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Fluids whose rheological properties can be tuned by light or heat (termed as 

photorheological (PR) or thermorheological (TR) fluids, respectively) have attracted a lot 

of attention as they can be useful in numerous applications such as drug delivery, 

coatings, sensors, and valves for microfluidic devices. However, current formulations of 

these fluids suffer from several limitations: in particular, they often require synthesis of 

complex organic molecules by elaborate procedures, and this limits the widespread use of 

these fluids. In this dissertation, we seek to develop and investigate new classes of PR 

and TR fluids based on organic molecules that are readily available and quite 

inexpensive. Since no new synthesis is required, these systems could prove to be more 

attractive for a variety of applications.   

 

 In the first part of this study, we describe a new aqueous photorheological (PR) 

fluid based on the zwitterionic surfactant, erucyl dimethyl amidopropyl betaine (EDAB) 

and the photosensitive molecule, ortho-methoxy cinnamic acid (OMCA). EDAB/OMCA 

fluids exhibit photogelling, i.e., a large (~ 10,000 fold) increase in viscosity upon 

exposure to UV radiation. We show that this photogelling is caused by the growth of long 

  
 
 



wormlike micelles in the sample. This structural change, in turn, is induced by the UV-

induced isomerization of OMCA molecules from their trans to cis form. Evidence from 

zeta-potential studies, small-angle neutron scattering (SANS), and rheology are used to 

systematically reveal the molecular and microstructural mechanism for our results. 

 

In the second part of this study, we turn our attention to non-aqueous solvents and 

demonstrate a new class of PR fluids using such solvents. The PR effect here relies on 

transformations of “reverse” micellar structures formed by a well-known lipid (lecithin) 

in conjunction with para-coumaric acid (PCA). Lecithin/PCA fluids exhibit a substantial 

decrease in viscosity upon exposure to UV light (i.e., photothinning). Initially, the 

molecules self-assemble into long wormlike micelles, leading to highly viscoelastic 

fluids. Upon UV irradiation, PCA is photo-isomerized from trans to cis. This change in 

geometry induces a transition from long to short micelles. In turn, the solution viscosity is 

decreased by more than three orders of magnitude. Small-angle neutron scattering 

(SANS) is used to confirm the dramatic reduction in micellar length. 

 

In the last study, we report a class of aqueous fluids whose viscosity increases 

upon heating (i.e., thermo-thickening). These fluids are mixtures of telechelic associating 

polymers (HEURs) and a type of supramolecules called cyclodextrins (CDs) in water. 

Interestingly, we observe this behavior only with a particular type of CDs, called α-CDs, 

and not with the other common CD types, i.e., β- and γ-CDs. These results are explained 

in terms of a competition between the hydrophobic end-caps and the hydrophilic 

backbone of the polymer for complexation with α-CD molecules. We have also 

  
 
 



investigated the effect of amphiphiles (single-tailed surfactants and double-tailed lipids) 

on the thermo-thickening. The addition of lipids substantially enhances the thermo-

thickening behavior, which is explained to be due to an enhancement of the connectivity 

of hydrophobic junctions by lipid vesicles. 
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Chapter 1 

Introduction and Overview 
 

 

1.1 Problem Statement 

 Recently there has been a lot of interest in fluids whose rheological properties can 

be controlled by external field e.g., heat, electrical or magnetic field, pH, and light.1-14 

This extensive attention to field-driven rheology modulation is motivated by the potential 

of such fluids in a variety of applications such as drug delivery, wound covering, cancer 

therapy, sensors, microfluidics or MEMS devices, paints, coatings, personal care 

products, and traditional mechanical engineering applications like dampers, shock 

absorbers, and brakes.1-14 Owing to their obvious potential, many researchers have been 

working on developing a variety of new stimuli-responsive fluids and many 

breakthroughs have been made. However, most of these fluids suffer from many serious 

shortcomings. These include, for example, a lack of precise spatial control over stimuli 

(critical in microscale or nanoscale applications), aggregation and instability with time in 

some stimuli-responsive systems,4-6 and issues like poor biodegradability and poor 

resilience in the case of thermogelling systems used for drug delivery.2 Therefore, there is 

plenty of scope and motivation for further continued research and development in this 

field of stimuli-driven rheology modulation. 

 

 This dissertation seeks to develop and investigate new formulations of stimuli-

responsive fluids whose rheological properties can be tuned by light or heat. These fluids 
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are termed as photorheological (PR) fluids if the stimulus used is light and 

thermorheological (TR) fluids if the stimulus used is temperature. The working principle 

will be to exploit molecular self-assembly, i.e., the spontaneous aggregation of surfactant 

or polymer molecules when placed in a solvent, as illustrated by Figure 1.1. On the left, 

the molecules present in the fluid self-assemble into discrete spherical nanostructures, 

which impart a low viscosity to the sample. Under the action of the stimulus (light or 

temperature), the self-assembly is switched such that the molecules form a connected 

network of chains, and the sample, in turn, exhibits a high viscosity. Thus the transition 

in macroscopic properties (rheology) is coupled to those at the nanostructural and 

molecular levels. In principle, these transitions would be reversible as well. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1. Schematic illustrating the working principle of a stimulus-responsive fluid 
that can reversibly change its flow properties upon exposure to light or heat. The flow 
properties are dependent upon the internal structure in the fluid.  
  

Light, Temperature 

Light, Temperature 
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 One important motivation for our work is that the PR and TR fluids that are 

currently available are accessible only to a few research groups. This is so because such 

fluid formulations usually rely on complicated organic molecules that need to be 

specially synthesized in the laboratory. Particularly in the case of PR fluids, the synthesis 

procedures for these molecules (e.g., photosensitive surfactants or polymers bearing an 

azobenzene or stilbene moiety) tend to be difficult and cumbersome.9,10,12-14 Even in the 

case of TR fluids, the molecules involved are often not commercially available, or if they 

are, they tend to be very expensive.1-3 Thus, the high cost and/or labor-intensive synthesis 

procedures make current PR and TR fluids unattractive for commercial exploitation. If 

simple and inexpensive routes could be found for making such fluids, it would open the 

door for a great deal of application-oriented research (e.g., microfluidics valves, sensors), 

both in academia as well as industry. 

  

1.2 Proposed Approach 

 In this study, we will develop new formulations of PR and TR fluids based on 

simple, readily available, and inexpensive molecules. Further, we wish to gain a better 

fundamental understanding of the PR and TR effects at three different length scales: 

• Molecular (Sub-Nano) Scales: What transitions in molecular geometry or 

structure occur upon application of the stimulus? We will use UV-Vis 

spectroscopy to probe such molecular changes.  

• Nano-Micro Scales: What transitions in self-assembled structure (type, size, 

shape, surface charge) occur upon application of the stimulus? We will use 

scattering techniques and zeta potential measurements to study these aspects. 
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• Macro Scale: How do the macroscopic rheological properties change upon 

application of the stimulus? How fast do these changes occur? We will use both 

steady and dynamic rheological techniques to study our samples. Ultimately, we 

will correlate the changes occurring at each length scale to obtain a 

comprehensive picture of our system. 

 

 The rest of this dissertation is organized as follows. Chapter 2 provides a detailed 

background on molecular self-assembly and characterization techniques. In Chapter 3, 

we present a novel PR formulation made simply by mixing a commercially available 

surfactant and a photoadditive in water. This PR fluid exhibits a 10,000-fold increase in 

viscosity upon irradiation by UV light i.e., a photogelling effect. Chapter 4 extends the 

concepts developed in Chapter 3 to the discovery of non-aqueous PR fluids in organic 

solvents. The fluids exhibit a rapid and controllable decrease in viscosity upon exposure 

to UV radiation (i.e., photothinning). Finally, in Chapter 5, we report a TR system in 

which the viscosity increases significantly upon heating (i.e., thermo-thickening). A 

variety of techniques, including UV-Vis spectroscopy, rheological measurements, and 

small-angle neutron scattering (SANS) are used in all of above mentioned studies. Details 

of these techniques are also given in Chapter 2. 

 

The significance of this work is that it seeks to overcome current limitations in 

the field of stimuli-driven rheology modulation. We hope that the availability of new, 

simple PR and TR fluid formulations will help to popularize these fluids both in 

academia and industry. We anticipate that the new directions we set forth in this field will 
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be further explored by other researchers, and this increased research will ultimately lead 

to practical applications for PR and TR fluids in both existing as well as emerging 

technologies. 
. 
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Chapter 2 

Background 

 

This dissertation is concerned with stimuli-responsive self-assembled fluids 

whose rheological properties can be tuned by light or heat. In this chapter, we will 

discuss the fundamentals of amphiphile self-assembly in aqueous and non-aqueous 

media. In addition, we will describe the basic properties of cyclodextrins, associating 

polymers, and of photo-induced transitions in molecules. We will finish with a brief 

discussion of characterization techniques such as rheology, small-angle neutron scattering 

(SANS), and UV-Vis spectroscopy.  

 

2.1 Self-Assembly of Surfactants 

 Surfactants (also referred to as detergents or lipids) are molecules that combine 

both a hydrophilic moiety (head) and a hydrophobic moiety (tail) into a single molecule. 

Figure 2.1 depicts typical surfactant molecules with blue hydrophilic heads and red 

hydrophobic tails. When added to a polar solvent such as water, surfactants 

spontaneously aggregate into various types of structures, the most common of which are 

micelles. This process of spontaneous aggregation is known as self-assembly. For 

surfactants to form micelles, their concentration should be higher than a certain threshold 

concentration known as critical micelle concentration (CMC). Self-assembly is a 

thermodynamically driven process i.e., it involves a minimization of the Gibbs free 

energy of the system. The crucial driving force for this process is the hydrophobic effect, 
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i.e., the gain in entropy of water molecules when surfactant hydrophobes are removed 

from water and buried in a micelle. 

 

 
Figure 2.1.  Schematics depicting the connection between the geometry of amphiphilic 
molecules and the structures they form in water. The hydrophilic heads of the 
amphiphiles are shown in blue and the hydrophobic tails in red. 

 

The size and shape of self-assembled structures depends on the molecular 

structure and charge of the surfactant, its concentration in solution, and also on the 

physico-chemical conditions like temperature, ionic strength and salt concentration. A 

variety of shapes are possible for micelles such as spherical or cylindrical, and 
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intermediate shapes like oblate or prolate ellipsoids. Apart from micelles, surfactants can 

self-assemble into other structures such as bilayers or vesicles. The size of these 

structures can also vary from a few nanometers to several microns. How can one predict 

the kind of structure that will be formed by a surfactant in a given solution? Qualitative 

predictions can be made based on the net geometry of the surfactant molecules. The 

geometrical quantity dictating this correlation is known as the critical packing parameter 

(CPP), defined as:15 

 tail

hg

CPP a
a

=  (2.1) 

where atail is the average cross-sectional area of the hydrophobic tail and ahg is the 

effective cross-sectional area of the hydrophilic head.16-18 The larger the CPP, the more 

curved the aggregate, as shown in Figure 2.1. In particular, for CPP ~ ⅓ (molecules 

shaped like a cone), surfactants tend to assemble into spherical micelles in water, whereas 

for CPP between ⅓ and ½ (molecules shaped like truncated cones), cylindrical micelles 

are expected. Finally, for molecules shaped like cylinders, i.e., having atail ≈ ahg and a 

CPP = 1, bilayer structures (vesicles) are likely to be formed. 

 

2.2 Wormlike Micelles 

 As mentioned above, surfactants self assemble into cylindrical micelles around a 

CPP = ½. Under specific conditions, these cylindrical micelles can grow into “polymer-

like” elongated and flexible chains, and they are then known as wormlike or threadlike 

micelles (Figure 2.2).19,20 In general, these wormlike micelles have a diameter similar to 

spherical micelles (5-10 nm) while their end-to-end length (referred to as the contour 

length) can be as long as a few microns (i.e., > 1000 nm).20-24 Similar to a solution of 
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flexible polymers, wormlike micelles tend to become entangled in solution. This 

entanglement results in a transient network of chains (Figure 2.2) and in turn, the solution 

becomes highly viscous and displays remarkable viscoelastic or elastic properties. The 

term viscoelastic implies that the solution has both viscous (or liquid-like) character and 

elastic (or solid-like) character.   

 

 

 

 

 

 

 
 
 
 
Figure 2.2. Schematic showing the structure of an individual wormlike micelle as well as 
the entanglement of micellar chains into a transient network. 

 

 Another characteristic property of wormlike micellar solutions is their flow-

birefringence i.e., when a vial containing a wormlike micellar solution is shaken and 

observed under crossed-polarizers, we see bright streaks of light in the sample. 

Birefringence (also known as double refraction) refers to a difference in refractive indices 

of a material along mutually perpendicular directions. It is a characteristic property of 

anisotropic materials such as liquid crystals.25 For wormlike micelles, flow or shear 

causes the chains to align along the direction of shear, thus making the sample 

50 Å 
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temporarily anisotropic. Note that wormlike micelles do not show birefringence at rest, 

i.e., the chains are randomly oriented at rest and the solution is completely isotropic.  

 

 Wormlike micelles can be formed by a variety of surfactants such as cationic, 

anionic, nonionic, and zwitterionic.19,20 In general, charged surfactants do not self-

assemble into long wormlike micelles by themselves. They form wormlike micelles in 

the presence of co-surfactants, opposite charged or non-ionic surfactants, salts or 

appropriate counterions (Figure 2.3).  

Network of
Wormlike Micelles

saltsalt+

Cationic Surfactant
(e.g. alkyl trimethyl-

ammonium)

+

Anionic Surfactant
(e.g. alkyl 

carboxylate)

saltsalt+

+

−

+

Cationic + Anionic

+
−

Anionic + NonionicZwitterionic Surfactant
(e.g. alkyl betaine)

+

Figure 2.3. Schematic illustrating different routes for preparing wormlike micelles.  

  

The most well known wormlike micellar systems are based on cationic surfactants 

with a long hydrophobic tail, such as cetyl trimethylammonium bromide (CTAB).22,26-30 
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CTAB is a surfactant with 16-carbon tail and a cationic headgroup. Ionic surfactants such 

as CTAB have strong electrostatic repulsions between the head groups, which cause the 

effective area of the head to be large. Therefore the molecule has a cone like geometry 

i.e., CPP = 1/3 and in turn forms spherical micelles. The addition of salt screens the 

electrostatic repulsion between the charged head groups, which results in a reduction in 

the effective headgroup area and in turn the CPP increases from 1/3 to 1/2. This increase 

in the CPP induces a conversion from spherical to cylindrical micelles, which then grow 

uniaxially to become worms.  

 

 Unlike the cationic surfactants discussed above, zwitterionic surfactants can 

assemble into long wormlike micelles without addition of salt or other chemicals.20,24,31-36 

The reason for this lies in the nature of the surfactant headgroup. Zwitterionic surfactants 

contain both positive and negative charges in their head group. For example, one class of 

zwitterionic surfactants called betaines have a positively charged quaternary ammonium 

group and a negatively charged carboxylate group.36 The proximity of the positive and 

negative charges means that the net charge on the surfactant headgroup is quite low. A 

low charge implies weak headgroup repulsions, and therefore a smaller effective 

headgroup area (ahg). As a result, zwitterionic surfactant molecules have a geometry close 

to a truncated cone and tend to assemble into wormlike micelles on their own. In 

Chapter 3, we will use a zwitterionic betaine surfactant to form wormlike micelles. 
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2.3 Reverse Self-Assembly 

Molecular self-assembly can also occur in a variety of organic solvents in addition 

to water. Generally, the organic solvent must be either highly polar or highly non-polar to 

allow self-assembly of amphiphiles. Self-assembled structures formed in highly non-

polar solvents have a reversed geometry compared to those in water. For example, in a 

reverse micelle (Figure 2.4), the hydrophobic tails (depicted in red) stick out into the oil, 

while the hydrophilic headgroups (blue) are shielded from the oil phase by being buried 

in the interior of the micelle.  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.4. Schematics depicting the connection between the geometry of amphiphilic 
molecules and the structures they form in oil. The hydrophilic heads of the amphiphiles 
are shown in blue and the hydrophobic tails in red.37 
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From the viewpoint of molecular geometry, the CPP values for amphiphiles in 

non-polar solvents need to be greater than 1, which implies that the molecule has a large 

tail area and a small headgroup area. In the limit of a CPP much larger than 1, the 

molecules will assemble into reverse spherical micelles, as depicted at the bottom of 

Figure 2.4. If there is a slight reduction in the tail group area or increase in head group 

area, the CPP will move closer to 1.  This in turn will cause a transition from reverse 

spherical micelles to reverse cylindrical micelles, depicted at the top of Figure 2.4. As 

reverse cylinders grow into very long and flexible chains, they become “reverse 

wormlike micelles”, and these are discussed in the next section. 

 

2.4 Reverse Wormlike Micelles 

 Similar to wormlike micelles in water, it is also possible to form reverse wormlike 

micelles in oil. Figure 2.5 shows the structure of these reverse wormlike micelles; again, 

note that the hydrophobic tails are directed outward and the hydrophilic heads inward. 

 

 

 

 

 

 

 

 

Figure 2.5. Structure of reverse wormlike micelles and their entangled network.38 The 
micelles have a locally cylindrical structure, as shown by the close-up.37 
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Only a few amphiphilic formulations have been reported to contain reverse 

worms,39-43 most of which are based on the phospholipid, lecithin. Lecithin tends to 

assemble into reverse spherical structures when added to non-polar solvents, such as 

alkanes and cycloalkanes. Upon the addition of a small amount of certain highly polar 

solvents such as water, the reverse spheres will grow uniaxially into reverse wormlike 

micelles.41 The water is believed to sit at the micellar interface and form hydrogen bonds 

with the phosphate headgroup of the lecithin, thus bridging the lecithin molecules 

together.44-45 The hydrogen bonds are thus the driving force for the growth of these 

reverse wormlike micelles. From a geometric standpoint, the water causes an increase in 

the CPP by increasing the area of the lecithin headgroup, and this in turn causes the 

transition from spherical to wormlike reverse micelles. 

 

2.5 Photoresponsive Molecules 

Photoresponsive molecules go through a chemical transformation upon irradiation 

by light at certain wavelengths. We are especially interested in light-induced changes in 

the geometry of molecules in the absence of chemical reactions. In particular, we are 

interested in photoisomerisation processes (e.g., a trans to cis photoisomerization). Such 

transitions occur in molecules having a C-C double bond or an N-N double bond e.g., 

stilbenes, phenylalkenes, and azobenzenes. 
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trans-Azobenzene cis-Azobenzene 
 

 

Figure 2.6. Photoisomerization of stilbene (top) and azobenzene (bottom) upon 
irradiation by light. In case of azobenzenes, the cis to trans isomerisation can also be 
induce by heat. 
 

• Stilbenes: Stilbene (IUPAC name; 1,2-diphenylethylene) has a C-C double bond with 

phenyl groups on each carbon atom (Figure 2.6). In the trans form, the phenyl groups 

are on opposite sides of the double bond, while in the cis form, they are on the same 

side of the double bond. Under ambient conditions (ground state) the trans and cis 

isomers are separated by an energy barrier that impedes rotation about the C-C double 

bond.46,47 However, upon irradiation by UV light, the trans-stilbene molecule goes 

from its ground state to an excited state as an electron is transferred from the pi 

bonding (π) to the pi anti-bonding (π∗) orbital.47,48 In the excited state, the energy 

barrier for rotation about the C-C double bond is reduced. Thus, when the molecules 

fall back to the ground state, they return in equal amounts of cis- and trans-stilbene. 

Further UV irradiation converts more of the remaining trans isomers to cis. At 
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equilibrium (or more precisely, the “photostationary state”), the predominant isomer 

will be cis (e.g., > 80%), but a fraction of trans isomers will always remain. In 

comparison with the trans, the cis isomer generally absorbs light at shorter 

wavelengths: for example, the absorption peak is at 254 nm for cis-stilbene compared 

to 313 nm for trans-stilbene. In turn, when cis-stilbene is irradiated with UV light at 

254 nm, it tends to isomerize back to its trans form. 

 

• Azobenzenes: Azobenzenes (IUPAC name: 1,2-phenyldazene) are another class of 

photosensitive molecules. As shown in Figure 2.6, azobenzene has an N-N double 

bond with a phenyl group on each nitrogen. Azobenzene compounds generally have 

two absorption peaks: a high-intensity peak at UV wavelengths and a low intensity 

peak in the visible range of the wavelength spectrum.49,50 When trans-azobenzene is 

irradiated with UV light (330 < λ  < 380 nm), it isomerizes to its cis form with the 

photostationary state corresponding to approximately 80% cis and 20% trans. On the 

other hand, when cis-azobenzene is irradiated with visible light (λ > 420 nm), it 

isomerizes back to a mostly trans form.51 Furthermore, the cis to trans transition of 

azobenzene can also be carried out by heat instead of light.  

 

• Phenylalkenes: These are molecules with a single phenyl ring attached to a C-C 

double bond. For example, cinnamic acid (IUPAC name: 3-phenyl-2-propenoic acid), 

has a phenyl ring on one carbon of the double bond and a carboxylic acid group on 

the other carbon. Cinnamic acid derivatives tend to have two absorption peaks, both 

in the UV range: a low-intensity peak at longer wavelengths and a higher intensity 
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peak at shorter wavelengths. The absorption peaks of trans and cis-cinnamic acid fall 

within a few nm of each other (280 nm for cis and 283 nm for trans).52 However, the 

absorbance is much lower for the cis isomer over the entire spectrum. UV irradiation 

can thus induce a trans to cis isomerization of cinnamic acid, but the reverse cis to 

trans isomerization cannot be accomplished with light. In our work in Chapter 3, we 

will use a cinnamic acid derivative, viz. ortho-methoxy cinnamic acid (OMCA) that 

also can be transformed from its trans to cis isomer upon UV irradiation, but reverse 

photoisomerization is not possible.  

 

2.6 Cyclodextrins 

 

 

 

 

 

 

Figure 2.7. Truncated cone-shaped conformation of β-CD.53 

 Cyclodextrins (CDs) are cyclic oligosaccharides containing D-(+) glucopyranose 

units attached by α-(1,4) glucosidic bonds, as shown in Figure 2.7.54 They are rigid, 

truncated cone-shaped structures, with an internal cavity of size 5 to 8 Å depending upon 

the number of glucopyranose units. The wide side of the truncated cone is bordered by 
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the secondary hydroxyl groups (2-OH and 3-OH), while the primary hydroxyl groups 

(6-OH) are on the narrow side.  The molecule is stiffened by hydrogen bonding between 

the 2-OH and 3-OH groups around its outer rim. Note that all hydroxyl groups are located 

on the outside of the molecular cavity, thereby making the outer surface hydrophilic. On 

the other hand, no hydroxyl groups are located in the inner cavity, which is thus 

hydrophobic. CDs thus have hydrophilic outer surfaces and hydrophobic inner cavities. 

Because of their unique structure, CDs can form host-guest inclusion complexes with 

various hydrophobic guest molecules or hydrophobic parts of these molecules.53-61 Note 

that the bonding between the CD and the guest is through non-covalent interactions. 

Table 2.162 lists the properties of the three naturally occurring CDs, which are labeled α-, 

β-, and γ-CDs. These natural CDs are produced from starch by enzymatic degradation. In 

our research, we will use CDs to create new TR fluids, as described in Chapter 5. 

 

Type of CD Number of 
glucose units 

Cavity diameter 

Å 

Molecular 
Weight 

Solubility in 
water (g/L) 

α 6 4.7-5.3 972 145 

β 7 6-6.5 1135 18.5 

γ 8 7.5-8.3 1297 232 
 

Table 2.1. Properties of the three naturally occurring cyclodextrins.62 

 
 
2.7 Associating Polymers 

The term “associating polymer” generally refers to a water-soluble polymer 

bearing hydrophobic groups either on its ends or along the backbone.63,64 When the 
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hydrophobes are present on the chain ends, the structure is called telechelic.64 An 

example is the hydrophobic ethoxylated urethane (HEUR) architecture, where the 

backbone is composed of poly(ethylene oxide) (PEO) and this is linked to hydrophobic 

end-caps (typically n-akyl moieties) through urethane spacers (Figure 2.8).64 As their 

name indicates, associating polymers associate in aqueous solution through their 

hydrophobes. This  results in “flower micelles” that have a hydrophobic core surrounded 

by a corona of looping PEO segments.63,64 Adjacent flower micelles also get connected 

through bridging PEO segments, and this leads to a transient network of such micelles.64 

In turn, the viscosity of the solution is appreciably enhanced. The ability to thicken water 

at low concentrations makes associating polymers the rheology modifiers of choice in a 

variety of applications including paints and coatings, consumer products etc.64 In our 

research, we will use associating polymers to create new TR fluids, as described in 

Chapter 5. 

 

 

 

 

 

 

 

 

Figure 2.8. Architecture of a telechelic associating  polymer and the structures formed by 
its self-assembly in aqueous solution.65 
 
 

NETWORK
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2.8 Characterization Technique – I: Rheology 

The main focus of this proposal is on the stimuli-driven modulation of rheological 

properties. Rheology is formally defined as the study of the deformation and flow in 

materials.66,67 Rheological measurements are useful in characterizing complex fluids and 

soft materials and they help to correlate the microstructure to the macroscopic flow 

properties of the material.25 Measurements can be performed under steady or dynamic 

shear. In the case of steady shear, the sample is subjected to a constant shear-rate γ&  and 

the response is measured as a shear-stress σ.  The (apparent) viscosity η is calculated as 

the ratio of the shear stress to shear rate ( /η σ γ= & ). A plot of η vs. shear rate is called the 

flow curve of the material. Several fluids show a Newtonian behavior in their flow curve 

at low shear rates i.e., in this regime, the viscosity is independent of shear rate. The 

viscosity in this “Newtonian plateau region” is called the zero-shear viscosity η0, and it 

corresponds to the viscosity of the sample in the limit of 0γ →& .67 

 

 Rheological experiments can also be conducted in dynamic or oscillatory shear, 

where the sample is subjected to a sinusoidal strain 0 sin( )tγ γ ω= . Here γ0 is the 

strain-amplitude and ω is the frequency of the oscillations. The sample response will be 

in the form of a sinusoidal stress 0 sin( )tσ σ ω δ= + , which is shifted by a phase angle δ 

relative to the strain waveform. The stress can be decomposed into two components using 

trigonometric identities, the first being in-phase with the sinusoidal strain, and the second 

being out-of-phase by 90°: 

 ( ) ( )0 ( )sin ( )cosG t G tσ γ ω ω ω ω′ ′′= +⎡ ⎤⎣ ⎦  (2.2) 
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where G′ is the Elastic or Storage Modulus and G″ is the Viscous or Loss Modulus. 

The dynamic experiment ultimately yields plots of G′ and G″ as functions of ω (usually 

plotted on a double-log scale), which are collectively called the frequency spectrum of 

the material. Such a plot is useful because it shows how the viscoelasticity of the material 

varies with timescale, which in turn is a signature of the microstructure. 66    

 

 The physical interpretation of G′ and G″ are as follows. The elastic modulus G′ is 

obtained from the in-phase component of the stress, and provides information about the 

elastic nature of the material. G′ is also called the storage modulus since elastic behavior 

implies the storage of deformational energy. The viscous modulus G″ is extracted from 

the out-of-phase component of the stress, and it characterizes the viscous nature of the 

material. G″ is also known as the loss modulus since viscous deformation results in the 

dissipation of energy. G′ and G″ are meaningful only if the dynamic rheological 

measurements are taken in the “linear viscoelastic” or LVE regime. 67 The LVE regime 

corresponds to low imposed strains, such that the stress response is linearly proportional 

to the strain. In that case, G′ and G″ will be independent of strain amplitude and will be 

functions only of the frequency ω – the moduli will then be true material properties.  

 

 An important advantage of dynamic rheology is that it enables the 

characterization of the material’s microstructure without disrupting it. Since only small-

amplitude strains are used (within the LVE regime), the net deformation imposed on the 

sample is minimal. Thus, the linear viscoelastic moduli reflect the microstructure present 

in the sample at rest. 66 In contrast, steady-shear rheology measures material properties 



 22 
 
 

under continuous flow conditions, which correspond to relatively large deformations.  

Therefore, dynamic rheological parameters can be correlated with static microstructures 

and steady-shear rheological measurements correspond to flow-induced changes in the 

microstructure. 

        

2.9 Characterization Technique – II: SANS 

 Scattering techniques are very useful for probing the structures of materials on the 

micro- and nanometer scale. 68 The basic principle behind these techniques is that the 

intensity of scattered radiation from a structured fluid is a function of the size, shape, and 

interactions of the “particles” present. We will use small-angle neutron scattering (SANS) 

to study our samples as it is useful in probing structure over size scales on the order of a 

few nm. In SANS, the contrast between the solvent and the “particles” is achieved by 

switching the hydrogen in the solvent molecules with deuterium, for example using D2O 

instead of H2O. SANS experiments require a nuclear reactor to generate neutrons and we 

are fortunate to have one of the premier facilities for SANS nearby at the National 

Institute of Standards and Technology (NIST) in Gaithersburg, MD. 
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Figure 2.9.  Schematic of a SANS experiment (adapted from www.gkss.de). 
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The basic geometry of a SANS experiment is illustrated in Figure 2.9. A nuclear 

reactor emits neutrons, which then pass through a velocity selector set for a particular 

wavelength and wavelength spread. These neutrons then pass through several collimating 

lenses and into the sample placed in the sample chamber. Finally, a 2-D detector collects 

the neutrons scattered by the sample. Using calibration standards, the collected 2-D data 

is corrected and placed on an absolute scale. This data is then spherically averaged to 

give a plot of the scattered intensity I vs. wave vector q. The wave vector is defined as: 68 

 4 sin
2

q π θ
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2.3) 

Here, λ  is the wavelength of the incident radiation and θ  is the scattering angle. q can be 

considered an inverse length scale, with high q corresponding to small structures, and low 

q to large structures in the sample. 

 

  For a structured fluid containing np particles per unit volume, the intensity I(q) 

can be expressed as follows: 68 

 p( ) ( ) ( )I q n P q S q= ⋅ ⋅  (2.4) 

where P(q) is referred to as the form factor and S(q) as the structure factor. S(q) is the 

scattering that arises from interparticle interactions and thus reflects the spatial 

arrangement of the particles in the sample. P(q) is the scattering that arises from 

intraparticle interferences, and thus is a function of the particle size and shape. When the 

particles are in dilute solution (i.e., np is small), the interparticle interactions become 

negligible and therefore the structure factor S(q) → 1. The SANS intensity I(q) can then 

be modeled purely in terms of the form factor P(q), i.e., the sizes and shapes of the 
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particles. The form factors for several different particle geometries have been developed, 

which can be fit to the data to extract structural information about the particles. However, 

one must make an a priori assumption about the type of structures present to select a 

particular form factor. But a good fit to the data does not necessarily mean the model is 

correct, i.e., many models may fit the same data, especially if they have a large number of 

variable parameters.  

       

The shortcomings with the “straight modeling” approach have led to the 

development of an alternate method of analysis that requires no a priori knowledge about 

the scatterers. This is the Indirect Fourier Transform (IFT) method, and here a Fourier 

transformation is done on the scattering intensity I(q) to give the pair distance distribution 

function p(r) in real space. I(q) and p(r) are related by the following equation:17 

 I q p r qr
qr

dr( ) ( ) sin( )
=

∞

∫4
0

π  (2.5) 

The p(r) function provides structural information about the scatterers in the sample. In 

particular, the largest dimension of the scattering entities can be estimated. The simplest 

form of the IFT technique is valid only for non-interacting scatterers.17 Before 

implementing the IFT methodology, it is useful to first subtract the incoherent 

background from the scattering data. This background can be estimated from the 

asymptotic slope of a Porod plot (I(q)⋅q4 vs q4). A software package is commercially 

available to perform the IFT calculation on the data with subtracted background. In 

Chapter 3 and 4, we will use the IFT approach to analyze our SANS data on stimuli-

responsive micellar systems.  
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2.10 Characterization Technique – III: UV-Vis Spectroscopy 

 UV-Vis absorption spectroscopy is an analytical technique used to study 

molecules that adsorb radiation in the ultraviolet (200 to 400 nm) and visible (400 to 800 

nm) regions of the electromagnetic radiation spectrum.52 Generally, when a molecule 

absorbs radiation, the energy gained is proportional to the energy of the incident photons. 

In the UV-Vis range, the absorbed energy typically acts to move electrons into higher 

energy levels. 52 A given molecule does not absorb energy continuously throughout a 

spectral range because the absorbed energy is quantized; therefore, the molecule will 

absorb at the wavelengths that provide the exact amount of energy necessary to promote 

it to the next higher energy level. 52 Therefore, each compound will have a unique UV-

Vis absorption spectrum. UV-Vis can thus serve as a convenient analytical technique for 

a variety of compounds, especially those that have an aromatic group.  

  

A typical UV-Vis experiment involves placing a solution containing a low 

concentration of solute (10-5 to 10-2 M) in a cuvette, which is then placed in the sample 

cell of a UV-Vis spectrometer. Light is broken down into its component wavelengths in 

the spectrometer and passed through the sample. The absorption intensity is measured for 

each wavelength and a UV-Vis spectrum (plot of absorbance vs. wavelength) is produced 

for the sample. UV-Vis spectroscopy can be used as a quantitative analytical method to 

determine the concentration of a solute in solution. This can be done using the Beer-

Lambert law:52  

 A cε= ⋅ ⋅ l  (2.6) 
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where A is the measured absorbance at a particular wavelength, c is the concentration of 

the solute in mol/L, l  is the path length of the sample, and ε is the molar extinction 

coefficient or molar absorptivity at that wavelength. UV-Vis spectroscopy has an 

important role to play in the study of photoresponsive systems. For example, different 

photoisomers have different UV-Vis spectra, enabling their easy identification. Also, the 

peak absorption wavelength is generally the wavelength at which the compound is 

irradiated to induce a phototransition.  
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Chapter 3 

A New Class of Aqueous Photogelling Fluids 

 

The results presented in this chapter have been published in the following journal article: 

Rakesh Kumar and Srinivasa R. Raghavan, “Photogelling fluids based on light-activated 

growth of zwitterionic wormlike micelles.” Soft Matter 5, 797-803 (2009). 

 

3.1 Introduction 

As described in Chapter 1, interest in stimuli-responsive fluids and materials has 

been building considerably over the past two decades. A stimulus of particular focus has 

been light, and among the various material properties that one seeks to modulate using 

light are the rheological properties (such as viscosity).9,69 Accordingly, several 

groups,9,12-14,69,70 including ours,71 have sought to create fluids whose viscosity can be 

modulated by irradiation with light at a given wavelength. Such fluids could properly be 

termed photorheological (PR) fluids,71,72 a term that was originally introduced into the 

literature by Wolff and co-workers72 in the late 1980s. Much of the interest in developing 

PR fluids has been due to their potential to be used in microscale applications, such as 

microvalves or flow sensors within MEMS or microfluidic devices.71 In such 

applications, the use of light as a modulating field can be particularly advantageous since 

light can be directed at a precise spot with resolution of a few micrometers.  
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Our approach to PR fluids has differed from those of others in an important way. 

The focus of other groups has largely been on synthesizing novel light-sensitive organic 

molecules, such as new classes of photoresponsive surfactants9,12,13 or polymers,14,70 and 

using these to create the PR fluids. While these studies have demonstrated impressive 

rheology-modulation with light, the light-sensitive molecules underlying these systems 

have remained accessible only to the select groups that are capable of synthesizing them. 

We have instead sought to create PR fluids from simple, existing molecules that would be 

available to any chemistry laboratory. In a recent study,71 we have shown that such an 

idea is feasible: specifically, we reported PR fluids that were mixtures of two widely 

available chemicals: the cationic surfactant, cetyl trimethylammonium bromide (CTAB) 

and the photoisomerizable molecule, trans-ortho-methoxy-cinnamic acid (OMCA). We 

showed that CTAB/OMCA fluids undergo photothinning, i.e., a rapid and controllable 

decrease in viscosity (factors of 1000 to 10,000) upon exposure to UV radiation.71 This 

viscosity change was not reversible by light, i.e., the viscosity could be decreased but not 

increased. Despite this limitation, our study did show that dramatic light-triggered 

rheological changes are possible in simple systems. From a mechanistic standpoint, the 

molecular change (trans-cis isomerization of OMCA) underlying the phenomenon was 

connected to changes in the microstructure (reductions in the size of wormlike micelles), 

and thereby to the drop in viscosity.71 

 

In this Chapter, we describe a new class of PR fluids that exhibit photogelling, 

i.e., a 10,000-fold increase in viscosity upon UV irradiation. These fluids again consist of 

two commercial compounds: the zwitterionic surfactant, erucyl dimethyl amidopropyl 
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betaine (EDAB) and the same photoadditive as before, i.e., OMCA. The main results, as 

indicated by Figure 3.1, are that certain mixtures of EDAB and OMCA form fluids with a 

low viscosity (similar to water). Upon UV irradiation, OMCA is converted from its trans 

to its cis form,71 and in turn, these fluids are transformed into highly viscous, gel-like 

samples. We will show that the rheological changes correlate with a transition from short 

to long, “wormlike” micelles19,73. In other words, the light-induced change in OMCA 

geometry activates the axial growth of cylindrical micelles into long, flexible chains that 

undergo physical entanglement, producing a viscoelastic fluid. Although the photogelling 

cannot be reversed by light (see discussion later), we will show that the viscosity can be 

decreased by further addition of OMCA. Thus, a combination of light and sample 

composition can be used to cycle the viscosity between high and low states.   

 

A few further points are worth mentioning at this stage. First, the change from a 

photothinning system (our earlier study) to the photogelling system described here is not 

a trivial one. Specifically, photogelling requires the use of a zwitterionic surfactant that is 

capable of forming wormlike micelles (“worms” for short) (see Section 2.2).35,74 

Although zwitterionic surfactants, including EDAB, are popular in industry due to their 

low skin irritation and biodegradability,24 they have not been investigated in detail by 

academic researchers. Most academic studies on wormlike micelles have utilized cationic 

surfactants like CTAB, and for those surfactants to form worms it is well known that salts 

(either inorganic or organic) must be added.19,73 On the other hand, EDAB is a long (C22-

tailed) zwitterionic surfactant that can form worms even in the absence of salt – in fact, 

inorganic salts like NaCl have no influence on worm formation.74 These aspects on the 
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rheology of EDAB worms were brought to light in our recent paper74 that may be 

considered a precursor to the present study.  

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1. Composition of photogelling fluids described in this Chapter. The fluids 
consist of the zwitterionic surfactant, EDAB and the organic derivative, OMCA. When 
EDAB is combined with trans-OMCA, the result is a low-viscosity fluid. Upon UV 
irradiation, trans-OMCA is photoisomerized to cis-OMCA, which causes a substantial 
rise in fluid viscosity. The viscosity rise is associated with the growth of EDAB micelles. 

 

It is worth reiterating that EDAB and similar betaine surfactants are commercially 

available,74 allowing researchers in any lab to replicate our results and to use photogelling 

fluids for applications of interest. Interestingly, from an applications standpoint, 

photogelling is likely to be more useful than photothinning – one potential application 

would be in capillary electrophoresis, where a photogelling carrier fluid can be loaded 

into the capillary while it is thin and later transformed into a gel-like state by UV 

irradiation. Also, in the context of biomolecular applications such as bioseparations, 
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EDAB-based PR fluids may indeed be formulated using physiological buffer solutions. 

Note that the background electrolyte in such buffers does not influence micelle formation 

in the case of EDAB or other zwitterionics,35,74 but would do so in the case of cationic 

surfactants.19,73  

 

Finally, we wish to elaborate a bit more on the mechanism underlying the 

photogelling reported in this paper (a detailed discussion is given later). The key to the 

mechanism is that (a) EDAB is zwitterionic; and (b) the trans isomer of OMCA tends to 

bind and intercalate into EDAB micelles, whereas the cis isomer does not. When binding 

occurs, an effective charge is imparted to EDAB headgroups, which translates into short 

micelles. On the other hand, when the cis isomer unbinds and exits the micelle, the 

effective charge is reduced, causing micellar growth (see Figure 3.8 later). Indeed, we 

have been able to verify this mechanism through a combination of small-angle neutron 

scattering (SANS) and zeta-potential measurements. SANS is a sensitive probe for the 

dimensions of the micelles, while zeta-potential probes the net surface charge on the 

micelles. In sum, the photoinduced rheological transitions reported in this paper can be 

sensibly explained by the coupling of events occurring at the molecular, microstructural, 

and macroscopic scales.   

 

3.2 Experimental Section 

Materials. The EDAB surfactant was a commercial product manufactured by Rhodia 

Inc, Cranbury, NJ. EDAB is a zwitterionic surfactant of the betaine type (see structure in 

Figure 3.1), with the molecule having both a positively charged dimethylammonium 
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moiety and a negatively charged carboxylate group. Further details about the sample are 

given in our earlier paper; as an aside, the critical micelle concentration (CMC) of EDAB 

is very low: ~ 1 μM.74 OMCA in its trans form was purchased from Acros Chemicals, 

while the cis form was purchased from TCI America (each isomer was greater than 98% 

in purity). Ultra-pure deionized water from a Millipore water-purification system was 

used in preparing samples for rheological characterization, while D2O (99.95% 

deuteration, from Cambridge Isotopes) was used for the SANS studies. Solutions 

containing OMCA were buffered to a pH of 10 using equimolar amounts of sodium 

carbonate and sodium bicarbonate. Weighed quantities of EDAB were added to these 

solutions to reach the final sample compositions. Samples were stirred continuously 

under mild heat until they became homogeneous. The solutions were then left to 

equilibrate overnight at room temperature before conducting any experiments. 

 

Sample Response Before and After UV Irradiation.  EDAB/OMCA samples were 

irradiated with UV light from a Oriel 200 W mercury arc lamp. A dichroic beam turner 

with a mirror reflectance range of 280 to 400 nm was used to access the UV range of the 

emitted light. Samples (5 mL) were placed in a Petri dish with a quartz cover and were 

irradiated for a specific duration under stirring. Due to the nature of the OMCA spectra, 

(see Figure 3.2) irradiated samples did not undergo any changes when stored under 

ambient conditions, which made it easy to conduct subsequent tests. 

 

Rheological Studies.  Steady and dynamic rheological experiments were performed on 

an AR2000 stress controlled rheometer (TA Instruments, Newark, DE). Samples were 
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run at 25°C on a cone-and-plate geometry (40 mm diameter, 2° cone angle) or a couette 

geometry (rotor of radius 14 mm and height 42 mm, and cup of radius 15 mm). Dynamic 

frequency spectra were obtained in the linear viscoelastic regime of each sample, as 

determined by dynamic stress-sweep experiments. 

 

Small Angle Neutron Scattering (SANS).  SANS measurements were made on the 

NG-7 and NG-3 (30 m) beamlines at NIST in Gaithersburg, MD. Neutrons with a 

wavelength of 6 Å were selected. Three sample-detector distances were used to obtain 

data over a range of wave vectors from 0.004 to 0.4 Å-1. Samples were studied in 2 mm 

quartz cells at 25°C. Scattering spectra were corrected and placed on an absolute scale 

using NIST calibration standards. The data are shown as plots of the absolute intensity I 

versus the wave vector q = 4πsin(θ /2)/λ, where λ is the wavelength of incident neutrons 

and θ  the scattering angle.  

 

SANS Data Analysis. SANS data were analyzed by the Indirect Fourier Transform (IFT) 

method, which requires no a priori assumptions on the nature of the scatterers.75 Here, a 

Fourier transformation of the scattering intensity I(q) is performed to obtain the pair 

distance distribution function p(r) in real space. p(r) provides structural information about 

the scatterers, such as their maximum dimension. IFT analysis was implemented using 

the commercial PCG software package. 

 

Zeta Potential. The zeta potential of EDAB/OMCA micelles was measured for dilute 

solutions using a Zetasizer 3000HS (Malvern Instruments). The electrophoretic mobility 
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was measured and converted into the zeta potential using the Smoluchowski equation.76 

Prior to use with our samples, the instrument was calibrated using zeta potential transfer 

standards. Each reported value is an average over 9 independent measurements.  

 

3.3 Results and Discussion 

UV-Vis spectra for trans and cis-OMCA are presented in Figure 3.2. These 

experiments were done with aqueous solutions containing 1 mM of each derivative along 

with a slight excess of base. Figure 3.2 shows that the absorption peaks for the trans form 

are centered at 270 nm and 312 nm while the cis form has absorption peaks at 254 and 

293 nm. Note that the trans form has much higher absorbance than the cis form over the 

entire UV range. As discussed in section 2.3, UV irradiation should cause a trans to cis 

photoisomerisation of OMCA. To test this, we irradiated the trans-OMCA solution with 

UV light (< 400 nm) for 1 min and recorded UV-Vis spectra after irradiation. Indeed, 

Figure 3.2 confirms this – the irradiated sample shows peaks at 257 and 300 nm and its 

spectrum is close to that of the pure cis compound. Actually, the irradiated sample 

corresponds to a photostationary state of about 83% cis isomers: i.e., its spectrum can be 

obtained by superposing those for pure cis and trans in a ratio of 83:17. The nature of the 

spectra of trans and cis-OMCA in Figure 3.2 shows that reverse photoisomerisation (i.e., 

cis to trans) is not possible as cis-OMCA has much lower absorption than trans-OMCA 

over the entire wavelength range. Also, the OMCA spectra show negligible absorbance in 

the visible range – this inertness to visible light makes handling and storage of OMCA 

samples quite easy. Furthermore, we verified that OMCA spectra were unaffected by the 

presence of EDAB in solution. 
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Figure 3.2.  UV-Vis spectra of trans-OMCA before irradiation, trans-OMCA after UV 
irradiation, and cis-OMCA. Each sample is an aqueous solution containing 1 mM of the 
corresponding additive. The drop in absorbance and blue shift in the trans-OMCA curve 
after UV irradiation indicate that the molecule has been photoisomerized to its cis form. 

 

 We next discuss the differences between trans and cis-OMCA when combined 

with solutions of EDAB. As mentioned earlier, OMCA is available commercially in both 

its trans and cis forms, permitting separate studies with each isomer. When EDAB alone 

is added to water at a concentration of 50 mM, it turns it into a gel-like fluid. The 

rheology of EDAB samples at various concentrations has been reported in detail in our 

previous paper.74 Figure 3.3 shows that a 50 mM EDAB solution (no OMCA) has a low-

shear viscosity of about 300 Pa.s. When cis-OMCA is added to the EDAB solution, it has 

negligible effect on the rheology and the viscosity stays practically unchanged over the 

entire range of cis-OMCA concentrations (unfilled points). In contrast, the addition of 

trans-OMCA lowers the viscosity of EDAB solutions: about 130 mM of trans-OMCA 

reduces the viscosity to a value close to that of water (1 mPa.s). This result is similar to 

that reported in our earlier paper,74 where we had studied the effects of adding salts to 
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EDAB solutions. While simple, inorganic salts like NaCl were not found to have an 

effect on EDAB solution rheology, aromatic salts like sodium salicylate (NaSal) and 

sodium hydroxy-naphthalene-carboxylate (NaHNC) both reduced the viscosity. The 

viscosity reduction was much higher for the more hydrophobic counterion, i.e., NaHNC 

compared to NaSal.74 The mechanism underlying such viscosity reduction is discussed 

later in the paper.  

 

 

 

 

 

 

 

 

 
Figure 3.3. Zero-shear viscosity η0 of 50 mM EDAB + OMCA mixtures as a function of   
the OMCA concentration. Data are shown for samples containing either trans-OMCA or 
cis-OMCA and for trans-OMCA samples after 20 min of UV irradiation. As shown by 
the arrow, the high trans-OMCA samples undergo photogelling, i.e., they experience a 
significant light-induced increase in viscosity.    

  

 For the moment, we will highlight the effect of UV irradiation on EDAB + trans-

OMCA samples. As discussed above, trans-OMCA gets photoisomerized to cis-OMCA 

upon UV irradiation. It is therefore of interest to examine the changes in the rheology of 

EDAB + trans-OMCA solutions upon UV irradiation. Accordingly, we irradiated each of 

the above samples for 20 min and then recorded their rheological response. Note that, 
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following irradiation, the samples remained unaltered when stored under ambient 

conditions (exposure to visible light has no effect because both OMCA isomers have no 

measurable absorbance in the visible range of the spectrum71). Thus, irradiated samples 

could be conveniently tested by rheometry, and their zero-shear viscosity η0 values are 

shown in Figure 3.3. All samples exhibit an increase in η0, with the increase being 

particularly significant (factor of 10,000 or more) for samples having a high trans-

OMCA content. The latter samples will be the focus of the rest of the paper, and we will 

describe their light-induced transformation as “photogelling”.          

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4. Photographs and dynamic rheological data (frequency spectra) for a sample 
containing 50 mM EDAB + 130 mM trans-OMCA (A) before and (B) after UV 
irradiation. Before irradiation, the sample is water-like and shows a purely viscous 
response in dynamic rheology. After UV irradiation for 30 min, the sample is gel-like and 
shows a strongly viscoelastic response. Note that the latter sample does not flow easily 
out of the tilted vial and also note the presence of trapped bubbles in the fluid.  
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 Figure 3.4 shows photographs and dynamic rheological data on a photogelling 

sample consisting of 50 mM EDAB and 130 mM trans-OMCA. Before UV irradiation, 

the sample is a freely flowing, low-viscosity liquid that readily pours out of the vial. 

Upon UV irradiation, it is clear that the sample has been converted into a viscoelastic, 

gel-like fluid (note the presence of entrapped bubbles). Flow-birefringence, i.e., bright 

streaks of light under crossed polarizers, was also seen when this gel-like sample was 

shaken. No such flow-birefringence was evident before UV irradiation. As is well-

known, strong viscoelasticity and flow-birefringence are characteristic properties of 

surfactant samples that contain wormlike micelles, i.e., long and flexible micellar chains 

with a cylindrical cross-section.19,73 Thus visual evidence points to the existence of 

wormlike micelles in the sample after UV irradiation.  

 

 The above visual observations are fully consistent with the dynamic rheological 

data shown in Figure 3.4. The data are presented as plots of the elastic modulus G′ and 

viscous modulus G″ vs. the angular frequency ω. The sample before irradiation behaves 

like a viscous liquid over the entire range of frequencies (i.e., in this case, G″ > G′, with 

both moduli being strong functions of frequency). On the other hand, the irradiated 

sample shows a strongly viscoelastic response, i.e. the response is elastic over most of the 

frequency range (G′ > G″, plateau in G′), whereas it is viscous at very low frequencies or 

long time scales. The frequency at which G′ and G″ intersect is an estimate for the 

longest relaxation time of the sample, which is about 100 s in this case. This relaxation 

time is more than a factor of 1000 higher than that of the unirradiated sample. Note that 
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the irradiated material is gel-like, but not a “true” gel – if so, the relaxation time would be 

infinite and the moduli would never intersect.  

 

 

 

 

 

 

 

 

Figure 3.5. Steady-shear rheology of a 50 mM EDAB + 130 mM trans-OMCA sample 
before irradiation and after UV irradiation for various periods of time (as indicated on the 
plot). The sample is observed to switch from a low-viscosity, Newtonian fluid to a highly 
viscous, shear-thinning fluid with progressive irradiation. 

 

 The light-induced rheological changes are also evident under steady-shear 

rheology. Figure 3.5 shows viscosity vs. shear rate plots for the 50 mM EDAB + 130 mM 

trans-OMCA sample after various intervals of UV irradiation. Before UV irradiation, the 

sample is a low-viscosity, Newtonian fluid. After 10 min of irradiation, the zero-shear 

viscosity η0 is increased by two orders of magnitude and the sample shows shear-

thinning at high shear rates. After 20 min, η0 is further increased by another two orders of 

magnitude and the sample becomes strongly shear-thinning. After 30 min, η0 is close to 

that of a 50 mM EDAB sample with cis-OMCA and no further increase in η0 occurs with 

longer irradiation. The viscosity increase is thus tunable via the irradiation time. It should 

be noted that the rate-limiting step for photogelling is the rate of absorption of UV light 
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by the sample (the photoisomerization itself occurs in milliseconds).71 In turn, light 

absorption depends on the intensity of the UV lamp, the sample volume, and the 

experimental geometry (path length). Rapid transitions can be easily achieved for small 

sample volumes confined in thin channels. 

 

 The results thus far have shown a significant light-induced viscosity increase 

(photogelling) in EDAB+trans-OMCA samples and have been attributed to a transition 

from short to long wormlike micelles. To confirm this hypothesis, we resorted to SANS. 

Samples were made in D2O for SANS experiments to attain the required contrast between 

micellar structures and solvent (the switch from H2O to D2O had no effect on the sample 

rheology). Figure 3.6 shows SANS spectra for 50 mM EDAB solutions at three different 

trans-OMCA concentrations: 150, 170, and 190 mM, respectively. Data are shown both 

before and after UV irradiation for 30 min. All samples show a significant rise in low-q 

scattering intensity upon irradiation. This rise in low-q intensity indicates an increase in 

micellar size. For the 170 and 190 mM trans-OMCA samples (Figure 3.6b and 3.6c), 

before irradiation, there is a plateau in the low-q intensity, suggesting the presence of 

spherical micelles (or ellipsoids with nearly equal long and short axes). On the other 

hand, after irradiation, there is a q–1 decay of the intensity at low q, which is indicative of 

scattering from long cylindrical chains.77 There is also no appreciable change in the 

intensity at high q upon UV irradiation, which implies that the micellar radius remains 

the same before and after irradiation. 
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Figure 3.6.  SANS data and analysis for EDAB/trans-OMCA mixtures before and after 
30 min of UV irradiation. Plots (a) – (c) show scattering spectra (intensity I vs. wave 
vector q) for three samples, each with 50 mM EDAB and with OMCA concentrations of 
150, 170, and 190 mM, respectively. Plot (d) presents analysis of the data for the 190 mM 
OMCA sample using the IFT method. See text for details.   

 

 Further quantitative information from the SANS data can be obtained by 

modeling it through the Indirect Fourier Transform (IFT) method.75 Using IFT, we can 

analyze our SANS data without assuming a priori the nature of the scatterers, e.g., 

whether micelles are long or short, cylindrical or spherical. IFT modeling of the SANS 

data from the 50 mM EDAB + 190 mM trans-OMCA sample yielded the pair distance 

distribution functions p(r) shown in Figure 3.6d. Before irradiation, p(r) is symmetrical 

with a narrow peak. This symmetry suggests small spherical micelles with a diameter of 

about 65 Å (the diameter corresponds to the point where p(r) meets the x-axis).78 In 

contrast, after irradiation p(r) is asymmetrical and decreases to zero around 700 Å. This 

p(r) function is characteristic of long cylindrical micelles.79 The point where p(r) meets 

the x-axis is a lower estimate for the contour length of the cylinders, i.e., 700 Å in this 

case. Thus, the SANS data confirm that the microstructural basis for photogelling 

involves the light-induced growth of cylindrical micelles. 
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 The key question now is to connect the light-induced microstructural transition 

(short to long micelles) with the transitions occurring at the molecular level. As discussed 

in our earlier study, we have confirmed that the main effect of light at the molecular level 

is to induce a trans to cis photoisomerization of OMCA.71,80 Other photoinduced effects 

associated with cinnamic acid or its derivatives such as photodimerization80 have been 

ruled out using high-performance liquid chromatography (HPLC).71 We had also shown 

that trans-OMCA is significantly more hydrophobic than cis-OMCA. One piece of 

evidence in this regard was the solubility of the two isomers in deionized water: while the 

solubility of cis-OMCA was 8.6 mM, that of trans-OMCA was only 0.26 mM i.e., more 

than a factor of 30 less.71 This finding is consistent with other studies that have found the 

trans isomer to be more hydrophobic than the cis isomer for a variety of other 

compounds.12,13 In the present context, the hydrophobicity of trans-OMCA implies that it 

will readily bind (intercalate) into EDAB micelles, whereas the more hydrophilic 

cis-OMCA will be more likely to remain in solution. 

 

 The tendency of trans-OMCA to bind to EDAB micelles while cis-OMCA does 

not is central to our proposed mechanism. We further postulate that counterion binding 

regulates micellar growth through its effect on micellar surface (headgroup) charge. As 

stated in the Introduction, EDAB is a zwitterionic surfactant, and the low charge on the 

EDAB headgroup (coupled with the long C22 tail length) facilitates the formation of 

worms.74 If an anionic counterion like trans-OMCA were to bind to EDAB worms, the 

result would be to impart a net negative charge to the headgroup. The resulting charge 

repulsions would expand the EDAB headgroup area.76 In turn, the molecular geometry 
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would now favor the formation of short cylinders or spheres rather than long cylinders 

(worms). The micelles would thereby tend to become much shorter, explaining the low 

viscosity of EDAB+trans-OMCA samples.    

 

 

 

 

 

 

 

 

 

Figure 3.7. Zeta-Potential of 2.5 mM EDAB + OMCA mixtures as a function of the 
OMCA concentration. Data are shown for trans-OMCA, cis-OMCA, and trans-OMCA 
samples after 30 min of UV irradiation. Lines through the data are guides for the eye. 

 

 In order to test our above hypothesis, we turn to zeta potential measurements 

(Figure 3.7). The zeta potential quantifies the surface charge densities of colloidal 

particles. We studied the surface charge on EDAB micelles before and after adding 

OMCA. The concentrations were kept low (2.5 mM EDAB and 0 to 5 mM of trans- and 

cis-OMCA) in order to minimize the effects of micelle size, shape, and intermicellar 

interactions.76 Significantly, the zeta-potential results show the very same trends seen 

previously in the viscosity data (compare Figures 3.3 and 3.7). In Figure 3.7, we note that 

the zwitterionic EDAB micelles have a low surface charge and hence a low zeta potential 
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of –22.9 mV. When cis-OMCA is added to the solution, the zeta potential is practically 

unchanged, indicating that the cis isomer is not bound to the micelles. However, with 

increasing amounts of trans-OMCA, the zeta potential becomes more and more negative: 

the values go from –22.9 to –53.6 mV as trans-OMCA is increased from 0 to 5 mM. The 

implication is that trans-OMCA binds (intercalates) into EDAB micelles, thereby making 

their surface more negative. Finally, we show results for EDAB/trans-OMCA samples 

after 20 min of UV irradiation. In all cases, the irradiated samples show less negative zeta 

potentials, indicating that the surface charge on the micelles has been lowered. This is 

fully consistent with the idea that photoisomerization of trans-OMCA to cis-OMCA 

leads to unbinding of the latter from EDAB micelles. 

 

 The zeta potential data validate our hypothesis that counterion binding and the 

resulting electrostatic effects are the underlying basis for photogelling in the present 

system. The key point is that trans-OMCA has a much greater affinity for EDAB 

micelles than cis-OMCA. The reason for this has to do with the greater hydrophobicity of 

trans-OMCA (see above) and also its favorable geometry.71 With regard to geometry, the 

hydrophobic and hydrophilic parts of trans-OMCA are well separated, allowing the 

counterion to intercalate its hydrophobic parts (aromatic ring, methyl group) into the 

micelle interior while exposing its hydrophilic part (carboxylate anion) to the water 

outside. On the other hand, the methyl and carboxylate groups are located very close to 

each other in the case of cis-OMCA, which makes it difficult for the counterion to bind in 

a way that would be favorable to the entire molecule. Therefore, from a geometry 
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standpoint also, one expects trans-OMCA to have a much stronger tendency to bind 

(intercalate) into zwitterionic micelles than cis-OMCA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.8. Mechanism for photogelling in EDAB samples. Addition of trans-OMCA 
increases the effective headgroup charge due to adsorption of the counterions, and this 
leads to short micelles. When trans-OMCA is photoisomerized to cis-OMCA, the cis 
isomer desorbs from the micelles, effectively lowering the headgroup charge. As a result, 
the micelles grow into long, wormlike structures, and the viscosity thereby increases 
substantially (photogelling).   

 

Taken together, photogelling can be explained based on the schematics shown in 

Figure 3.8. At the molecular level, trans-OMCA binds to EDAB micelles, increasing the 

charge on the headgroup and thereby the effective headgroup size. The effective 
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geometry thus goes from a truncated cone in the case of EDAB to a cone shape in the 

case of EDAB+trans-OMCA. As a result, small micelles (spheres or short cylinders) are 

formed. When trans-OMCA is photoisomerized to cis-OMCA, the latter unbinds and 

exits the micelles. The headgroup charge is decreased to its original low value, and the 

molecular geometry reverts to a truncated cone shape. Accordingly, the micelles grow 

into long cylinders and the increase in their contour length L sharply increases the 

timescale for worm reptation or dis-entanglement (trep ~ L3).73 This explains why longer 

worms lead to a viscosity increase (photogelling). 

 

 

 

 

 

 

 

 

Figure 3.9. Cycling of viscosity by UV irradiation and sample composition. The initial 
sample (50 mM EDAB + 130 mM of trans-OMCA) is exposed to UV light for 40 min, 
causing a 10,000-fold rise in viscosity. Then, 50 mM of  trans-OMCA is added, which 
drops the viscosity back to its original value. The resulting sample is then irradiated again 
for 40 min, which induces a 50-fold increase in viscosity. Finally, addition of a further 50 
mM of trans-OMCA again decreases the viscosity back to its original value.    

 

 Finally, we discuss the reversibility of the viscosity changes in EDAB/OMCA 

systems. As explained earlier, a reverse cis to trans photoisomerization is not possible 

with OMCA because the absorbance of the cis isomer is lower than that of the trans over 
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most of the UV and visible wavelength ranges. Nevertheless, photogelling in 

EDAB/OMCA fluids can indeed be reversed by a composition change. Specifically, after 

the sample has been photogelled, we can reduce its viscosity by adding more 

trans-OMCA to it. This is shown in Figure 3.9, where the viscosity is taken along 

multiple cycling steps: in each step, the upward cycle is caused by UV irradiation at 

constant composition while the downward cycle is caused by a composition change. Such 

viscosity cycling can be done up to 2 times.  

 

 The above ability to cycle the viscosity demonstrates several things: first, it shows 

that the viscosity change is indeed connected to self-assembly phenomena, not covalent 

bond formation or other irreversible processes. Second, the reason this works is very 

much consistent with our postulated mechanism. Take cycle 1 as an example: during the 

upward cycle, trans-OMCA bound to the micelles is converted to cis-OMCA, which 

desorbs from the micelles. Then, more trans-OMCA is added to the solution, which binds 

to the micelles and increases their charge, lowering the viscosity. In the next cycle, the 

process is repeated, etc. Note that cycling cannot be done indefinitely because the 

photo-conversion of trans to cis only proceeds up to a photostationary state of 80% cis.71 

Also, samples with more trans-OMCA require longer times to increase their viscosity, 

which is why the “high” viscosity is lower in the second cycle than the first (the same 

irradiation time was used for all samples). At any rate, using the above methodology, it is 

indeed possible to go back and forth between high and low viscosity states, and this is an 

aspect that could be useful in certain applications.  
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 From an applications standpoint, we should reiterate that the present 

photoresponsive fluid based on a zwitterionic surfactant offers some advantages over 

those based on ionic surfactants. In particular, photogelling EDAB/OMCA fluids are 

quite tolerant to the addition of other components, such as electrolytes, macromolecules, 

or nanoparticles. An application that could be of interest for photogelling fluids is in 

capillary electrophoresis, as mentioned in the Introduction. Other applications are bound 

to arise once photogelling fluids are more widely studied; again, the facile preparation of 

these fluids from inexpensive commercial ingredients should allow new investigators to 

venture into this field. 

 

3.4 Conclusions 

 We have shown that UV irradiation can induce a dramatic increase in viscosity 

(i.e., photogelling) in EDAB/OMCA mixtures. The step-by-step mechanism for this 

phenomenon is as follows: (1) EDAB, a zwitterionic surfactant (low head group charge, 

long tail) forms long wormlike micelles in water, which gives rise to a very high 

viscosity. (2) When OMCA is in its trans form, it binds strongly to EDAB due to its high 

hydrophobicity and favorable geometry. The binding of these anionic counterions, in 

turn, increases the headgroup charge and thereby headgroup repulsions. This causes a 

dramatic reduction in micelle size, and thus in solution viscosity. (3) Upon irradiation by 

UV light, trans-OMCA is isomerized to cis-OMCA. The cis isomer has a much weaker 

interaction with EDAB since its geometry and lesser hydrophobicity do not favor binding 

at the micellar interface. Thus, the cis isomer tends to desorb from the micellar interface, 
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allowing the spherical micelles to transform back into long wormlike micelles. The 

solution viscosity thereby increases by more than four orders of magnitude. 
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Chapter 4 

“Smart” Non-Aqueous Photothinning Fluids 

 
4.1 Introduction 

 In the previous Chapter, we described an aqueous PR fluid that was prepared 

using common, inexpensive chemicals rather than complicated organic molecules. In this 

Chapter, we turn our attention to the design of PR fluids based on organic (non-polar) 

solvents. We continue to emphasize simplicity in our approach, i.e., we will use 

chemicals that can be purchased from commercial vendors rather than molecules that 

must be synthesized in the laboratory by labor-intensive routes. Our approach is to be 

contrasted with previous studies on non-aqueous PR fluids – in all those cases, new 

photo-responsive molecules were synthesized and used. For example, Eastoe et al.81 

synthesized a stilbene-based photo-surfactant and used it to develop a photoresponsive 

organogel in toluene. Similarly, Shinkai and co-workers82 synthesized an azobenzene-

modified cholesterol and created photoresponsive organogels with this molecule in a 

range of organic solvents. While these past approaches were indeed novel and successful, 

they cannot be replicated by other researchers who lack skills in organic synthesis. Our 

goal is to develop non-aqueous PR formulations that can be replicated easily and at low 

cost in any laboratory in the world.  

 
The mechanism behind the aqueous PR fluids in Chapter 3 involved changes in 

the sizes of micelles in water. By analogy, non-aqueous PR fluids could be based on 

changes in the sizes of “reverse” micelles (the term “reverse” refers to micelles in organic 



 51 
 
 

solvents, see Section 2.3). From a rheological standpoint, the structures that can impart 

high viscosity to organic solvents are the reverse wormlike micelles described in Section 

2.4.83-87 These reverse worms are long, flexible cylindrical chains with the nonpolar 

surfactant tails on the outside and the polar surfactant heads on the inside of the cylinder. 

While there is a vast literature on reverse worms, most studies have focused on only one 

or two formulations (mixtures) of amphiphilic molecules.37,83-87 To create 

photoresponsive reverse worms, one thus has to either tweak an existing formulation or 

create a new one.       

 

The approach we have taken in this study is to devise a new formulation for 

reverse worms using a photoresponsive organic molecule, viz. para-coumaric acid 

(PCA). When the trans form of PCA is added to a non-viscous organosol of lecithin in 

solvents such as cyclohexane or n-decane, the solution becomes highly viscous and 

viscoelastic. Upon irradiation with UV light, trans-PCA is photoisomerized to cis-PCA, 

which causes the sample to revert to a low viscosity, Newtonian fluid. We use SANS to 

show that the microstructural changes responsible for these rheological effects are the 

growth of reverse micelles from spheres to worms in the presence of trans-PCA and the 

shrinking of worms back to spheres in the presence of cis-PCA. As for why it is the trans 

isomer that causes micellar growth, we believe the answer lies in the higher polarity of 

this isomer, which translates into a superior hydrogen-bonding capability.88,89 

Interestingly, among the trans- isomers of coumaric acid (Figure 4.1), only the para form 

induces growth of reverse micelles; the meta and ortho forms do not. This is again 

indicative of the higher polarity of trans-PCA.90  
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Figure 4.1. Molecular structures of the trans isomers of p-coumaric acid (PCA), m-
coumaric acid (MCA), and o-coumaric acid (OCA). Their polarities are in order: PCA > 
MCA > OCA.90 

 

4.2 Experimental Section 

Materials. Soybean lecithin (95% purity) was purchased from Avanti Polar Lipids, Inc., 

and used as received. The trans isomers of para-, meta-, and ortho-coumaric acids  

(denoted as PCA, MCA, and OCA, respectively) were purchased from Sigma-Aldrich 

and used as received (each was > 98% in purity). Cyclohexane, iso-octane, and isopropyl 

palmitate were purchased from EM Sciences, Fisher and TCI, respectively. n-hexane, 

1-hexene, and n-decane were purchased from Sigma-Aldrich. Deuterated cyclohexane 

(99.5% D) was obtained from Cambridge Isotopes. Samples were prepared by dissolving 

weighed amounts of lecithin and the chosen coumaric acid in a given organic solvent. 

They were then heated to ~ 65°C under continuous stirring for ~ 1 h till the solutions 

became homogeneous. The samples were then stirred continuously for 24 h and then left 

to equilibrate overnight in a dessicator at room temperature before any experiments were 

conducted. 
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Sample Response Before and After UV Irradiation. Samples were irradiated with UV 

light from an Oriel 200 W mercury arc lamp. To access the desired wavelength of emitted 

light, a dichroic beam turner with a mirror reflectance range of 280 to 400 nm was used 

along with a < 400 nm filter. To nullify the effects of atmospheric moisture, samples (5 

mL) were placed in borosilicate glass vials with their caps on and were irradiated through 

vial walls for a specific duration under stirring. Irradiated samples did not undergo any 

changes when stored in the dark under ambient conditions (to be additionally careful, we 

covered sample vials with aluminium foil), which made it easy to conduct subsequent 

tests. UV-Vis spectroscopy before and after irradiation were carried out using a Varian 

Cary 50 spectrophotometer. 

 

Rheological Studies.  Steady and dynamic rheological experiments were performed on 

an AR2000 stress controlled rheometer (TA Instruments, Newark, DE). Samples were 

run at 25°C on a cone-and plate geometry (40-mm diameter, 2° cone angle). A solvent 

trap was used to minimize organic solvent evaporation. Frequency spectra were 

conducted in the linear viscoelastic regime of the samples, as determined from dynamic 

strain sweep measurements. For the steady shear experiments, sufficient time was 

allowed before data collection at each shear rate so as to ensure that the viscosity reached 

its steady-state value. 

 

Small Angle Neutron Scattering (SANS). SANS measurements were made on the NG-7 

(30 m) beamline at NIST in Gaithersburg, MD. Neutrons with a wavelength of 6 Å were 

selected. The distances between sample chamber and detector were 1.2 m and 15 m. The 
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range of scattering vector q was 0.004~0.4 Å-1. Samples were prepared with deuterated 

cyclohexane and studied in 1 mm quartz cells at 25°C. Scattering spectra were corrected 

and placed on an absolute scale using calibration standards provided by NIST. Data are 

shown for the radially averaged intensity I vs the wave vector q = (4π/λ) sin(θ/2), where λ 

is the wavelength of incident neutrons and θ the scattering angle. 

 

SANS Data Analysis. SANS data were analyzed by the Indirect Fourier Transform (IFT) 

method, which requires no a priori assumptions on the nature of the scatterers. Here, a 

Fourier transformation of the scattering intensity I(q) is performed to obtain the pair 

distance distribution function p(r) in real space. p(r) provides structural information about 

the scatterers, such as their maximum dimension. IFT analysis was implemented using 

the commercial PCG software package. 

 

4.3 Results and Discussion 

 We first studied mixtures of lecithin and the trans-coumaric acids (PCA, MCA 

and OCA; structures in Figure 4.1) in cyclohexane. All three coumaric acids were 

insoluble in cyclohexane when added directly; however, all could be dissolved in the 

presence of lecithin. Initial experiments showed that, among the three, only PCA 

increased the viscosity of lecithin solutions. We believe this result is due to the greater 

polarity of PCA, as will be discussed later.90 Further experiments were done solely on 

lecithin/PCA mixtures.  

 

 



 

Figure 4.2. UV-Vis spectra of trans-PCA before and after UV irradiation. The sample 
contains 1 mM PCA and 5 mM lecithin in cyclohexane. The drop in absorbance and 
slight blue shift in the curve after UV irradiation indicate that the trans-PCA has been 
photoisomerized to its cis form. Lecithin was added to dissolve PCA in cyclohexane and 
it does not have any significant effect on the PCA spectra. 

 

PCA is known to undergo photoisomerization about its double bond.91 To confirm 

that this occurs in the presence of lecithin, we recorded UV-Vis spectra on mixtures of 

1 mM trans-PCA and 5 mM lecithin in cyclohexane (Figure 4.2). The sample shows an 

absorbance peak in the UV range (at 312 nm), which is evidently due to the trans-PCA. 

We then irradiated the above solution with UV light (280-400 nm) and then recorded the 

spectrum again. The new spectrum (violet curve) shows a drop in peak intensity and a 

slight blue shift in the peak position to a lower wavelength ~ 300 nm. This change in the 

spectrum is consistent with a UV-induced photoisomerization from trans to cis-PCA. 

Similar data have been reported for a variety of cinnamic acid derivatives.52,71,91,92 We 

should mention that the presence of lecithin had no effect on PCA spectra; similar data 

were obtained for solutions of PCA alone in solvents like ethanol and water. 
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The above UV-Vis spectra also imply that the reverse photoisomerization of PCA 

(i.e., cis to trans) is not possible because cis-PCA has a lower absorbance than trans-PCA 

over most of their spectra. Although the cis form has a slightly higher absorbance for 

wavelengths below 260 nm, reverse isomerization by irradiation at these wavelengths is 

difficult to achieve in practice because the absorbances are too close for the two isomers. 

Similar conclusions have been reached by other researchers.71,91,92 Another notable fact 

from Figure 4.2 is that both isomers of PCA have negligible absorbances in the visible 

range of their spectra. Thus, exposure to visible light has no effect on PCA samples, and 

UV-irradiated samples remain unaltered when stored under ambient conditions.   

 

 

 

 

 

 

 

 

Figure 4.3. Photographs of a sample containing 100 mM lecithin + 110 mM trans-PCA 
in cyclohexane (A) before and (B) after UV irradiation. Before irradiation, the sample is 
highly viscoelastic and holds its own weight along with a magnetic stir bar in an inverted 
vial. After UV irradiation for 30 min, the sample is transformed into a low-viscosity fluid 
that flows very easily and does not entrap air bubbles. 

 

 With the knowledge that PCA can indeed be photoisomerized, we now consider 

the macroscopic effects of UV irradiation on lecithin/trans-PCA samples in cyclohexane. 

(A) Before UV Irradiation (B) After UV Irradiation 
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The lecithin concentration was fixed at 100 mM and varying amounts of PCA were 

tested. At PCA concentrations approximately equimolar to the lecithin, the fluid became 

appreciably viscoelastic and gel-like. An example is shown in Figure 4.3a for a sample 

with 110 mM PCA – in this case the sample holds its weight for some time in the 

inverted vial. Note that the magnetic stirrer bar remains trapped in the sample. Flow-

birefringence i.e., bright streaks of light under crossed polarizers, was also seen when this 

gel-like sample was shaken. Next, consider the same sample after UV irradiation for 30 

min. The sample (Figure 4.3b) is now transformed into a free-flowing, low-viscosity 

fluid. It flows easily upon tilting the vial and bubbles rise to the liquid surface rapidly. No 

flow-birefringence was seen in this case. We refer to the above macroscopic changes as 

“photothinning”, i.e., conversion from a gel-like state to a thin, flowing liquid.  

  

 
Figure 4.4. Effect of UV irradiation on the rheology at 25°C of a sample containing 
100 mM lecithin + 110 mM trans-PCA in cyclohexane (A) Dynamic rheological data, 
before and after UV irradiation for 30 min; (B) Steady-shear rheological data before and 
after UV irradiation for varying periods of time (as indicated on the plot). The sample is 
observed to switch from a highly viscoelastic, shear-thinning response to a low-viscosity, 
Newtonian response upon UV irradiation. 
 

G’

G’’

G’

G’’
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 The above visual observations are quantified through dynamic and steady-shear 

rheological experiments on the same sample as in Figure 4.3. First we discuss the data 

from dynamic rheology (Figure 4.4a), which is a more sensitive probe of the structure in 

complex fluids. The data are shown as plots of the elastic modulus G′ and the viscous 

modulus G″ as functions of angular frequency ω. Before irradiation, the lecithin/trans-

PCA sample in cyclohexane exhibits a viscoelastic response typical of reverse wormlike 

micelles. That is, at high frequencies or short time scales, the behavior is elastic with 

G′ > G″, whereas at low frequencies or long time scales, the behavior is viscous (G″ > G′, 

with both moduli strongly dependent on frequency). After 30 min of irradiation with UV 

light, the sample exhibits a purely viscous response (G″ >> G′) over the entire range of 

frequencies, which suggests that the original worms have been considerably shortened.  

 

The corresponding steady-shear rheological data are plotted in Figure 4.4b with 

data being shown for different periods of UV irradiation. Before irradiation, the sample 

shows a non-Newtonian and shear-thinning response: the viscosity tends to a plateau at 

low shear-rates followed by a precipitous drop at higher shear-rates. After only 10 min of 

UV irradiation, the sample response is converted to a nearly Newtonian one (i.e., constant 

viscosity, independent of shear-rate) and the value of the viscosity is lowered by nearly 

two orders of magnitude. After 10 more min of irradiation (total 20 min), the viscosity is 

further lowered by an order of magnitude. Further irradiation beyond 20 min has 

negligible effect on the viscosity. Thus the extent of the viscosity drop (photothinning) 

can be controlled by the irradiation time. As mentioned in Chapter 3, the rate limiting 
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step for the viscosity change is the absorption of UV light by the sample and we can 

shorten this timescale by using higher intensity lamps or smaller sample volumes. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Zero shear viscosity η0 of lecithin + trans-PCA in Cyclohexane at 25°C as a 
function of P0, the molar ratio of PCA to lecithin, with the lecithin concentration held 
constant at 100 mM. Data are shown for samples before (red circles) and after 30 min of 
UV irradiation (blue squares). 

 

 We now consider the effect of UV on a range of lecithin/PCA compositions in 

cyclohexane, with the [lecithin] fixed at 100 mM. The molar ratio of PCA:lecithin, 

denoted by P0, is the x-axis in Figure 4.5; note that the sample in Figures 4.3 and 4.4 

corresponded to a P0 of 1.1. The y-axis shows the zero-shear viscosity (η0), which is the 

viscosity in the limit of low shear-rates, both before and after irradiation with UV light 

for 30 min. First, consider the behavior of lecithin/PCA/cyclohexane mixtures before 

irradiation. At low P0 values (< 0.6), the samples have a low η0, effectively identical to 

that of a lecithin/cyclohexane solution without any PCA. Thereafter, as P0 is increased 
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from 0.6 to 1.2, η0 grows by 5 orders of magnitude, implying the formation and growth of 

reverse worms. However, further addition of PCA (i.e., P0 > 1.2) causes the mixture to 

phase-separate into two isotropic liquid phases. Thus, we find that addition of PCA 

causes a rapid increase in viscosity up to a maximum, followed by phase separation. The 

same pattern was observed earlier in a study on lecithin-bile salt mixtures in cyclohexane, 

where again the bile salt induced growth of lecithin reverse worms.93 Now, we consider 

the effect of UV irradiation on the viscosity of the above samples. A drop in η0 occurs for 

all the viscous lecithin/PCA samples (P0 > 0.6), with the drop being particularly large 

(factor of 1000 or more) for samples near the peak viscosity (P0 ~ 1 to 1.2). Thus the 

magnitude of photothinning can be modulated via the sample composition.   

 

 

 

 

 

 

 

 

 

 
Figure 4.6. Zero shear viscosity η0 of lecithin + trans-PCA in six different organic 
solvents, before and after UV irradiation. The lecithin concentration is fixed at 100 mM, 
while the [PCA]:[lecithin] molar ratios P0 are those corresponding to the maximum 
viscosity in each solvent. After UV irradiation for 30 min, all samples showed a 
substantial drop in viscosity, i.e., photothinning. 
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 Having demonstrated photothinning in cyclohexane, we were interested in 

extending these results to other organic solvents. A number of solvents were studied and 

it was found that a variety of nonpolar solvents (n-alkanes, cycloalkanes, alkenes, fatty 

acid esters) could be rendered viscoelastic by mixtures of lecithin and PCA. In all cases, 

the viscosity increased up to a certain [PCA]:[lecithin] molar ratio P0, followed by phase 

separation. For a [lecithin] of 100 mM, the value of P0 at the onset of phase separation 

varied from 0.7 to 1.2 depending on the solvent. To compare the photoresponse between 

solvents in a uniform way, we picked a sample close to the maximum viscosity; the 

corresponding P0 values are indicated in Figure 4.6. The results show significant UV-

induced drops in zero-shear viscosity η0 (i.e., photothinning) for each of the six different 

solvents. The viscosity is reduced by factors ranging from 100 to 1000 in these samples.  

 

 The results so far suggest that the combination of lecithin and trans-PCA forms 

reverse worms in nonpolar liquids, leading to viscoelasticity. When trans-PCA is 

converted to cis-PCA by exposure to UV light, it induces the worms to shorten 

considerably and so the viscosity drops. To confirm the above microstructural picture, we 

conducted SANS experiments. Samples were made in deuterated cyclohexane to amplify 

the contrast between the micelles and the solvent; these samples were identical to those 

made in cyclohexane. Figure 4.7a and 4.7b show SANS spectra (I vs. q) for two samples, 

both with 100 mM lecithin and with PCA concentrations of 60 and 70 mM, respectively. 

Data are provided both before and after UV irradiation for 30 min. In both cases, the 

spectra before irradiation have a shape reminiscent of cylindrical structures (slope close 

to –1 at low q).77 Also, in both cases, a drop in the scattered intensity at low q is found 
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after irradiation, which qualitatively signals a decrease in micelle length (overall size). 

On the other hand, the data at high q are unaffected by irradiation, indicating a constant 

diameter for the micelles.  

 

 

 

 

 

 

 

 

Figure 4.7. SANS data and analysis for lecithin/trans-PCA/cyclohexane mixtures before 
and after 30 min of UV irradiation. Plots (a) – (b) show scattering spectra (intensity I vs. 
wave vector q) for three samples, each with 100 mM lecithin and with PCA 
concentrations of 60 and 70 mM, respectively. Plot (d) presents analysis of the data for 
the 60 mM PCA sample using the IFT method. See text for details.   

 

 To glean more quantitative information, we modeled the SANS data using the IFT 

method, which permits analysis of the data without a priori assumptions on the nature of 

the scatterers. Figure 4.7c shows the pair distribution functions p(r) obtained from IFT 

modeling of the SANS data from the 60 mM PCA sample. The p(r) before irradiation is 

asymmetrical and drops to zero around 95 Å. This shape of the p(r) function is 

characteristic of cylindrical micelles, with 95 Å being a lower estimate for their contour 

length.79 On the other hand, the p(r) after irradiation is nearly symmetrical and this shape 

suggests ellipsoidal micelles with nearly equal length and diameter.78 The point where 

p(r) meets the x-axis gives the micelle diameter, which is about 55 Å in this case. Thus, 
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the analysis confirms a reduction in micelle size upon irradiation. Similar results are 

obtained by analyzing the data from the 70 mM PCA sample as well (not shown).  

 

Mechanism for Photothinning. We have used SANS to confirm that reverse worms 

exist in lecithin/PCA/oil samples and that the worms shorten upon UV irradiation. The 

questions that still need to be addressed are: (1) why does PCA induce growth of reverse 

worms whereas its isomers (MCA and OCA) do not; and (2) why do the worms shorten 

when PCA is converted from trans to cis.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Mechanism for photothinning in lecithin/PCA/oil samples. The polar trans-
PCA forms H-bonds with lecithin headgroups, increasing the effective headgroup area. 
This favors growth of reverse wormlike micelles and thereby leads to a high viscosity. 
When trans-PCA is photoisomerized, the less polar cis-PCA has only a weak H-bonding 
tendency, and thus unbinds from the headgroups. The lowered headgroup area favors the 
shortening of micelles, and in turn the sample viscosity drops (photothinning).   
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We believe the answers to the above questions lie in the polarities and by 

extension the hydrogen-bonding (H-bonding) capabilities, of the different moieties. It is 

known that the polarities and H-bonding tendencies of the trans isomers follow the order 

PCA > MCA > OCA.90 In turn, H-bonding is critical to the growth of reverse micelles. 

The only additives that are currently known to induce growth of lecithin micelles are 

water and bile salts such as sodium deoxycholate (SDC).84-86,93 Both these additives form 

H-bonds with lecithin headgroups and thereby increase the headgroup area without 

affecting the tail area. The resultant change in molecular geometry favors the growth of 

cylindrical micelles at the expense of spherical micelles.93 We believe that trans-PCA 

functions in a similar manner. In other words, the hydroxyl (–OH) groups of trans-PCA 

form H-bonds with lecithin headgroups, as shown by Figure 4.8, and this leads to axial 

growth of cylindrical lecithin micelles.  

 

Next, we tackle the effects of UV irradiation. It is evident that PCA does undergo 

a UV-induced photoisomerization from trans to cis. There are numerous studies on this 

topic and our own UV-Vis data (Figure 4.2) are consistent with such a transition.89,91 The 

two isomers of PCA are also known to substantial differ in their polarity.88,89 Indeed, the 

trans form of PCA is reported to have a dipole moment almost double that of the cis 

form.89 We believe the lower polarity, and by extension, H-bonding ability of cis-PCA 

relative to trans-PCA is the key to explaining the photothinning behavior.88 As depicted 

in Figure 4.8, when the weakly polar cis-PCA is formed by UV irradiation, it will tend to 

unbind from the lecithin headgroups. As a result, the headgroup area will decrease to its 

original low value, and this will favor shortening of the reverse worms – in turn, 
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explaining the drop in viscosity.  The above mechanism offers a tentative, but plausible, 

framework within which to interpret our results. 

 

4.4 Conclusions 

In this study, we have shown that PR fluids can be made using nonpolar organic 

liquids and using two simple, inexpensive components, lecithin and PCA. The 

combination of lecithin with the trans form of PCA gives rise to reverse worms and 

thereby to viscoelastic fluids. The underlying mechanism is believed to be the ability of 

trans-PCA to form H-bonds with the headgroups of lecithin, which thereby alters the 

molecular geometry to one favoring growth of reverse worms. Upon UV irradiation, PCA 

undergoes a photoisomerization from trans to cis. The cis moiety, being considerably less 

polar, is incapable of H-bonding with lecithin – as a result, the micelles revert to much 

smaller sizes, leading to a substantial drop in viscosity. Such photothinning behavior has 

been achieved for samples in a range of organic solvents including n-alkanes, alkenes, 

and fatty acid esters.     
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Chapter 5 

Aqueous Thermo-Thickening Fluids 

 

5.1 Introduction 

In this Chapter, we report a new class of thermorheological (TR) fluids in which 

the viscosity increases significantly upon heating (i.e., thermo-thickening). These fluids 

are mixtures of associating polymers and cyclodextrins in water. As discussed earlier in 

Section 2.7, the term “associating polymer” generally refers to a water-soluble polymer 

bearing hydrophobic groups either on its ends or along the backbone.63,64 When the 

hydrophobes are present on the chain ends, the structure is called telechelic.64 An 

example is the hydrophobic ethoxylated urethane (HEUR) architecture, where the 

backbone is composed of poly(ethylene oxide) (PEO) and this is linked to hydrophobic 

end-caps (typically n-alkyl moieties) through urethane spacers (Figure 5.1).64 As their 

name indicates, associating polymers associate in aqueous solution through their 

hydrophobes. This results in “flower micelles” that have a hydrophobic core surrounded 

by a corona of looping PEO segments.63,64 Adjacent flower micelles also get connected 

through bridging PEO segments, and this leads to a transient network of such micelles.64 

In turn, the viscosity of the solution is appreciably enhanced. The ability to thicken water 

at low concentrations makes associating polymers the rheology modifiers of choice in a 

variety of applications including paints and coatings, consumer products etc.64    
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Figure 5.1. Schematics of (a) the RM825 associating polymer and (b) the cyclodextrins 
(CDs) studied.  

 

Cyclodextrins (CDs) are a class of supramolecules known for their ability to 

modulate hydrophobic interactions between associating polymers (see Section 2.6).54,55 

These molecules are doughnut-shaped cyclic oligomers of glucose with the inner cavity 

of the doughnut being hydrophobic while the exterior is hydrophilic.54 Three types of 

CDs commonly occur in nature: α-, β- and γ-CD, and these correspond to six-, seven- 

and eight- membered glucose rings, respectively (Figure 5.1).54 When CD molecules are 

added to an aqueous solution of associating polymers, the hydrophobic cavities of the 

CDs envelop and sequester the hydrophobes on the polymer chains.55-61,94,95 The 

hydrophobes are thereby prevented from associating with each other, and in turn, the 

solution viscosity is drastically reduced. Subsequent addition of surfactants to the above 

solutions can restore the viscosity: this is because the surfactants compete with the 

polymer hydrophobes for complexation with the CDs.57,60,61    
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The focus of this study is the effect of temperature on solution viscosity. In the 

case of associating polymers, the viscosity typically drops exponentially upon 

heating.58,63,95 The variation of the zero-shear viscosity η0 with temperature can then be 

depicted on an Arrhenius plot, which is a semilog plot of η0 vs. 1/T, where T is the 

absolute temperature.58,63 The slope of the straight line on this plot can be used to 

estimate the flow-activation energy Ea for the system. Mixtures of associating polymers 

and CDs, which tend to exhibit lower viscosities than the polymer alone, have also been 

studied as functions of temperature.58,61,95 In those cases also, a further drop in viscosity 

or other rheological properties is generally found upon heating, and again the data follow 

the Arrhenius relationship (with one exception,95 see below).  

 

In this Chapter, we report that mixtures of telechelic associating polymers 

(HEURs) and CDs can show increases in viscosity upon heating over a wide range of 

temperatures. As discussed above, this trend is unusual in the case of associating 

polymers. Indeed, an increase in viscosity upon heating (also called “thermo-thickening” 

or “thermo-gelling”) is observed in only a few classes of complex fluids, whether based 

on polymers,96-98 surfactants,99,100 or other hybrid supramolecules101. The majority of 

complex, structured fluids decrease in viscosity upon heating. Thus, thermo-thickening in 

HEUR/CD fluids is definitely worthy of study. Interestingly, we observe this behavior 

only with α-CDs and not with β- and γ-CDs. We have also investigated the effect of 

amphiphiles (single-tailed surfactants and double-tailed lipids) on the thermo-thickening. 

Strikingly, we find that the addition of lipids accentuates the thermo-thickening behavior 

whereas single-tailed surfactants have the opposite effect.  
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To our knowledge, there is only one other study that has reported comparable 

results and that is a recent one by Tam et al.95 These authors studied mixtures of 

telechelic associating polymers and α-CDs and found that, depending on the 

concentration of α-CD, the solution viscosity either decreased monotonically with 

temperature or showed a modest increase over a range of temperatures. These results 

were explained in terms of a competition between the hydrophobic end-caps and the 

hydrophilic backbone of the polymer for complexation with α-CD molecules. In the 

present study, we explore thermo-thickening in HEUR/α-CD mixtures in more detail 

using both rheological techniques and small-angle neutron scattering (SANS). We also 

explain how lipids accentuate this effect by virtue of their self-assembly into vesicle 

structures. 

 

5.2 Experimental Section 

Polymers. The associating polymer (HEUR) used in most of the studies was a gift from 

the Rohm & Haas Co. and is denoted by RM-825. This polymer has an overall molecular 

weight of about 25,000 and the hydrophobic end-caps are linear C10 alkyl chains. The 

same polymer has been employed in several previous studies in the literature.102,103 The 

polymer was supplied as a purified wax and was used as received. In addition to RM-825, 

a few studies were also done with commercial associating polymers manufactured by 

OMG Borchers GmbH. One such polymer is denoted by BorchiGel PW25 and this was 

supplied as a solution of ~ 25 wt% polymer in a 4:6 mixture of water:propylene glycol. 

The polymer was dried to constant weight in a vacuum oven for 48 h and the resulting 

solid material was used for making samples. Note that, while the BorchiGel polymers are 
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known to be HEURs, no further information on molecular weight or hydrophobe length 

were provided by the manufacturer. 

 

Cyclodextrins, Surfactants, and Other Materials. α-, β-, and γ-CDs (> 98% purity) 

were purchased from TCI America. The surfactants, cetyl trimethylammonium bromide 

(CTAB) and sodium dodecyl sulfate (SDS) (both > 99% purity) were purchased from 

Sigma-Aldrich. Lecithin (> 98% purity) was obtained from Avanti Polar Lipids.  

 

Sample Preparation. Ultra-pure deionized water from a Millipore water-purification 

system was used in preparing samples for rheological characterization, while D2O 

(99.95% deuteration, from Cambridge Isotopes) was used for the SANS studies. The 

samples without lecithin were prepared by dissolving weighed amounts of polymer, 

cyclodextrins and/or CTAB in water. The samples were heated to ~ 65°C under 

continuous stirring for about an hour till the solutions became homogeneous. Samples 

were then stirred continuously for one day and then left to equilibrate overnight at room 

temperature before any experiments were conducted. For samples containing lecithin, 

solutions were prepared by adding the lecithin to water and subsequently vortex mixing 

for 10 min. A Branson 1510 sonicator was then used for 2 hrs at 40 kHz to make vesicles. 

Weighted quantities of polymer and cyclodextrins were then added to the vesicle 

solutions and the mixture was stirred for one hour using a magnetic stirrer bar at ~ 65 oC. 

Thereafter, samples were stirred continuously overnight at room temperature to ensure 

that the final sample was completely homogeneous. 
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Rheological Studies.  Steady and dynamic rheological experiments were performed on 

an AR2000 stress controlled rheometer (TA Instruments, Newark, DE). Samples were 

run on a cone-and-plate geometry (40-mm diameter, 4° cone angle) or a couette geometry 

(rotor of radius 14 mm and height 42 mm, and cup of radius 15 mm). For steady shear 

experiments at different temperatures, experiments were performed 1 hour after 

equilibrating loaded sample to desired temperature. Dynamic frequency spectra were 

obtained in the linear viscoelastic regime of each sample, as determined by dynamic 

strain-sweep experiments. For temperature sweep studies, we used a heating rate of 1 

oC/min at a constant frequency of 10 sec-1 and strain of 1%. 

 

Small Angle Neutron Scattering (SANS).  SANS measurements were made on the 

NG-7 and NG-3 (30 m) beamlines at NIST in Gaithersburg, MD. Neutrons with a 

wavelength of 6 Å were selected. Three sample-detector distances were used to obtain 

data over a range of wave vectors from 0.004 to 0.4 Å-1. Samples were studied in 2 mm 

quartz cells at 25°C and 50oC. Scattering spectra were corrected and placed on an 

absolute scale using NIST calibration standards. The data are shown as plots of the 

absolute intensity I versus the wave vector q = 4πsin(θ /2)/λ, where λ is the wavelength 

of incident neutrons and θ  the scattering angle.    

 

5.3 Results and Discussion 

HEUR + CD: Rheological Studies. First we present data on mixtures of a telechelic 

HEUR and different CDs at room temperature (25°C). The HEUR is RM-825 with a 

molecular weight around 25,000 and with linear C10 alkyl chains as the hydrophobic end-
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caps.102,103 A 5 wt% solution of RM-825 in deionized water showed a moderate viscosity. 

Under steady-shear rheology, the solution exhibited a Newtonian (shear-invariant) 

response with a constant viscosity of ~ 5 Pa.s over a range of shear-rates from 0.01 to 

200 s–1. The addition of all three CDs (α-, β-, and γ-) lowered the viscosity while the 

response remained Newtonian. The rheology of each sample can therefore be represented 

by a single value of the viscosity, denoted by η0, and this is shown in Figure 5.2 as a 

function of the CD concentration (note that the viscosity-axis is on a logarithmic scale). 

 

 

 

 

 

 

 

 

 

Figure 5.2. Zero-shear viscosity η0 at room temperature (25°C) for 5% RM825 + CD 
mixtures as a function of the CD concentration. Data are shown for α-, β-, and γ-CD. In 
all cases, the viscosity drops with increasing [CD]. 

 

 Figure 5.2 shows that the sharpest decrease in η0 is caused by α-CD, with η0 

dropping by a factor of about 500 on addition of 10 mM α-CD. A much smaller drop in 

η0 (factor of ~ 5) is observed upon addition of 10 mM of γ-CD. For both α- and γ-CD, 

the drop in η0 with increasing CD concentration ([CD]) is approximately exponential 
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(straight line on the semilog plot). In the case of the β-CD, the magnitude of the viscosity 

drop is intermediate between that for α- and γ-CD, while the η0 vs. [CD] relationship is 

non-exponential. Incidentally, for all these Newtonian liquids, the viscosity η0 under 

steady-shear and the complex viscosity η* under oscillatory shear are nearly identical. 

For experimental convenience, we prefer to focus on η* over the rest of this paper; 

analogous results are available for η.  

       

 

 

 

 

 

 

 

 
 

 
Figure 5.3. Viscosity as a function of temperature for solutions containing 7% RM825 
and 14 mM of α-, β-, or γ-CD. The complex viscosity η* is shown; similar results are 
available for the steady-shear viscosity. The viscosity decreases with temperature for the 
β- and γ-CD samples whereas the sample with α-CD shows an increase in viscosity with 
temperature (thermo-thickening).   

  

 As mentioned in the Introduction, the CD-induced decrease in the room-

temperature viscosity of HEUR solutions is not surprising and has been observed before 

by several groups.56,58,61,95 The unusual result is that shown by Figure 5.3, which plots the 

Temperature (°C)

20 30 40 50 60 70

C
om

pl
ex

 V
is

co
si

ty
, η

* 
(P

a.
s)

10-1

100

γ-CD

β-CD

α-CD

Temperature (°C)

20 30 40 50 60 70

C
om

pl
ex

 V
is

co
si

ty
, η

* 
(P

a.
s)

10-1

100

γ-CD

β-CD

α-CD



 74 
 
 

complex viscosity η* of RM-825/CD solutions as a function of temperature. Results are 

compared for three samples, each with 7% RM-825 and 14 mM each of the three 

different CDs. The β-CD and γ-CD samples both show a decreasing viscosity with 

increasing temperature, i.e., these solutions become thinner upon heating. In contrast, the 

combination of RM-825 and α-CD shows a significant increase in viscosity over a range 

of temperatures (“thermo-thickening”). The above behavior of HEUR/α-CD mixtures is 

rather unusual and is the focus of this paper.   

 

 Figure 5.4 further describes the temperature-dependent rheology of RM-825/α-

CD solutions over a range of polymer and α-CD concentrations. First, in Figure 5.4a, we 

study solutions with varying α-CD concentrations while the RM-825 concentration is 

fixed at 5 wt%. For all samples, the viscosity η* increases over a range of temperatures 

followed by a drop in η* at even higher temperatures. The higher the [α-CD], the lower 

the η* at room temperature – correspondingly, the greater the extent of thermo-

thickening (defined as the ratio of peak:initial η*). Also, the peak in η* is reached at a 

lower temperature for a lower [α-CD]: e.g., the peak occurs at 45°C for 6 mM α-CD, 

55°C for 8 mM α-CD and 62°C for 10 mM α-CD. Next, in Figure 4b, we show data for 

solutions over a range of RM-825 concentrations and with the α-CD content being 

proportionately higher. This allows us to compare solutions with similar initial viscosities 

at room temperature (around 20–30 mPa.s). All samples exhibit thermo-thickening, with 

its extent being higher for higher polymer concentrations. The greatest increase in 

viscosity is for the 7% RM825 + 14 mM α-CD sample for which η* increases from 33 
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mPa.s at 25°C to 132 mPa.s at 62°C, which is a net increase by a factor of four. The peak 

temperature is approximately the same (~ 60°C) for all these samples.    

 

 

 

 

 

 

 

 

 

Figure 5.4. Thermo-thickening responses for different compositions of RM825 and α-
CD. (a) Constant polymer concentration (5%), varying [α-CD]. (b) Different [polymer] 
and [α-CD] such that the solutions have approximately the same viscosity at room 
temperature.   

 

HEUR + α-CD: SANS Studies. The above data provide clear evidence for thermo-

thickening in certain HEUR/α-CD solutions. To probe the underlying mechanism for 

these unusual results, we conducted SANS experiments on selected samples. Samples 

were made in D2O to achieve the necessary contrast between the microstructure and the 

solvent; these samples were rheologically identical to those in H2O. Figure 5.5 shows 

SANS spectra (I vs. q) for four solutions, each containing 5% RM-825 and with α-CD 

concentrations of 3, 5, 7 and 10 mM. Data are provided at room temperature (25°C) and 

at a temperature of 50°C, with the latter corresponding to the thermo-thickened state. 

Together the data reveal a number of systematic trends. First, consider the 3 mM α-CD 
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sample that shows negligible thermo-thickening: in this case, the curves at 25 and 50°C 

are nearly identical. In contrast, the remaining samples, which have higher [α-CD], show 

increasing differences between their 25 and 50°C spectra. The differences mainly occur 

at intermediate q (0.01 to 0.1 Å–1) whereas the curves are almost identical at lower and 

higher q. Also, with increasing [α-CD] at a constant temperature of 25°C, the intensity at 

intermediate q drops and a plateau appears, with the plateau being more pronounced at 

higher [α-CD]. In other words, increasing [α-CD] lowers the intensity at intermediate q 

whereas increasing temperature restores this intensity. An obvious interpretation would 

be that the drop in intensity upon addition of [α-CD] corresponds to a suppression of 

hydrophobic clustering (due to complexation of the α-CD with the hydrophobes on the 

ends of the HEUR chains) while the increase in intensity with temperature occurs 

because the hydrophobic clusters are restored.   

 

 

Figure 5.5. SANS data at low (25°C) and high (50°C) temperatures for solutions 
containing 5% RM825 and different concentrations of α-CD. The solid lines through each 
curve are fits to eq 5.1.  
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 To obtain further insight, we modeled the SANS data using the following 

functional form suggested by Hammouda et al.:104,105 

                                     mn q
B

q
AqI

)(1
)(

ξ+
+=                                               (5.1) 

Here, A and B are constants, n and m are power-law indices, and ξ is a correlation length. 

The model fits the curves in Figure 5.5 very well (fits shown as solid black lines through 

the data). The above model was originally developed to describe the SANS response 

from aqueous solutions of PEO.104,105 More recently, it has also been applied to SANS 

data from mixtures of CDs with a class of associating polymers (hydrophobically 

modified alginate).59 The first term in the model (A/qn) corresponds to Porod-like 

scattering from large clusters while the second term is a Lorentzian function to describe 

scattering from individual polymer chains.105 Thus, the first term describes features in the 

data at low q, specifically the upturn in intensity, which in our case occurs similarly for 

all samples and temperatures. It is the second Lorentzian term that accounts for the 

plateau at intermediate q, and the key parameter here is the correlation length ξ. 

 

 Figure 5.6 plots the correlation length ξ as a function of [α-CD] and for the two 

temperatures of 25 and 50°C. We interpret ξ as an average size of local heterogeneities 

(hydrophobic clusters); thus, the larger the ξ the greater the clustering.59,105 As expected, 

ξ decreases with increasing [α-CD], implying a suppression of hydrophobic clustering. 

This is consistent with the complexation of polymer hydrophobes by α-CD molecules. 

Moreover, the ξ values at 50°C are higher than those at 25°C for all solutions, suggesting 

that hydrophobe-hydrophobe interactions are reactivated by heat (which in turn implies a 
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heat-induced weakening of hydrophobe-CD complexes). This result confirms the 

qualitative arguments put forward above and we will return to this point shortly when we 

further discuss the mechanism for thermo-thickening.  

 

 

 

 

 

 

 

Figure 5.6. Correlation lengths ξ obtained from fits of eq 5.1 to the SANS data in Figure 
5.5. The values are shown as functions of the α-CD concentration and for the two 
different temperatures. Lines through the data are guides for the eye. 

 

HEUR + α-CD + Amphiphile: Rheological Studies. We now describe the effects of 

adding a surfactant or lipid to HEUR/α-CD solutions. First, we consider a typical cationic 

surfactant, CTAB. The term surfactant is used here to imply a single-tailed amphiphile 

that usually forms micelles in water above its critical micelle concentration (cmc). In the 

case of CTAB, its cmc in deionized water is 0.92 mM.106 As shown by Figure 5.7, adding 

CTAB at a concentration above its cmc reversed the CD-induced reduction in room-

temperature viscosity as well as the thermo-thickening. The control sample for this 

experiment was a mixture of 6% RM-825 and 12 mM α-CD: its η* vs. temperature data 

is shown for reference. Adding just 5 mM of CTAB increased the η* at 25°C about 
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20 mM further increased the η* at 25°C and again the η* decreased upon heating. These 

results are to be expected: the added surfactant molecules should competitively bind with 

the α-CD, thereby liberating a large fraction of the polymer hydrophobes and restoring 

their associations.57,60,61 In addition to CTAB, we have tested other surfactants, including 

anionic ones like sodium dodecyl sulfate (SDS), and in all cases the surfactant eliminated 

the thermo-thickening.    

 

 

 

 

 

 

 

 

 

Figure 5.7. Viscosity vs. temperature for solutions of 6% RM825 + 12 mM α-CD in the 
absence and presence of the cationic surfactant, CTAB. In the presence of CTAB, the 
response shifts from thermo-thickening to thermo-thinning. 
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RM-825 + 12 mM α-CD, and as seen by Figure 5.8, it shows considerable thermo-

thickening (factor of 3.4 increase in η* with temperature). Adding 10 mM of lecithin 

vesicles to this sample has negligible effect on the room-temperature viscosity, but the 

thermo-thickening is enhanced. Further increase in lecithin concentration to 20 mM 

accentuates the thermo-thickening even more. The overall extent of thermo-thickening, 

i.e., the ratio of peak:initial η* is by a factor of 4.6 for the 20 mM lecithin sample. Thus, 

the addition of lipid vesicles enhances thermo-thickening.  

 

 

 

 

 

 

 

 

 

Figure 5.8. Viscosity vs. temperature for solutions of 6% RM825 + 12 mM α-CD in the 
absence and presence of vesicles of the lipid, lecithin. The presence of lecithin vesicles 
accentuates the thermo-thickening response.  
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by BorchiGel PW25. Figure 5.9 presents rheological data for a 5% solution of this 

polymer combined with 10 mM of α-CD: the data again reveal substantial thermo-

thickening. Additionally, we present data for the above sample combined with 10 mM of 

lecithin vesicles and once again we find that the vesicles accentuate the thermo-

thickening. Based on these data, we can generalize the above trends to hold for a range of 

HEUR polymers.    

  

 

 

 

 

 

 

 

 

Figure 5.9. Viscosity vs. temperature for solutions of 5% Borchigel PW25 + 10 mM α-
CD in the absence and presence of 10 mM lecithin vesicles. This HEUR/α-CD mixture 
also shows thermo-thickening and lecithin vesicles again enhance the effect.  

 

Mechanism for Thermo-Thickening. We now attempt to provide sensible explanations 

for the results described above. Our first result (Figure 5.2) showed that the room-

temperature viscosity of HEUR solutions was lowered by all three CDs. This is an 
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ends by CD molecules. The extent of viscosity reduction follows the trend α-CD > β-CD 
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> γ-CD (Figure 5.2), which is due to the size of the CD cavity relative to the size of the 

hydrophobic group.55 For hydrophobes ~ C10, as is the case here, the same trend has been 

observed in earlier studies as well.55,57 Next, we come to our significant result, which is 

the observation of thermo-thickening in solutions of HEUR and α-CD, but not in 

solutions with β- or γ-CD (Figure 5.3). What causes thermo-thickening, and why does it 

occur only in the case of α-CD? We will now address these questions. 

 

 Our SANS data and its corresponding modeling (Figures 5.5 and 5.6) suggested 

that inclusion complexes between hydrophobes and α-CD molecules get disrupted by 

heat. The hydrophobes released from the α-CDs can then re-associate with each other, 

leading to a reactivation of hydrophobic clusters and thereby an increase in solution 

viscosity with temperature. But why does heat weaken hydrophobe/α-CD complexes 

alone and not those with β- or γ-CD? We believe that, at higher temperatures, the PEO 

backbone of the HEUR chains competes with the hydrophobic chain ends for forming 

inclusion complexes with α-CDs.95 Complex formation between PEO and α-CD has been 

corroborated by a number of studies.107-109 In contrast, β- and γ-CDs do not complex with 

PEO because their cavities are considerably larger than the cross-section of a PEO 

chain.109 Complexation between PEO and α-CD is itself likely to be promoted at higher 

temperatures because the PEO backbone becomes more hydrophobic104,105 and thereby 

more compatible with the hydrophobic cavity of the α-CD.  
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Figure 5.10. (a) Mechanism for thermo-thickening in HEUR/α-CD mixtures. At low T, 
the hydrophobes on HEUR chain ends are capped by α-CDs and the viscosity is hence 
low. Upon heating, some of the α-CDs detach from the hydrophobes and bind to the PEO 
backbone of the HEUR chains. The liberated hydrophobes associate with each other and 
thereby enhance the solution viscosity. (b) Mechanism for the enhancement of thermo-
thickening by lipid vesicles. The vesicles do not bind to the α-CD and the solution has a 
low viscosity at low T. Upon heating, some hydrophobes get freed and these can either 
associate with each other or with the bilayers of the vesicles. The vesicles, in effect, 
increase the connectivity of HEUR chains and this further enhances the viscosity.   

 

 Taken together, we explain thermo-thickening by the schematics in Figure 5.10a. 

At low temperatures, the α-CD is bound to the hydrophobes on HEUR chain ends and the 

viscosity is low. At higher temperatures, some of the α-CDs unbind from the 

hydrophobes and thread onto the PEO backbone of the HEUR chains. This frees up some 

hydrophobes, which associate with each other and thereby cause an increase in viscosity. 

It is worth noting that the binding of α-CD with the polymer backbone occurs only in the 

case of PEO.108 Other associating polymers such as hydrophobically modified derivatives 

of chitosan, alginate or hydroxyethyl cellulose (HEC), as well as hydrophobic alkali-

soluble emulsion polymers (HASE) do not have backbones that can complex with α-
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CD;57 as a result, no evidence for thermo-thickening has been reported in past studies (or 

detected in our laboratory) for mixtures of the above polymers with α-CD.   

 

 Next, we discuss why double-tailed lipids accentuate the thermo-thickening of 

HEUR/α-CD mixtures (Figure 5.8) whereas single-tailed surfactants revert the viscosity 

to the typical thermo-thinning trend (Figure 5.7). First, consider single-tailed surfactants: 

these are known to have high affinities for CDs – for example, the binding constants for 

CTAB and SDS with α-CD are 99,200 and 21,000 M−1 respectively.110,111 These 

surfactants can therefore effectively displace polymer hydrophobes from the cavities of 

α-CD molecules. The liberated hydrophobes will then associate and give rise to a high 

solution viscosity at room temperature. As temperature is raised, the progressive 

disruption of hydrophobic associations leads to thermo-thinning, much like for neat 

HEUR solutions. In contrast to surfactants, the binding constants of lipids with CDs are 

very low, i.e., they have weak affinities for CDs. For example, a lipid with two C7 tails is 

reported to have binding constants of 550, 1290, and 750 M-1 for α, β, and γ-CDs 

respectively.112 The weaker binding of lipids is because the CDs can typically include 

only one alkyl chain in their cavities.112 This explains why the HEUR/α-CD solution 

retains its low viscosity upon addition of lecithin, i.e., the hydrophobes remain bound to 

the α-CDs. In turn, the added lecithin will remain in solution in the form of nanosized 

unilamellar vesicles (Figure 5.10b).     

 

 Now, consider the effect of heating a lecithin/HEUR/α-CD mixture. As discussed 

above, the α-CD will tend to dissociate from the hydrophobes and instead bind to the 
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PEO backbone of the HEUR. This will liberate several polymer hydrophobes, which will 

now be free to interact amongst each other as well as with the unilamellar lecithin 

vesicles. We hypothesize that some polymer hydrophobes will get embedded in the 

bilayers of vesicles (Figure 5.10b).113-115 This will enhance the “cross-links” or junction 

points between the polymer chains, in turn enhancing the thermo-thickening effect. 

Support for this hypothesis comes from a number of studies on mixtures of associative 

polymers and vesicles, which have shown viscosity enhancement due to vesicles.113-115 In 

this context, a higher volume fraction of vesicles will provide more junction points and 

will thereby permit a higher viscosity to be reached, which is quite consistent with the 

data in Figure 5.8.   

 

5.4 Conclusions 

Aqueous mixtures of HEUR type associating polymers and α-CDs show thermo-

thickening, i.e., an increase in viscosity with temperature. The solutions have a low 

viscosity at room temperature because the hydrophobic end-groups on HEUR chains are 

sequestered inside the cavities of the α-CDs. As temperature is increased, the increasing 

affinity of the α-CDs for the PEO backbone of the HEUR causes some of the 

hydrophobes to be liberated, and the association of these hydrophobes causes thermo-

thickening. The effect is not observed with β- and γ-CDs because they do not form 

inclusion complexes with PEO. Thermo-thickening of HEUR/α-CD mixtures is 

accentuated by the addition of lipid vesicles. Lipids (two-tailed amphiphiles) do not bind 

with α-CD since the cavity in α-CD can accommodate only one hydrophobic tail. As a 

result, at room temperature, the α-CDs remain bound to the polymer hydrophobes, while 



 86 
 
 

the lipid vesicles are also left intact in solution. Upon heating, some of the polymer 

hydrophobes disengage from the α-CD as explained above. These free hydrophobes can 

either connect with each other or can bind to vesicle bilayers. In effect, the vesicles 

enhance the connectivity of the hydrophobes, which explains why the thermo-thickening 

effect is enhanced.  
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Chapter 6 

Conclusions and Recommendations 

 

6.1 Conclusions 

Previous formulations of PR and TR fluids required synthesis of complex 

photosensitive molecules, which hindered the widespread use of these fluids. In this 

dissertation, we have reported two novel formulations of PR fluids and one new class of 

TR fluids that require no special synthesis and can therefore be easily replicated in any 

laboratory from inexpensive chemicals. These consist of: a photogelling aqueous fluid 

(Chapter 3), a photothinning fluid based on a non-polar organic solvent (Chapter 4), and a 

reversible thermo-thickening aqueous fluid (Chapter 5). Such PR and TR fluids may be 

of use in a range of applications, such as in sensors and valves in microfluidic devices. 

 

In the first study (Chapter 3), we reported a class of aqueous fluids that exhibited 

“photogelling”, i.e., a substantial (10,000-fold) increase in fluid viscosity upon exposure 

to light. This increase in viscosity was triggered by the light-activated growth of 

wormlike micelles in the sample. The key components in the above fluids were the 

zwitterionic surfactant, erucyl dimethyl amidopropyl betaine (EDAB) and the 

photoresponsive molecule, trans-ortho-methoxy-cinnamic acid (OMCA), both of which 

are commercially available. When these two chemicals were combined at high (> 2:1) 

OMCA:EDAB molar ratios, short cylindrical micelles were formed in aqueous solution. 
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Upon irradiation by UV light (< 400 nm), OMCA got photoisomerized to its cis form, 

which then desorbed from EDAB micelles. In turn, a transition from short to long, 

entangled micelles ensued. Support for the above mechanism was provided by zeta-

potential and small-angle neutron scattering (SANS) studies.  

 

In the second study (Chapter 4), we extended the concept of PR fluids to non-

aqueous systems, and demonstrated a one-way, light-induced viscosity reduction (i.e., 

photothinning). Here, we created a novel formulation of reverse micellar fluids by mixing 

the commonly available zwitterionic lipids (e.g., lecithin) with the photosensitive 

molecule PCA in organic solvents. When the trans form of PCA was added to lecithin 

reverse micelles, the solution became highly viscous and viscoelastic. Upon irradiation 

with UV light, trans-PCA was photoisomerized to cis-PCA, which caused the sample to 

transform into a low viscosity, Newtonian fluid. Using techniques such as SANS and 

UV-Vis spectroscopy, we were able to show that the light-induced transitions at the 

molecular level correlated at the microstructural level with a reduction in the length of 

wormlike micelles. 

 

In our last study (Chapter 5), we reported a reversible thermo-thickening system 

in which the viscosity increased significantly upon heating. These fluids were mixtures of 

telechelic associating polymers (HEURs) and cyclodextrins (α-CDs) in water. These 

results were explained in terms of a competition between the hydrophobic end-caps and 

the hydrophilic backbone of the polymer for complexation with α-CD molecules. We 

also demonstrated that the thermo-thickening of HEUR/α-CD mixtures was accentuated 
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by the addition of lipid vesicles as they enhanced the connectivity of the polymer 

hydrophobes at higher temperatures. 

 

6.2 Recommendations for Future Work 

We suggest three feasible projects for future work, which would extend the studies 

conducted in this dissertation as well as explore new concepts and applications. 

 

6.2.1 Reversible PR Fluids 

In Chapters 3 and 4, we described two new simple photorheological fluids, which 

exhibited one way switch in rheology upon UV irradiation, i.e., either gelling or thinning. 

However the transitions were not reversible. As part of future work, the concept can be 

extended to develop a reversible PR fluid. For this, alternate photo-additives should be 

considered that exhibit reversible photoisomerization, such as azobenzene, spiropyran, 

and photo-acid derivatives. In particular, additives that can promote faster reversible 

switching of rheological properties would be highly desirable. 

 

6.2.2 Microfluidic Devices Incorporating PR Fluids 

Our “smart” PR and TR fluids have an enormous application potential in several 

emerging technologies, such as micro- and nano-fluidic devices. These stimuli responsive 

fluids are nano-structured, homogeneous, stable, and single-phase systems that change 

macroscopic properties by transforming themselves at nanoscale – thus their intrinsic 

length scale is small enough for use in micro-nano-technologies. Especially, the use of 
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light as the stimulus permits for a directed control at a precise spatial location (with a 

resolution on the order of microns). We have already started working on the development 

of a microfluidic photonic device incorporating our photogelling fluids (EDAB/OMCA) 

described in Chapter 3.  We are collaborating with Dr. Edo Waks and Dr. Benjamin 

Shapiro’s research groups at U. Maryland in this project. The idea is to precisely steer the 

multiple semiconductor quantum-dots to specific locations in a micro channel by 

electroosmotic flow control, and then entrap them there by photogelling the media locally 

to nm accuracy. We have already demonstrated the sequential steering and freezing of 

three quantum-dots at defined locations in a microchannel. As a part of future work, this 

study can be extended to more than three q-dots and the system can be further refined and 

optimized in terms of speed and strength of freezing. Also, the fluids with reversible light 

induced changes in rheological properties could be especially interesting for such 

microfluidic applications. 

 

6.2.3 Methods for Writing and Erasing Patterns in Gels with Light 

Lastly, we recommend an extremely simple yet effective method (involving no 

complicated chemistry) of writing and erasing colored 3-D patterns in soft materials, such 

as polymer-surfactant gels or films. This arose out of some initial experiments that we 

have conducted in our laboratory with photochromatic molecules, i.e., reversible color 

change upon UV or visible light irradiation. One material which has attracted a lot of 

attention in this field is 1',3',3'-trimethyl-6-nitrospiro[1-benzopyran-2,2-indoline], also 

referred to as Spiropyran (SP). It is a strongly photochromic molecule that undergoes the 

photochemical change shown in Figure 6.1. The ambient form of SP (left) has an 
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absorption band in the UV range (between 320 and 400 nm) and is therefore colorless. 

Upon UV irradiation, SP is transformed by hetrolytic C–O ring cleavage to the 

zwitterionic merocyanine (MC) form, which has strong absorption in the visible range 

(pink or red color). Irradiation with visible light or exposure to heat induces the MC to 

revert to its colorless SP form. A number of researchers have been interested in SP 

molecules as a means to create color-based sensors etc. The focus, in most cases, has 

been on complex derivatization of polymers or lipids with spiropyran moieties or 

embedding of these molecules in polymer or glass matrices at high temperatures. The 

main reason behind these difficult chemistries is the extremely low solubility of SP in 

almost every solvent. We overcame this problem with the help of surfactants micelles as 

they can encapsulate SP molecules in their core. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.1. Reversible switching of SP to MC regulated by UV and visible light 

 

In our initial experiments, we added SP to a high viscosity reverse wormlike 

micellar fluid consists of lecithin/water/cyclohexane. We were able to dissolve up to 10 

mM of SP in this system. In Figure 6.2, we show the application potential of such a SP-

doped gel. Initially, the gel is colorless and transparent (left). Upon UV irradiation 

hv 

Vis, Temp 

Spiropyran (SP): Colorless, Weakly Polar Merocyanine (MC): Colored, Polar 
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through a mask, a pink-colored pattern is formed in the gel, corresponding to the regions 

of the mask that are exposed to the light. The pink color indicates the conversion of the 

SP into its MC form. Figure 6.2 shows that the patterns over a size scale of millimeters 

can be formed in the gel. The pattern is maintained as long as the gel is stored in the dark; 

when exposed to visible light or heat, the merocyanine reverts to its original spiropyran 

form and the pattern disappears. 

 
 
 
 
 
 
 
 

Figure 6.2. Reversibly creating and erasing spatial patterns on a SP-doped gel by 
irradiating through a mask. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3. Reversibly writing and erasing on SP-doped gel by simple green-light laser 
pointer. 

Gel doped with Spiropyran  After exposure to UV-light (<400 nm)

  UMD written with simple  
  green-light laser pointer 

hv

Vis, Temp

Green-light 
laser pointer Vis, Temp 

hv

Vis, Temp
Gel doped with SP After exposure to UV light 

(<400 nm) through a mask 
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Working on similar lines, we demonstrate one more interesting experiment in 

Figure 6.3. Here, as a first step, a colorless SP-doped gel is irradiated uniformly to create 

a red gel (corresponding to the transformation of SP to MC). We now use a green laser 

pointer to write patterns onto this gel. As shown in Figure 6.3, we were able to write 

word “UMD” on this material within few seconds. Again the pattern can be erased 

simply by exposing the sample to visible or ultraviolet light. Note that, both in Figures 

6.2 and 6.3, the patterns are created all the way through the gel – i.e., in three dimensions. 

 

Future work on this project could involve the creation of patterns at much smaller 

length scales as well as on other types of gels (e.g., gelatin gels containing surfactant). 

The key idea, again, is that no special synthesis of new molecules would be required – 

instead, these patternable materials can be created simply by mixing commercial 

spiropyrans with existing gel-forming molecules. 
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