SRC TR 87-54

Database and Process Control for
RAMCAD

by

B.T. Sawyer and M. Pecht

DATABASE AND PROCESS CONTROL FOR RAMCAD

B.T. SAWYER and MICHAEL PECHT

After three years of development, the University of Maryland Reliability and
Maintainability Computer Aided Design (RAMCAD) expert system for electronics
has been implemented for on-site test and utilization by Westinghouse Defense
Electronics in the design of the electronics for the Airborne Self Protection
Jammer (ASPJ). This paper focuses on the database and system controlier.

INTRODUCTION: DATABASE MANAGEMENT FOR ELECTRONICS DESIGN

It is commonly known that the thermal, mechanical and electrical variables of
a printed circuit board do not lend themselves to conventional data management
methods. It has been suyyested that commercially available relational models
are most suitable for handling electronic design data. RAMCAD has been deve-
loped with this in mind. UOur requirements are that the system provide
accurate, and concise information in a context that helps a desiyner make
intelligent decisions.

The RAMCAD system uses exact analysis of the data based on computational
methods which have been tested against measurements of real designs. Althouyh
military standards allow for approximations in the early stayes of desiygn we
have taken pains to make the analytical results as close to the actual
situation as possible. The benefit of such analyses to the designer is con-
siderable. Potential flaws in a desiyn appear early enough to allow for
correction without undue loss of time or effort. Since decisions are based on
the available data we feel that the best data helps one make the best deci-
sions.

THE RAMCAD DATABASE

A practical solution to the database management problem presented by electro-
nics design is to localize the data for a particular design and to limit the
number of processes that have direct access to the local database. In the
RAMCAD system each desiygn (PWB) has its own database which is built from the
global database of all available electronic parts. Secondly, translator modu-
les mediate between the local database and the analysis and display modules.
Restricting the number of programs that may access data allows better control
and permits more flexibility in the number and type of modules that the system
can support.

The local database consists of a Pascal file of records, one for each com-
ponent, files of sorted keys for rapid access, a record for PWB parameters,
and a number of ASCII files which contain layout ddata. A component record 1s
of modest size (400 bytes) and contains all of the MIL-21/E constants required
to calculate reliability based on thermal analysis. The record also contains
geometric data for placement, temperature and stress data, and coded character

fields which are linked to ASCII files of descriptors and labels. The PWB

record contains data on failure rate, stress, temperatures, and analysis para-
meters.

The analysis and data reporting modules are independent programs developed by
a number of programmers. Once the type and format of data input/output is
established, a translator is created to supply data and, if necessary, another
is made to pick up the results. These translators insulate the programmer
from the task of reading the database and provide control channels for data
flow. The model permits the system to adapt to changes in data structures and
sources without disturbing modules that are operating on or displaying the
data.

SCHEDULING AND CONTROL OF THE DESIGN

The RAMCAD executive controller inteyrates the system by presenting menus of
options and executing requests. It permits open-ended choices of functions
using a consistent and easily learned user interface. It verifies the
existence of the necessary data and program files required to carry out a
request and then initiates the sequence of proyram modules which perform the
desired function.

The user interface consists of a series of menus which are defined as progranm
constants. Each menu displays a set of tools that are available for a spe-
cified task. Once a tool is selected, the system takes care of the details.
The intent is to have a “seamless" system where tasks appear to proceed as a
single action rather than a series of independent program modules.
Furthermore, the data structures used in the RAMCAD controller are flexible
enough to allow us to add or delete modules, change execution sequences, and
rearrange menu choices without major code revision.

The flexibility of the system comes from the method we use to verify files and
schedule proyram modules. These functions are carried out using identifiers
whose values are defined in the program decliaration section. Each program and
data file identifier is mapped to an actual file name and then grouped into
sets which may be enlarged, changed or rearranged without affecting the code.
The structure and operation of the controller is best explained by an
illustration. The coplanar thermal analysis function will serve as our
example.

menulZ3 : menu rec =
(entries : 4;
choicestr : 'CISE';
title : 'THERMAL/RELIABILITY ANALYSES';
Tabels : {('Coplane', 'Inline',
"Standard Electronic Module',
'EXIT to the Previous Menu',

[}) [} II)).
b b b ’

The statement, ch := Menu Choice(menul23) performs the operation of menu
display and selection, and returns the selected value to the character
variable, ch, The resulting value of ch is passed through a CASE statement
which determines the action to be carried out. The 'C' and 'E' options of this
statement are:

CASE ch OF
'C':BEGIN {Coplanar thermal analysis}
pnode := Check_pgm list(coplane pgm s);
enode := Check ext]1st(bd name,coplane ext s);
dnode := Check datf1 l1st(cop1ane dat sY
Mark({node);
node”.next := Link nodes(pnode,dnode,enode);

IF node”.next = nil THEN BEGIN
Schedule(coplane pygm s);

complete := true; END
ELSE BEGIN
Show missing list(node”.next,choice ' name) ;
conplete := false;
END;
Release(node)
END; {'C'}
"E': BEGIN {Exit menul23}
act _menu := 'menul2';
complete := false
END; {'E"

END; {casel

This illustrates how the controiler handles menu selections. If a choice
requires action, the presence of the appropriate files is checked. If they
exist, a sequence of modules is scheduled. Otherwise the missing file names
are shown and the menu returns a value of 'false' for the variable 'complete',
which informs the menu control procedure that the choice can not be carried
out and the active menu (act_ﬂmnu) should be displayed.

The method of changing menus is illustrated by the exit ('E') option. [If the
user chooses to exit this menu {menul23) the value of the next menu is set
(menul?2) and 'complete' is set to false. This causes the menu controller to
display the next menu (menul?) and await further action. The system control
program only exits when the value of ‘complete' is 'true.'

Verification and schedulinyg are accomplished by passing predefined values to
Check and Schedule. The data structures for these values are illustrated
below.

[identifiers for executable proyrams}

pym_id _type = (pgmF,1db2ana, flowrow, coplane, tem2ldb,
reliable, pygml);

pgm id array = Array [pym id type] of str20;

pgm_set = Set of pgm_id type;

{identifiers for datafile extensions}

ext_type (extF,1db,uky,boa,pwb,lay,extl);
ext_array = Array [ext type] of stré4;
ext_set = Set of ext type;

datfi type = {similar to the above declarations}

The assiygynment of a file name to each of the constant identifiers
is done by means of the followinyg proyram constant deciarations.

program map : pym id array =
("', TLDB2ANA.COM', 'FLOWROW.COM', 'COPLANE.COM',

‘TEM2LDB.COM', 'RELIABLE.COM',)
extension map : ext array =
("', '.LDB', "JUKY', '.BOA', '.PWB', '.LAY', '');
datafile map : datfi_array = 45 above

The program, extension and datafile identifiers are used to build sets of
values for each of the sequences in the system. Each set is defined as a
program constant and given a name that identifes the function it carries out.
The constant sets for the thermal analysis coplane program are:

coplane pgn s : pgm set = [1db2ana,flowrow,coplane,tem2ldb,reliable];

coplane ext s : ext set = [1db,uky,boa,pwb,lay];

coplane dat s : datfi_set = [];

The main proyram's Check xxx list functions scan the sets of values to see if
the corresponding files ‘exist. If not, a pointer to the missing name(s) is
returned. If all files exist, coplane pgm s is sent to the Schedule procedure
which writes the names of the files to a text file. As soon as the control
proyram ends, a backyround program executes the proygyrams in the text file

and finally runs the controller to complete the cycle.

The flexibility of this proyramming method is apparent, in that any series of
proyrams can be executed by groupiny identifiers into a set. A new module is
added by creating an identifier and a file name, and putting them in the
appropriate declarations. A module is removed by takiny its name out of the
list.

ACKNOWLEDGEMENTS

This effort has been supported in part by the Institute for Defense Analyses,
Westinghouse Defense Flectronics, and the University of Maryland Systems
Research Center under grant No. CDR38500108 from the National Science
Foundation.

