
The Associative-Skew Clock Routing Problem�†

Yu Chen, Andrew B. Kahng, Gang Qu, and Alexander Zelikovsky‡

UCLA Department of Computer Science, Los Angeles, CA 90095-1596
‡Department of Computer Science, Georgia State University, Atlanta, GA 30303

fyuchen,abk,gangqug@cs.ucla.edu, alexz@cs.gsu.edu

Abstract

We introduce theassociative skewclock routing problem, which
seeks a clock routing tree such that zero skew is preserved only
within identifiedgroupsof sinks. The associative skew problem is
easier to address within current EDA frameworks than useful-skew
(skew-scheduling) approaches, and defines an interesting tradeoff
between the traditional zero-skew clock routing problem (one sink
group) and the Steiner minimum tree problem (n sink groups). We
present a set of heuristic building blocks, including an efficient and
optimal method of merging two zero-skew trees such that zero skew
is preserved within the sink sets of each tree. Finally, we list a
number of open issues for research and practical application.

1 Introduction

The design of the clock distribution network is one of the most
critical tasks in high-performance, deep-submicron VLSI system
design. A clock routing instance consists of (i) a set of sink register
locationsS= fs1;s2; : : : ;sng �ℜ2, and optionally (ii) a binary-tree
connection topology Grooted at sources0, with n leaves corre-
sponding to the sinks inS. The genericclock routing problemseeks
to define and embed the topology into the Manhattan plane – i.e.,
construct aclock tree Tthat maps each internal nodev 2 G to a
locationl(v) in the Manhattan plane.

Among the constraints on the clock routing solution,skewis the
most fundamental. When the clock tree is rooted at the source, any
edge between a parent nodep and its childv may be identified with
the child node, i.e., we denote this edge asev. If t(u;v) denotes the
signal delay between nodesu andv, then theskewof clock treeT
is given by

skew(T) = max
si ;sj2S

jt(s0;si)� t(s0;sj)j

= max
si2S

ft(s0;si)g�min
si2S

ft(s0;si)g

Thecostof the edgeev is simply its wirelength, denotedjevj; this
is at least as large as the Manhattan distance between the endpoints
of the edge, i.e.,jevj � d(l(p); l(v)). The cost ofT is the total
wirelength of the edges inT. Three directions in the recent clock
routing literature are relevant to our present work.

� Thezero-skew tree(ZST) literature, which seeks a minimum-
cost clock tree having zero skew, saw rapid growth during the
early 1990’s [15, 13]. Notably, theDeferred-Merge Embed-
ding (DME) algorithm [1, 3, 8] embeds internal nodes of a
topologyG via (i) bottom-up construction of atree of merg-
ing segments, or merging tree, representing loci of possible
placements of internal nodes in the ZST; and (ii) top-down

� In memory of Mr. Patrick Catapano, Jr. of Motorola Corporation, and his con-
tributions to modern chip implementation methodology.

† Research at UCLA was supported by a grant from Cadence Design Systems,
Inc., and by the MARCO/DARPA Gigascale Silicon Research Center. Professor Ze-
likovsky was supported by a GSU Research Initiation Grant.

determination of exact locations for the internal nodes ofG.
DME achieves minimum wirelength and tree radius for any
given input topology. Related works study topology construc-
tions that lead to low-cost solutions when DME is applied; the
most successful variant is Greedy-DME [9].

� More recently, it has been noted that “exact zero skew” comes
at the price of increased wiring area and higher power dis-
sipation, even as circuits still operate correctly within some
non-zero skew bound. Hence, thebounded-skew tree(BST)
problem was addressed in [14, 7, 16, 6]. The BST problem
provides a continuous tradeoff between two classic routing
problems – thezero-skew tree(ZST) problem for skew bound
B = 0, and therectilinear Steiner minimum tree(RSMT)
problem forB= ∞.

� Finally, Friedman and coauthors have pointed out that the
classic “zero-skew” formulation for clock routing isover-
constrained– in that there are constraints between all pairs
of sinks. Skew constraints actually exist only between pairs
of sequentially adjacentregisters, i.e., pairs of registers con-
nected by purely combinational paths of logic and intercon-
nect. Indeed, “clock skew between nonsequentially con-
nected registers, from an analysis viewpoint, has no effect
on the performance and reliability of the synchronous sys-
tem and is essentially meaningless” [13]. However, no clean
and/or optimal techniques (a la DME) have emerged for
topology design and route embedding in this less constrained
regime.1

2 The Associative Skew Problem

Despite the observation in [13] and the availability of such works as
[17], zero- and bounded-skew formulations dominate current EDA
tools, i.e., relative sink delays are constrained forall pairs of sink
registers. Adoption of useful-skew or skew-scheduling approaches
will likely require some time, along with non-trivial methodology
changes. The purpose of this paper is to highlight a new clock tree
design formulation that offers interesting algorithmic challenges,
as well as a more evolutionary path from current tools and method-
ology.

The main point established by [13] is that in creating the clock
topology over synchronizing elements (latches or flip-flops) of a
design, the greatest care must be taken for those elements whose
datapaths are connected directly together. For example, if flip-flops
in a shift register are not clustered together in the same leaf clus-
ter of the (buffer) topology, hold time violations are exceptionally

1The observation in [13] is not new, e.g., the LP- and graph-based methods of
[12] [19] [18] use skew optimizations (“useful skew” [21]) to improve system clock
frequency. Kourtev and Friedman [17] use integer programming in a method for si-
multaneous skew scheduling and topology design. In general, there has not yet been a
satisfactory methodology to address the difficult cyclic precedence constraints among
(i) component placement, (ii) skew scheduling and retiming optimizations, (iii) clock
topology (buffer hierarchy) design, (iv) ECO placement for buffer insertion (and re-
lated performance optimizations), and (v) route embedding.

0-7803-5832-X /99/$10.00 ©1999 IEEE.
0-7803-5832-5/99/ $10.00 © 1999 IEEE

168

likely.2

The term “associative skew” is due to the late Patrick Catapano,
Jr., who suggested modifying the buffer clustering phase of existing
clock tree synthesis and place-and-route methodologies to ensure
that “closely-related” registers be driven by the same leaf buffer,
guaranteeing low skew. Here, “closely-related” might mean, e.g.,
that no more than some small numberk of combinational logic lev-
els separates the two registers. Catapano’s suggestion promotes
small skew between sequentially adjacent registers, even though it
ignores concepts such as non-zero (useful) skew, skew scheduling,
etc. In this way, setup and hold violations may be avoided while
largely remaining within the current methodology.

Depending on the topology of the graph of sequential adjacency
(i.e., over the set of registers), as well as the results of static timing
(which determine global skew bounds), the design may turn out to
have clusters of registers with few or no skew constraints between
clusters, but very tight skew bounds within clusters. The skew
bounds within clusters can be addressed, e.g., by existing zero-
skew and bounded-skew constructions; the looser global skew con-
straints between clusters can be addressed with apost-processing
approach (e.g., by insertion of delay elements). Such a perspective
suggests the following problem formulation:

The Associative Skew Tree (AST) Problem. Given a sink set
S that is partitioned into subsetsS1;S2; : : : ;Sk, such that theSi ’s
are disjoint and their union isS, construct a minimum-cost clock
routing tree over the sinks ofS, such that there is zero skew within
each sink subsetSi , i = 1;2; : : : ;k. (There is no skew constraint
between two sinks that are in different subsets.)

Note that the AST problem defines an interesting tradeoff
between the traditional zero-skew clock routing problem (k = 1
sink group) and the Steiner minimum tree problem (k = n sink
groups). This tradeoff is qualitatively different from the bounded-
skew tradeoff.

3 Heuristics for the Associative Skew Problem

In this section, we describe and compare several heuristics for the
AST problem. The first corresponds to available current practice,
while the remaining four are our new approaches.

3.1 Heuristic H0: k-Greedy-DME

An obvious baseline heuristic is to run Greedy-DME [9] over all
sinks at once, essentially ignoring the fact that the skews are less
constrained than in the classic ZST problem. Below, we will refer
to this baseline heuristic as GDME. Nearly as simple, but poten-
tially more effective, is to run Greedy-DME on each of thek sink
groupsS1;S2; : : : ;Sk separately, then join the roots of thek ZSTs
with a heuristic rectilinear Steiner minimum tree (RSMT), e.g.,
returned by the Iterated 1-Steiner method [15]. This “k-Greedy-
DME” heuristic, which we callH0, can save a logarithmic factor
in tree cost versus the previous approach since a ZST can be log-
arithmically more expensive than the RSMT. Figure 1 shows how
the optimal ZST cost overk points (tree roots) evenly spaced on the
unit line segment grows asΘ(logk) (cf. analysis techniques of [5]),
while the optimal RSMT cost remains constant. The use of heuris-
tic H0 is motivated when the groups of sinks are well-separated
(e.g., have disjoint convex hulls); this would tend to be the case if
the physical layout hierarchy reflects the functional hierarchy.

2Since in a shift register there is no logic stage between the output of one register
and the input of the next register, it is easy to have a hold violation unless the clock
skew is very small. (Hold time violations can also be addressed with useful skew, but
as noted above, the concept of useful skew is foreign to current place-and-route tools.)

4/7

2/7

1/7

1

Figure 1: Fork = 2i points (tree roots) positioned evenly on the
unit segment, the cost of the rectilinear Steiner minimum tree is 1
while the cost of the ZST is 2i�1 � 1

2i�1 + : : :+1� 2i�1

2i�1 = i � 2i�1

2i�1 �
i
2 = Θ(logk).

3.2 Heuristic H1: Optimal Branching

B

A

B

A

Figure 2: The optimal branching allows a tree root to join into a
non-root portion of the target tree; this can result in considerable
savings versus simply constructing the RSMT over tree roots.

We next observe that given two ZSTs, treeA over sink subset
S(A), and treeB over sink subsetS(B), we can combine the trees
by joining the root of one treeinto the other tree (not necessarily
at the root). The tail of the connecting edge is the root ofA, and
the head isinsidethe treeB. To achieve this, we need only find the
closest point of approach of the root ofA to a point ofB. Note that
this kind of joining can save the root-to-sink cost in the target tree
TB (see Figure 2).

Our heuristicH1 starts withk ZSTsfZ1; : : : ;Zkg computed by
Greedy-DME over thek sink groups. For each ordered pair of trees
(Zi ;Zj) we findcost(Zi ;Zj), the cost of the optimal joining of (the
root of) Zj into Zi . These joining costs may be represented by a
complete directed graphG with nodesv1; : : : ;vk, in which the cost
of any edge(vi ;vj) of G is equal tocost(Zi ;Zj). Then, finding the
optimal joining of allk ZSTs is equivalent to finding the optimal
branchingin G, i.e., the minimum-cost subgraph ofG containing
paths from a single node to all others. The optimal branching prob-
lem was first addressed by Tarjan and by Camerini et al. in the
late 1970s [20] [2]; an optimal solution can be found in timeO(k2)
using Edmonds’ algorithm as implemented in [11].

3.3 Heuristic H2: Optimal Slice Merging

Even the optimal joining of one tree’s root into another tree can
waste a great deal of wiring. We say that themergingof treeA into
treeB entails connecting each node of aslice in A – i.e., a subset of
nodes ofA that contains exactly one node on each root-to-leaf path
(see Figure 5) – into somejoining pointin B. The resulting tree will
have paths from the root ofB to all sinks of both trees. As shown in

169

B
A

B
A

Figure 3: The optimal merging solution is to connect pairs of leaves
from the two zero-skew trees. This results in considerable savings
versus the optimal branching.

(1,-1)

(-2,2)

(-1,1)

(-1,-1) (1,-1)

(1,1)

(-1,-1)

(2,2)

(-2,-2) (2,-2)

(-2,2)

(-2,-2)

(2,2)

(2,-2)

(-1,1) (1,1)
root(0,0) root(0,0)

(b)(a)

Figure 4: An 8-point example consisting of the corners of two
squares centered at the origin. Points in the first group have coor-
dinates (-1,-1), (-1,1), (1,1) and (1,-1). Points in the second group
have coordinates (-2,-2), (-2,2), (2,2) and (2,-2). The optimal merg-
ing solution (b) with wirelength 14 saves 28% versus the Greedy
DME solution with the same offsets (a) with the wirelength 18.

x

T(A,B,w)

s2s1

v

s

r(A)

A

r(B)

u’

uB

Figure 5: A treeA is joined into a treeB via thick edges. The set of
endpoints of these edges forms a slicefv;s1;s2g. The dashed edges
of the treeA form the setabove(fv;s1;s2g); they are not part of the
merged treeT(A;B;w) and represent an upper bound on wirelength
savings. The path from the root ofT(A;B;w) to the sinks of the
treeA consists of the edge(r(B);u), a part(u;x) of the edge(u;u0),
a connecting edge(x;v) and the edge(v;s) of the treeA. The delay
along this path ist(B)+w.

Optimal Slice Merging Algorithm
Input: two treesA andB, and the prescribed delay offsetw
Output: min-wirelength merged AST solutionT(A;B;w)
(1)For each vertexv in treeA

Calculate the adjusted costadc(v)
Traverse edges of treeB in postorder

Findx= x(v) on the edgeeof B closest tov
s.t. delay along thev� root(B)-path equalst(B)+w;

Calculate the merging costc(v) = jv;x(v)j
andgain(v) asgain(v) = adc(v)�c(v);

(2)Traverse the treeA in postorder:
if nodev is a sink
thenpotential gain pg(v) = gain(g)
elsepg(v) = maxfgain(v); pg(le f tchild)+ pg(rightchild)g

(3)Traverse the treeA in preorder:
if gain(v) = pg(v) for vertexv
then put vertexv in Slice
else traversev

Figure 6: The Optimal Slice Merging Algorithm.

Figure 3,the optimal merging solution can save as much as the total
cost of tree Awhen compared with the optimal branching solution.
Figure 4 shows that the optimal merging solution can save as much
as 28% in tree cost versus the GDME algorithm, even with the same
offset between groups.

For the optimal merging to be efficiently applied, we must spec-
ify in advance the pairs of trees to be merged, along with adelay
offsetfor the two trees being merged – i.e., the difference in source-
sink delays (in the merged tree) to sinks ofA and sinks ofB. Our
heuristicH2 obtains pairs of trees to be merged, and their order
of merging, from the optimal branching solution.3 For each edge
(Zi ;Zj) of the optimal branching ofG, heuristic H2 applies op-
timal merging of treeZj into treeZi . Here, the choice ofdelay
offsetis critical to success. When merging a tree over sink setA
into a tree over sink setB, we compute for each sink inA its dis-
tance to the closest sink inB. Let x denote the maximum such
distance over all sinks inA. Further, without loss of generality let
t(A) > t(B) respectively denote the source-sink delays in treesA
andB, . Then, the delay offset that we apply in optimal merging is
max(x;t(A)� t(B)�x); this offset is added to the sinks inB.

In the remainder of this subsection, we formally describe the
merging of two ZSTs, and the problem of finding an optimal merg-
ing. We then show how to optimally merge two ZSTs with pre-
scribed skews.

Given two zero-skew treesA andB with sinksS(A) andS(B),
respectively, we wish to optimally mergeA into B, i.e., construct
the minimum-wirelength treeT = T(A;B;w) such that

(i) B� T, the root ofB is is the root ofT and the sinks ofT is
S(T) = S(A)[S(B);

(ii) each path from the root ofT to any sink fromS(A) consists
of edges ofB (possibly including a part of aB-edge) , a new
edge from a node ofB to a node ofA and edges ofA (see
Figure 5);

(iii) Each sink fromS(A) has the same delayt(B)+w i.e. the same
delay offset wwith each sink fromS(B).

We solve this problem optimally via the following two steps.
For each nodev in A, we first find the closest pointx = x(v)
on edges of the treeB, such that the delay along the path

3Fork> 2, the order of merging is according to a topological ordering of the opti-
mal branching solution. Always, the smaller tree is merged into the larger tree (where
size corresponds to the number of sinks in the tree).

170

(r(B); : : : ;x;v; : : : ;s) equalst(B) +w. Then we find the optimal
slice in the treeA, denotedOpt, which minimizes the total length
of the treeT(A;B;w). The first step can be done easily by examin-
ing all 2jS(B)j edges of the treeB for each nodev in A. The second
step is more involved.

The optimal sliceOpt should maximize thegain in wirelength,
gain(Opt), which is equal toabove(Opt) (the total length of edges
connecting the elements ofOpt to the rootr(A) of A, see Figure
5), minus the length of edges connecting eachv2Opt to the corre-
spondingx(v) in B. To enable efficient calculation of gain, we must
associate with each nodev2A a valuegain(v) such that the gain of
any slice will be equal to the sum of gains of its nodes. The gain of
v is the difference of two terms: theadjusted costof thev-to-root
path inA, minus the costjv;x(v)j to the corresponding nodex(v) in
B. In other words, the adjusted costadc(v) is defined as

adc(v) =
k�1

∑
i=0

jvi ;vi+1j

2i (1)

wherev= v0;v1; : : : ;vk = r(A) is thev-to-root path inA. Note that
jv;x(v)j may take on the value+∞ if x(v) does not exist.

Now we will prove the following property of the adjusted cost.

∑
v2Slice

adc(v) = above(Slice) (2)

We will show that the sum will contain the cost of any edgee
aboveSlice. If the headv of e is in Slice, thenjej will be counted
exactly once inadc(v). By induction assume thatje1j andje2j are
counted in the sum once, wheree1 ande2 are the edges heading to
the children ofv. The definition (1) implies that exactly the half of
jej is counted inadc(v)’s for descendants of the head ofe1 and the
other half is counted inadc(v)’s for descendants of the head ofe2.
Thusjej is counted exactly once in the LHS of (2).

We now definegain(v) asgain(v) = adc(v)� jv;x(v)j. Then,
equation (2) yields that the gain of a slice is equal to the sum of the
gains of its elements. After finding the gain of each node ofA, we
can find the slice with the maximum total gain using the obvious
property: the optimal slice in a subtree rooted atv is eitherfvg itself
or the union of the optimal slices in two subtrees rooted in the left
and the right child ofv. We achieve a linear-time implementation
by first traversing the treeA in postorder4, marking the nodesv for
which the optimal slice in the subtree rooted atv is fvg itself. We
then traverse the tree inpreorder5 stopping traversal at the marked
nodes.

Note that we can further improve the optimal slice merging by
choosing nodesinside edges ofA as heads of connecting edges
similarly to the method how we choose tails inside edges ofB.

3.4 Heuristic H3: DME-Merging

As described in [1, 3, 8], the DME algorithm constructs an optimal
ZST for a given topology. Our heuristicH3 extracts the topology
of the optimal slice merging solution (H2). We then run the DME
algorithm on this topology, using the offsets between sink subsets
that were computed by H2. The result of H3 should be at least as
good as that of H2, because it gives the optimum embedding of the
H2 topology. However, as we see in the next section, differences
on our testbed between H2 and H3 are surprisingly small.

4 Computational Experience

We have implemented the four heuristicsH0, H1,H2 andH3 using
C++ in a Unix environment. Portions of our software are derived

4I.e., visiting the left child, the right child and then the parent
5I.e., visiting the parent, the left child, and then the right child

from the DME implementations of Ken Boese. Our experiments
compare the performance (based on total tree wirelength) of these
heuristics on synthetic data.6 We additionally assess implementa-
tions of Greedy-DME (GDME); the GDME1 implementation runs
GDME with the sink offsets used by H2, while the GDME2 im-
plementation runs GDME with all sink offsets = 0. Runtimes are
reported for H2 (Time1; H3 runtimes are essentially the same) and
for GDME1 (Time2; GDME2 runtimes are essentially the same),
measured in CPU seconds on a 300MHz Sun Ultra-10 workstation
with 512MB RAM.

The first type of data consists of points ink unit squares (k =
2;4) whose successive origins are displaced from each other by
(shi f t;shi f t) (shi f t = 0;0:1;0:25). In each of these squares we
generaten random points (n= 125;250 (and 500 fork= 2)); each
such group of points simulates the subset of sinksSi , i = 1; : : : ;k.
The results in Table 1 show that although heuristicsH2 andH3
are better thanH0 andH1, the minimum wirelength is achieved by
DME algorithms with greedy topology, i.e.,GDME1 using offsets
from H2, andGDME2 which is simple GDME without offsets. We
conclude that our AST-specific heuristics will not win wirelength if
the groups overlap and have similar distances (minimum possible
sink delays) to the root.

The second type of data consists of points in sets of concen-
tric squaresQ1;Q2; : : :Qk. The side length ofQi is equal to ei-
ther 2i or 4i + 2, i = 1; : : : ;k. We generate 2n random points in
the innermost square, andn random points in each of the “rings”
Q2�Q1; : : :Qk�Qk�1. Again, each such group of points simulates
the subset of sinksSi , i = 1; : : : ;k. The results in Table 2 show that
H2 andH3 clearly gain over the GDME algorithms that greedily
define topologies. Since the runtimes ofH2 andH3 are relatively
small in comparison with those of GDME variants, a reasonable
metaheuristic may be to simply run both H2 and GDME2, then re-
turn the better result.

n k shift H0 H1 H2 H3 GDME1 GDME 2 Time1 Time2
125 2 0 28.90 28.81 24.05 23.86 25.03 19.8 1.8 2.5
250 2 0 40.13 40.09 34.59 34.35 35.80 28.19 9.9 22.0
500 2 0 56.69 56.65 48.92 48.80 52.48 40.61 69.5 189.8
125 2 0.1 28.91 28.85 24.59 24.57 25.58 20.91 1.8 2.8
250 2 0.1 39.64 39.48 35.88 35.83 37.87 30.28 10.1 22.5
500 2 0.1 56.59 56.39 52.75 52.71 55.96 43.15 71.1 184.3
125 2 0.25 28.92 28.32 26.50 26.49 28.35 23.96 1.8 2.6
250 2 0.25 39.76 39.25 38.15 38.13 40.59 33.05 10.2 20.6
500 2 0.25 57.06 56.61 55.11 55.11 57.47 47.95 71.4 198.1
125 4 0 59.85 59.80 45.26 45.12 47.75 28.03 7.0 24.6
250 4 0 80.57 80.52 62.38 62.27 67.85 40.97 34.7 183.1
500 4 0 113.0 112.98 92.69 92.54 98.37 57.84 213.31505.1
125 4 0.1 59.55 59.01 48.99 48.78 56.50 34.36 6.9 23.1
250 4 0.1 79.8 79.23 69.93 69.82 48.86 77.45 33.8 202.4
500 4 0.1 114.58114.06103.03102.89 110.26 69.5 214.1 1576.3
125 4 0.25 59.47 58.83 54.44 54.15 58.83 43.30 6.7 25.4
250 4 0.25 83.18 81.74 78.19 78.07 83.19 60.46 35.9 196.2
500 4 0.25 128.20127.45110.13110.02 116.49 86.46 213.5 1602.5

Table 1: Experimental data fork pointsets generated in shifted
square regions. Time1 refers to H2 runtime; Time2 refers to
GDME1 runtime.

5 Conclusions and Ongoing Work

We have introduced theassociative skew tree(AST) clock routing
problem, which seeks a clock tree such that zero skew is preserved

6All trees have exact zero pathlength skew within each of thek sink groups. Use
of Elmore-DME or higher-order delay models is straightforward, as is accounting for
buffer insertion to ensure that no driven capacitive load exceeds a given limit. Our
current belief is that such variant testbeds will not qualitatively affect our observations.

171

n k H0 H1 H2 H3 GDME1 GDME 2 Time1 Time2
125 2 48.04 47.63 45.75 45.73 49.26 48.36 2.0 2.8
250 2 84.81 84.72 82.22 81.95 84.88 86.61 2.8 23.6
500 2 123.15 123.12 119.07 119.02 123.28 124.25 11.4 191.2
125 4 156.77 154.31 123.11 123.02 147.67 142.31 6.4 23.9
250 4 204.24 202.19 168.46 168.30 195.34 192.52 42.6 207.1
500 4 270.81 268.23 236.38 236.29 247.61 259.61 214.9 1558.4
125 2 125.63 124.49 121.79 121.75 126.04 125.89 1.9 3.1
250 2 169.46 169.01 165.30 165.24 167.24 169.55 9.8 26.3
500 2 239.87 239.45 235.89 235.88 240.65 240.43 68.1 214.9
125 4 549.23 548.52 489.82 489.74 540.80 548.71 7.1 20.0
250 4 748.75 748.29 686.35 686.27 741.23 749.81 36.0 163.4
500 4 1018.76 1018.19 955.31 955.21 998.08 1019.47 211.1 1300.6

Table 2: Experimental data fork pointsets generated in concen-
tric square and “ring” regions. Time1 refers to H2 runtime; Time2
refers to GDME1 runtime.

only within identifiedgroupsof sinks. AST gives a new trade-
off between the traditional ZST problem (one sink group) and the
RSMT problem (n sink groups). We present a set of four heuris-
tics, including two that are based on an efficientoptimal merging
of two zero-skew trees, such that zero skew is preserved within
each of the two sink groups. Our computational experience with
randomly generated sink sets and the linear delay model suggest
that the optimal branching heuristic can outperform Greedy-DME
when the sink groups are spatially separated. On the other hand,
when the sink groups are intermingled (recall that this is the moti-
vating domain for our optimal-merging algorithm, and the heuris-
tics H2 andH3), Greedy-DME performs surprisingly well. Since
Greedy-DME is oblivious to the relaxation inherent in the AST, the
key open issue is to find a heuristic that consistently outperforms
Greedy-DME for the domain with intermingled sink groups. An-
other open issue is how to performheight-limitedjoining of mul-
tiple trees (either branchings or slice-mergings) so as to satisfy in-
sertion delay constraints on the clock distribution. Generalizing
the approach to include hierarchical buffering, higher-order delay
models, and non-zero skew within each given sink group is another
direction for future work. Finally, applying the formulation to real
design data within a modern flow – where global skew constraints
much be enforced, and where methodology often demands a “skew
number” returned to the designer – will help point out refinements
to the current formulation.

References

[1] K. D. Boese and A. B. Kahng, “Zero-skew clock routing trees with minimum
wirelength,” Proc. IEEE Intl. Conf. on ASIC, pp. 1.1.1 – 1.1.5, 1992.

[2] P. M. Camerini, L. Fratta and F. Maffioli, “A note on finding optimum branch-
ings”, Networks9 (1979), pp. 309-312.

[3] T.-H. Chao, Y.-C. Hsu, and J.-M. Ho, “Zero skew clock net routing”,Proc.
ACM/IEEE Design Automation Conf., pp. 518–523, 1992.

[4] T.-H. Chao, Y. C. Hsu, J. M. Ho, K. D. Boese, and A. B. Kahng, “Zero skew
clock routing with minimum wirelength”,IEEE Trans. Circuits and Systems,
39(11):799–814, November 1992.

[5] M. Charikar, J. Kleinberg, R. Kumar, S. Rajagopalan, A. Sahai and A.
Tomkins, “Minimizing wirelength in zero and bounded skew clock trees”,Proc.
ACM/SIAM Symp. on Discrete Algorithms, Baltimore, 1999, pp. 177-184.

[6] J. Cong, A. B. Kahng, C. K. Koh and C.-W. A. Tsao, “Bounded-Skew Clock and
Steiner Routing”,ACM Trans. on Design Automation of Electronic Systems3(3)
(1998), pp. 341-388.

[7] J. Cong and C.-K. Koh, “Minimum-cost bounded-skew clock routing”,Proc.
IEEE Intl. Symp. Circuits and Systems, volume 1, pp. 215–218, April 1995.

[8] M. Edahiro, “Minimum skew and minimum path length routing in vlsi layout
design.NEC Research and Development, 32(4):569–575, 1991.

[9] M. Edahiro, “A clustering-based optimization algorithm in zero-skew routings”,
Proc. ACM/IEEE Design Automation Conf., pp. 612–616, June 1993.

[10] M. Edahiro, “Delay Minimization for Zero-Skew Routing”Proc. IEEE Intl.
Conf. Computer-Aided Design, pp, 563–566, November, 1993.

[11] M. Fischetti and P. Toth, “An efficient algorithm for the min-sum arborescence
problem on complete digraphs”,ORSA J. Computing5(4) (1993), pp. 426-434.

[12] J. P. Fishburn, “Clock Skew Optimization”IEEE Trans. Computers, 39 (7): 945-
951, july, 1990.

[13] E. G. Friedman, editor.Clock Distribution networks in VLSI Circuits and Sys-
tems: A Selected Reprint Volume. IEEE Press, 1995.

[14] J. H. Huang, A. B. Kahng, and C.-W. A. Tsao, “On the bounded-skew clock
and steiner routing problems”,Proc. ACM/IEEE Design Automation Conf., pp.
508–513, 1995.

[15] A. B. Kahng and G. Robins.On Optimal Interconnections for VLSI, Kluwer
Academic Publishers, 1995.

[16] A. B. Kahng and C.-W. A. Tsao, “More Practical Bounded-Skew Clock Rout-
ing”, Proc. ACM/IEEE Design Automation Conference, Anaheim, 1997, pp.
594-599.

[17] I. S. Kourtev and E. G. Friedman, “Topological Synthesis of Clock Trees with
Non-Zero Clock Skew”,Proc. ACM/IEEE International Workshop on Timing Is-
sues in the Specification and Synthesis of Digital Systems, Dec. 1997, pp.158-
163.

[18] K. A. Sakallah, T. N. Mudge and O. A. Olukotun, “checkTc and minTc: Timing
verification and optimal clocking of synchronous digital circuits”,Proc. IEEE
Intl. Conf. on Computer-Aided Design, 1990, pp. 552-555.

[19] T. G. Szymanski, “Coputing Optimal Clock Schedules”,Proc. ACM/IEEE De-
sign Automation Conf., 1992, pp. 399-404.

[20] R. E. Tarjan, “Finding Optimal Branchings”,Networks7 (1977), pp. 25-35.

[21] J. G. Xi and W. W.-M. Dai, “Useful-Skew Clock Routing with Gate Sizing for
Low Power Design”,Proc. ACM/IEEE Design Automation Conf., pp. 383–388,
1996.

172

