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Recently, interest in understanding Earth’s climate has risen

in light of anthropogenic climate change. However, effective

climate data visualization tools for studying climate remain

largely outdated. We proposed the use of virtual reality to more

effectively visualize climate data, implemented a prototype cli-

mate visualization tool using Unreal Engine, and conducted

a focus group to gain expert insight and advice for evaluat-

ing and improving our visualization tool. Our regional view

displayed the temperature of the Chesapeake Bay, surrounded

by topographic data in one cohesive visualization, while our

global view transformed and displayed climate data on a vir-

tual globe using a perceptually-uniform color texture and incor-



porated an animated particle field to visualize vectorized data.

Finally, we used the Leap Motion Controller to facilitate inter-

action with the visualizations through hand gestures. Overall,

participants found that three-dimensional visualizations were

more intuitive than two-dimensional visualizations and sug-

gested areas for further improvement in the future.
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Part I

B A C K G R O U N D



1
I N T R O D U C T I O N

A recent report from the Intergovernmental Panel on Climate

Change (IPCC) has sounded the alarm that climate change is

occurring faster than anyone, including top scientists, ever ex-

pected (Allen et al., 2018). Previous scientific estimates of the

amount of warming that can be tolerated are far more conser-

vative than once thought. Consequently, improving the general

public’s understanding of climate change and its underlying

factors is of utmost importance. Only with this understanding

can broad support be garnered for major preventative actions.

Scientists need improved tools to process and understand

large volumes of satellite and computer modeled data. Since

the capacity to collect and store climate data has improved

dramatically over the last three decades, new problems have

emerged that climate scientists must tackle. How should this

large quantity of data be stored? How should it be processed?

How can such large volumes be meaningfully displayed and an-

alyzed so that scientists can gain new insights, understanding,

and knowledge from the data? This last question is the focus

of our research, as visualization software products for climate

and weather data have not kept up with the rapidly advancing

technology or growing data volumes.

Current data visualization techniques mostly fall into two

broad categories: two-dimensional (2D) maps, which are most

common, and three-dimensional (3D) globes, which can be ei-

2



introduction 3

ther physical or virtual. Two-dimensional maps have inherent

limitations associated with dimensionality reduction (e. g. visu-

alizing 3D spatial data in 2D). Such maps have difficulty with

displaying high dimensional data (e. g. combined temperature,

humidity, and velocity across a broad spatial area at multiple

height levels). Virtual globes also suffer from the projection of

3D spatial data onto 2D, since there is no true sense of depth on

traditional computer screens. Three-dimensional physical globe

models require additional equipment that require large costs

for materials, equipment, and installation, which make them

relatively inaccessible to most research scientists. Many current

visualization tools are specialized, and do not adapt to different

datasets which may be better viewed in varying contexts (e.g.

high resolution local data, global data, and animated data).

We propose a solution to this problem: interactive virtual re-

ality (VR) weather and climate data visualization. By leveraging

recent advances in VR technology, we develop software that is

both interactive and immersive, allowing climate scientists to

view and work with data in ways that were previously not pos-

sible. By utilizing cutting-edge hardware, we enable interactive

hand gestures to replace traditional mouse and keyboard inter-

activity in an effort to provide a more streamlined and intuitive

interface.

We have two primary research questions that lead to two

main areas of focus for development:
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1. Technical performance: How can we best design a variety of

robust data pipelines to preprocess and visualize climate

data in an interactive virtual environment?

2. Intuitive user interaction: What are the most intuitive meth-

ods to allow a user to interact with climate data in a vir-

tual environment?

Throughout the iterative development of our prototype, these

questions serve as a guide for our design choices as we aim to

balance capability with ease of use. The specifics of our imple-

mentation are outlined next.

To address these questions, we appoint three technical devel-

opment subteams. The three teams focus on (1) developing a

data preprocessing pipeline, (2) creating user interfaces, and (3)

building visualizations for high-resolution data of specific areas

of interest. Membership in the subteams adapts as needed. The

VR prototype combines development efforts from all three sub-

teams: users may interact with both a floating 3D model globe

and a local view in virtual reality, allowing the user to interface

with the visualizations via hand gestures. The data displays

perceptually-uniform color scheme representations of climate

data projected onto either the globe or local region. Moving

particles, which represent wind vector fields, are implemented

as an overlay to provide an additional dimension of data. Fo-

cus groups with surveys are conducted to gauge professional

and community interest and gain valuable feedback for further

development.
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The results of our prototype and focus group provide a proof-

of-concept that VR is a viable method for visualizing 3D climate

data on both global and local scales. Additionally, we suggest a

novel framework for user interaction within a VR environment.

However, before the tool can be fully deployed at a production

scale, more development is needed. The tool should be able

to visualize multiple types of data formats. Additionally, alter-

native methods should be investigated to ensure the system

is scaleable to large datasets. Finally, the user interface is re-

stricted to a few built-in gestures; future work should develop

additional modes of interaction.

The rest of the thesis is organized as follows: In Chapter 2

we provide a literature review related to the current state of

climate visualization research and technologies. In Chapter 3

we discuss our methodology, including how we process, visu-

alize, and interact with the data, as well as our approach for

conducting the focus group. In Chapter 4 we report the overall

results of the project. Finally, we conclude with a discussion of

the results in Chapter 5.



2
L I T E R AT U R E R E V I E W

2.1 current climate data visualization methods

We can categorize current methods of visualizing large-scale

climate data into either 2D or 3D renderings. A 2D rendering

displays data on a flat plane and uses colors or glyphs to depict

values across each latitude and longitude. A 3D rendering dis-

plays data on a 3D globe which can be rotated to see all data

points. Examples of 3D renderings include Google Maps and

World Wind (Liu et al., 2015; Zhang et al., 2016).

There are strengths and weaknesses to each approach. A 2D

rendering requires much less processing power than a 3D ren-

dering. However, a 2D rendering (Alder et al., 2013; Potter et al.,

2009; Teuling et al., 2011; Wickham et al., 2012) can visualize

only a small number of parameters, while a 3D rendering (Liu

et al., 2015; Zhang et al., 2016) can visualize volumetric data

and promotes easier analysis of certain trends. To our knowl-

edge, neither type of visualization has been tested to determine

which is more effective for conveying climate information. This

is an area of concern, since general studies of data visualiza-

tions indicate a correlation between aesthetic appeal and com-

prehensibility (Filonik and Baur, 2009). In the remainder of this

chapter, we introduce various existing methods currently used

to visualize climate data.

6



2.1 current climate data visualization methods 7

2.1.1 Two-Dimensional Renderings

Examples of 2D renderings include color maps and glyph maps.

These use colors and symbols, respectively, to demonstrate vari-

ations in one or more variables over a large geographic area.

Color maps typically vary from blue to red to indicate low to

high levels of a parameter, respectively. Potter et al. (2009) first

display the mean and standard deviation of surface tempera-

ture on individual color maps (Figure 1a). They combine these

into one display, using color to indicate mean and contour lines

to indicate standard deviation (Figure 1b).

(a) (b)

Figure 1: These maps allow users to display mean and standard devi-
ation of surface temperature (a) individually by using inde-
pendent color maps and (b) together by using a color map
with contour lines (Potter et al., 2009)

However, this approach displays a single variable at a time,

so users can only gather a limited amount of information from

the maps. Other color maps have been developed that can dis-

play multiple variables through a two-color gradient. Research-
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ers from the Institute for Atmospheric and Climate Science in

Switzerland developed one such bivariate color map to display

temperature and relative humidity (Figure 2) (Teuling et al.,

2011).

Figure 2: A bivariate color map indicates temperature and relative hu-
midity by using a two-color gradient. The results are meant
to be intuitive: the Sahara desert has a sandy color that indi-
cates hot and dry, the Arctic has a deep blue that indicates
cold with high relative humidity, the tropical regions are
clearly distinguishable, etc. (Teuling et al., 2011)

Few existing 2D maps in the literature display more than two

parameters at a time, and often require unintuitive approaches

to do so (Potter et al., 2009; Teuling et al., 2011). Furthermore,

very few strategies have been developed for 2D maps that can

demonstrate changes in a parameter over time. One approach

to displaying changes in parameters over time is the glyph map.

This type of map was developed by Wickham et al. (2012) to dis-

play changes in a single variable over space and time by placing

tiny graphs all across a world map, with each graph using the

same scale (Figure 3). While glyph-maps allow users to view

changes in a parameter over time and help highlight aberra-
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tions in the data, they are less intuitive and can be difficult to

decipher, especially for those unfamiliar with them.

(a)

(b)

Figure 3: Two glyph-maps representing the same temperature dataset
for one year. Map (a) utilizes a global temperature scale,
map (b) utilizes a local temperature scale (Wickham et al.,
2012)

.

Alternative examples of 2D maps that account for time are

the Global Climate Change Viewer (GCCV) and the Regional

Climate Change Viewer (RCCV). Both of these visualization

tools were developed by Alder et al. (2013) from the United
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States (U.S.) Geographic Survey and the Lawrence Livermore

National Laboratory in 2012. They allow users to view pre-

dicted changes in parameters such as temperature, soil mois-

ture, and precipitation. These changes are displayed on color

maps, with reds indicating significant increases and blues indi-

cating significant decreases (Alder et al., 2013).

Both the GCCV and RCCV tools allow users to compare val-

ues over one or more decades. For instance, users can com-

pare the difference in predicted mean temperatures from the

1980s to the 2020s (Figure 4a) against the difference in predicted

mean temperatures from the 1980s to the 2090s (Figure 4b). The

RCCV also allows users to view predicted changes for specific

regions in the U.S. down to the county level. However, as can

be seen in Figure 4, trying to analyze complicated differences

in means can quickly become confusing to the reader with this

kind of 2D visualization.

All 2D data visualization maps discussed have strengths and

weaknesses. It is valuable for users to see the changes in the

data over time, as with the GCCV and RCCV, but it may be dif-

ficult for users to grasp climate patterns when only one param-

eter is displayed in only two dimensions. Conversely, bivariate

color graphs are useful to see aridity, relative humidity, and

temperature, but make it difficult to grasp the changes when

no time context is given.
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(a)

(b)

Figure 4: The RCCV (Alder et al., 2013) visualizes predicted temper-
ature changes over two time spans: (a) A comparison be-
tween the 2020s (predicted) and the 1980s. (b) A comparison
between the 2090s (predicted) and the 1980s.

.
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2.1.2 Three-Dimensional Renderings

Increases in computational capabilities have made it possible

to visualize large sets of climate data by using online simu-

lations and virtual globes, such as Google Earth and World

Wind, which is an open-source application programming in-

terface (API) created by National Aeronautics and Space Ad-

ministration (NASA). These interfaces support using vectors to

show the paths of particles, and volume rendering to add tex-

tures and colors to various sections of 3D-space. Furthermore,

these renderings may change in real time, allowing users to ob-

serve the fluctuations of climate phenomena interactively. For

instance, Liu et al. (2015) used vector simulation to determine

wind speeds and directions in areas affected by a cyclone (Fig-

ure 5a). Similar applications have been developed by Zhang

et al. (2016) to visualize wind currents and dust storms in real-

time (Figure 5b). Their findings suggest that World Wind may

be helpful for conceptualizing datasets.

(a) (b)

Figure 5: (a) Vector simulation of a cyclone in World Wind (Liu et al.,
2015). (b) Wind currents simulated in World Wind using vol-
ume rendering (Zhang et al., 2016). Wind currents depend
not only on latitude and longitude, but also on elevation.
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These three-dimensional APIs can also be used to render data

not related to wind patterns or vectors. For instance, Du et al.

(2015) developed an API to display CO2 fluxes over the oceans

(Figure 6). Flux levels were displayed using colors, ranging

from blue (downward flux), to red (upward flux), with eleva-

tion indicating the carbon content of a region of the ocean.

Figure 6: Simulation of CO2 flux levels of the ocean, with positive
values indicating an upwards flux (CO2 leaving ocean) and
negative values indicating a downwards flux (CO2 entering
ocean) (Du et al., 2015).

In the visualization of Figure 6, the color scheme allows the

user to see increased acidification (negative flux) over much

of the ocean surface surveyed, which also increases in sever-

ity over time (Du et al., 2015). Combined with the height field

attribute and the World Wind API, this visualization can dis-

play carbon levels and fluxes across the entire globe over time.

This provides a viable, perhaps more intuitive, alternative to

2D charts, which are rarely configured to display changes over

time and typically require contour lines to display multiple vari-

ables (Potter et al., 2009).

Real-time globe environments, such as World Wind, illustrate

complex time series more realistically than do 2D maps. How-

ever, like 2D maps, these globes have only been used to visu-
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alize the effects of a single variable on the system, rather than

multivariate interactions. This means that users can draw only

incomplete conclusions from these visualization methods. For

instance, while the methodology of Du et al. (2015) and his col-

leagues can display CO2 flux, it is unclear what the effects of

this would be on atmospheric or oceanic conditions. Likewise,

while the methodology of Liu et al. (2015) effectively displays

the path of a cyclone, it is difficult to gather details of the storm,

such as the cyclone’s effects on the upper ocean or changes in

the cyclone’s intensity, from their method of visualization. This

presents a gap in literature, which could possibly be resolved

by introducing a visualization method that displays multiple

variables and their interactions with their surroundings. Such

a method could also have an interactive component allowing

users to focus on areas of interest, where different variables

may appear to have a correlation, and this could be included as

an analytical feature in its interface.

There is also a significant gap in literature in that no method

of data visualization has been tested for its effectiveness in con-

veying the effects of climate data to technical and non-technical

audiences, which means that improvements to these visualiza-

tion methods are merely based on speculation and a general

sense of inadequacy. It would be useful to test this new interac-

tive method, as well as the older methods, to determine which

visualization method is the most effective for communicating

these climate data to interested audiences.
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2.1.3 Storing and Processing Data

When designing a data visualization platform to reveal trends

and interactions between datasets, it is also important to con-

sider how the sets will be stored and processed. Some issues

that arise from processing large datasets include interpreting

multiple file types, processing large quantities of data, and ren-

dering the corresponding graphics on a user’s display (Zhang

et al., 2016). Researchers have addressed these problems by

developing improved database management techniques, com-

pressing data when possible, and outsourcing computations

(Zhang et al., 2016).

Climate data are recorded all over the world from a large

variety of sources and in heterogeneous formats. Idreos et al.

(2015) highlight the need for systems built for data exploration,

where users may not be familiar with the details of how a cer-

tain dataset is stored, but wish to query the system for data in

an exploratory manner. This can be accomplished with middle-

ware, a layer between the user interface and the database that

improves the efficiency of searching for interactions between

and within datasets. According to Idreos et al. (2015), predic-

tive analytics that search for interesting correlations, and data

caching that store commonly retrieved data, can streamline this

process. An exploratory system such as this could therefore

help users visualize and examine data from multiple unfamiliar

sources more easily.

Users may also wish to have a more comprehensive visualiza-

tion by compiling many datasets from separate sources. How-
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ever, these could be stored in different formats, making them

difficult to compare. To address this issue, Sun et al. (2012) de-

veloped a PHP program called KML Generator to extract data

fields from database sources so that a single file could be used

to generate the final visualization, prior to rendering. Employ-

ing similar strategies to compile requested data sources into a

single format would save time when accessing data during the

visualization rendering process.

Another component of animated data visualizations is the

efficiency with which frames are generated. Data scheduling

tasks must be established to ensure that visualizations can be

generated in time for the user to view them. A technique de-

veloped by Du et al. (2015) allows for external data to be read

asynchronously, so that entire datasets do not need to be loaded

at once. This technique employs a node-based strategy where

frames are simultaneously generated and displayed so that the

next frame is prepared as the current one plays. In this method,

only two graphics processing unit (GPU) buffers are in use at

any given time. Therefore, the loading of data does not interfere

with the process of rendering images (Du et al., 2015). When

testing this model, Du et al. (2015) concluded that the resulting

frame rate is not significantly affected by dataset size, demon-

strating that this is an efficient method for generating and dis-

playing animated visualizations in real time.

No matter how efficient the rendering process may be, gen-

erating images from data still takes time and requires signifi-

cant computational power. Two approaches to reduce compu-

tation times are to simplify the data or to outsource process-
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ing power. One method for simplifying data was developed

by researchers from the National Center for Atmospheric Re-

search (NCAR) during the development of their Visualization

and Analysis Platform for Ocean, Atmosphere, and Solar Re-

searchers (VAPOR) (Norton and Clyne, 2012). In order to ren-

der large data on normal desktop computers, VAPOR utilizes

progressive data access, which sacrifices accuracy to speed up

computations (Norton and Clyne, 2012). They found that for

some datasets, especially those used for volume rendering, the

progressive data access approximation is adequate for visual-

ization purposes, as evidenced by the negligible difference be-

tween the original data in Figure 7a and the approximation in

Figure 7b.

(a) (b)

Figure 7: Close-up of VAPOR’s volume rendering of a region reveals
little difference between (a) the original, uncompressed data
and (b) the compressed data (Norton and Clyne, 2012).

In cases where data fidelity is very important, rather than

relying on users to have sufficient resources, it is beneficial to

outsource major computations to the cloud and simply serve

clients the final product. Cloud platforms such as Amazon Web

Services (AWS) can be used to gain access to remote GPU clus-
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ters that share resources to quickly accomplish tasks. This sys-

tem, developed by Zhang et al. (2016), allows for customizabil-

ity of visualization algorithms and takes advantage of AWS’s

scalability features so that the platform can include more re-

mote GPUs if more power is needed. Employing a system like

this would allow climate data visualization platforms to oper-

ate independently of client resources so that rendering images

can be done in minimal time Zhang et al. (2016).

2.2 virtual reality

Previously discussed methods of climate data visualization suf-

fer from a lack of interactivity and immersion. These methods

can display variation in few variables at a time, but it is difficult

to gauge the combined effects on the surrounding environment,

the oceans, and the atmosphere due to changes in the variables.

Current methods also make it difficult to visualize the interac-

tion between various climate variables, limiting the predictions

they can make and the trends they can observe. A solution to

this lack of interactivity is to use VR. This would allow users

to visualize atmospheric and oceanic effects, and hone in and

analyze specific areas of interest for trends and correlations in a

multivariate visualization. Literature suggests that VR already

has analogous technical applications in the military, medicine,

and engineering, so it is plausible that the benefits of VR could

be applied to climate data visualization as well (Bellini et al.,

2016; Desai et al., 2014; Mathur, 2015; Winoto et al., 2016).

The concept of VR has existed since the mid-1990’s. Over

the past three decades, the available technology has grown im-
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mensely, yet many challenges still remain for prospective de-

velopers. Even today there are no standardized tools to use or

procedures to follow when working with VR (Ray, 2015). Begin-

ning in the 1990’s, developers attempted to create virtual envi-

ronments with various VR toolkits (Ray, 2015). Unfortunately,

researchers had numerous issues working with these toolkits.

Existing toolkits are rarely reused when developing virtual en-

vironments, as they are often device- and use-specific. As a re-

sult, developers will often create their own toolkit from scratch

(Ray, 2015). However, time is an issue when developing a new

toolkit, because creation often takes years, as seen by the large

gap between the creation of CAVELib, an early VR toolkit, and

those from the toolkit wave of the early 2000’s (Ray, 2015).

Ray (2015) blames the lack of publications about VR studies

as the root cause of having no standard toolkit or procedure. He

suggests that researchers publish their findings, so that a stan-

dard can be developed over time. Ray also provides guidelines

to create such a standard. A toolkit should work by default, be

unintrusive, and be easy to use. Working by default entails hav-

ing interoperability between different pieces of hardware. In

addition, the architecture should consist of a modular design,

looking to augment instead of replace existing work.

2.2.1 Modern-Day Applications

Virtual reality technology has a variety of applications rang-

ing from home entertainment to medicine and engineering. For

instance, in the video game industry, consumers are eager to

have a more immersive experience that puts them right in the
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center of all the action (Bellini et al., 2016). Additionally, the

United States military currently utilizes advanced simulation to

provide soldiers with combat and flight training (Bellini et al.,

2016). VR is also commonly used by engineers for computer

assisted design (CAD) and has become a popular method for

prototyping new designs, and viewing them from different per-

spectives (Bellini et al., 2016). In the medical field, VR med-

ical training substituted traditional surgical training (Mathur,

2015).

Just as VR technology presents new possibilities for engi-

neers, doctors, and the military to visualize their designs bet-

ter, it also presents new opportunities for scientific visualiza-

tions. Our research team aims to develop new data visualiza-

tion methods that utilize VR’s immersive capabilities. These

methods will allow scientists to analyze the data and present

their results and findings.

2.2.2 Current State and Limitations of Virtual Reality

In order to better understand the potential of visualizing cli-

mate data with VR, it is important to evaluate the device that

we use for its strengths and weaknesses. Currently, the most

popular and widely used VR device family is the Oculus Rift

by Oculus. We use the Oculus Rift DK2 model to develop our

data visualization environment. It has a display resolution of

960 pixels by 1080 pixels, 100°field of view, and a refresh rate

of up to 75 Hz, making the Oculus Rift a potentially immersive

experience for the users (Desai et al., 2014). The Oculus Rift

has a gyroscope to measure angular velocity, an accelerometer
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to measure acceleration, and a magnetometer which transfers

data at 1000 Hz to measure direction, making the headset re-

sponsive to head movements and improving the overall user

experience (Desai et al., 2014). Other capabilities include head

and positional tracking, which can be used as controls for the

visualization tool (Oculus, cited 2019). This emphasis on immer-

sion is an important consideration in the selection of Oculus as

the team’s visualization platform.

Despite the Oculus Rift’s many strengths, it shares many of

the same drawbacks with other VR devices. One weakness is

the screen door effect, which results in empty black spaces be-

tween pixels on the screen (LaValle et al., 2014). This effect can

distract users from the life-like visuals. Another limitation of

Oculus Rift is ghosting, the trailing image left behind when a

moving object moves quicker than the pixels can refresh (Desai

et al., 2014). This ghosting produces a blurring effect and de-

creases the apparent resolution of the images. This means that

objects on the screen have a maximum speed at which they can

move without producing the ghosting effect. Another disadvan-

tage of the Oculus Rift is that some subjects in VR studies have

reported motion sickness. This was so pertinent of an issue that

a question on motion sickness appeared on a survey to partic-

ipants involved in a study using VR to help autistic children

learn words (Winoto et al., 2016).

2.2.3 Future of Virtual Reality

A Goldman Sachs research report predicts that the develop-

ment and growth of VR technology will be comparable to the
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growth of personal computers (PCs), smartphones, and tablets

(Bellini et al., 2016). Following the trend that PCs have taken

over the past three decades, VR will benefit from the economy

of scale, driving the prices of VR products down. Bellini et al.

(2016) also describe the VR platform as a new potential com-

puting platform that offers a new level of interaction with tech-

nology, just as the tablet introduced the concept of touchscreen

interaction. In that sense, VR can be seen as an extension to

existing computing technologies. The huge potential that VR

technology presents has not gone unnoticed by tech companies

as over $3.5 billion of investment have been poured into VR and

augmented reality (AR) technologies in just the past two years

(Bellini et al., 2016). Given the massive potential for growth in

VR, the team believes that VR is the best platform on which to

develop its new and modern climate data visualization tool.

2.3 human factors

Emotional appeal and user perceptions of models and visu-

alizations are becoming increasingly important, especially for

communicating data to technical audiences outside of the pri-

mary field of study and to the general public. Studies on emo-

tional aspects of data visualization suggest that human percep-

tion plays an important role in how audiences understand data

(Grinstein and Levkowitz, 2013).

Datasets tend to be influential when presented emotionally,

as they make the data more relatable to users (Herring et al.,

2017). Two important factors that appeal to emotions are spatial

and temporal proximity. This refers to how close the data are to
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the user in space and time, respectively. For example, a user liv-

ing in the District of Columbia (D.C.) would have high spatial

proximity to a dataset collected in D.C., but if the dataset were

from 1856, they would have low temporal proximity. Studies

have found that data representing the near past or near future

are far more impactful to the user than data that are too far into

the future or too far into the past. Also, people find data visual-

izations that are changing with time more interesting than mul-

tiple snapshots. This is known as temporal fluidity, which can

help enhance temporal proximity (Kostelnick, 2016). Through

the use of VR, the users’ spatial and temporal proximity could

be heightened much further by bringing them closer to the time

and location of the data presented.

Another technique that helps to appeal to the emotions of

the user is making the data visualization method more user-

friendly and interactive. One simple technique is the manipu-

lation of color. Color creates visual stimuli that physiologically,

aesthetically, and culturally arouse the user’s emotion (Elliot

and Maier, 2014). Colors have been proven to enhance both user

engagement and excitement when used in data models. Since

data are so content specific, colors become far more important

(Elliot and Maier, 2014). For example, a user may want to use

colors to add emphasis on a specific aspect of the data to evoke

an emotional or physical reaction.

Visualization techniques such as dense pixel displays and

iconic displays improve visual designs for climate data. Dense

pixel displays use single pixels to represent each data value

with color, which allows the user to see mass data (Keim, 2002).
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This allows the users to see detailed information on local corre-

lations, dependencies, and hot spots and compare data trends

(Keim, 2002). Iconic displays allow the user to see data more

clearly and can vary depending on the data being shown. Of-

tentimes, combining aesthetically pleasing visuals with other

techniques can further enhance the user experience. An exam-

ple of a technique that can be combined with visual aspects is

the use of haptic icons (HIs). These are brief signals conveying

an object’s state, function, or content which are combined with

haptic feedback, which the user receives through touch. This

allows the user to use hand gestures to interact with a system

(MacLean and Enriquez, 2003). Utilizing haptic techniques in

conjunction with aesthetically pleasing visual design may im-

prove emotional appeal and understanding of the data more

than using any one of the techniques by itself.

2.4 conclusion

While current methods of climate data visualization and anal-

ysis are workable, they struggle to visualize multiple variables,

as well as with allowing interactivity with the datasets (Alder

et al., 2013; Liu et al., 2015; Potter et al., 2009; Wickham et al.,

2012; Zhang et al., 2016). This prevents researchers and other

interested individuals from grasping the full effects of varia-

tions in the data, since these interactions are what allow re-

searchers to understand climate phenomena in the first place.

For instance, global temperature distributions are connected to

wind patterns in the atmosphere and the surface temperature

of the ocean, which are in turn connected to global precipita-



2.4 conclusion 25

tion patterns, but current methods do not allow users to see

this sort of relationship (Alder et al., 2013; Liu et al., 2015; Potter

et al., 2009; Wickham et al., 2012; Zhang et al., 2016). Current 2D

maps are almost completely restricted to univariate or bivariate

data visualization, while 3D globe interfaces have not yet been

implemented to allow users this sort of control or interactivity

(Teuling et al., 2011; Zhang et al., 2016).

A potential means of improving this lack of interactivity be-

tween the user and the data displayed is to integrate VR tech-

nology with these methods. VR has already been used in med-

ical, military, engineering and educational applications in or-

der to give users a better understanding of important tasks

(Bellini et al., 2016; Desai et al., 2014; Mathur, 2015; Winoto

et al., 2016). In the area of climate data visualization, VR could

allow users to visualize multiple datasets simultaneously, fo-

cus on trends of interest, and depict the effects of changing

variables on the oceans and atmosphere. Furthermore, psycho-

logical studies suggest that spatial proximity and suitable color

schemes help users better perceive the significance of data; VR

would incorporate both of those features. Together, these fea-

tures would create an experience in which climate researchers

and other interested individuals can view how large sets of

climate data interact with each other to produce many of the

oceanic and atmospheric patterns observed today. In the fol-

lowing chapters, we describe the details of our development

and evaluation of such a visualization tool.
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3
M E T H O D S

3.1 hardware , software , and architecture

3.1.1 Oculus Rift Virtual Reality Headset

Visualizing climate data within a VR framework allows for en-

hanced interactivity between the user and the data. This pro-

vides users with the control to choose which parts of datasets

to focus on in order to observe important relationships. More-

over, VR allows users to be fully immersed in an environment

representing their data. Being fully immersed in a 3D virtual en-

vironment provides a user with true depth perception, allowing

for a more intuitive understanding of 3D data. Data visualiza-

tions in VR have the unique capability to be more interactive

because gestural and other novel interfaces are possible.

We use the Oculus Rift as the hardware platform to develop

our climate data visualization tool. The Oculus Rift has an ac-

celerometer, gyroscope, and magnetometer, from which head

orientation (yaw, pitch, roll) can be inferred. In addition, the

Oculus Rift comes with an infrared camera, which tracks the

position of an array of infrared micro-LEDs on the headset, al-

lowing developers to track head position (x, y, z) of the user

(Desai et al., 2014). The Oculus Rift provides handheld Ocu-

lus Touch Controllers to interface with the virtual environment.

However, we have instead opted to work with a gesture based

control system called the Leap Motion Controller. This provides

27
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greater opportunity to fully immerse users in the virtual envi-

ronment, using hand gestures to control the visualization di-

rectly. The Leap Motion Controller is described in more detail

in the following section.

3.1.2 Leap Motion Controller

The Leap Motion Controller is a combination hardware and

software package that tracks multiple joints in the user’s hands.

The physical device consists of two cameras and three infrared

LEDs, and is attached at the front of the Oculus headset as

shown in Figures 8 and 9.

Figure 8: Front view of Leap Motion Controller attached to the Ocu-
lus Rift (Hunt, 2016).

Cameras with wide-angle lenses record frames of grayscale

images at a high field-of-view at the near-infrared spectrum.

Based on a live feed of data from these cameras, the software

component of the controller, called the Leap Motion Service,

attempts to reconstruct a 3D representation of the scene. Fol-

lowing this reconstruction, the service extracts tracking infor-

mation in order to pinpoint the location of key joints in the

user’s hands. It then projects that positioning information into

the virtual environment to generate virtual hands that follow
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Figure 9: Example of a user operating the Oculus Rift with the Leap
Motion Controller attached in front.

the user’s hands. Statistical filtering algorithms attempt to pre-

dict and maintain real time location of the hand based on move-

ments of these joint locations, creating a fluid real-time connec-

tion between the user’s real hand and the virtual hand in the

virtual environment.

3.1.3 Software

Our software primarily uses Python and Unreal Engine (ver-

sion 4.19). We integrate Python scripts into our pipeline for

data loading and preprocessing. Network Common Data Form

(NetCDF) files are loaded using the NetCDF module for Python

(netCDF4-python). Other notable modules include numpy, which is

used for large-scale matrix operations, and matplotlib, which is

used to store and apply the generated colormaps.

Unreal Engine features a level editor (Figure 10), which acts

as a canvas for various objects to be placed throughout the vir-
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tual environment, and is used for the core display capabilities.

Development in Unreal Engine is done in either C++ or Un-

real Engine’s proprietary graphical user interface tool called

Blueprints (Figure 11). We use both to build our visualization.

Figure 10: Screenshot of the Unreal Engine editor.

Figure 11: Screenshot of Unreal Engine’s Blueprint mode.

Our C++ program drives the visualization. For the global vi-

sualization, this code calls our Python preprocessing script for

data input. For topography data in the local visualization, the

Large Scale 3D Terrain Generator (L3DT) tool is used to trans-
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form raw topography data into a format that Unreal Engine can

read and visualize. L3DT is also used to fill in missing values

in the topography data. After inputting the data, the C++ pro-

gram generates a set of textures from the input dataset. Finally,

it controls the animation by updating the texture displayed at

each tick. We use C++ at this step to call our Python script exter-

nally; Blueprints does not allow us to do this. Moreover, C++ is

a more flexible environment than Blueprints is when working

with traditional data structures.

Meanwhile, the Blueprints is the backbone of our user inter-

face. The Blueprints features a graphical user interface (GUI)

with various function blocks. One can connect the inputs and

outputs of various blocks to develop code in a flowchart-like

environment. An example of a Blueprint is shown in Figure 11.

The graphical nature of Blueprints accelerates our own user in-

terface development, especially with its drag and drop function-

ality. This allows us to use existing assets from Unreal Engine to

organize different user interface elements (buttons, sliders, etc.)

together and have a specific action tied to each element. For this

step, Blueprints is a more intuitive and modular solution than

C++.

3.1.4 Data Formats

Our software interacts with a variety of different file formats

during runtime. These files store information such as different

climate data or texture data. A brief description of the data

formats we work with are summarized below in Table 1.
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Table 1: List of data file formats with their extensions and a descrip-
tion of each.

name extension description

NetCDF or
Network
Common
Data Form

.nc4 or .nc A common standard file
format for gridded, self-
describing data, frequently
used for climate data

Tagged Image
File Format

.tif A file format used for stor-
ing raster graphics

Fluid Grid
ASCII

.fga A specialized text file spec-
ifying the values of vectors
in 3D space

Binary File .bin A generic file type that
stores binary data

R 16 .r16 A format which stores
height data that Unreal
Engine can read

Climate data are also commonly stored in file formats such

as GRIdded Binary (GRIB), Hierarchical Data Format (HDF), or

Georeferenced Raster Imagery, but this project focuses on the

NetCDF file format for our proof of concept.

3.1.5 Architecture

Our software currently has two display options: (1) a combina-

tion of magnitude and direction of wind data at a global scale,

and (2) a combination of sea surface temperature and topog-

raphy data at a local scale around the Chesapeake Bay. The

pipeline that carries the input dataset to the visualization is

similar in either case, but there exist minor differencess in how

data are loaded into Unreal Engine. An overview of the general

software architecture design of both our global and local visu-

alizations is summarized in Figures 12a and 12b, respectively.

We provide a brief summary of each step of the pipeline in this
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section, while the following sections will delve into greater de-

tails of each part of our architecture. After the visualization is

generated in the Unreal Engine virtual environment, it is then

transmitted to the Oculus Rift headset.

(a) Global Pipeline (b) Local Pipeline

Figure 12: Software architecture pipelines for our (a) global visualiza-
tion and (b) local visualization.

For the global visualization, we first preprocess an input set

of climate data into a form that Unreal Engine can visualize.

The preprocessing is broken into two steps: Python preprocess-

ing and Unreal Engine initialization.

First, Unreal Engine initializes objects in the virtual environ-

ment on startup. In the C++ initialization code for our globe

or plane objects, we insert a call to a Python application which

generates a file of the colors to display for each point in each

timestep of the data.

Since Python generates the files necessary for display, Unreal

Engine has no access to the raw data or their attributes. There-

fore, we must pass information to Unreal Engine so that it can

notify the user of the displayed data, such as variable names,
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units, time ranges, etc. This necessitates the creation of a meta-

data file which contains this information. We explain how each

of these files is generated and displayed in the next section. For

the local visualization, the NetCDF dataset can be fed directly

into Unreal Engine for texture generation. However, the topog-

raphy data must be processed through L3DT first.

Next, using the processed input data, Unreal Engine gener-

ates a texture which is applied to an actor, a sphere for the

global visualization and a plane for the local visualization. At

each clock this texture updates, thereby animating the visual-

ization. The animation restarts after the final timestep. Concur-

rently, a user may use their hands to interface with the visual-

ization through the Leap Motion Controller.

3.2 data preprocessing in python

3.2.1 Introduction

Preprocessing of the original data is applied in Python prior to

reading the data into Unreal Engine. The visualization engine

does not require knowledge of the specifics of the data, mak-

ing the pipeline more efficient and modular. To initialize the

pipeline, we input a source data file, containing weather or cli-

mate data, and a predefined colormap. However, if a colormap

is not provided then a list of colors describing the intended gra-

dient should be input. Moreover, if the data file contains one

or more vector fields, then the radius and granularity of the

globe must also be given. Finally, start and end times, as well

as specific timestamps, can be input, but are not required.
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The preprocessing is broken down into multiple stages. In

stage 1, we generate a metadata file which contains basic infor-

mation about the data being displayed. Such information may

include real-world names of the variables, units, time ranges,

and the dimensions exactly as given in the source data file. This

information can then be displayed in the virtual environment

to inform the user about the data they are analyzing.

In stage 2, the source data are mapped according to a prede-

fined colormap, if supplied, and then written to a temporary

binary file. The user can also specify colors to use in the col-

ormap gradient and generate a colormap automatically accord-

ing to a perceptually-uniform color space, for which differences

between colors closely follow those of the human eye. We use

this approach as an alternative to the traditional method of lin-

early interpolating between the digitally-represented values 0-

255, and describe the motivation behind this choice more in the

next section.

In stage 3, we convert vectorized data to the Fluid-Grid ASCII

(.fga) format, which can be used by Unreal Engine to display

particle fields to visualize data such as wind vectors. This con-

tains a list of the individual 3D vectors of the vector field that

are to be displayed. Stages 2 and 3 are described in more detail

in the following sections.

3.2.2 Stage 2 of the Data Preprocessing

Stage 2 involves specifying the colors used for displaying the

source data in Unreal Engine. Traditionally, all colors displayed

on digital screens are represented using three values: red, green,
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and blue (RGB). Each value falls in the range 0-255. This is

also known as an 8-bit color representation, as each value is

represented using 8 bits. All values being zero equate to black,

while all values being 255 equate to white.

For linear interpolation between two colors in this space, one

would increment in equal steps between each RGB value be-

tween each color. For example, incrementing in five steps be-

tween blue (0, 0, 255) and red (255, 0, 0) results in the following

values: (0,0,255), (51,0,204), (102,0,153), (153,0,102), (204,0,51),

(255,0,0)

However, even though these values are equidistant numeri-

cally, they are not equidistant in how the human eye perceives

color. A perceptually-uniform color space attempts to correct this

discrepancy by creating a space where the linear distance be-

tween two points in the space is proportional to the perceived

distance. Figure 13 compares the digitally-uniform color gradi-

(a) Digitally-uniform

(b) Perceptually-uniform

Figure 13: Comparison of a blue to red color band that is (a) digitally-
vs. (b) perceptually-uniform.

ent to the perceptually-uniform color gradient of blue to red. In

Figure 13a, the blue and red sections of the digitally uniform

color gradient are abnormally stretched out towards the center,

with very little relative mixing taking place. Compared to Fig-
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ure 13b, the digital band also appears slightly darker. These two

traits are the main differences between a digitally-uniform and

a perceptually-uniform color space. The perceptually-uniform

color space in Figure 13b follows the Hunter Lab space devel-

oped by the International Commission on Illumination (CIE)

during the late 1940s (Optical Society of America, Inc., 1948).

To determine the perceptually-uniform RGB space, the Hun-

ter Lab space uses a parameter L, which signifies a lightness

value, and two values a and b, which roughly equate to trans-

lations along red and green for a, and yellow and blue for b.

Since this space is perceptually uniform, linearly interpolating

between points in this space translates to the same visual dif-

ference in the colors.

3.2.2.1 Conversion from sRGB to Hunter

The RGB present in display screens is referred to as the standard

RGB (sRGB) space. To convert from sRGB to Hunter and back,

an intermediate space known as the XYZ space is used, because

this space was used to develop all other color spaces.

The XYZ space was developed by CIE in the 1930s to produce

a link between color wavelengths and the perceived colors of

a human eye (Smith and Guild, 1931). For this reason, XYZ

values for a certain color are the same regardless of the device

being used to display them (QuickTutorial, cited 2018). Before

we find XYZ values for colors, we must define an illuminant,

or a reference “white” point, from which all other values are
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determined. Illuminant D65 is widely used as a reference white

point. The XYZ values for this illuminant are as follows:

X∗ = 95.047

Y∗ = 100.000

Z∗ = 108.883

(1)

We will use these values in our conversions.

A gamma correction must be applied to the values to convert

the sRGB to a linear space before a linear transformation can

be used to convert to XYZ. The gamma function is as follows:

γ(u) =


u/12.92 u < 0.04045

(
u+0.055
1.055

)2.4
otherwise

(2)

where u is each individual RGB value, scaled to be between 0

and 1. After gamma correction, calculating the XYZ values is a

simple matrix multiplication (IEC, 1999).
XD65

YD65

ZD65

 =


0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9505




Rlinear

Glinear

Blinear

 (3)

XYZ values produced through this transformation are scaled

such that Y∗ = 1. However, the real reference value of Y∗ is 100,
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as shown in (1). Therefore, we multiply (XD65, YD65,ZD65) by 100

before converting to Hunter. The conversion rules are:

L = 100

√
Y

Y∗

a = Ka

 X
X∗ −

Y
Y∗√
Y
Y∗


b = Kb

 Y
Y∗ −

Z
Z∗√
Y
Y∗


(4)

where,

Ka ≈ 175

198.04
(X∗ + Y∗)

Kb ≈
70

218.11
(Y∗ +Z∗)

(5)

3.2.2.2 Conversion from Hunter to sRGB

To perform the reverse conversion, we apply the inverse of the

operations listed in the preceding section in reverse order. Re-

arranging the formula for L in (4) gives us Y = Y∗
(
L

100

)2
. We

can use this equality with the other equations in (4) to solve for

X and Z as follows:

X = X∗

a
√

Y
Y∗

Ka
+
Y

Y∗


Z = Z∗

 Y

Y∗
−
b
√

Y
Y∗

Kb


(6)
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To transform to the linear RGB space, we first divide the XYZ

values by 100 to force Y∗ = 1. Then we multiply each XYZ point

by the inverse of the matrix in (3):
Rlinear

Glinear

Blinear

 =


3.2406 −1.5372 −0.4986

−0.9689 1.8758 0.0415

0.0557 −0.2040 1.0570




XD65

YD65

ZD65

 (7)

Finally, the gamma corrections are applied on the resulting

values to convert to the sRGB space using the inverse of the

gamma function in (2), with a slightly different cutoff point.

γ−1(u) =


12.92u u < 0.0031308

1.055u1/2.4 − 0.055 otherwise

(8)

The function outputs values mostly between 0 and 1. However,

some values are outside this range and must be clipped appro-

priately. At this point, multiplying by 255 and rounding to the

nearest integer will give us sRGB values in the range 0-255.

With respect to the user inputs, each of the provided RGB

colors is first converted to Hunter. Then linear interpolation is

performed between these points to get a total of 256 points from

the left color to the right color. These 256 points constitute the

colormap that is applied to the original data at all timesteps.

For an example of how these maps are stored, please refer to

Appendix A.1 and A.2.

3.2.3 Stage 3 of the Data Preprocessing

Stage 3 focuses on the display of 3D vector fields. We assume

the vector fields are mapped onto a sphere, with a given radius
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r. This sphere is housed in a cube of size 2r, while the distance

between points is the step resolution µ. These two values are set

by the user before creation of the vector field. The source data

file provides the u and v components of the vector field at each

latitude φ and longitude λ on a defined grid. In our visualiza-

tions, the point (r, 0, 0) in Cartesian coordinates is designated

by (0°N, 0°E). The preprocessing of this data prior to display

is broken up into two parts: (1) calculating the appropriately

rotated 3D vectors for each known point, and (2) interpolating

between adjacent points on the surface.

3.2.3.1 Rotating our Known Vectors

Initially, the u and v values of the wind vectors in the data

are defined relative to the surface of the sphere. We need to

transform them so that they are defined relative to the absolute

position in 3D space. Each of the resultant vectors will lie at the

specified latitude and longitude coordinates on a plane tangent

to the sphere. The transformations involve a set of rotations

utilizing the latitude and longitude of our vector. To begin, we

will “flatten” the vectors so that they each have initial direction

(u, v, 0).

Initially, (0°N, 0°E) maps to (0,−r, 0) on the sphere. To get

(0°N, 0°E) to be at the point (r, 0, 0) in our absolute 3D space,
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we first rotate the vector π2 radians (90°) around the z-axis (signs

follow the right-hand rule) using the rotation matrix:

R1 =


0 −1 0

1 0 0

0 0 1

 (9)

Next, we apply a rotation so that the vector is at the specified

latitude level. However, 0°N, i. e. the equator, lies on the xy-

plane. Therefore, to get the correct rotation amount, we subtract

the latitude value from π
2 . The rotation is about the y-axis, and

so the rotation matrix is,

R2 =


cos
(
π
2 −φ

)
0 sin

(
π
2 −φ

)
0 1 0

− sin
(
π
2 −φ

)
0 cos

(
π
2 −φ

)

 =


sinφ 0 cosφ

0 1 0

− cosφ 0 sinφ


(10)

Finally, for longitude orientation, we rotate around the z-axis

once more. There are no corrections here, because the units are

°E, which is oriented in the positive rotation direction:

R3 =


cos λ − sin λ 0

sin λ cos λ 0

0 0 1

 (11)
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Multiplying through these matrices R3R2R1 with our initial vec-

tor (u, v, 0) gives:

R3R2R1


u

v

0

 =


−u sin λ− v cos λ sinφ

u cos λ− v sin λ sinφ

v cosφ

 (12)

The final step is calculating the new position of this vector. This

is a simple conversion from spherical coordinates to Cartesian

coordinates using our radius, latitude, and longitude. The cor-

rection to our latitude value is also included:

x = r sin
(π
2
−φ

)
cos λ = r cosφ cos λ

y = r sin
(π
2
−φ

)
sin λ = r cosφ sin λ

z = r cos
(π
2
−φ

)
= r sinφ

(13)

We now have the rotations and positions of our input vectors

to be displayed in 3D space. The next step is to interpolate our

known values among all of the points with unknown values

that lie on the sphere with designated resolution, µ.

3.2.3.2 Interpolating Through Points on the Sphere

The grid coordinates x,y, and z in our Unreal Engine display

space follow discrete radius levels (−r,−r+ µ,−r+ 2µ, · · · , r−

2µ, r− µ, r). Any point whose distance from the origin falls in

the range [r, r+ µ] will be deemed "close enough" to be interpo-

lated from the larger grid.

We assume that the known values in the original data follows

a rectangular mesh. In this case, each point that is assigned

an interpolated value uses the four closest points at the appro-
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priate radius that have known values. These four points will

always form a quadrilateral enclosing our target point. Exclud-

ing special cases, each target point will have two latitude and

two longitude levels bounding the point. The latitude and lon-

gitude values of our target point are calculated using standard

Cartesian to spherical coordinates formulas, with the added

correction to the elevation value. We linearly interpolate along

both the horizontal and vertical direction; the latitudes and

longitudes stay constant along each direction, respectively. Fig-

Figure 14: The black vectors are the known points, and the green
point is our target point. We interpolate on the two sides
above and below the target point. We interpolate vertically
to calculate the proper vector for our target point.

ure 14 shows an example interpolation where our target point

is at (123°E, 32°N), and we have known values at points at

(120°E, 30°N), (125°E, 30°N), (120°E, 35°N), and (125°E, 35°N),

as shown by the black vectors. We first interpolate in the longi-

tudinal (East/West) direction between the two points at each of

the latitude levels to get two new pink vectors at (123°E, 30°N)
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and (123°E, 35°N). Then, we interpolate again between these

two vectors to get our green target vector at (123°E, 32°N).

A special case is when the calculated latitude value is either

greater than or less than the maximum or minimum values of

the known latitude range. In this case, our four points will all

come from a single latitude level and four separate longitudi-

nal levels. Afterwards, interpolation is done in a similar manner.

Since this is a linear interpolation of four vectors in 2D space, it

is possible that the interpolated vector is not perfectly tangen-

tial to the sphere.

Our initial Unreal Engine display space was a box with side

length 2r and centered at the origin. All vectors in this space

are initially set to the 0 vector. The above analysis only sets non-

zero vectors at points that are close to the surface of the sphere.

In the case where a particle passes through other points with

a 0 vector, no additional force will be applied to the particle,

and it will keep moving in its original direction. This can have

the visual effect of particles leaving the sphere, obscuring the

actual vector field and hampering the user experience.

For this reason, we also apply an inward gravity field to all

points with a 0 vector to force the particles back toward the

sphere. An outward gravity field is also applied to all points

that are within the sphere radius. To further ensure that the

eight points along the three poles are not interacting with the

space outside the box, we pad the vectors with an extra layer

of gravity. This results in a box side length of 2r+ 2, while the

sphere radius is still r.
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Finally, recall that we assumed that the input data followed a

rectangular mesh. For non-rectangular meshes, such as triangu-

lar or hexagonal meshes, a similar process would be followed,

taking the closest points from each interpolated point. For ex-

ample, a triangular mesh would take the closest 3 points.

For code snippets detailing how the vector rotations and in-

terpolations are performed, please see Appendices A.3 and A.4.

3.3 data processing in unreal engine

3.3.1 Global Visualization

After the source data are preprocessed, they are then read into

Unreal Engine. Objects in the Unreal Engine virtual environ-

ment are classes called Actors, which have properties that can

be edited through source code. Each Actor can have a mesh ap-

plied to it which dictates its appearance and how it interacts

with light in the virtual environment. Our virtual globe is a

sphere Actor with a mesh applied to it which displays an ani-

mating texture using the perceptually uniform color grid calcu-

lated during preprocessing. When the mesh is generated as the

environment is loaded, we use the Python to C API to set the

arguments to the script and call it from within Unreal Engine.

We then read the information from the newly created metadata

and colormap files to create an array containing the RGB color

value for each point on the grid at each timestep. Each time

Unreal Engine refreshes the display, the texture is updated to

display colors from the next timestep, wrapping around to the

first time step if the end has been reached. We apply this pro-

gramatically created mesh to our sphere Actor, and the texture
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is warped to match this shape. We also apply a premade mesh

on top of the colored texture mesh to display the boundaries of

continents.

In order to display the movement of wind vectors on a global

scale, we use the Unreal Engine object called Particle System.

Using Particle System, new particles can be spawned along the

surface of the sphere, but these particles remain stationary un-

less placed under the influence of a Vector Field object. We im-

port the .fga format vector data generated during preprocess-

ing directly into Unreal Engine, which converts it into a Vector

Field object. The particles spawned on the surface of the sphere

then move in the direction of the vectors specified by the .fga

file. The tightness parameter of the vector field allows the “mo-

mentum” of particles to change. We set this tightness parameter

as high as possible so that any particle will immediately change

direction if it moves into a gridded area controlled with a dif-

ferent vector. This ensures that particles always move tangent

to our globe.

3.3.2 Local Visualization

3.3.2.1 Motivation

In order to allow users to study local phenomena in more detail,

we create a prototype local visualization as a proof of concept

for how a regional display would look and feel. Moreover, since

many available datasets are region-specific, this visualization

increases the possible types of datasets users can load into the

tool. With this local visualization, we increase the functionality

of the tool and give users a sense of its further potential. The
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Chesapeake Bay is one of the most interesting ecosystem in

Maryland and is a frequent topic of study at the University

of Maryland (UMD). For this reason, we focus on visualizing

Chesapeake Bay water temperature over a period of 18 days.

3.3.2.2 Raw Climate Data

We use the National Oceanic and Atmospheric Administration

(NOAA) Coast Watch East Coast Node, which includes regional

climate data for many regions along the U.S. east coast. We

also use the daily Advanced Very High Resolution Radiome-

ter (AVHRR) dataset, which contains retrieved surface water

temperature observations. The dataset has 1 km horizontal res-

olution and can be downloaded in the NetCDF data format

for any desired day starting from 2009. In addition to the raw

data files, the database also allows users to download 2D im-

ages (in .png format) that NOAA automatically generates for

each dataset. This allow us to validate our own visualizations

of the dataset. We examine the period from August 17, 2017 to

September 6, 2017, when Hurricane Harvey hit the Chesapeake

Bay.

To automate downloading the data, we call a Python script,

which is included in Appendix A.5. Once the datasets are down-

loaded, we load the data using the netcdf4 C++ library into the

Unreal Engine program memory. During the initialization stage

of the local visualization, the program iterates through each of

the 18 data files separately and saves them into a 3D array that

is indexed by latitude, longitude, and time.
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Next, we animate the the visualization by periodically updat-

ing a 3D pixel array that is mapped onto the display. This pixel

array is indexed by x, y and RGB. In other words, we need to

specify the RGB values for each pixel. In the update routine,

we process the data in the next time frame by converting each

raw temperature value into RGB values, where red corresponds

to higher temperatures and blue corresponds to lower temper-

atures. We save these values into the pixel array. At the end

of the update routine, we display this updated color pattern

stored in the pixel array.

There are two main objects in the local visualization. The first

is a static mesh plane, which floats in the environment and is

the main physical object displayed. By itself, the static mesh

plane has no color or texture. However, we apply the dynamic

texture material, the second main object, to the static mesh

plane to give it color. The update routine mentioned above up-

dates this dynamic texture material periodically to give an ap-

pearance of animation over time.

3.3.2.3 Topography Data

Another aspect of the local visualization is the topography data.

Topography data are obtained from websites, such as OpenTo-

pography, in a .tif format. For our local example, we choose

to download topography data for the exact same area as our

climate data in order to smooth the process later.

The L3DT tool is used to transform the topography data to

heightmaps in .r16 format so that Unreal Engine can quickly

read and visualize the data. L3DT is also used to fill in un-
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known areas that are missing data with elevation level zero

for our example. In general, L3DT offers two options for filling

missing values, either by interpolating based on neighboring

data or by filling in with a default value such as zero.

In order for Unreal Engine to read the .r16 files, several steps

must first be taken. Enabling the world composition is neces-

sary for Unreal Engine to read and stitch the files together. Af-

ter this, the files are loaded into the level as tile landscapes.

Each individual tile is now a level and by loading all of the lev-

els at once, the full terrain is visible and ready to be integrated

with the climate data.

3.3.2.4 Unreal Engine Integration

After the climate data and the topography data are loaded into

Unreal Engine, they are overlaid into one coherent visualiza-

tion. Lining up these visualizations so that the positioning is

geographically accurate and the appearance is a seamless tran-

sition from one data source to the next is a difficult task. We

first used data corresponding to the same region on Earth so

the latitude and longitude boundaries of both datasets match

exactly. Next, we manually adjusted the aspect ratio and size of

the static mesh actor (the plane for the climate data) to match

those of the topography. Finally, the climate data plane is trans-

lated so that it sits slightly above sea level on the terrain. The

resizing and scaling of the static mesh actor is tuned manually

using Unreal Blueprints. Since the topography data and water

temperature data are loaded into the environment through in-
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dependent processes, we have two separate objects which are

overlaid on top of each other.

3.4 development of the user interface

Our user interface combines the Leap Motion Controller with

Unreal Engine Blueprints for optimal user interactivity. A plu-

gin by Kaniewski (2018) interprets information from the Leap

Motion Service and provides it to Unreal Engine. This allows

us to project a user’s hands into the virtual environment. Addi-

tionally, the plugin allows hand joints to be tracked at a high re-

fresh rate. Thus, a user may control aspects of the visualization

with their hands when a built-in gesture is recognized. More-

over, accessing fingertip location is essential in constructing an

interactive menu.

Kaniewski’s plugin supports four built-in gestures: left pinch,

left fist, right pinch, and right fist. Examples of the left pinch

and left fist gestures are shown in Figures 15a and 15b, re-

spectively. In Blueprints, recognition of one of these gestures

is an Event, and certain actions may follow. For example, in the

global visualization, when a user pinches his or her right hand,

the interactive 3D menu appears in front of the user. To ensure

the menu spawns facing the user, we use the user’s current posi-

tion and forward vector, which is a unit vector that points in the

direction the user is looking in the world (Epic Games, 2018).

We place the menu a set distance along the user’s forward vec-

tor, then orient the menu to face the user. Refer to Appendix

A.6 to view the corresponding Blueprint.
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The menu contains traditional user interface elements, such

as sliders and buttons, which are tied to specific actions when

triggered. To interact with the menu, we track the position of

the user’s fingertip. When a user’s fingertip intercepts one of

the menu items, a certain action is called. For example, in the

global visualization users can control the rotation speed of the

globe by moving a slider. The plugin also allows developers to

track various other joints in a user’s hands. One could use this

information to expand upon the four built-in gestures.
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(a) Left pinch

(b) Left fist

Figure 15: Examples of built-in Leap Motion Controller gestures, pro-
vided by Kaniewski’s plugin (Kaniewski, 2018), in a virtual
environment.
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3.5 focus group format

In order to gain feedback on our prototype for further evalua-

tion, we organized a focus group composed of professors from

the Department of Atmospheric and Oceanic Sciences (AOSC)

and students from both AOSC and the broader community

at UMD. We received an Exempt status from the Institutional

Review Board (IRB) to collect survey data from participants

anonymously after they use our visualization tool. Each par-

ticipant signed a consent form assuring their anonymity and

agreeing to the minimal risks enumerated on the form in Ap-

pendix B.1.

We recruited our participants by reaching out to professors,

as well as PhD, Master’s, and undergraduate students studying

the climate with an interest in data visualization. After receiv-

ing responses to our initial request, we reached out a second

time requesting our participants to select a 20-minute time slot

to meet with us at the focus group location to try our prototype.

The sign-up form is shown in Appendix B.2.

The survey questions given to participants gauged the intu-

itiveness and usefulness of our visualization prototype from

the perspective of a climate researcher. The full survey is listed

in Appendix B.3, but in general, questions focused on expected

usage, ease of interpretation, and comparison to traditional 2D

visualizations.
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R E S U LT S

4.1 global visualization

Currently, our global visualization can transform a NetCDF file

into the components necessary to generate a 3D environment

(Section 3.2.1). A user will provide the following to the pro-

gram: the dataset file to visualize, the color map to display, the

start and stop timesteps, and whether the data should be visual-

ized as vectorized data. After the necessary files are generated,

the visualization launches.

Once the global visualization has been launched, the user

sees the globe with all of the continental land masses outlined.

The data are displayed as colors in the perceptually-uniform

color space discussed in Section 3.2.2, and the texture is ani-

mated through all of the time steps present in the data.

As an example of the capabilities of our prototype, Figure

16 shows a still screenshot of a visualization of the highest

hourly temperature throughout March of 2011. The data were

retrieved from the Climate Forecast System Reanalysis (CFSR)

by the National Centers for Environmental Prediction (NCEP)

at NOAA, which is a high-resolution global dataset containing

time series data for the atmosphere, ocean, land, sea surface,

and ice (Saha et al., 2010). As the globe rotates, users can com-

pare the temperature in different areas of the world. It is easy to

see that areas toward the equator are generally warmer. As the

55
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texture on the globe animates, the temperatures increase and

decrease cyclically, denoting days and nights. Users can also

see that large land masses generally retain more heat through-

out the day, shown by the red color of east Africa and India in

Figure 16.

Figure 16: This screenshot shows a high resolution dataset of maxi-
mum hourly surface temperature.

If the data passed to the program are vectorized, then a par-

ticle field is also displayed above the colors as shown in Figure

17, where individual particles move around the globe according

to defined vectors at the first time step in the data. This allows

the user to view the intensity, direction, and movement of vec-

torized data. Users can easily see areas of fast-moving currents

and areas of rotation. Figure 17 shows a static image of the fi-

nal visualization depicting wind data at midnight, September

1st, 2009 over the west Pacific Ocean. These data were also re-
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trieved from NOAA’s CFSR (Saha et al., 2010). Rotating storms

can be seen forming over Indonesia and southeast of Japan;

in real time, the particles in these areas appear to move faster

than those over land masses since the intensity in these storms

is stronger.

;

Figure 17: In this screenshot, white dots represent the particles that
will move around the sphere. The colors on the globe rep-
resent the magnitudes of the data, colorized according to a
perceptually-uniform color scheme.

There are several ways to interact with the global visualiza-

tion. By making a pinching motion with their right hand, a user

can open the interactive menu shown in Figure 18. The user can

then use their fingertips to interact with the menu to adjust the

display. Changing the location of the slider allows the user to

adjust the globe’s rotation speed. A user can then view the data

on all sides of the globe as it rotates. By selecting a check box,

a user can also pause the animation of the underlying colored
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texture to view data at a specific timestamp of interest. These

functions allow users to control which areas and times of the

data they are most interested in analyzing, or if they would

prefer to view an animated visualization of the entire dataset.

Figure 18: This screenshot shows an interactive menu for the global
visualization. With their fingertip, users may move the
slider to adjust rotation speed, and click the check boxes
to toggle rotation or animation of the globe.

4.2 local visualization

After launching the local visualization, the user sees a close-up

view of the Chesapeake Bay region. In this example (Figure 19),

the local visualization displays topography data and water tem-

perature data simultaneously. However, one can visualize any

other climate dataset, assuming it has the same longitude and

latitude coordinates as the topography dataset. In Figure 19, the

water temperature data are displayed with an RGB color scale

on the texture, which is animated through all of the time steps

present in the data. In the color scale, warm temperatures are

represented with red hues while cold temperatures are repre-

sented with blue hues. Water temperature data can be seen on
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the flat areas, which correspond to regions of water. The user

can also view the topography data over the land. The topog-

raphy is shown with an earthy color to give a more realistic

representation.

Figure 19: A still screenshot of the Chesapeake Bay local visualiza-
tion of surface water temperature and topography over the
land.
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A user may interact with the visualization through three ges-

tures provided by the Leap Motion Controller. By making a

pinching motion with their left hand, a user may pause the un-

derlying animation to look at specific timestamps of the data.

Figure 20 shows a user’s hands above the visualization.

Figure 20: The user’s hands are projected into the Chesapeake Bay
visualization via the Leap Motion Controller.

A user may also zoom into and out of the Chesapeake Bay

by closing their left hand and right hand into a fist, respectively.

Figure 21 shows a user standing on the Chesapeake Bay. This

view is a result of successive zooms.

Figure 21: A zoomed in view of the Chesapeake Bay visualization
after several zoom actions
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4.3 focus group results

For our focus group, we had a total of eleven participants. Of

these eleven participants, eight were undergraduate students

and three were professors or post doctoral researchers in the

AOSC department at UMD. Overall, most participants had a

positive view of our prototype and a good overall experience

testing the device (Figure 22).

Figure 22: Ratings of the overall experience of using the product,
from start to finish. Higher ratings indicate a better experi-
ence.

Many participants found that wearing the Oculus headset

was comfortable and using the Leap Motion Controller hand

gesture controls was intuitive (Figures 23 and 24). However, one

participant did have issues wearing the Oculus headset while

simultaneously wearing their glasses, but we believe this is a

minor problem as many other participants were comfortable

wearing the Oculus with their glasses on.
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Figure 23: Ratings of how comfortable our participants were when us-
ing the device. Higher ratings indicate more comfort levels.

Figure 24: Shows how our participants rated the intuitiveness of the
prototype. High numbers indicate higher intuitiveness lev-
els.
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There were some issues with the interactions due to how sen-

sitive the Leap Motion Controller is to small hand movements.

This issue is particularly apparent with menu interactions as

several participants had problems clicking the menu buttons.

We found that the best approach to teaching others how to use

the device was to demonstrate the gestures before they put on

the headset. The issue with the ease of interaction can be seen

in Figure 25 where the normal distribution indicates the issues

users had with interacting with the prototype. This, coupled

with the fact that the majority of users view the ease of interac-

tion as an important feature, indicates that a lot of development

time will need to go into the user interface to ensure that inter-

actions are improved in the future (Figure 26).

Figure 25: Ratings of how easy it was to interact with the device.
Higher ratings indicated easier levels of interactivity.

For our local visualization, many people thought the visual-

ization was good but wanted to see more information. However,

they had a relatively easy time navigating this part of the visu-



4.3 focus group results 64

Figure 26: A list of the features that our participants considered most
important in a climate visualization tool. Multiple selec-
tions were allowed.

alization and found the controls to be relatively intuitive. The

topography was seen as interesting but could be more relevant

given varied datasets over the topography, such as rainfall and

temperature. In general, participants wanted several features

such as zooming, a legend showing timestamps, color scale,

and data type information, and multiple related datasets such

as salinity and algae. One interesting suggestion was to overlay

this type of visualization with geographic economic data to see

if there are any interesting trends and correlations.

For our global visualization, our participants were impressed

with the wind particle simulation and the patterns it displayed.

Controls for this visualization were slightly more challenging

for some participants but most adapted to it after some time.

Participants had a difficult time seeing the continent outlines

as they tended to blend in with the color scheme of the globe

data. Participants also desired a legend to show pertinent infor-
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mation, the ability to change color schemes on the fly, and the

ability to zoom in and out. In addition, participants noted that

seeing how the wind data change over time would be incredibly

useful. Overall, many participants saw a high amount of poten-

tial, with continued development, in using VR for weather and

climate visualizations (Figure 27).

Figure 27: Depicts how our participants rated the usefulness of the
prototype in the present and the future.

For additional graphs depicting our results for questions not

covered in this section, please see Appendix B.4.



5
D I S C U S S I O N

Throughout this project, we explored novel methods of data

visualization using virtual reality to determine if greater im-

mersion and interactivity would benefit a user when drawing

meaningful conclusions from data. While our proof of concept

showed promise for the extent that VR can improve user expe-

riences in the field of data visualization, there is still further

research and experimentation to be done to fully realize the

potential of this type of software. We will discuss some of the

shortcomings and potential improvements to our system.

5.1 global visualization

The global visualization displayed a new approach to color

with the use of perceptually-uniform color spaces. These spaces

allow users to have a more intuitive sense of the differences be-

tween values, especially if values are closer to the extremes. The

particle simulation of vectorized data also offers a realistic 3D

approach to the movement of particles. With these enhanced

visuals, researchers can immediately glean insights as opposed

to 2D static images.

In our focus groups, our participants mainly said that the

wind visualization itself was very well-done. However, they

also notified us that some parts of the visualization were in-

accurate. For example, apparent cyclone behavior seen in the

northern hemisphere was swirling in the clockwise direction,

66
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when it should be rotating be counterclockwise due to the Cori-

olis effect (and vice versa for the southern hemisphere).

After further review, we also noticed that particle movement

in other locations across the globe did not correspond properly

to a 2D map. We also noticed that some .fga files presented

differently in Unreal Engine versus other physics engines like

Blender. Further investigation entailed researching how Unreal

Engine processes .fga files, and as of this writing, no clear an-

swer has been documented. Therefore, in the future, this prob-

lem needs to be addressed in full.

One goal we had at the beginning of our project was to dis-

play multivariate data at many different altitudes to observe

interactions between atmospheric and oceanic datasets. Due to

technical and time limitations, we were only able to visualize

atmospheric data at one altitude with our vectorized data. It

would be useful in further research to determine how view-

ing volumetric layer rendering of 3D compares to viewing data

slices in 2D, where possible data saturation may occur.

5.2 local visualization

Our local visualization combined both climate and topography

data in a localized region. The 3D nature of virtual reality helps

one to understand the depth of the region coupled with the

climate data. There are two main future improvements to this

visualization. First, we would like to visualize more datasets.

Based on our focus group, we found that what users would

like to able to see multiple related datasets from the same re-

gion. There are several ways that this can be implemented. The
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first method is to allow the user to toggles between the datasets.

The second method is to visualize all the datasets in the envi-

ronment simultaneously. While more complex to implement,

this method leverages full potential of a VR tool by visualiz-

ing datasets ways that other formats would not be able to. We

imagine that this could be implemented in the future by adding

another plane mesh for each additional dataset.

The second future improvement for the local visualization

is streamlining the process of creating the visualization itself.

In the future, we would like to automate the process of both

loading the topography data and lining up the topography data

with the climate data. Currently, both are done manually in

L3DT and Unreal respectively. Automating these two processes

will save a significant amount time by allowing many types of

local visualizations to be generated in real time.

5.3 user interface

Our user interface combined the Leap Motion Controller with

Unreal Engine Blueprints for optimal user interactivity. This in-

terface allowed users to interact with the visualization directly

with their hands. In the local visualization, users could stop

and start the underlying animation to observe specific times-

tamps of interest within the dataset by simply pinching (Figure

15a) with their left hand. Meanwhile, in the global visualiza-

tion, users could use their fingertips to interact with a menu to

control the rotation and animation of the 3D globe.

In our focus groups, most participants found the gestural

control to be intuitive. However, there were some issues with
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interacting with the 3D menu, due to the sensitivity of the Leap

Motion Controller. These users suggested further ways to inter-

act with the data, such as zooming into and out of regions of

interest, and changing the visualization’s color scheme on the

fly.

After the focus group, we devised a way for users to zoom

into and out of the local visualization by closing their left hand

and right hand into a fist, respectively. These built-in gestures

(Kaniewski, 2018), however, may not be the most intuitive way

to zoom. Thus, one avenue of future work entails developing

custom gestures by using the positional tracking data of bones

and joints provided by the Leap Motion Service. To zoom, one

should perform a gesture similar to the zoom gesture popular-

ized by smartphones.

A second avenue of future work involves improving the 3D

menu of the global visualization. As suggested in the focus

group, users should be able to change the color scheme of

the visualization; the menu should facilitate this. Additionally,

users should be able to switch the dataset being visualized

through the menu. When optimized, the user interface should

function unnoticed - it cannot act as a hindrance or barrier for

users to overcome when visualizing and analyzing data.

5.4 future directions

Currently, our project primarily focuses on simply loading, vi-

sualizing, and interacting with the available climate data in the

Unreal Engine environment. As mentioned previously, there is

room for improvement when it comes to each of these core
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components of our visualization system. Some additional im-

provements we can make to our visualizations as a whole is

to make more information about the data available to the user.

This would entail adding basic information such as the name

of the dataset, legends for what the color scheme means, times-

tamp for the data values, etc. Furthermore, users expressed an

interest in being able to directly see the values associated with

the color map, as well as summary data such as mean values.

All of this information can be added to our visualization for

each dataset in order to improve the usefulness of our current

visualization.

The results of our focus group also show that viewing a 3D

visualization is a useful way to present users with a spatial

interpretation of data. This could be especially applicable in

situations where data can be seen moving in multiple dimen-

sions, such as inside thunderstorms. We recommend that any

continued development of our tool should focus on extending

the current functionality to encompass a broader set of inputs

to allow for layering of related datasets or datasets with infor-

mation at multiple altitudes.

In addition to improving the existing components, another

tangible improvement we can make is to add other useful com-

ponents to our system, namely analytic tools. While simply be-

ing able to visualize data in a 3D environment can already en-

hance understanding of the data, being able to perform more

advanced analysis techniques on the data would add further

value to what users can get out of our visualization system. For

example, it would be interesting to calculate the correlation be-
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tween different variables being displayed and highlight level of

correlation in the visualization.

The system could be adapted in the future for either of two

different audiences: general users or climate researchers. The

user interfaces and functionality developed could vary to serve

these two purposes. While climate researchers may prefer flex-

ibility in the visualization including analytic tools to suit their

needs, someone using the system to show the impacts of a

changing climate to a less experienced user may prefer a sim-

pler user interface with a visualization that will be more impact-

ful to the viewer. The immersive nature of virtual reality allows

for this project to be tailored to both audiences, allowing for

both greater interactivity and analysis in three dimensions and

the ability to create informative and stirring visualizations. The

current state of our projects serves as a launchpad for future

teams to achieve this vision.
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A
C O D E L I S T I N G S

For additional code snippets not described here, as well as the
rest of our codebase, please clone our Github repositories. The
first contains color transformations, while the second houses
the development in the Unreal environment. Links:

1. https://github.com/teamdiva2019/ColorProduction

2. https://github.com/teamdiva2019/ProjectDIVA

a.1 colormap data structure

One colormap from matplotlib is the plasma colormap.

Figure 28: The plasma colormap

In our environment, this colormap is represented by a text
file of floating point numbers between 0 and 1, denoting the
fraction of red, green, and blue respectively, in 256 equal steps,
as shown in Listing 1.

Listing 1: The first 10 lines of plasma.txt. The rest of the file is omit-
ted for brevity’s sake.

0.050383 0.029803 0.527975

0.063536 0.028426 0.533124

0.075353 0.027206 0.538007

0.086222 0.026125 0.542658

5 0.096379 0.025165 0.547103

0.105980 0.024309 0.551368

0.115124 0.023556 0.555468

0.123903 0.022878 0.559423

0.132381 0.022258 0.563250

10 0.140603 0.021687 0.566959

...
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a.2 colormap generation

In Listing 2 below, RGBToHunter and hunterToRGB are functions
that transform between the Hunter Lab space and the sRGB
space (Section 3.2.2.1 and Section 3.2.2.2). We convert the gra-
dient colors to Hunter, establish 256 equal steps among them,
bulk transform back to RGB, and finally write to a text file.

Listing 2: The code to generate a colormap given a list of equally-
spaced colors to denote the gradient

def makeColorMap(mapName, gradientStops):

for i in range(len(gradientStops)):

gradientStops[i] = RGBToHunter(gradientStops[i])

totalCols = 256

5 colsPerStop = int((totalCols - len(gradientStops)) / (

len(gradientStops) - 1) + 1)

gradient = np.zeros((colsPerStop * (len(gradientStops) -

1) + 1, 3))

for i in range(len(gradientStops) - 1):

redRange = np.linspace(gradientStops[i, 0],

gradientStops[i + 1, 0],

colsPerStop, endpoint=False)[

np.newaxis, :]

10 greenRange = np.linspace(gradientStops[i, 1],

gradientStops[i + 1, 1],

colsPerStop, endpoint=False

)[np.newaxis, :]

blueRange = np.linspace(gradientStops[i, 2],

gradientStops[i + 1, 2],

colsPerStop, endpoint=False)

[np.newaxis, :]

# Concatenate the ranges to get a range of points

15 fullRange = np.concatenate((redRange, greenRange,

blueRange), axis=0).T

# And add to the upper gradient array

gradient[i * colsPerStop:(i + 1) * colsPerStop] =

fullRange

# Add the final color

gradient[-1] = gradientStops[-1]

20 # Convert to RGB

finalMap = hunterToRGB(gradient)

# Save the final map

direct = os.path.join(os.path.dirname(os.path.realpath(
__file__)), '..//ColorMaps')

np.savetxt(os.path.join(direct, mapName + '.txt'),

finalMap, fmt='%1.10f')
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a.3 vector rotations

In Listing 3 below, vects3D is an m x n array, where m and
n are the number of latitude and longitude points we have,
respectively. Each element is a triplet of values denoting the
vector in Cartesian coordinates. Meanwhile, exactVectLocs has
the same size, but holds the exact loactions of these vectors in
3D space. Additionally, latPoints and lonPoints hold arrays of
our latitude and longitude points, respectively. Finally, please
note that the numpy package is being used in this code snippet.

Listing 3: The code snippet where we rotate flat 2D vectors into 3D

for i, lat in enumerate(latPoints, 0):

for j, lon in enumerate(lonPoints, 0):

# Find the rotation matrix...refer to section.

rotMatrix = np.dot(

5 [

[np.cos(lon), -np.sin(lon), 0],

[np.sin(lon), np.cos(lon), 0],

[0, 0, 1]

],

10 # pi / 2 - lat gives you phi

[

[np.cos(np.pi / 2 - lat), 0, np.sin(np.pi /

2 - lat)],

[0, 1, 0],

[-np.sin(np.pi / 2 - lat), 0, np.cos(np.pi /

2 - lat)]

15 ]

)

# Before we rotate, we need to convert to a

# "top-down" view, so the +x-axis will point down

# and the +y-axis will point right.

20 # (x,y,0) ==> (-y,x,0)

np.dot(rotMatrix, np.array([[0, -1, 0], [1, 0, 0],

[0, 0, 1]]), out=rotMatrix)

# Apply the entire rotation matrix

vects3D[i, j] = np.dot(rotMatrix, vects3D[i, j])

25 ### Calculate the 2d point.

### Basically spherical coordinates

exactVectLocs[i, j] = radius * np.array([

np.sin(np.pi / 2 - lat) * np.cos(lon),

np.sin(np.pi / 2 - lat) * np.sin(lon),

30 np.cos(np.pi / 2 - lat)

])

print('Transform complete!')
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a.4 vector interpolation

In Listing 4 below, radius and resStep hold our box radius in
the Unreal space and the distance between points respectively.
Meanwhile, padWidth is an integer describing how many units
to pad our display by. At this stage, fgaVectors is a 3D array,
where each element is a triplet of values denoting the vector
at that location. The physical location of these vectors is calcu-
lated using the values described above. Finally, windscale is the
amount we scale our resultant vectors by in the final visualiza-
tion.

Note the presence of two functions cart2sph and
findBoxPointsAndWeights. The former converts Cartesian coordi-
nates into spherical. The latter finds the corresponding latitude
and longitude indices in latPoints and lonPoints of the bound-
ing box around a target vector to interpolate. Details of these
two functions have been left out for brevity’s sake. Please see
our ColorProduction repository above for further details.

Listing 4: This snippet shows how we calculate the interpolated vec-
tors between defined vectors.

# From our padding, value space goes from radius

# to radius. But our index space now starts at

# the padWidth, and goes the length of the value space.

valueSpace = np.arange(-radius, radius + 1e-10, resStep)

5 indexSpace = np.arange(padWidth, padWidth + len(valueSpace))

valueProduct = product(valueSpace, valueSpace, valueSpace)

indexProduct = product(indexSpace, indexSpace, indexSpace)

for point, indices in zip(valueProduct, indexProduct):

x, y, z = point

10 xi, yi, zi = indices

distFromOrigin = np.linalg.norm([x,y,z])

# If the distance from the point to

# the origin is "close enough", then we

# interpolate on this point. Here, "close enough"

15 # means above the sphere and less than resStep away.

if 0 <= distFromOrigin - radius < resStep:

# Find the spherical coordinates of this point.

# The method returns the latitude and longitude

# in the correct ranges.

20 rho, lat, lon = cart2sph(x, y, z)

# Use numpy's searchsorted function to find

# the closest locations for latitude and longitude.

# searchsorted returns a right associated index.

25 # The reason for the mod is that if the value is

# off the deep end, then searchsorted returns

# the length of the array, which is invalid index.
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# So mod the length the array to turn it 0, and

# the left index (which should wrap around), works

30 # as intended.

boxLocs, weightLat, weightLon =

findBoxPointsAndWeights(lat, lon, latPoints,

lonPoints)

# Point 4 is assumed to be diagonally opposite

35 # Point 1, and Point 2 is assumed to be

# horizontally opposite Point 1.

# Point 1 is the lower left point.

# First we need to find the two vectors directly

# above and below (left and right also works) our

40 # target location.

interAbove = (1-weightLon) * vects3D[boxLocs[0]] +

weightLon * vects3D[boxLocs[1]]

interBelow = (1-weightLon) * vects3D[boxLocs[2]] +

weightLon * vects3D[boxLocs[3]]

# Now we interpolate vertically

# between these two points

45 # If something is 20% of the distance from point

# A to point B, then it's 80% of point A and

# 20% of point B.

interedVec = (1-weightLat) * interBelow + weightLat

* interAbove

50

# We're done with the interpolation with this

# vector, so now using the index values all

# the way above, assign to fgaVectors...

# scaling as necessary.

55 fgaVectors[xi, yi, zi] = interedVec * windScale
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a.5 download local dataset script

In Listing 5 below, the Python script downloads surface water
temperature datasets from the NOAA Coast Watch East Coast
Node. The START_DAY and END_DAY parameters can be adjusted
to specify the desired time range to be downloaded.

Listing 5: The Python script that downloads all the desired datasets
from the NOAA Database for the local visualization

import requests

START_DAY = 229

END_DAY = 246

5

DOWNLOAD_PATH = "./raw_data/"

DOWNLOAD_LINK = "https://eastcoast.coastwatch.noaa.gov/data/

avhrr/sst/daily/cd/"

DOWNLOAD_FILE_NAME1 = "AVHCW_2017"

DOWNLOAD_FILE_NAME2 = "_DAILY_MULTISAT_SSTMASKED_CD_1KM.nc4"

10 SAVE_FILE_NAME = "chesapeake_temp_"

for i in range(START_DAY, END_DAY+1):

res = requests.get(DOWNLOAD_LINK + DOWNLOAD_FILE_NAME1 +

str(i) + DOWNLOAD_FILE_NAME2)

with open(DOWNLOAD_PATH + SAVE_FILE_NAME + str(i) + ".nc4

", "wb") as fout:

15 fout.write(res.content)

print("Downloaded day #" + str(i))

a.6 menu spawn blueprint

Figure 29 outlines the Blueprint which ensures that the menu
spawns facing the user. As described in Section 3.4, we take
advantage of the user’s forward vector. We spawn the menu
50 units along the forward vector, then rotate the menu by 180

degrees about the Z axis to face the user.
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F O C U S G R O U P F O R M S

b.1 consent form

Figure 30: First page of our consent form.
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Figure 31: Second page of our consent form.
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b.2 focus group interest form

Figure 32: First page of our focus group sign-up form.
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Figure 33: Second page of our focus group sign-up form.
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b.3 focus group survey form

Figure 34: First page of our focus group survey.
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Figure 35: Second page of our focus group survey.
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Figure 36: Third page of our focus group survey.
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b.4 focus group graphs

Figure 37: Ratings of how easy it was for our participants to interpret
the data being displayed. Higher ratings indicate easier lev-
els of interpretability.

Figure 38: A list of some of the data types our participants were inter-
ested in displaying using our product. Multiple selections
were allowed.
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