The Associative-Skew Clock Routing Problém

Yu Chen, Andrew B. Kahng, Gang Qu, and Alexander Zeliko¥sky

UCLA Department of Computer Science, Los Angeles, CA 90095-1596
*Department of Computer Science, Georgia State University, Atlanta, GA 30303
{yuchen,abk,gangd@cs.ucla.edu, alexz@cs.gsu.edu

Abstract

We introduce theassociative skewlock routing problem, which

seeks a clock routing tree such that zero skew is preserved only

within identifiedgroupsof sinks. The associative skew problem is
easier to address within current EDA frameworks than useful-skew

(skew-scheduling) approaches, and defines an interesting tradeoff

between the traditional zero-skew clock routing problem (one sink
group) and the Steiner minimum tree problemsink groups). We
present a set of heuristic building blocks, including an efficient and

optimal method of merging two zero-skew trees such that zero skew

is preserved within the sink sets of each tree. Finally, we list a
number of open issues for research and practical application.

1 Introduction
The design of the clock distribution network is one of the most
critical tasks in high-performance, deep-submicron VLSI system
design. A clock routing instance consists of (i) a set of sink register
locationsS= {s1,s,,...,5} C 02, and optionally (i) a binary-tree
connection topology Gooted at sourcey, with n leaves corre-
sponding to the sinks i The genericlock routing problenseeks
to define and embed the topology into the Manhattan plane —i.e.,
construct aclock tree Tthat maps each internal nodec G to a
locationl (v) in the Manhattan plane.

Among the constraints on the clock routing solutiskewis the

most fundamental. When the clock tree is rooted at the source, any

edge between a parent nopland its childv may be identified with
the child node, i.e., we denote this edgesadf t(u,v) denotes the
signal delay between nodesandv, then theskewof clock treeT
is given by

skewT)

max |t —1t(%0, Sj
maxi(s.8) —t(s.5)

max {t(SO,s)}—gﬁeig {t(s0,8)}

The costof the edges, is simply its wirelength, denote@dy|; this

determination of exact locations for the internal node&of
DME achieves minimum wirelength and tree radius for any
given input topology. Related works study topology construc-
tions that lead to low-cost solutions when DME is applied; the
most successful variant is Greedy-DME [9].

More recently, it has been noted that “exact zero skew” comes
at the price of increased wiring area and higher power dis-
sipation, even as circuits still operate correctly within some
non-zero skew bound. Hence, theunded-skew treBST)
problem was addressed in [14, 7, 16, 6]. The BST problem
provides a continuous tradeoff between two classic routing
problems — theero-skew tre€ZST) problem for skew bound

B = 0, and therectilinear Steiner minimum treéRSMT)
problem forB = co.

Finally, Friedman and coauthors have pointed out that the
classic “zero-skew” formulation for clock routing mver-
constrained- in that there are constraints between all pairs
of sinks. Skew constraints actually exist only between pairs
of sequentially adjacentegisters, i.e., pairs of registers con-
nected by purely combinational paths of logic and intercon-
nect. Indeed, “clock skew between nonsequentially con-
nected registers, from an analysis viewpoint, has no effect
on the performance and reliability of the synchronous sys-
tem and is essentially meaningless” [13]. However, no clean
and/or optimal techniques (a la DME) have emerged for
topology design and route embedding in this less constrained
regimel

2 The Associative Skew Problem

Despite the observation in [13] and the availability of such works as
[17], zero- and bounded-skew formulations dominate current EDA
tools, i.e., relative sink delays are constraineddimpairs of sink
registers. Adoption of useful-skew or skew-scheduling approaches
will likely require some time, along with non-trivial methodology
changes. The purpose of this paper is to highlight a new clock tree
design formulation that offers interesting algorithmic challenges,
as well as a more evolutionary path from current tools and method-

is at least as large as the Manhattan distance between the endpointgjoqy,

of the edge, i.e.|ey| > d(I(p),I(v)). The cost ofT is the total
wirelength of the edges im. Three directions in the recent clock
routing literature are relevant to our present work.

e Thezero-skew tre€ZST) literature, which seeks a minimum-
cost clock tree having zero skew, saw rapid growth during the
early 1990's [15, 13]. Notably, thBeferred-Merge Embed-
ding (DME) algorithm [1, 3, 8] embeds internal nodes of a
topology G via (i) bottom-up construction of tiee of merg-
ing segmentsor merging tree representing loci of possible
placements of internal nodes in the ZST; and (ii) top-down

*In memory of Mr. Patrick Catapano, Jr. of Motorola Corporation, and his con-
tributions to modern chip implementation methodology.

T Research at UCLA was supported by a grant from Cadence Design Systems,
Inc., and by the MARCO/DARPA Gigascale Silicon Research Center. Professor Ze-
likovsky was supported by a GSU Research Initiation Grant.

0-7803-5832-5/99/ $10.00 © 1999 IEEE

168

The main point established by [13] is that in creating the clock
topology over synchronizing elements (latches or flip-flops) of a
design, the greatest care must be taken for those elements whose
datapaths are connected directly together. For example, if flip-flops
in a shift register are not clustered together in the same leaf clus-
ter of the (buffer) topology, hold time violations are exceptionally

1The observation in [13] is not new, e.g., the LP- and graph-based methods of
[12] [19] [18] use skew optimizations (“useful skew” [21]) to improve system clock
frequency. Kourtev and Friedman [17] use integer programming in a method for si-
multaneous skew scheduling and topology design. In general, there has not yet been a
satisfactory methodology to address the difficult cyclic precedence constraints among
(i) component placement, (ii) skew scheduling and retiming optimizations, (jii) clock
topology (buffer hierarchy) design, (iv) ECO placement for buffer insertion (and re-
lated performance optimizations), and (v) route embedding.

likely.2 S -
The term “associative skew” is due to the late Patrick Catapano, | . AT !

Jr., who suggested modifying the buffer clustering phase of existing |

clock tree synthesis and place-and-route methodologies to ensur

that “closely-related” registers be driven by the same leaf buffer,

guaranteeing low skew. Here, “closely-related” might mean, e.g.,

that no more than some small numbiesf combinational logic lev-

els separates the two registers. Catapano’s suggestion promotes

small skew between sequentially adjacent registers, even though it

ignores concepts such as non-zero (useful) skew, skew scheduling

etc. In this way, setup and hold violations may be avoided while . i1 1 Sl it

largely remaining within the current methodology. while the cost of the ZSTis'2%- 527 +... +1- 53 =i -5 >
Depending on the topology of the graph of sequential adjacency 5 = O(logk).

(i.e., over the set of registers), as well as the results of static timing

(which determine global skew bounds), the design may turn out to

have clusters of registers with few or no skew constraints betweeng > Heuristic H1: Optimal Branching

clusters, but very tight skew bounds within clusters. The skew

bounds within clusters can be addressed, e.g., by existing zero-

skew and bounded-skew constructions; the looser global skew con-

straints between clusters can be addressed witbséprocessing

approach (e.g., by insertion of delay elements). Such a perspective

suggests the following problem formulation:

The Associative Skew Tree (AST) Problem. Given a sink set

Sthat is partitioned into subse,S,..., &, such that the§'s - -
are disjoint and their union iS, construct a minimum-cost clock

routing tree over the sinks & such that there is zero skew within

each sink subse§, i = 1,2,...,k. (There is no skew constraint

between two sinks that are in different subsets.)

Note that the AST problem defines an interesting tradeoff
between the traditional zero-skew clock routing problém=(1
sink group) and the Steiner minimum tree problekn=(n sink
groups). This tradeoff is qualitatively different from the bounded-
skew tradeoff. Figure 2: The optimal branching allows a tree root to join into a
non-root portion of the target tree; this can result in considerable
savings versus simply constructing the RSMT over tree roots.

Figure 1: Fork = 2' points (tree roots) positioned evenly on the
unit segment, the cost of the rectilinear Steiner minimum tree is 1

3 Heuristics for the Associative Skew Problem

In this section, we describe and compare several heuristics for the ~ We next observe that given two ZSTs, tree@ver sink subset

AST problem. The first corresponds to available current practice, S(A), and treeB over sink subse§(B), we can combine the trees

while the remaining four are our new approaches. by joining the root of one treénto the other tree (not necessarily

at the root). The tail of the connecting edge is the roofoénd

I . the head isnsidethe treeB. To achieve this, we need only find the

3.1 Heuristic HO: k-Greedy-DME closest point of approach of the rootAto a point ofB. Note that

An obvious baseline heuristic is to run Greedy-DME [9] over all this kind of joining can save the root-to-sink cost in the target tree

sinks at once, essentially ignoring the fact that the skews are lessTs (See Figure 2).

constrained than in the classic ZST problem. Below, we will refer Our heuristicH1 starts withk ZSTs{Z;,...,Zc} computed by

to this baseline heuristic as GDME. Nearly as simple, but poten- Greedy-DME over th& sink groups. For each ordered pair of trees

tially more effective, is to run Greedy-DME on each of theink (Z;,Z;) we findcost(Z;, Zj), the cost of the optimal joining of (the

groupsS;, S, . .., S separately, then join the roots of theZSTs root of) Z;j into Z;. These joining costs may be represented by a

with a heuristic rectilinear Steiner minimum tree (RSMT), e.g., complete directed grapB with nodesvy, ..., Vi, in which the cost

returned by the lterated 1-Steiner method [15]. THisGreedy- of any edgg(vi,v;) of G is equal tocost(Z;, Zj). Then, finding the

DME” heuristic, which we calHO, can save a logarithmic factor ~ optimal joining of allk ZSTs is equivalent to finding the optimal

in tree cost versus the previous approach since a ZST can be log-branchingin G, i.e., the minimum-cost subgraph Gf containing

arithmically more expensive than the RSMT. Figure 1 shows how paths from a single node to all others. The optimal branching prob-

the optimal ZST cost oveepoints (tree roots) evenly spaced onthe lem was first addressed by Tarjan and by Camerini et al. in the

unit line segment grows &(logk) (cf. analysis techniques of [5]), late 1970s [20] [2]; an optimal solution can be found in i)

while the optimal RSMT cost remains constant. The use of heuris- using Edmonds’ algorithm as implemented in [11].

tic HO is motivated when the groups of sinks are well-separated

gﬁ.g., haye disjoint convex hulls); this would tgnd to pe the case if 33 Heuristic H2: Optimal Slice Merging

e physical layout hierarchy reflects the functional hierarchy.

Even the optimal joining of one tree’s root into another tree can

B st sacs e o Waste a great deal of wifing. We say that thergingof treeA nto

zkew is veirjy small. (Hold tir'ge violations ce)lln also be addressed with useful skew, but treeB entails Connec,t'ng each node dflecein A—i.e., a subset of

as noted above, the concept of useful skew is foreign to current place-and-route tools.)nodes ofA that contains exactly one node on each root-to-leaf path
(see Figure 5) —into sonjeining pointin B. The resulting tree will
have paths from the root &to all sinks of both trees. As shown in

169

~ Optimal Slice Merging Algorithm
N Input: two treesA andB, and the prescribed delay offset
(Output: min-wirelength merged AST solutioh(A, B,w)
_— \ (I)For each vertex in treeA
A Calculate the adjusted castdv)
N Traverse edges of trégin postorder
Findx = x?v) on the edge of B closest tov

s.t. delay along the— root(B)-path equal$(B) + w;
Calculate the merging costv) = |v,X(V)|

andgain(v) asgain(v) = adqv) —c(v);
Figure 3: The optimal merging solution is to connect pairs of leaves | (2)Traverse the tre& in postorder
from the two zero-skew trees. This results in considerable savings ItLg%%%Yelﬁt%IS:gn;in pgv) = gain(g)
versus the optimal branching. elsepg(v) = maxgain(v), pg(le ftchild) + pg(rightchild) }
(3)Traverse the tre& in preorder

('%2) (2.'2) 2:2) (2.2) if gain(v) = pg(v) for vertexv
then put vertex in Slice
(-1.1) (1.1 else traversg
e —
(-1,1) 1,1
r00l(0.0) root(0.0) Figure 6: The Optimal Slice Merging Algorithm.
(-1,-1) (1,-1)
o———0
(-1,-1) (1,-1)
® ® Figure 3 the optimal merging solution can save as much as the total
(-2,-2) 2,-2) (-2,-2) (2,-2) cost of tree Avhen compared with the optimal branching solution.
(a) (b) Figure 4 shows that the optimal merging solution can save as much

as 28% in tree cost versus the GDME algorithm, even with the same
offset between groups.

Figure 4: An 8-point example consisting of the corners of two For the optimal merging to be efficiently applied, we must spec-
squares centered at the origin. Points in the first group have coor-ify in advance the pairs of trees to be merged, along witlelay
dinates (-1,-1), (-1,1), (1,1) and (1,-1). Points in the second group offsetfor the two trees being merged —i.e., the difference in source-
have coordinates (-2,-2), (-2,2), (2,2) and (2,-2). The optimal merg- sink delays (in the merged tree) to sinksfand sinks oB. Our
ing solution (b) with wirelength 14 saves 28% versus the Greedy heuristicH2 obtains pairs of trees to be merged, and their order
DME solution with the same offsets (a) with the wirelength 18. of merging, from the optimal branching solutidnFor each edge
(Z,Z;) of the optimal branching oG, heuristic H2 applies op-
timal merging of treeZj into treeZ;. Here, the choice ofielay
offsetis critical to success. When merging a tree over sinkAset
into a tree over sink sé, we compute for each sink iA its dis-
tance to the closest sink iB. Let x denote the maximum such
distance over all sinks iA. Further, without loss of generality let
t(A) > t(B) respectively denote the source-sink delays in triees
andB, . Then, the delay offset that we apply in optimal merging is
maxx,t(A) —t(B) — x); this offset is added to the sinks B

In the remainder of this subsection, we formally describe the
merging of two ZSTs, and the problem of finding an optimal merg-
ing. We then show how to optimally merge two ZSTs with pre-
scribed skews.

Given two zero-skew tree& and B with sinks S(A) andS(B),
respectively, we wish to optimally mergeinto B, i.e., construct
the minimum-wirelength tre& = T (A, B, w) such that

(i) BC T, the root ofB is is the root ofT and the sinks of is

ST) =SA)USB);

(i) each path from the root of to any sink fromS(A) consists
of edges oB (possibly including a part of B-edge) , a new
edge from a node 0B to a node ofA and edges oA (see

Figure 5);
(i) Each sink fromS(A) has the same delaB) +wi.e. the same
Figure 5: AtreéA is joined into a tredB via thick edges. The set of delay offset wvith each sink fron5(B).
endpoints of these edges forms a sfjgesl, s2}. The dashed edges .)) .
of the treeA form the setibové{v,s1, s2}); they are not part of the We solve this problem optimally via the following two steps.

merged tred (A, B,w) and represent an upper bound on wirelength For €ach nodev in A, we first find the closest point = x(v)
savings. The path from the root @A, B,w) to the sinks of the on edges of the tre®, such that the delay along the path
treeA consists of the edqe (B)’ u)' a part(u, X) of the edgqu’ u’)’ 3Fork > 2, the order of merging is according to a topological ordering of the opti-

a connecting edgg,v) and the edgéy, s) of the treeA. The delay mal branching solution. Always, the smaller tree is merged into the larger tree (where
along this path i$(B) + w. size corresponds to the number of sinks in the tree).

170

(r(B),...,%V...,s) equalst(B) +w. Then we find the optimal
slice in the treeA, denotedOpt, which minimizes the total length
of the treeT (A, B,w). The first step can be done easily by examin-
ing all 2/S(B)| edges of the treB for each noder in A. The second
step is more involved.

The optimal sliceO pt should maximize thgain in wirelength,
gain(Opt), which is equal taboveOpt) (the total length of edges
connecting the elements @fpt to the rootr(A) of A, see Figure
5), minus the length of edges connecting eaehOpt to the corre-
spondingx(v) in B. To enable efficient calculation of gain, we must
associate with each nodec A a valuegain(v) such that the gain of
any slice will be equal to the sum of gains of its nodes. The gain of
v is the difference of two terms: thedjusted cosof the v-to-root
path inA, minus the cosjv, x(v)| to the corresponding nodév) in
B. In other words, the adjusted casiv) is defined as

k-1

addv) = Zo

wherev = vp,v1,...,Vk =r(A) is thev-to-root path inA. Note that
Iv,x(v)| may take on the valug if x(v) does not exist.
Now we will prove the following property of the adjusted cost.

; addv) = aboveSlice 2)
veSlice

|Vi7V_i+l|

. 6

We will show that the sum will contain the cost of any edge
aboveSlice If the headv of eis in Slice then|e| will be counted
exactly once irad(v). By induction assume tha¢; | and |e;| are
counted in the sum once, whezeande, are the edges heading to
the children ofv. The definition (1) implies that exactly the half of
le| is counted irndqv)’s for descendants of the headeafand the
other half is counted iaddv)’s for descendants of the headef
Thus|e| is counted exactly once in the LHS of (2).

We now definegain(v) asgain(v) = adqv) — |v,x(v)|. Then,

. . . L n [k|shift|| HO H1 H2 H3 |GDME1|GDME 2|Timel| Time2|
equation (2) yields that the gain of a slice is equal to the sum of the 138510 289028 811 22.05/ 2386 25.02 | 19.8 18 25
gains of its elements. After finding the gain of each nodé,ofie 250[2| 0 || 40.13| 40.09| 34.59| 34.35| 35.80 | 28.19 | 9.9 22.0
can find the slice with the maximum total gain using the obvious |5002| 0 || 56.69| 56.65| 48.92(48.80| 52.48 | 40.61 | 69.5 189.8
property: the optimal slice in a subtree rootes isteither{v} itself ;ggg 8-1 ;g-g}l gg-ig 2‘5‘-22 ;gg; ;?gg gg-gé 1%-? zg-g
or the union of the optimal slices in two subtrees rooted in the left |5555(0.1 || 56.50| 56.30| 52.75| 52.71 55.96 | 43.15 | 711 184.3
and the right child of.. We achieve a linear-time implementation 125(2|0.25|| 28.92| 28.32| 26.50| 26.49| 28.35 | 23.96 | 1.8 2.6
by first traversing the tred in postordef', marking the nodes for gggg g-gg g%g gg-g? ggﬁ ggﬁ ‘513-23 ig-gg %2-‘21 lgg-?
which the optimal slice in the subtree rootedras {v} itself. We : : : : : : : : :

P . : v 125/4] 0 || 59.85[59.80| 45.26| 45.12| 47.75 | 28.03 | 7.0 24.§

then traverse the tree p:Teorder5 stopping traversal at the marked 2504 0 ||80.57| 80.52| 62.38| 62.27| 67.85| 40.97 | 34.7 183.1
nodes. 500/4| 0 || 113.0112.98 92.69| 92.54| 98.37 | 57.84 | 213.31505.1
Note that we can further improve the optimal slice merging by ;ggj 8-1 5799-5;35 ?g-gé gg-gg gg-;g ig-gg 3‘71% 32-2 2%3'}1
choosing nodesnside edges ofA as heads of connecting edges 5041 ' ||114 54114.04103.04102.8q 110.26| 69.5 | 214.11576.4
similarly to the method how we choose tails inside edgeB. of 12540.25| 59.47| 58.83| 54.44| 54.15| 58.83 | 4330 | 6.7 25.4
250/4|0.25)| 83.18| 81.74| 78.19| 78.07| 83.19 | 60.46 | 359 196.2

500/4/0.25)|128.24127.45110.13110.02 116.49| 86.46 | 213.51602.5

3.4 Heuristic H3: DME-Merging

from the DME implementations of Ken Boese. Our experiments
compare the performance (based on total tree wirelength) of these
heuristics on synthetic dafaWe additionally assess implementa-
tions of Greedy-DME (GDME); the GDME1 implementation runs
GDME with the sink offsets used by H2, while the GDME2 im-
plementation runs GDME with all sink offsets = 0. Runtimes are
reported for H2 Timel; H3 runtimes are essentially the same) and
for GDMEL1 (Time2; GDME2 runtimes are essentially the same),
measured in CPU seconds on a 300MHz Sun Ultra-10 workstation
with 512MB RAM.

The first type of data consists of pointskrunit squaresk =
2,4) whose successive origins are displaced from each other by
(shift,shift) (shift = 0,0.1,0.25). In each of these squares we
generaten random pointsr{= 125,250 (and 500 fok = 2)); each
such group of points simulates the subset of siks=1,...,k.

The results in Table 1 show that although heuristi& andH3

are better thail0 andH 1, the minimum wirelength is achieved by
DME algorithms with greedy topology, i.6€5DMEL using offsets
from H2, andGDME2 which is simple GDME without offsets. We
conclude that our AST-specific heuristics will not win wirelength if
the groups overlap and have similar distances (minimum possible
sink delays) to the root.

The second type of data consists of points in sets of concen-
tric squaresQ,Qo,...Qk. The side length of; is equal to ei-
ther 2 or4i+2,i=1,..., k. We generate i2random points in
the innermost square, amdrandom points in each of the “rings”
Q2—Q1,...Qk—Qk_1. Again, each such group of points simulates
the subset of sink§, i =1,...,k. The results in Table 2 show that
H2 andH3 clearly gain over the GDME algorithms that greedily
define topologies. Since the runtimesti® andH3 are relatively
small in comparison with those of GDME variants, a reasonable
metaheuristic may be to simply run both H2 and GDMEZ2, then re-
turn the better result.

As described in [1, 3, 8], the DME algorithm constructs an optimal Table 1: Experimental data fdt pointsets generated in shifted
ZST for a given topology. Our heuristld3 extracts the topology ~ square regions. Timel refers to H2 runtime; Time2 refers to
of the optimal slice merging solutiot@). We then run the DME GDMEL1 runtime.

algorithm on this topology, using the offsets between sink subsets
that were computed by H2. The result of H3 should be at least as
good as that of H2, because it gives the optimum embedding of the
H2 topology. However, as we see in the next section, differences

on our testbed between H2 and H3 are surprisingly small. > Conclusions and Ongoing Wark

We have introduced thassociative skew tre@ST) clock routing

4 Computational Experience problem, which seeks a clock tree such that zero skew is preserved

6All trees have exact zero pathlength skew within each okteimk groups. Use
d of ElImore-DME or higher-order delay models is straightforward, as is accounting for
buffer insertion to ensure that no driven capacitive load exceeds a given limit. Our
current belief is that such variant testbeds will not qualitatively affect our observations.

We have implemented the four heuristi¢®, H1, H2 andH3 using
C++ in a Unix environment. Portions of our software are derive

“l.e., visiting the left child, the right child and then the parent
5l.e., visiting the parent, the left child, and then the right child

171

n HO H1 H2 H3 |GDME1|GDME 2| Timel| Time2

K
125(2[[48.04 | 47.63 | 45.75| 45.73| 49.26 | 48.36 20| 28
250|2|| 84.81 | 84.72 | 82.22| 81.95| 84.88 | 86.61 2.8 236
500|2|| 123.15| 123.12|119.07/119.02| 123.28| 124.25 | 11.4[191.2 [11]
125|4|| 156.77| 154.31|123.11/123.02 147.67 | 142.31| 6.4 23.9
250|4 || 204.24 | 202.19|168.46168.30| 195.34 | 192.52 | 42.6| 207.1
500|4|| 270.81 | 268.23| 236.38236.29 247.61 | 259.61 | 214.9|1558.4)
125(2([125.63] 124.49]121.79 121.75 126.04| 12589 | 1.9 3.1
250|2|| 169.46| 169.01|165.30165.24 167.24| 169.55| 9.8| 26.3 [13]
500| 2 || 239.87 | 239.45 | 235.89| 235.88| 240.65| 240.43 | 68.1] 214.9
125|4|| 549.23| 548.52|489.82489.74 540.80 | 548.71| 7.1| 20.0 (14]
250|4 || 748.75| 748.29|686.35 686.27| 741.23 | 749.81 | 36.0| 163.4
500| 4 || 1018.761018.19 955.31) 955.21] 998.08 | 1019.47| 211.1| 1300.6|
Table 2: Experimental data fde pointsets generated in concen-
tric square and “ring” regions. Timel refers to H2 runtime; Time2
refers to GDMEL1 runtime.

[17]

only within identified groups of sinks. AST gives a new trade-
off between the traditional ZST problem (one sink group) and the

RSMT problem § sink groups). We present a set of four heuris- 1]

tics, including two that are based on an efficieptimal merging
of two zero-skew trees, such that zero skew is preserved within

each of the two sink groups. Our computational experience with [19]

randomly generated sink sets and the linear delay model suggest

that the optimal branching heuristic can outperform Greedy-DME |2
121

when the sink groups are spatially separated. On the other hand
when the sink groups are intermingled (recall that this is the moti-
vating domain for our optimal-merging algorithm, and the heuris-
tics H2 andH3), Greedy-DME performs surprisingly well. Since
Greedy-DME is oblivious to the relaxation inherent in the AST, the
key open issue is to find a heuristic that consistently outperforms
Greedy-DME for the domain with intermingled sink groups. An-
other open issue is how to performeight-limitedjoining of mul-

tiple trees (either branchings or slice-mergings) so as to satisfy in-
sertion delay constraints on the clock distribution. Generalizing
the approach to include hierarchical buffering, higher-order delay
models, and non-zero skew within each given sink group is another
direction for future work. Finally, applying the formulation to real
design data within a modern flow — where global skew constraints
much be enforced, and where methodology often demands a “skew
number” returned to the designer — will help point out refinements
to the current formulation.

References

[1] K. D. Boese and A. B. Kahng, “Zero-skew clock routing trees with minimum
wirelength,” Proc. IEEE Intl. Conf. on ASIC, pp. 1.1.1-1.1.5, 1992.

[2] P. M. Camerini, L. Fratta and F. Maffioli, “A note on finding optimum branch-
ings”, Networks9 (1979), pp. 309-312.

[3] T.-H. Chao, Y.-C. Hsu, and J.-M. Ho, “Zero skew clock net routingtpc.
ACM/IEEE Design Automation Conpp. 518-523, 1992.

[4] T.-H. Chao, Y. C. Hsu, J. M. Ho, K. D. Boese, and A. B. Kahng, “Zero skew
clock routing with minimum wirelength”]EEE Trans. Circuits and Systems
39(11):799-814, November 1992.

[5] M. Charikar, J. Kleinberg, R. Kumar, S. Rajagopalan, A. Sahai and A.
Tomkins, “Minimizing wirelength in zero and bounded skew clock treBsdc.
ACM/SIAM Symp. on Discrete AlgorithpBaltimore, 1999, pp. 177-184.

[6] J.Cong, A. B. Kahng, C. K. Koh and C.-W. A. Tsao, “Bounded-Skew Clock and
Steiner Routing”’ACM Trans. on Design Automation of Electronic Syst8(33%
(1998), pp. 341-388.

[7] J. Cong and C.-K. Koh, “Minimum-cost bounded-skew clock routingfpc.
IEEE Intl. Symp. Circuits and Systemslume 1, pp. 215-218, April 1995.

[8] M. Edahiro, “Minimum skew and minimum path length routing in visi layout
design NEC Research and DevelopmgeBi2(4):569-575, 1991.

[9] M. Edahiro, “A clustering-based optimization algorithm in zero-skew routings”,
Proc. ACM/IEEE Design Automation Corpp. 612-616, June 1993.

172

[10]

[12]

[15]

[16]

M. Edahiro, “Delay Minimization for Zero-Skew Routing®roc. |IEEE Intl.
Conf. Computer-Aided Desigpp, 563-566, November, 1993.

M. Fischetti and P. Toth, “An efficient algorithm for the min-sum arborescence
problem on complete digraph<DRSA J. Computin§(4) (1993), pp. 426-434.

J. P. Fishburn, “Clock Skew OptimizatiofEEE Trans. Computer89 (7): 945-
951, july, 1990.

E. G. Friedman, editoClock Distribution networks in VLSI Circuits and Sys-
tems: A Selected Reprint VolumieEE Press1995.

J. H. Huang, A. B. Kahng, and C.-W. A. Tsao, “On the bounded-skew clock
and steiner routing problemsProc. ACM/IEEE Design Automation Confp.
508-513, 1995.

A. B. Kahng and G. RobinsOn Optimal Interconnections for VLSKluwer
Academic Publishers, 1995.

A. B. Kahng and C.-W. A. Tsao, “More Practical Bounded-Skew Clock Rout-
ing”, Proc. ACM/IEEE Design Automation Conferendeaheim, 1997, pp.
594-599.

I. S. Kourtev and E. G. Friedman, “Topological Synthesis of Clock Trees with
Non-Zero Clock SkewRroc. ACM/IEEE International Workshop on Timing Is-
sues in the Specification and Synthesis of Digital SystBes. 1997, pp.158-
163.

K. A. Sakallah, T. N. Mudge and O. A. Olukotun, “checkTc and minTc: Timing
verification and optimal clocking of synchronous digital circuitBfpc. IEEE
Intl. Conf. on Computer-Aided Desigh990, pp. 552-555.

T. G. Szymanski, “Coputing Optimal Clock ScheduleBtpc. ACM/IEEE De-
sign Automation Conf1992, pp. 399-404.

R. E. Tarjan, “Finding Optimal BranchingsNetworks7 (1977), pp. 25-35.

J. G. Xi and W. W.-M. Dai, “Useful-Skew Clock Routing with Gate Sizing for
Low Power Design”Proc. ACM/IEEE Design Automation Conpp. 383-388,
1996.

