

2,000 students. Their latent abilities are generated with four-dimensional multivariate 

normal distributions. Specifically, both the general and the grade-specific dimensions 

have a fixed standard deviation of 1 in all grades; grades 3, 4, and 5 have respective 

means of -1.1, -0.6, and 0 on the general dimension and a fixed mean of 0 on each grade 

specific dimension. Table 3.3 summarizes the generating scheme for calibration item 

response data. 

 

Table 3.3 Latent Trait Parameter Generation Used for Calibration 

Grade Level General Factor Grade Specific Factor 

Grade 3 N(-1.1, 1) N(0,1) 

Grade 4 N(-0.6,1) N(0,1) 

Grade 5 N(0,1) N(0,1) 

 

 The reason why the first set of students is used for calibration is twofold. First, it 

is more common in practice to have readily available calibrated item parameters to score 

the students. Second, the second set of students is a cohort of students who progress from 

grade 3 to grade 5, and their ability values at each grade are correlated, it will violate 
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local independence assumption of IRT if they are used in the CU method and CB method 

when concurrent calibration is involved. 

  For the second set of students, this study assumed that there were 40 classes 

taught by 40 different teachers with each class size equal to 25 students at the beginning 

of the grade 3, at the beginning of grade 4 those 1,000 students were regrouped into 40 

different classes of equal size taught by a different set of 40 different teachers, and at the 

beginning of grade 5 those students were regrouped again and taught by another 40 

different teachers. To sum up, 120 teachers and 1,000 students were generated. It was 

also assumed that these students did not transfer to other schools so missing data was not 

an issue. It is acknowledged that this is an ideal scenario which might not be easily 

achieved in practice, but it will provide us with baseline results that can guide further 

research. 

At the beginning of each year, these students changed classes but the class size 

remained the same. Consequently, students may have different teachers and teachers 

teach different classes for different years. Only grades 3, 4, and 5 were considered. 

 The general ability at the end of grade 2 was generated to be a normal random 

variable with mean of -1.6 and standard deviation of 0.2. Those values were chosen so 

that regardless of the persistence pattern, the general ability at grade 5 would still stay in 

(-3, 3), the common range of the latent variable scale of IRT. Depending on which 

persistence model used, different pattern of teacher effects are added to the grade 2 

general ability to generate general abilities for grades 3, 4, and 5.   When generating the 

teacher effects, two issues were taken into consideration. One is that the teacher effects 



 

46 
 

should not be negative on the latent variable scale of IRT. The other is the same concern 

that the general ability at grade 5 should remain in a reasonable range. Based on these 

considerations, the teacher effects for each grade are generated to be normal random 

variables with mean of 0.4 and standard deviation of 0.2. With the generated ability 

values at the beginning of grade 3 and the generated teacher effects, the general ability 

values at the end of grade 3, grade 4, and grade 5 can be calculated based on the formulas 

summarized in Table 3.2. 

 Generation of the grade specific ability values is straightforward since the teacher 

effects are assumed not to affect those dimensions. They are all generated with a standard 

normal distribution. The generation scheme is summarized in the following table. It 

should be noted again that the general ability values for grade 3, grade 4, and grade 5 are 

not generated from independent distributions. Instead, they were calculated based on the 

general factor in grade 2 and the teacher effects across three years. Table 3.4 summarizes 

the true model parameters for generating item response data for simulating growth from 

grades 3 to 5. 

Table 3.4 Latent Trait Parameter Generation 

Grade Level General Factor Grade Specific Factor 

Grade 2 N(-1.6,0.2)  

Grade 3  N(0,1) 

Grade 4  N(0,1) 

Grade 5  N(0,1) 
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3.3.2 Item Parameter Generation 

 The generating scheme for the discrimination parameter a is the same as in Li’s 

study (2012) for consistency. Specifically, the as for the general factor are set to be 1.2, 

1.4, 1.6, 1.8, 2.0 and 2.2 to represent moderate to well discriminating items. The as for 

the grade specific factors are fixed to be 1.7, which is the mean of 1.2, 1.4, 1.6, 1.8, 2.0 

and 2.2.  

 The difficulty parameter b is generated to be a normal random variable. 

Specifically, for the non-common items in grade 3, b is generated from a normal 

distribution with mean of -1.1 and standard deviation of 0.4. For the non-common items 

in grade 4, b is generated from a normal distribution with mean of -0.6 and standard 

deviation of 0.4.  For the non-common items in grade 5, b is generated from a normal 

distribution with mean of 0 and standard deviation of 0.4.  Those values are chosen 

because they match with the average values of the means and standard deviations of the 

general factors across the three grades. 

 For the common items, their difficulty parameter bs should be suitable to the two 

adjacent grades. In other words, those items should not be too easy to the higher grade or 

too difficult to the lower grade. For the common items between grade 3 and grade 4, the 

bs are generated from a uniform distribution ranging from -1.6 to -0.1. For the common 

items between grade 4 and grade 5, the bs are generated from a uniform distribution 

ranging from -1.1 to 0.5.   

 With the as and the bs generated, the scalar parameter d can be computed using 

the following formula:  
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      √   
     

  

where     is the discrimination parameter for the general factor, and     is the 

discrimination parameter for the grade specific factor of grade j. Table 3.5 summarizes 

the generation of the difficulty parameters. 

 

Table 3.5 Item Difficulty Parameter Generation 

Items Generating Distributions 

 Grade 3  Grade 4  Grade 5 

Non-common Items N(-1.1,0.4)  N(-0.6,0.4)  N(0,0.4) 

Common Items  U(-1.6,-0.1)    

Common Items    U(-1.1,0.5)  

  

3.3.3 Item Response Data Generation 

A student’s probability of a correct response to an item from grades 3 to 5 can be 

specified as the following: 

 (    |        )  
 

        (               ) 
 

 (    |        )  
 

        (               ) 
 

 (    |        )  
 

        (               ) 
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where    ,    , and     represent the general ability at grade 3,4 and 5 and   ,   , and    

represent the grade specific ability for grade 3, 4, and 5 respectively. Depending on 

which teacher effect persistence model, the above equations are different in terms of    

for grade 4 and grade 5. In other words, student general ability is simulated based on the 

equations presents in Table 3.2 for each true model. 

Specifically, assuming the general ability at the end of grade 2 is   , the students’ 

probability of a correct response to the math tests from grade 3 to 5 for VP persistence 

pattern, can be specified as the following: 

 (    |        )  
 

        (   (     )          ) 
 

 (    |        )  
 

        (   (            )          ) 
 

 (    |        )  
 

        (   (                     )          ) 
 

For ZP persistence pattern: 

 (    |        )  
 

        (   (     )          ) 
 

 (    |        )  
 

        (   (         )          ) 
 

 (    |        )  
 

        (   (            )          ) 
 

 For CP persistence pattern: 
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 (    |        )  
 

        (   (     )          ) 
 

 (    |        )  
 

        (   (         )          ) 
 

 (    |        )  
 

        (   (                )          ) 
 

It should be noted that for grade 3, the probability of a correct response remains 

the same regardless of the persistence models since it does not involve persisting teacher 

effect. With the generated student abilities, teacher effects, and item parameters, the item 

response data can be generated for each examine based on the above equations.  

 

3.4 Identification of the Bifactor Model 

 In order to keep the bifactor model identified, either the variance or the 

discrimination parameter of the latent variable has to been fixed. Li (2012) fixed the 

variance of the general factor to be 1 and the discrimination parameters of the three grade 

specific factors to be 1.7 so that the variance of the grade specific dimensions could be 

freely estimated as a measure of the magnitude of construct shift. In this study, it should 

not matter which constraint is used since the interest is not the estimation of the 

magnitude of construct shift but its impact upon teacher effect estimation. To be 

consistent, however, the same constraints are used. 
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3.5 Calibration 

 The item response data based on the first set of generated ability values are used 

for calibration. As discussed previously, three calibration methods are explored, the CU 

method, the CB method, and the SU method. 

With the CU method, multidimensionality and construct shift were ignored and all 

the items were assumed to load on the only factor in the data calibration process. With 

common item design, this method concurrently calibrated the item parameters based on 

the 2PL IRT model. 

 With the CB method, the item parameters were concurrently calibrated using a 

multi-group bifactor model. For the general factor, grade 5 students are treated as the 

reference group with a standard normal distribution. The SDs of grade 3 and 4 are also 

fixed at 1, while the means of these two grades are freely estimated. 

 The common item design was used in the simulation study. Under the common 

item design, common items are used for adjacent grades. In this simulation study there 

are three grades, so two sets of common items are needed. With the set of common items 

between grade 3 and 4 labeled as C34 and between grade 4 and 5 as C45, the following 

figure represents the model specification. 
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Figure 3.1 Nonequivalent Group Common Item Design with Bifactor Model  

 

For the common items, students in each grade use both the general ability and 

their respective grade specific ability to answer those items. For example, although C34 

is the set of items that is common to students in both grade 3 and 4, students in grade 3 

use the general ability and the grade 3 ability to answer them, while students in grade 4 

use the general ability and the grade 4 ability. 

 Based on the model specification, concurrent bi-factor calibration was conducted. 

Students only answered the grade specific items and those common items shared between 

their grade and the adjacent ones, and those items not answered by them were considered 

not reached and therefore treated as missing data in the calibration process.  

 The item parameters based on the bifactor model vertical scaling method were 

then used to score the students across grades. Only the scores on the general dimension 

were used to estimate the teacher effects. 
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  With the SU method, since no vertical scaling is required, the item parameters for 

each grade were separately calibrated based on the unidimensional 2PL IRT model.  

 The calibrated item parameters based on the above three methods are used to 

score the item response data based on the second set of generated ability values. It should 

be noted again that while each student has only one score with the CU and the SU 

methods, each student receives two scores on the general factor and the grade specific 

factor respectively with the CB method. Only the scores on the general factor are used for 

the teacher effect estimate. The computer program IRTPRO (Cai, du Toit, & Thissen, 

2012) using marginal maximum likelihood estimation with an EM algorithm is used for 

both calibration and scoring. 

 

3.6 Teacher Effect Estimation 

Depending on the vertical scaling methods, student scores are used as the 

dependent variable in different persistence models for teacher effect estimation. Scores 

coming out of the CU method and the CB method are used in the ZP model, the CP 

model, or the VP model, depending on the corresponding generating model.  Scores 

coming out of the SU method are used in the GP model. While both the Bayesian 

approach and the maximum likelihood (ML) approach can be used to estimate persistence 

models, the former one requires the specification of an informative prior distribution for 

the covariance parameters, the choice of which may affect parameter estimates. Therefore, 

the ML approach is chosen as the estimation algorithm. Specifically, the R package 

GPvam (Karl, Yang, & Lohr, 2012), which employs the maximum likelihood estimation 
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method for the multiple membership mixed models used in VAM, is used for teacher 

effect estimation. 

 

3.7 Evaluation 

 One of the commonly used evaluation criteria is the classification accuracy of 

teachers or schools in terms of their added value (McCaffrey et al., 2004; Lockwood et al., 

2007b; Briggs & Weeks, 2009). In this study, the classification accuracy is computed 

using three approaches: standard error based, tercile grouping, and quintile grouping. 

With the standard error based approach, a 95% confidence interval around individual 

teacher effect estimate is established by adding and subtracting 1.96 * standard error to 

the estimate. If the lower bound of the confidence interval is above 0 which is assumed as 

the cut score, this particular teacher is classified as effective; if the higher bound of the 

confidence interval is below 0, this teacher is classified as ineffective.   

One issue with the previous classification scheme is that if the standard errors of 

teacher effect estimates are large, most of the teachers will be classified into the average 

category. Different from the standard error based approach that takes into consideration 

the estimate uncertainty due to sampling error, quintile and tercile grouping approaches 

divide the entire teacher effect distribution into several equal parts and classify teachers 

based on their individual percentiles. With tercile groupings, teachers are classified into 

three categories of equal size, with the bottom third classified as ineffective, the middle 

third as average, and the top third as effective. With quintile groupings, teachers are 

classified into five performance categories of equal size, which often are labeled as 
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ineffective, less ineffective, average, less effective, and effective. In order to make the 

three approaches comparable, in this study the top two categories are combined into one 

category as effective and the bottom two categories are combined into one category as 

ineffective.  

To compute the classification accuracy, the numbers of correct classifications and 

incorrect classifications are calculated. First, teachers are classified as ineffective or 

effective based on whether their generating teacher effect values are below or above the 

population mean, which is their true status. Depending on which approach is used, an 

individual teacher’s computed category is compared with his or her true status: if they 

match, it is defined as a correct classification; if they do not match, it is defined as an 

incorrect classifications.   

 Another commonly used evaluation criteria is the Pearson correlation of the 

estimated values of teacher effects and the generating values of teacher effects (Briggs & 

Weeks, 2009; Hong, 2010).  Different from those studies with focuses on parameter 

recovery, the current study focuses on how construct shift impacts teacher classification 

and the rank order of teachers is considered more relevant. Therefore, the Spearman 

correlation is more appropriate and used as an evaluation criterion in this simulation 

study. 

 

3.8 Analysis 

 Using the percentage of correctly classified teachers and the Pearson correlation 

coefficient, three-way analyses of variance (ANOVA) are conducted to determine the 
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existence of statistically significant effects, may it be the main effects or the interaction 

effects. In addition to statistical significance, eta-squared is computed and reported as an 

effect size index to address the impact of the manipulated factors. 
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CHAPTER 4: RESULTS 

 

 In this chapter, results of the simulation study are presented. Specifically, section 

4.1 answers the first research question on the accuracy of teacher effect estimation with 

the SU method when data are generated with the bifactor model; section 4.2 answers the 

second and the last research questions by comparing the teacher effect estimation 

accuracy with the CU method, the CB method, and the SU method; in section 4.3, the 

results of three-way analysis of variance (ANOVA) are examined for the statistical 

effects of model choice, magnitude of construct shift, and different vertical scaling 

methods; in section 4.4, the main findings are summarized. 

 

4.1 Accuracy of the SU method  

 Convergence was reached with each of the estimation runs. The accuracy of the 

SU method is described with two indices: the spearman correlation of the teacher effect 

estimates with the generating teacher effect values and the teacher classification accuracy. 

In terms of classification accuracy, both the numbers of incorrect and correct 

classifications under the three different classification schemes (standard error based, 

quintile grouping, and tercile grouping) were presented. Section 4.1.1 discusses the 

accuracy in terms of spearman correlation; section 4.1.2 addresses the classification 

accuracy, with 4.1.2.1 focusing on the standard error based approach, 4.1.2.2 on the 

quintile grouping approach, and 4.1.2.3 on the tercile grouping approach.  
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4.1.1 Spearman Correlation 

 The Spearman correlation coefficient is used to assess how well the rank orders of 

two variables agree. In Table 4.1, the values of the Spearman correlation coefficient 

between the teacher effect estimates of the SU method and the generating teacher effect 

values for each of the 9 simulation conditions are presented. 

 The correlation coefficient value ranges from 0.47 to 0.91. With a certain 

persistence pattern in a certain year, the pattern is that when the magnitude of construct 

shift decreases, the Spearman correlation coefficient increases, with the only exception of 

the last row of Table 4.1, which is ZP in year 3. This is somewhat unexpected 

considering that the SU method is created to address the issue of construct shift, while the 

results indicate its accuracy deteriorates with the increase of the magnitude of such shift.  

Another interesting finding is that CP has the highest correlation value with a mean of 

0.80, while ZP has the lowest correlation value with a mean of 0.67. It seems that the 

correlation value decreases with the decrease of the value of the persistence parameter. 

Last, the impact of persistence pattern decreases from year 1 to year 3: in year 1 there are 

obvious differences among CP, VP and ZP; in year 2 the differences shrink; in year 3 the 

correlation values become virtually identical for the three persistence patterns. 

 Graphs showing the mean correlation between teacher effect estimates and the 

generating values in different years are presented in Figures 4.1a through 4.1c. 
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Table 4.1 Spearman Correlation between Teacher Effect Estimates and True Values for 

the SU method 

 

Year 
 

Persistence Pattern 

Variance (Magnitude of Construct Shift)  

1 0.50 0.25 

 

Year 1 

CP 0.85 0.89 0.91 

VP 0.72 0.75 0.78 

ZP 0.60 0.62 0.66 

 

Year 2 

CP 0.72 0.86 0.91 

VP 0.64 0.80 0.88 

ZP 0.50 0.74 0.85 

 
Year 3 

CP 0.47 0.80 0.80 
VP 0.49 0.82 0.82 

ZP 0.50 0.84 0.83 
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Figure 4.1a Mean Correlation between the Estimates and Generating Values in Year 1 

 

Figure 4.1b Mean Correlation between the Estimates and Generating Values in Year 2 

 

Figure 4.1c Mean Correlation between the Estimates and Generating Values in Year 3 
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4.1.2 Classification Accuracy 

 This section discusses classification accuracy of the SU method in terms of 

incorrect and correct classifications. Incorrect classification is defined as a teacher being 

classified as effective when the generated teacher effect value is below the population 

mean or a teacher being defined as ineffective when the generated teacher effect value is 

above the population mean; correct classification is defined as a teacher being classified 

as effective when the generated teacher effect value is above the population mean or a 

teacher being defined as ineffective when the generated teacher effect value is below the 

population mean. The average number of incorrect and correct classifications across 

replications is presented in Table 4.2, Table 4.3, and Table 4.4. 

 4.1.2.1 Standard Error Based Approach 

 The standard error based approach establishes the confidence interval of the 

teacher effect estimate by adding and subtracting 1.96 * standard error to the estimate. If 

the lower bound of the confidence interval is above 0, this particular teacher is classified 

as effective; if the higher bound of the confidence interval is below 0, this teacher is 

classified as ineffective.   

The left portion of Table 4.2 presents the number of incorrect classifications of 

the SU method under different simulation conditions in different years. Except for VP 

and ZP with variance equal to 1 in year 1, it seems that the SU method performs 

extremely well in terms of making no incorrect classifications. Even for those two 

simulation conditions under which incorrect classification occurs, the number of incorrect 

classification is so small that on average far less than 1 teacher is misclassified. 
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 The right portion of Table 4.2 presents the number of correct classification of the 

SU method, which ranges from 0 to 13.56. One consistent pattern across different 

persistence patterns in different years is that with the decrease of magnitude of construct 

shift, the number of correct classifications increases. Another pattern is that in year 1 and 

year 2, the number of correct classifications seems to decrease with the decrease of the 

value of the persistence parameter (CP > VP > ZP); while in year 3, this pattern seems to 

be reversed with ZP having the highest number of correct classifications. 

Graphs showing the percentage of correct classifications based on standard errors 

in different years are presented in Figures 4.2a through 4.2c. 

 

Table 4.2 Correct and Incorrect Classifications Based on Standard Error 

Year Persistence 

Pattern 

Incorrect Classification  Correct Classification 

Variance 

 (Magnitude of Construct shift) 

 Variance 

 (Magnitude of Construct shift) 
1 0.5 0.25  1 0.5 0.25 

Year 1 CP 0 0 0  13.56 10.74 11 

VP 0.09 0 0  7.41 3.55 4.96 

ZP 0.19 0 0  1.02 1.18 1.99 

Year 2 CP 0 0 0  1.40 5.97 11.96 

VP 0 0 0  1.45 2.17 7.89 

ZP 0 0 0  0.67 0.63 4.22 

Year 3 CP 0 0 0  0 0.46 5.95 

VP 0 0 0  0 1.05 7.11 

ZP 0 0 0  0 1.62 7.92 

* The numbers in the above table are the average number of correctly or incorrectly classified teachers  

across 100 replications. 
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Figure 4.2a Mean Correct Classifications Based on SE in Year 1 

 

Figure 4.2b Mean Correct Classifications Based on SE in Year 2 

 

Figure 4.2c Mean Correct Classifications Based on SE in Year 3 
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 4.1.2.2 Quintile Grouping Approach 

 The quintile grouping approach and the tercile grouping approach in the next 

section differs from the preceding standard error based approach in the sense that the 

uncertainty of statistical estimate is not taken into consideration. With the quintile 

grouping approaching, the whole distribution is divided into five parts using four quintile 

points, and the upper 40% is considered effective and the lower 40% is considered 

ineffective. 

 Table 4.3 presents the number of incorrect and correct classifications of the SU 

method under different simulation conditions in different years. The number of incorrect 

classifications in the left half ranges from 1.63 to 10.33, and the general pattern is that the 

number of incorrect classifications decreases with the decrease of the magnitude of 

construct shift regardless of the persistence pattern and year, with the exception of CP in 

year 1. Another pattern is that in year 1 and year 2, the number of incorrect classifications 

seems to increase with the decrease of the value of the persistence parameter (CP > VP > 

ZP); while in year 3, this pattern does not seem to hold with ZP having the lowest  

number of  incorrect classifications except when the variance is equal to 0.25. One 

counterintuitive finding is that in year 3, when the magnitude of construct shift decreases 

from 0.5 to 0.25, the number of incorrect classifications increases marginally regardless 

of the persistence patterns. The persistence model is known to have the property of 

increasing score variance at higher grades due to the accumulation of teacher effect. It is 

believed that this surprising increase of incorrect classifications with the decrease of 

magnitude of construct shift happens because in year 3, when the score has the largest 
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variance across three years, the 0.25 increase of magnitude of construct shift is less 

influential than in the previous two years and is offset by sampling error. 

 The number of correct classifications in the right half of Table 4.3 ranges from 

21.94 to 30.37, and the general pattern is that the number of correct classifications 

increases with the decrease of the magnitude of construct shift regardless of the 

persistence pattern and year. Another pattern is that in year 1 and year 2, the number of 

correct classifications seems to decrease with the decrease of the value of the persistence 

parameter (CP > VP > ZP); while in year 3, this pattern does not seem to hold with ZP 

having the highest number of correct classifications except when the variance is equal to 

0.25. 

Graphs showing the percentage of incorrect and correct classifications based on 

quintile grouping in different years are presented in Figures 4.3a through 4.3f. 

 

Table 4.3 Correct and Incorrect Classifications Based on Quintile Grouping 

Year Model Incorrect Classification  Correct Classification 

Variance  Variance 

1 0.5 0.25  1 0.5 0.25 

Year 1 CP 2.94 3.16 1.65  29.06 28.84 30.35 

VP 6.14 4.97 4.74  25.86 27.03 27.26 

ZP 7.04 6.69 5.76  24.96 25.31 26.24 

Year 2 CP 6.26 3.70 1.63  25.74 28.30 30.37 

VP 7.66 4.06 1.87  24.34 27.94 30.13 

ZP 9.74 4.32 1.73  22.26 27.68 30.27 

Year 3 CP 10.33 2.30 3.73  21.67 29.70 28.27 

VP 10.06 2.11 3.44  21.94 29.89 28.56 

ZP 9.66 1.87 3.54  22.34 30.13 28.46 

* The numbers in the above table are the average number of correctly or incorrectly classified teachers 

across 100 replications. 
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Figure 4.3a Mean Incorrect Classifications Based on Quintile Grouping in Year 1 

 

Figure 4.3b Mean Incorrect Classifications Based on Quintile Grouping in Year 2 

 

Figure 4.3c Mean Incorrect Classifications Based on Quintile Grouping in Year 3 
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Figure 4.3d Mean Correct Classifications Based on Quintile Grouping in Year 1 

 

Figure 4.3e Mean Correct Classifications Based on Quintile Grouping in Year 2 

 

Figure 4.3f Mean Correct Classifications Based on Quintile Grouping in Year 3 
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 4.1.2.3 Tercile Grouping Approach 

 With the tercile grouping approaching, the whole distribution is divided into three 

parts using two tercile points, and the top third is considered effective and the bottom 

third is considered ineffective. 

Table 4.4 presents the number of correct and incorrect classifications of the SU 

method under different simulation conditions in different years. The number of incorrect 

classifications in the left portion of the table ranges from 0.31 to 7.24, and the general 

pattern is that the number of incorrect classifications decreases with the decrease of the 

magnitude of construct shift regardless of the persistence pattern and year, with the 

exception CP in year 1. Another pattern is that regardless of the year, the number of 

incorrect classifications seems to increase with the decrease of the value of the 

persistence parameter (CP > VP > ZP). 

 The number of correct classifications in the right portion of the table ranges from 

18.76 to 25.69, and the general pattern is that the number of correct classifications 

increases with the decrease of the magnitude of construct shift regardless of the 

persistence pattern and year, with the exception of CP in year 1. Another pattern is that in 

year 1 and year 2, the number of correct classifications seems to decrease with the 

decrease of the value of the persistence parameter (CP > VP > ZP); while in year 3, this 

pattern does not seem to hold with ZP having the highest number of correct 

classifications except when the variance is equal to 0.25. 

Graphs showing the percentage of incorrect and correct classifications based on 

tercile grouping in different years are presented in Figures 4.4a through 4.4f. 
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Table 4.4 Correct and Incorrect Classifications Based on Tercile Grouping 

Year Persistence 

Pattern 

Incorrect Classification  Correct Classification 

Variance 

(Magnitude of Construct Shift) 

 Variance 

(Magnitude of Construct Shift) 

1 0.5 0.25  1 0.5 0.25 

Year 1 CP 1.12 1.66 0.31  24.88 24.34 25.69 
VP 3.91 3.32 2.39  22.09 22.68 23.61 

ZP 5.48 3.95 4  20.52 22.05 22.00 

Year 2 CP 3.10 2.08 0.81  22.9 23.92 25.19 

VP 4.23 2.62 0.9  21.77 23.38 25.10 

ZP 6.02 2.62 0.82  19.98 23.38 25.18 

Year 3 CP 7.24 1.13 1.74  18.76 24.87 24.26 

VP 7.03 0.82 1.53  18.97 25.18 24.47 

ZP 6.89 0.79 1.18  19.11 25.21 24.2 

* The numbers in the above table are the average number of correctly or incorrectly classified teachers 

across 100 replications. 
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Figure 4.4a Mean Incorrect Classifications Based on Tercile Grouping in Year 1 

 

Figure 4.4b Mean Incorrect Classifications Based on Tercile Grouping in Year 2 

 

Figure 4.4c Mean Incorrect Classifications Based on Tercile Grouping in Year 3 
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Figure 4.4d Mean Correct Classifications Based on Tercile Grouping in Year 1 

 

Figure 4.4e Mean Correct Classifications Based on Tercile Grouping in Year 2 

 

Figure 4.4f Mean Correct Classifications Based on Tercile Grouping in Year 3 



 

72 
 

4.2 Comparison of Teacher Estimation Accuracy of Different Methods  

 Similar to section 4.1, the comparison of teacher effect estimation across different 

methods was carried out using two sets of values as indices: the spearman correlation of 

the teacher effect estimates with the generating teacher effect values and the teacher 

classification accuracy under the three different classification schemes. Section 4.2.1 

discusses the spearman correlation; section 4.1.2 addresses the classification accuracy, 

with 4.1.2.1 focusing on the standard error based approach, 4.1.2.2 on the quintile 

grouping approach, and 4.1.2.3 on the tercile grouping approach.  

 

4.2.1 Comparison of the Spearman Correlation Values 

Table 4.5 presents the mean Spearman correlation values under the 27 simulation 

conditions in different years and the corresponding standard deviations in the parenthesis. 

To address the second research question of comparing the CB and SU methods, 

comparison needs to be carried out between the first and the third column; to compare the 

CB and CU method, comparison needs to be carried out between the first and the second 

column. In the first column (CB), the Spearman correlation value ranges from 0.24 to 

0.83 with a mean of 0.66, in the second column (CU) the Spearman correlation value 

ranges from 0.05 to 0.87 with a mean of 0.66, and in the third column (SU) the Spearman 

correlation value ranges from 0.47 to 0.91 with a mean of 0.74. Across different 

simulation conditions and different years it seems that overall the SU method does a 

better job than the CB method, which perform similarly to the CU method overall. It 

should be noted that the minimum value for the CU method is only 0.05.  
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To further investigate the difference between the CB and SU method, the 

comparison is broken down into different models in different years. For the CP 

persistence pattern in year 1, the SU method is consistently better than the CB method, 

although the difference is marginal (the difference is at the second decimal point); for VP 

in year 1, the SU method and the CB method seem to perform similarly; for ZP in year 1, 

the SU method seems to perform noticeably better than the CB method, with the mean 

difference of approximately 0.3. For CP and VP in year 2, the CB method seems to 

perform better than the SU method when the variance is equal to 1, and this pattern is 

reversed when the variance decreases; for ZP in year 2, the pattern is similar to year 1 in 

the sense that the SU method performs noticeably better than the CB method with a mean 

difference of approximately 0.25, regardless of the variance. For all the persistence 

patterns in year 3, the CB method seems to perform noticeably better than the SU method 

with a mean difference of approximately 0.1 when the variance is equal to 1, and this 

pattern is reversed except for ZP with variance equal to 0.25. 

 To further investigate the difference between the CB and CU method, the 

comparison is broken down into different persistence patterns in different years. For all 

the persistence patterns in year 1, the CB method and the CU method seem to perform 

similarly. For all the persistence patterns in year 2, the CB method seems to perform 

better than the CU method when the variance is equal to 1, and this pattern is reversed 

when the variance decreases. For all the persistence patterns in year 3, the same pattern 

seems to exist, and the CB method seems to perform noticeably better than the CU 

method with a mean difference of approximately 0.11 when the variance id equal to 1, 
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and this pattern is reversed when the variance decreases except for ZP with a variance 

equal to 0.25. 

 Graphs showing the mean correlation between teacher effect estimates and the 

generating values using different scoring methods in different years are presented in 

Figures 4.5a through 4.5i. 

 

Table 4.5 Spearman Correlation between Teacher Effect Estimates and True Values  

 

 

Year 

 

Persistence 
Pattern 

 

Variance 

Vertical Scaling Method 

CB CU SU 

 

 

 

 

Year 1 

 

CP 

1 0.81(0.02) 0.80(0.01) 0.85(0.01) 

0.50 0.82(0.02) 0.81(0.01) 0.89(0.01) 

0.25 0.83(0.02) 0.86(0.01) 0.91(0.01) 

 

VP 

1 0.73(0.03) 0.72(0.01) 0.72(0.01) 

0.50 0.76(0.03) 0.75(0.02) 0.75(0.02) 

0.25 0.77(0.04) 0.78(0.02) 0.78(0.02) 

 

ZP 

1 0.33(0.09) 0.38(0.04) 0.60(0.01) 

0.50 0.25(0.12) 0.17(0.06) 0.62(0.02) 

0.25 0.31(0.12) 0.31(0.06) 0.66(0.02) 

 

 

 

 

Year 2 

 

CP 

1 0.74(0.05) 0.68(0.03) 0.72(0.04) 

0.50 0.77(0.04) 0.81(0.03) 0.86(0.02) 

0.25 0.81(0.05) 0.87(0.02) 0.91(0.02) 

 

VP 

1 0.74(0.05) 0.71(0.02) 0.64(0.05) 

0.50 0.77(0.05) 0.80(0.02) 0.80(0.02) 

0.25 0.81(0.04) 0.87(0.02) 0.88(0.02) 

 
ZP 

1 0.24(0.11) 0.05(0.05) 0.50(0.04) 
0.50 0.57(0.10) 0.63(0.03) 0.74(0.02) 

0.25 0.51(0.12) 0.59(0.05) 0.85(0.02) 

 

 

 

 

Year 3 

 

CP 

1 0.54(0.07) 0.41(0.03) 0.47(0.03) 

0.50 0.75(0.06) 0.79(0.02) 0.80(0.02) 

0.25 0.72(0.06) 0.80(0.03) 0.80(0.03) 

 

VP 

1 0.61(0.07) 0.50(0.03) 0.49(0.04) 

0.50 0.80(0.05) 0.82(0.02) 0.82(0.02) 

0.25 0.77(0.06) 0.82(0.03) 0.82(0.03) 

 

ZP 

1 0.60(0.08) 0.47(0.04) 0.50(0.04) 

0.50 0.80(0.05) 0.83(0.02) 0.84(0.02) 

0.25 0.77(0.05) 0.82(0.03) 0.83(0.03) 
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Table 4.5a Mean Correlation Comparison for CP in Year 1 

 

Table 4.5b Mean Correlation Comparison for VP in Year 1 

 

Table 4.5c Mean Correlation Comparison for ZP in Year 1 
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Table 4.5d Mean Correlation Comparison for CP in Year 2 

 

Table 4.5e Mean Correlation Comparison for VP in Year 2 

 

Table 4.5f Mean Correlation Comparison for ZP in Year 2 
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Table 4.5g Mean Correlation Comparison for CP in Year 3 

 

Table 4.5h Mean Correlation Comparison for VP in Year 3 

 

Table 4.5i Mean Correlation Comparison for ZP in Year 3 
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4.2.2 Comparison of the Classification Accuracy 

 4.2.2.1 Comparison Based on Standard Error  

 Table 4.6 presents the number of incorrect and correct classifications based on the 

standard errors under the 27 simulation conditions in different years and the 

corresponding standard deviations in the parenthesis. To compare the CB and SU method, 

comparison of the number of incorrect classifications needs to be carried out between the 

first and the third column; to compare the CB and CU method, the comparison needs to 

be carried out between the first and the second column. In the first column (CB), the 

number of incorrect classifications ranges from 0 to 0.31 with a mean of 0.05, in the 

second column (CU) the number of incorrect classifications ranges from 0 to 0.30 with a 

mean of 0.01, and in the third column (SU) the number of incorrect classifications ranges 

from 0 to 0.19 with a mean of 0.01. In terms of the number of correct classifications, 

comparison needs to be carried out between the fourth and the sixth column and the 

fourth and the fifth column. In the fourth column (CB), the number of correct 

classifications ranges from 0.01 to 11.81 with a mean of 3.80, in the fifth column (SU) 

the number of correct classifications ranges from 0 to 11.92 with a mean of 3.93, and in 

the sixth column (SU) the number of correct classifications ranges from 0 to 13.56 with a 

mean of 4.29. Across different simulation conditions and different years it seems that 

overall the SU method does a better job than both the CB and CU method, although it 

should be noted that all three methods have very low numbers of incorrect and correct 

classifications. 

To further investigate the difference between the CB and SU method, the 

comparison is broken down into different persistence pattern in different years. In terms 
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of the number of incorrect classifications, it seems that the CB and the SU methods 

perform similarly for all the persistence patterns in year 1; for all the persistence patterns 

in year 2 and year 3, the number of incorrect classifications of the CB method is 

consistently no less than that of the SU method, although the differences are marginal. In 

terms of the number of correct classifications, the SU method seems to perform better 

than the CB method for all the persistence patterns in year 1; in year 2, while the same 

pattern exists for ZP, for CP and VP have a different pattern in the sense that only when 

variance is not equal to 1 does the SU method perform better than the CB method; in year 

3, a different pattern was found: the SU method performs better than the CB method only 

when the variance is equal to 0.25. 

 To further investigate the difference between the CB and CU method, the 

comparison is broken down into different persistence patterns in different years. In terms 

of the number of incorrect classifications, the CB and the CU methods perform similarly 

for all the persistence patterns in year 1; for all the models in year 2 and year 3, the 

number of incorrect classifications of the CB method is consistently no less than that of 

the CU method with the exception of ZP with variance equal to 0.25 in year 2, although 

the differences are marginal. In terms of the number of correct classifications, the general 

pattern is that the CB method always performs better than the CU method unless the 

variance is equal to 0.25; another pattern is that in year 1 and year 2, the ZP has 

noticeably lower numbers of correct classifications than both CP and VP, while in year 3 

the differences diminish considerably.  
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Graphs showing the percentage of correct classifications based on standard errors 

for different persistence models in different years are presented in Figures 4.6a through 

4.6i. 

 

 

 

 

Table 4.6 Correct and Incorrect Classifications Based on SE 
 

 

 

Year 

 

Persistence 

Pattern 

 

Variance 
Incorrect Classifications  Correct Classifications 

Vertical Scaling Method  Vertical Scaling Method 

CB CU SU  CB CU SU 

 

 

 

 

Year 1 

 

CP 

1 0.00 

(0.00) 

0.00 

(0.00) 
0.00 

(0.00) 
 11.81 

(1.33) 

11.92 

(1.03) 

13.56 

(1.38) 

0.50 0.01 

(0.10) 

0.00 

(0.00) 

0.00 

(0.00) 

 9.53 

(1.81) 

8.36 

(1.11) 

10.74 

(2.35) 

0.25 0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

 10.11 
(1.68) 

13.70 
(1.65) 

11.00 
(2.22) 

 

VP 

1 0.09 

(0.29) 

0.30 

(0.46) 

0.09 

(0.29) 

 7.85 

(1.63) 

8.17 

(0.90) 

7.41 

(0.93) 

0.50 0.05 

(0.22) 

0.01 

(0.10) 

0.00 

(0.00) 

 5.90 

(1.72) 

3.79 

(0.78) 

3.55 

(0.85) 

0.25 0.00 

(0.00) 
0.00 

(0.00) 
0.00 

(0.00) 
 7.36 

(1.76) 

9.02 

(1.54) 

4.96 

(1.27) 

 

ZP 

1 0.00 

(0.00) 
0.00 

(0.00) 
0.19 

(0.39) 

 0.03 

(0.17) 

0.00 

(0.00) 

1.02 

(0.32) 

0.50 0.00 

(0.00) 
0.00 

(0.00) 
0.00 

(0.00) 
 0.01 

(0.10) 

0.00 

(0.00) 

1.18 

(0.50) 

0.25 0.00 

(0.00) 

0.00 

(0.00) 
0.00 

(0.00) 
 0.03 

(0.17) 

0.00 

(0.00) 

1.99 

(0.67) 

 

 
 

 

Year 2 

 

CP 

1 0.01 

(0.10) 

0.00 

(0.00) 

0.00 

(0.00) 

 3.70 

(1.41) 

2.60 

(0.49) 

1.40 

(0.75) 
0.50 0.07 

(0.26) 

0.00 

(0.00) 

0.00 

(0.00) 

 4.50 

(2.08) 

3.05 

(1.16) 

5.97 

(1.24) 

0.25 0.17 

(0.40) 

0.00 

(0.00) 

0.00 

(0.00) 

 6.33 

(2.02) 

9.94 

(1.63) 

11.96 

(2.08) 

 

VP 

1 0.02 

(0.14) 

0.00 

(0.00) 

0.00 

(0.00) 

 5.04 

(1.94) 

3.60 

(0.86) 

1.45 

(0.59) 

0.50 0.09 

(0.29) 

0.00 

(0.00) 

0.00 

(0.00) 

 4.73 

(2.39) 

1.59 

(1.00) 

2.17 

(1.01) 

0.25 0.31 

(0.46) 

0.03 

(0.17) 

0.00 

(0.00) 

 7.06 

(2.12) 

10.31 

(1.50) 

7.89 

(1.71) 

 

ZP 

1 0.00 

(0.00) 

0.00 

(0.00) 

0.00 

(0.00) 

 0.01 

(0.1) 

0.00 

(0.00) 

0.67 

(0.55) 

0.50 0.02 
(0.14) 

0.00 
(0.00) 

0.00 
(0.00) 

 0.26 
(0.61) 

0.00 
(0.00) 

0.63 
(0.80) 

0.25 0.00 

(0.00) 

0.01 

(0.10) 

0.00 

(0.00) 

 0.25 

(0.78) 

0.00 

(0.00) 

4.22 

(1.19) 
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Year 3 

 

CP 

1 0.01 

(0.10) 

0.00 

(0.00) 

0.00 

(0.00) 

 0.31 

(0.66) 

0.00 

(0.00) 

0.00 

(0.00) 

0.50 0.01 

(0.10) 

0.00 

(0.00) 

0.00 

(0.00) 

 0.80 

(1.15) 

0.00 

(0.00) 

0.46 

(0.66) 

0.25 0.02 

(0.14) 

0.00 

(0.00) 

0.00 

(0.00) 

 1.82 

(1.60) 

3.62 

(1.48) 

5.95 

(1.87) 

 

VP 

1 0.03 

(0.17) 

0.00 

(0.00) 

0.00 

(0.00) 

 0.82 

(1.03) 

0.00 

(0.00) 

0.00 

(0.00) 
0.50 0.01 

(0.10) 

0.00 

(0.00) 

0.00 

(0.00) 

 2.94 

(2.03) 

0.85 

(0.86) 

1.05 

(0.96) 

0.25 0.00 

(0.00) 

0.00 

(0.00) 

0.00 

(0.00) 

 4.06 

(2.01) 

7.21 

(1.42) 

7.11 

(1.50) 

 

ZP 

1 0.03 

(0.17) 

0.00 

(0.00) 

0.00 

(0.00) 

 0.72 

(0.99) 

0.00 

(0.00) 

0.00 

(0.00) 

0.50 0.02 

(0.14) 

0.00 

(0.00) 

0.00 

(0.00) 

 2.70 

(1.95) 

1.15 

(0.98) 

1.62 

(1.15) 

0.25 0.02 

(0.14) 

0.00 

(0.00) 

0.00 

(0.00) 

 3.94 

(2.01) 

7.26 

(1.47) 

7.92 

(1.61) 

* The numbers in the above table are the average number of correctly or incorrectly classified teachers 

across 100 replications. 
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Figure 4.6a Mean Correct Classifications Based on SE for CP in Year 1 

 

Figure 4.6b Mean Correct Classifications Based on SE for VP in Year 1 

 

Figure 4.6c Mean Correct Classifications Based on SE for ZP in Year 1 
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Figure 4.6d Mean Correct Classifications Based on SE for CP in Year 2 

 

Figure 4.6e Mean Correct Classifications Based on SE for VP in Year 2 

 

Figure 4.6f Mean Correct Classifications Based on SE for ZP in Year 2 
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Figure 4.6g Mean Correct Classifications Based on SE for CP in Year 3 

 

Figure 4.6h Mean Correct Classifications Based on SE for VP in Year 3 

 

Figure 4.6i Mean Correct Classifications Based on SE for ZP in Year  
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 4.2.2.2 Comparison Based on Quintile Grouping  

Table 4.7 presents the number of incorrect and correct classifications based on 

quintile grouping under the 27 simulation conditions in different years and the 

corresponding standard deviations in the parenthesis. To compare the CB and SU method, 

comparison of the number of incorrect classifications needs to be carried out between the 

first and the third column; to compare the CB and CU method, comparison of the number 

of incorrect classifications needs to be carried out between the first and the second 

column. In the first column (CB), the number of incorrect classifications ranges from 

3.49 to 12.62 with a mean of 6.39, in the second column (CU) the number of incorrect 

classifications ranges from 1.94 to 15.28 with a mean of 6.21, and in the third column 

(SU) the number of incorrect classifications ranges from 1.63 to 10.33 with a mean of 

4.86. In terms of the number of correct classifications, comparison needs to be carried out 

between the fourth and the sixth column and between the fourth and the fifth column. In 

the fourth column (CB), the number of correct classifications ranges from 19.38 to 28.51 

with a mean of 25.61, in the fifth column (CU) the number of correct classifications 

ranges from 16.72 to 30.06 with a mean of 25.78, and in the sixth column (SU) the 

number of correct classifications ranges from 21.67 to 30.37 with a mean of 27.14.  

Across different simulation conditions and different years, the SU method does a better 

job than the CB method in terms of classification accuracy based on quintile grouping: 

the mean number of incorrectly classified teachers with the SU method is 1.53 less than 

that with the CB method, and the mean number of correctly classified teachers with the 

SU method is 1.53 more than that with the CB method. The CU method does a slightly 

better job than the CB method in terms of classification accuracy based on quintile 
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grouping: the mean number of incorrectly classified teachers with the CU method is 0.18 

less than that with the CB method, and the mean number of correctly classified teachers 

with the CU method is 0.17 more than that with the CB method.  

To further investigate the difference between the CB and SU method, the 

comparison is broken down into different persistence patterns in different years. In terms 

of the number of incorrect classifications, the SU method is consistently lower than the 

CB method for all the persistence patterns in year 1, with the exception of the VP with 

variance equal to 1; In year 2 and year 3, the SU method is consistently lower than the 

CB method, with the exception of the CP and the VP with variance equal to 1. In terms of 

the number of correct classifications, the same pattern exists: the SU method is 

consistently higher than the CB method for all the persistence patterns in year 1, with the 

exception of the VP with variance equal to 1; In year 2 and year 3, the SU method is 

consistently higher than the CB method, with the exception of the CP and the VP with 

variance equal to 1.   

 To further investigate the difference between the CB and CU method, the 

comparison is broken down into different persistence patterns in different years. In terms 

of the number of incorrect classifications, it seems that the CB method has higher values 

than the CU method except for variance equal to 1 for the CP and VP in year 1, and for 

the ZP this pattern is reversed; for all the persistence patterns in year 2 and year 3, the 

number of incorrect classifications of the CB method is consistently higher than that of 

the CU method, except when the variance is equal to 1. In terms of the number of correct 

classifications, the patterns are similar to those of the number of incorrect classifications: 

the CB method has lower values than the CU method except when the variance is equal 
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to 1 for the CP and VP in year 1, and for the ZP this pattern is reversed; for all the models 

in year 2 and year 3, the number of correct classifications of the CB method is 

consistently lower than that of the CU method, except when the variance is equal to 1. 

The differences of both incorrect and correct classification rate between the CB and the 

CU methods are marginal. 

Graphs showing the percentage of incorrect and correct classifications based on 

quintile grouping for different persistence models in different years are presented in 

Figures 4.7a through 4.7r. 

 

 

 

Table 4.7 Correct and Incorrect Classifications Based on Quintile Grouping 

 

 

 

Year 

 

Persistence 
Pattern 

 

Variance 
Incorrect Classifications  Correct Classifications 

Vertical Scaling Method  Vertical Scaling Method 

CB CU SU  CB CU SU 

 
 

 

 

Year 1 

 
CP 

1 4.47 
(0.77) 

4.59 
(0.51) 

2.94 
(0.60) 

 27.53 
(0.77) 

27.41 
(0.51) 

29.06 
(0.60) 

0.50 3.70 

(0.73) 

3.10 

(0.30) 

3.16 

(0.51) 

 28.30 

(0.73) 

28.90 

(0.30) 

28.84 

(0.51) 

0.25 3.87 

(0.90) 

3.48 

(0.67) 

1.65 

(0.89) 

 28.13 

(0.90) 

28.52 

(0.67) 

30.35 

(0.89) 

 

VP 

1 5.18 

(1.12) 

6.19 

(0.72) 

6.14 

(0.70) 

 26.82 

(1.12) 

25.81 

(0.72) 

25.86 

(0.70) 

0.50 5.16 

(1.06) 

4.91 

(0.88) 

4.97 

(0.89) 

 26.84 

(1.06) 

27.09 

(0.88) 

27.03 

(0.89) 

0.25 4.88 

(1.32) 

4.82 

(1.00) 

4.74 

(0.88) 

 27.12 

(1.32) 

27.18 

(1.00) 

27.26 

(0.88) 

 

ZP 

1 12.62 

(1.85) 

12.15 

(1.07) 

7.04 

(0.60) 

 19.38 

(1.85) 

19.85 

(1.07) 

24.96 

(0.60) 
0.50 12.17 

(2.65) 

13.10 

(1.47) 

6.69 

(0.85) 

 19.83 

(2.65) 

18.90 

(1.47) 

25.31 

(0.85) 

0.25 11.96 

(2.59) 

12.39 

(1.59) 

5.76 

(0.83) 

 20.04 

(2.59) 

19.61 

(1.59) 

26.24 

(0.83) 
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Year 2 

 

CP 

1 5.30 

(1.59) 

6.80 

(0.90) 

6.26 

(1.02) 

 26.70 

(1.59) 

25.20 

(0.90) 

25.74 

(1.02) 

0.50 5.18 

(1.28) 

4.09 

(0.59) 

3.70 

(0.76) 

 26.82 

(1.28) 

27.91 

(0.59) 

28.30 

(0.76) 

0.25 3.65 

(1.40) 

1.94 

(0.66) 

1.63 

(0.71) 

 28.35 

(1.40) 

30.06 

(0.66) 

30.37 

(0.71) 

 

VP 

1 5.41 

(1.48) 

7.02 

(0.72) 

7.66 

(0.96) 

 26.59 

(1.48) 

24.98 

(0.72) 

24.34 

(0.96) 
0.50 5.01 

(1.57) 

4.18 

(0.77) 

4.06 

(0.80) 

 26.99 

(1.57) 

27.82 

(0.77) 

27.94 

(0.80) 

0.25 3.71 

(1.49) 

2.14 

(0.80) 

1.87 

(0.77) 

 28.29 

(1.49) 

29.86 

(0.80) 

30.13 

(0.77) 

 

ZP 

1 11.87 

(2.30) 

15.28 

(1.02) 

9.74 

(0.89) 

 20.13 

(2.30) 

16.72 

(1.02) 

22.26 

(0.89) 

0.50 6.87 

(2.18) 

5.67 

(0.89) 

4.32 

(0.83) 

 25.13 

(2.18) 

26.33 

(0.89) 

27.68 

(0.86) 

0.25 8.23 

(2.30) 

6.05 

(1.34) 

1.73 

(0.78) 

 23.77 

(2.30) 

25.95 

(1.34) 

30.27 

(0.78) 

 

 

 
 

Year 3 

 

CP 

1 9.37 

(1.53) 

11.05 

(0.81) 

10.33 

(1.10) 

 22.63 

(1.53) 

20.95 

(0.81) 

21.67 

(1.10) 

0.50 4.70 
(1.62) 

2.83 
(0.90) 

2.30 
(0.89) 

 27.30 
(1.62) 

29.17 
(0.90) 

29.70 
(0.89) 

0.25 5.90 

(1.93) 

4.24 

(1.34) 

3.73 

(1.06) 

 26.10 

(1.93) 

27.76 

(1.34) 

28.27 

(1.06) 

 

VP 

1 7.92 

(1.78) 

9.87 

(0.99) 

10.06 

(0.92) 

 24.08 

(1.78) 

22.13 

(0.99) 

21.94 

(0.92) 

0.50 3.49 

(1.57) 

2.21 

(0.77) 

2.11 

(0.72) 

 28.51 

(1.57) 

29.79 

(0.77) 

29.89 

(0.72) 

0.25 4.67 

(2.27) 

3.37 

(1.28) 

3.44 

(1.23) 

 27.33 

(2.27) 

28.63 

(1.28) 

28.56 

(1.23) 

 

ZP 

1 8.56 

(1.77) 

10.25 

(0.94) 

9.66 

(1.03) 

 23.44 

(1.77) 

21.75 

(0.94) 

22.34 

(1.03) 

0.50 3.79 

(1.55) 

2.17 

(0.77) 

1.87 

(0.79) 

 28.21 

(1.55) 

29.83 

(0.77) 

30.13 

(0.79) 

0.25 5.00 
(2.04) 

3.95 
(1.18) 

3.54 
(1.22) 

 27.00 
(2.04) 

28.05 
(1.18) 

28.46 
(1.22) 

* The numbers in the above table are the average number of correctly or incorrectly classified teachers 

across 100 replications. 
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Figure 4.7a Mean Incorrect Classifications Based on Quintile Grouping for CP in Year 1 

 

Figure 4.7b Mean Incorrect Classifications Based on Quintile Grouping for VP in Year 1 

 

Figure 4.7c Mean Incorrect Classifications Based on Quintile Grouping for ZP in Year 1 
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Figure 4.7d Mean Incorrect Classifications Based on Quintile Grouping for CP in Year 2 

 

Figure 4.7e Mean Incorrect Classifications Based on Quintile Grouping for VP in Year 2 

 

Figure 4.7f Mean Incorrect Classifications Based on Quintile Grouping for ZP in Year 2 
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Figure 4.7g Mean Incorrect Classifications Based on Quintile Grouping for CP in Year 3 

 

Figure 4.7h Mean Incorrect Classifications Based on Quintile Grouping for VP in Year 3 

 

Figure 4.7i Mean Incorrect Classifications Based on Quintile Grouping for ZP in Year 3 
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Figure 4.7j Mean Correct Classifications Based on Quintile Grouping for CP in Year 1 

 

Figure 4.7k Mean Correct Classifications Based on Quintile Grouping for VP in Year 1 

 

Figure 4.7l Mean Correct Classifications Based on Quintile Grouping for ZP in Year 1 
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Figure 4.7m Mean Correct Classifications Based on Quintile Grouping for CP in Year 2 

 

Figure 4.7n Mean Correct Classifications Based on Quintile Grouping for VP in Year 2 

 

Figure 4.7o Mean Correct Classifications Based on Quintile Grouping for ZP in Year 2 
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Figure 4.7p Mean Correct Classifications Based on Quintile Grouping for CP in Year 3 

 

Figure 4.7q Mean Correct Classifications Based on Quintile Grouping for VP in Year 3 

 

Figure 4.7r Mean Correct Classifications Based on Quintile Grouping for ZP in Year 3 
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 4.2.2.3 Comparison Based on Tercile Grouping  

Table 4.8 presents the number of incorrect and correct classifications based on 

tercile grouping under the 27 simulation conditions in different years and the 

corresponding standard deviations in the parenthesis. To compare the CB and SU method, 

comparison of the number of incorrect classifications needs to be carried out between the 

first and the third column; to compare the CB and CU method, comparison of the number 

of incorrect classifications needs to be carried out between the first and the second 

column. In the first column (CB), the number of incorrect classifications ranges from 1.9 

to 9.75 with a mean of 4.32, in the second column (CU) the number of incorrect 

classifications ranges from 0.9 to 11.76 with a mean of 4.15,  and in the third column (SU) 

the number of incorrect classifications ranges from 0.31 to 7.24 with a mean of 2.87. In 

terms of the number of correct classifications, comparison needs to be carried out 

between the fourth and the sixth column and between the fourth and the fifth column. In 

the fourth column (CB), the number of correct classifications ranges from 16.25 to 24.1 

with a mean of 21.68, in the fifth column (CU) the number of correct classifications 

ranges from 14.04 to 25.1 with a mean of 21.85, and in the sixth column (SU) the number 

of correct classifications ranges from 18.76 to 25.69 with a mean of 23.10.  Across 

different simulation conditions and different years it seems that the SU method does a 

better job than the CB method in terms of classification accuracy based on tercile 

grouping: the mean number of incorrectly classified teachers with the SU method is 1.45 

less than that with the CB method, and the mean number of correctly classified teachers 

with the SU method is 1.42 more than that with the CB method. The CU method does a 

better job than the CB method in terms of classification accuracy based on tercile 
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grouping: the mean number of incorrectly classified teachers with the SU method is 0.17 

less than that with the CB method, and the mean number of correctly classified teachers 

with the SU method is 0.17 more than that with the CB method.  

To further investigate the difference between the CB and SU method, the 

comparison is broken down into different persistence patterns in different years. In terms 

of the number of incorrect classifications, the SU method is consistently lower than the 

CB method for all the persistence patterns in year 1, with the exception of VP with 

variance equal to 1 and 0.5; In year 2 and year 3, the SU method is consistently lower 

than the CB method, with the exception with variance equal to 1. In terms of the number 

of correct classifications, the same pattern exists: the SU method is consistently higher 

than the CB method for all the persistence patterns in year 1, with the exception of the VP 

model with variance equal to 1 and 0.5; In year 2 and year 3, the SU method is 

consistently lower than the CB method, with the exception with variance equal to 1. 

To further investigate the difference between the CB and CU method, the 

comparison is broken down into different persistence patterns in different years. In terms 

of the number of incorrect classifications, it seems that in year 1 the CB method has 

higher values than the CU method except for variance equal to 0.5 for CP, and for VP the 

CB method has higher values than the CU method only when the variance is equal to 

0.25, and for ZP the CB method has higher values than the CU method only when the 

variance is equal to 1; for all the models in year 2 and year 3, the number of incorrect 

classifications of the CB method is consistently higher than that of the CU method, 

except when the variance is equal to 1. In terms of the number of correct classifications, 

the patterns are similar to those of the number of incorrect classifications: in year 1 for 
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CP, the CB method has lower values than the CU method except for variance equal to 0.5, 

and for VP the CB method has lower values than the CU method only when the variance 

is equal to 0.25, and for ZP the CB method has lower values than the CU method only 

when the variance is equal to 1; for all the models in year 2 and year 3, the number of 

correct classifications of the CB method is consistently lower than that of the CU method, 

except when the variance is equal to 1. The differences of both incorrect and correct 

classifications between the CB and the CU methods, as can be seen in Table 4.8, are 

marginal. 

Graphs showing the percentage of incorrect and correct classifications based on 

tercile grouping for different persistence models in different years are presented in 

Figures 4.8a through 4.8r. 

 

 

Table 4.8 Correct and Incorrect Classifications Based on Tercile Grouping 

 
 

 

Year 

 

Persistence 

Pattern 

 

Variance 
Incorrect Classifications  Correct Classifications 

Scoring Method  Scoring Method 

CB CU SU  CB CU SU 

 

 

 

 

Year 1 

 

CP 

1 3.08 

(0.93) 

2.96 

(0.57) 

1.12 

(0.36) 

 22.92 

(0.93) 

23.04 

(0.57) 

24.88 

(0.36) 

0.50 2.75 

(0.72) 

2.99 

(0.10) 

1.66 

(0.81) 

 23.25 

(0.72) 

23.01 

(0.10) 

24.34 

(0.81) 

0.25 2.11 

(0.98) 

1.66 

(0.65) 

0.31 

(0.49) 

 23.89 

(0.98) 

24.34 

(0.65) 

25.69 

(0.49) 

 

VP 

1 3.48 

(1.11) 

3.90 

(0.73) 

3.91 

(0.71) 

 22.52 

(1.11) 

22.10 

(0.73) 

22.09 

(0.71) 
0.50 3.26 

(0.85) 

3.34 

(0.48) 

3.32 

(0.47) 

 22.74 

(0.85) 

22.66 

(0.48) 

22.68 

(0.47) 

0.25 2.70 

(1.11) 

1.85 

(0.77) 

2.39 

(0.76) 

 23.30 

(1.11) 

24.15 

(0.77) 

23.61 

(0.76) 

 

ZP 

1 9.75 

(1.76) 

9.73 

(1.02) 

5.48 

(0.54) 

 16.25 

(1.76) 

16.27 

(1.02) 

20.52 

(0.54) 

0.50 9.25 

(2.30) 

9.92 

(1.20) 

3.95 

(0.56) 

 16.75 

(2.30) 

16.08 

(1.20) 

22.05 

(0.56) 

0.25 9.37 

(2.28) 

9.66 

(1.22) 

4.00 

(0.49) 

 16.63 

(2.28) 

16.34 

(1.22) 

22.00 

(0.49) 
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Year 2 

 

CP 

1 2.98 

(1.11) 

3.73 

(0.85) 

3.10 

(1.10) 

 23.02 

(1.11) 

22.27 

(0.85) 

22.90 

(1.10) 

0.50 3.11 

(0.98) 

2.49 

(0.86) 

2.08 

(0.91) 

 22.89 

(0.98) 

23.51 

(0.86) 

23.92 

(0.91) 

0.25 2.04 

(0.97) 

0.98 

(0.70) 

0.81 

(0.49) 

 23.96 

(0.97) 

25.02 

(0.70) 

25.19 

(0.49) 

 

VP 

1 3.01 

(1.26) 

3.36 

(0.77) 

4.23 

(1.19) 

 22.99 

(1.26) 

22.64 

(0.77) 

21.77 

(1.19) 
0.50 3.23 

(1.22) 

2.66 

(0.68) 

2.62 

(0.72) 

 22.77 

(1.22) 

23.34 

(0.68) 

23.38 

(0.72) 

0.25 2.13 

(1.13) 

1.12 

(0.52) 

0.90 

(0.50) 

 23.87 

(1.13) 

24.88 

(0.52) 

25.10 

(0.50) 

 

ZP 

1 9.04 

(2.24) 

11.96 

(1.09) 

6.02 

(0.78) 

 16.96 

(2.24) 

14.04 

(1.09) 

19.98 

(0.78) 

0.50 4.63 

(1.77) 

3.78 

(0.97) 

2.62 

(0.68) 

 21.37 

(1.77) 

22.22 

(0.97) 

23.38 

(0.68) 

0.25 5.93 

(2.09) 

4.31 

(1.08) 

0.82 

(0.64) 

 20.07 

(2.09) 

21.69 

(1.08) 

25.18 

(0.64) 

 

 

 
 

Year 3 

 

CP 

1 6.82 

(1.37) 

8.36 

(0.81) 

7.24 

(0.93) 

 19.18 

(1.37) 

17.64 

(0.81) 

18.76 

(0.93) 

0.50 2.75 
(1.47) 

1.57 
(0.81) 

1.13 
(0.73) 

 23.25 
(1.47) 

24.43 
(0.81) 

24.87 
(0.73) 

0.25 3.96 

(1.67) 

2.05 

(0.95) 

1.74 

(1.00) 

 22.04 

(1.67) 

23.95 

(0.95) 

24.26 

(1.00) 

 

VP 

1 5.64 

(1.43) 

7.11 

(0.94) 

7.03 

(1.07) 

 20.36 

(1.43) 

18.89 

(0.94) 

18.97 

(1.07) 

0.50 1.90 

(1.15) 

0.90 

(0.67) 

0.82 

(0.69) 

 24.10 

(1.15) 

25.10 

(0.67) 

25.18 

(0.69) 

0.25 2.77 

(1.56) 

1.56 

(1.01) 

1.53 

(1.03) 

 23.23 

(1.56) 

24.44 

(1.01) 

24.47 

(1.03) 

 

ZP 

1 6.02 

(1.55) 

7.38 

(0.80) 

6.89 

(0.93) 

 19.98 

(1.55) 

18.62 

(0.80) 

19.11 

(0.93) 

0.50 2.04 

(1.30) 

0.97 

(0.69) 

0.79 

(0.64) 

 23.96 

(1.30) 

25.03 

(0.69) 

25.21 

(0.64) 

0.25 2.89 
(1.46) 

1.87 
(1.00) 

1.80 
(0.94) 

 23.11 
(1.46) 

24.13 
(1.00) 

24.20 
(0.94) 

* The numbers in the above table are the average number of correctly or incorrectly classified teachers 

across 100 replications. 
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Figure 4.8a Mean Incorrect Classifications Based on Tercile Grouping for CP in Year 1 

 

Figure 4.8b Mean Incorrect Classifications Based on Tercile Grouping for VP in Year 1 

 

Figure 4.8c Mean Incorrect Classifications Based on Tercile Grouping for ZP in Year 1 
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Figure 4.8d Mean Incorrect Classifications Based on Tercile Grouping for CP in Year 2 

 

Figure 4.8e Mean Incorrect Classifications Based on Tercile Grouping for VP in Year 2 

 

Figure 4.8f Mean Incorrect Classifications Based on Tercile Grouping for ZP in Year 2 
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Figure 4.8g Mean Incorrect Classifications Based on Tercile Grouping for CP in Year 3 

 

Figure 4.8h Mean Incorrect Classifications Based on Tercile Grouping for VP in Year 3 

 

Figure 4.8i Mean Incorrect Classifications Based on Tercile Grouping for ZP in Year 3 
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Figure 4.8j Mean Correct Classifications Based on Tercile Grouping for CP in Year 1 

 

Figure 4.8k Mean Correct Classifications Based on Tercile Grouping for VP in Year 1 

 

Figure 4.8l Mean Correct Classifications Based on Tercile Grouping for ZP in Year 1 
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Figure 4.8m Mean Correct Classifications Based on Tercile Grouping for CP in Year 2 

 

Figure 4.8n Mean Correct Classifications Based on Tercile Grouping for VP in Year 2 

 

Figure 4.8o Mean Correct Classifications Based on Tercile Grouping for ZP in Year 2 
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Figure 4.8p Mean Correct Classifications Based on Tercile Grouping for CP in Year 3 

 

Figure 4.8q Mean Correct Classifications Based on Tercile Grouping for VP in Year 3 

 

Figure 4.8r Mean Correct Classifications Based on Tercile Grouping for ZP in Year 3 
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4.3 Test of Between-Subject Effects (ANOVA) 

 It should be noted that assumptions of factorial ANOVA were checked and it was 

found that the normality assumption might be violated: some of the skewness and 

kurtosis values are significantly different from 0, although most of them are within the 

range of (-1, 1). It is determined that violation of normality assumption in this study does 

not pose serious threats to validity of the ANOVA results based on the following 

rationales: 

1. The range of (-1, 1) of the skewness and kurtosis values does not constitute as 

an extreme departure from normality.  

2. Considering the sample size within each cell (n=100), normality can be 

approximately assumed based on the central limit theorem. 

3. The balanced design further alleviates the concern of threats to internal 

validity caused by violation of normality assumption. 

Therefore, no efforts were made to transform the outcome variables. The results 

of three-way analysis of variance (ANOVA) of correlation and correct classifications for 

the three manipulated factors are presented in Tables 4.9, 4.10, 4.11, and 4.12.  The p 

values and eta squared values are reported in the tables, and only the effects of the 

manipulated factors with significant p values (p<.05) and practical significance (eta
2
>.05) 

are discussed. 
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Table 4.9 Tests of Between-subject Effects on Correlation between Teacher Effect 

Estimates and the Generating Values 

Correlation Year 1 Year 2 Year 3 

 p-value eta2 p-value eta2 p-value eta2 

Persistence 

Pattern  
 

0.000 

 

0.7816 

 

0.000 
 

0.4280 

 

0.000 
 

0.0189 
Variance 0.000 0.0069 0.000 0.2796 0.000 0.9132 

Method 0.000 0.0826 0.000 0.0604 0.000 0.0017 

P*V 0.000 0.0111 0.000 0.0946 0.000 0.0013 

P*M 0.000 0.1048 0.000 0.0835 0.000 0.0022 

V*M 0.000 0.0058 0.000 0.0260 0.000 0.0614 

P*V*M 0.000 0.0072 0.000 0.0280 0.000 0.0012 

 

Table 4.9 summarizes the ANOVA results when the correlation is compared. In 

terms of main effects, persistence pattern affects the correlations in year 1 and year 2 

significantly and accounts for 78.16% (large effect) of the total variance in year 1 and 

42.80% (large effect) of that in year 2; choice of vertical scaling methods also affects the 

correlation in year 1 and year 2 significantly and accounts for 8.26% (medium effect) of 

the total variance in year 1 and 6.04% (small effect) of that in year 2; magnitude of 

construct shift, which is represented by variance in the table, affects the correlation in 

year 2 and year 3 significantly and accounts for 27.96% (large effect) of the total variance 

in year 2 and 91.32% (large effect) of that in year 3. In terms of interaction effects, the 

combination of persistence pattern and vertical scaling methods affects the correlation in 

year 1 and year 2 significantly and accounts for 10.24% (medium effect) of the total 

variance in year 1 and 8.35% (medium effect) of that in year 2; the combination of 

persistence pattern and magnitude of construct shift affects the correlation in year 2 

significantly and accounts for 9.46% (medium effect) of the total variance; the 

combination of magnitude of construct shift and vertical scaling methods method affects 
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the correlation in year 3 significantly and accounts for 6.14% (small effect) of the total 

variance. 

 

Table 4.10 Tests of Between-subject Effects on Correct Classifications Based on 

Standard Error 

Correct 

Classification 

 

Year 1 

 

Year 2 

 

Year 3 

 p-value eta2 p-value eta2 p-value eta2 

Persistence 

Pattern  
 

0.000 
 

0.8954 

 

0.000 
 

0.3979 

 

0.000 
 

0.0564 

Variance 0.000 0.0378 0.000 0.3341 0.000 0.7536 

Method 0.000 0.0009 0.000 0.0058 0.000 0.0114 

P*V 0.000 0.0187 0.000 0.0988 0.000 0.0295 
P*M 0.000 0.0202 0.000 0.0442 0.000 0.0055 

V*M 0.000 0.0147 0.000 0.0832 0.000 0.1353 

P*V*M 0.000 0.0123 0.000 0.0362 0.000 0.0083 

 

Table 4.10 summarizes the ANOVA results when the number of correct 

classifications based on standard error is compared. In terms of main effect, persistence 

pattern affects the correct classifications in all three years significantly and accounts for 

89.54% (large effect) of the total variance in year 1, 39.79% (large effect) of that in year 

2, and 5.64% (small effect) of that in year 3; magnitude of construct shift affects the 

correct classifications in year 2 and year 3 significantly and accounts for 33.41% (large 

effect) of the total variance in year 2 and 75.36% (large effect) of that in year 3. In terms 

of interaction effect, the combination of persistence model and magnitude of construct 

shift affects the correct classifications in year 2 significantly and accounts for 9.88% 

(medium effect) of the total variance; the combination of magnitude of construct shift and 

vertical scaling methods affects the correct classifications in year 2 and year 
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3significantly and accounts for 8.32% (medium effect) of the total variance in year 2 and 

13.53% (medium effect) of that in year 3. 

 

Table 4.11 Tests of Between-subject Effects on Correct Classifications Based on Quintile 

Grouping 

Correct 

Classification 

 

Year 1 

 

Year 2 

 

Year 3 

 p-value eta2 p-value eta2 p-value eta2 

Persistence 

Patten 
 

0.000 
 

0.7478 

 

0.000 
 

0.2601 

 

0.000 
 

0.0127 

Variance 0.000 0.0106 0.000 0.4554 0.000 0.9205 

Method 0.000 0.1057 0.000 0.0514 0.000 0.0088 

P*V 0.000 0.0021 0.000 0.0873 0.082 0.0006 
P*M 0.000 0.1251 0.000 0.0616 0.000 0.0034 

V*M 0.000 0.0024 0.000 0.0664 0.000 0.0535 

P*V*M 0.000 0.0063 0.000 0.0177 0.434 0.0005 

 

Table 4.11 summarizes the ANOVA results when the number of incorrect 

classifications based on quintile grouping is compared. In terms of main effect, 

persistence pattern affects the correct classifications in year 1 and year 2 significantly and 

accounts for 74.58% (large effect) of the total variance in year 1 and 26.01% (large effect) 

of that in year 2; magnitude of construct shift affects the correct classifications in year 2 

and year 3 significantly and accounts for 45.54% (large effect) of the total variance in 

year 2 and 92.05% (large effect) of that in year 3; vertical scaling method affects the 

correct classifications in year 1 and year 2 significantly and accounts for 10.57% 

(medium effect) of the total variance in year 1 and 5.14% (small effect) of that in year 2. 

In terms of interaction effect, the combination of persistence pattern and magnitude of 

construct shift affects the correct classifications in year 2 significantly and accounts for 
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8.73% (medium effect) of the total variance; the combination of persistence pattern and 

vertical scaling method affects the correct classifications in year 1 and year 2 

significantly and accounts for 12.51% (medium effect) of the total variance in year 1 and 

6.16% (small effect) of that in year 2; the combination of magnitude of construct shift 

and vertical scaling methods affects the correct classifications in year 2 and year 3 

significantly and accounts for 6.64% (small effect) of the total variance in year 2 and 5.35% 

(small effect) of that in year 3. 

 

Table 4.12 

 Tests of Between-subject Effects on Correct Classifications Based on Tercile Grouping 

Correct 

Classification 

 

Year 1 

 

Year 2 

 

Year 3 

 p-value eta2 p-value eta2 p-value eta2 
Persistence 

Pattern  
 

0.000 
 

0.7251 

 

0.000 
 

0.3333 

 

0.000 
 

0.0143 

Variance 0.000 0.0212 0.000 0.2957 0.000 0.9201 

Method 0.000 0.1205 0.000 0.0680 0.000 0.0109 

P*V 0.000 0.0054 0.000 0.1408 0.060 0.0006 

P*M 0.000 0.1210 0.000 0.0873 0.000 0.0034 

V*M 0.000 0.0020 0.000 0.0411 0.000 0.0493 

P*V*M 0.000 0.0047 0.000 0.0338 0.010 0.0014 

 

Table 4.12 summarizes the ANOVA results when the number of incorrect classifications 

based on tercile grouping is compared. In terms of main effect, persistence pattern affects 

the correct classifications in year 1 and year 2 significantly and accounts for 72.51% 

(large effect) of the total variance in year 1 and 33.33% (large effect) of that in year 2; 

magnitude of construct shift affects the correct classifications in year 2 and year 3 

significantly and accounts for 29.57% (large effect) of the total variance in year 2 and 



 

110 
 

92.01% (large effect) of that in year 3; choice of vertical scaling methods affects the 

correct classifications in year 1 and year 2 significantly and accounts for 12.05% 

(medium effect) of the total variance in year 1 and 6.80% (small effect) of that in year 2. 

In terms of interaction effect, the combination of persistence pattern and magnitude of 

construct shift affects the correct classifications in year 2 significantly and accounts for 

14.08% (medium effect) of the total variance; the combination of persistence pattern and 

vertical scaling methods affects the correct classifications in year 1 and year 2 

significantly and accounts for 12.10% (medium effect) of the total variance in year 1 and 

8.73% (medium effect) of that in year 2. 

 

4.4 Summary of the Main Findings 

 The accuracy of the SU method is largely influenced by persistence pattern, 

variance, and time.  In terms of the correlation between the teacher effect estimates and 

the generating values, CP produced the highest correlation with a mean value of 0.80 

across different variances and different years while ZP leads to the lowest with a mean 

value of 0.67. With the decrease of the magnitude of construct shift, the correlation for all 

models tends to increase, with the most dramatic increase occurring from variance 1.0 to 

variance 0.5 in year 3.  

 In terms of incorrect classifications based on standard errors, the SU method 

performs extremely well: in year 2 and year 3 not a single teacher is incorrectly classified; 

in year 1, incorrect classification occurs with VP and ZP at variance 1.0, and it should be 

noted that the values are negligibly small. In terms of correct classifications based on 
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standard errors, the performance of the SU method depends on persistence pattern, 

variance, and time. In year 1 and year 2, number of correct classifications seems to 

decrease with the decrease of the persistence of teacher effect in the sense that CP tends 

to perform the best and ZP the worst; in year 3, this pattern seems to be reversed. Another 

finding is that in year 2 and year 3, with the decrease of magnitude of construct shift the 

SU method tends to correctly classify more teachers, and when the variance is equal to 1, 

it performs poorly. 

 Classifications based on quintile and tercile groupings have similar patterns, and 

are summarized as follows. The number of incorrect classifications decreases with the 

decrease of the magnitude of construct shift regardless of the persistence pattern and year; 

in year 1 and year 2 the number of classifications decreases with the increase of the 

persistence of teacher effect, and in year 3 this persistence has no noticeable impact upon 

the number of incorrect classifications. In terms of correct classifications, while the 

persistence of teacher effect seems not to be influential, the general pattern is that the 

correct classification rate increases with the decrease of the magnitude of construct shift 

regardless of the persistence pattern and year. 

 Comparison of the three vertical scaling methods is conducted and there are 

several findings. The first one is that the SU method tends to perform better than both the 

CB and the CU methods in most simulation conditions. For some conditions, the CB 

method performs better, although the difference tends to be negligible. The next finding 

is that despite the fact that the SU method is devised to tackle the issue of construct shift, 

its performance is still influenced by the magnitude of construct shift. The third finding is 

that the CB method does not perform considerably better than the CU method as expected. 
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When the magnitude of construct shift is large (variance = 1), it tends to perform 

marginally better than the CU method; when the variance is smaller than 1, the CU 

method tends to be marginally better. It should be noted that the differences between 

those two methods are rather small and it is reasonable to conclude that they perform 

similarly. The last main finding is that when classification is the purpose, the standard 

error based approach misclassifies almost no teachers at the expense of correctly 

classifying considerably fewer teachers. 
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CHAPTER 5: REAL DATA ANALYSIS 

 

 Mariano et al. (2010) fit the GP model in a real data set and found that while the 

GP model had the best model fit among all persistence models, the proximal year teacher 

effect estimates between the GP model and the VP model were extremely highly 

correlated. Therefore, they concluded that for that particular data set they used, choosing 

the GP model over the VP model might not make a difference in terms of teacher effect 

estimation. Aware of the fact that their conclusions were based on a single data set, they 

suggested that other real data sets should be used to investigate the generalizability of 

their findings. This chapter addresses this question and provides another example of 

applying the GP model to a real data set. Section 5.1describes the data set, section 5.2 

lists the specific questions related to this data set, and section 5.3 provides the results and 

the analysis. 

 

5.1 Data 

The data were three years of math scores (2008, 2009, and 2010) on a state 

achievement test from grade 3 to grade 8. This test is not vertically scaled, which aligns 

well with Mario et al.’s suggestion of evaluating the performance of the GP model with 

test data that does not have a development scale. In the dataset there were four cohorts: 

cohort1 (grade 3 through grade 5), cohort2 (grade 4 through grade 6), cohort3 (grade 5 

through grade 7), and cohort 4 (grade 6 through grade 8). Table 5.1 summarizes the 

sample size of each cohort: 



 

114 
 

 

Table 5.1 Cohort Sample Size   

 

Cohort 

Year 

2008 2009 2010 

Cohort1 7246 7336 7273 

Cohort2 7251 7337 7107 

Cohort3 7321 7095 7052 

Cohort4 7374 7282 7201 

 

One common phenomenon of longitudinal data is missing data, and the data set 

used in this study was no exception. If the missing data issue is ignored, the sample size 

becomes 8522 for cohort 1, 8610 for cohort2, 8656 for cohort3, and 8617 for cohort4. If 

the observations with missing data are deleted, the sample size becomes 6074 for cohort 

1, 5850 for cohort2, 5842 for cohort3, and 6089 for cohort4. Considering that from about 

42% to 80% of students have at least one year of missing score out of four to five year 

testing (McCaffrey & Lockwood, 2011), approximately 30% of students having missing 

data out of three year testing in this data is not surprising. Moreover, the GP model is 

flexible enough to accommodate the missing data issue and those observations with 

missing scores need not to be deleted.  Table 5.2 lists the descriptive statistics of each 

cohort’s score at each of the three years: 
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Table 5.2 Descriptive Statistics of Scores 

Cohort Year Mean SD Min Max 

 

Cohort1 

2008 421 38 310 585 

2009 431 40 297 650 

2010 433 36 309 650 

 

Cohort2 

2008 430 41 317 584 

2009 432 38 329 650 

2010 427 35 335 650 

 

Cohort3 

2008 430 38 327 589 

2009 423 36 240 650 

2010 422 36 321 568 

 

Cohort4 

2008 428 36 314 566 

2009 424 35 309 650 

2010 429 35 320 572 

 

 

5.2 Research Questions 

Mariano et al. (2010) fit the GP model to an empirical data set, which contains 

vertically scaled mathematic test scores of a cohort of students progressing from grade 1 

to grade 5 in academic years 1997-1998 through 2001-2002. They obtained three main 

findings: 

1. The correlation between proximal year effects and future year effects is about 

0.5 to 0.6, while the correlations among the future year effects are higher than 0.9. 
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2. With the Deviance Information Criterion (DIC; Spiegelhalter, Best, Carlin, & 

van der Linde, 2002), the GP model is the best fitting model comparing to the CP 

model and VP model.  

3. Despite the best mode fit provided by the GP model, estimates of the proximal 

year effects from the GP model and the VP model are extremely highly correlated, 

which makes the computational intensity of the GP model not worthwhile if the 

interest is only in the estimate of the proximal year effects. In contrast, the choice 

between the VP model and the CP model has a much greater impact upon the 

teacher effect estimates. 

 

Based on their findings, the corresponding research questions are: 

1. Are the correlation values between proximal year effects and future year 

effects and among the future year effects in the current data set similar to the 

values Mariano et al. (2010) found? 

2. Does the GP model provide the best model fit to the current data set 

comparing to the CP, VP, and ZP model? 

3. How does the proximal year teacher effects of the GP model compare to those 

of the CP, VP, and CP model in the current data set? 

 

5.3 Results 

 The R package GPvam is used to answer each of the above research questions. 
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 5.3.1 Research Questions 1 

Tables 5.3a to 5.3d present the correlation values between the proximal year 

effects and the future year effects and between the future year effects for the four cohorts. 

The correlation between the proximal year effects and future year effects listed in the 

above four tables are all above 0.84, which are much higher than those values found by 

Mariano et al. (2010). The correlation among future year effects is all above 0.99, which 

is consistent with their finding that those values are above 0.9. 

 

Table 5.3a Correlation in Cohort1 

Year Teacher 
Effect 

Year 1 Year 2 

Proximal Future 1 Future 2 Proximal Future 1 

 
Year 1 

Proximal 1     
Future 1 .988 1    

Future 2 .990 .999 1   

Year 2 

 

Proximal    1  

Future 1    .896 1 

 

Table 5.3b Correlation in Cohort 2 

Year Teacher 

Effect 

Year 1 Year 2 

Proximal Future 1 Future 2 Proximal Future 1 

 

Year 1 

Proximal 1     

Future 1 .995 1    

Future 2 .986 .998 1   

Year 2 

 

Proximal    1  

Future 1    .846 1 

 

Table 5.3c Correlation in Cohort 3 

Year Teacher 

Effect 

Year 1 Year 2 

Proximal Future 1 Future 2 Proximal Future 1 

 

Year 1 

Proximal 1     

Future 1 .984 1    

Future 2 .981 .999 1   

Year 2 

 

Proximal    1  

Future 1    .977 1 
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Table 5.3d Correlation in Cohort 4 

Year Teacher 

Effect 

Year 1 Year 2 

Proximal Future 1 Future 2 Proximal Future 1 

 

Year 1 

Proximal 1     

Future 1 .998 1    

Future 2 .996 .999 1   

Year 2 

 

Proximal    1  

Future 1    .957 1 

 

 5.3.2 Research Questions 2 

 In order to compare different persistence models, Mariano et al. (2010) used DIC, 

a model fit index often seen in hierarchical Bayesian models. When models are estimated 

with maximum likelihood estimation, the Akaike Information Criterion (AIC) is often 

used to compare model fit, and the GPvam package also uses this index. AIC is used as 

the model fit index in this study. Table 5.4 lists the AIC values for all the persistence 

models fit in each of the four cohorts, and the minimum value within each cohort is 

bolded. The pattern is similar to Mariano et al.’s finding that the GP model provides the 

best model fit comparing to the other persistence models. 

Table 5.4 AIC for Different Models in Different Cohorts 

 

Cohort 

Model 

ZP VP CP GP 

Cohort 1 202556.3 199101.6 199649.4 198905.5 

Cohort 2 201260.1 197560 198140.3 197275.5 

Cohort 3 195955.7 193154.8 193716.1 192795.5 

Cohort 4 196928.4 194391.5 194731.8 94292.5 
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 5.3.3 Research Questions 3 

Tables 5.5a to 5.5d present the correlation among the proximal year teacher effect 

estimation of four different persistence models for the four cohorts. Consistent with 

Mariano et al.’s finding, the correlation between the VP and the GP models is extremely 

high regardless of the year, and the correlation between the CP and the VP model seem to 

be less in year 2 and year 3. An interesting finding is that in year 1, the teacher effect 

estimates of the CP and the VP model seem to be also extremely highly correlated.   

 

Table 5.5a Correlation among Teacher Effects Estimates of Different Models in Cohort 1 

Year  
Model 

Year 1 Year 2 Year 3 

CP VP ZP GP CP VP ZP GP CP VP ZP GP 

 
Year   

1 

CP 1            
VP .997 1           

ZP .893 .902 1          

GP .996 .999 .912 1         

Year 

2 

CP     1        

VP     .945 1       

ZP     .518 .739 1      

GP     .886 .976 .799 1     

Year 

3 

CP         1    

VP         .844 1   

ZP         .322 .749 1  

GP         .776 .974 .812 1 

 

Table 5.5b Correlation among Teacher Effects Estimates of Different Models in Cohort 2 

Year  

Model 

Year 1 Year 2 Year 3 

CP VP ZP GP CP VP ZP GP CP VP ZP GP 

 

Year   

1 

CP 1            

VP .996 1           

ZP .801 .824 1          

GP .994 .999 .834 1         

Year 

2 

CP     1        

VP     .868 1       

ZP     .225 .645 1      

GP     .749 .951 .762 1     

Year 

3 

CP         1    

VP         .888 1   

ZP         .560 .852 1  

GP         .883 .986 .855 1 
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Table 5.5c Correlation among Teacher Effects Estimates of Different Models in Cohort 3 

Year  

Model 

Year 1 Year 2 Year 3 

CP VP ZP GP CP VP ZP GP CP VP ZP GP 

 

Year   
1 

CP 1            

VP .991 1           
ZP .848 .890 1          

GP .989 .999 .895 1         

Year 

2 

CP     1        

VP     .911 1       

ZP     .650 .887 1      

GP     .909 .988 .880 1     

Year 

3 

CP         1    

VP         .913 1   

ZP         .668 .889 1  

GP         .917 .993 .879 1 

 

Table 5.5d Correlation among Teacher Effects Estimates of Different Models in Cohort 4 

Year  
Model 

Year 1 Year 2 Year 3 

CP VP ZP GP CP VP ZP GP CP VP ZP GP 

 

Year   

1 

CP 1            

VP .995 1           

ZP .798 .824 1          

GP .994 .999 .830 1         

Year 

2 

CP     1        

VP     .937 1       

ZP     .609 .822 1      

GP     .925 .992 .827 1     

Year 

3 

CP         1    

VP         .855 1   

ZP         .443 .815 1  

GP         .832 .989 .831 1 
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CHAPTER 6: DISCUSSION 
 

 In this final chapter, the main findings of the simulation study and the real data 

analysis are summarized in section 6.1 and discussed in section 6.2. In section 6.3 the 

implications for practice of teacher evaluation are presented. Section 6.4 focuses on the 

limitations of the current study and suggestions for future studies. 

 

6.1 Summary of Findings  

6.1.1 Accuracy of the SU Method 

 The accuracy of the SU method was investigated using the Spearman correlation 

between the teacher estimates and the true values and teacher classification accuracy. The 

Spearman correlation value ranges from 0.47 to 0.91, and is influenced by the choice of 

persistence pattern and magnitude of construct shift. CP has a mean correlation of 0.80, 

VP has a mean correlation of 0.74, and ZP has the lowest correlation value with a mean 

of 0.67. With the increase of the persistence parameter, the correlation increases. The 

mean correlation value is 0.61 when variance is equal to 1, 0.79 when the variance is 

equal to 0.5, and 0.81 when the variance is equal to 0.25. With the increase of the 

magnitude of construct shift, the correlation value decreases. This is somewhat surprising 

considering that the GP model used in the SU method was devised to deal with the issue 

of construct shift. 

 The number of incorrect classifications based on standard errors is negligibly 

small regardless of the model and variance. The number of correct classification based on 

standard errors ranges from 0 to 13.56, and is influenced by the choice of persistence 
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pattern and magnitude of construct shift. For CP the mean of correct classifications is 

6.78, for VP it is 3.95, and for ZP it is 2.14. The mean of correct classifications is 2.83 

when the variance is 1, 3.04 when then variance is 0.5, and 7 when the variance is 0.25. 

As with the Spearman correlation, the number of correct classifications is also influenced 

by the choice of persistence pattern and magnitude of construct shift. 

The number of incorrect classifications based on quintile grouping ranges from 

1.63 to 10.33, and the number of correct classifications ranges from 21.94 to 30.37. For 

CP the mean of incorrect classifications is 3.97 and the mean of correct classifications is 

28.03; for VP the mean of incorrect classifications is 5.01 and the mean of correct 

classifications is 26.99; for ZP the mean of incorrect classifications is 5.59 and the mean 

of correct classifications is 26.41.  

The number of incorrect classifications based on tercile grouping ranges from 

0.31 to 7.24, and the number of correction classifications ranges from 18.76 to 25.69. For 

CP the mean of incorrect classifications is 2.13 and the mean of correct classifications is 

23.87; for VP the mean of incorrect classifications is 2.97 and the mean of correct 

classifications is 23.03; for ZP the mean of incorrect classifications is 3.53 and the mean 

of correct classifications is 22.40.  

To sum up, the classification accuracy heavily depends on the specific approach 

used for classification. When the standard error based approach is used, the chance of 

incorrect classification seems to be negligible, although it is at the expense of correct 

classifications. In most cases the number of correct classifications is below 10, and in 

extreme cases not a single teacher is correctly classified. When quintile or tercile 
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grouping are used as the classification method, the correct classification rate is much 

higher with on average more than 20 teachers correctly classified, which comes with the 

price of increased number of incorrectly classified teachers. In extreme cases, the number 

of incorrect classifications can be higher than 10. 

 

6.1.2 Comparison of Different Methods 

 The comparison of different methods was also conducted using the Spearman 

correlation between the teacher estimates and the true values and teacher classification 

accuracy. For the CB method, the Spearman correlation value ranges from 0.24 to 0.83 

with a mean of 0.66; for the CU method, it ranges from 0.05 to 0.87 with a mean of 0.66; 

for the SU method, it ranges from 0.47 to 0.91 with a mean of 0.74.  

In terms of classification accuracy based on standard errors, for the CB method, 

the number of incorrect classifications ranges from 0 to 0.31 with a mean of 0.05, and the 

number of correct classifications ranges from 0.01 to 11.81 with a mean of 3.80; for the 

CU method, the number of incorrect classifications ranges from 0 to 0.30 with a mean of 

0.01, and the number of correct classifications ranges from 0 to 11.92 with a mean of 

3.93; for the SU method, the number of incorrect classifications ranges from 0 to 0.19 

with a mean of 0.01, and the number of correct classifications ranges from 0 to 13.56 

with a mean of 4.29.  

 In terms of classification accuracy based on quintile grouping, for the CB method, 

the number of incorrect classifications ranges from 3.49 to 12.62 with a mean of 6.39, 

and the number of correct classifications ranges from 19.38 to 28.51 with a mean of 
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25.61; for the CU method, the number of incorrect classifications ranges from 1.94 to 

15.28 with a mean of 6.21, and the number of correct classifications ranges from 16.72 to 

30.06 with a mean of 25.78; for the SU method, the number of incorrect classifications 

ranges from 1.63 to 10.33 with a mean of 4.86, and the number of correct classifications 

ranges from 21.67 to 30.37 with a mean of 27.14.  

 In terms of classification accuracy based on tercile grouping, for the CB method, 

the number of incorrect classifications ranges from 1.9 to 9.75 with a mean of 4.32, and 

the number of correct classifications ranges from 16.25 to 24.1 with a mean of 21.68; for 

the CU method, the number of incorrect classifications ranges from 0.9 to 11.76 with a 

mean of 4.15, and the number of correct classifications ranges from 14.04 to 25.1 with a 

mean of 21.85; for the SU method, the number of incorrect classifications ranges from 

0.31 to 7.24 with a mean of 2.87, and the number of correct classifications ranges from 

18.76 to 25.69 with a mean of 23.10.  

 Overall, the CB and the CU methods perform similarly, while the SU method is 

consistently superior to them. The finding that the SU method is superior to the CB 

method is fairly surprising considering that the CB method does not involve model mis-

specification and therefore was expected to be superior. It turns out that only in year 3 

with variance equal to 1 is the CB method better than the SU method. An even more 

surprising finding is that the CB and the CU method perform similarly: when the variance 

is 1 the CB method is consistently better than the CU method, while the CU method is 

better than or equal to the CB method when the variance is 0.5 or 0.25. The CB method 

was expected to be superior to the CU method since the only difference between those 
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two methods is model misspecification, and the subsequent VAM analysis is identical 

between them. 

 

6.2 Discussion 

6.2.1 Correct Model Specification vs. Post Hoc Adjustment 

 Correct model specification is one of the key assumptions of statistical analysis. It 

is often expected that when the parameter estimates out of a correctly specified model 

should be more accurate than those out of an incorrectly specified model. Li’s finding 

(2011) confirmed that when the generating model is a bifactor one, the parameter 

estimates out of the bifactor model are more accurate than the parameter estimates out of 

the UIRT model, which basically specifies the model due to its ignorance of the 

multidimensional structure.  It had been expected that the more accurately estimated 

parameters in the bifactor model should translate into more accurate estimation of teacher 

effect, even though Li’s study focuses on parameter recovery while in VAM, the 

emphasis is usually on the rank ordering of teachers and their classifications. In other 

words, the expectation was that the bifactor model based teacher effect estimates should 

have higher correlation values with the generating values than those estimates based on 

the UIRT model, and they should have lower incorrect classification rates and higher 

correct classification rates. 

 However, this expectation is only correct when the variance is equal to 1, a 

scenario considered with a large magnitude of construct shift. The difference between the 

CB method based estimates and the CU method based estimates are small, except at year 
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2 with the ZP model. When the variance decreases, the estimates based on those two 

methods become similar and in some cases, the UIRT model even performs slightly 

better than the bifactor model. This counterintuitive finding seems to contradict Li’s 

finding (2012) that the parameter estimates out of the UIRT model is always more 

inaccurate than those out of the bifactor model. It is believed this inconsistency is 

probably caused by different focuses of Li’s study and the current one: Li’s study focuses 

on parameter recovery while the emphasis of this study is the recovery of the rank 

ordering of teachers. Another possible explanation is that since the bifactor model is more 

complicated, it is difficult to separate the effects from the general and secondary factors 

when the variance of the secondary factor is smaller. This difficulty might introduce more 

estimator errors. 

 The SU method is similar to the CU method in the sense that it also ignores the 

multidimensional structure of the data and hence mis-specifies the model. Such 

misspecification is compensated by an ad hoc procedure in the GP model that relaxes the 

perfect correlation assumption of teacher effects across years. Such an adjustment seems 

effective since the SU method outperforms the CB method in most of the simulation 

conditions, except when the magnitude of construct shift is large (variance = 1).  

6.2.2 Practicality of Each Method 

 The CU method represents an approach commonly employed in practice, in which 

a UIRT model is assumed to fit the test data across grades and hence used for calibration 

with a common item nonequivalent groups design. While easy to implement, this method 

can be fairly inaccurate when the magnitude of construct shift is large. The most extreme 

scenario is at year 2 with ZP model, when the CB based teacher effect estimates has a 
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correlation value of 0.05 with the generating value, and an average of 15.28% teachers 

are incorrectly classified. 

 The CB method represents an ideal scenario in which the estimating model and 

the generating model are the same and no model misspecification is involved. In this 

study a simulation is used and the true model is known, while in practice, researchers do 

not have such luxury and the true model is never known. Considering the arbitrary and 

somewhat unlikely assumption of the CB method that students only grow on a common 

dimension, it is hard to believe that the bifactor model assumed in the CB method is a 

good approximation of the reality. More importantly, this study shows that even when the 

bifacotor model is the correct model, the CB method still does not have a clear advantage 

over other methods. In addition, the implementation of the CB method can only be done 

in IRTPRO and the setup is quite cumbersome, which further restricts its applicability. 

 The SU method is probably superior to the other two methods considering both 

the performance and applicability. With the R package GPvam available, its 

implementation is as easy as the CU method and it gives the best performance overall 

among three methods. Although estimation of fitting the GP model with the SU method 

is considerably longer than fitting other persistence models with the other two methods, 

the SU method does not involve vertical scaling and therefore avoids the issues and 

problems inherent in vertical scaling. 

6.2.3 Teacher Effect Persistence Pattern Matters 

 Based on the results of ANOVA at the end of Chapter 4, teacher effect persistence 

pattern accounts for a substantial portion of the overall variance. When the persistence 
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pattern is CP, which means that teacher effects persist undiminished into the future years, 

on average the accuracy of teacher effect estimation is the best. When the persistence 

pattern is ZP, which means that the teacher effects do not persist, the teacher effect 

estimation is the worst. While in this study the true persistence pattern is always specified, 

it is believed that the incorrect specification of the true persistence pattern would impact 

the teacher effect estimation. While it is always desirable to fit the data with the 

corresponding persistence model that aligns with the persistence pattern, in reality the 

persistence pattern is unknown. Therefore, the ZP model or the CP models are not 

recommended to use in practice unless there is strong evidence that ZP or CP persistence 

pattern exist. Instead, the more versatile VP model should be used since the ZP model 

and the CP model are special cases of the VP model. Following the same vein of 

reasoning, probably the GP model should be considered an ideal choice. However, the 

GP model and the VP model seem to produce extremely similar results, as shown in 

Chapter 5 as well as in Mariano’s study (2010), but computation time for the GP model is 

considerably longer than that for the VP model. 

6.2.4 How Much Should We Trust VAM 

 For VAM to be used for high-stake decisions, it is necessary to show in 

simulation studies that accurate teacher effect estimates can be obtained which ultimately 

support accurate teacher classifications. Even if the results of simulation studies suggest 

so, however, the researcher should realize that simulation studies are idealized in many 

aspects and the results should be treated with caution if they were ever used to support 

high-stake applications.  
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 In the current simulation study, the other inherent issues in VAM such as non-

random assignment of students and correct VAM model specification are assumed not to 

exist and the only focus is how the construct shift impacts the VAM results. In this case, 

it is concluded that the best performing SU method performs satisfactorily: the spearman 

correlation between the estimated teacher effects and the generating values has a mean of 

0.74, although in some cases it can be as low as 0.47 and the average number of incorrect 

classifications can be as high as 10.06. 

 The classification accuracy varies depending on which method is used. With the 

standard error method almost no incorrect teacher classifications occur, although the 

number of correct teacher classifications can be as low as 0 or close to 0. In other words, 

when the standard error is used to classify teachers, most of the teachers are classified 

into the middle group with very few or none in the effective or ineffective group. When 

quintile grouping or tercile grouping are used, while the correct teacher classifications 

increase considerably so that more than half of the teacher are correctly classified in most 

simulation conditions, the incorrect teacher classifications also increases and in the 

extreme cases more than 10 teachers are incorrectly classified. 

 Considering that this simulation study represents a nearly ideal scenario in which 

the inherent issues in VAM such as non-random assignment of students, correct VAM 

model specification, and missing data or missing teacher student linkage are assumed not 

to exist, it might be argued that the above results are not particularly promising. Even if 

the results are considerably better and the accuracy of the parameter estimation is much 

higher, it can still be argued that in an empirical data set with non-random assignment of 

students, correct VAM model specification, and missing data, the accuracy of the best 
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performing SU method would be expected to deteriorate and it would become hard to 

generalize the findings. With the current findings, it is reasonable to expect that the 

results from real data are going to be less reliable than what was found in this study and 

extreme caution has to be exercised if those results will ever, if not never, be the sole 

basis in high-stake decision making process. 

 However, it is argued that VAM should not held responsible when it is used as a 

single measure to evaluate something as complicated as teaching. There is an increasing 

realization that teaching might be too complex to be measured accurately by any single 

measure, as concluded in a research brief (2012) of the famous three-year study known as 

the Measures of Effective Teaching (MET). Sponsored by the Bill & Melinda Gates 

Foundation, MET was designed (random assignment of participating teachers) to 

investigate how to systematically evaluate teachers using multiple measures, which 

include the student achievement gains, classroom observations, and student surveys. One 

of its key findings is that an index using the weighted sum of those three measures is 

superior to the student achievement gains alone on almost every dimension including 

predictive power, reliability, and stability, and it is concluded that this index supports 

high-stake decisions based upon it.  

 To sum up, VAM may not perform impressively when it is used as the single 

measure to evaluate teaching. Teaching is a complex process requiring multiple measures, 

and VAM, when properly combined with other measures, performs better than any single 

measure alone.   
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6.3 Limitations and Directions for Future Research 

 When comparing the GP model with other persistence models that require vertical 

scaling, only one vertical scaling design (common item design with concurrent 

calibration) was used in this study. In a more comprehensive simulation study, various 

vertical scaling designs with different combination of data collection, calibration method, 

and percentage of common items can be used to investigate their performance in VAM in 

comparison to the GP model. Due to the scope limitation, only the current design was 

implemented. 

 In terms of IRT models, only the 2PL model was investigated in this study. Future 

studies can extend to 1PL model and 3PL model to compare their performance with the 

2PL model. In terms of item type, only dichotomous items were used in the current study. 

To better mimic tests used in really testing programs, the mixture of dichotomous and 

polytomous items can be used. Future studies can manipulate the proportion of 

dichotomous and polytomous items to investigate its impact upon the teacher effect 

estimation. 

 In terms of sample size, this study assumed that the class is mid-sized and each 

class has 25 students, which is an ideal scenario. Future studies can manipulate the 

number of students in each class to include small-sized and large-sized classes, and the 

constraint of equal class sizes can be relaxed to have a mix of small-sized, middle-sized, 

and large-sized classes. Since the class size is directly related to the standard error of the 

teacher effect estimate of the particular teacher in charge of the class, it is possible that 

the change of sample size may present a different picture in terms of the classification 

accuracy when the standard error based approach is used.  



 

132 
 

 Absence of missing data is another limitation, which is ubiquitous in each 

possible real data set. Although it was deliberately chosen to avoid the possible 

confounding effects of missing data with those of construct shift, in future studies 

missing data can be introduced to make the results more generalizable. 

 Another possible extension in future studies is the inclusion of covariates. In 

practice when VAM is used to evaluate teachers, covariates at the student level and the 

school level are usually used. This study did not include covariates out of the same 

concern of possible confounding effects. The estimation of persistence based VAM 

models with covariates should not be a problem since the R package GPvam 

conveniently offers such capabilities, although the computation time may be longer. 

 Probably the main limitation of this study is the use of the bifactor model to 

generate scenarios of construct shift. As mentioned in chapter 2, the bifactor model is an 

innovative and convenient framework to generate different magnitudes of construct shift, 

and vertical scaling method is available in this framework. However, the 

conceptualization that teachers only cause students to grow on the general dimension and 

the orthogonality assumption between the general and the grade specific dimension may 

seem not to approximate the reality accurately. A more realistic framework should be a 

more general multidimensional IRT model, where different dimensions can be correlated 

and the number of dimensions in each grade and the proportion of each can be different 

depending on the curriculum change. The main challenge of using a general 

multidimensional IRT model is the lack of vertical scaling methods when construct shift 

occurs across different grades. Until such methods become available, the comparison 

between the GP model and other persistence model requiring vertical scaling cannot be 
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made and caution should be used with the generalization of the findings of the current 

study. 

 Last but not the least, this study uses a two-stage process to estimate the teacher 

effect: the first stage is the estimation of the IRT ability parameters, and the second stage 

is the use of the ability parameter estimates in the VAM models to estimate teacher 

effects without taking into consideration measurement errors inherent in those ability 

estimates. The next step could combine this two-stage process into one concurrent 

estimation process to simultaneously estimate the IRT ability parameters and teacher 

effect parameters. 
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