
 

 

 

 

 
ABSTRACT 
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 Autophagy is an evolutionarily conserved mechanism of bulk protein and 

organelle degradation that requires the ATG class of genes. Although autophagy has been 

frequently observed in dying cells in several species, a causative role for autophagy in 

cell death has not been demonstrated. We show that inhibition of caspase-8 in mouse 

L929 fibroblast cells causes cell death with the morphology of autophagy. Autophagic 

cell death in L929 cells is dependent on ATG genes and involves the receptor interacting 

protein (RIP) and the activation of the MAP kinase kinase 7(MKK7) - Jun N-terminal 

kinase (JNK) - cJUN pathway. We also show that autophagy occurs in many primary 

human tumors including cancer of the breast, lung and pancreas. Our findings validate 

autophagic cell death and might explain the role of autophagy in development, viral 

infections, neurodegenerative diseases and cancer. 
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Chapter 1 

Introduction 

Cell death 

In 1951, Glucksmann postulated the seemingly paradoxical concept of significant cell 

death accompanying cell proliferation during development of multicellular organisms (1). 

The ability to balance timely and controlled cell death with cell multiplication is also vital 

during adult life, for example to suppress tumor growth (2).  

Types of cell death 

The three major morphological types that are common in dying cells are 

apoptosis, autophagy and necrosis (3). Apoptosis is characterized by cytoplasmic 

shrinkage, nuclear condensation and chromatin fragmentation, preservation of membrane 

integrity late into the process, early exposure of phosphatidylserine on the cell surface, 

and blebbing of the plasma membrane (4). Internucleosomal fragmentation of DNA has 

generally been considered the hallmark of apoptosis (5). The execution machinery of 

apoptosis consists of a special class of proteases called caspases (6). Autophagic cell 

death, on the other hand, is characterized by formation of vacuoles that transport 

organelles and cytoplasmic content to lysosomes for degradation (7). Cytoplasm is 

condensed with tightly packed organelles and with evidence of mitochondrial 

condensation. Nuclear features such as fragmentation are not characteristic. Cells dying 

by autophagy tend to be in clusters and phagocytes are not primarily responsible for 

clearance of the dead cells (8, 9). Necrotic death shows cell swelling, loss of membrane 
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integrity and release of cytoplasmic content to the exterior (10). Nuclear changes are 

variable and inconsistent (3). 

Thirty years of cell death research has uncovered an astounding array of cell death 

mechanisms, signaling pathways and dying cell morphologies which could occur in 

various permutations and combinations. For example, caspase activation had been  

considered to be typical of apoptosis (11). However, caspases are active in autophagic 

cells in programmed cell death of Drosophila salivary glands (12). Caspase 8 activity and 

phosphatidylserine surface exposure, seen most commonly in apoptosis, have also been 

noted in necrotic dying cells (10, 13). Furthermore, nuclear condensation has been 

observed in several instances of non-apoptotic death, albeit with different patterns of 

condensation (14, 15). An important inference is that there is no single or exclusive linear 

sequence of events to bring about death in a cell. Death receptors are thought of as one of 

two pathways to activate caspases and apoptosis. Recent work suggests that death 

receptors can activate apoptotic and non-apoptotic pathways of cell death in the same cell 

type in response to the same death stimulus (13, chapter 2). Caspases, long considered to 

be synonymous with death proteases, are neither necessary nor sufficient to cause cell 

death (16, 17). Other proteases like cathepsins can cause cell death independent of 

caspases (18).  To illustrate the evolving concepts in cell death and possible relationships 

between autophagic and apoptotic cell death (Fig. 1), it is worthwhile to consider specific 

models of cell death.  
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A) Both autophagy and apoptosis occur and are responsible for PCD. 

 
  death stimulus                 Autophagy  + Apoptosis 
 
 
B) Autophagy necessary for apoptosis but not sufficient for cell death. 
 
 death stimulus                  Autophagy                       Apoptosis 
 
 
C)         Autophagy and apoptosis as alternative routes of death.   
 
                                     Autophagy 
 
 death stimulus   
     
      Apoptosis 
 
 
 
Fig.1. Possible relationships between autophagy and apoptosis in dying cells. Different 
models of dying cells reveal different relationships between autophagy and apoptosis. A) 
A single death stimulus triggers death with features of both autophagy and apoptosis. B) 
Autophagy is necessary to trigger apoptosis but not sufficient by itself for death. C) 
Either autophagic death or apoptotic death ensues after a death stimulus in a mutually 
exclusive manner. 
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The salivary glands of Drosophila pupae undergo massive programmed cell death 

(PCD) beginning at 12 hours after puparium formation in response to a pulse of ecdysone 

steroid (19). Dying salivary gland cells develop large vacuoles in their cytoplasm (20). 

Smaller vacuoles with enclosed organelles are observed two hours later and by 16 hours 

after puparium formation, salivary gland autolysis is complete. Microarray analyses of 

dying salivary gland cells revealed upregulation of several classes of genes including the 

Drosophila homologues of yeast ATG genes that are responsible for starvation induced 

autophagy (21). Suprisingly, there is a requirement for caspase activity for ecdysone 

regulated programmed cell death to occur in salivary gland cells and several features of 

apoptosis are present (22). Inhibition of caspases by over-expression of the viral caspase 

inhibitor p35 prevents salivary gland PCD (20). Moreover, caspase processing of 

cytoskeletal elements and nuclear fragmentation are observed in these dying cells (23). 

Thus, both autophagy and apoptosis genes contribute to Drosophila salivary gland PCD 

(Fig. 1 A).  

An interesting model to study PCD in the context of development is the 3-D 

MCF10A mammary epithelial cell culture model which closely parallels normal 

physiology of mammary glands including lumen formation in the mammary acini ( 24, 

25). Over-expression of anti-apoptotic Bcl2 family members merely delays and does not 

prevent cell death during cavity formation (26). Morphology of the dying cells reveals 

autophagic vacuoles (26). Cell death accompanied by autophagy is also seen in primary 

mouse mammary epithelial cultures and in pre-pubertal mouse mammary glands (27, 28). 

Recent reports suggest Tumor necrosis factor related apoptosis inducing ligand (TRAIL) 

induced apoptosis via death receptor activation in the above mentioned 3-D  MCF10A 
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model requires both autophagy and apoptosis for complete cell death (29) (Fig. 1 A). 

Inhibition of either process results in partial lumen formation. 

Autophagy has been postulated to be necessary for initial steps of the apoptotic 

program in a leukemic cell line CCRF-CEMVbl in response to TNF-alpha (30). CCRF-

CEMVbl cells exhibit autophagic vacuoles before apoptotic features such as nuclear 

fragmentation appear. Also, inhibition of the early stages of autophagy by the 

Phospahaditylinositol-3 kinase (PI3K) inhibitor 3-methyladenine (3-MA) prevented 

TNF-alpha induced death. Surprisingly, enhancing autophagy in these cells did not 

enhance apoptotic death in terms of extent or time. Thus, autophagy seems to be 

necessary but not sufficient for cell death (Fig. 1 B). 

Stimulation of death receptors by FasL, TNF or TRAIL can all induce caspase 

independent cell death resembling necrosis in activated T lymphocytes and this 

mechanism of cell death requires the serine threonine kinase Receptor Interacting Protein 

(RIP) (13). Furthermore, certain features observed in these dying cells such as membrane 

blebbing have been shown to be dependent on cathepsin B (18). Therefore, even classical 

mediators of apoptosis such as the death receptors could function in alternative forms of 

cell death. It would therefore seem that death signals ensure cell death by activating one 

of two (or more) alternate pathways (Fig 1 C).  

From the lines of thought touched upon in the preceding discussion, it is clear that 

artificial classifications of cell death into stand alone entities are no longer valid. Cell 

death is probably best viewed as various overlapping and intertwining combinations of 

the same components at the sensing (death receptors, steroid receptors), mediating  (e.g. 

MAP kinase kinase pathway, DAPkinase) and executing stages (e.g. caspases, cathepsins, 
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calpains, reactive oxygen species) with the ultimate end result of death. We shall next 

consider in detail the two major mechanistic processes, namely apoptosis and autophagy, 

to elaborate on their morphology and molecular machinery. 

 

Autophagy 

Autophagy is an evolutionarily conserved mechanism of protein and organelle 

degradation that has been observed in organisms that are as different as yeast and humans 

(31). Autophagy is the process by which cytoplasmic structures are sequestered into 

vacuoles and then transported to lysosomes predominantly for degradation (7). Although 

frequently observed in dying cells as discussed above (32, 33), autophagy was first 

observed as part of a hepatocellular response to lack of nutrients. Formation of 

autophagic vacuoles was described in rat liver tissue following amino acid deprivation 

and glucagon stimulation (34, 35). Autophagy is a general term that encompasses an 

ever-increasing list of related yet sufficiently distinct processes (36). 

A) Macroautophagy:  It involves formation of a double or multi membrane 

cytoplasmic vesicle-like structure that sequesters cytoplasmic proteins or 

organelles. In a series of steps detailed below, this structure is transported to the 

lysosome. The outer membrane of the structure fuses with the lysosomal limiting 

membrane, releasing the contents into the lysosome where they are degraded by 

the action of lysosomal hydrolytic enzymes. 

B) Microautophagy: The distinctive feature of this process is the outpouching of a 

portion of the lysosomal membrane to engulf an organelle. Unlike in 
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macroautophagy, there is no sequestering double membrane formed in the 

cytoplasm.  

C) Cytoplasm-to-vacuole targeting pathway (cvt): In S.cerevisiae, the biosynthetic 

physiological function of delivering the enzymes aminopeptidase I and alpha-

mannosidase to the yeast vacuole is carried out by the autophagy-like Cvt 

pathway. Several of the gene products required for the process are shared with the 

macroautophagy pathway. 

D) Pexophagy and mitophagy: The selective sequestration or engulfment of 

peroxisomes and mitochondria respectively and delivery to lysosomes. 

The best characterized type and that which is associated with dying cells is 

macroautophagy. Henceforth, the term ‘autophagy’ will refer to macroautophagy unless 

indicated otherwise.  

 

Stages in the formation of Autophagic vacuoles 

While there is no precise delineation of the stages in the process or their terminology, the 

following sequence, based on studies in S.cerevisiae, is widely accepted (7). 

1. Induction:  Autophagy inducing signals such as a lack of nutrients stimulate 

formation of a crescent shaped cisterna called the ‘phagophore’. The origin of the 

cisterna and its membranes is unknown although an endoplasmic reticulum origin 

is considered most probable (37).  

2. Formation: Elongation and complete encircling to form the double membrane 

bound ‘autophagosome' or ‘autophagic vacuole’.  
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3. Docking and fusion: Fusion of the autophagosome with a lysosome, whereupon 

the inner membrane and its enclosed cytoplasmic contents (called the ‘autophagic 

body’) are released into the lumen of the lysosome. 

4. Breakdown and recycling: Lysosomal enzymes degrade the contents of the 

autophagic body. 
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A           B 

  

 

Fig.2. Stages of Autophagy in yeast. A. Autophagy commences with induction of a 
‘phagophore’ that encircles and sequesters organelles and cytoplasm to form the 
‘autopaghosome’ which then docks and fuses with a lysosome, and releases its contents 
into the lysosomal interior as the ‘autophagic body’. Lysosomal hydrolases and proteases 
ensure degradation of the autophagic body (modified from 7). B. Transmission Electron 
Microscope view of an autophagic vacuole (arrow) in a L929 mouse fibroblast cell. 
Magnification is 16000. 
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Molecular pathways and regulation of autophagy  

Genetic screens for defects in the formation of autophagic vacuoles and protein 

degradation in S.cerevisiae resulted in a better understanding of autophagy at the 

molecular level and the identification of a class of genes called ATG/APG/AUT/CVT  in 

S.cerevisiae (38, 39, 40). Yeast lacking ATG genes show defects in autophagy in 

response to starvation. Homologues for twelve yeast ATG genes and their proteins have 

been identified in other species including humans (Table 1). Several of the ATG genes are 

postulated to participate in a pair of ubiquitin-like conjugation systems (41, 42). 

It is not surprising, given the manifold functions of autophagy, that the upstream 

pathways are diverse and range from nutrient regulation, cell proliferation, cell size 

regulation, development and cell death (43).The prominent regulating molecules in 

mammalian cells are Class I and Class III PI3K, Akt-PTEN-TSC1/2-Rheb-mTOR circuit, 

the Insulin Receptor and downstream targets. Briefly, Class I PI3K, Akt, Rheb and 

mTOR components inhibit autophagy while Class III PI3K, PTEN and TSC1 and 2, and 

the mTOR inhibitor rapamycin positively regulate autophagy. It is interesting that several 

of these molecules (for example, PI3K) also regulate apoptosis, proliferation, growth, 

protein translation and cell survival. Indeed, autophagy seems to be one node in a 

complex network of sensors, mediators and effectors that enable cells to respond to 

diverse challenges. 
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Table 1. Presumed Atg proteins in S.cerevisiae ,C.elegans, D.melanogaster  
         and Homo sapiens  (from 7). Many of the Atg proteins are conserved across  
         several species, from yeast to humans.  
 

 

 

 

 

 

 

 

 

S. cerevisiae C. elegans D. 
melanogaster 

H. sapiens 

Atg1 
Atg2 
Aut1/Atg3 
Aut2/Atg4 
Atg5 
Atg6/Vps30 
Atg7 
Aut7/Atg8 
Atg9 
Atg10 
Atg12 
Atg13 
Atg14 
Atg16 
Atg17 
Aut10 
Aut4 
Cvt17 

NP_507869 
ns 
NP_500024 
NP_502208 
ns 
T29537 
NP_502064 
NP_495277 
NP_503178 
ns 
NP_498228 
ns 
ns 
ns 
ns 
T26730 
ns 
ns 
 

CG10967 
CG1241 
CG6877 
CG6194 
CG1643 
CG5429 
CG5489 
CG1534 
CG3615 
ns 
CG10861 
ns 
ns 
ns 
ns 
LD38705p 
ns 
ns 
 

XP_008514 
NP_060506 
NP_071933 
NP_116241 
NP_004840 
NP_003757 
NP_006386 
NP_009216 
BAB15246 
ns 
NP_004698 
ns 
ns 
ns 
ns 
AAH07596 
ns 
ns 
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Apoptosis 

Apoptosis is characterized by exposure of phosphatidylserine on the cell surface, 

preservation of membrane integrity until late in the process when the apoptotic cell 

becomes permeable to vital dyes such as DAPI, nuclear condensation  and fragmentation, 

and engulfment by scavenger phagocytes (44). Stimuli that induce apoptosis include 

growth factor or hormone withdrawal, cell lineage, abnormally persistent cells during 

development, toxic chemicals, drugs and radiation. Apoptotic stimuli trigger activation 

cascades of a special class of proteases called caspases (45). There are two distinct 

pathways of caspase activation, namely the death receptor mediated pathway and the 

mitochondrial pathway (11).  

The Death Receptor family, that includes Fas, TNFR1, and TRAIL-R1, is located 

on the plasma membrane (fig.3). Death receptors cluster together when bound to their 

respective ligands (46, 47) and recruit adaptor molecules such as Fas associated death 

domain protein (FADD) (48). Specialized domains of the adaptor molecules in turn 

recruit procaspase molecules via homotypic interactions (49). The signaling complex thus 

formed, with its constituent death receptors, adaptor molecules and procaspases, is called 

the Death Inducing Signaling Complex (DISC) (50). Procaspase molecules in the DISC 

process each other through proteolysis utilizing their feeble enzymatic activity, the so 

called ‘Induced Proximity’ model (51), resulting in active caspases. The intrinsic or 

mitochondrial pathway requires APAF , cytochrome c and ADP released from 

mitochondria to recruit procaspase 9 in the formation of the ‘apoptosome’ (52), which is 

analogous to the DISC in that it contains active caspases.  
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Caspases are cysteine containing aspartate specific proteases (45). They are 

classified into initiator caspases and effector caspases (25). The subset of caspases called 

initiator caspases (including caspase 8, caspase 9, caspase 10, caspase 2) are activated in 

response to a death inducing stimulus at the DISC or at the apoptosome.  Initiator 

caspases in turn process effector caspases. The effector caspases (including caspase 3, 

caspase 6, caspase 7) are responsible for the morphological hallmarks of apoptosis 

through their protease activity on a variety of substrates. For example, caspase-3 degrades 

the Inhibitor of Caspase Activated DNase (ICAD), thereby releasing the DNase (CAD) 

from inhibition. DNase action results in the characteristic ladder of DNA fragments 

detected in apoptotic cells (53). 

It should be mentioned that death receptors in spite of their name do not 

invariably cause cell death. For example, death receptors, adaptors like FADD and 

caspases activation has been shown to induce NF-KB expression and modulate immune 

and pro-survival responses (54, 55, 56). The polar outcomes of death receptor signaling 

are probably determined by the receptor type and domains, the identity of the adaptor 

molecules and their interacting proteins and the molecular milieu downstream. 

The focus of my thesis work has been to investigate autophagic cell death in 

mammalian cells and its relationship to apoptosis, to explore the regulatory pathways of 

autophagic death and to identify autophagy in primary human tumors. Non apoptotic cell 

death mechanisms such as autophagic cell death have wide ranging therapeutic 

implications in the context of human diseases. 
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Fig. 3. Death Inducing Signaling Complex (DISC). Binding of the ligand (FasL or TNF-
α) to the trimeric death receptor(TNF-R, Fas) triggers formation of the Death Inducing 
Signaling Complex (DISC) by recruitment of adaptor molecules (FADD, TRADD) via 
homotypic interactions. The DISC activates the initiator caspases caspase 8 and caspase 
10. Active caspase 8 and 10 process and activate effector caspases like caspase 3. [TNF, 
tumor necrosis factor; TNF-R1, TNF receptor type 1; TRADD, TNFR-associated death 
domain protein; FasL, Fas ligand; FADD, FAS-associated death-domain protein.] 
 

Death Domain (DD) 

Death Effector Domain (DED) 

Death Domain (DD) 



 

15 

 

Chapter Two 
 

Regulation of an Atg7-Beclin 1 Program of Autophagic Cell Death by 
Caspase-8 

 

Section 2.1: Abstract 

Caspases play a central role in apoptosis, a well-studied pathway of programmed cell 

death. Other programs of death potentially involving necrosis and autophagy may exist, 

but their relationship to apoptosis and mechanisms of regulation remain unclear. We 

define a new molecular pathway in which inhibition of caspase-8 activity induces cell 

death with the morphology of autophagy. Cell death and autophagy involve the activation 

of the receptor-interacting protein (RIP, a serine-threonine kinase), MAP kinase kinase 7 

(MKK7), Jun N-terminal kinase (JNK) and c-JUN, and are dependent on the genes ATG7 

and BECLIN-1.  Therapies involving caspase inhibitors, presently in development for a 

range of clinical conditions, may arrest apoptosis but may have the unanticipated effect of 

promoting autophagic cell death. 

 

Section 2.2: Introduction 

Apoptosis is a well-studied pathway of programmed cell death conserved from C.elegans 

to humans (57).  Caspases, a family of cysteine containing aspartate specific proteases, 

produce the morphological changes associated with apoptotic death (58, 59).  Non-

apoptotic forms of cell elimination include those with features of necrosis and autophagy 

(3, 13, 60, 61).  Necrosis can result when cell metabolism and integrity are compromised 

by a non-physiological insult.  Recently, evidence has emerged that death receptors and 
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RIP can induce caspase-independent cell death that appears necrotic (13, 61).  Autophagy 

promotes a cell survival response to nutritional starvation involving membrane-bound 

vacuoles that target organelles and proteins to the lysosome for degradation  (7, 62).  Two 

pathways containing ubiquitin-like genes that are highly conserved from yeast to humans, 

function in autophagy (ATG genes).  Certain examples of cell death have autophagic 

features, but a role for ATG genes in cell death has not been established (31). Here we 

show that autophagy is associated with death of some mammalian cells, that this death 

depends on the expression of genes that are homologous to yeast ATG genes, and that this 

mechanism of cell death is negatively regulated by caspase 8. 

 

Section 2.3: Materials and Methods 

Tissue Culture 

The mouse L929 cell line was obtained from the American Type Culture Collection 

(Rockville, MD). L929 cells were cultured in Dulbecco's modified Eagle's medium with 

4.5 g/L glucose. Media were supplemented with 2 mM L-glutamine, 1% 

penicillin/streptomycin solution, and 10% fetal bovine serum (FBS).  

Preparation of siRNA  

Non-specific RNAi oligoribonucleotides and RNAi oligoribonucleotides corresponding 

to the following cDNA sequences were purchased from Dharmacon (Boulder, CO). 

CAGTTTGGCACAATCAATA for BECLIN 1.  

GTTTGTAGCCTCAAGTGTT for mouse ATG7.  

CCACTAGTCTGACTGATGA for RIP. 

TGAGATACTCGAGGTGGAT for MKK7. 
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CATTCGATCTCATTCAGTA for c-Jun.  

GATCGAGGATTATGAAAGA for caspase-8. 

Transfection of siRNA 

0.5 nmol RNAi were transfected by Amaxa nucleofectionTM (Gaithersburg, MD). Cells 

were then cultured in growth medium for 96 hrs before further analysis.  

Cell death analysis 

Cell viability was determined after treatments by staining with propidium iodide (2 

µg/mL) and flow cytometric analysis on a FACScan.  Percent cell death was quantitated 

as previously described (63).  [Note: The above experiments were done by Yu, L] 

Electron microscopy analyses 

Cells were fixed in 3% glutaraldehyde in 0.1 M MOPS buffer (pH 7.0) for at least 16 

hours at 4oC, post-fixed in 1% osmium tetroxide for 1 hour, embedded in Spurr's resin, 

sectioned, double stained with Uranyl acetate and Lead citrate, and analyzed using a 

Zeiss EM 10 transmission electron microscope.  For each treatment or control group, at 

least 100 cells from randomly chosen transmission electron microscopy fields were 

analyzed for quantification of morphological features.  Cells with ≥ 10 vacuoles were 

scored as autophagy positive.  Statistical analysis of zVAD and DMSO treated groups 

were done with Statview 5.0.1 program. 

 

Section 2.4: Results 

zVAD, a caspase inhibitor, induces cell death in L929 cells. 

In mouse L929 fibroblastic cells, tumor necrosis factor (TNF), oxidants, ceramide, and 

radiation can induce caspase-independent death (64).  However, benzyloxycarbonyl-
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Valyl-Alanyl-Aspartic-acid (O-methyl)- fluoromethylketone (zVAD), a pan-caspase 

inhibitor with broad specificity, induced the death of L929 cells (Fig. 4).  Death began 12 

hours after zVAD treatment and was complete by 40 hours (Fig.5).  The dead cells 

appeared to be round, detached (Fig. 4 b), and had a convoluted plasma membrane 

permeable to vital dyes (Fig. 4 d); this differed from apoptosis in which nuclei are 

condensed and membrane integrity is preserved.  

Transmission electron microscopy (TEM) revealed intact mitochondria and 

endoplasmic reticulum, condensed osmophilic cytoplasm, and numerous large 

cytoplasmic inclusions that were membrane-bound vacuoles characteristic of autophagy 

(Fig. 6). A time course revealed that vacuolated cells accumulated prior to cell death (Fig. 

5 and 7). Similar results were obtained in human U937 monocytoid cells and mouse 

RAW 264.7 macrophage cells (65).  
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Fig.4. zVAD induces cell death in L929 cells. L929 cells were treated with 1ul DMSO 
vehicle (panels a and c) or 20 uM zVAD (panels b and d) for 24 hours and then examined 
by light microscopy (panels a and b) or DAPI-staining and fluorescent microscopy 
(panels c and d). Magnification is 200X. [Note: This work was done by Yu, L] 
 

 

 

 

 

 

 

 

 
 
 
 
Fig.5. Time course of zVAD induced cell death in L929 in hours (h).Cells were 
harvested, stained with propidium iodide, and cell loss was quantified by flow cytometry. 
[Note: This work was done by Yu, L] 
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Fig 2.3 zVAD treated L929 cells show Autophagy.  
 
 
 
 
 
 
 
 
 
Fig.6. TEM analysis of L929 cells treated with zVAD. L929 cells were treated for 12 
hours with vehicle (a) or zVAD (b-d). For (c, d), early membrane-bound vacuoles (black 
arrowheads) and later vacuoles (asterisks) are shown.  Scale bars in (a, b) are 1 um and in 
(c, d) are 0.1 um. 
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Fig.7. Autophagy precedes cell death and increases temporally in zVAD treated 
L929 cells. L929 cells were treated with 20uM zVAD and were harvested at different 
time points as indicated and analyzed for TEM for autophagic structures. % Autophagic 
cells refers to cells with >10 autophagic vacuoles/cell as a fraction of all cells. 
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Inhibition of Autophagy prevents zVAD induced cell death. 
 
The association of autophagic vacuoles with cell death has been observed in developing 

animals, but it has not been clear if it was a process to rescue or condemn the cell (8).  

Drosophila cells manifesting autophagy and death have increased ATG gene transcripts 

(21, 66), but there is no known requirement for ATG genes in any model of cell death. 

We sought evidence that autophagy was required for cell death by treating L929 cells 

with two inhibitors of autophagy, 3-methyladenine (3-MA) and Wortmannin (7, 30).  

Both inhibitors prevented zVAD-induced cell death (Fig.8).  However, these inhibitors 

are general phosphatidylinositol-3 kinase (PI-3 kinase) inhibitors and could 

simultaneously affect autophagy and other cellular processes.  

We tested whether ATG genes were required for cell death. ATG7 (HsGSA7 / 

mAPG7) is an important autophagy gene encoding a protein resembling an El-type 

ubiquitin-activating enzyme that is used in both ubiquitin-like pathways required to form 

autophagic vacuoles in yeast (67, 68).  We reduced expression of ATG7 by RNAi and 

found that zVAD-induced cell death was almost completely inhibited (Fig. 9 A).  

Another ATG gene, BECLIN-1, the mouse homolog of yeast  ATG6, encodes a Bcl-2-

interacting, candidate tumor suppressor and antiviral protein  (69, 70).  Molecular 

alterations in beclin 1 are common in human cancers and  BECLIN-1 gene knockouts in 

mice cause a dramatic increase in epithelial and hematopoietic malignancies (71, 72).  

Reduction of the Beclin-1 protein by RNAi also decreased zVAD-induced death (Fig. 9 

A). TEM analyses of cells with reduced Atg7 or Beclin-1 protein levels showed a parallel 

inhibition of autophagic vacuole formation associated with reduced cell death (Fig. 9 B) 

Thus, ATG7 and BECLIN-1 are required for autophagic cell death triggered by zVAD.   
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Fig.8. Inhibitors of autophagy prevent zVAD induced cell death. L929 cells were 
pretreated with 1 ug/ml Wortmannin (WM) or 10 mM 3-methyladenine (3-MA) for 1 
hour, then with 20 uM zVAD for 36 hrs, after which cell loss was quantitated. [Note: 
This work was done by Yu, L] 
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Fig.9.  zVAD induced cell death and autophagy requires Atg7 and Beclin-1. A) Cells 
were treated with zVAD or vehicle for 36 hour, 96 hours after transfection with RNAi or 
non-specific oligonucleotides. The % cell loss (solid bars) and the fraction of cells with 
autophagy features (>10 autophagic vacuoles/cell) based on TEM (open bars) were 
quantitated.  All quantitative data represent at least 3 experiments. The steady state levels 
of the corresponding proteins are shown by Western blot (inset). B) TEM of L929 cells 
transfected with ATG RNAi and treated with zVAD. Representative TEM of L929 cells 
transfected RNAi as indicated or non-specific oligonucleotides. After 96 hours, these 
cells were treated with zVAD for 36 hours. Scale bars are 1 um. 
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RNAi of RIP prevents zVAD induced cell death. 

Death receptors can elicit nonapoptotic death through the ‘receptor-interacting protein’ 

(RIP), a death-domain-containing, serine-threonine kinase (13, 61).  We therefore 

reduced RIP expression by RNAi and observed decreased autophagy and decreased cell 

death (Fig. 10 A and B). 
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      NS RNAi        RIP RNAi 
  
Fig.10. zVAD induced cell death and autophagy require RIP. A) L929 cells were treated 
with zVAD or vehicle 96 hours after transfection with RIP RNAi or non-specific 
oligonucleotides and the % cell loss (solid bars) and the fraction of cells with autophagy 
features based on TEM (open bars) was quantitated. The steady state level of RIP is 
shown by Western blot (inset). B) TEM of L929 cells transfected with RIP RNAi and 
treated with zVAD. L929 cells were transfected with non specific oligonucleotides or 
RIP RNAi. After 96 hours, these cells were treated with zVAD for 36 hours. Scale bars in 
both are 1 um. 
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JNK Inhibitor II, RNAi of MKK7 and c-Jun prevent zVAD induced Cell Death.   
 
zVAD activated c-Jun N-terminal kinase (JNK) which is also activated by RIP in 

response to cytokines (73). Moreover, a JNK inhibitor, but not inhibitors against p38 or 

Erk, blocked zVAD-induced cell death, further indicating a specific role for JNK (Fig. 

11).  The protein synthesis inhibitor cycloheximide (CHX) blocked cell death, indicating 

that protein synthesis was required (Fig. 11).  

RNAi silencing of the JNK-activating kinase MAP kinase kinase 7 (MKK7) also 

completely prevented cell death and formation of autophagic vacuoles (Fig. 12 A and B).  

RNAi suppression of the transcription factor c-Jun reduced but did not eliminate the c-

Jun protein and inhibited autophagy and cell death by 45 to 50% (Fig. 12 A).  Thus, a 

signal pathway involving RIP, MKK7, JNK, and c-Jun appears to activate autophagy and 

cell death.  The involvement of c-Jun and new protein synthesis implies transcription of 

target genes may also be required.   
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Fig.11. JNK inhibitor and Cycloheximide prevent zVAD induced cell death. zVAD-
induced cell death in cells treated with control, JNK inhibitor II (1ug/ml), or 
cycloheximide (CHX) (2 ug/ml). [Note: This work was done by Yu,L] 
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        NS RNAi       MKK7 RNAi          c-JUN RNAi 

Fig.12. zVAD induced Cell Death and Autophagy require the JNK Pathway. A) Cells 
were treated with zVAD or vehicle 96 hours after transfection with MKK7 RNAi, c-Jun 
RNAi, or non-specific oligoribonucleotides. The % cell loss (solid bars) and the fraction 
of cells with autophagy features (>10 autophagic vacuoles/cell) on TEM (open bars) were 
quantitated. The steady state level of the corresponding proteins is shown by Western blot 
(inset). Data represent at least 3 experiments. B) Representative TEM images. 
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Caspase-8 RNAi induces Cell Death. 

Finally, we addressed how zVAD induced autophagic cell death.  Active caspase-8 

functions in lymphocyte receptor signaling pathways that do not cause cell death (74).  

We therefore used RNAi to progressively reduce caspase-8 expression over time and 

found that cell death was correspondingly increased (Fig. 13 A).  Cells in which caspase-

8 was reduced showed features of autophagy (Fig. 13 B). Because zVAD is a potent 

inhibitor of caspase-8, it likely exerted its death effect through inhibition of caspase-8.   
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Fig.13. Downregulation of caspase 8 induces cell death. A) Time course of viability of 
L929 cells transfected with either nonspecific (NS) (open symbol) or caspase-8-specific 
(solid symbol) RNAi at 24, 96, 110 hrs after transfection. Panels below show the 
abundance of caspase-8 protein by Western blot [done by Yu,L] B) Representative TEM 
pictures and quantification of the cells treated with either nonspecific or caspase-8-
specific RNAi s. Cells were harvested at 96 hrs after RNAi transfection. (a) NS control 
cell, (b-d) caspase-8 RNAi at different magnifications.  Scale bars in a and b, 1 uM, c and 
d, 0.5 uM. Arrowheads indicate double membrane autophagic vacuoles. (e) The fraction 
of cells with autophagic features based on TEM was quantified (for NS vs. Caspase-8, 
p<0.0001, Mann-Whitney U test). NS control cell, open bar, caspase-8 RNAi , solid bar. 
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Extent of autophagy correlates with cell death. 

As mentioned above, zVAD treated L929 cells had significantly more autophagy 

compared to  control DMSO treated cells as measured by both morphometric analysis 

and number of autophagic vacuoles compared (for DMSO control vs. 8 hour or 12 hour 

zVAD treated, p<0.0001, Mann-Whitney U test). Inhibition of ATG7 or BECLIN-1 by 

RNAi prevented formation of autophagic structures as determined by TEM (for NS vs.  

ATG7 or BECLIN-1, P<0.000.1, Mann-Whitney U test). Similarly, inhibition of RIP, 

MKK7 and c-JUN  by RNAi before zVAD treatment decreased the number of autophagic 

vacuoles significantly in all three cases (for NS vs. RIP or MKK7 or c-Jun, p<0.0001, 

Mann-Whitney U test). Finally, CASPASE-8 RNAi mimicked zVAD treatment with 

respect to induction of autophagy (for NS vs. CASPASE 8 RNAi, p<0.0001, Mann-

Whitney U test).  

Section 2.5: Discussion 

We have shown that two key autophagy genes, ATG7 and BECLIN-1, are necessary for 

an autophagic death pathway in mammalian cells.  This may explain other forms of non-

apoptotic death (29).  To our knowledge, this report is the first direct evidence for an 

autophagy dependent process of cell death and one that can be blocked by inhibiting the 

ATG class of genes. The conservation of mammalian autophagic death genes in yeast 

suggests that this process might have arisen early in eukaryotic evolution. BECLIN-1 

gene knockouts cause an unexplained increase in spontaneous tumors (71, 72), and it is 

possible that Beclin 1 may act as a tumor suppressor by causing autophagic cell death.   
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We have shown a role for Caspase-8 in the regulation of autophagy. The 

suppression of autophagic death by Caspase-8 in mammalian cells indicates caspases can 

regulate both apoptotic and non-apoptotic cell death.  We favor the idea that there is a 

low constitutive level of caspase-8 activation that carries out cellular regulatory processes  

(74). Interestingly, this regulatory role is specific for Caspase-8 alone and inhibition of 

other caspases does not affect autophagy (unpublished Yu, L et al).  

Because viral pathogens have caspase inhibitors, the autophagic pathway could be 

poised to counter viral infection as a “fail-safe” mechanism. The existence of two distinct 

pathways, one activated by Caspase-8 and the other supressed by Caspase-8, might act to 

ensure cell obliteration when cell death is of paramount importance as during normal 

embryogenesis. Lastly, caspase inhibitors are currently being developed as therapeutic 

agents for neurodegenerative diseases characterized by abnormal cell death (75,76).  Our 

findings indicate that caspase inhibition could have the untoward effect of exacerbating 

cell death and disease severity by activating the autophagic death pathway. 
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Chapter Three 
 

Autophagy in Human tumors. Cell Survival or Death? 

 
 

Section 3.1: Introduction 

The development of tumors involves multiple genomic changes that result in abnormal 

neoplastic cells and necessary alterations in the surrounding support tissue. Similar to the 

dynamics of a developing tissue or organism, tumors can be viewed as amalgamations of 

multiple cell types of epithelial, stromal, angiogenic and connective tissue origin that are 

intricately linked by their interactions (2). Tumor growth involves two essential 

deviations from the normal state including the induction of proliferative stimuli, such as 

c-Myc and E2F, and simultaneous suppression of potentially compensatory cell death 

(77). It is well recognized that apoptosis is impaired in many cancers by mutations in 

genes such as p53 (2, 78), but it remains to be determined if non-apoptotic cell death 

mechanisms are also impaired in neoplastic cells. While compelling evidence indicates 

that aberrations in cell proliferation and death are the critical determinants of neoplastic 

growth, recent discoveries suggest that less studied mechanisms may contribute to tumor 

growth control. 

Autophagy is an evolutionarily conserved mechanism of protein and organelle 

degradation that has been observed in organisms that are as different as yeast and 

humans. Autophagy involves the sequestration of cytoplasmic structures into vacuoles 

that are transported to lysosomes for degradation (7). Recent studies of autophagy 

suggest that this mechanism of proteolysis may function in the regulation of cell survival 
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and death (79 and chapter 2). There are at least three ways in which autophagy might 

enhance cancer cell survival. Autophagy may serve to optimize nutrient utilization in 

rapidly growing cancer cells when faced with hypoxic or metabolic stress similar to the 

starvation response observed in normal cells (80). Alternatively, autophagy might aid in 

degradation of organelles such as depolarized mitochondria that activate death pathways 

(81). Autophagy might also prevent cells from accumulating free radical induced damage 

to lethal levels by removing organelles that are sources or targets of such damage. 

While the role of autophagy in cell survival during nutrient deprivation is well 

characterized, less is known about the possible role of this form of proteolysis in cell 

death even though autophagy occurs in dying cells of diverse organisms (8, 31). 

Therefore, it is important to consider the possibility that autophagy may play an 

important role in some forms of programmed cell death (chapter 2). While autophagy 

might commence as an adaptive response that sacrifices mass for homeostasis and 

enhances survival, cell death may ensue if the process is carried beyond a threshold. 

Thus, autophagy may suppress tumor growth by causing cell death, limiting cell size, or 

otherwise maintaining a low mutation rate, and decreasing the likelihood of aberrant 

growth. We initiated a morphological survey for autophagic structures in several different 

primary human tumors on account of the paucity of evidence for autophagy in cancer. 

Section 3.2: Materials and Methods 

Tissues were all obtained from surgical resection specimens, immediately fixed in 3% 

glutaraldehyde, processed, and embedded in Embed 812. Semi-thin sections were cut, 

stained with Toluidine-Blue, and examined using light microscopy to verify the presence 
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and preservation of viable neoplastic tissue. Thin-sections were stained with uranyl 

acetate-lead citrate and examined using a Zeiss EM 10 transmission electron microscope.  

Section 3.3: Results 

Autophagic structures were observed in neoplastic cells, and displayed the morphological 

features of double and multi-lamellate membrane bound vacuoles enclosing cytoplasmic 

content and organelles (Fig.14). These autophagic vacuoles were typically in the vicinity 

of the nucleus and were frequently adjacent to swirls of endoplasmic reticulum devoid of 

ribosomes. The nuclei of these cells lacked apoptotic features such as fragmentation and 

chromatin margination. Of the 12 tumors studied, 7 had evidence of autophagy including 

ganglioneuroma, infiltrating ductal carcinoma of the breast, adenocarcinoma of the lung, 

pancreatic adenocarcinoma, and pancreatic islet cell tumor. Taking into account the small 

sample size for some of the tumor types examined, it seems reasonable to expect that 

autophagy occurs in many tumors. 
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Table 2. Survey of human tumors for autophagic structures. 
 

Tumor types with evidence of 

autophagy 

Tumor types  with NO evidence of 

autophagy 

Ganglioneuroma, mediastinum 

Mesothelioma, pleura 

Invasisve ductal carcinoma, breast 

Adenocarcinoma, lung 

Adenoma, pituitary gland 

Adenocarcinoma, pancreas 

Islet-cell tumor, pancreas 

Medullary carcinoma, thyroid 

Lymphoma, lymph node 

Meningioma, brain 

Adenocarcinoma, ovary 

Glioma, brain 
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Fig.14. Autophagic 
structures are present in 
neoplastic cells of multiple 
types of  primary tumors.  
 
(a) Cells of a pancreatic islet 
cell tumor that display 
autophagic features and lack 
the hallmarks of apoptosis 
(arrow).  
 
(b, c) Neoplastic pancreatic 
islet cell tumors cells 
contain early stage 
multilamellate 
(arrows) and single 
membrane-bound (arrow 
head) autophagic structures. 
 
(d) Adenocarcinoma of the 
lung contains several multi-
lamellate (arrows) and 
single membrane-bound 
(arrow head) autophagic 
structures, while the nucleus 
(n) appears normal. 
 
(e) A ganglioneuroma cell 
with a normal nucleus (n) 
and mitochodria (m) 
contains multi-lamellate 
(arows) and single 
membrane-bound (arrow 
head) autophagic structures.
Scale bars = 10 µM (a), 0.3 
µM (b-e). 
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Section 3.4: Discussion. 

The precise role of autophagy in cancer development, progression and response to 

therapy is not understood. The recognition of Beclin-1 (Atg6), a gene that functions in 

autophagy, as a haploinsufficient tumor suppressor raises intriguing possibilities about 

the importance of autophagy in cancer (70, 71, 72). It is possible that the mechanism of 

tumor suppression is through promotion of cell death. Autophagy peaks at pre-cancerous 

stages and diminishes at the malignant stage in some rat tumor models (82), suggesting a 

tumor suppressor role. It is interesting that autophagy is regulated by some of the same 

pathways of cell growth control that are altered in tumor formation such as the PI3K 

system (83). Further, analogs of rapamycin, which stimulate autophagy by inhibiting 

mTOR have shown promise in models of tumor therapy (84, 85, 86). Rapamycins are 

thought to stabilize tumor size rather than cause marked regression, possibly indicating 

control of cell size as the mechanism. In addition, therapeutics such as tamoxifen, an 

estrogen antagonist in breast tissue, have been shown to potently induce autophagy in 

MCF7 breast cells (87), suggesting the possibility that autophagy contributes to their anti-

neoplastic activity. 

A greater understanding of the regulation of autophagy in higher animals would 

provide better targets for cancer therapies. Although many of the genes that regulate 

autophagy in yeast appear to be conserved in diverse species (31, 89), several autophagy 

genes are absent in higher animals suggesting possible differences in the regulation of 

this form of proteolysis. Autophagy is thought to be present at basal levels in most tissues 

and is regulated by the pleiotropic mTOR pathway (88). Normal cells, unlike rapidly 
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growing cancer cells, would be expected to be less sensitive to pro-autophagic stimuli 

due to minimal metabolic demands and normal activity of regulators such as PI3K and 

Akt. Therefore, it seems likely that drugs that specifically enhance autophagy would be 

of value because of their high therapeutic index. Elucidation of the pathway downstream 

of mTOR would help avoid the pleiotropic effects of this kinase. In tumors with 

deficient apoptosis and/or up-regulation of the PIK3/Akt pathway, a combinatorial 

approach that utilizes autophagy modulators in addition to other chemotherapeutic agents 

might add value to therapy efficacy (43). 

Non-apoptotic mechanisms of cell death have been largely overlooked in studies 

of cancer causation, progression and therapy. Although the variation in cell complexity 

has been recognized in tumors (2), modest progress has been made in understanding this 

aspect of cancer biology. It is important for cancer researchers to consider the presence 

and impact of autophagy and similar less studied processes when interpreting clinical 

trials and developing drugs for modulation of aberrant cellular pathways. 
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Chapter Four  

Conclusions and Discussion 

The possibility of autophagy as a cell death mechanism has been controversial. 

Notwithstanding the observation of autophagy in dying cells in several species, there has 

been no direct evidence for autophagic cell death. We have shown that L929 cells 

undergo autophagic cell death upon treatment with the pan-caspase inhibitor zVAD-fmk 

(chapter 2).  We have also demonstrated that zVAD induced death can be prevented by 

RNAi inhibition of ATG genes. We have presented evidence of the involvement of the 

MKK7-JNK-cJUN pathway in autophagic cell death. We have also shown that inhibition 

of caspase-8 by RNAi mimics zVAD treatment, suggesting that zVAD induces death 

most likely by inhibiting caspase-8. Our work defines a novel regulatory role for caspase-

8 in suppressing autophagy. Our work has implicated RIP as a possible switch between 

apoptotic and autophagic cell death, and as a potential mediator of the induction of 

autophagy following caspase-8 inhibition. We therefore propose a tentative model to 

explain the role of caspase-8 in autophagy (Fig. 15). 

Our work on autophagy in tumors has demonstrated the presence of autophagic 

structures in several primary cancer tissues (chapter 3), including cancers of the breast 

and lung. These two tumors account for more deaths from cancer than any other type. In 

view of the frequency of resistance to conventional therapy in these cancers and the high 

mortality rate, a therapeutic approach based on enhancing autophagic cell death would be 

expected to have a significant impact. Investigation of the role of autophagy in tumors is 

likely to be a fruitful area of research in the future.  
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Fig.15. Model for caspase-8 regulation of autophagy in L929 cells. A. Sequestered 
fraction of caspase 8 is activated at basal states by unknown mechanisms. Active caspase 
8 processes RIP, thereby inactivating it. JNK is not phosphorylated and no autophagy 
ensues. B. When caspase 8 is inhibited, either by zVAD or RNAi, RIP cleavage ceases 
and RIP is free to induce autophagy. The induction involves the MKK7-JNK-cJUN 
pathway and requires the ATG gene products.  
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Our model of autophagic death places caspase-8 and RIP at a nodal point in 

normal cellular processes, apoptosis and autophagy. We favor the idea that some caspase-

8 activity is essential for cellular processes. There is evidence that caspases are important 

for proliferation and maturation functions (90, 91). Also, death receptors and caspases 

play a role in the immune response (92, 93, 94). These non-death functions might be 

served by a distinct pool of caspase molecules that are active at basal states. Although 

caspase-8 is classically activated by the death receptor pathway, recent reports suggest 

that an alternative cytosolic compartment may exist in which caspase-8 is activated 

through unknown mechanisms (95, 96). This possibility is enticing as it could also 

explain why caspase-8 is necessary for normal cell function and imply that cells are 

programmed to die in its absence or inhibition. Alternatively, autophagic death might be 

triggered only when death pathways, most likely the death receptor pathway, are 

activated in response to a death stimulus but with caspase-8 activity inhibited due to viral 

inhibitors or mutations in apoptosis genes. TNF stimulation is a possible source of the 

death stimulus as L929 cells synthesize TNF endogenously. TNF addition to L929 cells 

treated with zVAD greatly accelerated death (data not shown). Survival or death might 

also depend on the molecular milieu in the cell in the context of caspase 8 activation (for 

e.g. adaptor molecules like FADD, c-FLIP). Clearly, much remains to be known about 

caspase-adaptor interactions and their effects. 

Caspase-8 homozygous deficient patients are almost entirely normal in 

development and have normal cell populations except for slightly increased blood 

leukocyte levels and some defects in lymphocyte activation and immune response (94). 

We hypothesize that autophagic death, possibly in addition to other non-apoptotic death 
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mechanisms, is responsible for normal programmed cell death during development in 

these patients. Another possibility is that caspase 10, which is functional in these patients, 

could substitute for caspase 8 (97 and see below). L929 mouse cells lack caspase-10, 

possibly allowing caspase-8 inhibition alone to uncover the autophagic pathway. 

Mice deficient in caspase-8 die during embryogenesis with defective myocardial 

development (98). This observation may point to a role for caspase-8 in cell growth and 

differentiation, either directly in the myoblast progenitors or in other tissue cells 

necessary for cell-cell interactions during development. These mice also show fewer 

blood cell precursors in the bone marrow. An absence of caspase-8 in precursor cells 

might cause excessive autophagic death or defective differentiation.  

Data from the caspase-8 RNAi experiments confirm a specific role for caspase-8 

in suppressing autophagy, leading us to believe that inhibition of caspase-8 activity is the 

mode of action of zVAD. Also, inhibition of caspases 1, 2, 3, 9 and 12 did not enhance 

cell death in L929 cells (data not shown). However, it is not possible to completely rule 

out the involvement of another zVAD target. zVAD has been reported to inhibit several 

kinases and kinases are prominently involved in the known regulatory pathways of 

autophagy. An interesting parallel is the efficacy of 3-MA and Wortmannin in blocking 

autophagy by inhibiting PI3K (7). Assay of the activity of kinases presumed to function 

upstream of autophagy might delineate more precisely the targets of zVAD. Obvious 

candidates to be studied would include RIP itself, PI3K, PI3K dependent kinase 1 

(PDK1), Akt, S6 kinase (pp70S6K), DAP-kinase and DRP. Unlike zVAD, other common 

caspase inhibitors (e.g. IETD, zFA, LEHD, DEVD, zAAD) surprisingly do not kill L929 

cells significantly (data not shown). Our experience with pan-caspase inhibitors has 
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shown that zVAD causes the most reduction in caspase 8 activity in L929 cells (data not 

shown). Protein levels and activity levels of caspase 8 in the presence of IETD would 

illuminate the reasons for our negative results with IETD. Also, fibroblasts from mice 

lacking caspase-8 show defective Fas induced cell death (98). Our model would seem to 

require that fibroblasts from caspase 8 deficient mice be sensitive to autophagic killing 

upon Fas activation. We cannot entirely reconcile this conflicting piece of data as of now. 

Repeating the experiments in primary cell cultures from mice fibroblasts and other cell 

types might help in resolving this tricky issue. 

We have some evidence suggesting that RIP is a substrate for caspase-8 and that 

zVAD treatment causes an increase in the amount of full length RIP protein but does not 

completely prevent RIP cleavage (99 and data not shown). The truncated fraction of RIP 

presumably acts as a dominant negative inhibitor of RIP activity. We have also analyzed 

p38MAP kinase and Erk in zVAD-treated L929 cells. Neither showed an appreciable 

effect in either inducing or preventing autophagic cell death. DAP kinase (death 

associated protein kinase) and DRP (DAP kinase related protein) are involved in 

mediating both extrinsic and intrinsic death pathways (100, 101). DAP-kinase and DRP 

also cause formation of plasma membrane blebs during apoptosis (101). Interestingly, 

zVAD treated cells manifest similar membrane blebbing (Fig. 6). We propose to 

investigate the involvement of DAP-kinase and DRP in regulation of the autophagic 

death pathway. Also, inhibition of autophagy by ATG RNAi, while blocking autophagy, 

did not prevent membrane blebbing, suggesting that DAP and DRP kinases, if involved, 

are probably upstream of the Atg proteins or activated independently (Fig. 9 B). 
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We recognize the gaps in our understanding of this mechanism of death, 

especially with regard to two areas. The target molecule of RIP’s kinase activity that 

presumably mediates the autophagy inducing effect is unknown. Experiments to identify 

the substrate are complex due to the large set of potential candidate proteins. Secondly, 

we do not know the mediators that link the MKK7-JNK-cJUN pathway to the Atg 

pathway. Although, the known transcription factor activity of c-JUN and evidence from 

Drosophila salivary gland PCD studies suggest transcriptional control, we cannot confirm 

direct regulation of ATG gene transcription. RT-PCR experiments to quantitate ATG 

transcripts in zVAD treated L929 cells have been inconclusive in this regard.  

We have not analyzed changes in mitochondrial polarization and permeability, the 

activity of the Bcl2 proteins and changes in effector caspases when L929 cells are treated 

with zVAD. Caspase-9 inhibition did not cause cell death and therefore, a primary role 

for the mitochondrial death pathway is unlikely. Given that caspase-8 can cleave Bid, a 

pro-apoptotic Bcl2 protein, to initiate the mitochondrial or intrinsic pathway (102), 

studies to investigate Bid cleavage and mitochondrial function in zVAD induced death 

would be interesting. 

The demonstration of autophagic cell death (chapter 2) suggests a causative role 

in some of the instances in which autophagy is associated with dying cells. Autophagic 

death could underlie the tumor suppressor effect of Atg6 / Beclin-1 (70, 71, 72). So far, 

we have evidence of autophagic cell death in two other cell types namely U937 human 

lymphoblast cells and RAW mouse macrophage cells (data not shown). The universality 

of autophagic cell death remains under investigation. Autophagic cell death might explain 



 

46 

several observations of non-apoptotic death in development, viral and bacterial 

infections, neurodegeneration and cancer. 

Development 

The best documented association of autophagy with cell death has been in development 

(31). The presence of an alternate cell death route probably ensures removal of redundant 

cells or impaired cells, a process that is vital for normal organogenesis. Although we have 

no direct evidence implicating the death receptor or  mitochondrial pathway in 

autophagic cell death, input from classical apoptosis inducing pathways to autophagic 

death might indeed exist. It is then tempting to speculate that an extrinsic or intrinsic 

death inducing signal, entrusted with the mission of ensuring proper development, is 

executed through autophagic death when apoptosis fails. The induction of autophagic 

death upon inhibition of apoptotic mechanisms (Fig. 1 C) might explain why, for 

example, Apaf-1 knockout mice which are defective in apoptosis exhibit normal 

development of digital webs (103). 

Infectious diseases 

Certain viruses endeavor to prevent killing of their host cells (infected cells) by cytotoxic 

lymphocytes of the immune system. Different viruses subvert the apoptotic process at 

different points (104). Some viruses (e.g. Cytomegalovirus / CMV) encode for a protein 

called ‘viral inhibitor of caspase’ (vICA) that deactivates caspase 8 (105). We expect 

CMV infected cells to be extremely susceptible to autophagic death based on our model. 

On the contrary, several bacteria (e.g. Brucella abortus, Porphyromonas gingivalis, 

Legionella pneumophila, Leishmania donovani, Coxiella burnetii) and some viruses (e.g. 

Picornavirus) subvert autophagy to facilitate their replication (106, 107, 108). SipB 
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protein from Salmonella enterica  induces autophagic vacuoles and causes cell death in 

host macrophages as part of its pathogenicity, but it is not clear if autophagy directly 

causes the observed cell death (109). Thus, the role of autophagy in the context of viral 

and bacterial infections, as in tumors (chapter 3), remains perplexing. Regulatory 

influences other than caspase-8 are probably modified differently in different situations.  

Neurodegenerative diseases and myopathy 

Autophagic structures have been identified in Huntington’s disease (110), Parkinson’s 

disease (111), Alzheimer’s disease (112) and Creutzfeldt-Jakob disease (113). 

Progressive loss of neurons is characteristic of all these conditions. Autophagic cell death 

might contribute to neurodegeneration, given the frequency of non-apoptotic cell death 

observed in neurons (3). The possibility of autophagic cell death also urges caution in 

developing therapies based on caspase inhibitors to treat neurodegeneration. Certain 

myopathies such as X-linked Myopathy with Excessive Autophagy (XMEA) and 

Infantile Autophagic Vacuolar Myopathy or atypical Danon’s disease exhibit prominent 

autophagic structures (114, 115). As noted above, caspase 8 deficient mice are defective 

in myocardial development. It is possible that autophagic death in the myoblasts or 

myocytes or in adjacent stromal cells may contribute to the pathology of these 

myopathies. 

Cancer 

Inactivation of apoptosis is common in cancer (2, 116), but mutations in caspases have 

not been identified. One possible reason could be that caspase mutations, especially 

caspase 8, in the light of our model, may not confer a survival advantage to the cell. 

Augmentation of autophagic cell death shows promise as a therapeutic approach (chapter 
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3). Rapamycin, an enhancer of autophagy, is being studied in several clinical trials, either 

alone or in combination with other modalities. ATG genes are potentially exciting targets 

for induction of autophagy. Anti-Fas antibodies are under evaluation as chemotherapeutic 

agents. While they are intended to promote apoptosis, they might be expected to enhance 

autophagic death when apoptosis is impaired as is the case in most tumors.  

The mechanism of autophagic death and the evidence for autophagy in primary 

tumors suggest that autophagy functions as a barrier to tumor development. Future work 

to elucidate the complex control of autophagy and autophagic cell death could uncover 

specific targets for therapy in infectious diseases, neurodegenerative disorders and 

cancer. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 



 

49 

 
BIBLIOGRAPHY 

 
 
1. Glücksmann A (1951). Cell deaths in normal vertebrate ontogeny. Biol.Rev. 29, 59–
86.  
 
2. Hanahan D, Weinberg RA (2000).The hallmarks of cancer. Cell 100:57-70. 

3. Leist M, Jaattela M (2001). Four deaths and a funeral: from caspases to alternative 
mechanisms. Nat Rev Mol Cell Biol. 2(8):589-98. 
 
4. Wyllie A H, Kerr J F & Currie A R (1980).Cell death: the significance of apoptosis. 
Int. Rev. Cytol. 68, 251–306  
 
5.  Wyllie A H (1980). Glucocorticoid-induced thymocyte apoptosis is associated with 
endogenous endonuclease activation. Nature 284: 555–556. 
 
6. Hengartner MO (2000). The biochemistry of apoptosis. Nature 407(6805):770-6. 
 
7. Klionsky D J and Emr S D (2000). Autophagy as a Regulated Pathway of Cellular 
Degradation. Science 290, 1717-21  
 
8. Clarke P G (1990). Developmental cell death: morphological diversity and multiple 
mechanisms. Anat Embryol 181:195-213. 
 
9. Schweichel J U & Merker H J (1973). The morphology ofvarious types of cell death in 
prenatal tissues. Teratology 7, 253–266.  
 
10. Mateo V, Lagneaux L, Bron D, Biron G, Armant M, Delespesse G, Sarfati M (1999). 
CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. 
Nature Med. 5, 1277-1284. 
 
11. Budihardjo I., Oliver H, Lutter M, Luo X & Wang X (1999). Biochemical pathways 
of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290.  
 
12. Jiang C, Baehrecke EH and Thummel CS (1997) Steroid regulated programmed cell 
death during Drosophila metamorphosis. Development 1244683: 4673 
 
13. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, 
Schneider P, Seed B, Tschopp J (2000). Fas triggers an alternative, caspase-8-
independent cell death pathway using the kinase RIP as effector molecule.Nat Immunol. 
1(6):489-95. 
 
14.  Volbracht C, Leist M, Kolb S A & Nicotera P (2001). Apoptosis in caspase-inhibited 
neurons. Mol. Med. 7:36-48.  



 

50 

 
15. Joza N et al (2001). Essential role of the mitochondrial apoptosis-inducing factor in 
programmed cell death. Nature 410, 549-554. 
 
16. Wright S C et al (1997).  Activation of CPP32-like proteases is not sufficient to 
trigger apoptosis: inhibition of apoptosis by agents that suppress activation of AP24, but 
not CPP32-like activity. J. Exp. Med. 186, 1107-1117. 
 
17.  Borner C & Monney L (1999). Apoptosis without caspases: an inefficient molecular 
guillotine. Cell Death Differ. 6:497-507 . 
 
18. Foghsgaard L et al (2001). Cathepsin B acts as a dominant execution protease in 
tumor cell apoptosis induced by tumor necrosis factor. J. Cell Biol. 153: 999-1009.  
 
19. Robertson C W (1936) The metamorphosis of Drosophila melanogaster, including an 
accurately timed account of the principal morphological changes. J. Morphol. 59: 351-
399. 
 
20. Lee C Y and Baehrecke E H (2001) Steroid regulation of autophagic programmed 
cell death during development. Development 128: 1443-1455. 
 
21. Lee C Y, Clough E A, Yellon P, Teslovich T M, Stephan D A, Baehrecke E H 
(2003). Genome-wide analyses of steroid- and radiation-triggered programmed cell death 
in Drosophila. Curr Biol. 13(4):350-7. 
 
22. Jiang C, Baehrecke E H, Thummel C S (1997). Steroid regulated programmed cell 
death during Drosophila metamorphosis. Development. 124(22):4673-83. 
 
23. Martin D N, Baehrecke E H (2004). Caspases function in autophagic programmed 
cell death in Drosophila. Development. 131(2):275-84. 
 
24. O'Brien, L E, Zegers M M, and Mostov K E (2002). Opinion: building epithelial 
architecture: insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3, 
531-537. 
 
25. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell M J, and Petersen O W 
(2002). Normal and tumor-derived myoepithelial cells differ in their ability to interact 
with luminal breast epithelial cells for polarity and basement membrane deposition. J. 
Cell Sci. 115, 39-50. 
 
26. Debnath J, Mills K R, Collins N L, Reginato M J, Muthuswamy S K, Brugge J S 
(2002). The role of apoptosis in creating and maintaining luminal space within normal 
and oncogene-expressing mammary acini. Cell. 111(1):29-40. 
 



 

51 

27. Blatchford D R, Quarrie L H, Tonner E, McCarthy C, Flint D J and Wilde C J. 
(1999). Influence of microenvironment on mammary epithelial cell survival in primary 
culture. J. Cell. Physiol. 181, 304-311. 
 
28. Humphreys R C, Krajewska M, Krnacik S, Jaeger R, Weiher H, Krajewski S, Reed J 
C, and Rosen J M (1996). Apoptosis in the terminal endbud of the murine mammary 
gland: a mechanism of ductal morphogenesis. Development 122, 4013-4022. 
 
29. Mills KR, Reginato M, Debnath J, Queenan B, Brugge JS (2004). Tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy 
during lumen formation in vitro. Proc Natl Acad Sci U S A. 101(10):3438-43. 
 
30. Jia L, Dourmashkin R R, Allen P D, Gray A B, Newland A C, Kelsey S M (1997). 
Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in 
human T-lymphoblastic leukaemic cells. Br J Haematol. 98(3):673-85.  
 
31. Baehrecke E H (2002). How death shapes life during development. Nat Rev Mol Cell 
Biol. 3(10):779-87. 
 
32. Scharrer B (1966) Ultrastructural study of the regressing prothoracic glands of 
blattarian insects. Z. Zellerforsch. 69: 1-21 
 
33. Scheib D (1965). Sur la regression du canal de de Müller male de l'embryon de 
poulet: localisation de la phosphatase acide au microscope electronique. C. R. Acad. Sci. 
Hebd. Seances. Acad. Sci. D 261: 5219-5221. 
 
34. Ashford T P, Porter K R (1962). Cytoplasmic components in hepatic cell lysosomes. J 
Cell Biol. 12:198-202. 
 
35. Essner E and Novikoff A B (1962). Cytological studies on two functional hepatomas, 
interrelations of endoplasmic reticulum, golgi apparatus, and lysosomes. J. Cell. Biol. 15: 
289-312.  
 
36. Autophagy. Ed: Klionsky DJ. Landes Bioscience (January 2004). 
 
37. Dunn W A J (1990) Studies on the mechanisms of autophagy: formation of the 
autophagic vacuole. J. Cell. Biol. 110: 1923-1933 
 
38. Takeshige K,Baba M,Tsuboi S et al (1992). Autophagy in yeast demonstrated with 
proteinase-deficient mutants and conditions for its induction.J Cell Biol 119:301-311. 
 
39. Thumm M, Egner R, Koch B et al (1994). Isolation of autophagocytosis mutants of  
Saccharomyces cerevisiae .FEBS Lett 349:275-280. 
 



 

52 

40. Wang C W, Kim J, Huang W P, Abeliovich H, Stromhaug P E, Dunn W A, Klionsky 
D J  (2001). Apg2 is a novel protein required for the cytoplasm to vacuole targeting, 
autophagy, and pexophagy pathways. J Biol Chem. 276(32):30442-51.  
 
41. Wang C W, Klionsky D (2001). The Molecular Mechanism of Autophagy The 
molecular mechanism of Autophagy. Molecular Medicine 9(3/4): 65-76. 
 
42. Mizushima N, Yoshimori T, Ohsumi Y (2003). Role of the Apg12 conjugation 
system in mammalian autophagy. Int J Biochem Cell Biol. 35(5):553-61. 
 
43. Luo J, Manning B D, Cantley L C (2003). Targeting the PI3K-Akt pathway in human 
cancer: rationale and promise. Cancer Cell 4:257-62. 
 
44. Kerr J F, Wyllie A H, Currie A R (1972).Apoptosis: a basic biological phenomenon 
with wide-ranging implications in tissue kinetics. Br J Cancer 26:239-57. 
 
45.Alnemri E S et al (1996). Human ICE/CED-3 protease nomenclature. Cell 87:171  
 
46. Peter M E, Scaffidi C, and Medema J P (1999). The death receptors. Results Probl 
Cell Differ. 23: 25-63. 
 
47. Nagata S and Suda T (1995). Fas and Fas ligand: lpr and gld mutations. Immunol 
Today. 16: 39-43. 
 
48. A.M. Chinnaiyan, K. O'Rourke, and M. Tewari (1995). FADD, a novel death 
domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. 
Cell. 81: 505-12. 
 
49. M. Muzio, A.M. Chinnaiyan, and F.C. Kischkel (1996). FLICE, a novel FADD 
homologous ICE/Ced-3-like protease, is recruited to the CD95 (Fas/APO-1) death-
inducing signaling complex. Cell. 85: 817-27. 
 
50. F.C. Kischkel, S. Hellbardt, and I. Behrmann. Cytotoxicity-dependent APO-1 
(Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with 
the receptor. EMBO J 1995. 14: 5579-88. 
 
51. G.S. Salvesen and V.M. Dixit (1999). Caspase activation: The induced-proximity 
model. Proc Natl Acad Sci USA. 96: 10964-10967. 
 
52. P. Li, D. Nijhawan, and I. Budihardjo (1997). Cytochrome c and dATP-dependent 
formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91: 
479-489. 
 
53. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and 
its inhibitor ICAD. Nature 391, 43–50 (1998). 
 



 

53 

54. H. Hsu, J. Xiong, and D.V. Goeddel (1995). The TNF receptor 1-associated protein 
TRADD signals cell death and NF-kB activation. Cell. 81: 495-504. 
 
55. P. Juo, M.S. Woo, and C.J. Kuo (1999). FADD is required for multiple signaling 
events downstream of the receptor Fas. Cell Growth Differ. 10: 797-804. 
 
56. N.J. Kennedy, T. Kataoka, and J. Tschopp (1999). Caspase activation is required for 
T cell proliferation. J Exp Med. 190: 1891-6. 
 
57. Hengartner M, Horvitz H (1994). Programmed cell death in Caenorhabditis elegans. 
Curr Opin Genet Dev. 4(4):581-6. 
 
58. Degterev A, Boyce M, Yuan J (2003). A decade of caspases. Oncogene. 22(53):8543-
67.  
 
59. Nicholson D W, Thornberry N A (2003). Apoptosis. Life and death decisions. 
Science. 299(5604):214-5. 
 
60. Strasser A, O'Connor L, Dixit V M (2000). Apoptosis signaling. Annual Review of 
Biochemistry 69: 217-45. 
 
61. Chan F K, Shisler J, Bixby J G, Felices M, Zheng L, Appel M, Orenstein J, Moss B, 
Lenardo M J (2003). A role for tumor necrosis factor receptor-2 and receptor-interacting 
protein in programmed necrosis and antiviral responses. J Biol Chem. 278(51):51613-21. 
 
62. Ohsumi Y (2001). Molecular dissection of autophagy: two ubiquitin-like systems.Nat 
Rev Mol Cell Biol. (3):211-6.  
 
63. Mills KR, Reginato M, Debnath J, Queenan B, Brugge JS. Tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during 
lumen formation in vitro (2004). Proc Natl Acad Sci U S A. 101(10):3438-43. 
 
64. Fiers W, Beyaert R, Declercq W, Vandenabeele P (1999). More than one way to die: 
apoptosis, necrosis and reactive oxygen damage.Oncogene. 18(54):7719-30.  
 
65. Yu L, Dutt P, Lenardo M J, unpublished data. 
 
66. Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, 
Coughlin SM, Zuyderduyn SD, Jones SJ, Marra MA (2003). A SAGE approach to 
discovery of genes involved in autophagic cell death. Curr Biol. 13(4):358-63.    
 
67. Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E 
(1999). Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol 
Biol Cell. 10(5):1367-79.  
 



 

54 

68. Kim J, Dalton V  M, Eggerton K P, Scott S V, Klionsky D J (1999). Apg7p/Cvt2p is 
required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome 
degradation pathways. Mol Biol Cell. 10(5):1337-51. 
 
69. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, 
Levine B (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel 
Bcl-2-interacting protein. J Virol. 72(11):8586-96. 
 
70. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al (1999). 
Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672-6. 
 
71. Yue Z, Jin S, Yang C, Levine A J, Heintz N (2003). Proceedings of the National 
Academy of Sciences of the United States of America 100: 15077-82. 
 
72. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. (2003) Promotion of 
tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 
112:1809-20.    
 
73. Devin A, Lin Y, Liu Z G (2003). The role of the death-domain kinase RIP in tumour-
necrosis-factor-induced activation of mitogen-activated protein kinases. EMBO Rep. 
4(6):623-7. 
 
74. Chun H J, Zheng L, Ahmad M, Wang J, Speirs C K, Siegel R M, Dale J K, Puck J, 
Davis J, Hall C G, Skoda-Smith S, Atkinson TP, Straus SE, Lenardo MJ (2002). 
Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to 
human immunodeficiency. Nature. 419(6905):395-9.  
 
75. Li M, Ona V, Guégan C, Chen M, Jackson-Lewis V, Andrews J, Olszewski A, Stieg 
P, Lee J, Przedborski S, Friedlander R (2000). Functional Role of Caspase-1 and 
Caspase-3 in an ALS Transgenic Mouse Model. Science 288:335-339. 
 
76. J. Yuan, M. Lipinski, A. Degterev (2003). Diversity in the mechanisms of neuronal 
cell death. Neuron 40:401-13. 
 
77. Green DR, Evan GI (2002). A matter of life and death. Cancer Cell 1:19-30. 

78. Levine AJ (1997). p53, the cellular gatekeeper for growth and division.Cell 88:323-
31. 
 
79. Edinger AL, Thompson CB (2003). Defective autophagy leads to cancer. Cancer Cell 
4:422-4. 
 
80. Mortimore GE, Poso AR (1987) Intracellular protein catabolism and its control 
during nutrient deprivation and supply. Ann. Rev. Nutr. 7:539-64. 
 



 

55 

81. Elmore SP, Qian T, Grissom SF, Lemasters JJ (2001) The mitochondrial permeability 
transition initiates autophagy in rat hepatocytes. FASEB J. 15:2286-7. 
 
82. Toth S, Nagy K, Palfia Z, Rez G (2002) Cellular autophagic capacity changes during 
azaserine induced tumour progression in the rat pancreas. Cell Tissue Res. 309:409-16. 
 
83. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct 
classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control 
macroautophagy in HT-29 cells. J. Biol. Chem. 275:992-8. 
 
84. Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, et al. (2001) An 
inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- 
mice. Proc. Natl. Acad. Sci. USA 98:10320-5. 
 
85. Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, et al. (2001) 
Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. 
Acad. Sci. USA 98:10314-9. 
 
86. Sawyers CL (2003) Will mTOR inhibitors make it as cancer drugs? Cancer Cell 
4:343-8. 
 
87. Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M, et al. (1996) Active 
cell death induced by the anti-estrogens tamoxifen and ICI164384 in human mammary 
carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17:1595-607. 
 
88. Jacinto E, Hall MN (2003) Tor signalling in bugs, brain and brawn. Nat. Rev. Mol. 
Cell Biol. 4:117-26. 
 
89. Reggiori F, Klionsky DJ (2002) Autophagy in the eukaryotic cell. Eukaryot. Cell 
1:11-21. 
 
90. Song Z, McCall K, Steller H. DCP-1, a Drosophila cell death protease essential for 
development. Science. 1997 Jan 24;275(5299):536-40. 
 
91. Arama E, Agapite J, Steller H (2003). Caspase activity and a specific cytochrome C 
are required for sperm differentiation in Drosophila. Dev Cell. 4(5):687-97. 
 
92. Zhang J, Cado D, and Chen A (1998). Fasmediated apoptosis and activationinduced 
T-cell proliferation are defective in mice lacking FADD/Mort1.Nature 392: 296-300. 
 
93. Newton K, Kurts C, and Harris A W. Effects of a dominant interfering mutant of 
FADD on signal transduction in activated T cells. Curr Biol 2001. 11: 273-6. 
 
94. Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM, Dale JK, Puck J, 
Davis J, Hall CG, Skoda-Smith S, Atkinson TP, Straus SE, Lenardo MJ (2002). 



 

56 

Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to 
human immunodeficiency. Nature. 419(6905):395-9. 
 
95. Siegel RM, Martin DA, Zheng L, Ng SY, Bertin J, Cohen J, Lenardo MJ. (1998). 
Death-effector filaments: novel cytoplasmic structures that recruit caspases and trigger 
apoptosis. J Cell Biol. 141(5):1243-53 
 
96. Micheau and Tschopp (2003). Induction of TNF receptor I-mediated apoptosis via 
two sequential signaling complexes. Cell  114(2):181-90. 
 
97. F.C. Kischkel, D.A. Lawrence, and A. Tinel (2001). Death receptor recruitment of 
endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem. 
276: 46639-46646. 
 
98. E.E. Varfolomeev, M. Schuchmann, and V. Luria (1998). Targeted disruption of the 
mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/APO-1, and 
DR3 and is lethal prenatally. Immunity. 9: 267-76. 
 
99. Y. Lin, A. Devin, and Y. Rodriguez (1999). Cleavage of the death domain kinase RIP 
by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13: 2514-26. 
 
100. Cohen O, Inbal B, Kissil JL, Raveh T, Berissi H, Spivak-Kroizaman T, Feinstein E, 
Kimchi A (1999). DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and 
its function requires the death domain. J Cell Biol. 146(1):141-8. 
 
101. Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A (2002). DAP kinase and DRP-1 
mediate membrane blebbing and the formation of autophagic vesicles during 
programmed cell death. J Cell Biol. 157(3):455-68. 
 
102. H. Li, H. Zhu, and C.J. Xu (1998). Cleavage of BID by caspase 8 mediates the 
mitochondrial damage in the Fas pathway of apoptosis. Cell. 94: 491-501. 
 
103. Yoshida, H., Y. Y. Kong, R. Yoshida, A. J. Elia, A. Hakem, R. Hakem, J. M. 
Penninger, T. W. Mak (1998). Apaf1 is required for mitochondrial pathways of apoptosis 
and brain development. Cell 94:739. 
 
104. D.L. Vaux, G. Haecker, and A. Strasser (1994). An evolutionary perspective on 
apoptosis. Cell. 76: 77-79. 
 
105. A. Skaletskaya, L.M. Bartle, and T. Chittenden (2001). A cytomegalovirus-encoded 
inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci USA. 98: 
7829-34. 
 
106. Dorn BR, Dunn WA, Progulske-Fox A (2002). Bacterial interactions with the 
autophagic pathway. Cell. Microbiol. 4 1-10. 
 



 

57 

107. Swanson ME, Ferdandez-Moriea E. Traffic 3 (2002) 170-177. 
 
108. Suhy  DA, Giddings TH, Kirkegaard K (2000). Remodeling the endoplasmic 
reticulum by poliovirus infection and by individual viral proteins: an autophagy-like 
origin for virus-induced vesicles. J. Virol. 74 8953-8965. 
 
109. Hernandez LD, Pypaert M, Flavell RA, Galan JE (2003). A Salmonella protein 
causes macrophage cell death by inducing autophagy.J Cell Biol. 163(5):1123-31. 
 
110. Petersen A, Larsen KE, Behr GG, Romero N, Przedborski S, Brundin P, Sulzer D 
(2001). Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate 
dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet. 
10(12):1243-54. 
 
111. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-
Prigent A, Ruberg M, Hirsch EC, Agid Y (1997). Apoptosis and autophagy in nigral 
neurons of patients with Parkinson's disease. Histol Histopathol. 12(1):25-31.  
 
112. Cataldo AM, Hamilton DJ, Barnett JL, Paskevich PA, Nixon RA (1996). Properties 
of the endosomal-lysosomal system in the human central nervous system: disturbances 
mark most neurons in populations at risk to degenerate in Alzheimer's disease. J 
Neurosci. 16(1):186-99. 
 
113. Boellaard JW, Schlote W, Tateishi J (1989). Neuronal autophagy in experimental 
Creutzfeldt-Jakob's disease. Acta Neuropathol (Berl). 78(4):410-8. 
 
114. Kalimo H, Savontaus M-L, Lang H, Paljarvi L, Sonninen V, Dean P B, Katevuo K, 
Salminen A (1988). X-linked myopathy with excessive autophagy: a new hereditary 
muscle disease. Ann. Neurol. 23: 258-265. 
 
115. Yamamoto A, Morisawa Y, Verloes A, Murakami N, Hirano M, Nonaka I, Nishino I 
(2001). Infantile autophagic vacuolar myopathy is distinct from Danon disease. 
Neurology 57: 903-905.  
 
116. Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, 
McCombie R, Herman JG, Gerald WL, Lazebnik YA, Cordon-Cardo C, Lowe SW 
(2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma.Nature. 
409(6817):207-11. 
 
 
 
 
 
 
 


