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1. Introduction

In this paper, we consider the case of multiple ideal and persistent TCP
flows (flows that are assumed to be performing idealized congestion avoid-
ance) interacting with queue management algorithms that perform random
drop-based buffer management. Our objective is to determine the stationary
congestion window distribution of each of the TCP flows when the router
port implements algorithms like RED (Random Early Detection) or ERD
(Early Random Drop). We first present an analytical technique to obtain
the ‘mean’ queue occupancy and the ‘mean’ of the individual TCP win-
dows. Armed with this estimate of the means, we then derive the window
distribution of each individual TCP connection. Extensive simulation ex-
periments indicate that, under a wide variety of operating conditions, our
analytical method is quite accurate in predicting the ‘mean’ as well as the
distributions. The derivation of the individual distributions is based upon
a numerical analysis presented in [3], which considers the case of a single
TCP flow subject to variable state-dependent packet loss.

Each TCP flow is assumed to adjust its window through the idealized
congestion avoidance algorithm [1] whereby the TCP connection increments
its window by 1 once every round trip time and halves it instantaneously on
detecting congestion (through packet losses). Transient TCP behavior in-
cluding phenomena like fast recovery, fast retransmit and slow start are thus
ignored in this model of TCP window evolution. Mathematically speaking,
the window evolution of the i** TCP connection is given by a stochastic
process (W*)52,, where W] refers to the congestion window of connection 1
just after the receipt of the n* good acknowledgement packet (one that ad-
vances the left marker of TCP’s sliding window). By disregarding timeouts
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and fast recovery, we obtain a discrete-time Markovian stochastic process
with the following evolutionary behavior:

PIWPH = w+ ZIWP = w} =1 - pi(u) (L1)
P{WPH! = S|} = v} = pi(w). (1.2)

where p;(w) is the packet loss probability when the congestion window of
connection 2 is w.

In [3], we showed how appropriate space and time rescalings could be
used to obtain the congestion window distribution for a TCP flow when the
loss probability for its packets is variable but depends only on the instanta-
neous window size of the flow. This analysis was used to estimate the window
distribution when a single TCP flow interacted with a router port perform-
ing RED [11] or ERD [10]. When multiple TCP connections are present,
as in this paper, the loss probability for a specific connection depends, not
just on the window size of that connection, but also on the instantaneous
window sizes of all the other connections. Modeling this multi-flow case ex-
actly requires a multi-dimensional Markovian formulation whose dimension
equals the number of TCP connections; such a model becomes exceedingly
complex and is analytically intractable for even the simplest case of two
concurrent TCP connections.

We therefore make a series of approximations to preserve the tractability
of the problem. We first use a drift-based analysis (using the window evo-
lution modeled by equations (1.1) and (1.2)) to derive the ‘mean’ or center
of the queue occupancy as well as the ‘mean’ of each connection. We then
assume that the window behavior of each individual TCP is statistically in-
dependent of the others and that the sum of the mean value of the windows
of the other flows is a sufficient statistic in computing the loss function for
a particular connection; we will elaborate on the implications of this as-
sumption later. While computing the distribution for any given connection,
we therefore keep the window sizes of the other connections constant at
their ‘mean’s; this constancy reduces the occupancy of the queue to a linear
dependence on the connection’s window size. As a result, the loss probabil-
ity has again been reduced to a deterministic function of the connection’s
window size; this problem can now be tackled as per the analysis in [3].

The approximation techniques are validated by the accuracy to which
they can predict the true queue behavior and the true window distributions.
By using simulations with a realistic TCP version (TCP New Reno), we
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conclude that our analysis exhibits in fairly good (within 10%) accuracy. To
our knowledge, this is the first attempt to derive detailed distributions for
the interaction of multiple TCP connections with random-drop based queue
management mechanisms.

1.1 Related Work and Model Applicability

The window dynamics of a TCP connection in the congestion avoidance
regime has been extensively analyzed under the assumption that the loss
probability and round-trip times are constant. The square-root formula,
which states that the mean window of a TCP connection is inversely pro-
portional to the square-root of the loss probability is discussed in [9], [6]
and [7]; a more careful analysis that provides the detailed distribution is
presented in [2]. More elaborate models for TCP that incorporate the ef-
fect of timeouts and fast recovery transients are presented in [5] and [4];
these essentially show that timeouts and fast recovery transients become
important when the loss probability is relatively large (above = 0.05 for
current TCP versions) and cause the throughput to become proportional
to 1 in this regime. In [3], we provide a detailed analysis of the window
distribution when the loss probability is not constant; this analysis is then
used to determine the distribution of the window of a single connection in-
teracting with a RED (Random Early Detection) or ERD (Early Random
Drop) queue. To our knowledge, this paper is the first attempt to derive
detailed distributions by explicitly considering the interaction of multiple
TCP connections with a random drop-based queue.

As stated earlier, our model does not account for TCP transients like
slow start, timeouts and fast recovery. We believe that the disproportionate
impact of these on TCP behavior at moderately high loss probabilities is
due largely due to

1. the integration of loss recovery mechanisms with congestion control in
current versions of TCP like TCP Tahoe and Reno.

2. the coarse-grained nature of timers in current implementations.

Accordingly, this analysis is accurate for current TCP versions only when
the loss probabilities are small enough and the delay-bandwidth product
large enough (= 10 and above) to ensure that timeouts are relatively rare
events. As mechanisms to separate loss recovery from congestion avoidance
(like TCP SACK) become commonplace and as finer-grained timers are



adopted, our analysis should hold over much larger variations in performance
parameters.

2. Mathematical Model and Problem Approach

The TCP connections are persistent (sending infinite-sized data files), with
the congestion window acting as the only constraint on the injection of new
packets by the sender. Under this model of idealized behavior, the con-
nection never times out, the data is always send in equal-sized segments
(although segment sizes could vary between connections) and acknowledge-
ments are never lost. For the purpose of presentation, we assume that the
receiver acknowledges every received packet separately (delayed acknowl-
edgements are not enabled): the corrections for delayed acknowledgement
are listed in-Appendix C. As described in [3], the stationary distribution of
each connection is computed in what we call ack time!, which is a positive
integer valued variable that increments by 1 only when a good acknowledge-
ment arrives at the source.

Let N be the number of concurrent TCP connections under considera-
tion. The i*® flow of the set, denoted by TCP;, has a segment size of M;
bytes and a nominal round trip time (excluding the queuing delay at the
buffer under consideration) of RTT; seconds. As already mentioned, let
W; denote the window size of the i** connection; as different TCP flows
have different packet sizes, this is measured in bytes unless explicitly stated
otherwise.

The queue is assumed to perform random packet drops i.e., the loss
probability of a packet is conditionally independent of past and future losses.
The loss probability is modeled to be dependent on the instantaneous queue
occupancy. We let the service rate of the queue be C bytes/sec.In general,
let Q be the buffer occupancy of the random drop queue and Q; (in bytes),
the amount of traffic from connection ¢ that is buffered in the queue (so that
¥, Qi = Q. The drop function is denoted by p(Q). For the experimental
results in this paper, we used the linear drop model, so that p(Q) has the
following behavior:

p(é) =0 YV @ < ming,

IThe ‘ack time’ is different from ‘clock time’ in that the ack time advances only when a
good acknowledgement arrives at the sender. This will be linearly related to the progress
of clock time only if the window sizes and the round trip times are both constant.




== pmaz V Q > mazgh
Q — maz,

——e————— VYV miny, < Q lemaz
mazy, — ming, th < Q th

=  Pmaz *

where, as per standard notation, maz;, and min,, are the maximum and
minimum drop thresholds (in bytes) and pmq, is the maximum packet drop
probability. Other forms of the drop function can also be used in the sub-
sequent analysis; our numerical technique for determining the ‘mean’ only
requires that p(Q) be non-decreasing in @, which is true for all useful drop
functions.

Our analysis here is really intended for pure random drop queues, where
the same drop function applies to all flows. Our formulation does, however,
permit a slight generalization whereby the actual drop probability of a packet
may indeed be flow-dependent. To that extent, we suppose that the loss
probability for a packet of flow ¢, which arrives when the queue occupancy
is @, is given by the function p;(Q). pi(Q) is related to our afore-mentioned
drop function p(Q) by the expression

p:(Q) = ¢p(Q) (2.1)

where the ¢; are arbitrary non-zero constants. This implies that our model
permits the loss function for different connections to be scalar multiples of
one another; the scalar values are represented as ¢? instead of c; for the ease
of the subsequent analysis.

This scalar model permits us, for example, to capture the byte-mode of
operation of RED where the probability of a packet drop is proportional to
the size of the packet (by setting ¢? = M;) 2. Also, for notational conve-
nience, let p;(W) be the dropping probability of TCP; as a function of its
window size W.

2.1 Solution Approach

An N - dimensional continuous-state Markov model is needed to accu-
rately describe the window evolution dynamics of N concurrent TCP con-
nections. The state of such a process can be described by the N-ary vector

2Qur ‘scalar-multiple’ model of different drop probabilities for different connections
can capture a much richer set of random drop settings than apparent at first glance. For
example, it can represent a setting of Weighted RED [12] where the different classes have
the same ming, and maz.s thresholds but only different mazps. Although the application
of this model to such scenarios is straightforward, we do not explore the validation of such
settings further in this paper.



(w1, ws,...,w;,...,wy]T. State transitions would be triggered by events
which correspond to the loss or transmission of any packet (belonging to
any connection). Even under the simplifying assumption that a randomly
chosen packet would belong to a particular connection with a probability
proportional to its instantaneous window size, the transition probabilities
from [wiws...w;... wy]T to [wy...w; + 51-‘— ...wy] or to [w; .. LB Lwy]
would still depend on the sum of the instantaneous windows of all the con-
nections Z;-Ll w;. Not only does the dimensionality of this Markovian model
increase linearly with the number of flows, we have, so far, no analytical so-
lutions for its stationary distribution even for the simplest case of 2 flows.
(The problem of using re-scalings similar to the one introduced in [3] is that
the loss probability is no longer dependent on-the state of an individual
connection but really depends on the state of each of the N connectlons
thereby destroying the state-dependent loss assumption.)

We are therefore motivated to find an approximation technique whereby
the loss probability of a particular TCP connection can be expressed only
in terms of its individual state (the state of the other connections being
approximated by a constant term). Based on our assumption of inde-
pendence among connections, we postulate an approach where we
abstract the sum of the windows of the other connections by the
sum of their mean values. (We shall further comment on the implica-
tions of this approach for non-linear drop functions in a later section.) To
determine the means, we use a drift-based argument (similar to the simpler
derivations of the square-root formula) to determine the center of the TCP
connection windows and, by association, the center of the queue occupancy.
This derivation and solution is presented in the next section.

Once the center of the queue occupancy is known and the other con-
nections are represented by their computed means, the instantaneous queue
occupancy (and hence the drop probability) can be related to the instanta-
neous window size of a particular connection through a simple linear relation.
The window distribution can then be computed directly from the analysis in
[3]. Details of this scheme are presented in section 4. We shall also present
numerical examples that compare our analytical results with those obtained
via simulation; they seem to indicate that that this methodology is robust
and fairly accurate.



3. Estimating the Mean Queue Occupancy

To estimate the center of the queue occupancy, we use a set of fixed point
mappings. The basic idea is to find a value for the occupancy such that the
loss probability associated with that value results in congestion windows
for individual TCP connections (through the square-root formula) that are
consistent (with the queue occupancy value). Let Q* be this mean or center
value of the queue occupancy and let W;x, ie{1,2,..., N} be the center of
the it TCP flow.

3.1 Formulating the Fixed Point Equations

Define the drift of the congestion window of a TCP flow by the expected
change in its window size. From equations (1.1) and (1.2), we see that
the window size (in packets) increases by 1 with probability 1 — p(w) and
decreases by 3 with probability p(w). Hence, at a window size of w, the
drift is given by

AW = (1~ p(w)) - - 5(w)- (3.1)

The center of the window is given by the value of W that results in a drift
of 0; this can be shown, by simple rearragement of the terms in equation
(3.1), to be given by by the expression

* ;
W* 2 (3.2)
where the approximation is quite accurate as p is usually quite small 2
(for current TCP versions, if the maximum drop probability exceeds 0.05,
timeouts and slow start phenomena begin to dominate TCP behavior.)
For the case of multiple TCPs, the zero-drift analysis gives the window
size (in packets) for flow i, as

Wi(pkts) = | ﬁ (3.3)

3 A more accurate analysis reveals that the mean window occupancy is given by W°st ~
%’f’l. However, this makes no difference to our computations which typically have a larger

margin of error.



By incorporating expression (2.1) in the above equation and noting that
each packet is of size M; bytes, we get the mean window size (in bytes) as

. M [2
Yo V(@Y

Now, let C; be the bandwidth obtained by TCP i. Assuming that there
is no significant buffer underflow and that the link is fully utilized, we get
the relation Z?Ll C; = C. C; can also be computed by a different method:
by noting that a TCP connection sends one window worth of data in one
effective round trip time. Since a queue of size Q will contribute a buffering
delay of %, the effective round trip time of connection i is RT'T;+ g—; whence,
we can related C; to W; by the expression

_ W
~ RTT;+ 3

(3.4)

(3.5)

i

On summing the C;s from the above equation and equating them to C, we
get

N M;
C=w) —& 3.6
S T3 (356)
or, upon simplification,
1
W= — (3.7)
i=1 Q¥C.RIT;
where W = ;(%5. For notational convenience, let the RHS of equation
(3.7) be denoted by the function g(Q) so that ¢(Q) = — 75—
N ?

Yic1 qrCETT
The fized point solutions for the ‘average’ TCP window sizes and the

queue occupancy is then given by the set of values that provide a solution
to the following simultaneous equations:

2

W=— =4(Q (39)

N €5
Yi=1 QFCRIT;
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The individual ‘average’ TCP windows are then computed from W* by the
relationship '

M;
Wr=—"Ww* (3.10)

Ci

3.2 Existence and Solution of Fixed Point

Having defined the equations used to obtain the ‘mean’ TCP windows and
the ‘mean’ queue occupancy, we now prove that a unique solution to the
above equations exist and provide a numerical technique for its rapid com-
putation.

The existence of a unique solution can be demonstrated graphically (as
in figure 1) where the two simultaneous equations are as lines on the (Q, W)
axes. Since p(Q) is assumed non-decreasing in @, we have W in equation
(3.8) to be a non-increasing function of @, while in equation (3.9), g(Q) can
be seen to an increasing function of Q. The two plots will therefore intersect
at a single point, which is our ‘zero-drift’ solution for W* and Q*.

B

g N

Figure 1: Typical Relationship between W and Q for Random Drop Queues

To solve the fixed point, we use the Newton gradient technique. We use
this approach to find the zero of the function f(Q) defined by the difference
between the RHS of equations (3.8) and (3.9):

2 1
£(@) = ,/p(Q) o E (3.11)

QiC AT,




In Appendix A, we prove that f(Q) is convex in Q. Hence we can start with
an initial estimate of Qo = miny, + 6 (an initial value to the left of @*) and
proceed with repeated iteration. In this particular setting, the derivative

F/(Q) is given by

M

r@Qi) Eﬁlmi'_ﬂ?’ (3.12)
V2p(Q;)? (N, <

€ )2
Q;+C.RTT;

3.3 Insights from Above Analysis

The drift analysis technique reveals a couple of interesting properties of the
stationary behavior of TCP windows. For example, we can see that the
following conclusions will hold:

o TCP connections with the same round trip time but different packet
sizes will see the same ‘average’ window size (in bytes) if ¢; = aM; Vi,
where « is an arbitrary constant. In other words, to ensure fair sharing
of throughput among TCP connections with different packet sizes, the
packet dropping probability should be proportional to the square of the
packet size. Contrast this with current byte-mode drop schemes where
the packet drop probability is normally proportional to the packet size.

e We see from the analysis that the throughput of connections, which
have identical parameters except for different round trip times, is in-
versely proportional to the round trip times. This unfairness towards
TCP connections with larger round-trip times is well known.

3.4 Numerical Results

A wide variety of simulation experiments were performed to verify the ac-
curacy of our prediction regarding the ‘mean’ TCP window sizes and the
‘average’ queue occupancy. All simulations are carried out on the ns sim-
ulator with sources implementing the New Reno version of TCP (which
demonstrates all the non-ideal transients like coarse-grained timers and fast
recovery). The experiments presented in this paper have the bottleneck
bandwidth set to 1.5 Mbps. While the numerical analysis (including the
estimation of the individual distributions) would take less than 1-2 mins
on a conventioanl workstation, the simualtions would require between 20
mins to 1 hour (depending on the number of connections) to obtain results
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with a high degree of statistical confidence. To study the accuracy of our
drift analysis, we simulated both RED (Random Early Detection) and ERD
(Early Random Drop) queues. The differences between these algorithms and
the necessary correction to our analytical model (for RED) are presented in
Appendix B.

A set of representative figures are presented in figures 2 and 3 to illus-
trate this technique. Figure 2 considers two identical TCP connections while
in Figure 3, we have two connections with the nominal RTT of the second
connection double that of the first connection’s RTT (called the BaseRTT
in the figure). The graphs are plotted for various values of ez, Which es-
sentially changes the slope of the drop function and the ‘zero-drift’ point of
the queue distribution. We also experimented by changing the value of the
nominal round-trip time. In general, the agreement between computed and
simulated values would slightly degrade for larger RT'T values, although in
all cases the agreement was within 5-10predicted values. This degradation
is expected because a larger RTT increases the chance of buffer underflow
(which invalidates our model) owing to an increase in the feedback time of
the TCP control loop. The analytical technique tends to overestimate the
queue occupancy because we discount phenomena like fast recovery (during
which the queue size reduces as TCP attempts to adjust its sending rate)
and timeouts. However, the accuracy of the predictions seems to be quite
creditable, given the simplicity of the analysis and the various approxima-
tions involved. The other noteworthy point was that closer agreement was
obtained when the number of connections increased (as long as p(Q*) did not
become large enough to cause timeouts); with a larger number of flows, the
sensitivity of the queue size to the variations of a single connection decreases
and hence the queue occupancy exhibits slightly lower variance.
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Figure 3: Mean Behavior with 2 Dissimilar Connections

4. Deriving the Individual Distributions

Having seen how to compute the ‘mean’ of the individual distributions and
the queue occupancy, we now proceed to determine the detailed distribution
of the individual connections. Since the approach is identical for all the
connections, we consider, in general, the i** connection with a calculated
mean of W}, a segment size of M;, a drop function p;(Q); as before, the
computed mean of queue occupancy is Q*. For notational convenience, we



drop the i from the subscript for the rest of this section.

We use our independence assumption to postulate that the other con-
nections always have their window size equal to their computed means. Ac-
cordingly, if W is the window size of the connection under consideration, the
buffer occupancy, Q, corresponding to this window size is given (in bytes)
by the relation

Q=[Q" - (WxM-Ww)]* (41)
where the [ ]* reflects the fact that the queue occupancy cannot be negative.
Accordingly, we now have a state-dependent loss probability for the TCP
connection where the packet loss probability is a function of the window size
W and is given by

B(W) =p(Q) =p([Q" - (W + M — W")]*) (4.2)

We have now managed to reduce the window evolution process of the con-
nection to one governed by a variable but state-dependent loss rate, which
is exactly the model considered in [3]. Since the numerical-analytical tech-
nique to evaluate the window distribution in such a case was presented in
that paper, we shall only outline the analytical approach behind the solution
to the problem. *

The above state-dependent process is first converted to a continuous-
time, continuous-state process by appropriately rescaling both the time and
the state-space axes. The time-rescaling is state-dependent and results in
a time frame called subjective time which increases in a non-linear manner
compared to ack time. This time-rescaling is the critical element in defining
a modified process which is characterized by the following path dynamics:
There is a Poisson process with intensity 1. In between the points
of this process, the window W evolves according to a differential
equation

daw
W =) (43)
*A few words are in order about our assumption that the queue occupancy of the
other connections can be represented by their mean. In general, the loss probability,
for a particular value of W, is a random variable, say X, whose value will depend on
the instantaneous values of the other windows; let us denote this dependence by X =
p(E,. 4 W; + W). Now the expected value of X, conditioned only on the window W of
the flow under consideration, is denoted by E[X] and equals E[p(z:J 2 Wi+ W)]. This
conditional expectation equals p(zi #i E[Wi] + W) only if the loss function p is linear.
Accordingly, for linear loss functions, our formulation is equivalent to assuming that the
loss probability for a given window size is replaced by the expected loss probability for
that size; this explanation does not hold when the loss function is non-linear.

13



(where g is an appropriate function). At a point 7 of this process,
the window behaves as W(rt) = W (™).

In [3], it is-shown how the stationary Kolmogorov equation for the above
process is obtained and how that equation can be solved through a rapidly
converging iterative technique. Once the distribution of the process in sub-
jective time has been numerically computed, we correct for the time and
space scalings by essentially reverting the mappings. The technique also
incorporates the window evolution over lossless regions of the state space
(where the loss probability is 0 and the window evolves deterministically).
For the case at hand, it should be mentioned that the lossless region will
occur only if Q* > W* + miny,, a condition that may or may not occur for
one or more flows, depending on the system parameters. It bears repetition
that a reader wishing to understand the details of the stationary distribution
computation must be familiar with the content of [3].

4.1 Simulation Results

We now present the result of comparing the distributions predicted by our
analytical techniques with that obtained via simulation. As before, the sim-
ulations were carried out on the ns simulator with the TCP New Reno
model. Several sets of experiments were carried out with the number of
connections varying from 2 — 20 and with wide variations in the round trip
times and segment sizes. The results seem to indicate that, across a wide
range of operating conditions, the analytical technique offers a reasonably
accurate estimate of the distributions of the different flows. n particular,
it comes as no surprise to observe that the predictions improve in accuracy
when the number of flows increases. As the numebr of flows increases, the
dependency of the queue occupancy on a single connection decreases; conse-
quently our approach of treating an individual connection as a perturbation
on the overall queue occupancy becomes progressively more accurate.

The simulations in figure 4 compare the results when 2 or 5 identical
concurrent connections share the ERD queue. The packet sizes are 512
bytes and the round trip times are 25ms. As we can see, the agreement is
fairly close.

In figure 5, we present results for a simulations involving 2 or 5 flows, all
of which have the same packet size (512 bytes) but different round trip times
(the distributions should be the same). The RTT of the first flow is 25ms
while each subsequent connection has a RTT double that of the previous
flow. For conciseness and clarity, in each case, we present the comparison of
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the agreement is observed to be fairly good.

Figure 6 shows the result of experiments similar to those of figure 5,
except that now we keep the round trip time constant at 25ms but vary the
segment sizes; each flow should now have a different distribution. As before,
the segment size of a connection is twice that of the previous connection.
The smallest segment size is mentioned in the plots which, as before, are
shown only for the flows with the smallest and largest segment sizes. Failry

good agreement is observed again.
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Figure 6: 2/5 Connections with Different Segsizes

Conclusions
In this paper, we have demonstrated an analytical and numerical technique

5.
to obtain the window distribution of individual TCP connections when mul-
tiple persistent TCP flows share a bottleneck buffer which performs random

packet drops. This objective is achieved by first using drift analysis to obtain
an estimate of the mean window sizes as well as the mean queue occupancy,

and then using a perturbation-type approximation to relate the loss proba-
bility for packets of a given connection to the window size of that connection
alone. Simulation experiments seem to indicate that our analytical technique

is fairly robust and accurate to within ~ 10%.
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To our knowledge, this is the first attempt to predict detailed TCP
distributions by explicitly considering the interaction with a random drop
queue. In future we hope to use these individual distributions to determine
the occupancy distribution of the queue itself; it will be interesting to see
how accurate our analysis will prove in that case and also to see whether
the analysis improves in accuracy as the number of flows increases.

6. Appendix
6.1 Proof that f(Q) is convex

We prove here that the function f(Q) defined in equation (3.11) is convex.
First, some notation: let B—:'l be denoted by b; and C.RTT; be denoted by d;.

The function g(Q) is then given by ¢(Q) = (3; Q_z-id_.-)_l' On differentiating
this function we obtain

@) =9@" ¥ gran (6:1)

Since from above, ¢'(Q) > 0 VQ, g(Q) is an increasing function of Q.
Differentiating again, we have the second derivative given by

7'(Q) = 20(Q0Q Y. gy - 201 L s
or on rearranging

@ =20 i - C i S g} 6

We now prove that the term in the curly braces in equation (6.2) is negative.
To see this, let 8 = Y ;b; and let a; = (@ +d;) Vie {1,2,..., N} (note that
a; is always positive). Consider a random variable A which takes on the
value a; with probability m; = %i (check that this is a legitimate probability
distribution). Then, the second derivative can also be written (with EJ ]
denoting the expectation operation) as

9"(Q) = 26(9(@))*{E?[4%] - E[A’|E[A]} (6-3)

Now, we know if A is a random variable that has Prob(A > 0) = 1, then
log E[A™] is convex in m Vm > 0. Thus, we have log E[A?] < M[A]"Z;"—SE@,
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so that E?[A?] — E[A%]E[A] < 0. Applying this result to expression (6.3),
we see that g”(Q) is negative and hence, g(Q) is a concave function of Q.
As the term ,/ 5?255 is easily seen to be convex (its second derivative is

positive), we can conclude that f(Q) is a convex function of Q.

6.2 Modeling RED behavior

In this appendix, we discuss differences between Early Random Drop (ERD)
and the Random Early Detection (RED) that affect the applicability of our
model. The important points of difference are:

o RED operates on the average (and not the instantaneous) queue length.
The drop probability, p,is thus a function of the weighted average Qg
of the queue occupancy i.e., p is a function not just of Q, but of
(@n, @n-1,Q@n-2,...) with an exponential decay.

e To avoid unbounded inter-drop gaps, RED increases the drop proba-
bility for every accepted packet. (This property, which we call drop
biasing, is achieved by using a variable, ent, which increments with ev-
ery successive accepted packet; the true dropping probability is then

given by 1— Zﬂ ?_p 2y This results in a inter-drop period that is uni-

formly distributed between (1,...,| plq |) as opposed to the geometri-
cally distributed inter-drop gap caused Ly an independent packet drop
model.

e RED has a sharp discontinuity in drop probability: when @Q,,, exceeds
maz, p(Q) = 1 so that all incoming packets are dropped. This
contrasts with our assumption of random drop throughout the entire
range of the buffer occupancy. This is however not a problem as long
as the queue occupancy almost never exceeds mazp.

While the effects of averaging cannot be incorporated in our model, a
simple change works quite well in capturing the effect of drop biasing. We
essentially change p(Q) in our random drop model such that the average
inter-drop gap % becomes equal to the average inter-drop gap % of RED.
All we have to do is to make our model p,, double that of the p,,., used
in the actual RED queue.

18



6.3 Correction for Delayed Acknowledgements

Delayed acknowledgements essentially imply that the TCP process incre-
ments its window only once for every K ( K is usually 2) acknowledgements.
A simple way to capture this effect is to alter equation (1.1) to

1
+1 —\W" = =1-p;
PWrM =w+ K.wlw'" w} =1 - p;(w) (6.4)

i.e., approximate it by a process that increments its window by % for every
acknowledgement.

We point out the main changes to our technique for the case K = 2 (for
other values, refer to the concerned publications):

e The square-root relationship now becomes W* = 1/;(% instead of

equation (3.2). This affects the first equation (3.8) in the set of simul-
taneous quations that define the fixed point.

e During the time re-scaling required to obtain the individual distri-
butions, the function ¢(W) mentioned in equation (4.3) is modified
slightly (see [3] for details).
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