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Let G be a semi-simple algebraic group over a field k. Projective G-homogeneous

varieties are projective varieties over which G acts transitively. The stabilizer or the

isotropy subgroup at a point on such a variety is a parabolic subgroup which is always

smooth when the characteristic of k is zero. However, when k has positive characteristic,

we encounter projective varieties with transitive G-action where the isotropy subgroup

need not be smooth. We call these varieties projective pseudo-homogeneous varieties. To

every such variety, we can associate a corresponding projective homogeneous variety. In

this thesis, we extensively study the Chow motives (with coefficients from a finite con-

nected ring) of projective pseudo-homogeneous varieties forG inner type over k and com-

pare them to the Chow motives of the corresponding projective homogeneous varieties.

This is done by proving a generic criterion for the motive of a variety to be isomorphic

to the motive of a projective homogeneous variety which works for any characteristic

of k. As a corollary, we give some applications and examples of Chow motives that

exhibit an interesting phenomenon. We also show that the motives of projective pseudo-

homogeneous varieties satisfy properties such as Rost Nilpotence and Krull-Schmidt.
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Chapter 0: Introduction

Let G be a semi-simple algebraic group over a perfect field k. We say that a variety

over k is projective G-homogeneous if it is projective and if G acts transitively on it

over k. Under this action, the stabilizer or the isotropy subgroup of G at a geometric

point on the variety is a parabolic subgroup scheme. If the characteristic of the field

k is zero, then these parabolic subgroup schemes are always smooth. However, when

the characteristic of k is p ≠ 0, the parabolic subgroup schemes need not necessarily

be reduced. We therefore encounter projective varieties with transitive G-action whose

isotropy subgroups are non-smooth parabolic subgroup schemes. In this thesis, we study

these varieties which we call projective pseudo-homogeneous varieties for G inner type

over k and establish a connection to a corresponding projective homogeneous variety. We

also prove some properties about them and give interesting examples.

0.1 The Problem Setting

Let G be a semi-simple algebraic group of inner type over a perfect field k of character-

istic p > 3 (See Remark 4.3.4 for why the assumption p > 3 is necessary). We follow

the terminology of SGA3. So by definition G is smooth and connected with trivial radi-

cal. Note that in SGA3, parabolic subgroups are reduced as schemes. Therefore we use
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the term parabolic subgroup schemes to include possibly non-reduced subgroup schemes

containing a Borel. Let K denote the algebraic closure of k. For a variety Y over k and

an extension k′ ⊇ k, we write Yk′ for Y ×Spec k Spec k′.

Definition 1. A G-variety X̃ over k is called a projective pseudo-homogeneous variety1

if X̃K ≃ GK/P̃ for some parabolic subgroup scheme P̃ in GK that is not necessarily

reduced.

Such a variety is always smooth since G is smooth (See SGA3, exp VIA, Theorem

3.2). For detailed construction of the quotient of an algebraic group by a subgroup see

Chapter III, §3 of [DG70]. Note that by Proposition 2.1, §3, Chapter III of [DG70],

the condition X̃K ≃ GK/P̃ is equivalent to saying that the action map G(Ω) × X̃(Ω) →

X̃(Ω) × X̃(Ω) is surjective for every algebraically closed field Ω over K. If P̃ is a

parabolic subgroup scheme over K, we will make slight abuse of notation and write G/P̃

forGK/P̃ . Let P denote the underlying reduced scheme of P̃ . Note that since k is perfect,

P is a group scheme (See §6 in Chapter VI of [Mil]).

Definition 2. Given X̃ , a projective pseudo-homogeneous variety for G such that X̃K ≃

G/P̃ , let X denote the unique (see Proposition 1.3 in [MPW96]) projective homogeneous

variety for G, such that XK ≃ G/P where P is the underlying reduced subscheme of P̃ .

We call X the projective homogeneous variety corresponding to X̃ .

By universal property of quotients, there is a canonical G-equivariant finite mor-

phism θ ∶X → X̃ .

1The term projective pseudo-homogeneous varieties is coined here to point towards a natural general-

ization of projective homogeneous varieties. It is not to be confused with the definition used in [Kar16]
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Example. Suppose G = SL3,k. Let G/P̃ ⊆ P2 × P2 be given by the equation ∑2
i=0 x

p
i yi = 0

where theG action is g.Ð→x = gp3Ð→x and g.Ð→y = (g−t)p4Ð→y (Here g−t = (g−1)t is the transpose

of the inverse of g. Also by abuse of notation gpn means taking pnth power of entries of

the matrix g). Then P̃ = Stab([1 ∶ 0 ∶ 0] × [0 ∶ 0 ∶ 1]) = {(
∗ ∗ ∗
x ∗ ∗
y z ∗

) ∣xp3 = 0, yp
3 = 0, zp

4 = 0}.

The underlying reduced scheme is the standard Borel P = ( ∗ ∗ ∗
0 ∗ ∗
0 0 ∗

) and the corresponding

homogeneous variety G/P ⊆ P2 × P2 is given by ∑2
i=0 xiyi = 0. This comes with the

standard G-action g.Ð→x = gÐ→x and g.Ð→y = (g−t)Ð→y . We have the canonical G-equivariant

map

G/P → G/P̃

Ð→x ↦Ð→x p3

Ð→y ↦Ð→y p4

We want to emphasize that even over algebraically closed fields, theK-varietyG/P̃

need not be isomorphic to any flag variety (see Theorem 3.3.1). Therefore, X and X̃ need

not be twisted forms of each other.

Projective pseudo-homogeneous varieties are extensively studied in the literature

when k = K is algebraically closed. We give a brief survey on what is known so far. In

[Wen93a], Wenzel has classified all parabolic subgroup schemes P̃ and in [Wen93b] he

proved that the varieties G/P̃ are rational. Using this classification, de Salas in [SdS03]

has classified all G/P̃ . The varieties of the form G/P̃ where P̃ is any parabolic subgroup

scheme that may or may not be reduced are known as parabolic varieties in [SdS03].

Lauritzen and Haboush answered many interesting questions about the geometry of these

varieties including canonical line bundles, vanishing theorems and Frobenius splitting in

3



[Lau97], [HL93] and [Lau93]. Lauritzen also gave a geometric construction of G/P̃ in

[Lau96] where he realizes these varieties as the G-orbit of a Borel stable line in projective

space. They have rich structure and behave quite differently from the analogous gener-

alized flag varieties (or simply flag varieties) G/P where P is smooth. For example, in

[Lau93], Lauritzen has shown that under mild assumptions on G, G/P̃ is isomorphic to a

flag variety if and only if G/P̃ is Frobenius split. The varieties of the form G/P̃ that does

not admit an isomorphism to a flag variety are known as varieties of unseparated flags

or simply VUFs in [HL93]. In particular, G/P and G/P̃ are not isomorphic in general.

Moreover, in [HL93] one can find explicit examples of VUFs which illustrate that unlike

generalized flag varieties, vanishing theorem for ample line bundles and Kodaira’s van-

ishing theorem break down. So over algebraically closed fields, although these varieties

exhibit a lot of strange phenomena, they are well understood and it is straightforward to

compute their Chow motives (see §4.4).

However, when k is not algebraically closed, nothing much is known about them

unlike the analogous projective homogeneous varieties. Projective homogeneous varieties

are quite thoroughly studied in the literature ([Art82], [GK], [EKM08] and [KMRT98])

and so are their Chow motives ([Bro05], [CPSZ06], [CGM05], [Kar10] and [Kar13]).

Therefore it is natural to study projective pseudo-homogeneous varieties and ask if they

exhibit any similarity to projective homogeneous varieties.

In this paper we compute the Chow motives of projective pseudo-homogeneous va-

rieties and prove that Rost nilpotence theorem holds. We also show that their motives are

isomorphic to motives of the corresponding projective homogeneous varieties. A crucial

ingredient of the proof is Theorem 5.2.1 which gives a characterization of when the mo-
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tive of a variety is isomorphic to the motive of a projective homogeneous variety. The

proof of this theorem is independent of the characteristic of the base field and might be

useful for other applications.

0.2 Notations

Throughout this paper k is a perfect field of characteristic p > 3 and K denotes the alge-

braic closure of k. Gm denotes the usual multiplicative group. G denotes a semi-simple

algebraic group of inner type over k unless stated otherwise. The set of vertices of the

Dynkin diagram of G (or equivalently the set of conjugacy classes of maximal parabolics

in GK) is denoted by ∆G. For a field extension E of k, τE ⊆ ∆G denotes the subset that

contains the classes of those maximal parabolics inGK defined overE. Given a parabolic

subgroup scheme P̃ , P denotes the underlying reduced subscheme. If X̃ is a projective

pseudo-homogeneous variety then X denotes the corresponding projective homogeneous

variety.

Λ denotes a connected, finite, associative unital commutative ring. An example to

keep in mind is a finite field of some prime characteristic. Let Chow(k,Λ) denote the cat-

egory of Chow motives over k with coefficients in Λ. Detailed exposition of Chow(k,Λ)

can be found in [EKM08]. For a variety X , M(X) denotes the Chow motive of X .

By Chi(X) and Chi(X) we mean the ith Chow group of X graded by dimension and

codimension respectively. The Tate motiveM(Spec k){i} is denoted by Λ{i} (The no-

tation Λ{i} is equal to Λ(i)[2i] in Voevodsky’s category of motives). For a motive M ,

M{i} ∶=M ⊗Λ{i}.
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0.3 Statement of Main Results

We say that Krull-Schmidt principle holds for an object in an additive category if it is iso-

morphic uniquely to direct sum of indecomposable summands (up to permutation). Let

X be a k-variety. Recall from Karpenko’s paper [Kar13] that a summand M ofM(X) is

called upper if Ch0(M) ≠ 0. See Lemma 2.8 in [Kar13] for more details. If the motive of

X satisfies Krull-Schmidt principle, letUX denote the unique upper indecomposable sum-

mand ofM(X). It is well known that the motives of projective homogeneous varieties

satisfy Krull-Schmidt principle (see Corollary 2.2.2) in Chow(k,Λ). If Xτ is projective

homogeneous corresponding to the subset τ ⊆ ∆G (see §1.2), we write Uτ for the upper

indecomposable summand ofM(Xτ).

Theorem. (Rost Nilpotence for Projective Pseudo-Homogeneous Varieties) Let X̃ be a

projective pseudo-homogeneous variety for a semi-simple group G of inner type over k.

Then the kernel of the base change map

End(M(X̃)) → End(M(X̃K))

f ↦ f ⊗K

consists of nilpotents.

Proof. See §4.5.

Theorem. The Krull-Schmidt principle holds for any shift of any summand of the motive

of a projective pseudo-homogeneous variety for G.

Proof. See §4.5.
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The following theorem gives a characterization of when the motive of a variety is

isomorphic to the motive a projective homogeneous variety and is independent of the

characteristic of the base field k. In particular, it holds for characteristic zero as well.

Recall that a k-variety Z is geometrically split ifM(ZK) is isomorphic to a direct sum

of Tate motives.

Theorem. Let X be a projective G-homogeneous variety over k. Let Z be any geomet-

rically split projective k-variety whose motive satisfies the Rost nilpotence principle such

that the following holds in Chow(k,Λ):

1. UX ≃ UZ

2. M(XL) ≃M(ZL) where L = k(X)

ThenM(X) ≃M(Z).

Proof. See §5.2.

As an application of the above theorem we derive the following main result.

Theorem. Let X̃ be a projective pseudo-homogeneous variety forG and letX be the cor-

responding projective homogeneous variety. Then in the category of motives Chow(k,Λ)

M(X) ≃M(X̃)

In particular, by Theorem 2.5.2 every indecomposable summand in M(X̃) is a shift of

some upper motive Uτ satisfying τk(X) ⊆ τ .

Proof. See §5.3.

We also give some examples and applications in §5.4.
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0.4 Outline of the Thesis

We start by recalling some background about projective homogeneous varieties and Chow

groups in Chapter 1. We also recall the category of Chow motives in this chapter. In Chap-

ter 2, we state some properties of the motives of projective homogeneous varieties such

as Rost Nilpotence and Krull-Schmidt principle. This is followed by stating some results

from the literature on motivic decompositions of projective homogeneous varieties. In

Chapter 3, we recall the definition and classification of the variety of unseparated flags

and discuss how they differ from flag varieties. The rest of the chapters are dedicated to

proving the main results of this thesis and give some applications.
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Chapter 1: Preliminaries

1.1 Linear Algebraic Groups

In this section we recall some facts about algebraic groups and establish the notations we

will use in the rest of the thesis. A thorough treatment of linear algebraic groups can be

found in [Spr09] and [Bor91].

Recall that G is an algebraic group over a field k if the following holds:

• G is an algebraic variety over k.

• There is an operation ⋅ on G which makes (G, ⋅) a group

• The maps defining the group structure µ ∶ G×G→ G and i ∶ G→ G with µ(x, y) =

x ⋅ y and i(x) = x−1 are morphism of varieties defined over k.

• The identity element e ∈ G is a k-rational point.

If the underlying variety of G is affine, then it is called an affine algebraic group or a

linear algebraic group.

The radical of G denoted by R(G) is the maximal closed, connected, solvable,

normal subgroup of G over the algebraic closure K of k. The set of unipotent elements

of R(G) is called the unipotent radical of G, denoted by Ru(G). The group G is semi-
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simple (resp. reductive) if R(G) (resp.Ru(G)) is trivial. A linear algebraic group T over

k is called a torus, if over K, it becomes isomorphic to a product of several copies of the

multiplicative group Gm. If this isomorphism is already defined over k, then T is called

a split torus. A semi-simple linear algebraic group is called a split group, if it contains a

split maximal torus.

Let G be a split group. We fix a split maximal torus T in G. Let Φ be the root

system of G associated to T . Let ∆ = {α1, α2,⋯, αn} denote a basis for Φ i.e, ∆ ⊂ Φ is

a set of simple roots of G. Then one can associate an oriented graph called the Dynkin

diagram of Φ whose vertices correspond to the elements of ∆. It is well known that the

Dynkin diagram of Φ does not depend on the choice of the basis ∆ ⊂ Φ and moreover,

uniquely determines Φ. A root system Φ is said to be irreducible if it cannot be partitioned

into a union of two mutually orthogonal proper subsets. One of the most important results

regarding root systems says that all possible Dynkin diagrams of irreducible root systems

can be classified into four classical types An(n ≥ 1), Bn(n ≥ 2), Cn(n ≥ 2), Dn(n ≥ 3)

and five exceptional types E6, E7, E8, F4 and G2. Here the subscripts denote the rank of

the respective root systems. Listed below are the Dynkin diagrams for various types. The

enumeration of vertices of Dynkin diagrams follows Bourbaki [Bou82].
An

1 2 n − 2 n − 1 n

Bn

1 2 n − 2 n − 1 n

Cn
1 2 n − 2 n − 1 n

10



Dn

1 2 n − 3 n − 2

n − 1

n

En

1

2

3 4 5 6 n

F4

1 2 3 4

G2

1 2

A semi-simple algebraic group G is of inner type if the ∗-action (see [Tit66]) of the

absolute Galois group Gal(ksep/k) on the Dynkin diagram of G is trivial. If G is not of

inner type, we say that G is of outer type. For any semi-simple algebraic group G there

exists a unique (up to an k-isomorphism) minimal finite Galois field extension kinn/k,

such that Gkinn
is of inner type (see Lemma 3.5 in [KR94]).

We say that a subgroup P ⊂ G is a parabolic subgroup if P is smooth and if G/P

is a projective variety. Subgroups that are minimal with respect to the above property are

called Borel subgroups.

11



1.2 Projective Homogeneous Varieties

LetG be an algebraic group over k. We recall the definition of projectiveG-homogeneous

varieties (§2.3, [Spr09]) and give some of their properties.

A G-variety over k is a variety X over k equipped with a G-action, the action being

given by morphism of varieties over k. More precisely, there is a morphism of varieties

a ∶ G ×X → X , written a(g, x) = g ⋅ x defined over k, such that g ⋅ (h ⋅ x) = (g ⋅ h) ⋅ x,

e ⋅ x = x where e is the identity element of G.

A homogeneous variety X for G or a G-homogeneous variety is a G-variety on

which G acts transitively, that is, for any x, y ∈ X(K), there exists G(K) such that

g ⋅ x = y where K denotes the algebraic closure of k.

A morphism between two G-varieties φ ∶ X → Y is called a G-morphism or is

G-equivariant if φ(g ⋅ x) = g ⋅ φ(x) for g ∈ G, x ∈X .

The stabilizer or isotropy group of a point x ∈ X is the closed subgroup Gx = {g ∈

G∣g ⋅ x = x}.

A projective homogeneous variety forG or a projectiveG-homogeneous variety is a

homogeneous G-variety where the isotropy group of any K-point is a parabolic subgroup

(which by definition is smooth). In other words, X is a projective homogeneous variety

for G if XK ≃ GK/P for some (smooth) parabolic subgroup P .

Let G be a semi-simple algebraic group over k. We fix a maximal torus T , a Borel

B containing T and the respective set of simple roots ∆G of GK , which can be identified

with the nodes of the Dynkin diagram of G. The simple roots also correspond to the

conjugacy classes of maximal parabolics in GK . The subsets of ∆G are in natural one-

12



to-one correspondence with the set of conjugacy classes of parabolic subgroups in GK

defined as follows: the conjugacy class corresponding τ ⊆ ∆G is the one containing the

intersection of all maximal parabolics in τ that contain a given Borel B in GK . For any

subset τ ⊆ ∆G, we write Xτ orXτ,G for the projective homogeneous variety of parabolic

subgroups in G of the type τ . For instance, X∆G
is the variety of the Borel subgroups.

Any projective G-homogeneous variety is isomorphic to Xτ for some τ .

1.2.1 Examples

We give examples of projective G-homogeneous varieties over k for various types. Let

G0 be the adjoint split form of G.

• An: In this case G0 ≃ PGLn+1, the projective linear group. If G is inner type over

k, then G ≃ PGLA = Autk A, where A is a central simple algebra of degree n + 1

over k. Any projective G-homogeneous variety X can be identified with variety of

flags of (right) ideals in A. For example, the variety of ideals of reduced dimension

i in A are the generalized Severi-Brauer varieties denoted by SBi(A). These are

twisted forms of Grassmannians and correspond to maximal parabolic subgroups

Pi.

If G is outer over k, then G ≃ PGU(A,σ) where A is a central simple algebra with

unitary involution σ and any projective G-homogeneous variety is a twisted form

of G0/Pi1,i2,⋯,im where ik = n + 1 − im−k+1 for all k = 1,2,⋯,m.

• Bn: In this case G0 ≃ O+
2n+1. All twisted forms of this group are inner and G ≃

O+(q) where q is a quadratic form in 2n + 1 variables. Projective G-homogeneous
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varieties are described as flags of totally q-isotropic subspaces. In particular, the

projective quadric given by the equation q = 0 is a projective G-homogeneous vari-

ety and is a twisted form of G0/P1.

• Cn: In this case G0 ≃ PGSp(V,h) where (V,h) is a non-degenerate alternat-

ing form of dimension 2n. All twisted forms of this group are inner and G ≃

PGSp(A,σ) where A is a central simple algebra of degree 2n with symplectic in-

volution σ. A projectiveG-homogeneous variety can be described as the set of flags

of (right) ideals

X(d1, d2,⋯, dk) = {I1 ⊂ ⋯ ⊂ Ik ⊂ A∣Ii ⊆ I⊥i }

of fixed reduced dimensions 1 ≤ d1 < ⋯ < dk ≤ n, where I⊥ = {x ∈ A∣σ(x)I = 0}

is the right ideal of reduced dimension 2n − rdim I where rdim I is the reduced

dimension of I . These are twisted forms of G0/Pd1,d2,⋯,dk .

• Dn: In this case G0 ≃ PGO+
2n and G ≃ PGO+(A,σ, f) where A is a central sim-

ple algebra of degree 2n and (σ, f) is a quadratic pair (See Definition 5.4, §5 in

[KMRT98]). The outer forms of G0 are characterized by involutions with non-

trivial discriminant. Assume that G is inner. If A is split, the projective quadric

given by q = 0 is a projective homogeneous variety corresponding to the maximal

parabolic P1.

For exceptional groups and for more details, refer to §25, §26 in [KMRT98].
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1.3 Algebraic Cycles and Chow groups

Let X be a variety over k. An algebraic cycle of dimension r on X is a finite formal sum

∑nZ[Z] of integral subvarieties in X of dimension r with integer coefficients. We define

the Chow group of dimension r to be the additive group of algebraic cycles of dimension

r modulo rational equivalence. It is denoted by CHr(X) or sometimes by Ar(X). The

total Chow group, CH(X) of X is defined as CH(X) ∶= ⊕dim X
i=0 CHi(X). Chow groups

can also be graded by codimension where CHr(X) = Chdim X−r(X). One can also

replace the integral coefficients with coefficients from a commutative ring Λ to get Chow

group with coefficients in Λ denoted by CH(X; Λ). Let us recall some operations on

Chow groups.

• Proper push-forward: Let f ∶ X → Y be a proper morphism. For a cycle V , let

W = f(V ). Then we define the push-forward of Chow groups as follows:

f∗ ∶ CHr(X) → CHr(Y )

f∗[V ] = deg(V /W )[W ]

where

deg(V /W ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[k(V ) ∶ k(W )], if dim V = dim W

0, else

• Flat pull-back: Let f ∶ X → Y be a flat morphism of relative dimension n. Then
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we define, pull-back of Chow groups as follows:

f∗ ∶ CHr(Y ) → CHr(X)

f∗[V ] = [f−1V ]

where f−1V is the scheme-theoretic inverse image of V .

• Change of field homomorphism: Let l/k be a field extension. Then the projection

morphism p ∶ X ×k Spec l → X is flat of relative dimension 0 and the induced

pull-back

resl/k ∶= p∗ ∶ CHr(X) → CHr(Xl)

is called the change of field homomorphism. Cycles in the image of resl/k are

called k-rational.

• Ring Structure: One can define intersection product on the total Chow groupCH(X)

which gives it a graded commutative ring structure. This ring structure is preserved

by pull-back homomorphism i.e, f∗ as defined above is a ring homomorphism.

• Projection formula: Given push-forward f∗ and pull-back f∗ morphisms, we have

the projection formula:

f∗(f∗(α) ⋅ β) = α ⋅ f∗(β)

where α ∈ CH(Y ) and β ∈ CH(X).
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1.4 Chow motives with Coefficients

Let Λ be a commutative ring. To describe the category of Chow motives Chow(k,Λ)

over a field k with coefficients in Λ, we first start with the definition of the category

of correspondences Corr(k,Λ). The objects in the category Corr(k) are pairs (X,n)

where X is a smooth projective scheme over k and n ∈ Z.The morphisms are given by

HomCorr(k,Λ)((X,n), (Y,m)) = ⊕Adi+n−m(Xi × Y ) ⊗Z Λ

where X = ∐Xi are the connected components and di = dim Xi.

This category is not idempotent complete, that is, idempotent morphisms need not

have kernel or cokernel. The category of Chow motivesChow(k,Λ) is obtained by taking

the pseudo-abelian envelope of Corr(k). In other words, the objects of Chow(k,Λ)

are triples (X,n, p) with p ∈ End (X,n) a projector or idempotent, i.e, p2 = p. The

morphisms are given by

HomChow(k,Λ)((X,n, p), (Y,m, q)) = q ○HomCorr(k,Λ)((X,n), (Y,m)) ○ p

This category is idempotent complete. By the term motive of X , we mean the object

(X,0,∆) where ∆ is the diagonal in X ×X . It is denoted byM(X).

The category Chow(k,Λ) admits tensor structure as follows:

(X,n, p) ⊗ (Y,m, q) = (X × Y,n +m,p × q)

A special object in this category is the trivial Tate motive (Spec k,0,∆), also denoted by

Λ. The twists Λ{n} ∶= (Spec k, n,∆) are Tate objects. For a motiveM ∈ Obj(Chow(k,Λ)),

we define the Tate twisted object M{n} ∶=M ⊗Λ{n}.
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Consider the motive of the projective spaceM(Pr). Then the morphism given by

the cycle αr = [pt × Pr] ∈ EndM(Pr) is a projector where pt is an arbitrary degree 1

closed point in Pr. Then, Chow(k,Λ) admits direct sums as follows:

(X,n, p) ⊕ (Y,m, q) = (X∐(Y × Pm−n), n, p + (q × αm−n))

It is easy to see that if p ∈ EndM(X) is a non-trivial projector, then in the category

Chow(k,Λ), we have the following decomposition:

M(X) ≃ (X,0, p) ⊕ (X,0,1 − p)
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Chapter 2: Motivic Decomposition of Projective Homogeneous Varieties

2.1 Rost Nilpotence Theorem

In this section we let the coefficient ring Λ to be arbitrary. Consider the category of Chow

motives Chow(F,Λ) where F is an arbitrary field. Let X be a variety over a field F . We

say that Rost Nilpotence holds for a variety X if for every field extension E/F the kernel

of the base change map

EndF (M(X)) → EndE(M(XE))

α ↦ αE

consists of nilpotents. That is , if α ∈ EndF (M(X)) is such that αE = 0, then α○N = 0

for some N > 0.

Knowing whether the Rost Nilpotence holds for a variety is useful for many reasons.

Here are some of the consequences of Rost Nilpotence. Assume that a variety X satisfies

Rost Nilpotence in Chow(F,Λ). Then the following holds.

• If p ∈ EndF (M(X)) is idempotent and non-zero, then pE is non-zero for every

field extension E/F .

• If p ∈ EndF (M(X)) is such that pE is idempotent for some field extension E, then

there is an idempotent q ∈ EndF (M(X)) such that pE = qE .
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• If X and Y are geometrically split varieties over F satisfying Rost Nilpotence such

that α ∈ Hom(M(X),M(Y )) is an isomorphism over some field extension E/F ,

then α is already an isomorphism.

We do not yet know if Rost Nilpotence holds for all varieties. But we know that they

hold for projective homogeneous varieties as proved by Chernousov, Gille and Merkurjev

(Theorem 8.2 in [CGM05]) and Brosnan (Theorem 5.1 in [Bro05]).

Theorem 2.1.1. (Theorem 5.1 in [Bro05]) Let X be a projective G-homogeneous variety

over k. Then X satisfies Rost Nilpotence.

2.2 Krull-Schmidt Theorem

Recall that K denotes the algebraic closure of a given field k. A variety over k is said to

be geometrically split if its motive over K is isomorphic to direct sum of Tate motives.

Notation: For the rest of the chapter we assume that Λ is a finite, connected coefficient

ring in Chow(k,Λ) although some of the results hold for arbitrary Λ.

We say that Krull-Schmidt principle holds for an object in an additive category if it

is isomorphic uniquely to direct sum of indecomposable summands (up to permutation).

A very useful consequence of Rost nilpotence is the following result which can be found

in Karpenko’s paper [Kar13].

Theorem 2.2.1. (Corollary 2.6 in [Kar13]) Assume that the coefficient ring Λ is finite.

The Krull-Schmidt principle holds for any shift of any summand of the motive of any

geometrically split variety satisfying the Rost nilpotence principle. In other words, the

Krull-Schmidt principle holds for the objects of the pseudo-abelian Tate subcategory in
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Chow(k,Λ) generated by the motives of geometrically split k-varieties satisfying Rost

nilpotence.

As a consequence of this theorem, we have the following important result for the

motives of projective homogeneous varieties. This is also proved by Chernousov and

Merkurjev (Corollary 35 in [CM06]).

Corollary 2.2.2. The Krull-Schmidt principle holds for any shift of any summand of the

motive of projective homogeneous varieties in Chow(k,Λ).

Proof. Observe that any projective homogeneous variety over k is geometrically cellular

i.e, has cellular decomposition (see Definition 3.2 in [Kah99]) over the algebraic closure

K and therefore by Theorem 2.4.1 is geometrically split i.e, its motive splits into direct

sum of Tate motives over K. The result now follows from this fact, Theorem 2.1.1 and

Theorem 2.2.1.

2.3 Upper Indecomposable Motives

The notion of upper motives is due to Karpenko ([Kar13]). We recall this from [Kar13]

in this section. To a correspondence of degree zero in Chow(k,Λ), one can associate an

element of Λ called multiplicity as follows (see §75 in [EKM08]). For projective varieties

X and Y , let α ∈ Chdim X(X × Y ) = Hom(M(X),M(Y )) be a correspondence in

Chow(k,Λ). Then the projection morphism p ∶ X × Y → X is proper and hence induces

the push-forward homomorphism

p∗ ∶ Chdim X(X × Y ) → Chdim X(X) = Λ ⋅ [X]

21



Then, the elementmult(α) ∈ Λ satisfying p∗(α) =mult(α)⋅[X] is called the multiplicity

of α. It is easy to see that for any two correspondences α,β ∈Hom(M(X),M(Y )), we

have mult(α + β) = mult(α) +mult(β). Moreover, multiplicity of a composition of

two correspondences is the product of multiplicities of the composed correspondences

(Corollary 1.7 in [Kar00c]). Since the multiplicity of a projector is idempotent, it is either

0 or 1 because the coefficient ring Λ is connected.

For a motive M , let Chi(M) denote the group Hom(M,Λ{i}) in the category

Chow(k,Λ).

Lemma 2.3.1. (Lemma 2.8 in [Kar13]) Let X be a smooth complete irreducible variety.

Let M be a summand of the motive of X and let π ∈ Chdim X(X ×X) be the projector

giving M . Then the following are equivalent:

• Ch0(M) ≠ 0

• the summand Ch0(M) of the Λ-module Ch0(X) coincides with the whole Ch0(X)

• mult(π) ≠ 0

• mult(π) = 1

Proof. See Lemma 2.8 in [Kar13].

Definition 3. (Definition 2.10 in [Kar13]) Let M ∈ Chow(k,Λ) be a summand of the

motive of a smooth complete irreducible variety. Then M is called upper if it satisfies the

four equivalent conditions of the Lemma 2.3.1.

Remark 2.3.2. (Remark 2.13 in [Kar13]) Assume that the coefficient ring Λ is finite. Let

X be an irreducible geometrically split variety satisfying the Rost nilpotence principle.
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Then the complete motivic decomposition of X contains precisely one upper summand

and therefore by Theorem 2.2.1 an upper indecomposable summand ofM(X) is unique

upto an isomorphism.

We mention the following results from [Kar13] that will be used later in the proofs.

Theorem 2.3.3. (Lemma 2.14 in [Kar13]) Assume that the coefficient ring Λ is finite.

Let X be an irreducible geometrically split variety satisfying the nilpotence principle.

Let M be a motive. Assume that there exist morphisms α ∶ M(X) → M and β ∶ M →

M(X) such that mult(β ○ α) = 1. Then the indecomposable upper summand of M(X)

is isomorphic to a summand of M .

In the same paper [Kar13], Karpenko gives a necessary and sufficient condition for

the upper indecomposable motives of two varieties to be isomorphic.

Theorem 2.3.4. (Corollary 2.15 in [Kar13]) Let X and Y be irreducible geometrically

split varieties satisfying the Rost Nilpotence. The upper indecomposable summands of

M(X) andM(Y ) are isomorphic if and only if there exist multiplicity 1 correspondences

α ∶ M(X) →M(Y ) and β ∶ M(Y ) →M(X).

2.4 Useful Techniques in Motivic Decompositions

A very useful technique to decompose a motive is due to Rost ([Ros]) and Karpenko

([Kar00a]). We state this below for convenience of the reader.

Theorem 2.4.1. ([CGM05], [dB01], [Kar00a]) Let X be a smooth, projective variety

23



over a field k with a filtration

X =Xn ⊇Xn−1 ⊇ ⋯ ⊇X0 ⊇X−1 = ∅

where the Xi are closed subvarieties. Assume that, for each integer i ∈ [0, n], there is

a smooth projective variety Zi and an affine fibration φi ∶ Xi − Xi−1 → Zi of relative

dimension ai. Then, in the category of correspondences,

M(X) =
n

∐
i=0

M(Zi){ai}

A situation where the above theorem can be applied is when X is a smooth projec-

tive variety with a Gm-action. The following result is due to Iversen ([Ive72]), Biyałnicki-

Birula ([BB73], [BB76]) and Hesselink ([Hes81]). See Theorem 3.3 and Theorem 3.4 in

[Bro05] for more details.

Theorem 2.4.2. ([BB73], [BB76], [Hes81], [Ive72]) LetX be a smooth projective scheme

over k equipped with an action of Gm. Then,

M(X) =∐
i

M(Zi){ai}

whereZi are connected components ofXGm and ai are dimensions of the positive eigenspace

of the action of Gm on the tangent space of X at an arbitrary point in Zi.

2.5 Motivic Decomposition of Projective Homogeneous Varieties

2.5.1 The Case When G is Isotropic

In [Bro05], Brosnan gave a description about the summands of the motive of projective

G-homogeneous varieties for isotropic G. Recall from [Bro05] that a G-scheme X is
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a projective quasi-homogeneous scheme if X is smooth and projective over k and the

morphism G ×X → X ×X given by (g, x) ↦ (g ⋅ x,x) is smooth. By Proposition 4.1 in

[Bro05], this is equivalent to saying thatXK is a disjoint union of projective homogeneous

varieties.

Theorem 2.5.1. (Corollary 4.1 in [Bro05]) Let X be a projective quasi-homogeneous

scheme for an isotropic reductive group G, and let λ ∶ Gm → G be an embedding of a

split torus. Then

M(X) =∐M(Zi){ai}

whereZi are connected components ofXλ. Moreover, Zi are projective quasi-homogeneous

schemes for the centralizer H of λ and the twists ai are the dimensions of the positive

eigenspace of the action of λ on the tangent space of X at an arbitrary point z ∈ Zi.

2.5.2 The Case When G is Inner

Let G be of inner type over k. Then Karpenko in his paper [Kar13] shows that the com-

plete motivic decomposition of any projective G-homogeneous variety consists of shifts

of upper indecomposable motives of other projective G-homogeneous varieties. In other

words, the upper indecomposable motives of projective homogeneous varieties are the ba-

sic building blocks in the motivic decomposition. Recall from §0.3 that ifXτ is projective

homogeneous corresponding to the subset τ ⊆ ∆G, Uτ denotes the upper indecomposable

summand ofM(Xτ).

Theorem 2.5.2. (Theorem 3.5 in [Kar13]) LetX be a projectiveG-homogeneous variety.
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Then any indecomposable summand of M(X) is isomorphic to Uτ{i} for some i and

some τ ⊆ ∆G satisfying τk(X) ⊆ τ .

Theorem 2.5.2 is very useful for motivic decomposition of projectiveG-homogeneous

varieties and has a lot of applications. We refer the reader to [Kar13] and [Zhy12] for

some of the applications and examples.

2.5.3 The Case When G is Outer

Let G be of outer type over a field F . Assuming that G becomes inner type over some

finite field extension of F of degree a power of a prime p, Karpenko in his paper [Kar10]

describes the structure of the Chow motives with coefficients in a finite field of character-

istic p of projective G-homogeneous varieties. Any indecomposable direct summand of

such a variety is given by a twist of an upper motive of G which we define as follows.

Assume that the coefficient Λ associated to the category of Chow motivesChow(F,Λ)

is a finite field of characteristic p. Let E/F be the minimal field extension (upto F -

isomorphism) such that the group GE is of inner type where the degree of E/F is as-

sumed to be a power of p. For any intermediate field L of the extension E/F let Y be

a projective GL-homogeneous variety. Then we can think of Y as an F -variety via the

composition Y → Spec L → Spec F . Let UY denote the upper motive (see Definition

3) of Y in Chow(F,Λ), considered as F -variety. The set of the isomorphism classes of

the motives UY for all such L and Y is called the set of upper motives of the algebraic

group G. We will now state Karpenko’s motivic decomposition theorem for a projective

G-homogeneous variety X .
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Theorem 2.5.3. (Theorem 1.1 in [Kar10]) For F , G, E, and X as earlier, the complete

motivic decomposition of X consists of shifts of upper motives of the algebraic group G.

More precisely, any indecomposable summand of the motive of X is isomorphic a shift of

an upper motive UY ofG such that the Tits index of G over the function field of the variety

Y contains the Tits index of G over the function field of X .

Remark 2.5.4. The above theorem fails without the hypothesis that the extension E/F

is p-primary where p is the characteristic of the coefficient field Λ. See Example 3.3 in

[Kar10] for a counterexample.
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Chapter 3: Variety of Unseparated Flags (VUFs)

Throughout this chapter k denotes an algebraically closed field of characteristic p > 0.

3.1 Parabolic subgroup schemes

Let G denote a reductive linear algebraic group over k. By the term parabolic subgroup

of G, we mean a smooth subgroup of G that contains a Borel subgroup. By definition,

these are reduced subgroup schemes of G. When the characteristic of the base field is

zero, every subgroup scheme of G is smooth. But for characteristic p > 0, we encounter

subgroup schemes that are not necessarily reduced.

Example. Suppose G = SL3,k. Let

P̃ = {(
∗ ∗ ∗
x ∗ ∗
y z ∗

) ∣xp3 = 0, yp
3 = 0, zp

4 = 0}

One can easily verify that P̃ is a subgroup scheme of G. The underlying reduced scheme

of P is the standard Borel P = ( ∗ ∗ ∗
0 ∗ ∗
0 0 ∗

)

Definition 4. A subgroup scheme P̃ of G is said to be a parabolic subgroup scheme if it

contains a Borel subgroup.

Thus by the above definition, parabolic subgroup schemes need not necessarily

be smooth unlike parabolic subgroups. Although the classification of parabolic sub-
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groups of G is well known in the standard literature ([Bor91], [Spr09]), nothing much

was known about parabolic subgroup schemes until Wenzel gave a classification in his

paper [Wen93a] for arbitrary reductive linear algebraic groups over algebraically closed

fields of characteristic p > 3.

To state the classification theorem, we first establish some notations as in [Wen93a].

Let Ga denote the 1-dimensional additive linear algebraic group Spec(K[T ]). For each

n ∈ N0 , let αn be the subscheme of Ga defined by T pn . Set αp∞ = Ga. Let B be a Borel

subgroup and let U be the unipotent part of B. Let φ+ = {β1, β2,⋯βm} be the set of pos-

itive roots and let ∆ be the set of simple roots. Then there exists morphisms of algebraic

groups xβi ∶ Ga → U, i ∈ {1,2,⋯,m} such that

Gm
a → U

(ξ1,⋯, ξm) ↦∏xβi(ξi)

is an isomorphism of varieties. Let ∆̃ be the set of maps from ∆ to N0 ∪ {∞} where N0

is the set of non-negative integers. We will now state the classification theorem.

Theorem 3.1.1. (Theorem 14 in [Wen93a]) Let G be a reductive linear algebraic group

defined over k. There is an injective map from ∆̃ to B, the set of all parabolic subgroup

schemes containing B, given by

∆̃→B

φ↦ Pφ

where Pφ = Uφ ⋅ PI(φ), I(φ) = {α ∈ ∆∣φ(α) = ∞}, Uφ = ∏β∈φ+−φI x−β(αφ(β)), φ being

extended to all of φ+ by φ(β) = min{φ(γ)∣γ ∈ E(β)}, E(β) = {βi ∈ ∆∣β = ∑ cj ⋅
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βj,with all cj ≥ 0 and ci ≠ 0}, φI the roots generated by I = I(φ).

If char k > 3, or if G is simply laced , then this map is also surjective.

Remark 3.1.2. (Remark 15 in [Wen93a]) The map in Theorem 3.1.1 is not surjective in

char(k) = 2,3 for certain G; for example for G = SO5 in char k = 2 and for G with the

root system of type G2 in char k = 3.

3.2 Construction and Classification of VUFs

In this section we use the following notation. For a parabolic subgroup scheme P̃ of G,

we denote its underlying reduced scheme by P . Recall that a flag variety is a projective

homogeneous G- space isomorphic to G/P where P is a (smooth) parabolic subgroup.

Definition 5. We call a projective homogeneous G-space, variety of unseparated flags

(VUFs in short) if it does not admit an isomorphism to a flag variety.

Lauritzen and Haboush answered many interesting questions about the geometry

of these varieties including canonical line bundles, vanishing theorems and Frobenius

splitting in [Lau97], [HL93] and [Lau93]. Lauritzen also gave a geometric construction

ofG/P̃ in [Lau96] where he realizes these varieties as theG-orbit of a Borel stable line in

projective space. Note that since VUFs are projective varieties that are G-homogeneous,

they are essentially isomorphic to G/P̃ where P̃ is a parabolic subgroup scheme that is

not necessarily smooth (or equivalently not reduced).

Example. Suppose G = SL3,k. Let X ⊆ P2 × P2 be given by the equation ∑2
i=0 x

p
i yi = 0.

Then X is a VUF isomorphic to G/P̃ for a non-reduced parabolic subgroup scheme P̃ .

The construction of VUFs follows from the construction of quotients G/P̃ . For a
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self contained, complete treatment of construction of quotient of an algebraic group by a

subgroup scheme, we refer Jantzen’s book (§I.5 in [Jan03]). Note that at geometric level

G/P̃ and G/P have the same underlying topological space with the structure sheaf OG/P̃

consisting of P̃ -invariant functions inOG. Therefore, OG/P̃ is a subsheaf ofOG/P and the

injection OG/P̃ ↪ OG/P corresponds to the canonical morphism G/P → G/P̃ .

Definition 6. Let X be a scheme over k. We define the scheme X[n] as the one with same

underlying topological space as X but with k-structure twisted via the ring homomor-

phism

k → k

a↦ pn
√
a

With the notations as above, the n-th order Frobenius induces a morphism of k-

schemes F n ∶ X → X[n] where F is the Frobenius morphism. We call X[n], the n-th

Frobenius cover of X . Note that when X is reduced, OX[n] can be identified with the

k-subalgebra of pn-th powers of regular functions on X .

Now G[n] is an algebraic group as the same type as G and F n ∶ G → G[n] is

a homomorphism of algebraic groups. Its kernel denoted by Gn is the n-th Frobenius

kernel of G. It is easy to see from the above discussion that if P̃ = GnP , then G/P̃ is the

n-th Frobenius cover of G/P .

Consider all varieties of the form G/P̃ , where P̃ is a parabolic subgroup scheme

that may or may not be reduced. De Salas in his paper [SdS03] calls these varieties as

parabolic G-varieties or simply parabolic varieties if the underlying algebraic group is

clear. He also gives a classification of parabolic varieties in [SdS03] for p = char k > 3.
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We will briefly recall them here. The classification is based on the following results:

• The classification of the parabolic subgroups given by Wenzel in [Wen93a] (in char-

acteristic different from 2 and 3).

• The determination given by Demazure in [Dem77] of the pairs P ⊂ G, where G is

a simple group of adjoint type and P ⊂ G is a reduced parabolic subgroup such that

G = Aut0(G/P ). Here Aut0(G/P ) is the identity component of automorphism

group of G/P . The pairs satisfying this condition are called non-exceptional. De-

mazure shows that the only exceptional pairs are the following ones:

– G = SO2l+1(k) and G/P the variety that parameterizes the totally isotropic

subspaces Vl ⊂ k2l+1 (with 2l + 1 ≥ 5). In this case Aut0(G/P ) ≃ PSO2l+2.

– G = Sp2l(k) and G/P = P2l−1 the variety that parameterizes the lines of k2l.

In this case Aut0(P2l−1) ≃ PGl2l(k).

– G is the simple group of adjoint type with semi-simple rank 2 and typeG2; that

is, it is the group of automorphisms of an algebra of octonions Ω. Let Ω̃ ⊂ Ω

be the hyperplane of the pure octonions and G/P the variety of isotropic lines

of Ω̃. Then G/P is isomorphic to a projective quadric of dimension 5, and

hence, Aut0(G/P ) = PSO6(k).

Let us fix a Borel B in G. Let P1, P2,⋯Ps be the maximal (reduced) parabolic sub-

groups containing B and let P1 = G/P1,P2 = G/P2,⋯,Ps = G/Ps denote the associated

parabolic varieties. Similarly, B = G/B denotes the associated variety of Borels.

Given two parabolic G-varieties Pand P ′ together with the canonical morphisms
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π ∶ B → P and π′ ∶ B → P ′, let P ∗ P ′ denote the parabolic G-variety given by the image

of the G-morphism π × π′ ∶ B → P × P ′. Note that if P = G/P̃ and P ′ = G/P̃ ′ with

P̃ , P̃ ′ ⊂ G parabolic subgroups schemes containing B, then P ∗ P ′ = G/P̃ ∩ P̃ ′.

Recall that for a scheme X and a non-negative integer n ∈ N0, we have a natural

morphism over k given by F n ∶X →X[n] where F is the Frobenius. We now provide the

classification of parabolic varieties from [SdS03].

Theorem 3.2.1. (Theorem 6.8 in [SdS03]) Assume that p = char k > 3. For each

parabolic G-variety P , there exist unique indices 1 ≤ i1 ≤ ⋯ ≤ ir ≤ s and exponents

n1,⋯, nr ∈ N0 such that

P = P[n1]

i1
∗⋯ ∗ P[nr]

is

Moreover, Aut0(P) = G if and only if nh = 0 for some 1 ≤ h ≤ r and Pij is non-

exceptional for some 1 ≤ j ≤ r. That is, G → Aut0(P) is not an isomorphism if and only

if either n1,⋯, nr > 0 or P is maximal and P ⊂ G is an exceptional pair.

3.3 Flag varieties vs VUFs

Let X be a parabolic variety, i.e, X ≃ G/P̃ where P̃ is a parabolic subgroup scheme that

may or may not be reduced. A natural question that arises in this case is when G/P̃ is

isomorphic to a flag variety. This is answered by Lauritzen in his paper [Lau93] using a

property call Frobenius splitting which we now recall.

Definition 7. We call a scheme Y , (X,f)-split, where f ∶ X → Y is a finite morphism,

if OY → f∗OX splits as a morphism of OY -modules, that is, if there is a morphism

f∗OX → OY such that OY → f∗OX → OY is the identity morphism.

33



Theorem 3.3.1. (Theorem 5.2 in [Lau93]) Let G be an algebraic group of simple type of

Coxeter number h over an algebraically closed field k of characteristic p > 0. Suppose

G/P̃ is a complete homogeneous G-space and let P be the reduced part of P̃ . If p > h

then the following conditions are equivalent

(1) G/P̃ is Frobenius split

(2) G/P̃ is (G/P,π)-split, where π ∶ G/P → G/P̃ is the canonical map

(3) G/P̃ is a Frobenius cover of G/P

Since G/P can be obtained by base change of a Z-scheme, G/P is isomorphic to

all its Frobenius covers. Therefore (3) states that G/P̃ is isomorphic to G/P as varieties

(but not as G-spaces).

VUFs have rich structure and behave quite differently from the generalized flag va-

rietiesG/P where P is smooth. One can find explicit examples of VUFs in [HL93] which

illustrate that unlike generalized flag varieties, vanishing theorem for ample line bundles

and Kodaira’s vanishing theorem break down.

34



Chapter 4: Motives of Projective Pseudo-Homogeneous Varieties- I

For the rest of this thesis, we assume thatG is a semi-simple algebraic group of inner type

over a perfect field k of characteristic p > 3 (See Remark 4.3.4 for why the assumption

p > 3 is necessary). For a variety Y over k and an extension k′ ⊇ k, we write Yk′ for

Y ×Spec k Spec k′. As before K denotes the algebraic closure of k. We start by recalling

§0.1 here for convenience of the reader.

4.1 Projective Pseudo- Homogeneous Varieties

Definition 8. A G-variety X̃ over k is called a projective pseudo-homogeneous variety

if X̃K ≃ GK/P̃ for some parabolic subgroup scheme P̃ in GK that is not necessarily

reduced.

Such a variety is always smooth since G is smooth (See SGA3, exp VIA, Theorem

3.2). For detailed construction of the quotient of an algebraic group by a subgroup see

Chapter III, §3 of [DG70]. Note that by Proposition 2.1, §3, Chapter III of [DG70],

the condition X̃K ≃ GK/P̃ is equivalent to saying that the action map G(Ω) × X̃(Ω) →

X̃(Ω) × X̃(Ω) is surjective for every algebraically closed field Ω over K. If P̃ is a

parabolic subgroup scheme over K, we will make slight abuse of notation and write G/P̃

for GK/P̃ . As before P denotes the underlying reduced scheme of P̃ . Note that since k
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is perfect, P is a group scheme (See §6 in Chapter VI of [Mil]).

4.2 Projective Homogeneous Variety Corresponding to a Projective Pseudo-

Homogeneous Variety

Definition 9. Given X̃ , a projective pseudo-homogeneous variety for G such that X̃K ≃

G/P̃ , let X denote the unique (see Proposition 1.3 in [MPW96]) projective homogeneous

variety for G, such that XK ≃ G/P where P is the underlying reduced subscheme of P̃ .

We call X the projective homogeneous variety corresponding to X̃ .

By universal property of quotients, there is a canonical G-equivariant finite mor-

phism θ ∶X → X̃ .

Example. Suppose G = SL3,k. Let G/P̃ ⊆ P2 × P2 be given by the equation ∑2
i=0 x

p
i yi = 0

where theG action is g.Ð→x = gp3Ð→x and g.Ð→y = (g−t)p4Ð→y (Here g−t = (g−1)t is the transpose

of the inverse of g. Also by abuse of notation gpn means taking pnth power of entries of

the matrix g). Then P̃ = Stab([1 ∶ 0 ∶ 0] × [0 ∶ 0 ∶ 1]) = {(
∗ ∗ ∗
x ∗ ∗
y z ∗

) ∣xp3 = 0, yp
3 = 0, zp

4 = 0}.

The underlying reduced scheme is the standard Borel P = ( ∗ ∗ ∗
0 ∗ ∗
0 0 ∗

) and the corresponding

homogeneous variety G/P ⊆ P2 × P2 is given by ∑2
i=0 xiyi = 0. This comes with the

standard G-action g.Ð→x = gÐ→x and g.Ð→y = (g−t)Ð→y . We have the canonical G-equivariant

map

G/P → G/P̃

Ð→x ↦Ð→x p3

Ð→y ↦Ð→y p4
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We want to emphasize that by Theorem 3.3.1, the K-varieties G/P̃ and G/P are

not in general isomorphic. Therefore, X and X̃ need not be twisted forms of each other.

4.3 A Motivic Decomposition Theorem for Isotropic G

In this section we assume that G is an isotropic, semi-simple group of inner type over k.

We fix an embedding λ ∶ Gm → G of a k-split torus. Let H denote the centralizer of λ in

G. Then by Theorem 6.4.7 in [Spr09], H is connected and reductive. It is defined over

k by Proposition 13.3.1 of [Spr09]. Recall that if XK ≃ G/P and X̃K ≃ G/P̃ , we have a

canonical G-equivariant finite morphism θ ∶X → X̃ .

Recall from [Ive72] that for a smooth projective variety X equipped with an action

of Gm, the fixed point locus XGm is a smooth closed subscheme of X .

Proposition 4.3.1. LetX and Y be smooth projective varieties equipped with an action of

Gm. Let θ ∶ X → Y be a finite surjective Gm-equivariant morphism. Then the restriction

morphism θ∣XGm ∶XGm → Y Gm is surjective.

Proof. Pick a point y ∈ Y Gm . Clearly Gm acts on the fiber Xy = X ×Y Spec k(y). Since

θ is finite, Xy is finite. Therefore Gm fixes the underlying reduced subschemes of each

point in Xy.

A morphism X → Y of finite type is surjective if and only if the induced map X(Ω) →

Y (Ω) is surjective for every algebraically closed field Ω (EGA IV, Chapter 1, §6, Propo-

sition 6.3.10). Using this we get an easy corollary of the above proposition.

Corollary 4.3.2. With notations as in Proposition 4.3.1, let {Xi}ni=1 and {Yi}mi=1 denote

the connected components of XGm and Y Gm respectively. Suppose θ ∶ X(Ω) → Y (Ω) is
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bijective for every algebraically closed field Ω. Then n = m and after permuting indices,

θ∣Xi
∶Xi(Ω) → Yi(Ω) is also bijective.

Theorem 4.3.3. Let X̃ be a projective pseudo-homogeneous variety for G and let X

be the corresponding projective homogeneous variety. Then each connected compo-

nent of the fixed point locus X̃λ is projective pseudo-homogeneous for H . Moreover

if X̃λ = ∐ Z̃i, then Xλ = ∐Zi where Zi are the projective H-homogeneous varieties

corresponding to Z̃i

Proof. First note that H acts on X̃λ because λ(t) ⋅ h ⋅ x = h ⋅ λ(t) ⋅ x = h ⋅ x ∀h ∈ H, t ∈

Gm, x ∈ X̃λ. Let Y be a connected component of X̃λ. It suffices to show that the action

map H × Y → Y × Y is surjective on Ω-points for every algebraically closed field Ω over

K. By III, §1, 1.15 of [DG70], the G-equivariant morphism θ(Ω) ∶ X(Ω) Ð→ X̃(Ω) is

bijective. Therefore, by Corollary 4.3.2, Xλ(Ω) → X̃λ(Ω) is also bijective. So there

exists a connected component Z of Xλ such that θ ∶ Z(Ω) → Y (Ω) is a bijection. By

Theorem 7.1 in [Bro05], Z is projective homogeneous for H . Therefore the action map

H ×Z → Z ×Z is surjective on Ω-points. We have the following commutative diagram:

H ×Z Z ×Z

H × Y Y × Y

(id, θ) (θ, θ)

The morphisms given by the top arrow and (θ, θ) are surjective on Ω-points as ar-

gued before. Hence we conclude that the bottom arrow is surjective on Ω-points. This
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proves that each Y is projective pseudo-homogeneous for H .

For the second part of the claim note that if x ∈ Z(K), then StabH(x) ⊆ StabH(θ(x)).

This together with the bijectivity of θ ∶ Z(K) → Y (K) shows that Z is the projective ho-

mogeneous variety corresponding to Y .

We now analyze the action of λ on the tangent space at any point in the fixed point

locus X̃λ. As before XK ≃ G/P and X̃K ≃ G/P̃ . Let b ∈ (G/P )λ. Let a ∈ G/P be

the unique point whose stabilizer in GK is P and let b = g ⋅ a for some g ∈ G(K). Then

g−1λg ⊆ T ⊆ P for some maximal torus T . Let T ′ = gTg−1. Let β1, β2,⋯, βn be the

negative roots of GK with respect to T and a Borel B such that T ⊆ B ⊆ P . Recall from

Theorem 6 in [HL93] that to every parabolic subscheme, one can associate a W -function

defined as follows.

Definition 10. (Definition 5 in [HL93]) Write N∗ to signify the set of non-negative integers

together with ∞. Let φ+ denote the set of positive roots of G. A W -function on φ+ is a

function, f , on φ+ with values in N∗ satisfying the condition,

f(β) = inf
α∈supp(β)

f(α)

where supp(β) = {γ ∈ φ+∣β = γ + δ, for some δ ∈ φ+}.

Remark 4.3.4. In order to associate a W -function to a parabolic subgroup scheme as in

Theorem 6 in [HL93], the authors of the paper assume that char K > 3. This assumption

is necessary by Remark 3.1.2.

Let f be the W -function associated to P̃ and let ni = f(−βi). Without loss of

generality, assume that β1, β2,⋯, βm are the negative roots such that f(−βi) < ∞.
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Lemma 4.3.5. With the notations above, there exists a T ′-stable affine open neighborhood

of θ(b) in (G/P̃ )λ parametrized by T ′ - eigen functions with weights pniαi where αi are

characters of T ′. In other words, one can find an open set V = Spec K[X1,X2,⋯,Xm]

containing θ(b) such that

t′ ⋅Xi = αp
ni

i (t′) Xi ∀t′ ∈ T ′

Proof. LetU0
P denote the opposite of the unipotent radical of P . By Theorem 1 in [HL93],

U = U0
P ⋅ θ(a) = Spec K[Y1, Y2,⋯, Ym] is an affine open neighborhood of θ(a) invariant

under T , where

t ⋅ Yi = βp
ni

i (t) Yi ∀t ∈ T

Consider the affine open neighborhood V = gU0
P ⋅ θ(a) of θ(b). Then

T ′ ⋅ V = T ′gU0
P ⋅ θ(a) = gTU0

P ⋅ θ(a) = gU0
P ⋅ θ(a) = V

So V is T ′-invariant. Moreover V = Spec K[X1,X2,⋯,Xm] where Xi = g−1 ⋅ Yi. Let αi

be the character of T ′ defined by αi(t′) = βi(g−1t′g) ∀t′ ∈ T ′. For any point x ∈ V , write

x = gy where y ∈ U . Then

t′ ⋅Xi(x) = t′ ⋅ (g−1 ⋅ Yi)(gy) = Yi(g−1t′gy)

= βp
ni

i (g−1t′g)Yi(y) = αp
ni

i (t′) Xi(x) ∀t′ ∈ T ′

Lemma 4.3.6. For any point b ∈Xλ, the dimension of positive eigenspaces of the λ-action

on the tangent spaces at b and θ(b) are equal.
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Proof. It suffices to prove the lemma over the algebraic closure K where XK ≃ G/P and

X̃K ≃ G/P̃ . So assume that k = K. By Lemma 4.3.5, there exists an affine open cover

U = Spec K[Y1, Y2,⋯, Ym] of b and an affine open cover V = Spec K[X1,X2,⋯,Xm] of

θ(b) parametrized by λ-eigen functions with weights {αi} and {pniαi} respectively. Let

Yi ∈ mb/m2
b and Xi ∈ mθ(b)/m2

θ(b)
denote the cosets of Yi and Xi respectively. Note that

{Yi} and {Xi} form a basis for mb/m2
b and mθ(b)/m2

θ(b)
respectively . It is now easy to see

that the span of Yi is a positive eigenspace for λ if and only if the span of Xi is so. By

taking the dual, we are done.

By Theorem 2.4.2, Theorem 4.3.3 and Lemma 4.3.6, we get the following motivic

decomposition for X̃ .

Corollary 4.3.7. With the notations as in Theorem 4.3.3,

M(X̃) =∐
i

M(Z̃i){ai}

and

M(X) =∐
i

M(Zi){ai}

where Z̃i is projective pseudo-homogeneous for H and Zi is the corresponding projective

homogeneous variety. The twists ai are dimensions of the positive eigenspace of the action

of λ on the tangent space of X at an arbitrary point z ∈ Zi.

Applying the above result inductively, we see that each of the components in the de-

composition are projective (pseudo-) homogeneous for the centralizer Z(S) of a maximal

k-split torus S. By Proposition 2.2 in [BT72], we have an almost direct product decom-

position Z(S) =DZ(S)⋅Z where Z is the center of Z(S) andDZ(S) is the semi-simple
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anisotropic kernel. Since the center of a group is contained in every parabolic subscheme,

it acts trivially on any projective pseudo-homogeneous variety. Hence, each of the Z̃i

(respectively Zi) are projective pseudo-homogeneous (respectively homogeneous) for the

adjoint group of the semi-simple anisotropic kernel. Therefore we conclude:

Corollary 4.3.8. With the notations as in Theorem 4.3.3,

M(X̃) =∐
i

M(Z̃i){ai}

and

M(X) =∐
i

M(Zi){ai}

where each Z̃i (respectivelyZi) is either Spec k or anisotropic projective pseudo-homogeneous

(respectively homogeneous) variety for the semi-simple anisotropic kernel of G.

Proof. From Corollary 4.3.7, each Z̃i is projective pseudo-homogeneous variety for H .

Let (Z̃i)K ≃H/Q̃, for a parabolic subgroup scheme Q̃ of HK . If Z̃i is anisotropic we are

done. Suppose Z̃i is isotropic, i.e., Z̃i has a k-point. Then its stabilizer is defined over

k by Proposition 12.1.2 in [Spr09]. Without loss of generality we can assume that Q̃ is

defined over k. Since k is perfect, the underlying reduced scheme Q is also defined over

k and hence is isomorphic to Q(λ) for some co-character λ of H defined over k (Lemma

15.1.2 in [Spr09]). So H is isotropic. If λ is a central torus, Q(λ) = H and Z̃i ≃ Spec k.

If λ is non-central, then we can inductively use Corollary 4.3.7 to get the result.

4.4 Motivic Decomposition when G is split

In this section we assume that G is split, so that X̃ ≃ G/P̃ and X ≃ G/P . The goal of this

section is to understand the cellular structure of G/P̃ and compute its motive.
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Lemma 4.4.1. X̃ is a cellular variety i.e., it has decomposition into affine cells. Moreover,

the affine cells can be obtained by the image of the Schubert cells inG/P under θ ∶ G/P →

G/P̃ .

Proof. We follow the proof of §2.2 in [Lau97]. We know that X = G/P is cellular be-

causeG/P is a disjoint union of Schubert cells C(w) = UwP /P where U is the unipotent

radical of B. Let X(w) = C(w) be the corresponding Schubert variety. Let X̃(w) be the

scheme theoretic image of X(w) in X̃ = G/P̃ under the canonical map θ ∶ G/P → G/P̃ .

Call it a Schubert variety in X̃ . We get a filtration X̃ = X̃0 ⊇ X̃1 ⊇ X̃2 ⊇ . . . where

X̃i is the union of codimension i Schubert varieties in X̃ and X̃i − X̃i+1 = ∐ θ(C(w)).

Here θ(C(w)) are disjoint because θ is bijective. Moreover θ is U -equivariant and U acts

transitively on θ(C(w)). Therefore by IV.3.16 in [DG70], θ(C(w)) is affine. So X̃ is a

disjoint union of affine cells θ(C(w)).

Lemma 4.4.2. With the notations in the proof of Lemma 4.4.1, the classes of Schu-

bert varieties [X̃(w)] form a basis for the Chow group of G/P̃ . As a consequence

Chi(G/P̃ ) ≃ Chi(G/P ).

Proof. By Example 1.9.1 in [Ful98], it is clear that the classes of Schubert varieties

[X̃(w)] form a basis for Ch∗(G/P̃ ) and we get an isomorphism

Ch∗(G/P ) → Ch∗(G/P̃ )

[X(w)] ↦ [X̃(w)]

Theorem 4.4.3. The motive M(X̃) is split i.e., it decomposes into direct sum of Tate

motives. Moreover,M(X) ≃M(X̃).
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Proof. This follows directly from Corollary 4.3.8. Alternatively, one can also argue as

follows. The fact thatM(X̃) splits into Tate motives follows by Lemma 4.4.1, and The-

orem 2.4.1. Now observe that for any variety whose motive splits into Tate motives, the

rank of the ith Chow group is equal to the number of summands isomorphic to Λ{i}.

Therefore by Lemma 4.4.2,M(X) ≃M(X̃).

4.5 Rost Nilpotence and Krull- Schmidt for Pseudo-Homogeneous Vari-

eties

In this section we prove that Rost nilpotence and Krull-Schmidt holds for projective

pseudo-homogeneous varieties.

Theorem 4.5.1. (Rost Nilpotence for projective pseudo-homogeneous varieties) Let X̃ be

a projective pseudo-homogeneous variety for a semi-simple group G of inner type over k.

Then the kernel of the base change map

End(M(X̃)) → End(M(X̃K))

f ↦ f ⊗K

consists of nilpotents.

Proof. The proof is similar to the one in [Bro05]. For a field extension L/k, let nL denote

the number of terms appearing in the decomposition of Corollary 4.3.8 for the the motive

of the GL-variety X̃L. Clearly, L ⊂M ⇒ nM ≥ nL and the maximal number of terms in

the coproduct occurs precisely when each Z̃i is Spec L. In particular, this happens when

L =K.
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Claim: Set N(d,n) = (d + 1)nK−n where d is the dimension of X̃ . Then, for any mor-

phism f ∈ End(M(X̃)) with f ⊗K = 0, fN(d,nk) = 0.

The claim obviously implies the theorem. Note that when nk = nK ,M(X̃) com-

pletely splits into Tate motives and End(M(X̃)) = Ch0(Spec k)⊕r for some r. There-

fore the claim is valid for nk = nK . Now we use descending induction on n = nk. Let

f ∈ End(M(X̃)) be an endomorphism in the kernel of the base change map. If all com-

ponents Z̃i appearing in the motivic decomposition of Corollary 4.3.8 are isotropic, n is

maximal and the claim is already proved. If not, pick a point z in one of the anisotropic

components Zi and set L = k(z). Over L, Z̃i is isotropic. Therefore, the number ni = nL

of terms appearing in the motivic decomposition of X̃L is strictly greater than n. Thus the

claim holds forM(X̃L) and fN(d,ni)

L = 0. Since N(d,ni) ≤ N(d,n + 1), it follows that

f
N(d,n+1)
L = 0. Now we use Theorem 3.1 in [Bro03] to conclude that the composition

M(Z̃i){ai}
j1Ð→M(X̃) f(d+1)N(d,n+1)

ÐÐÐÐÐÐÐ→M(X̃)

vanishes where the first arrow comes from the coproduct decomposition. Since for each

summand the composition is zero, we are done.

Theorem 4.5.2. The Krull-Schmidt principle holds for any shift of any summand of the

motive of projective pseudo-homogeneous variety for G.

Proof. This follows from Theorem 4.5.1, Theorem 2.2.1 and Theorem 4.4.3.
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Chapter 5: Motives of Projective Pseudo-Homogeneous Varieties- II

As before G is assumed to be inner over k. Therefore by results of §1.1, the ∗-action is

trivial.

5.1 Upper Motives of Projective Pseudo-Homogeneous Varieties

Let X̃ be a projective pseudo-homogeneous variety for G and let X be the corresponding

homogeneous variety. We show that the upper indecomposable motives of M(X̃) and

M(X) are isomorphic. Recall the following well-known fact about parabolic subgroups

([Tit66]).

Fact 5.1.1. Let G be a semi-simple algebraic group over a field k. Let P be a parabolic

subgroup corresponding to subset τ of nodes of the Dynkin diagram (See §1.2). Let P

denote the conjugacy class of P . Then P contains a parabolic subgroup defined over k if

and only if the nodes in τ are circled in the Tits index of G over k and τ is invariant under

the ∗-action of Gal(K/k).

In our case, since G is assumed to be inner over k, the ∗-action is trivial. Let X and X̃ be

as before.

Lemma 5.1.2. Let F be any field extension of k. Then X has an F -point iff X̃ has an

F -point.
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Proof. Clearly if X has an F -point, its image via the canonical map X → X̃ gives an

F -point on X̃ . Now assume that X̃ has an F -point. Let F ′ be the perfect closure of F .

Then by Proposition 12.1.2 of [Spr09] the stabilizer in G of this F -point is defined over

F ′. Without loss of generality we can assume that P̃ is defined over F ′. Since F ′ is

perfect the underlying reduced subscheme P is also defined over F ′. Let τ be the subset

of nodes of Dynkin diagram corresponding to P . Since G is inner over k, it is inner over

F . Therefore the ∗-action is trivial over F . Moreover, by Exercise 13.2.5 (4) in [Spr09],

the Tits index of F ′ and F are the same. Therefore by Fact 5.1.1, the conjugacy class P

of P contains an F -defined parabolic and therefore X has an F -point.

Note that by Theorem 4.5.2, the motiveM(X̃) satisfies the Krull-Schmidt princi-

ple. Therefore we can talk about the unique upper summand UX̃ ofM(X̃).

Corollary 5.1.3. Let X and X̃ be as above. Then in Chow(k,Λ), UX ≃ UX̃ .

Proof. By Theorem 2.3.4, it suffices to show multiplicity one correspondences α ∶ M(X) →

M(X̃) and β ∶ M(X̃) → M(X). Take α to be the correspondence induced from the

canonical map X → X̃ . For β, first observe that X̃ has an k(X̃)-point. Then by Lemma

5.1.2, so does X . Now take β to be the correspondence induced from the rational map

X̃ ⇢X .

5.2 A General Criterion for Isomorphic motives

In this section, we give a characterization of when the motive of a variety is isomorphic

to the motive a projective homogeneous variety.
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Notation: For a variety X , Ai(X,Λ) denotes the ith Chow group of X with coefficients

in Λ graded by codimension. We simply write Ai if X and Λ are clear from the context.

The symbol A≥i denotes ⊕j≥iAj . Similarly define A>i, A≤i and A<i.

Let Ai(X,Λ) denote the ith Chow group of X with coefficients in Λ graded by

dimension. We make similar definitions for A≥i, A>i, A≤i and A<i.

Recall that for a motive M , Chi(M) is defined as Hom(M,Λ{i}) in the category

Chow(k,Λ).

Definition: Let ε be the function on the objects of Chow(k,Λ) defined as follows:

ε ∶ Ob(Chow(k,Λ)) Ð→ Z ⋃ {−∞}

M z→min{i ∣Chi(MK) ≠ 0}

Theorem 5.2.1. Let X be a projective G-homogeneous variety over k. Let Z be any ge-

ometrically split projective k-variety whose motive satisfies the Rost nilpotence principle

such that the following holds in Chow(k,Λ):

1. UX ≃ UZ

2. M(XL) ≃M(ZL) where L = k(X)

ThenM(X) ≃M(Z).

Remark 5.2.2. In the above theorem, M(Z) satisfies Krull-Schmidt by Theorem 2.2.1

and hence the upper motive UZ of Z is well-defined.

Proof. Since X is projective homogeneous variety for G, by Theorem 1.1 of [Kar10], ev-

ery indecomposable summand M ofM(X) is isomorphic to UY {i} for some projective
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homogeneous variety Y corresponding to τ such that τ ⊇ τL. By condition (2), UYL{i}

comes from an indecomposable summand M̃ ofM(Z) (Here UYL denotes the upper mo-

tive of YL. It is not the same as (UY )L. But is the upper motive of (UY )L). We claim

that M ≃ M̃ . It is clear that if M and N are distinct (they may or may not be isomorphic)

indecomposable summands ofM(X), M̃ and Ñ are distinct indecomposable summands

ofM(X̃). This together with condition (2) implies that it suffices to prove the claim to

complete the proof.

The proof of the claim is by induction on ε(M). For the base case ε(M) = 0,

the claim clearly holds by condition (1). Now let M ≃ UY {i} be a summand ofM(X)

as above. Then ε(M) = i and assume that for all indecomposable summands N with

ε(N) < i, N ≃ Ñ . Write M(X) = P ⊕Q where ε(P ′) < i for every indecomposable

summand P ′ of P and ε(Q) ≥ i . Then by induction hypothesis, M(Z) ≃ P ⊕R. By

Theorem 2.2.1, QL ≃ RL. By assumption M is a summand of Q and so M̃ is a summand

ofR. Observe that ε(M̃L) = i as ε(QL) ≥ i. Therefore if π ∈ End(M(Z)) is the projector

giving rise to the summand M̃ , then πL = ∑ bk ×ak ∈ ∑I A
r ×Ar for a multiset I such that

r ≥ i for every r ∈ I and ak ⋅ bj = δkj (Here δkj is the Kronecker delta function).

To complete the proof, it suffices to find α ∶ M(Y ){i} Ð→ M̃ and β ∶ M̃ Ð→

M(Y ){i} such that mult(β ○ α) = 1 (See Theorem 2.3.3).

For a motive N over k, let N denote the motive base changed to L and for a variety

V over k, V denotes V ×Spec k L.

First note that we have a ∈Hom(Λ{i},M(Z)) = Ai(Z) given by Λ{i} ↪ UYL{i} ↪

M(Z) and b ∈ Hom(M(Z),Λ{i}) = Ai(Z) given by M(Z) → UYL{i} → Λ{i} such

that mult(b ○ a) = 1 i.e., a ⋅ b = 1. Observe that with this notation, π = b × a +∑k bk × ak
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where bk × ak ∈ A≥i ×A≥i, a ⋅ bk = 0 ∀bk and ak ⋅ b = 0 ∀ak.

Construction of α:

Let α1 ∈Hom(M(YL){i},M(ZL)) = Adim Z−i(YL×ZL) be given byM(YL){i} →

UYL{i} ↪M(XL)
≃Ð→M(ZL). Then,

α1 ∈ 1 × a +A>0 ×A>i

Let α2 be the image of α1 under the pull back of Chow groups

Adim Z−i(YL ×L ZL) Ð→ Adim Z−i(Spec L(Y ) ×L ZL)

induced by Spec L(Y ) ×L ×ZL → YL ×L ZL ≃ (Y ×Z)L. Then

α2 = Spec L(Y ) × a.

Since τL ⊆ τ , X has an k(Y )-point. So k(Y )(X)/k(Y ) = L(Y )/k(Y ) is purely tran-

scendental. Therefore α2 is k(Y ) rational. So α2 ∈ Adim Z−i(Spec k(Y ) × Z). Let α′ be

any preimage of α2 under the surjective map of Chow groups

Adim Z−i(Y ×Z) ↠ Adim Z−i(Spec k(Y ) ×Z)

induced by Spec k(Y ) ×Z → Y ×Z. Then

α′ ∈ 1 × a +A>0 ×A>i

Let p ∶ M(Z) → M̃ be the projection from our decomposition. Define

α = p ○ α′

Construction of β:

Let β1 ∈ Hom(M(ZL),M(YL){i}) be given byM(ZL)
≃Ð→M(XL) → UYL{i} →
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M(YL){i}. Then,

β1 ∈ b × y +A>i ×A>0

where y is the class of a point in Y . Let β2 be an element in the inverse image of β1 under

the surjective map of Chow groups

Adim Y +i(Z ×X × Y ) ↠ Adim Y +i(ZL × YL)

induced by ZL ×L YL ≃ (Z ×k Y ) ×Spec k(X) → Z ×Y ×X → Z ×X ×Y where the last

map is obtained by switching second and third factors. Then

β2 ∈ b × 1 × y +A>i × 1 ×A>0 +A∗ ×A>0 ×A∗

Recall that π ∈ End(M(Z)) is the projector giving the summand M̃ . Let β3 = β2 ○ π

where β2 is thought of as an element in Hom(M(Z),M(X × Y ){i − dim X}). Then

β3 ∈ p134∗[(b × a × 1 × 1 +∑
k

bk × ak × 1 × 1) ⋅ (1 × b × 1 × y + 1 ×A>i × 1 ×A>0 + 1 ×A∗ ×A>0 ×A∗)]

and hence,

β3 ∈ b × 1 × y +Ai ×A>0 ×A∗ +A>i × 1 ×A>0 +A>i ×A>0 ×A∗

By condition (1) in the hypothesis of the theorem, UX ≃ UZ . This implies by Theorem

2.3.4 that we have a multiplicity 1 correspondence Γ ∈ Adim Z(Z × X) . Then Γ =

1 × x +A>0 ×A>0 where x refers to the class of a point in X .

Now Γ×1 ∈ Adim Z+dim Y (Z×X ×Y ). Define β′ = p13∗[(Γ×1)⋅β3] ∈ Adim Y +i(Z×

Y ) =Hom(M(Z),M(Y ){i}). Then,

β′ ∈ p13∗[(1 × x × 1 +A>0 ×A>0 × 1) ⋅ (b × 1 × y +Ai ×A>0 ×A∗ +A>i × 1 ×A>0 +A>i ×A>0 ×A∗)]
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Therefore,

β′ ∈ b × y +A>i ×A>0

Now define β = β′ ○ q where q ∶ M̃ ↪M(Z) is inclusion map from our decomposition.

We now observe that β ○ α = β′ ○ q ○ p ○ α′ = β′ ○ π ○ α′. Note that

π ○ α′ ∈ p13∗[(1 × a × 1 +A>0 ×A>i × 1) ⋅ (1 × b × a +∑
k

1 × bk × ak)]

and hence,

π ○ α′ ∈ 1 × a +A>0 ×A>i

Finally we see that

β ○ α ∈ p13∗[(1 × a × 1 +A>0 ×A>i × 1) ⋅ (1 × b × y + 1 ×A>i ×A>0)]

This imples,

β ○ α ∈ 1 × y +A>0 ×A>0

Therefore, mult(β ○ α) = 1.

5.3 Motives of Projective Pseudo-Homogeneous vs Homogeneous Vari-

eties

As an application of Theorem 5.2.1, we derive the following main result.

Theorem 5.3.1. Let X̃ be a projective pseudo-homogeneous variety for G and let X

be the corresponding projective homogeneous variety. Then in the category of motives
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Chow(k,Λ)

M(X) ≃M(X̃)

In particular, by Theorem 2.5.2 every indecomposable summand in M(X̃) is a shift of

some upper motive Uτ satisfying τk(X) ⊆ τ .

Proof. We will prove by induction on n = rank(G). The claim is trivially true for n = 0.

Assume that the claim is true for all groups with rank less than n. Let rank(G) = n.

We can assume that X ≠ Spec(k) (otherwise there is nothing to prove). Let L = k(X)

and G′ the anisotropic kernel of GL. Then rank(G′) < rank(G). Now by Corollary

4.3.8, M(X̃L) = ∐iM(Z̃i){ai} and M(XL) = ∐iM(Zi){ai} where Z̃i is projective

pseudo-homogeneous for G′ and Zi the corresponding projective homogeneous variety.

By induction hypothesis, we haveM(Z̃i) ≃ M(Zi) and thusM(X̃L) ≃ M(XL). More-

over by Corollary 5.1.3 UX ≃ UX̃ . Therefore, by Theorem 5.2.1, we are done.

5.4 Examples and Applications

Let A be a central simple algebra of degree n over k. Let X = X(d1, d2,⋯, dm,A) be

the variety of right ideals of reduced dimensions 1 ≤ d1 < d2 < ⋯ < dm ≤ n. Note that

X is projective homogeneous for G = PGL(A). Write XK ≃ G/P for some parabolic

subgroup P . Let A(p) = A ⊗Fr k and X(p) = X ×Fr Spec k where Fr ∶ k → k is the

Frobenius morphism. Then it is easy to see that X(p)
K ≃ G/P̃ where P̃ = GpP and Gp

is the kernel of the Frobenius morphism Fr ∶ G → G(p). Moreover, X is the projective
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homogeneous variety corresponding to X(p).

Recall the following fact from [Flo13] (See also Theorem 3.9 in [KOS76]).

Lemma 5.4.1. (Proposition 3.2 in [Flo13]): Let A be a central simple algebra of degree

n over k. Then A(p) is Brauer equivalent to A⊗p.

An easy consequence of Theorem 5.3.1 is the following.

Corollary 5.4.2. For a central simple algebra A over k of degree n, let B denote the

central simple algebra of degree n that is Brauer equivalent to A⊗p. Then in the category

Chow(k,Λ), the motives of twisted flag varietiesX(d1, d2,⋯, dm,A) andX(d1, d2,⋯, dm,B)

are isomorphic. That is,

M(X(d1, d2,⋯, dm,A)) ≃M(X(d1, d2,⋯, dm,B))

Taking m = 1, we getM(SBd(A)) ≃ M(SBd(B)) for twisted Grassmannians. In par-

ticular, for the case of Severi-Brauer varieties we haveM(SB(A)) ≃M(SB(B)).

Proof. Note that B = A(p) by Lemma 5.4.1. Therefore,

M(X(d1, d2,⋯, dm,B)) ≃M(X(d1, d2,⋯, dm,A(p)))

≃M(X(d1, d2,⋯, dm,A)(p)) (by functoriality of the Frobenius)

≃M(X(d1, d2,⋯, dm,A)) (by Theorem 5.3.1)

The rest follows easily.

Remark 5.4.3. Let A be a central simple algebra over k with exponent (i.e., the order of

its Brauer class as an element in the Brauer group) not dividing p2 − 1. Let X = SB(A)

be the Severi-Brauer variety associated with A and let X(p) = SB(A)(p) ≃ SB(A(p)).
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Then by Corollary 5.4.2, M(X) and M(X(p)) are isomorphic in Chow(k,Λ) for all

coefficient rings Λ that are finite fields (of any characteristic). But they are not isomorphic

in the integral Chow motive category Chow(k,Z). Indeed, if they were isomorphic in

Chow(k,Z), Criterion 7.1 in [Kar00b] would imply thatA(p) is isomorphic either toA or

its opposite Aop. Since A(p) is Brauer equivalent to A⊗p by Lemma 5.4.1, this contradicts

our assumption on the exponent of A. Therefore we get examples of varieties whose

motives are isomorphic over all finite field coefficients but not over integral coefficients.
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Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970, Avec un
appendice ıt Corps de classes local par Michiel Hazewinkel. MR 0302656
(46 #1800)

[EKM08] Richard Elman, Nikita Karpenko, and Alexander Merkurjev, The algebraic
and geometric theory of quadratic forms, American Mathematical Society
Colloquium Publications, vol. 56, American Mathematical Society, Provi-
dence, RI, 2008. MR 2427530 (2009d:11062)

[Flo13] Mathieu Florence, On the symbol length of p-algebras, Compos. Math. 149
(2013), no. 8, 1353–1363. MR 3103068

[Ful98] William Fulton, Intersection theory, second ed., Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathe-
matics [Results in Mathematics and Related Areas. 3rd Series. A Series of
Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR
1644323 (99d:14003)

[GK] Petrov V. Semenov N. Gille, S. and Zainoulline K., Introduction to motives
and algebraic cycles on projective homogeneous varieties.

[Hes81] Wim H. Hesselink, Concentration under actions of algebraic groups, Paul
Dubreil and Marie-Paule Malliavin Algebra Seminar, 33rd Year (Paris,
1980), Lecture Notes in Math., vol. 867, Springer, Berlin, 1981, pp. 55–89.
MR 633514 (82m:14029)

[HL93] William Haboush and Niels Lauritzen, Varieties of unseparated flags, Linear
algebraic groups and their representations (Los Angeles, CA, 1992), Con-
temp. Math., vol. 153, Amer. Math. Soc., Providence, RI, 1993, pp. 35–57.
MR 1247497 (95a:14055)

[Ive72] Birger Iversen, A fixed point formula for action of tori on algebraic varieties,
Invent. Math. 16 (1972), 229–236. MR 0299608 (45 #8656)

[Jan03] Jens Carsten Jantzen, Representations of algebraic groups, second ed., Math-
ematical Surveys and Monographs, vol. 107, American Mathematical Soci-
ety, Providence, RI, 2003. MR 2015057

57



[Kah99] Bruno Kahn, Motivic cohomology of smooth geometrically cellular vari-
eties, Algebraic K-theory (Seattle, WA, 1997), Proc. Sympos. Pure Math.,
vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 149–174. MR 1743239
(2001b:14031)

[Kar00a] N. A. Karpenko, Cohomology of relative cellular spaces and of isotropic
flag varieties, Algebra i Analiz 12 (2000), no. 1, 3–69. MR 1758562
(2001c:14076)

[Kar00b] Nikita A. Karpenko, Criteria of motivic equivalence for quadratic forms
and central simple algebras, Math. Ann. 317 (2000), no. 3, 585–611. MR
1776119 (2001j:14028)

[Kar00c] , On anisotropy of orthogonal involutions, J. Ramanujan Math. Soc.
15 (2000), no. 1, 1–22. MR 1751923

[Kar10] , Upper motives of outer algebraic groups, Quadratic forms, linear
algebraic groups, and cohomology, Dev. Math., vol. 18, Springer, New York,
2010, pp. 249–257. MR 2648730 (2011g:14008)

[Kar13] , Upper motives of algebraic groups and incompressibility of Severi-
Brauer varieties, J. Reine Angew. Math. 677 (2013), 179–198. MR 3039776

[Kar16] , Incompressibility of products of pseudo-homogeneous vari-
eties, Canad. Math. Bull., (2016), http://dx.doi.org/10.4153/
CMB-2016-024-4.

[KMRT98] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tig-
nol, The book of involutions, American Mathematical Society Colloquium
Publications, vol. 44, American Mathematical Society, Providence, RI, 1998,
With a preface in French by J. Tits. MR 1632779 (2000a:16031)

[KOS76] M. A. Knus, M. Ojanguren, and D. J. Saltman, On Brauer groups in char-
acteristic p, Brauer groups (Proc. Conf., Northwestern Univ., Evanston, Ill.,
1975), Springer, Berlin, 1976, pp. 25–49. Lecture Notes in Math., Vol. 549.
MR 0429859 (55 #2869)

[KR94] Ina Kersten and Ulf Rehmann, Generic splitting of reductive groups, Tohoku
Math. J. (2) 46 (1994), no. 1, 35–70. MR 1256727

[Lau93] Niels Lauritzen, Splitting properties of complete homogeneous spaces, J. Al-
gebra 162 (1993), no. 1, 178–193. MR 1250534 (95f:14095)

[Lau96] , Embeddings of homogeneous spaces in prime characteristics,
Amer. J. Math. 118 (1996), no. 2, 377–387. MR 1385284 (97b:14056)

[Lau97] , Schubert cycles, differential forms and D-modules on varieties of
unseparated flags, Compositio Math. 109 (1997), no. 1, 1–12. MR 1473603
(98j:14071)

58



[Mil] J.S. Milne, Basic theory of affine group schemes, http://www.jmilne.
org/math/CourseNotes/AGS.pdf.

[MPW96] A. S. Merkurjev, I. A. Panin, and A. R. Wadsworth, Index reduction formu-
las for twisted flag varieties. I, K-Theory 10 (1996), no. 6, 517–596. MR
1415325

[Ros] Markus Rost, The motive of a Pfister form, https://www.math.
uni-bielefeld.de/˜rost/motive.html.

[SdS03] Carlos Sancho de Salas, Complete homogeneous varieties: structure and
classification, Trans. Amer. Math. Soc. 355 (2003), no. 9, 3651–3667 (elec-
tronic). MR 1990167 (2004d:14072)

[Spr09] T. A. Springer, Linear algebraic groups, second ed., Modern Birkhäuser
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