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ABSTRACT

Title of Dissertation: OPTIMAL PREVENTIVE MAINTENANCE

POLICIES FOR UNRELIABLE QUEUEING

AND PRODUCTION SYSTEMS

Xiaodong Yao, Doctor of Philosophy, 2003

Dissertation directed by: Professors Steve I. Marcus and Michael C. Fu

Department of Electrical and Computer Engineering

Preventive Maintenance (PM) models have traditionally concentrated on uti-

lizing machine “technical” state information such as the degree of deterioration.

However, in real manufacturing systems, additional system operational informa-

tion such as work-in-process (WIP) inventory levels critically impact actual PM

decisions. Surprisingly, the literature on models incorporating this important as-

pect is relatively sparse. This thesis attempts to fill some of the research gaps in

this area by considering problems of optimal preventive maintenance explicitly

under the context of unreliable queueing and production-inventory systems.

We propose a two-level hierarchical modeling framework for PM planning and

scheduling problems. In the higher level, our objective is to characterize structure

of optimal PM policies. We start with a simple case in which queueing is not



taken into account in the model. We show that a randomized PM policy, like

the widely used “time-window” policy in industry, is in general not optimal. We

then consider the problem of optimal PM policies for an M/G/1 queueing system

with an unreliable server. The decision problem is formulated as a semi-Markov

decision process. We establish some structural properties, e.g., “control-limit”

type structure, that optimal policies will satisfy.

We then take the optimal PM problem a step further by considering optimal

joint PM and production control policies for unreliable production-inventory

systems with time-dependent or operation-dependent failures. We show the

optimal joint policies retain the “control-limit” type structure in terms of the PM

portion of the policy. For the production portion of the policy, some properties

are also derived, but numerical studies show that in general optimal policies have

more complicated structure than the simple control-limit form.

The last part of the thesis is devoted to the lower level of the framework

where the objective is to optimally schedule multiple PM tasks across a group of

tools. We take into account information such as interdependence of PM tasks,

WIP data and resource constraints, and formulate the problem as a mixed-

integer program. Results of a simulation study comparing the performance of

the model-based PM schedule with that of a baseline reference schedule are

presented to illustrate the fitness of our solutions.
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Chapter 1

Introduction

The main problems we study in this research concern optimal Preventive Main-

tenance (PM) under the context of unreliable queueing or production systems.

This research has been motivated by the challenging problem of optimal PM

planning and scheduling in semiconductor manufacturing. The reliability of

equipment in semiconductor manufacturing fabs has become an important issue

in yield improvement, cost reduction, and cycle time reduction. The fabrication

equipment is extremely sophisticated. It requires extensive PM and calibration,

but is still subject to unpredictable failures. The unpredictable equipment down

time has been identified as the main cause of uncertainty in semiconductor man-

ufacturing [55]. A “good” PM schedule can increase tools’ availability by trading

off between the “planned” unproductive downtime (due to PM) versus the risk

of much costlier “unplanned” downtime (due to tools’ failure). Thus, in order

to maximize the profits from fabs operation, PM tasks have to be scheduled

carefully and comprehensively.

Two distinguishing features of fabs make PM scheduling a challenging task.

First, a fab is a highly integrated system in the sense that it is a large-scale
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re-entrant system, involving about ten to twenty stations (modules) and a hun-

dred or more stages of processing for each wafer [4]. These stations are highly

coupled by re-entrant wafers and processing steps. Second, many new advanced

techniques have been deployed on the shop floor, such as the wide use of clus-

ter tools. A cluster tool is a highly integrated tool that is composed of several

chambers and robots, where different PM tasks on different chambers have to be

coordinated carefully in order to maximize the availability (and hence through-

put) of the entire tool. The increasing complexity and integration of fab systems

and tools call for new operational models to be applied to PM planning and

scheduling in semiconductor manufacturing.

Interestingly, our literature survey reveals that optimal PM problems have

not been addressed sufficiently for modern manufacturing systems, such as semi-

conductor manufacturing fabs. In the effort to obtain optimal PM policies, con-

ventional maintenance theories have concentrated on utilizing data solely on

the reliability of machines. This approach has been very successful in dealing

with single-unit systems [56], where the status of unreliable devices (machines)

is of most interest. Although there are also many PM models developed for

multi-unit (multi-component) systems, most of them focus on group/block or

opportunistic maintenance that make use of economies of scale to perform pre-

ventive replacement at the failure of one unit, or on the effect of repairman/

spare parts inventory on maintenance policies; see the survey paper [14] and the

references therein. Conventional methods have ignored the fact that each tool is

only a part of the whole production system, and so the entire state of the system,

such as the operating status of up-stream or down-stream tools, as well as buffer

levels, has significant impact on PM for that tool and should be incorporated
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into the PM policy in order to achieve maximal overall equipment effectiveness.

Queueing systems, on the other hand, have long been used in modeling com-

plex manufacturing systems and computer systems [32, 13]. Most results have

been derived either under the assumption of reliable servers, or of unreliable

servers but no PM considered. A very similar class of problems is that of queue-

ing systems with server vacations, where server vacations can be viewed as server

breakdowns [19, 2, 20, 21]. However, there is very little literature on PM policies

for unreliable queueing systems. As a matter of fact, optimal PM policies and

their performance evaluation have not been investigated under the context of

queueing systems until very recently [24, 23].

Our approach to optimal PM problems in the context of queueing and pro-

duction systems differs from other work in that that we believe the system’s “op-

erating” information, specifically, Work-In-Process (WIP) level or queue length,

has an important effect on the PM decision-making process, and thus should be

reflected in the PM policies. In our models developed in this thesis, we include

this information explicitly into the system’s state. Essentially, we expand the

state space of PM decision problems to two dimensions: machine deterioration

degree (“technical” state) and system buffer level (“operating” state). This for-

mulation increases the difficulty of finding an optimal policy. It is thus our main

research objective to investigate structural properties of optimal PM policies.

The research reported in this thesis is part of a comprehensive effort at devel-

oping models, algorithms and software tools for PM scheduling in semiconductor

manufacturing. Our research was funded by the joint Semiconductor Research

Corporation (SRC) & International SEMATECH (ISMT) “Factory Operations

Research Center” (FORCe) program.
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1.1 Hierarchical PM Planning and Scheduling

in Semiconductor Manufacturing

In semiconductor manufacturing, hierarchical planning and scheduling for main-

tenance activities is common practice. The vast majority of PM tasks follow a

“generalized age replacement” structure, in which a PM is scheduled for a time

after a tool’s “age” exceeds some threshold, but there is flexibility on the actual

start time within some associated interval. Here, “age” means calendar-time or

operation history, according to the type of PM. In semiconductor manufacturing

practice, this is often called a “time window” policy, where such a window is

associated with each PM task. Usually, for each PM task, its frequency, or in-

terval between two consecutive PM windows, is planned first. The exact time to

do a PM is then scheduled within the time window by taking into account other

factors, such as WIP levels and interdependence among different PM tasks. It

turns out that this hierarchical structure is necessary for dealing with the com-

plexity of complicated PM scheduling in semiconductor fabs, for example, the

challenging task of PM scheduling for cluster tools.

The semiconductor industry practice motivates us to propose a two-level

hierarchical modeling framework to model the structure. The framework is il-

lustrated in Figure 1.1 and its components are explained below.

The goal of the higher level planning model is to obtain optimal policies

for PM tasks. Depending on different operations objectives, the policy could

be optimized within a preferred policy family, for example, a generalized age-

replacement policy, or the so-called time-window policy. Differing from conven-

tional PM models [43, 56, 14], which include only the system’s “technical” state

4
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Figure 1.1: Two-level hierarchical modeling framework for PM planing and

scheduling

information, the PM modeling should consider the system’s “operating” states

and “technical” states simultaneously. The higher level model takes tool failure

processes and incoming demand processes (possibly stochastic) together with

appropriate system objective functions as model inputs, and generates an opti-

mized PM policy. In order to obtain computationally tractable models, under

the hierarchical framework, the information about interdependence among vari-

ous PM tasks and other constraints is ignored intentionally in the higher level,

and be handled by the lower level scheduling model.

It is up to the lower level scheduling model to determine the exact time to

do a PM by considering other factors that have been ignored in the upper level

model. For example, in the context of cluster tools, the scheduling model will

consider the interdependence of different PM tasks in terms of their joint im-

pact on the entire tool’s throughput, as well as the match between the tool’s
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availability and projected incoming WIP. The scheduling model obtains optimal

PM schedules, under some objective function and resource constraints. Math-

ematical programming can be used to formulate such models, and we develop

a mixed integer program to solve the scheduling problem for a group of cluster

tools. Our solution will be presented in Chapter 6.

It is worth pointing out that the hierarchical framework can be interpreted

from other perspectives as well. For example, from the viewpoint of model

computation, the higher level is operating at a slower time scale with time unit

possibly in weeks, whereas the lower level is operating at a faster time scale with

time unit likely in shifts/days.

1.2 Contributions of the Thesis

The main contributions of the thesis are as follows:

• We develop a Semi-Markov Decision Process (SMDP) model for the prob-

lem of finding optimal PM policies for an M/G/1 queue with an unreliable

server. We prove in Theorem 3.2 that under some conditions, the optimal

PM policy has a “control-limit” structure in the dimension of system “tech-

nical” state, such that for fixed queue length, if and only if the machine

(server)’s age is above the control-limit (threshold), then it is optimal to

do PM.

• We study joint PM and production control policies for production-inventory

systems with an unreliable machine. We develop two Markov Decision Pro-

cess (MDP) models for systems with time-dependent failures and operation-

dependent failures, respectively. We obtain several results on the structure

6



of optimal joint PM and production control policies. We prove again the

“control-limit” structure of the optimal joint policies as stated in Theorem

4.1 and 4.4. Other structural results regarding optimal policies are shown

as in Proposition 4.1 and Theorems 4.3 and 4.5.

• For a single machine case, we prove in Theorem 3.1 that the widely used

“time-window” policy is not optimal. This result extends Barlow and

Proschan’s theorem to a more general problem structure.

• We develop a mixed integer program (Model MIP1) in Chapter 5 for op-

timal PM scheduling in fabs, especially for a group of cluster tools. Our

prototype implementation and preliminary simulation study suggest our

solutions can be a significant aid for (human) decision makers to rule out

errors and oversights, and have an impact on practical use.

• We have also proposed a decomposition approach to the practical problem

of PM planning and scheduling in semiconductor manufacturing, i.e., a

two-level hierarchical modeling framework. At the higher level is a plan-

ning model used to optimize PM policies, whereas at the lower level is a

scheduling model used to project the best time to do specific PM tasks.

1.3 Organizations of Chapters

The remainder of the thesis is organized as follows.

Chapter 2 provides some technical background. It starts with a brief in-

troduction of Markov decision processes (MDP) and Semi-Markov decision pro-

cesses (SMDP), and some well-known results about conditions on monotonic
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policies, followed by a literature survey on PM models.

Chapter 3 contains the results we achieved on optimal PM policies for unreli-

able queueing systems in different problem settings. We first study the simplest

case in which queueing has not been taken into account, and we prove that there

exists a deterministic optimal PM policy. We then study optimal PM policies for

an M/G/1 queueing system with an unreliable server (machine). A discounted

SMDP model is developed for the optimization problem. Under some conditions,

we show that for fixed queue length, there exists a control-limit such that if and

only if the machine’s age is greater than the control-limit, then it is optimal

to do PM. A simplified discrete-time queueing model is also discussed. With a

simplified cost structure and system stochastic processes, more properties of the

optimal cost function and corresponding optimal policies are established.

In chapter 4, we add a new dimension to the optimal PM problem. Previ-

ously, we assume the system’s production control policy is fixed. In this chapter,

we start to look at joint PM and production control policies, and we derive some

structural properties that an optimal joint PM and production control policy

will have. We first study an unreliable production-inventory system that experi-

ences time-dependent failures, and some properties of an optimal joint policy are

derived. Later on, we consider another unreliable production-inventory system

that experiences operation-dependent failures. Numerical examples are provided

to illustrate the structure of optimal policies.

In chapter 5, we solve an optimal PM scheduling problem for cluster tools in

semiconductor manufacturing fabs. A Mixed-Integer Programming (MIP) model

is developed in detail. Interdependence among different PM tasks, production

planning data such as projected WIP, manpower constraints, and associated PM

8



costs, are incorporated in the MIP model. After an appropriate transformation,

the model can be solved using any commercial LP/IP software. Results of a

simulation study comparing the performance of the model-based PM schedule

with that of a baseline reference schedule are presented to illustrate the usefulness

of our solutions.

Chapter 6 concludes this thesis with a summary of this research work. Some

future work relevant to this research is also discussed briefly.
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Chapter 2

Preliminaries

Fundamentally, finding optimal PM policies is a sequential decision process in the

presence of uncertainty. Examples of uncertainties are the stochastic processes

of machine failures and the randomness of projected demand or work-in-process

(WIP). Sequential decision problems can be well formulated as MDPs or SMDPs

[44, 10]. MDP and SMDP models enable us to evaluate rigorously a trade-off

between immediate and future benefits and costs, and they provide analytic

and computational tools to investigate structures of optimal cost functions and

policies.

In this chapter, we will first provide a brief introduction to MDP and SMDP,

as well as a discussion of monotonic policies. A literature review on various PM

models and policies is then presented.
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2.1 MDP

The optimization problem for system maintenance is to a large extent a sequen-

tial decision problem, as the decision to do PM or not to do PM has to be made

sequentially as time goes on. Many sequential decision problems can be formu-

lated as MDP problems. A general MDP can be characterized as a five-tuple

< X ,U , g,Q,N >, where X is the state space, U a set of actions (controls), g

a one-stage cost function, Q the state transition function, and N the problem

horizon.

Let us consider a discrete-time dynamic system given by:

xk+1 = f(xk, uk, wk), k = 0, 1, . . . , (2.1)

where for all k, xk ∈ X is the system state, uk ∈ U(xk) ⊆ U the system control,

and wk ∈ D the random disturbance. For the sake of simplicity, we assume D is

a countable set, and wk, k = 0, 1, . . . , are i.i.d. The state transition function Q
can be characterized by the distribution of wk and the function f .

We are particularly interested in MDP problems with infinite horizon, be-

cause their optimal policies are typically stationary, and thus the implementa-

tion of optimal policies is often simple. There are basically two classes of infinite

horizon problems.

The first class is the discounted cost problem given by:

Jπ (x0) = lim
N→∞

E

[
N−1∑
k=0

(
βkg(xk, µk(xk))

) | x0

]
, (2.2)

where Jπ(x0) denotes the cost associated with an initial state x0 and a policy

π = (µ0, µ1, . . .) and 0 < β < 1 is discount factor. A stationary policy has the

form π = {µ, µ, . . .} and its corresponding cost function is denoted by Jµ. Let
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J∗(x) be the optimal cost functions, defined by:

J∗(x) = inf
π

Jπ(x). (2.3)

We say µ is optimal if Jµ(x) = J∗(x) for all states x.

The second type of problem is the average cost problem whose cost function

under a policy π is given by:

Jπ (x0) = lim
N→∞

1

N
E

[
N−1∑
k=0

(g(xk, µk(xk))) | x0

]
. (2.4)

The objective is to find a policy π to achieve the optimal average cost J∗(x) for

all states x. Again, π is usually a stationary policy denoted by µ.

2.1.1 Bellman’s Equation and Value Iteration

In the following discussion, we concentrate on the discounted MDP problem

only. Furthermore, we assume the cost per stage g is non-negative, but possibly

unbounded, as stated in the following assumption.

Assumption P:(Positive) The cost per stage g satisfies

g(x, u) ≥ 0, for all (x, u) ∈ X × U . (2.5)

It is a well-known result that the optimal cost function (2.3) satisfies Bell-

man’s equation.

Theorem 2.1. Under the Assumption P, the optimal cost function J∗ satisfies

J∗(x) = inf
u∈U(x)

E {g(x, u) + β · J∗ (f(x, u, w))} , x ∈ X . (2.6)

Proof. see Proposition 1.1, Chapter 3, Vol. II of [10].
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Note: Bellman’s equation is often written as

J∗ = TJ∗,

where T is a mapping defined by

(TJ)(x) = inf
u∈U(x)

E {g(x, u) + β · J (f(x, u, ω))} , x ∈ X (2.7)

Value Iteration Algorithm

The value iteration method is a computational algorithm for solving Bell-

man’s equation. It proceeds as follows. Let J0 be the zero function on the state

space X ,

J0(x) = 0, x ∈ X . (2.8)

Then under Assumption P, we have

J0 ≤ TJ0 ≤ T 2J0 ≤ · · · ≤ T kJ0 ≤ · · · ,

and denote the limit function by

J∞(x) = lim
k→∞

(T kJ0)(x), x ∈ X . (2.9)

The value iteration method converges to the optimal cost function J∗ under

some sufficient conditions as stated in the following theorem; see Proposition 1.6

in Chapter 3, Vol. II of [10].

Theorem 2.2. Under Assumption P, if the control set U is finite for every

x ∈ X , then

J∞ = TJ∞ = J∗.

If the control set is not finite, then it can also be shown that the value iteration

converges to the optimal cost function J∗ under other conditions; please refer to

the Sec. 3.1 in Chapter 3, Vol. II of [10] for more details.

13



2.2 SMDP

An important feature of MDP problems is that the underlying probability struc-

tures can be modeled as Markov chains. However, many sequential decision

making problems have underlying probability structures that cannot be charac-

terized by Markov chains, such as systems with sojourn times that are drawn

from general probability distributions other than exponential distributions, e.g.,

the service time for an M/G/1 queue. Such problems can often be modeled as

SMDP. SMDPs can be regarded as a generalization of MDP models, where the

times between transitions are general random variables (if the random variables

are exponentially distributed, then the problem can be formulated easily as a

MDP problem). The random variables may depend on the current state, the

action taken, and even the next state.

Considering a system with a discrete state space. The transition distribution

functions Qij(τ, u) specify the joint distribution of the transition interval and

the next state for a given state-action pair (i, u), that is:

Qij(τ, u) = Pr (tk+1 − tk ≤ τ, xk+1 = j | xk = i, uk = u) . (2.10)

One form of discounted cost problem for SMDP is:

Jπ(x0) = lim
N→∞

E

[∫ tN

0

e−βtg(x(t), u(t)) dt | x0

]
. (2.11)

where tN is the completion time of Nth transition, and β > 0 the discounting

parameter.

Let

mij(u) :=

∫ ∞

0

e−βτQij(dτ, u), (2.12)
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and denote by G(i, u) the expected single stage cost corresponding to (i, u),

which is given by:

G(i, u) := g(i, u) ·
∑

j

∫ ∞

0

(∫ τ

0

e−βt dt

)
Qij(dτ, u),

= g(i, u) ·
∑

j

∫ ∞

0

1 − e−βτ

β
Qij(dτ, u). (2.13)

Under some mild conditions (see Chapter 5 in [10]), the discounted cost

problem is equivalent to an ordinary MDP problem, i.e., J∗ is the unique solution

of following Bellman equation:

J(i) = inf
u

[
G(i, u) +

∑
j

mij(u)J(j)

]
.

For the average cost problem, we have

Jπ(x0) = lim
N→∞

1

E[tN ]
E

[∫ tN

0

g(x(t), u(t)) dt | x0

]
. (2.14)

If the state space and action space are finite, under the assumption of a

unichain policy, i.e., a policy whose associated Markov chains have a single re-

current class, the average cost problem can be transformed to an equivalent MDP

problem via the embedded Markov chain; see [10] for more details.

2.3 Monotonic Policies

The literature on maintenance theory suggests that monotonicity properties are

very common among maintenance policies. For one-dimensional problems, a

monotone policy is often in the form of a control-limit; for two-dimensional

problems, it is often in the form of a switching curve [28]. The formulations of

MDP and SMDP and the corresponding computational algorithms (specifically,
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value iteration) are an important vehicle for us to exploit the structure of optimal

policies.

It has been observed by many researchers that submodularity of cost (value)

functions is the key in proving the existence of a monotonic optimal policy [28,

62, 3, 25].

A submodular function is defined on a lattice set.

Definition (Lattice): A partially ordered set Ω is a lattice if x∧ y ∈ Ω and

x∨ y ∈ Ω for all x and y in Ω, where x∧ y = sup{z|z ≤ x, z ≤ y, z ∈ Ω}, x∨ y =

inf{z|z > x, z > y, z ∈ Ω}. If Ω ⊆ R, then x ∧ y = min(x, y), x ∨ y = max(x, y).

The following definition of submodular function is due to [54]:

Definition (Submodular function): Let g be a real-valued function whose

domain is a lattice Ω. Then g is submodular if

g(x ∧ y) + g(x ∨ y) ≤ g(x) + g(y),

for all x and y in Ω. If −g is submodular, then g is supermodular.

Using submodularity of value functions, sufficient conditions for a monotonic

optimal policy can be established under a general dynamic programming setting

as follows; see also [30].

Consider the dynamic programming recursion:

J∗
n(x) = inf (Jn(x, u) : u ∈ U(x)) x ∈ X ⊂ R, (2.15)

Jn(x, u) = g(x, u) + βE
[
J∗

n−1 (f(x, u, w))
]

(x, u) ∈ C ⊂ R2, (2.16)

where U(x) is the set of all actions for state x, and C = {(x, u) : x ∈ X , u ∈ U(x)}
the state-action space. The system state at the next stage when the system’s

current state is x and action u is applied, f(x, u, w), is a r.v., taking values in
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X . Denote the tail distribution of f(x, u, w) by:

γy(x, u) := Pr (f(x, u, w) > y) . (2.17)

Definition (Lower semi-continuous): A real-valued function h(·) is lower

semi-continuous at x ∈ R, if for all ε > 0, there is δ > 0 such that h(x) ≤ h(y)+ε

for all y with |x − y| < δ.

Definition (Contracting set): The collection of sets {U(x) : x ∈ X} is

contracting if x ≤ x′ implies U(x) ⊇ U(x′).

Definition (Ascending set): The collection of sets {U(x) : x ∈ X} is

ascending if x ≤ x′, b ∈ U(x), and b′ ∈ U(x′) =⇒ b∧b′ ∈ U(x) and b∨b′ ∈ U(x′).

The following theorem can be found in [30] (see Theorem 8-5, pp. 381).

Theorem 2.3. Suppose for each x ∈ X that U(x) is compact (i.e., closed and

bounded) , Jn(x, ·) is lower semi-continuous for each n ∈ Z+, the state-action

space C is a lattice, J∗
0 (·) is non-decreasing and bounded below on X , the inf in

the above DP recursion is attained at all x ∈ X , and

• g(·, u) is non-decreasing for each u,

• g(·, ·) is submodular and bounded below,

• γy(·, ·) is submodular on C for each y,

• γy(·, u) is non-decreasing for each y and u,

• {U(x) : x ∈ X} is contracting and ascending.

Then for each n there exists µ∗
n(·) non-decreasing on X such that

J∗
n(x) = Jn(x, µ∗

n(x)).
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Submodular functions play an important role in the work of Altman and

Stidham [3] on sufficient conditions for monotonic optimal policies for two-action

Markov decision processes. They consider a discrete time MDP with action

space U = {0, 1}. They point out that, under some appropriate conditions, the

submodularity of Jn(x, u) can be propagated to the next stage, and as a result,

a monotonic optimal policy can be derived. Roughly, for the MDP with binary

actions, if transition probabilities are stochastically monotone, and g(x, u) is

submodular in (x, u), it is reduced to checking whether or not

ξ(x) := g(x, 1) + βE [Jn(f(x, 1), 0)] − g(x, 0) − βE [Jn(f(x, 0), 1)]

is monotone in x ∈ X . ξ(x) represents the difference in expected total discounted

cost between taking action 0 now and action 1 in the next stage, and taking

action 1 now and action 0 in the next stage, and then following an optimal

policy thereafter. In general, proving this condition is a very complicated task.

It is worth noting that these established conditions are basically for problems

with one dimensional state space. For models with two-dimensional state space,

we need to define the binary relation of � first on the space, for example, we

can define (i1, n1) � (i2, n2) if and only if i1 ≤ i2 and n1 ≤ n2.

2.3.1 Stochastic Order Relations

In proving monotonic structures of optimal value functions or optimal policies,

we often need to make a comparison between two random variables. There are

three types stochastic order relations that are commonly used: stochastically

larger, hazard-rate ordering, and likelihood-ratio ordering.

The following definitions are based on the materials by Sheldon Ross; see the

18



Appendix in [46].

Definition (Stochastically Larger): The random variable X is stochastically

larger than the random variable Y, written as X ≥st Y , if

Pr(X > a) ≥ Pr(Y > a), for all a.

The next theorem provides an equivalent definition for stochastically larger.

Theorem 2.4. X ≥st Y ⇔ E(f(X)) ≥ E(f(Y )) for all increasing functions f .

The hazard-rate ordering relation is defined among non-negative random vari-

ables only. Let X be such a random variable with distribution F and density f .

The hazard (or failure) rate function of X is defined by

λ(t) =
f(t)

1 − F (t)
.

Definition (Hazard-Rate Ordering): Let λX(t) and λY (t) be the hazard-rate

functions of X and Y . We say X is larger than Y in the sense of hazard-rate

ordering, denoted by X ≥HR Y , if

λX(t) ≥ λY (t), for all t ≥ 0.

Another stochastic order relation is called Likelihood-Ratio ordering, also

defined for non-negative random variables.

Definition (Likelihood-Ratio Ordering): Let f and g be the density func-

tions of X and Y , respectively. We say that X is larger than Y in the sense of
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likelihood ratio, denoted by X ≥LR Y , if

f(x)

g(x)
≤ f(y)

g(y)
, for all x ≤ y.

It can be easily shown that the following relations exist among the above

three orderings:

X ≥LR Y ⇒ X ≤HR Y ⇒ X ≥st Y. (2.18)

2.4 Literature Review

In recent years, there has been increasing interest in investigating optimal main-

tenance policies for production-inventory systems. As we have pointed out pre-

viously, in conventional models, system states often include only the “technical”

information of the system, i.e., deterioration degree or age of the machine. In

the context of production systems, it is natural to include in the system state

both “technical” information and “operating” information about the system, e.g.

inventory (buffer) levels. This section is divided into two parts, with the first

part devoted to the classic PM models, and the second one focused on the more

recent work that studies maintenance policies for production systems.

Before we proceed, there are a couple of related terms that need to be defined.

Two types of maintenance are categorized, i.e., PM and corrective maintenance

(CM). A repair activity performed at system failures falls into the class of CM.

Other repair activities performed before system failures are called PM. Unless

specifically defined, the term “repair” does not necessarily mean a CM. It can be

also a PM, for example, a deteriorated machine can be “repaired” to an upgraded

status before it fails.
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2.4.1 Classic PM Models

Maintenance theory has a well-established body of literature. Many maintenance

models have been developed and applied in manufacturing and logistic systems,

since the pioneering work by Barlow and Proschan [6] in the area of reliability.

Four excellent survey papers since the 1960s [37, 43, 56, 14] provide a wide

range of models describing the degrading process of equipment, cost structure

and admissible maintenance actions.

A large class of models falls into the so-called inspection model [56]. In

an inspection model, usually two decisions have to be made, i.e., when to do

inspection, and when to do preventive maintenance. Many inspection models are

in the form of Markov Decision Processes, which is a natural way to formulate

maintenance problems, and these models trace their origin to the basic model

introduced by Derman [18]. The basic model is a discrete-time Markov chain.

At each time point, a decision is made, i.e., to replace or continue to let system

run. If the device is replaced, then the system moves into the “new” state; if

“continue to run”, then it deteriorates from state i to j with some probability

pij in one period. Costs considered are only preventive replacement cost and

failure replacement cost, which is greater than preventive replacement. Under

the objective of minimizing expected long run average cost, and fairly realistic

conditions, such as increasing failure rate (IFR), the optimal policy is proved to

be of “control-limit” form. A “control limit” policy is defined as follows:

Control Limit Policy: There exists a state k∗ (control limit) such that if the

observed state is k ≤ k∗, then it is optimal to replace; otherwise it is optimal to

“continue”.
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This basic model has been extended to include the case where the state

of a device is not always known at each time period. Since inspection is a

costly activity, a decision should be made when to inspect the device. Now at

each decision epoch, there are three admissible actions: repair (replacement),

inspection or doing nothing. The system state becomes a pair (i, k), where i

denotes the status of the system, k the number of time periods since the last

inspection. Under the action of repair, state (i, k) moves to (0, 0) with probability

1; under the action of inspect, state (i, k) moves to (j, 0) with probability pij(k+

1) ; lastly, under the action of doing nothing, the system moves from state (i, k) to

(i, k+1) with probability 1. The cost structure includes repair cost and operating

cost (both dependent only on system status), as well as inspection cost, which

is a constant. It has been shown the optimal policy is often a monotonic policy.

Recently, Stadje and Zuckerman(1996) [52] proposed a generalized mainte-

nance model with a largely extended action space by permitting at any stage the

system to be restored to any state that is better than its current one, so that the

degree of repair becomes a decision variable. They assume the state of system

is always known with certainty, and thus no inspection activity is considered.

Maintenance models with imperfect observation of states are also studied. These

models have been formulated as partially observed Markov decision processes,

cf. [51, 40]. By introducing a new information vector, partially observed Markov

decision processes can be transformed to standard MDP problems.

Shock models are another type of models used commonly in the literature,

cf. [53, 56]. Instead of simply assuming the system state undergoes deterioration

according to a Markov chain, shock models try to model system deterioration due

to randomly occurring shocks. Each shock causes a random amount of damage to
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the system, and when damage is accumulated to some degree, the system fails.

The arrival process of shocks, which can be Poisson or non-Poisson, plays an

important role in model development. Accordingly, the model can be formulated

as a Markov decision process or a semi-Markov decision process problem. Again,

it has been shown the optimal policies are a control-limit policy.

Ozekici (1995) [41] studies optimal maintenance policies in random environ-

ments. The so-called intrinsic age of a device, which ticks differently in different

environments to measure the intrinsic age of the device, is introduced to reflect

the deterioration and failure processes dependency on random environments.

The intrinsic age is represented by the cumulative hazard accumulated in time,

and thus the lifetime cumulative distribution function. Moreover, the random

environment is modeled by a semi-Markov process. Environment states take val-

ues in a discrete set, and with a given failure rate function. Decision epochs are

restricted only when the environment state changes. A Markov renewal process

has been formulated, and for the discounted cost problem with infinite horizon,

the control limit type optimal replacement and repair policies are shown to be

valid under usual assumptions, e.g., IFR life distribution, and reasonable cost

structure.

Benyamini and Yechiali (1999) [7] investigate the optimal PM policy under

a non-stationary deterioration process. In a non-stationary deterioration process,

system parameters, e.g., transition probabilities and maintenance/operation costs,

depend explicitly on both the system’s state and its total cumulative age. Thus,

the system model is a two-dimensional problem with system state (i, t), where

i denotes system status, and t system age. Under some mild conditions, for

discounted cost and average cost problems, they show the familiar results for
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stationary models (of one dimension), i.e., optimal PM policies in control limit

form, can be extended to the non-stationary model (of two dimensions), in the

following sense: for any fixed age t, the system is replaced if and only if the state

is above i∗(t); also for any fixed state i, the system is replaced when its age is

greater than t∗(i). A computationally efficient algorithm is proposed for finding

the optimal policy by using the control-limit form structure.

Depending on problem context, these models have different structures. In

general, the underlying stochastic processes can be modeled as a Markov chain

or semi-Markov process. At each decision epoch, the admissible action could be

replacement, repair, inspection or just no action. Normally, the cost structure

could include inspection cost, preventive replacement cost, failure replacement

cost, repair cost, and operation cost. One important result about optimal policies

derived from these models is that they are often of the control-limit form. This

policy structure has been studied by So (1992) [50] under the context of replace-

ment/maintenance models for systems subject to deterioration, and sufficient

conditions for the optimality of control limit policy has been established. This

structure provides both insight and practical implications in deriving optimal

policies to preventive maintenance problems in actual industrial application.

Along with the development of maintenance models for single-unit systems,

some efforts have been directed to the so-called multi-unit maintenance models,

where several machines are stochastically or economically dependent on each

other, cf. the survey paper [14]. Most efforts along this line have been focused on

group/block or opportunistic maintenance models that make use of economies of

scale to perform preventive replacement at the failure of one unit [8, 9, 14], or on

the investigation of the effect of repairmen/spare parts inventory on maintenance
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policies.

2.4.2 Recent Work on Production-Inventory Systems

In the conventional maintenance models surveyed above, the system state in-

cludes only the “aging” or deterioration information; other system information,

like buffer levels or queue lengths, has not been taken into account. Until re-

cently, optimal preventive maintenance has not been investigated explicitly un-

der the context of production systems, specifically under the context of queueing

systems.

Van der Duyn Schouten and Vanneste (1995) [17] investigate an integrated

maintenance-production problem, in which the preventive maintenance policy is

based not only on the information about the age of the device, but also on the

level of the subsequent buffer. Specifically, they consider a production system,

where a buffer with finite capacity K is between an input generating installation

and a production machine. The production machine never fails, whereas the

installation is subject to failure, and preventive maintenance should be scheduled

on it. By assuming the times for PM/CM are geometrically distributed, they

formulate the problem as a Markov Decision Process, with system state (i, x),

where i is the age of the installation, and x the content of the buffer. Under

some reasonable conditions, they show that for the average cost problem, the

optimal maintenance policy has the following control-limit form for fixed buffer

level x, 0 ≤ x ≤ K, that is, there exists a threshold level i∗(x) such that a PM is

not performed whenever i < i∗ and a PM is performed for i ≥ i∗. By identifying

this structure of the optimal policy, they propose the so-called (n,N, k) PM

policy, which is very close to the optimal policy structure but is much easier to
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implement. The (n,N, k) policy prescribes to do PM if and only if the age i

and buffer level x satisfy i ≥ N and k ≤ x ≤ K, or N > i ≥ n and x = K.

Numerical results suggest the (n,N, k) policy yields a near-optimal policy.

Meller and Kim (1996) [38] consider a similar production-inventory system

with two machines connected by a finite buffer between them, but under a differ-

ent problem setting. The first machine is required to do PM from time to time,

and a PM policy is predefined such that a PM will be performed whenever the

buffer level reaches a predefined level b. The effect of such a PM policy has been

investigated with respect to the cost structure including costs of PM, unsched-

uled repairs, starving of the downstream machine, and holding inventory. The

objective is to determine the optimal buffer level b∗ that triggers PM by using

numerical comparisons.

Hsu and Tapiero (1987) [24] and Hsu (1992) [23] consider a problem of age-

dependent maintenance in an M/G/1 job shop. Specifically, they study the

(n, T ) maintenance policy, that is, to perform PM after the nth job has been

processed since the last maintenance/repair, or do (corrective) maintenance when

the process breaks down (at random time T ). Some operating characteristics of

this maintenance-queue, e.g., effective service time distribution, are analyzed,

and a long run average cost problem for the optimization of the maintenance

policy has been formulated by using renewal theory. Analytical results for the

M/M/1 queue with exponential breakdown rate are presented in detail. How-

ever, it is worth noting that the analysis is intractable for general distributions.

Das et al. (1999,2000) [15, 16] consider a production-inventory system, where

inventory is maintained according to an (s, S) policy, and the production process

is subject to failure. An a priori preventive maintenance policy has been studied,
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which can be stated as: if the current inventory is i, and the number of products

made since the last maintenance/repair is at least Ni, then perform a PM on

the machine. A SMDP model has been formulated with system state (w, i, c),

where w is system status (working, maintenance or repair), i inventory level and

c product count. They derive performance measures, such as service level (the

average percentage of the demands that are satisfied), average inventory, system

productivity (the percentage of time the system is working) and cost benefit

due to maintenance (from increased service level, savings in repair/maintenance

cost). A simulation-based optimization algorithm, i.e., reinforcement learning,

was employed to obtain optimal policy parameters.

Liu et al. (1996) [35] consider a different maintenance problem in an M/G/1

type production system. Preventive maintenance tasks are performed whenever

there are no jobs in the queue, and the machine breakdown rate is assumed to be

a non-increasing, convex function with respect to the mean maintenance time.

Their objective is to optimize the mean maintenance time in order to minimize

the average time spent by a job in the system. The problem is formulated as a

M/G/1 vacation queue model.

Federgruen and So (1990) [22] consider an M/G/1 queueing system with an

unreliable server. Although there is no PM available, there are alternate correc-

tive maintenance. Basically, when the server breaks down, there are two repair

operations available, which are characterized by their repair time distributions

and the associated costs. Roughly, one is faster than the other. The system

operating costs include customer holding costs, repair costs and running costs.

The objective is to find a repair policy that minimizes the long run average costs

of the system. The optimal stationary policy has been shown to be monotone,
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i.e., the faster repair operation is used if and only if the number of customers in

the system exceeds a threshold value.
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Chapter 3

Optimal PM Policies

We will study optimal PM policies under different problem settings in this chap-

ter. It is our primary objective to characterize structural properties of optimal

policies. Many models have been proposed and developed in the research litera-

ture, with a wide variety of underlying assumptions [7, 21, 22, 33, 14, 16, 23, 50,

41, 52]. However, our models differ from most of them in that we consider ex-

plicitly not only machine deterioration degree but also system operational states,

e.g., queue length or buffer level.

We start by considering the (simple) classic PM problem, in which a single

machine has random lifetime. The problem is to find the optimal time to do

PM so as to minimize the average total cost. The analysis is based on renewal

theory, and we extend Barlow and Proschan’s result [6] by showing there exists

a deterministic PM policy under a more general problem setting.

We then study optimal PM under the context of an M/G/1 queueing system

with unreliable server. The server has to be preventively maintained in order to

avoid failures. Upon failures, the server has to be repaired, obviously at higher

cost than as for PM. In order to investigate the effect of WIP level on PM, we

29



include the system’s queue length, corresponding to WIP level, explicitly in the

system state, along with the server deterioration degree. The main components

in the cost structure are PM cost, repair cost, and jobs holding (queueing) cost.

The objective is to minimize the discounted total cost over the infinite planning

horizon. Under some conditions, we show that for fixed queue length, the optimal

PM policy has the so-called “control-limit” form with respect to the server’s age.

However, sufficient conditions have not been established under which the optimal

policy has the same property with respect to the queue length.

Under a simplified problem setting, a discrete-time model is developed and

analyzed in the last section with the aim of uncovering more structural results

related to the optimal policy and optimal cost function. Technically, the model

is very close to [17], in which the unreliable server produces items to the buffer

which are then consumed by constant demand. The model has simplified cost

structure: only jobs holding cost is considered, whereas PM and repair cost are

indirectly included.

3.1 Related Work

The problem of optimal PM policy for a single machine, that is, only the ma-

chine’s deterioration state is considered without taking queueing into account, is

a very classical problem, and has been studied extensively as early as the 1960’s;

see the survey paper [37] and the references therein. The basic problem is the

following. Assuming a machine experiences stochastic failures, we want to find

an optimal PM policy to minimize machine’s operating costs, given there are

different costs associated with machine failures, maintenances, and operations.
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This kind of problems is also technically equivalent to the classical problems of

replacement policies that balances the cost of failures against the cost of planned

replacement.

In their influential work on reliability [6], Barlow and Proschan study op-

timal replacement policies for both a finite horizon and an infinite horizon.

They assume a cost c1 incurred for each failure and a cost c2 < c1 incurred

for each planned replacement. They also assume times for failure replacement

and planned replacement are negligible. For the case with infinite horizon, one

main result is that the optimal age replacement policy is deterministic.

The optimization problem of PM policies under the context of unreliable

queueing systems is a much more difficult problem, and has not been studied

until recently by some researchers.

Hsu and Tapiero [24] and Hsu [23] considered an optimization problem of age-

dependent maintenance in an M/G/1 job shop. Some operating characteristics

of a pre-determined maintenance policy, which prescribes to perform PM after

nth job has been processed since the last maintenance/repair, or do (corrective)

maintenance when the process breaks down, are analyzed, and a long run average

cost problem for the optimization of the maintenance policy has been formulated

by using renewal theory. It is worth noting that their objective is to optimize

the policy within the class of pre-determined policies. They present analytical

results for the M/M/1 queue with exponential breakdown rate. However, the

analysis is intractable for general distributions.

One of the work related to our model is by Koyanagi and Kawai (1997) [33],

in which the unreliable server of a queueing system has multiple states, and the

transition of states are governed by a continuous-time Markov chain. When the
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server reaches the highest state, which corresponds to the server’s failure, a CM

must be conducted. A PM can be performed at the end of service, or at server

state transition points. One important assumption is that at the beginning of

either type of maintenance, the jobs in the system are rejected and any arriving

customers during maintenance are also rejected, with each incurring a unit cost.

No other costs are included. The objective is to find an optimal maintenance

policy that minimizes the total expected discounted cost over an infinite time

horizon. Formulating the problem as a semi-Markov decision process with (i, l)

as system state, where i is queue length and l server state, they show that the

optimal policy has an intuitive monotone property in the following sense: if

(i, l) � (j, k) [a partial ordering, (i, l) � (j, k) iff i ≤ j and l ≥ k], then if it is

optimal to do PM on (i, l), then it is also optimal on (j, k).

The work by Van der Duyn Schouten et. al (1995) [17] motivates us for the

development of the simplified discrete-time PM model. Though their problem

setting is quite different, the technical tool employed is similar. Specifically,

they consider a production system, where a buffer is placed between an input

generating installation and a production machine. The production machine never

fails, whereas the installation is subject to failure, and preventive maintenance

should be scheduled on it. By assuming the times for PM/CM are geometrically

distributed, they formulate the problem as a Markov Decision Process. Under

some mild conditions, they show that for the average cost problem, the optimal

maintenance policy has the control-limit structure with respect to machine’s age.
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3.2 The Classic Case: Single Machine without

Queue

In this section, we consider the optimal PM policies under the classic problem set-

ting: a single machine with random lifetime. We extend Barlow and Proschan’s

result, i.e., non-randomized optimal PM policy, (Theorem 2.1, Chapter 4 in [6])

to a more general case in which times for PM and repair are non-negligible.

Moveover, we consider a general cost structure which includes not only setup

costs but also running costs for PM/repair. It is also shown that there exists a

unique optimal time to do PM under some appropriate conditions.

Our interest in the investigation of optimality of non-randomized PM policy

is motivated by the observation that in semiconductor manufacturing, a random-

ized policy called “time-window” policy is commonly employed in machine PM

planning. A time-window policy defines a time window within which the PM

can be performed anytime. The finding shows that the so-called time-window

policy is not optimal for the problem setting under our consideration. Rather, a

deterministic policy is optimal.

In the following sections, we will first define the problem, and then show the

optimality of a deterministic PM policy. Two numerical examples are presented

in the last section.

3.2.1 Problem Setting

We consider a failure-prone machine. Let machine’s lifetime be T , a r.v., with

distribution F (·). Upon failures, the machine has to be repaired with setup cost

cf and running cost kf · Tf , where kf is the running cost rate for machine down
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time, and Tf the time for repair, a r.v. with expected value a. In order to avoid

failures, the machine can be preventively maintained before failures with setup

cost cp and running cost kp · Tp, where kp is the running cost rate for machine

maintenance, and Tp the time for PM, also a r.v. with expected value b. After

either a repair or a PM, it is assumed that the machine is renewed.

We study a randomized policy in which the time to do PM T̂ is a r.v. with

general distribution G(·). For example, the time-window policy commonly prac-

ticed in industry, in which PM tasks can be started uniformly within the window,

is a randomized policy. Also note that a deterministic policy, for example, the

familiar age replacement policy, is the special case of a randomized policy. The

objective is to find the optimal G(·) to minimize the average cost.

renewal renewal renewal 
pointpointpoint

PM Failure

τ τ

T̂ Tp T Tf

t

Figure 3.1: Problem setting.

The notations used hereafter are summarized as follows:

T : machine’s life time, a r.v. with c.d.f. F (t);

T̂ : time to do PM, a r.v., with c.d.f. G(t);

Tf : time for repair, r.v., E(Tf ) = a;

Tp: time for PM, r.v., E(Tp) = b;

cp: setup cost for PM;

34



cf : setup cost for repair;

kf : running cost rate for machine in failure;

kp: running cost rate for machine in PM;

τ : the length of renewal cycle (time between two consecutive renewals of the

machine);

C: the total costs incurred during a cycle τ .

We assume Tf and Tp are independent of T and T̂ . It is obvious that

τ = min(T, T̂ ) + Tf · 1(T < T̂ ) + Tp · 1(T > T̂ ), (3.1)

where 1(A) is the indicator function of event A, with value being 1 if the event

A is true. So,

E(τ) = E
(
min(T, T̂ )

)
+ E(Tf ) · Pr(T < T̂ ) + E(Tp) · Pr(T > T̂ ). (3.2)

but,

E
(
min(T, T̂ )

)
= E

(
E
(
min(T, T̂ ) | T̂

))
=

∫ ∞

0

(∫ t

0

F̄ (y)dy

)
dG(t). (3.3)

Pr(T < T̂ ) = E
(
E
(
1(T < T̂ ) | T̂

))
=

∫ ∞

0

E (1(T < t)) dG(t)

=

∫ ∞

0

F (t)dG(t) (3.4)

Pr(T > T̂ ) = 1 − Pr(T < T̂ )

=

∫ ∞

0

F̄ (t)dG(t). (3.5)
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Therefore,

E(τ) =

∫ ∞

0

(∫ t

0

F̄ (y)dy + a · F (t) + b · F̄ (t)

)
dG(t). (3.6)

The total cost C during a cycle τ is:

C = (cf + kf · Tf ) · 1(T < T̂ ) + (cp + kp · Tp) · 1(T > T̂ ). (3.7)

Therefore, the total expected cost in a cycle τ is:

E(C) = (cf + kf · E(Tf )) ·
∫ ∞

0

F (t)dG(t) + (cp + kp · E(Tp))

∫ ∞

0

F̄ (t)dG(t)

=

∫ ∞

0

(
a′ · F (t) + b′ · F̄ (t)

)
dG(t), (3.8)

where a′ and b′ are expected total cost of repair and PM, respectively, and given

by:

a′ := cf + kf · a, (3.9)

b′ := cp + kp · b. (3.10)

3.2.2 Optimality of Deterministic PM Policy

Under the randomized PM policy G, by renewal theory, the average cost in a

cycle is E(C)/E(τ), denoted by H(G). Our objective is to find an optimal policy

G∗ to minimize the average cost H, i.e.,

H(G∗) = min
G

H(G)

= min
G

∫∞
0

(
a′ · F (t) + b′ · F̄ (t)

)
dG(t)∫∞

0

(∫ t

0
F̄ (y)dy + a · F (t) + b · F̄ (t)

)
dG(t)

. (3.11)

Theorem 3.1. There exists a deterministic PM policy G∗ such that it is optimal

to do PM at some time t∗, where G∗ has a mass of probability, i.e., Pr(T̂ = t∗) =

1.
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Proof. Our proof basically follows the method used by Barlow and Proschan [6].

Let P (t) := a′ · F (t) + b′ · F̄ (t), (3.12)

Q(t) :=

∫ t

0

F̄ (y)dy + a · F (t) + b · F̄ (t), (3.13)

Thus, H(G) =

∫∞
0

P (t)dG(t)∫∞
0

Q(t)dG(t)
. (3.14)

Now denote

S(t) :=
P (t)

Q(t)
. (3.15)

Observe that S(t) is non-negative and right-continuous, so there exists infi-

mum(s) of S(t). Denote t− be such that ∀ε > 0, t − ε < t− < t. An infimum of

S(t) might be achieved at some point t0 or t−0 , dependent on the continuity of

S(t) at the point t0. If S(t) is continuous at the point t0, let t∗ = t0; if S(t) is

right-continuous at t0, then let t∗ = t−0 . It follows that

S(t) ≥ S(t∗), for t �= t∗

⇒ P (t)

Q(t)
≥ P (t∗)

Q(t∗)

⇒ P (t) ≥ P (t∗)
Q(t∗)

· Q(t).

Since G(t) is a non-negative, increasing function, so

∫ ∞

0

(
P (t) − P (t∗)

Q(t∗)
· Q(t)

)
dG(t) ≥ 0

⇒
∫∞
0

P (t) · dG(t)∫∞
0

Q(t) · dG(t)
≥ P (t∗)

Q(t∗)
= S(t∗)

⇒ H(G) ≥ H(G∗),

where G∗ is the degenerate distribution with all its mass of probability on point

t∗, i.e., Pr(T̂ = t∗) = 1.
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Remark : We have relaxed in the theorem Barlow and Proschan’s condition

on the continuity of F (t), which is a sufficient condition for S(t) to be continuous,

and by doing so, we can cover the case when machine’s lifetime is deterministic.

It is obvious that for the deterministic case, the optimal PM policy is either to

do PM just right before failures or never to do PM, dependent on the real costs

data. The optimal policy can be derived from the theorem. If the lifetime is

deterministic, say is t0, it follows from (3.15) that

S(t) =




b′
t+b

if t < t0,

a′
t0+a

if t ≥ t0.

It is obvious that if b′
t0+b

< a′
t0+a

, then S(t) achieves infimum at point t∗ = t−0 ,

which implies the optimal time to do PM be right before failures; otherwise, t∗

could be any value in [t0,∞), which implies never do PM.

Corollary 3.1. If there exists a unique t∗, then there is a unique optimal policy,

and it is deterministic.

To examine if there exists a unique t∗, take the derivative of S(t), i.e.,

S ′(t) =
P ′Q − PQ′

Q2
,

=

[
(a′ − b′)r(t) · ∫ t

0
F̄ (y)dy + r(t) · (a′b − ab′) − (a′ − b′)F (t) − b′

]
F̄ (t)

Q2
,

:= M(t) · F̄ (t)

Q2(t)
, (3.16)

where

M(t) := (a′ − b′)r(t) ·
∫ t

0

F̄ (y)dy + r(t) · (a′b − ab′) − (a′ − b′)F (t) − b′

r(t) :=
f(t)

F̄ (t)
, i.e., hazard (failure) rate of F (t).
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Observe

S ′(t) = 0 ⇔ M(t) = 0.

We further have

M ′(t) = (a′ − b′)r′(t) ·
∫ t

0

F̄ (y)dy + r′(t) · (a′b − ab′) (3.17)

In the following discussion, we assume two conditions are satisfied:

(1) r′(t) > 0,∀t > 0, i.e., the distribution of machine’s lifetime is IFR;

(2) a′ > b′, i.e., the expected cost for failure is greater than for PM.

Let t∗ be a point where S(t) achieves the minimum. In the following analysis,

we consider the normal case where a′b − ab′ ≥ 0.

Remark : The condition a′b − ab′ ≥ 0 can be rewritten as

a′

a
≥ b′

b
,

or

cf

a
+ kf ≥ cp

b
+ kp.

This means that the average cost rate of failure is greater than or equal to the

average cost rate of PM, which is the case for most situations.

By the condition a′b − ab′ ≥ 0, it follows that M ′(t) > 0.

(i) If M(0) ≥ 0, i.e., r(0) ≥ b′
a′b−ab′ , then M(t) ≥ 0,∀t > 0. It then follows

that S(t) is an increasing function. Therefore, t∗ = 0.

(ii) If M(∞) ≤ 0, i.e., r(∞) ≤ a′
(a′−b′)µ+(a′b−ab′) , then M(t) ≤ 0,∀t > 0. It

then follows that S(t) is a decreasing function. Therefore, t∗ = ∞.

(iii) If M(0) < 0, and M(∞) > 0, i.e., r(0) < b′
a′b−ab′ , and r(∞) ≥ a′

(a′−b′)µ+(a′b−ab′) ,

then there is a unique point t∗, such that M(t∗) = 0, i.e., S ′(t) |t=t∗= 0. It then
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Figure 3.2: The function S(t) when F (t) is exponential distribution.

follows that S ′′(t∗) > 0. Therefore, S(t∗) is a minimum. To see the uniqueness,

assume there are two points t∗0, t
∗
1, and t∗0 �= t∗1, such that, S ′(t∗0) = S ′(t∗1) = 0,

i.e., M(t∗0) = M(t∗1) = 0. Without loss of generality, assume t∗0 < t∗1, because

M ′ > 0, M(t) is an increasing function, so it follows that M(t∗1) > M(t∗0) = 0.

Contradiction.

3.2.3 Numerical Examples

Example 1: (Exponentially distributed lifetime)

kp = kf = 1,

cp = 5, cf = 15,

b = 2, a = 4,

F (t) = 1 − e−λt.

Since F (t) is an exponential distribution, it has a constant failure rate, i.e.,

r(t) = λ. It then follows that M ′(t) = 0, by (3.17). Therefore, M(t) is a constant,
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and it follows from (3.16) that S(t) is a monotonic function. To determine the

optimal PM time t∗, it suffices to compare the value of S(t) at t = 0 and t = ∞.

If S(0) < S(∞), then t∗ = 0; if S(0) > S(∞), then t∗ = ∞; if S(0) = S(∞),

then t∗ is any value between [0,∞]. In terms of λ, this can be written as:


λ < cp+kp·b
(cf+kf ·a)b−(cp+kp·ba)

t∗ = ∞,

λ > cp+kp·b
(cf+kf ·a)b−(cp+kp·ba)

t∗ = 0,

λ = cp+kp·b
(cf+kf ·a)b−(cp+kp·ba)

t∗ is any value in [0,∞].

(3.18)

Figure 3.2 shows the function of S(t) with different values of λ.

Example 2: (Weibull distributed lifetime)

kp = kf = 1,

cp = 1, cf = 3,

b = 0.5, a = 1,

F (t) = 1 − e−λtα .

The failure rate of Weibull distribution is λαtα−1. It has increasing failure

rate for α > 1, and in this case, the failure rate at t = 0 is 0, but is unbounded

as t goes to ∞. Therefore, according to our above analysis, if a′
a
≥ b′

b
, there is a

unique point t∗ at which S(t) achieves minimum. Figure 3.3 shows the function

S(t) under different values of α.
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Figure 3.3: The function S(t) when F (t) is Weibull distribution.

3.3 M/G/1 with Infinite Queue Capacity

λ G(·)

Figure 3.4: Model 1 – M/G/1 with infinite queue capacity

In this section, we study the optimal PM problem under the context of queue-

ing systems. We consider an M/G/1 queueing system with an unreliable server.

The server experiences random failures during operation. For simplicity, we as-

sume the server failures are only at the completion of a job, and the server’s

lifetime can be specified by the number of jobs it has processed since the last

repair. Once the server fails, a repair/CM must be carried out at some cost.

During the repair, the server is inoperative, and so coming jobs will build up

in the system. We assume the queueing system has infinite queue capacity. In
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order to avoid costly server failures, PM can be scheduled at some lower cost.

Furthermore, we assume the server never stays idle if the job queue is not empty.

If the queue is indeed empty, the server is then forced idle; however, it will start

to serve as soon as a new job arrives.

We consider the jobs waiting/queueing cost explicitly in the optimization

problem. The objective is to find an optimal PM policy to minimize the to-

tal discounted job waiting cost and PM/CM costs over the infinite horizon. In

the following, we formulate the optimization problem as a Semi-Markov De-

cision Process (SMDP), and then derive some structural properties regarding

the optimal cost function and optimal policy. The main analytic result is the

“control-limit” structure of the optimal policy with respect to the age or the

deterioration degree of the server.

3.3.1 Discounted SMDP Formulation

We assume the decision epochs are at the completion of a job, repair or PM.

When the server is up but idle (the job queue is empty), we assume the next

decision epoch is at the arrival of next incoming job, and the server can choose

to process the job or to start PM.

The system state will be denoted by (st, nt) at the decision epoch t, where st

is called the system’s operational state, i.e., the number of jobs in the system,

and nt the system’s technical state, i.e., the number of jobs finished since last

maintenance (CM or PM). When the server is failed, we denote the system’s

technical state by F . Therefore, the state space is Z+ × {Z+ ∪ {F}}.
When the technical state is not F , then at each decision epoch, two actions

(controls) u are available: to do PM (u = PM), or to process (u = PM , not to
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do PM). When the technical state is F , it is mandatory to do CM (u = CM).

The following notations about the system will be employed hereafter:

qn: server’s conditional probability of failure at the completion of the nth job,

where the server’s time to failure is a discrete r.v.

τr: time for repair, which is a continuous r.v.

Gr(·): c.d.f. of τr

cr: CM cost when the server is failed.

τp: time for PM, a continuous r.v.

Gp(·): c.d.f. of τp.

cp: PM cost.

λ: arrival rate of incoming jobs.

Gw(·): c.d.f of the service time for a job. We assume the service time is indepen-

dent of other r.v.s.

h: holding cost rate for jobs in the system (whether in waiting status or in

processing).

The cost function we consider has the form

lim
N→∞

E

{∫ tN

0

e−βtg(st, nt; ut)dt

}
, (3.19)

where tN is the time of the Nth decision epoch, β is the discount factor, and g

is given by

g(st, nt; ut) = h · st + cp · δ(ut = PM) + cr · δ(ut = CM), (3.20)
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Note that the maintenance costs cr and cp are incurred only at the time the

control u is chosen, and are independent of the length of the transition interval.

Let J be the optimal cost function, which satisfies the following Bellman’s

equation:

J(s, n) = min
{

QPM(s, n), QPM(s, n)
}

,

where QPM(s, n) and QPM(s, n) are the so-called Q-functions of taking action

PM and PM , respectively, at the current decision epoch and optimal actions

thereafter.

Throughout this chapter, we use the notation pk(λt) = e−λt(λt)k

k!
. Following

the standard SMDP formulation (for example, see [30, 10]), we have the following

equations:

1. For s > 0, n ≥ 0, n �= F ,

QPM(s, n) = h · s ·
∫ ∞

0

1 − e−βt

β
dGw(t) + TCw + (1 − qn+1) ·

+
∞∑

k=0

∫ ∞

0

e−βtpk(λt)dGw(t) · J(s − 1 + k, n + 1)

+ qn+1 ·
∞∑

k=0

∫ ∞

0

e−βtpk(λt)dGw(t) · J(s − 1 + k, F ).

(3.21)

QPM(s, n) = cp + h · s ·
∫ ∞

0

1 − e−βt

β
dGp(t) + TCp

+
∞∑

k=0

∫ ∞

0

e−βtpk(λt)dGp(t) · J(s + k, 0). (3.22)

Note: the first term in the RHS of QPM(s, n) is the one-stage expected in-

ventory cost of the s jobs already in the system, and TCw is the expected

holding cost of new jobs arriving until the next decision epoch. The third

and fourth terms account for the possibilities of the next transition state
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depending on whether the production succeeds or fails, respectively. Sim-

ilarly, the first term in the RHS of QPM(s, n) is the PM cost, the second

and third terms TCp are the expected total holding costs, and the last

term accounts for the next transition states.

We now compute the TCw and TCp, the expected holding cost of new jobs

arriving in the transition interval, in the following. Assume the transition

interval is [0, t]. Given there is k jobs arriving during the interval, for a

sample path 0 < t1 < t2 < · · · < tk < t, the holding cost is:

k∑
i=1

∫ t

ti

he−βτdτ =
h

β

k∑
i=1

(
e−βti − e−βt

)

=
h

β

k∑
i=1

e−βti − kh

β
e−βt.

As we know for Poisson arrivals in a given period [0, t], the unordered

arrival epoches ti are distributed uniformly in [0, t]; see, for example [47].

So by unconditioning on the sample path, we have:

E

[
k∑

i=1

∫ t

ti

he−βτdτ

]
=

h

β

k∑
i=1

E
[
e−βti

]− kh

β
e−βt

=
kh

β

∫ t

0

1

t
e−βτdτ − kh

β
e−βt

=
kh

tβ2

(
1 − e−βt

)− kh

β
e−βt

=
kh

β2t

[
1 − (1 + βt)e−βt

]
.

Now, unconditioning on k and t yields

TCw =
∞∑

k=0

∫ ∞

0

pk(t)
kh

β2t

[
1 − (1 + βt)e−βt

]
dGw(t)

=

∫ ∞

0

λh

β2

[
1 − (1 + βt)e−βt

]
dGw(t). (3.23)
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Similarly, for TCp, we have the following equality,

TCp =

∫ ∞

0

λh

β2

[
1 − (1 + βt)e−βt

]
dGp(t). (3.24)

2. For s ≥ 0, n = F ,

J(s, F ) = cr + h · s ·
∫ ∞

0

1 − e−βt

β
dGr(t) + TCr

+
∞∑

k=0

∫ ∞

0

e−βtpk(λt)dGr(t) · J(s + k, 0).

(3.25)

Note: When the server fails, a CM must be performed at the instant cost

cr. The corresponding cost TCr is given by

TCr =

∫ ∞

0

λh

β2

[
1 − (1 + βt)e−βt

]
dGr(t). (3.26)

3. For s = 0, n �= F ,

QPM(0, n) =

∫ ∞

0

e−βtλe−λtdt · J(1, n)

=
λ

λ + β
· J(1, n); (3.27)

QPM(0, n) = cp + TCp +
∞∑

k=0

∫ ∞

0

e−βtpkdGp(t) · J(k, 0). (3.28)

Note: When the queue is empty at a decision epoch, i.e., s = 0, the next

decision epoch is either the arrival of next job if the action chosen is not

doing PM, or the completion of the PM if the action is doing PM. The

holding cost for QPM(0, n) is zero, since there is no jobs in the system

during the transition interval.

3.3.2 Structural Results

Lemma 3.1. The optimal cost function J(s, n) is non-decreasing with respect to

s, i.e., J(s, n) ≤ J(s + 1, n), for all s, n.
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Proof. We proceed by induction using value iteration. Assuming Jm(s, n) ≤
Jm(s + 1, n). Then we consider Jm+1(s, n) at the next step. We first prove it

holds for the case s > 0, n �= F .

If s > 0, n �= F ,

QPM
m+1(s + 1, n) = h · (s + 1) ·

∫ ∞

0

1 − e−βt

β
dGw(t) + TCw + (1 − qn+1) ·

+
∞∑

k=0

∫ ∞

0

e−βtpk(λt)dGw(t) · Jm(s + k, n + 1)

+ qn+1 ·
∞∑

k=0

∫ ∞

0

e−βtpk(λt)dGw(t) · Jm(s + k, F )

≥ h · s ·
∫ ∞

0

1 − e−βt

β
dGw(t) + TCw + (1 − qn+1) ·

+
∞∑

k=0

∫ ∞

0

e−βtpk(λt)dGw(t) · Jm(s − 1 + k, n + 1)

+ qn+1 ·
∞∑

k=0

∫ ∞

0

e−βtpk(λt)dGw(t) · Jm(s − 1 + k, F )

= QPM
m+1(s, n); (3.29)

Similarly, QPM
m+1(s + 1, n) ≥ QPM

m+1(s, n). It follows that

Jm+1(s + 1, n) = min
(
QPM

m+1(s + 1, n), QPM
m+1(s + 1, n)

)
≥ min

(
QPM

m+1(s, n), QPM
m+1(s, n)

)
= Jm+1(s, n). (3.30)

We can use the same arguments to prove it holds for the optimal cost function

J(s, F ) for all s. But we need some extra steps for the case when s = 0, n �= F .

We first note that Jm+1(s, n) ≥ Jm(s, n) for all (s, n), by the monotonicity of the
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dynamic programming operator (see [10], Lemma 1.1 on page 7, Vol II). Thus

QPM
m+1(1, n) ≥ Jm+1(1, n), by definition,

≥ Jm(1, n), by monotonicity of DP

= (1 +
β

λ
)QPM

m+1(0, n),

> QPM
m+1(0, n).

It is obvious that QPM
m+1(1, n) > QPM

m+1(0, n). Therefore Jm+1(1, n) > Jm+1(0, n).

Because J(s, n) is the limit function of Jm(s, n), i.e.,

J(s, n) = lim
m→∞

Jm(s, n),

so J(s, n) is increasing in s. This ends the proof.

Condition 3.1. qn is non-decreasing (i.e., time to failure is IFR).

Condition 3.2. cr ≥ cp (i.e., repair is costlier than PM).

Condition 3.3. τr = τp in stochastic sense, i.e., equal in distribution.

Lemma 3.2. Under Conditions 3.1, 3.2 and 3.3, for all s, QPM(s, n) and J(s, n)

are non-decreasing with respect to n. Moreover J(s, F ) ≥ J(s, n),∀n.

Proof. We proceed by induction using value iteration.

(1) Step 1: J0(·, ·) = 0.

(2) Step 2: Assume QPM
m (s, n), Jm(s, n) non-decreasing, Jm(s, F ) ≥ Jm(s, n),
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then

QPM
m+1(s, n) = h · s ·

∫ ∞

0

1 − e−βt

β
dGw(t) + TCw + (1 − qn+1) ·

∞∑
k=0

∫ ∞

0

e−βtpk(λt)dGw(t) · Jm(s − 1 + k, n + 1)

+ qn+1 ·
∞∑

k=0

∫ ∞

0

e−βtpk(λt)dGw(t) · Jm(s − 1 + k, F ).

QPM
m+1(s, n + 1) = h · s ·

∫ ∞

0

1 − e−βt

β
dGw(t) + TCw + (1 − qn+2) ·

∞∑
k=0

∫ ∞

0

e−βtpk(λt)dGw(t) · Jm(s − 1 + k, n + 2)

+ qn+2 ·
∞∑

k=0

∫ ∞

0

e−βtpk(λt)dGw(t) · Jm(s − 1 + k, F ).

So,

QPM
m+1(s, n + 1) − QPM

m+1(s, n)

=
∞∑

k=0

∫ ∞

0

e−βtpkdGw · (Jm(s − 1 + k, n + 2) − Jm(s − 1 + k, n + 1))

+ qn+2 ·
∞∑

k=0

∫ ∞

0

e−βtpkdGw · (Jm(s − 1 + k, F ) − Jm(s − 1 + k, n + 2))

− qn+1 ·
∞∑

k=0

∫ ∞

0

e−βtpkdGw · (Jm(s − 1 + k, F ) − Jm(s − 1 + k, n + 1))

≥
∞∑

k=0

∫ ∞

0

e−βtpkdGw · (Jm(s − 1 + k, n + 2) − Jm(s − 1 + k, n + 1))

+ qn+2

∞∑
k=0

∫ ∞

0

e−βtpkdGw · (Jm(s − 1 + k, n + 1) − Jm(s − 1 + k, n + 2))

= (1 − qn+2)
∞∑

k=0

∫ ∞

0

e−βtpkdGw · (Jm(s − 1 + k, n + 2) − Jm(s − 1 + k, n + 1))

≥ 0.

So, QPM
m+1(s, n) is non-decreasing with respect to n.
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Jm+1(s, n) = min
(
QPM

m+1(s, n), QPM
m+1(s, n)

)
(3.31)

QPM
m+1(s, n) is constant with respect to n by (3.22), so Jm+1(s, n) is non-decreasing

in n. Moreover,

Jm+1(s, F ) = cr + h · s ·
∫ ∞

0

1 − e−βt

β
dGr + TCr

+
∞∑

k=0

∫ ∞

0

e−βtpk(λt)dGr · Jm(s + k, 0).

QPM
m+1(s, n) = cp + h · s ·

∫ ∞

0

1 − e−βt

β
dGp + TCp

+
∞∑

k=0

∫ ∞

0

e−βtpk(λt)dGp · Jm(s + k, 0).

Under the condition 3.1, 3.2 and 3.3, QPM
m+1(s, n) ≤ Jm+1(s, F ). Since

Jm+1(s, n) = min
(
QPM

m+1(s, n), QPM
m+1(s, n)

)
(3.32)

≤ QPM
m+1(s, n). (3.33)

so, Jm+1(s, n) ≤ Jm+1(s, F ),∀n.

(3) Step 3: Let m → ∞, we have

QPM(s, n) = limm→∞ QPM
m (s, n), (3.34)

J(s, n) = limm→∞ Jm(s, n). (3.35)

So, QPM(s, n) and J(s, n) are non-decreasing in n, and J(s, n) ≤ J(s, F ),∀n.

This concludes the proof.

We are now ready to prove the following theorem regarding the optimal

policy.
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Theorem 3.2. For any fixed s, under Conditions 3.1, 3.2 and 3.3, the optimal

PM policy is of control-limit type, i.e., ∃n∗(s) s.t. for system state (s, n), if

n ≥ n∗(s), then the optimal action µ∗(s, n) = PM ; else, µ∗(s, n) = PM .

Proof. Observe that QPM(s, n) is constant with respect to n. By the monotonic-

ity of QPM(s, ·), we know

QPM(s, n) − QPM(s, n) ≤ QPM(s, n + 1) − QPM(s, n + 1),∀n. (3.36)

Thus, at some point n∗,

QPM(s, n∗) − QPM(s, n∗) ≥ 0, (3.37)

and for n ≥ n∗,

QPM(s, n) − QPM(s, n) ≥ QPM(s, n∗) − QPM(s, n∗)

≥ 0.

i.e., QPM(s, n) ≥ QPM(s, n).

Therefore, J(s, n) = QPM(s, n), i.e., µ∗(s, n) = PM.

3.4 A Simplified Discrete-Time Model

In this section, we develop a simplified queueing model to study the PM opti-

mization problem. As in [17], we assume the system is monitored at discrete,

equidistant time epochs, and the job arrival process and machine’s service pro-

cess are assumed deterministic. A simplified cost structure is also adopted.

Specifically, we assume jobs arrive to the system at the rate of d per time

unit. If the machine is in working state, then it can produce at the maximal
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production capacity P , given there is enough jobs in the system waiting for

processing. Otherwise, if there is not enough waiting jobs, then it will produce

exactly the same jobs as in the system. From this regard, the machine production

policy is fixed.

d P (>d)

Figure 3.5: The discrete-time model

Because the machine is not reliable, if the machine fails, it has to be repaired.

During the repair, the jobs keep arriving and build up in the queue. The machine

can have PM so as to avoid failures. Although the PM makes the machine

unavailable, the time for PM is relatively shorter than the repair time. Both the

time for PM and for repair are assumed to be random variables.

We consider a simplified cost structure for this model – only jobs holding

cost is considered, that is, a unit cost for each job waiting in the system will be

incurred per each time unit. It is worth noting that although the costs for PM

and CM are not included directly, they are implicitly considered. Since when

the machine is down due to either PM or CM, jobs build up and holding costs

are incurred. The objective is to minimize the discounted cost over the infinite

horizon.

For simplicity, we further assume that both repair time and PM time are

geometrically distributed, with parameters r and p, respectively. As a result,

we are able to reduce the problem’s state space. The machine’s lifetime L is

a discrete random variable, and denote its failure rate for age n + 1 by fn, for
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n ∈ Z+ (we assume the machine can’t fail at age 0, i.e., right after it is just

renewed).

We summarize the model’s notation as follows:

d: number of jobs arriving in each time unit. Without loss of generality, it is

assumed integer;

P : server’s maximal production rate, assumed integer;

L: machine’s lifetime, a discrete random variable;

fn: machine’s failure rate at age n + 1, i.e., fn = Pr(L = n + 1 | L ≥ n + 1);

p: parameter of geometric distribution for PM time;

r: parameter of geometric distribution for repair time;

β: discounting factor, 0 < β < 1.

3.4.1 MDP Formulation

The problem can be easily formulated as an MDP problem, with system state

denoted by (st, nt) at the beginning of time period t, where st ∈ Z+ is the number

of jobs in the system, and nt is the machine state. Because of the assumption

of geometric distributions of repair/PM time, it is sufficient to denote the server

state by PM when it is in the state of PM, and by CM when in the state of

repair. Therefore, nt ∈ {Z+ ∪ {CM} ∪ {PM}}.
The equidistant discrete time epochs are decision points to select to start

maintenance or continue production.

Let J be the optimal cost function, and then we can write the following

dynamic programming equations.
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• When the server is in repair:

J(s, CM) = s + β · r · J(s + d, 0) + β · (1 − r) · J(s + d, CM). (3.38)

• When the server is in PM:

J(s, PM) = s + β · p · J(s + d, 0) + β · (1 − p) · J(s + d, PM). (3.39)

• When the server is in working state, let ∆ = P − d,

J(s, n) = min
{

J(s, PM), JPM(s, n)
}

(3.40)

JPM(s, n) = s + β · fn · J ((s − ∆)+, CM
)

+ β(1 − fn) · J ((s − ∆)+, n + 1
)

(3.41)

Equations (3.38) and (3.39) represent the dynamics of the system when the

machine is in repair and in PM, respectively. The first terms in both equations

are the holding cost for jobs in the system. The second terms state that with

probability r (or p), the repair (or PM) will be finished by next time and thus the

machine age is renewed, whereas the third terms state that with probability 1−r

(or 1 − p), the repair (or PM) will be continued by next time and the machine

stays the CM (or PM)state. The first term in equation (3.40) corresponds to

the action taking PM, and the second term corresponds to the action continuing

production.

3.4.2 Structural Properties

In this section, we will first derive some properties of the optimal cost function

J , and then obtain important structural properties of the optimal PM policy.

The proofs are based on value iteration of optimal cost function, as used in [17].
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Let Jk(·, ·) be the cost after k steps of value iteration.

J0(·, ·) = 0; (3.42)

Jk+1(s, CM) = s + β · r · Jk(s + d, 0) + β · (1 − r) · Jk(s + d, CM);(3.43)

Jk+1(s, PM) = s + β · p · Jk(s + d, 0) + β · (1 − p) · Jk(s + d, PM);(3.44)

Jk+1(s, n) = min{Jk+1(s, PM), JPM
k+1 (s, n)}; (3.45)

JPM
k+1 (s, n) = s + β · fn · Jk

(
(s − ∆)+, CM

)
(3.46)

+ β(1 − fn) · Jk

(
(s − ∆)+, n + 1

)
. (3.47)

Theorem 2.2 states that the value iteration will converge to the optimal cost

function, i.e.,

J = lim
k→∞

Jk.

It is obvious that if we can show a property holds for function Jk, for all k, then

it also holds for the optimal cost function J .

Condition 3.4. fn is increasing in n.

Condition 3.5. p ≥ r.

Lemma 3.3. J(s, ·) ≤ J(s + 1, ·), for all s ≥ 0.

Proof. We will show the property holds for Jk, for all k, by using induction.

Obviously, it holds for J0. Assuming it holds for Jk, then at k + 1,

Jk+1(s, CM) = s + β · r · Jk(s + d, 0) + β · (1 − r) · Jk(s + d, CM)

< s + 1 + β · r · Jk(s + d, 0) + β · (1 − r) · Jk(s + d, CM)

≤ (s + 1) + β · r · Jk(s + d + 1, 0) + β(1 − r)Jk(s + d + 1, CM)

= Jk+1(s + 1, CM).
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The proof is similar for Jk+1(s, PM).

We then examine J(s, n). Observe that (s − ∆)+ ≤ (s + 1 − ∆)+, and thus

Jk((s − ∆)+, ·) ≤ Jk((s + 1 − ∆)+, ·), by induction hypothesis. It follows easily

that JPM
k+1 (s, n) is increasing in s. So is Jk+1(s, n).

Let k → ∞, it follows that J(s, ·) ≤ J(s + 1, ·).

Lemma 3.4. Under Condition (3.5), for fixed s, we have

J(s, n) ≤ J(s, PM) ≤ J(s, CM), for all n.

Proof. The first part inequality is obvious by (3.40). Assuming Jk(s, PM) ≤
Jk(s, CM), then

Jk+1(s, PM) = s + β · p · Jk(s + d, 0) + β · (1 − p) · Jk(s + d, PM)

≤ s + β · p · Jk(s + d, 0) + β · (1 − p) · Jk(s + d, CM)

= s + β · Jk(s + d, CM) − β · p · (Jk(s + d, CM) − Jk(s + d, 0))

≤ s + β · Jk(s + d, CM) − β · r · (Jk(s + d, CM) − Jk(s + d, 0))

= Jk+1(s, CM).

The first inequality is due to the induction hypothesis. The second inequality

follows from the condition (3.5) and the induction hypothesis that Jk(s+d, 0) ≤
Jk(s+d, CM). Let k → ∞, it follows that J(s, n) ≤ J(s, PM) ≤ J(s, CM).

Lemma 3.5. Under Conditions (3.4) and (3.5), we have J(s, n) ≤ J(s, n + 1).

Proof. We will first show by induction that JPM
k (s, n) ≤ JPM

k (s, n + 1), for all
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k. Then it follows from (3.45) that Jk(s, n) ≤ Jk(s, n + 1) for all k.

JPM
k+1 (s, n) = s + β · fn · Jk

(
(s − ∆)+, CM

)
+ β(1 − fn) · Jk

(
(s − ∆)+, n + 1

)
≤ s + β · fn · Jk

(
(s − ∆)+, CM

)
+ β(1 − fn) · Jk

(
(s − ∆)+, n + 2

)
= s + β · Jk

(
(s − ∆)+, n + 2

)
+ β · fn · (Jk

(
(s − ∆)+, CM

)− Jk

(
(s − ∆)+, n + 2

))
≤ s + β · Jk

(
(s − ∆)+, n + 2

)
+ β · fn+1 ·

(
Jk

(
(s − ∆)+, CM

)− Jk

(
(s − ∆)+, n + 2

))
= Jk+1(s, n + 1).

The first inequality is due to the induction hypothesis. The second inequal-

ity follows from the condition (3.4) and Lemma 3.4 that Jk ((s − ∆)+, CM) ≥
Jk ((s − ∆)+, n + 2).

Theorem 3.3. Under Conditions (3.4) and (3.5), the optimal PM policy is of

control-limit type, i.e., for system state (s, n), ∃n∗(s) such that the optimal action

is to do PM if and only if n ≥ n∗(s).

Proof. The proof is similar to that of Theorem 3.2. It follows from the mono-

tonicity of QPM(s, n) in n and the fact that QPM(s, n) is constant with respect

to n.
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Chapter 4

Optimal Joint PM and Production

Control Policies

In previous chapter, we have assume implicitly that system production policies

are fixed. In this chapter, we will take the optimal PM problem a step further by

considering joint PM and production control policies for failure-prone production

systems. A joint PM and production control policy determines when PM should

be performed, and if PM is not being performed, then how much should be

produced. The basic problem setting is the following. Consider an unreliable

make-to-stock production system with the stock of completed goods consumed

by external demand (possibly random). The production unit (machine) can

produce at maximal rate if it is in working state. However, the unit experiences

random failures, and if it fails, a costly repair/CM (Corrective Maintenance) has

to be performed. In order to avoid failures, PM can be scheduled for the unit.

Either CM or PM will take some random time to be finished with some costs.

When it is in CM or PM, it produces nothing; when it is not in CM or PM,

then it can produce at any rate up to its maximal production rate. Backlogged

demands are allowed, but they will incur larger cost than holding completed
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goods in stock. The objective is to find an optimal joint policy to minimize the

expected discounted costs over the infinite horizon.

Two types of failures are considered. Type I is called time-dependent failure,

with which a machine deteriorates whether or not it is producing, and can fail

when idle. Type II is called operation-dependent failure, with which a machine

deteriorates only when it is producing, and cannot fail when idle. From the

viewpoint of semiconductor manufacturing, the time-dependent failures can be

prevented by performing calendar-based PMs, while the operation-dependent

failures can be prevented by performing wafer-count based or operation-time

based PMs.

The main focus of this chapter will be characterizing the structures of optimal

joint policies. In the remainder of the chapter, we start with a brief discussion

of related work, followed by the development of the model with time-dependent

failures. An MDP formulation is presented in detail, which is the basis of our

analysis for optimal policy structures. The development and analysis for the

model with operation-dependent failures then follows. Some concluding remarks

are provided in the last section.

4.1 Related Work

The problem of optimal production control in failure prone production systems

has been studied extensively since the pioneering work by Akella and Kumar [1];

see also [27] for a discrete-time model. Interestingly, the problem of joint pro-

duction control and maintenance policy has not been studied until very recently.

One reason for the neglect is possibly due to the modeling of machine failure
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processes as two-state (on-off) continuous-time Markov chains, which essentially

means that the machine’s lifetime is exponentially distributed, and thus has con-

stant failure rate, which as a result precludes PM from being included in these

traditional models.

Recently, Boukas and Liu study the production and maintenance control

problem of a failure prone manufacturing system [11]. They consider the contin-

uous flow model in which the machine has three working states: good, average

and bad, and one failure state. The state transition is governed by a continuous-

time Markov chain. The jump rates from average and bad states to the good

state are PM rates and the one from failure rate to good state is the CM rate.

The objective is to optimize the production rate and maintenance (PM and CM)

rates in order to minimize discounted total costs including inventory holding,

backlog, and maintenance costs. Finding the optimal policy involves solving the

corresponding Hamilton-Jacobi-Bellman equations, which often lack closed-form

solution.

Iravani and Duenyas also consider an integrated maintenance and produc-

tion control policy for a single-machine make-to-stock manufacturing system

[31]. But instead of a continuous flow model, a semi-Markov decision process

model is developed, which in addition allows the incorporation of stochastic

demand and production processes. Again, the machine is assumed to have mul-

tiple operational states and one failure state, and to be deteriorating as random

shocks take the system to a worse state. An optimal policy will determine at

each decision epoch, whether to produce one more item, to stay idle, or perform

maintenance in order to minimize the total average inventory and maintenance

costs. They investigate the structure of the optimal policy through some numer-
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ical examples, and it turns out the structure is extremely complex. Therefore,

they propose and analyze a heuristic policy with simple structure, the so-called

double-threshold, which performs very close to the optimal policy, according to

their numerical study.

Other related work includes the papers by Sloan and Shanthikumar [48, 49],

in which they address the problems of equipment maintenance scheduling and

production scheduling for multiple-product, single-machine production systems

and multiple-stage production systems, where they formulate the problems as

average reward MDP problems.

Our work presented in the following sections is somewhat close to the paper

by Iravani and Duenyas [31]. However, our effort has been placed on the in-

vestigation of structural properties of optimal policies other than on the study

of heuristic sub-optimal policies. Some of results was presented in TECHCON

2003 [65].
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4.2 The Model with Time-Dependent Failures

u ∈ [0, P ]

d, constant

Figure 4.1: An unreliable production system with time-dependent failures

Consider an unreliable make-to-stock production system. The stock of com-

pleted goods is consumed by a constant demand d. The production unit (ma-

chine) can produce at maximal rate P (P > d). However, the machine experi-

ences time-dependent random failures, and if the machine is failed, a CM has to

be performed. In order to avoid machine failures, PM can be scheduled for the

machine. Either CM or PM will take some random time to be finished. When

machine is in PM or CM, it produces nothing. When machine is not in PM or

CM, i.e., in working state, then it can produce amount up to P . Our problem

is to find out an optimal policy to decide when to do PM, and if decide not to

do PM, how much should be produced, under an appropriate objective function.

In the following discussion, we will consider a discrete-time system model. One

of the reasons for using a discrete-time model is that it allows us to study more

general distributions other than exponential one, which is most often seen in

continuous-time models.

The following cost structure will be imposed. Completed goods in stock will

incur inventory cost, while backlogged demands are allowed but with higher cost.

If the machine fails, then a CM has to be conducted at the cost of cr. If a PM

is decided to be conducted, then the cost of cp will be incurred. The objective is

to minimize the expected discounted (with discount factor β < 1) cost over the
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infinite horizon.

4.2.1 MDP Formulation

The corresponding optimal control problem can be formulated as a discounted

MDP model. We start by giving the notations that will be used hereafter.

St: inventory level at the beginning of period t.

Xt: machine state at the beginning of period t. Xt ∈ {0, 1, 2}, where Xt = 1

if the machine is up; Xt = 0, if the machine is down for CM; Xt = 2, if

machine is down for PM.

at: number of time periods that the machine has been in the current state Xt

at the beginning of period t. If Xt = 1, at is the age of the machine since

the last PM or CM. If Xt = 0 or 2, at is the time that the machine has

been in CM or PM, respectively.

fn: conditional failure probability at age n + 1, given the machine is up at age

n, i.e., fn = Pr(Xt+1 = 0 | Xt = 1, at = n). In other words, fn is the failure

rate of a machine of age n + 1.

pn: conditional PM completion probability at the beginning of period t + 1,

given the machine has been in PM for n periods at the beginning of period

t, i.e., pn = Pr(Xt+1 = 1 | Xt = 2, at = n).

rn: conditional CM completion probability at the beginning of period t + 1,

given the machine has been in CM for n periods at the beginning of period

t, i.e., rn = Pr(Xt+1 = 1 | Xt = 0, at = n).
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d: incoming demand in each period, assumed constant.

cr: cost for performing a CM on the machine.

cp: cost for performing a PM on the machine.

c+: unit inventory cost/per period when inventory level is positive.

c−: unit inventory cost/per period when inventory level is negative.

τr: time for CM, which is a random variable.

τp: time for PM, which is also a random variable.

The system state at the beginning of period t is denoted by (St,Xt, at). When

the machine is in state Xt = 1, the available control ut is either to do PM or

to produce amount u ∈ {0, 1, . . . , P}. There is no admissible control when the

machine is in state Xt = 0 or 2.

Let g(St) be the one-period inventory cost function given by

g(St) = c+ · |St| · 1(St ≥ 0) + c− · |St| · 1(St < 0), (4.1)

and let h(Xt− ,Xt, ut) be the one-period maintenance/repair cost function given

by

h(Xt− ,Xt, ut) =




cr if Xt− = 1,Xt = 0;

cp if Xt = 1, ut = PM ;

0 otherwise.

(4.2)

Then the total discounted inventory/maintenance/repair costs of a stationary

policy µ over the infinite horizon when the system starts in state (s, α, n) is given
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by

Jµ(s, α, n) = E

[ ∞∑
t=0

βt (g(St) + h(Xt− ,Xt, ut)) |S0 = s,X0 = α, a0 = n

]
, (4.3)

(assuming X0− = X0).

The objective is to find an optimal joint PM and production policy µ∗ to

minimize the cost Jµ. We denote the corresponding optimal value function by

J(s, α, n) = min
µ

Jµ(s, α, n). (4.4)

Based on the system dynamics, we have the following dynamic programming

optimality equations:

J(s, 0, n) = g(s) + β · rn · J(s − d, 1, 0)

+ β · (1 − rn) · J(s − d, 0, n + 1); (4.5)

J(s, 2, n) = g(s) + β · pn · J(s − d, 1, 0)

+ β · (1 − pn) · J(s − d, 2, n + 1); (4.6)

J(s, 1, n) = min{QPM(s, 1, n), min
0≤u≤P

Qu(s, 1, n)}; (4.7)

where

QPM(s, 1, n) = cp + g(s) + β · p0 · J(s − d, 1, 0)

+ β · (1 − p0) · J(s − d, 2, 1); (4.8)

Qu(s, 1, n) = g(s) + β · fn · (cr + J(s + u − d, 0, 0))

+ β · (1 − fn) · J(s + u − d, 1, n + 1). (4.9)

Equation (4.5) states that when the machine has been under CM for n peri-

ods, it will finish by the next period with probability rn, and the inventory level

will decrease by d in each period. Similarly, equation (4.6) states that when
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the machine has been under PM for n periods, it will finish by the next period

with probability pn, and the inventory will be depleted by d in each period.

In equation (4.7), QPM(s, 1, n) is the Q-function corresponding to the policy

that chooses to do PM at the state (s, 1, n) and then follows an optimal policy.

Qu(s, 1, n) is the Q-function corresponding to the policy that chooses not to do

PM but to produce at the rate of u at the state of (s, 1, n), and then follows an

optimal policy thereafter.

4.2.2 Structural Properties of Optimal Policies

In this section, we show some structural properties that the optimal policy sat-

isfies.

Lemma 4.1. J(s, ·, ·) is decreasing function in s, for s ≤ 0.

Proof. We proceed by value iteration. Let Jk(s, ·, ·) be the approximated cost

function at the step k. Assume Jk(s, ·, ·) is decreasing function in s, for s ≤ 0.

If we can show at step k + 1, Jk+1(s, ·, ·) is also decreasing in s, for s ≤ 0. Then

J(s, ·, ·) is decreasing in s, for s ≤ 0, since J(s, ·, ·) = limk→∞ Jk(s, ·, ·).
(1). At step 0, let J0(s, ·, ·) = 0.

(2). Assume Jk(s, ·, ·) is decreasing in s, for s ≤ 0. Since Jk+1(s, 0, n) = g(s) +

β · rn · Jk(s − d, 1, 0) + β · (1 − rn) · Jk(s − d, 0, n + 1), and g(s) is decreasing

in s ≤ 0, it is obvious that Jk+1(s, 0, n) is decreasing in s, for s ≤ 0. Similarly,

Jk+1(s, 2, n) is decreasing in s, for s ≤ 0.

Now we show Jk+1(s, 1, n) is also decreasing in s ≤ 0.

Jk+1(s, 1, n) = min
{
QPM

k+1(s, 1, n), min Qu
k+1(s, 1, n)

}
,
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where QPM
k+1(s, 1, n) = cp + Jk+1(s, 2, 0), so QPM

k+1(s, 1, n) is decreasing in s, for

s ≤ 0. Let

QPM
k+1(s, 1, n) = min

0≤u≤P
Qu

k+1(s, 1, n)

= g(s) + β · fn · cr + min
u

(β · fn · Jk(s + u − d, 0, 0) +

β · (1 − fn) · Jk(s + u − d, 1, n + 1)),

denote Wk(s) := β · fn · Jk(s, 0, 0) + β · (1 − fn) · Jk(s, 1, n + 1), so Wk(s) is

decreasing in s, for s ≤ 0. Thus,

QPM
k+1(s, 1, n) = g(s) + β · fn · cr + min

u=0,...,P
Wk(s + u − d)

= g(s) + β · fn · cr +




Wk(s + P − d) if s ≤ d − P,

minx=0,...,s+P−d Wk(x) otherwise.

Similarly, for (s − 1, 1, n), we have

QPM
k+1(s−1, 1, n) = g(s−1)+β ·fn ·cr +




Wk(s + P − d − 1) if s ≤ d − P,

minx=0,...,s+P−d−1 Wk(x) otherwise.

Therefore, QPM
k+1(s−1, 1, n) > QPM

k+1(s, 1, n), for s ≤ 0. It follows that Jk+1(s, 1, n)

is decreasing in s, for s ≤ 0,∀n.

The lemma yields the following proposition immediately.

Proposition 4.1. If s < 0, and the optimal action is not to do PM in state

(s, 1, n), then it is optimal to make the inventory non-negative as quickly as

possible.

We next show there is a control-limit policy with respect to machine’s age to

do PM. Observe

QPM(s, 1, n) = cp + J(s, 2, 0),
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is a constant with respect to the machine’s age n. Recall

J(s, 1, n) = min
{

QPM(s, 1, n), min
u

Qu(s, 1, n)
}

.

If we can show minu Qu(s, 1, n) is increasing in n, then it follows that the optimal

policy is a “control-limit” policy, as stated in the following lemma.

Lemma 4.2. If Qu(s, 1, n) is increasing in n, then the optimal policy is of

“control-limit” type, such that if in state (s, 1, n), it is optimal to do PM, then

it is also optimal to do PM in state (s, 1, n + 1).

Proof. From the Bellman equation, we have

J(s, 1, n) = min
{

QPM(s, 1, n), min
u

Qu(s, 1, n)
}

,

where QPM(s, 1, n) = cp+J(s, 2, 0), is a constant with respect to n. If Qu(s, 1, n)

is increasing in n, so is minu Qu(s, 1, n). Therefore, at some age n∗, for n ≥ n∗,

QPM(s, 1, n) ≤ minu Qu(s, 1, n), and for n < n∗, QPM(s, 1, n) > minu Qu(s, 1, n),

i.e., for n ≥ n∗, µ∗(s, 1, n) = PM , and for n < n∗, µ∗(s, 1, n) �= PM .

Let τr be time for CM, with distribution {ln}, n = 1, 2, · · · , where ln =

Pr(τr = n). Recall {rn}, n = 0, 1, · · · , the conditional CM completion probabil-

ity, is actually the failure rate of τr, i.e., rn = ln+1

Ln+1
, where Ln+1 = 1 −∑n

i=1 li,

the tail distribution of τr. Thus, we have following relations between {rn} and

{ln}:

r0 = l1/1, ⇔ l1 = r0,

r1 = l2/(1 − l1), ⇔ l2 = r1 · (1 − r0),

r2 = l3/(1 − l1 − l2), ⇔ l3 = r2 · (1 − r0) · (1 − r1),

... ⇔ ...
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So

lk = rk−1 · Πk−2
i=0 (1 − ri), for k ≥ 1,

Ln = 1 −
n−1∑
i=1

li = Πn−1
i=0 (1 − ri).

We can rewrite J(s, 0, 0) as follows:

J(s, 0, 0) = g(s) + β · r0 · J(s − d, 1, 0) + β · (1 − r0) · J(s − d, 0, 1),

J(s − d, 0, 1) = g(s − d) + β · r1 · J(s − 2d, 1, 0) + β · (1 − r1) · J(s − 2d, 0, 2),

...

It follows that

J(s, 0, 0) = g(s) +
∞∑

k=1

βkΠk−1
i=0 (1 − ri)g(s − kd)

+
∞∑

k=1

βkrk−1Π
k−2
i=0 (1 − ri)J(s − kd, 1, 0) (let r−1 = 0)

=
∞∑

k=0

βkLkg(s − kd) +
∞∑

k=1

βklkJ(s − kd, 1, 0)

=
∞∑

k=0

βkLkg(s − kd) + E [βτrJ(s − τrd, 1, 0)] . (4.10)

Likewise, let τp be time for PM, with c.m.f. G, and we can rewrite J(s, 2, 0) as

follows:

J(s, 2, 0) =
∞∑

k=0

βkGkg(s − kd) + E [βτpJ(s − τpd, 1, 0)] . (4.11)

Theorem 4.1. The optimal policy is of control-limit type with respect to the

machine’s age, if the following conditions are satisfied:

(1) machine’s failure rate is IFR, i.e., fn is increasing in n;

(2) cp ≤ cr;

(3) rn = pn, for n = 0, 1, · · · .
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Proof. By condition (3), we know the time for CM τr and the time for PM τp

have the same distribution, and thus J(s, 0, 0) = J(s, 2, 0) for all s, by equations

(4.10) and (4.11).

Denote J(s, 1, F ) = cr + J(s, 0, 0), so Qu(s, 1, n) can be rewritten as

Qu(s, 1, n) = g(s) + βfnJ(s + u − d, 1, F ) + β(1 − fn)J(s + u − d, 1, n + 1).

Moreover, we have

J(s, 1, n) = min
{

QPM(s, 1, n), min
u

Qu(s, 1, n)
}

≤ QPM(s, 1, n)

= cp + J(s, 2, 0)

≤ cr + J(s, 0, 0), by condition (2)

= J(s, 1, F ).

Now, we claim J(s, 1, n) is increasing in n. To prove the monotonicity of

J(s, 1, n), we proceed by value iteration.

(1) Obviously, it holds for J0(s, 1, n) at the step 0;

(2) Assume at the step k, Jk(s, 1, n) is increasing in n. At the step k + 1, we

have

Qu
k+1(s, 1, n + 1) − Qu

k+1(s, 1, n)

= β[(fn+1 − fn)Jk(s + u − d, 1, F ) + (1 − fn+1Jk(s + u − d, 1, n + 2)

− (1 − fn)Jk(s + u − d, 1, n + 1)]

≥ β[(fn+1 − fn)Jk(s + u − d, 1, F ) + (1 − fn+1Jk(s + u − d, 1, n + 1)

− (1 − fn)Jk(s + u − d, 1, n + 1)]

= β[(fn+1 − fn)(Jk(s + u − d, 1, F ) − Jk(s + u − d, 1, n + 1))]

≥ 0,
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i.e.,

Qu
k+1(s, 1, n + 1) ≥ Qu

k+1(s, 1, n). (4.12)

By value iteration, let k → ∞, we have

Qu(s, 1, n + 1) ≥ Qu(s, 1, n).

By Lemma 4.2, the optimal policy is of control-limit type.

The condition of τr and τp having the same distribution may not be satisfied

in practice. If we consider a simpler case where there is no PM/repair costs, i.e.,

cp = cr = 0, then we can show the optimal cost function still retains desirable

structural properties under more relaxed conditions, as stated in the following

theorem.

Theorem 4.2. If the following conditions are satisfied:

(1) fn is increasing in n;

(2) cp = cr = 0;

(3) pn ≥ rn, for all n;

(4) pn is non-increasing in n;

(5) rn is non-increasing in n;

then the following relations hold:

(i) J(s, 2, n) ≤ J(s, 2, n + 1);

(ii) J(s, 0, n) ≤ J(s, 0, n + 1);

(iii) J(s, 2, n) ≤ J(s, 0, n);

(iv) J(s, 1, n) ≤ J(s, 1, n + 1).
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Proof. The proof uses value iteration, and proceeds by induction. We prove (i)

first. (ii) and (iii) can be proved similarly using the same procedure. Assume

Jk(s, 2, n) satisfies the relationship (i). Then at k + 1,

Jk+1(s, 2, n) = g(s) + βpnJk(s − d, 1, 0) + β(1 − pn)Jk(s − d, 2, n + 1)

≤ g(s) + βpnJk(s − d, 1, 0) + β(1 − pn)Jk(s − d, 2, n + 2)

= g(s) + βJk(s − d, 2, n + 2)

− βpn(Jk(s − d, 2, n + 2) − Jk(s − d, 1, 0))

≤ g(s) + βJk(s − d, 2, n + 2)

− βpn+1(Jk(s − d, 2, n + 2) − Jk(s − d, 1, 0))

= Jk+1(s, 2, n + 1).

The first inequality is by the induction assumption at the step k, and the second

inequality follows from the condition pn ≥ pn+1, and the fact that

Jk(s − d, 1, 0) ≤ Jk(s − d, 2, 0) ≤ Jk(s − d, 2, n), for all n.

Recall under the condition (2),

Jk+1(s, 1, n) = min
{

Jk+1(s, 2, 0); min
u

{Qu
k+1(s, 1, n)}

}
,
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where

Qu
k+1(s, 1, n) = g(s) + βfnJk(s + u − d, 0, 0) + β(1 − fn)Jk(s + u − d, 1, n + 1)

≤ g(s) + βfnJk(s + u − d, 0, 0) + β(1 − fn)Jk(s + u − d, 1, n + 2)

= g(s) + βJk(s + u − d, 1, n + 2)

+ βfn (Jk(s + u − d, 0, 0) − Jk(s + u − d, 1, n + 2))

≤ g(s) + βJk(s + u − d, 1, n + 2)

+ βfn+1 (Jk(s + u − d, 0, 0) − Jk(s + u − d, 1, n + 2))

= Qu
k+1(s, 1, n + 1).

It follows immediately that Jk+1(s, 1, n) ≤ Jk+1(s, 1, n + 1). By taking the

appropriate limits, we have the relations of (i)-(iv).

Corollary 4.1. The optimal policy is of control-limit type with respect to the

machine’s age.

Proof. It follows straightforward from the monotonic structure of the optimal

cost function J(s, 1, n).

The following theorem states an intuitive property of the optimal policy µ∗

when the system has a high inventory level.

Theorem 4.3. There exists s∗ such that ∀s > s∗, µ∗(s, 1, n) = 0 or PM , for all

n.

Proof. The optimal cost function J(s, 1, n) can be broken down into two parts

J(s, 1, n) = G(s, 1, n) + H(s, 1, n) (4.13)
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where G is the total discounted inventory holding / backlogging cost and H

is the total discounted PM/CM cost. Now consider a starting inventory level

s = k ·d+ δ with k = 0, 1, 2, · · · , and 0 ≤ δ < d. Obviously, the total discounted

inventory holding cost satisfies

G(s, 1, n) ≥
k∑

t=0

c+(s − t · d)βt ≡ A(s). (4.14)

Let µ1 be any policy such that µ1(s, 1, n) ≥ 1. Thus the total discounted inven-

tory holding cost starting at (s, 1, n) under µ1 satisfies

Gµ1(s, 1, n) ≥ c+s +
k∑

t=1

c+(s + 1 − t · d)βt (4.15)

= A(s) + c+β − βk+1

1 − β
. (4.16)

Next, consider the cost related to PM/CM only. Let h(s, 1, n) be the minimal

total discounted PM/CM cost. This will be achieved by the optimal PM pol-

icy. (Actually, because the machine deterioration process is not affected by the

inventory process, the problem can be reduced to the classic problem of finding

the optimal PM policy for a Markov Chain; see, for example [18].) Denote the

corresponding optimal PM policy by a function v(s, 1, n).

Obviously, for all policies µ, the total discounted PM/CM cost Hµ satisfies:

Hµ(s, 1, n) ≥ h(s, 1, n). (4.17)

Thus, from (4.14) and (4.17),

J(s, 1, n) ≥ A(s) + h(s, 1, n). (4.18)

From (4.16) and (4.17)

Jµ1(s, 1, n) ≥ A(s) + c+β − βk+1

1 − β
+ h(s, 1, n). (4.19)
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We now construct a simple joint PM/production policy µ0 from the optimal PM

policy v, such that

µ0(s, 1, n) =




0, if v(s, 1, n) �= PM,

PM, if v(s, 1, n) = PM.

It is obvious that Hµ0(s, 1, n) = h(s, 1, n), and

Gµ0(s, 1, n) =
∞∑

t=0

g(s − td)βt

=
k∑

t=0

c+(s − td)βt +
∞∑

t=k+1

c−(td − s)βt

= A(s) + βk

∞∑
t=1

c−(td − δ)βt

≤ A(s) + βk

∞∑
t=1

c− · td · βt

= A(s) +
βk+1c−d

(1 − β)2
. (4.20)

Therefore,

Jµ0(s, 1, n) ≤ A(s) + h(s, 1, n) +
βk+1c−d

(1 − β)2
. (4.21)

From (4.18) and (4.21),

A(s) + h(s, 1, n) ≤ J(s, 1, n) ≤ A(s) + h(s, 1, n) +
βk+1c−d

(1 − β)2
. (4.22)

It then follows from (4.19) that µ(s, 1, n) ∈ {0, PM} if

c+β − βk+1

1 − β
> c−

βk+1d

(1 − β)2
, (4.23)

or equivalently if

k >

⌈
ln c+

c++c−d/(1−β)

ln β

⌉
= k∗, (4.24)

where �x� is the minimal integer that is greater or equal to x. So, s∗ = k∗d.
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Example: Optimal joint PM and production control pol-

icy for unreliable production system with time-dependent

failures

As the Weibull distribution is perhaps the most popular parametric family of

failure distributions, we assume the machine’s lifetime is Weibull distributed,

with pdf given by

f(t) =
α

η

(
t

η

)α−1

e−( t
η
)α

.

Let MAXLIFE be the maximal lifetime of the machine; then the sequence of

failure rates {fn, n = 0, 1, . . .} is obtained by discretizing the Weibull distribu-

tion. The time for PM is uniformly distributed in [0, MAXTM]; the time for

CM is also uniformly distributed, in [0,MAXTR]. Let

α = 4, η = 5,

β = 0.95, MAXLIFE = 100,

MAXTM = 3, MAXTR = 6,

d = 1, P = 3,

cp = 50, cr = 2 ∗ cp,

c+ = 1, c− = 10.

The optimal policy can be obtained numerically by solving the corresponding

DP equations. Figure 4.2 shows the optimal policy.

It is interesting to compare the performances of the jointly optimized policy

and the conventional independently optimized policies. Traditionally, the PM

and production policies are optimized independently. First, the production pol-

icy is optimized assuming the machine is reliable, and then the PM policy is
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Figure 4.2: Joint optimal policy. (a) The optimal actions on the whole state

space. (b) The optimal actions on the space [-5,5] × [0, MAXLIFE].

optimized without consideration of systems inventory level. For this example,

due to the constant demand, the independently optimized production policy µind

is very simple, and is given by

µind(s) =




0 if s ≥ d,

P if s ≤ (d − P ),

d − s otherwise.

The independently optimized PM policy also has a simple structure. It is well

known it is a control-limit policy under some appropriate conditions, usually,

IFR; see [18]. The control limit can be obtained by solving the DP equations.

For this example, the control limit is 22.
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Figure 4.3: The comparative difference of cost functions under the joint optimal

policy and independently optimized policy.

Let J∗ be the cost function of the joint optimal policy, and Jind the cost func-

tion of the independently optimized policy. Figure 4.3 shows the comparative

difference of cost functions, (Jind−J∗)/J∗. The maximal difference is about 65%,

which shows the classic independently optimized PM and production policy has

very poor performance for some system states.
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4.3 The Model with Operation-Dependent Fail-

ures

u ∈ {0, 1}

1, w.p. q

Figure 4.4: An unreliable production system with operation-dependent failures

In this section, we consider a machine experiencing operation-dependent fail-

ures, i.e., the machine deteriorates only when it is in production. It does not

deteriorate when it stays idle. This is different from time-dependent failures,

where the machine deteriorates even if it is idle. In the context of semiconduc-

tor manufacturing, the operation-dependent failures are related to deteriorations

due to wafer processing and can be corrected preventively by wafer-count-based

or operation-time based PMs.

It is assumed that the machine failures can occur only at the completion of

a job. We further assume the machine can produce at rate either 1 or 0. The

reason behind this assumption is for the fact of operation-dependent failures. If

the machine can produce more than one unit in one period, then failures could be

possibly occurred in the middle of a time-unit (when a job is finished). We also

assume the incoming demand is a random variable. For simplicity, we assume

that a unit demand arrives in each period with probability q.
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4.3.1 MDP Formulation

We use the same notation as in the previous model, with some modifications in

the following.

ut: control applied at the beginning of period t. It is admissible only when

Xt = 1, i.e., machine is up. The admissible values of ut are PM , 0, or 1,

i.e., doing PM, idle, or producing 1 item, respectively.

fn: conditional failure probability at age n + 1 given it is up at age n, i.e.,

fn = Pr(Xt+1 = 0 | Xt = 1, at = n, ut = 1). Note: Pr(Xt+1 = 0 | Xt =

1, at = n, ut = 0) = 0, i.e., the state of machine at the next period will not

change if the machine is up and ut = 0, due to the assumption of operation

dependent failure.

q: probability of unit demand arriving in each period.

Our objective is to find an optimal joint production and PM policy to min-

imize the total discounted inventory/PM/repair costs over the infinite horizon,

as stated below:

J(s, α, n) = min E

[ ∞∑
t=0

βt (g(St) + h(Xt− ,Xt, ut)) |S0 = s,X0 = α, a0 = n

]
,

(4.25)

where (X0− = X0) and the one-period cost functions g and h are given by (4.1)

and (4.2), respectively.
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Based on the system dynamics, we have the following dynamic programming

optimality equations:

J(s, 0, n) = g(s) + β {q · rn · J(s − 1, 1, 0) + q(1 − rn) · J(s − 1, 0, n + 1)

+ (1 − q)rn · J(s, 1, 0) + (1 − q)(1 − rn) · J(s, 0, n + 1)} ,(4.26)

J(s, 2, n) = g(s) + β {q · pn · J(s − 1, 1, 0) + q(1 − pn) · J(s − 1, 2, n + 1)

+ (1 − q)pn · J(s, 1, 0) + (1 − q)(1 − pn) · J(s, 2, n + 1)} ,(4.27)

J(s, 1, n) = min
{
QPM(s, 1, n), Q0(s, 1, n), Q1(s, 1, n),

}
(4.28)

where QPM(s, 1, n) is the Q-function of applying PM control, Q0(s, 1, n) the Q-

function of producing 0 unit, and Q1(s, 1, n) the Q-function of producing 1 unit,

i.e.,

QPM(s, 1, n) = cp + J(s, 2, 0), (4.29)

Q0(s, 1, n) = g(s) + β {q · J(s − 1, 1, n) + (1 − q) · J(s, 1, n)} , (4.30)

Q1(s, 1, n) = g(s) + β {q · fn · (cr + J(s, 0, 0))

+ q · (1 − fn) · J(s, 1, n + 1)

+ (1 − q) · fn · (cr + J(s + 1, 0, 0))

+ (1 − q) · (1 − fn) · J(s + 1, 1, n + 1)} . (4.31)

4.3.2 Structural Properties of Optimal Policies

The following lemma states a connection between the value iteration of DP and

corresponding finite horizon MDP.

Lemma 4.3. For a discounted infinite horizon MDP problem, if J1(·), J2(·),· · · ,
is the sequence generated by the following value iteration starting from J0(·) = 0,

Jk(x) = min
u∈U(i)

E [g(x, u) + βJk−1(f(x, u, w))] , k = 1, 2, · · · , (4.32)
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then,

Jk(x) = min
πk

E

(
k−1∑
t=0

βtg(xt, ut) | x0 = x

)
, (4.33)

where πk = {µ0, µ1, . . . , µk−1}, i.e., Jk(x) is the optimal k-stage discounted cost

when system is starting from the state x.

We now write the value iteration for our MDP problem as follows:

J0(·, ·, ·) = 0,

Jk+1(s, 0, n) = g(s) + β {q · rn · Jk(s − 1, 1, 0) + q(1 − rn) · Jk(s − 1, 0, n + 1)

+(1 − q)rn · Jk(s, 1, 0) + (1 − q)(1 − rn) · Jk(s, 0, n + 1)} ,

Jk+1(s, 2, n) = g(s) + β {q · pn · Jk(s − 1, 1, 0) + q(1 − pn) · Jk(s − 1, 2, n + 1)

+(1 − q)pn · Jk(s, 1, 0) + (1 − q)(1 − pn) · Jk(s, 2, n + 1)} ,

Jk+1(s, 1, n) = min
{
QPM

k+1(s, 1, n), Q0
k+1(s, 1, n), Q1

k+1(s, 1, n)
}

,

QPM
k+1(s, 1, n) = cp + Jk+1(s, 2, 0),

Q0
k+1(s, 1, n) = g(s) + β {q · Jk(s − 1, 1, n) + (1 − q) · Jk(s, 1, n)} ,

Q1
k+1(s, 1, n) = g(s) + β {q · fn · (cr + Jk(s, 0, 0))

+ q · (1 − fn) · Jk(s, 1, n + 1)

+ (1 − q) · fn · (cr + Jk(s + 1, 0, 0))

+ (1 − q) · (1 − fn) · Jk(s + 1, 1, n + 1)} .

The following conditions will be needed in our later analysis.

Condition 4.1. fn is IFR, i.e., increasing with respect to n.

Condition 4.2. cr ≥ cp.

Condition 4.3. τr ≥st τp.
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Lemma 4.4. Under conditions 4.1,4.2 and 4.3, Jk+1(s, 0, 0) ≥ Jk+1(s, 2, 0) for

k=0,1,. . .

Proof. By Lemma 4.3,

Jk+1(s, 0, 0) = min
πk+1

E

(
k∑

t=0

βt (g(St) + h(Xt− ,Xt, ut)) | S0 = s,X0 = 0, a0 = 0

)
,

Jk+1(s, 2, 0) = min
πk+1

E

(
k∑

t=0

βt (g(St) + h(Xt− ,Xt, ut)) | S0 = s,X0 = 2, a0 = 0

)
.

Because τr ≥st τp, by coupling, there exists a r.v. τ ∗
r that has the same distribu-

tion as τr such that

τ ∗
r = τp + ∆τ, (4.34)

where ∆τ ≥ 0, w.p.1. Moreover, τ ∗
r can be generated as follows,

τ ∗
r = F−1

τr

(
Fτp(τp)

)
, (4.35)

where Fτr(·) and Fτp(·) are the c.d.f of τr and τp, respectively, and F−1 is the

inverse function of F . Note: In order for the inverse function F−1 to be well

defined for discrete random variables, we define F−1 as follows:

F−1(p) = min {x : F (x) ≥ p} . (4.36)

We decompose the cost of Jk+1(s, 0, 0) and Jk+1(s, 2, 0), respectively, into two

parts: the partial cost incurred from the beginning to the point when the CM

(or PM) is finished at time τr (or τp), and the cost incurred thereafter. The

main idea in the following steps is that assuming the machine starts from state

(s, 2, 0) at time t0, it will finish the PM at a random time t0 + τp. After the PM

is finished, the machine is up and an admissible control could be applied. We

consider a policy such that a control ut = 0 is applied first for a time duration of
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Optimal control
starts to apply

PM finishPM start

apply u=0

∆ττp

t0 + τp t0 + τ∗
rt0

Figure 4.5: A specific policy – postpone optimal control until the time period

t0 + τ ∗
r .

∆τ , i.e., forcing the machine into idle between t0 + τp and t0 + τ ∗
r , and then an

optimal control is followed thereafter; see the illustration of Figure 4.5. It can

be seen that this special policy will incur the same cost as the machine starting

from state (s, 0, 0). Therefore, the optimal cost-to-go from state (s, 2, 0) should

be less than the optimal cost-to-go from state (s, 0, 0).

Note also that from time t0 to t0 + τr −1 and t0 + τp −1, the system is in CM

and PM, respectively, so during those periods, the cost is only from inventory,

and there is no control at all.
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Jk+1(s, 0, 0) = min
πk+1

E

(
E

(
τr−1∑
t=0

βtg(St)1(τr ≤ k)

+
k∑

t=τr

βt (g(·) + h(·, ·)) 1(τr ≤ k)

+
k∑

t=0

βtg(St)1(τr > k) | (s, 0, 0), τr

)
| (s, 0, 0)

)

= E

(
E

(
τr−1∑
t=0

βtg(St)1(τr ≤ k) | (s, 0, 0), τr

)
| (s, 0, 0)

)

+ E

(
E

(
k∑

t=0

βtg(St)1(τr > k) | (s, 0, 0), τr

)
| (s, 0, 0)

)

+ min
πk+1

E(E(
k∑

t=τr

βt(g + h)1(τr ≤ k)|(s, 0, 0), τr)|(s, 0, 0)).

(4.37)

Similarly, for Jk+1(s, 2, 0), we have

Jk+1(s, 2, 0) = E

(
E

(
τp−1∑
t=0

βtg(St)1(τp ≤ k) | (s, 2, 0), τp

)
| (s, 2, 0)

)

+ E

(
E

(
k∑

t=0

βtg(St)1(τp > k) | (s, 2, 0), τp

)
| (s, 2, 0)

)

+ min
πk+1

E(E(
k∑

t=τp

βt(g + h)1(τp ≤ k) | (s, 2, 0), τp) | (s, 2, 0)).

(4.38)
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By conditioning on τ ∗
r , the last term on the RHS of (4.38) can be written as:

min
πk+1

E(E(
k∑

t=τp

βt(g + h)1(τp ≤ k) | (s, 2, 0), τp) | (s, 2, 0))

= min
πk+1

E(E(E(

τ∗
r −1∑

t=τp

βt(g + h)1(τp ≤ k)1(τ ∗
r ≤ k) +

k∑
t=τ∗

r

βt(g + h)

1(τp ≤ k)1(τ ∗
r ≤ k) +

k∑
t=τp

βt(g + h)1(τp ≤ k)1(τ ∗
r > k)

| (s, 2, 0), τp, τ
∗
r ) | (s, 2, 0), τp) | (s, 2, 0)) (4.39)

Note that at the time of τp, the PM is finished and the system state changes

to (s′, 1, 0). One policy after the time of τp is that we can choose the action of

producing 0 units, until the time of τ ∗
r . During these time periods, the machine’s

state X will remain at 1, and the system cost is incurred only by the inventory.

The cost of (4.39) should be less than the cost of applying this specific policy.

Thus we have the following inequality:

min
πk+1

E(E(
k∑

t=τp

βt(g + h)1(τp ≤ k) | (s, 2, 0), τp) | (s, 2, 0))

≤ E(E(E(

τ∗
r −1∑

t=τp

βtg(St)1(τ ∗
r ≤ k) | s, τp, τ

∗
r ) | s, τp) | s)

+ E(E(E(
k∑

t=τp

βtg(St)1(τp ≤ k < τ ∗
r ) | s, τp, τ

∗
r ) | s, τp) | s)

+ min
πk+1

E(E(E(
k∑

t=τ∗
r

βt(g + h)1(τ ∗
r ≤ k) | s, τp, τ

∗
r ) | s, τp) | s).

(4.40)

For the first two terms on the RHS, the condition on the initial state (s, 2, 0) can

be written compactly as s, because only the initial inventory level is relevant.
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Also the conditioning on τp in the third term can be dropped. So it becomes

min
πk+1

E(E(
k∑

t=τp

βt(g + h)1(τp ≤ k) | (s, 2, 0), τp) | (s, 2, 0))

≤ E(E(E(

τ∗
r −1∑

t=τp

βtg(St)1(τ ∗
r ≤ k) | s, τp, τ

∗
r ) | s, τp) | s)

+ E(E(E(
k∑

t=τp

βtg(St)1(τp ≤ k < τ ∗
r ) | s, τp, τ

∗
r ) | s, τp) | s)

+ min
πk+1

E(E(
k∑

t=τ∗
r

βt(g + h)1(τ ∗
r ≤ k) | (s, 2, 0), τ ∗

r ) | (s, 2, 0)).

(4.41)

Substituting this into the equation (4.38):

Jk+1(s, 2, 0)

≤ E

(
E

(
τp−1∑
t=0

βtg(St)1(τp ≤ k) | s, τp

)
| s

)

+ E

(
E

(
k∑

t=0

βtg(St)1(τp > k) | s, τp

)
| s

)

+ E


E


E


τ∗

r −1∑
t=τp

βtg(St)1(τ ∗
r ≤ k) | s, τp, τ

∗
r


 | s, τp


 | s




+ E


E


E


 k∑

t=τp

βtg(St)1(τp ≤ k < τ ∗
r ) | s, τp, τ

∗
r


 | s, τp


 | s




+ min
πk+1

E


E


 k∑

t=τ∗
r

βt(g + h)1(τ ∗
r ≤ k) | s, τ ∗

r


 | s



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= E

(
E

(
E

(
τp−1∑
t=0

βtg(St)1(τp ≤ k)1(τ ∗
r ≤ k) | s, τp, τ

∗
r

)
| s, τp

)
| s

)

+ E

(
E

(
E

(
τp−1∑
t=0

βtg(St)1(τp ≤ k)1(τ ∗
r > k) | s, τp, τ

∗
r

)
| s, τp

)
| s

)

+ E

(
E

(
k∑

t=0

βtg(St)1(τp > k) | s, τp

)
| s

)

+ E


E


E


τ∗

r −1∑
t=τp

βtg(St)1(τ ∗
r ≤ k) | s, τp, τ

∗
r


 | s, τp


 | s




+ E


E


E


 k∑

t=τp

βtg(St)1(τp ≤ k < τ ∗
r ) | s, τp, τ

∗
r


 | s, τp


 | s




+ min
πk+1

E


E


 k∑

t=τ∗
r

βt(g + h)1(τ ∗
r ≤ k) | s, τ ∗

r


 | s


 .

Combining the 1st and 4th terms, as well as the 2nd and 5th terms on the RHS,

i.e.,

Jk+1(s, 2, 0)

≤ E

(
E

(
τ∗
r −1∑
t=0

βtg(St)1(τ ∗
r ≤ k) | s, τ ∗

r

)
| s

)

+ E

(
E

(
k∑

t=0

βtg(St)1(τ ∗
r > k) | s, τ ∗

r

)
| s

)

+ min
πk+1

E


E


 k∑

t=τ∗
r

βt (g(·) + h(·, ·)) 1(τ ∗
r ≤ k) | s, τ ∗

r


 | s




= Jk+1(s, 0, 0). (4.42)

Now we are ready to prove the following main theorem.

Theorem 4.4. Under Conditions 4.1, 4.2, and 4.3, J(s, 1, n) is increasing with

respect to n.
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Proof. We proceed by value iteration.

(1). J0(·, ·, ·) = 0;

(2). Assume Jk(s, 1, n) is increasing in n,

Jk+1(s, 1, n) = min
{
QPM

k+1(s, 1, n), Q0
k+1(s, 1, n), Q1

k+1(s, 1, n)
}

,

where QPM
k+1(s, 1, n) = cp + Jk+1(s, 2, 0), is constant in n, and

Q0
k+1(s, 1, n) = g(s) + β {q · Jk(s − 1, 1, n) + (1 − q) · Jk(s, 1, n)} ,

so Q0
k+1(s, 1, n) is increasing in n as is Jk.

Next we want to show Q1
k+1(s, 1, n) is increasing.

Q1
k+1(s, 1, n + 1) − Q1

k+1(s, 1, n)

= β {q · fn+1(cr + Jk(s, 0, 0)) − q · fn(cr + Jk(s, 0, 0))

+ q · (1 − fn+1) · Jk(s, 1, n + 2) − q · (1 − fn) · Jk(s, 1, n + 1)

+ (1 − q) · fn+1 · (cr + Jk(s + 1, 0, 0)) − (1 − q) · fn · (cr + Jk(s + 1, 0, 0))

+ (1 − q) · (1 − fn+1) · Jk(s + 1, 1, n + 2)

− (1 − q) · (1 − fn) · Jk(s + 1, 1, n + 1)}

≥ β {q(fn+1 − fn)(cr + Jk(s, 0, 0)) + (1 − q)(fn+1 − fn)(cr + Jk(s + 1, 0, 0))

− q(fn+1 − fn)Jk(s, 1, n + 1) − (1 − q)(fn+1 − fn)Jk(s + 1, 1, n + 1)}

= β {q(fn+1 − fn)(cr + Jk(s, 0, 0) − Jk(s, 1, n + 1))

+ (1 − q)(fn+1 − fn)(cr + Jk(s + 1, 0, 0) − Jk(s + 1, 1, n + 1))}

≥ 0.

The last inequality is due to Condition 4.1 and

Jk(s, 1, n + 1) ≤ cp + Jk(s, 2, 0) ≤ cr + Jk(s, 0, 0).
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Therefore, Q1
k+1(s, 1, n) is increasing in n. So does Jk+1(s, 1, n).

(3). Since J(s, 1, n) = limk→∞ Jk(s, 1, n), therefore, J(s, 1, n) is increasing in

n.

Corollary 4.2. Under Conditions 4.1, 4.2 and 4.3, the joint policy is of control-

limit type with respect to n.

Proof. It follows immediately from the monotonicity of the optimal cost function

J(s, 1, n) in n, and the fact that QPM(s, 1, n) is constant in n.

The following theorem states that when the inventory level is sufficient high,

no matter what the deterioration degree of the machine is, it is optimal neither

to do PM nor to produce.

Theorem 4.5. ∀n,∃s∗ such that for all s > s∗, the optimal action for state

(s, 1, n) is to stay idle, i.e., µ∗(s, 1, n) = 0.

Proof. Without loss of generality, assume s > 0. Consider a policy µ0 that keeps

the machine idle until the inventory level s = 0. Denote by τ(s) the random time

when the inventory reaches 0 under µ0. Let {di, i = 1, 2, . . .} be the sequence of

incoming i.i.d. demands, i.e., di = 1, w.p. q; 0, w.p. 1 − q. Then τ(s) can be

equivalently defined as

τ(s) = min{t :
t∑

i=1

di ≥ s}. (4.43)

Obviously, τ(s) is a stopping time of the demand sequence, and E(τ(s)) = s/q.

Moveover,

τ(s) ≥ s, w.p.1. (4.44)
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tτ(s)

s
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Figure 4.6: τ(s): minimum time for inventory reaching 0 for a sample path

starting with initial level s; Φ(s): the sample-path inventory cost under the

policy µ0 until the time τ(s).

We now denote by Φ(s) the sample-path total inventory cost under the policy

µ0, for the system starting at the inventory level s until the time τ(s), i.e.,

Φ(s) =

τ(s)∑
t=0

βt · c+ · Ss(t), (4.45)

where Ss(t) is the inventory level at the time t if the system starts with the

initial level s. It is obvious that E[Φ(s)] is actually the minimum inventory cost

for the system with the initial inventory level s, under any policy, i.e.,

J(s, ·, ·) ≥ E[Φ(s)]. (4.46)

Under the policy µ0, the corresponding cost function Jµ0(s, 1, n) satisfies

Jµ0(s, 1, n) = E [Φ(s)] + E
[
βτ(s)J(0, 1, n)

]
. (4.47)

Combining (4.46) and (4.47), we have the following inequalities for the opti-

mal cost function J(s, 1, n):

E [Φ(s)] ≤ J(s, 1, n) ≤ E [Φ(s)] + E
[
βτ(s)J(0, 1, n)

]
. (4.48)
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Figure 4.7: Inventory sample path versus boundary path

Suppose now the machine starts from the state (0, 1, n), and we apply a policy

µ1 that puts the machine in idle forever. The cost function Jµ1(0, 1, n) satisfies

Jµ1(0, 1, n) ≤
∞∑

t=0

βt · c− · t

= c−
β

(1 − β)2
. (4.49)

Therefore, the optimal cost function J(0, 1, n) is bounded by:

J(0, 1, n) ≤ Jµ1(0, 1, n)

≤ c−
β

(1 − β)2
. (4.50)

It follows that

J(s, 1, n) ≤ E [Φ(s)] + E
[
βτ(s)

]
c−

β

(1 − β)2

≤ E [Φ(s)] + βsc−
β

(1 − β)2
. (4.51)

But we also have

QPM(s, 1, n) = cp + J(s, 2, 0)

≥ cp + E [Φ(s)] , (4.52)

Therefore, QPM(s, 1, n) > J(s, 1, n), if

cp > βsc−
β

(1 − β)2
,
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or equivalently if

s >
ln cp(1−β)2

c−·β
ln β

. (4.53)

Next, we consider the action of producing one more item at state (s, 1, n). By

the system dynamics (4.31),

Q1(s, 1, n) = g(s) + β {q · fn · (cr + J(s, 0, 0)) + q · (1 − fn) · J(s, 1, n + 1)

+ (1 − q) · fn · (cr + J(s + 1, 0, 0))

+ (1 − q) · (1 − fn) · J(s + 1, 1, n + 1)}

≥ g(s) + β {q · fn · J(s, 1, n + 1) + q · (1 − fn) · J(s, 1, n + 1)

+ (1 − q) · fn · J(s + 1, 1, n + 1)

+ (1 − q) · (1 − fn) · J(s + 1, 1, n + 1)}

= g(s) + β {q · J(s, 1, n + 1) + (1 − q) · J(s + 1, 1, n + 1)}

≥ g(s) + β {qJ(s, 1, n) + (1 − q)J(s + 1, 1, n)}

= Q0(s + 1, 1, n) − g(s + 1) + g(s)

≥ E [Φ(s + 1)] − c+.

The first and second inequalities are due to Theorem 4.4, and the last inequality

is due to (4.46).

Since {di} is i.i.d, it can be seen that the sample pathes with initial levels

s + 1 and s satisfy

Ss+1(t) =st Ss(t) + 1.

Therefore,

E [Φ(s + 1)] − E [Φ(s)] = E


τ(s+1)∑

t=0

βt · c+




≥ c+(1 − βs+2)

1 − β
,
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Figure 4.8: Computing E(Φ(s + 1)) − E(Φ(s))

Thus,

Q1(s, 1, n) ≥ E [Φ(s)] +
c+(1 − βs+2)

1 − β
− c+

= E [Φ(s)] +
c+β(1 − βs+1)

1 − β
. (4.54)

Comparing (4.51) and (4.54), we see Q1(s, 1, n) > J(s, 1, , n) if

c+β(1 − βs+1)

1 − β
>

c−βs+1

(1 − β)2
, (4.55)

or equivalently if

βs <
c+(1 − β)

c− + c+β(1 − β)
, (4.56)

i.e., s >
ln c+(1−β)

c−+c+β(1−β)

ln β
. (4.57)

Combining (4.53) and (4.57), it follows that µ∗(s, 1, n) = 0 if

s > max




ln cp(1−β)2

c−·β
ln β

,
ln c+(1−β)

c−+c+β(1−β)

ln β


 . (4.58)
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Figure 4.9: Optimal policy for unreliable production system with operation-

dependent failures. (The blank area in the state space is where the optimal

action is to stay idle.)

Example

Again assume the machine’s lifetime is Weibull distributed. The time for PM

and time for CM are uniformly distributed in [0, MAXTM] and [0,MAXTR],

respectively. The following are the model parameters.

α = 4, η = 5,

β = 0.95, MAXLIFE = 100,

MAXTM = 3, MAXTR = 6,

q = 0.8, β = 0.95,

cp = 50, cr = 2 ∗ cp,

c+ = 1, c− = 10.

The optimal policy is shown in Figure 4.9.
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4.4 Conclusions

In this chapter, we have studied the problems of optimal joint PM and production

policies for unreliable systems with time-dependent and operation-dependent

failures. Two different models have been developed and analyzed. Both models

have applications in semiconductor manufacturing systems: the first model is

appropriate for tools with calendar-based PMs, whereas the second model is

useful for tools with wafer-based PMs.

Using MDP modeling, we have analyzed the optimal joint PM and pro-

duction policies. Some structural properties of the optimal value function and

corresponding optimal policies have been derived. Particulary, we show, under

some reasonable conditions, the optimal policies are control-limit with respect

to machine’s age (deterioration degree).

It is worth noting that the problems studied in this chapter have some con-

nections with the so-called restless bandit problems [59]. A restless bandit prob-

lem differs from the classical bandit processes [26] in that the restless bandits

(‘projects’) continue to change state even when they are not being operated.

Specifically, the model with operation-dependent failures is much like a prob-

lem with two-armed restless bandit processes, with one process corresponding to

production and the other corresponding to preventive maintenance. The state

for the production process is the inventory level, which changes even when the

system is in maintenance. On the other hand, the state for the preventive main-

tenance process is the age of the machine, which changes when the system is in

production.

While the classical multi-armed bandit problems are well-known to be solved

by Gittins index policy [26], the restless bandit problems are much harder to solve
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[59, 58], and actually have been proven to be PSPACE-hard [42]. The additional

constraints in our problems make them even harder. For instance, one constraint

is that once the system is in maintenance, it cannot switch to production until

the maintenance is finished. In addition, for the model with time-dependent

failures, the multiple-valued production control (u ∈ {0, 1, . . . , P}) adds even

more complexity to the restless bandit problem formulation.
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Chapter 5

Optimal PM Scheduling in

Semiconductor Fabs

In this chapter, we address the problem of optimal PM scheduling for semicon-

ductor manufacturing systems. Our emphasis here will be placed other than

on the investigation of optimal PM policies structures but on the scheduling

of multiple PM tasks within a specified time horizon. As the difficulty in PM

scheduling for cluster tools is representative of the complexity found in most

semiconductor fabs, we will consider the problem under the setting of a group

of cluster tools with multiple PM tasks on each tool.

The optimal PM scheduling problem considered in this chapter corresponds

to the lower level of the proposed hierarchical framework. It coordinates inter-

dependent multiple PM tasks by taking into account individual tool PM policies,

WIP levels, and resource constraints, so as to obtain an optimal schedule under

a predefined objective function. The basic problem is stated as follows. Con-

sider a cluster tool with multiple processing chambers. During a certain time

period, there are different PM tasks that need to be scheduled on different cham-

bers. Since the throughput of the entire tool is dependent on the status of each
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chamber, the question is how to schedule the PM tasks so as to maximize the

throughput while satisfying each PM’s requirement. Following common practice

in the semiconductor industry, we assume each individual PM follows the so-

called “time window” policy, where each PM is associated with a time interval

specifying an earliest and latest start time for the PM.

We address the PM scheduling problem using mixed integer programming

(MIP) models, and the formulation and solution of the models will be discussed

in detail in this chapter. Although our proposed solutions are applicable to all

tool groups in a fab, those groups with highly complex and interdependence

PM tasks, and high utilization rates, would clearly be most positively impacted.

Commonly, groups with cluster tools fall in the latter category, and we focus on

these to illustrate our solutions.

In order to test the models and algorithms developed, a simulation study

was conducted for a tool group in a large fab, using that fab’s actual simula-

tion model and real data. Performance obtained by scheduling PM tasks using

our solutions was compared to a baseline PM schedule over a one-week period

during medium to high workload level. The baseline schedule used was the one

implementing actual historical PM scheduling decisions by tool group managers.

The simulation results indicate that our solutions perform quite efficiently, in

the sense that they outperform the baseline reference schedule, and they exhibit

a preference for consolidated PM tasks when searching for an optimal schedule.

The proposed MIP model is now being implemented and integrated into a real

fab operational environment at a major semiconductor manufacturer. The work

presented in this chapter has been submitted for publication [64] where more im-

plementation details are provided; a preliminary version of this work was once
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presented at the IEEE Conference on Control Applications in 2001 [63].

The remainder of the chapter is organized as follows. Section 5.1 provides

some background and contains a brief literature review on related work. The

MIP model for the PM scheduling problem is developed and discussed in section

5.2, with more technical details provided in the section 5.3. The simulation study

is contained in Section 5.4. Finally we provide some concluding remarks.

5.1 Background and Related Work

PM scheduling in semiconductor fabs has long been seen as a very hard problem;

for example, see [34, 55]. The scheduling of PM tasks for cluster tools is a good

representative example. Cluster tools are highly integrated machines that can

perform a sequence of semiconductor manufacturing processes. A general con-

figuration of a cluster tool includes load/unload locks, orientor/degas, transfer

robots and several processing chambers.

The difficulty of PM scheduling for cluster tools is largely due to their complex

behavior, as they usually have several chambers, and each chamber has several

different PM tasks that have to be performed. To improve the availability of the

entire tool requires coordination of PM tasks in different chambers, because the

entire tool’s availability is dependent on the status of each chamber. In addition,

fab production data such as Work-In-Process (WIP) should be considered in

PM scheduling. For instance, PM tasks should be avoided if possible during

periods when a significant amount of work is expected to arrive soon. It would

be wise to “pull” or “push” a planned PM task beyond a certain period under

such circumstances. Hence, PM tasks should be scheduled by looking ahead
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at both the effect from WIP and the impact on WIP. In addition, it may be

advantageous sometimes to consolidate PM tasks, e.g., doing one task “early”

when a tool or chamber is brought down for another task. Costs for supplies

and lost production, as well as technician availability constraints, should also be

accounted for.

It is obvious that the uncertain (stochastic) nature of WIP and tool failures,

and the interdependence of PM tasks in fabs, require new models to be developed

to deal with these complicated situations. Unfortunately, there does not appear

to be such models readily applicable to PM scheduling problems. On the other

hand, there are enormous amounts of data in the fab databases readily available

to modelers and planners; yet most of this potential goes unutilized.

Performance evaluation for cluster tools operation has been studied exten-

sively in the literature [5, 61, 36, 29]. However, there is little study related to

PM for cluster tools. On the other hand, many PM models on multi-component

systems have been developed for systems where several machines are stochas-

tically or economically dependent on each other; for example, see the survey

paper [14] and the references therein. Most of these efforts have been focused on

group/block or opportunistic maintenance models that make use of economies

of scale to perform preventive replacement upon the failure of one unit, e.g. [9],

or on the investigation of the effect of repairmen/spare parts inventory on main-

tenance policies. However, there are very few papers on PM scheduling under

the specific context of semiconductor manufacturing.

Recently, Mosley et al. [39] study maintenance dispatching and staffing poli-

cies for a group of fabs sharing maintenance resources. Yet their objective is to

study various policies for scheduling maintenance personnel, by using a discrete-
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event simulation model.

In semiconductor manufacturing, hierarchical planning and scheduling for

maintenance activities is widely adopted. Although this is common in the indus-

try as well as in many other applications, this type of hierarchical PM scheduling

structure has not been addressed formally until very recently.

The recent work by van Dijkhuizen and van Harten [57] appears to be the first

effort to address the issue. They study a two-stage maintenance policy, where

the first stage is to determine a time window [t, t + ∆t], and the second stage is

to determine the actual start time of a PM within the time interval. Specifically,

they assume, in the first stage, a generalized age maintenance policy is used,

i.e., a PM must be carried out somewhere between t and t + ∆t since the last

PM or repair. In the second stage, the initiation of a PM task is driven by the

operating state of the system, which is assumed to be deterministic over the

interval [t, t + ∆t]. The PM is carried out at the optimal time t̂ ∈ [t, t + ∆t].

However, their problem setting is for a single PM on a single tool, and the model

is not well suited for scheduling multiple PM tasks in the context of multiple

tools. In addition, they assume the time for a PM is negligible, which is clearly

not the case for most PMs in semiconductor manufacturing.

The value of consolidation of different PM tasks, e.g., for cluster tools, is

commonly recognized in semiconductor manufacturing; yet it has not been ad-

dressed in a rigorous way in the literature. One study of the problem of grouping

maintenance activities, which doesn’t consider production costs, is conducted by

Wildeman et al. [60], in a generic problem setting. They consider a multi-

component system where preventive maintenance activities can be carried out

on each component with a system-dependent cost (i.e., setup cost, which is the
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same for all activities) and a component-dependent cost. It is desirable to group

maintenance activities, since execution of a group of activities requires only one

setup. They develop a rolling horizon dynamic policy for grouping PMs.

5.2 Mixed Integer Programming

We will study the problem of optimal PM scheduling for a group of cluster tools.

There are a few important issues we need to address.

To begin with, there are various PM activities on each component of the

cluster tool. Roughly, they can be categorized into two types of PMs: calendar-

based and operation-based. A calendar-based PM must be performed at some

interval of calendar time, e.g., every 7, 14, 30, 90, 180 or 360 days. For an

operation-based PM, the interval between two consecutive tasks is determined

by the tool’s operation history, which can be characterized by either wafer count

or cumulative operating time since the last PM. For example, for each processing

chamber, a kit change is supposed to be undertaken at every specified number

of wafers produced since the last PM. The vast majority of PM policies follow a

“generalized age replacement” structure, in which a PM is scheduled for a time

after a tool’s “age” exceeds some threshold, but there is flexibility on the actual

start time within some associated interval. Here, “age” means calendar-time or

operation history, according to the type of PM. In semiconductor manufacturing

practice, this is often called a “PM window” policy, where such a window is

associated with each PM task. Even if a PM window is operation-based, e.g.,

“2000 wafers ± 10%” since last PM, tasks must be scheduled on a calendar

basis, e.g., work shift and day. Furthermore, if an optimization model were
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to track wafer count, this would lead to a very high level of computational

complexity, and scheduling decisions of the form “schedule PM task A at 1,860

wafer count”, which would need to be converted to an equivalent calendar date.

For these reasons, our models and algorithms operate on a calendar base, and

PM window specifications are assumed to be given on this base. Converting

operation-based data to equivalent calendar dates is commonly handled in ad

hoc ways in practice. Efficient methods and algorithms have also been developed

recently in [45].

Another issue in PM scheduling is that several key factors affecting the

decision-making process have to be taken into account. First of all, careful

coordination of PM tasks in different chambers is required to improve the entire

tool’s throughput, because it is dependent on the status of each chamber. Usu-

ally, it is advantageous to consolidate PM tasks when another PM is planned

on the near horizon, or tools are shut down due to unexpected “out of control”

events. Second, WIP has to be considered in the PM schedule. For example, it

would be ideal to do PM in a period when WIP is low, and not to do PM in a

period of high WIP or when many lots of wafers are scheduled to arrive. Finally,

resource constraints such as the headcount of maintenance technicians for the

entire tool group of interest have to be taken into consideration, since manpower

is usually the most critical constraint in PM scheduling.

In the following, after the definition of the problem, a mixed integer pro-

gram is presented. Specific issues on solving the MIP model and its software

implementation will then be discussed.
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5.2.1 Problem Definition

We consider PM scheduling for a group of generic tools. We assume all PM tasks

are calendar-based. For non-calendar-based PMs, such as wafer-count-based and

operation-time-based PMs, we assume that these are first converted from their

wafer-count or operation time into calendar time for the purpose of scheduling.

For the sake of generality, we give our presentation below in terms of cluster

tools, keeping in mind that non-clustered tools can be viewed as single chamber

tools for purpose of our model. Moreover, tools with coupled operations, e.g.,

litho steppers and trackers, should be modeled as a single tool with two chambers

(in series).

Now consider a group of M cluster tools. The indexing of PM tasks for tool

i is from 1 to ρi, where ρi is the total number of PM tasks applicable to tool i.

(A type of PM that is to be scheduled multiple times over the planning horizon,

whether on the same chamber or different chambers of a same tool, must be

given a separate distinct index for each possible occurrence of the PM task.)

For each cluster tool, the joint impact of PM tasks on its relative throughput,

defined with respect to a fully operational tool, is characterized through a so-

called “configuration matrix”. Table 5.1 illustrates such a matrix for a cluster

tool that has five chambers indexed by Ch1, ..., Ch5. The first row represents

the scenario when all chambers 1 to 5 are up, indicated with “1”, and so its

availability is by definition 100%. The second and third rows represent the

scenarios when either Ch1 or Ch2 is shut down, indicated with “0”, for PM,

respectively, with relative availability of only 60%. However, the 4th row shows

that relative availability is 0 when both Ch1 and Ch2 are down at the same

time, regardless of the status of all other chambers (indicated with “X”). This
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suggests that each wafer likely has to go through either Ch1 or Ch2, so when

both chambers are down, no wafers can be processed. This also indicates that

it is unwise to consolidate PM tasks for Ch1 and Ch2. Similarly, the last row

suggests that each wafer has to go through Ch3, and so when it is down, there

is no throughput, and its availability is therefore 0.

Similar to the “configuration matrix”, a table describing resource require-

ments will list the resources required and duration for each PM and any consol-

idated PMs.

Now, given a set of PM tasks that need to be scheduled on these tools in

a scheduling horizon, with each PM task associated with a time window in

which the PM has to be started, the problem is to determine the best time for

doing each PM, with the objective of maximizing overall tool availability and

minimizing WIP, under some resource or operation constraints.

We formulate below the problem as an MIP model.

5.2.2 MIP Formulation

Let t denote a generic time period, or PM decision epoch, and T the planning

horizon; hence t = 1, . . . , T. For example, time could be divided in periods of one

work shift or one day, and the planning period could be two weeks, i.e., T = 42

shifts (assuming 3 shifts per day) or T = 14 days, respectively. The following

notation will be used hereafter.

al
i(t): binary decision variables for PM task l on tool i in period t, (1: do PM; 0:

do not do PM). Define ai(t) = [a1
i (t) a2

i (t) . . . aρi

i (t)]
T
, the control vector

for all PM tasks on tool i.
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Table 5.1: Configuration matrix for a cluster tool (legend: 0: down; 1: up; X:

up/down)

Ch1 Ch2 Ch3 Ch4 Ch5 Availability

1 1 1 1 1 100%

0 1 1 1 1 60%

1 0 1 1 1 60%

0 0 X X X 0%

1 1 1 0 1 80%

1 1 1 1 0 80%

X X X 0 0 0%

1 0 1 1 0 60%

1 0 1 0 1 60%

0 1 1 1 0 60%

0 1 1 0 1 60%

X X 0 X X 0%
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wl
i, u

l
i: time window [min, max] associated with PM task l on tool i.

ki: number of periods for the PM task with the longest duration on tool i.

Vi(t): availability of tool i in period t.

Ii(t): workload level (total in buffer and in process) for tool i in period t.

di(t): projected incoming WIP for tool i in period t.

bi: profit coefficient for availability of tool i.

cI
i : cost coefficient for inventory on tool i.

cl
i: PM cost for performing PM task l on tool i.

Li: WIP buffer size for tool i.

Ki: coefficient of wafer throughput for tool i’s availability.

fi(·): availability function for tool i; constructed from the “configuration ma-

trix”, e.g., Table 5.1.

N : number of resource types considered.

rj
i (·): resource function calculating the requirement of resource type j for tool i,

j = 1, . . . , N ; constructed from a resource requirement matrix.

Rj(t): amount of resource type j available in period t, j = 1, . . . , N .

Our model is then given as follows.
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Model MIP1:

max
T∑

t=1

M∑
i=1

(
bi · Vi(t) − cI

i · Ii(t) −
ρi∑

l=1

cl
i · al

i(t)

)
(5.1)

subject to:

ul
i∑

t=wl
i

al
i(t) = 1, for those PM tasks that have to be finished

in the time window [wl
i, u

l
i] ⊆ [1, T ]. (5.2)

Vi(t) = fi (ai(t), ai(t − 1), . . . , ai(t − (ki − 1))) ,

for i = 1, · · · ,M ; t = 1, · · · , T ; ai(t) = 0,

for t ≤ 0. (5.3)

Rj(t) ≥
M∑
i=1

rj
i (ai(t), ai(t − 1), . . . , ai(t − (ki − 1))) ,

for t = 1, · · · , T ; j = 1, · · · , N ; ai(t) = 0,

for t ≤ 0. (5.4)

Ii(t + 1) = (Ii(t) − Ki · Vi(t) + di(t))
+ ,

for i = 1, · · · ,M ; t = 1, · · · , T − 1. (5.5)

Ii(t) ≤ Li, for i = 1, · · · ,M ; t = 1, · · · , T. (5.6)

In (5.5), the operation (·)+ is defined as (x)+ = max(0, x). The objective is

to maximize profits from tool availability, minus costs from inventory build-up

and performing the PM tasks. Equation (5.2) states that the scheduled PM

tasks have to be performed within their individual time windows. Equation

(5.3) computes the availability for each tool for each time period. A particular

sequence of ai(t), ai(t−1), . . . , ai(t− (ki−1)), determines a particular row of the

“configuration matrix” and the value of fi(·) would be the corresponding value of

availability for that row. Equation (5.4) states that for each type of resources the
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sum of resource requirement over all tools must be less than available resource

in each period. Equation (5.5) describes the WIP dynamics for each tool, and

implies that for each tool i, it would produce as many wafers as possible, using

all availability at hand, if there is enough in-buffer WIP; otherwise it would

produce wafers matching up with the in-buffer WIP. Equation (5.6) states that

the WIP level of tool i should not exceed its buffer size at any time. Model

parameters such as bi, c
I
i , c

l
i, Li, R

j, are fab specific data, and can be obtained

from fab operation.

In the above formulation, without loss of generality, we have assumed that

during the scheduling horizon, each PM is performed at most one time on each

tool, as reflected in Equation (5.2). This assumption does not affect PM tasks of

the same type performed on different chambers, because they should have been

indexed differently due to their association with different chambers. In the case

when the same type of PM needs to be scheduled more than once for the same

tool during the horizon, different indices should have been assigned to them, so

that they will be treated as different PMs.

Equations (5.3) and (5.4) contain the respective availability and resource

functions fi and rj
i . Albeit nonlinear in general, these can be easily imple-

mented as look-up tables for computational purposes. Moreover, they can be

also transformed into an equivalent set of linear equations, exploiting the fact

that all its arguments are binary.

Note that the constraint (5.5) is non-linear, due to the operator (·)+. How-

ever, since it is piecewise linear, we define the following related problem:
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Model MIP1′: Same as MIP1, but with (5.5) replaced by the following

two linear constraints:

Ii(t + 1) ≥ Ii(t) − Ki · Vi(t) + di(t), (5.7)

for i = 1, · · · ,M ; t = 1, · · · , T − 1.

Ii(t) ≥ 0, for i = 1, · · · ,M ; t = 1, · · · , T. (5.8)

We have the following proposition that states model MIP1 and MIP1’ are

equivalent.

Proposition 5.1. MIP1′ is equivalent to MIP1.

Proof. Let D(MIP1) and D(MIP1′) be all feasible solutions of MIP1 and

MIP1′ respectively. We first show D(MIP1′) ⊇ D(MIP1). Note that the

constraints (5.7) and (5.8) of MIP1′ can be written combinatorially as

Ii(t+1) ≥ (Ii(t) − Ki · Vi(t) + di(t))
+ , for i = 1, · · · ,M ; t = 1, · · · , T −1. (5.9)

Indeed, it is a relaxed constraint (5.5) of MIP1. So D(MIP1′) ⊇ D(MIP1).

It can be easily verified that any optimal solution to MIP1′ will achieve

Ii(t + 1) = (Ii(t) − Ki · Vi(t) + di(t))
+, which implies this is also an optimal so-

lution to MIP1. To see this, assume there is an optimal solution such that

I∗
i1
(t1 + 1) > (Ii1(t1) − Ki1 · Vi1(t1) + di1(t1))

+. Obviously, if we choose I ′
i1
(t1 +

1) = (Ii1(t1) − Ki1 · Vi1(t1) + di1(t1))
+ < I∗

i1
(t1 + 1), it will achieve a larger ob-

jective value. Contradiction.

Thus MIP1 and MIP1′ are equivalent.

It is worth noting here that in the objective function, minimizing the cost of

a tool’s WIP level implies maximizing its wafer throughput, due to the following
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relationship:

Ii(t + 1) = Ii(t) − Xi(t) + di(t), (5.10)

where Xi(t) is the wafer throughput of tool i in the time period t, and is given

by

Xi(t) = min{Ki · Vi(t), Ii(t) + di(t)}. (5.11)

It can be easily seen that (5.5) is just a compact expression of (5.10) and (5.11).

There is an operational difference, though, between maximizing tool avail-

ability and maximizing wafer throughput. The former is relevant only to the tool

technical state, i.e., keeping the tool operational as long as possible, whereas the

latter is not only relevant to the tool technical state, but also strongly affected by

projected incoming WIP. However, for bottleneck tools, maximizing availability

is equal to maximizing wafer throughput, and vice versa, because there is always

enough in-buffer WIP to be processed.

On the other hand, in situations where one specifically wants to maximize

wafer throughput, the MIP formulation would become a little different, as defined

by the following problem:
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Model MIP2: max
T∑

t=1

M∑
i=1

(
b′i · Xi(t) −

ρi∑
l=1

cl
i · al

i(t)

)
(5.12)

subject to:

Xi(t) ≤ Ki · fi (ai(t), ai(t − 1), . . . , ai(t − (ki − 1))) , (5.13)

for i = 1, · · · ,M ; t = 1, · · · , T ; ai(t) = 0, for t ≤ 0.

Ii(t + 1) = Ii(t) − Xi(t) + di(t),

for i = 1, · · · ,M ; t = 1, · · · , T − 1.(5.14)

Ii(t) ≥ 0, for i = 1, · · · ,M ; t = 1, · · · , T. (5.15)

and constraints (5.2), (5.4) and (5.6), where b′i in the objective function

is the profit coefficient for wafer throughput of tool i.

In general, MIP1 and MIP2 are not equivalent.

5.2.3 Implementation Issues

Given our discussion above, we choose to maximize availability, and thus we fol-

low models MIP1 and MIP1′, the latter of which is more amenable for practical

implementation purposes. A model implemented in practice will usually have

a simpler structure than the general formulation above. For example, it is not

uncommon to consider a group of homogeneous (identical) cluster tools. In that

case, all tools have the same physical structures and PM tasks. Hence, their

availability functions are the same, as well as the resource functions. Thus fi(·)
and rj

i (·) will reduce to f(·) and rj(·), respectively. In addition, if manpower, i.e.,

the number of available maintenance technicians, is the only resource constraint

of interest, which seems often to be the case based on our experience, then the
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resource vector R becomes a scalar.

In order to deal with the non-linearity of functions fi(·) and rj
i (·), we intro-

duce a new set of decision variables – PM task vectors. A task vector contains a

set of PM tasks, which could be consolidated and performed on a tool. At each

time there is only one PM task vector active on each tool. Each task vector cor-

responds to one scenario of PM consolidation; Section 5.3 provides more details

about the definition of PM task vector and the model transformation. The set of

task vector can be generated dynamically according to which PM tasks have to

be scheduled in a given scheduling scenario. For a predefined planning horizon,

only those PM tasks whose time windows fall into the horizon will be taken into

consideration.

Based on the MIP model described above, an optimal preventive maintenance

scheduling system has been implemented within a real fab setting with capability

of optimizing PM tasks for any module consisting of a group of tools. With

different data interfaces, the system is integrated with other information systems

in the fab in such a way that the specific MIP model to apply can be generated

automatically by extracting PM data from a tool maintenance database, and

WIP information from a real-time dispatch system, or a fab simulation model.

A summary report is presented to users, e.g., tool managers, after an optimal

scheduling solution is found, with information of projected availability and WIP

of each tool in each period along the scheduling horizon. A comparison list with

initial PM schedules and model-optimized schedules is also generated, and users

can decide whether or not the model-optimized schedule will be put into effect.
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5.3 Solving the MIP Model

There are two technical problems that must be addressed in order to solve the

MIP model. To begin with, there may be PM tasks with a duration exceeding

a single period. As seen in availability function fi and resource function rj
i ,

this results in the difficulty that chambers statuses (thus, the tool’s state) will

depend not only on PM tasks initiated in current time period t, but also on those

unfinished PM tasks that were initiated in t − 1, t − 2, . . . , etc. One method to

work around the complexity is to introduce some “artificial” PM tasks as follows.

Assume PM l lasts for 3 periods. We introduce two “artificial” PMs l′ and l′′

such that l′ must be performed in the next period following l, and l′′ is following

l′, and we now treat l as a PM task with a duration of only one period instead

of three. This relationship can be formulated as “precedence” constraints as

follows:

al′
i (t + 1) = al

i(t), (5.16)

al′′
i (t + 1) = al′

i (t). (5.17)

Thus any PM task with a duration exceeding one period can be transformed into

a sequence of PMs of one-period duration. Hence, in the following analysis, we

will assume without loss of generality that no PMs have a duration exceeding

one period.

The second difficulty is that the availability function fi and resource function

ri are non-linear functions of chamber status. To deal with the non-linearity,

the main idea is to transform these non-linear functions into linear form by

changing control variables. Observe that availability and resource functions can

be expressed in “look-up” table form, as the “configuration matrix”. Explicitly,
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if we denote the state of tool i (i.e., all chambers statuses, up or down) by si,

then the availability function will become fi(si), and we denote its value by f si
i .

Now the function can be expressed as a data set {f si
i }.

The decision variable in the MIP model is al
i(t), i.e., to determine whether

PM task l is conducted on tool i in period t, for every feasible l. This is equivalent

to determining a group of PM tasks (task vector) conducted on tool i for every

period t. Because there is a finite number of PM tasks, it is easy to obtain all

combinations, i.e., vectors of these tasks. For example, if there are n tasks on

tool i, then there are 2n−1 task vectors, which include all possible combinations

of these n tasks. We denote the task vector by v, and for the sake of simplicity,

we assume every vector v is associated with only one tool, i.e., it can be only

applied to a specific tool. We denote by V(i), the set of all feasible task vectors

for tool i. The information of element tasks included in a vector v is contained

in data e(l, v), where e(l, v) = 1 if v contains l, e(l, v) = 0 otherwise.

Now, define new binary decision variables z(i, v, t) for v ∈ V(i), where

z(i, v, t) = 1 if task vector v is performed on tool i in the period t, z(i, v, t) = 0

otherwise. Obviously, for v /∈ V(i), z(i, v, t) = 0. It is also obvious that on each

tool in any period, there is only one vector that can be active. So, the following

new constraints on z(i, v, t) will be enforced:

∑
v

z(i, v, t) ≤ 1, for i = 1, . . . ,M ; t = 1, . . . , T. (5.18)

The original decision variable al
i(t) can be expressed as follows:

al
i(t) =

∑
v∈V(i)

z(i, v, t) · e(l, v), for i = 1, . . . ,M ; l = 1, . . . , ρi; t = 1, . . . , T. (5.19)

Since tool state si is completely dependent on task vector v, their relationship

can be characterized by δ(v, si), where δ(v, si) = 1 if v changes the tool state to
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si, otherwise δ(v, si) = 0. The availability function now can be expressed as a

linear function of the control variable z(i, v, t) as follows:

Vi(t) =
∑

v∈V(i)

∑
si

f si
i · δ(v, si) · z(i, v, t), for i = 1, . . . ,M, t = 1, . . . , T. (5.20)

Similarly the resource requirement of the tool is dependent only on task

vector, the corresponding resource function can be expressed as a data set {rj,v
i }.

Hence, equation (5.4) can be written as:

Rj(t) ≥
∑

i

∑
v∈V(i)

rj,v
i · z(i, v, t), for j = 1, . . . , N ; t = 1, . . . , T. (5.21)

Thus, we are able to transform non-linear functions into linear functions of

the new decision variables, and the transformed MIP model can be solved by a

commercial IP/LP package. Equations (5.18) and (5.19) are the new constraints

added in the transformed MIP model. The number of new constraints due to

equations (5.18) and (5.19) is M · T +
∑M

i=1 ρi · T .

The drawback of introducing the new task vectors is that it will lead to a

set of decision variables with much larger size. There are many ways generating

the set of task vectors. The basic requirement is that the set of v must cover all

possibilities of PM consolidations. One of the easiest ways is to list all possible

combinations of PM tasks for each tool, and then put these combinations to-

gether and give them different index numbers one by one. This method ensures

all possibilities of PM consolidation would be covered by the set, and its size is∑M
i=1 2ρi − M . The actual number of new decision variables due to z(i, v, t) is(∑M

i=1 2ρi − M
)
· T .
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5.4 Simulation Case Study

In order to evaluate the performance of the MIP scheduling model, we conducted

a simulation case study employing a simulation model of a real fab. We ran the

simulation with historical PM schedule data, and with a PM schedule that was

optimized through our MIP model, and then compared their performance in

terms of throughput and WIP level.

The simulation model used had been developed in Brooks Automation’s Au-

toSched AP software [12] (ASAP for short) by a large semiconductor manufac-

turer. ASAP has been used widely in semiconductor manufacturing for capacity

analysis, planning and scheduling, and it is capable of modeling cluster tools in

a fab. Some features of cluster tool modeling in ASAP are: (a) modeling robots,

single or dual load locks with serial or parallel cassette processing, pump and

vent delays, tool failure and chamber failure; (b) modeling a PM task as PM

calendar or PM order.

We present only summary information for this initial case study, with sensi-

tive company-specific data removed. The module employed has 11 cluster tools,

i.e., M = 11. These tools are homogeneous in the sense that they can perform

the same processing steps and have the same configuration, i.e., same process-

ing chambers and robots. Coincidentally, there are 11 PM tasks of interest in

the study on each tool, and they are indexed from 1 to 11. The “configuration

matrix” of these tools is the one given in Table 5.1. The longest duration of

any PM task is 2 days, and the only resource we considered was the manpower

(headcount) of available maintenance technicians. The resource function of PM

task vectors, i.e., resource requirement for any joint or single PM tasks, is listed

as a table with each row corresponding to a PM scenario, its duration and its
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resource requirement.

The time unit is one day, and the scheduling horizon is one week, i.e., T = 7

and t = 1, 2, 3, 4, 5, 6, 7. Those PM tasks that are to be scheduled in the horizon

per tool are shown in Figure 5.1 together with their time windows defined as

a pair of (earliest start date, late date). So, for example, PM task 1 on tool 1

should be performed between Monday and Wednesday. PM task 5 on tool 1 is

performed between Wednesday and Friday, while task 10 is between Friday and

Sunday. For tool 8, the PM task 6 has to be performed on Monday as its time

window is shrunk to a point in this specific case.

A specific MIP model instance was then generated from these PM tasks, and

their individual time windows, along with all other relevant data, such as avail-

ability and resource requirement data sets, were fed into the scheduling system.

The model instance was then solved. (For this simulation case study, the imple-

mented MIP model has a total of 686 decision variables and 698 constraints.)

The corresponding model outputs, i.e., optimal PM schedules for these tools

along the scheduling horizon, are also shown in Figure 5.1 as the asterisk points.

One main feature that can be seen in the figure is that the optimal PM schedule

tends to consolidate PM tasks, as on tools 1, 6, 9, and 11.

We simulated one week of fab operations with the two different PM schedules:

the schedule that was actually performed in operations, which is referred to as the

“reference” schedule, and the optimized, model-based schedule. Ten replications

of such a simulation were made, averaging output results. Each PM task was

modeled as a “PM order” in ASAP in both simulations. Two statistics, the

average number of wafers completed on each tool and average number of WIP

wafers on each tool, were selected as performance measures. Figure 5.2 shows the
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Figure 5.1: PM tasks with associated time windows, where asterisk points are

the optimal times computed by the model to perform PM tasks.
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Figure 5.2: Simulation result for throughput increases (in percentages) under

the model-based schedule over those under the reference schedule.

percentage throughput increase on each individual tool as well as the average

over all tools for the model-based schedule versus the reference schedule, i.e.,

increase% = TPmodel−TPref

TPref
× 100%, where TPmodel and TPref are the throughput

under the model-based schedule and reference schedule, respectively. Figure 5.3

shows the same for WIP levels.

The simulation results show that the performance of the model-based sched-

ule and reference schedule is relatively close, but overall the model-based schedule

outperforms the reference schedule in both performance metrics. Although the

average increase of wafer throughput over all tools is only slightly more than

1.6%, economically it is still a significant improvement, because these tools un-

der investigation are critical tools in the fab. For example, assuming a fab’s

throughput is 5,000 wafers per week and the average price for finished wafers is

$15,000 per wafer, then the 1.6% improvement in throughput would result in a

revenue increase of up to $1.2 million per week, or over $60 million per year.
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Figure 5.3: Simulation result for WIP changes (in percentages) under the model-

based schedule over those under the reference schedule.

We surmise that the close performance between the model-based performance

and the reference schedule can probably be attributed to the following factors.

First, fab engineers have done a good job in PM scheduling on the basis of

their rich experience in considering critical factors such as PM consolidation,

and so they come up with a near-optimal reference schedule, especially for the

most critical tools. Second, the benefits of model-based schedule have not been

revealed fully through the ASAP simulation, because of the simplified modeling

structure of cluster tools as well as the fab model in ASAP. For instance, the

relation between entire tool throughput and chamber statuses cannot be modeled

in ASAP as precisely as in a “configuration matrix”.
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5.5 Conclusions

We develop a mixed integer programming model for optimal PM scheduling in

fabs. These solutions are applicable for all tool groups in a fab, but higher

impact is to be expected when purely ad hoc scheduling may be too complex

to handle, e.g., for cluster tools. In general, given their optimization base, our

solutions can be a significant aid for (human) decision makers to rule out errors

and oversights.

The chapter has focused on optimal scheduling model, and a mixed integer

programming model has been developed. Our efforts have concentrated on the

problem of PM scheduling for a module composed of a group of highly inte-

grated cluster tools. The most recognized and implemented PM time window

policies are assumed in the model. The objective is to determine the exact

time to start each PM task within its associated time window. Interdependence

among PM tasks, in terms of tool availability (or throughput) changes, is char-

acterized by availability functions, which can be expressed as a “configuration

matrix”. The MIP model considers resource requirements over the tool group,

as well as projected WIP data for each tool, with the objective of maximizing

overall tool group availability while reducing WIP costs. By introducing new

decision variables, non-linear functions appearing in the general MIP model can

be transformed into linear functions, resulting in a model easily solvable using

any commercial LP/IP software package. A simulation case study using real fab

data shows that our model-based PM scheduling solution is very promising.
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Chapter 6

Conclusions and Future Work

This thesis studies the problem of optimal preventive maintenance for unreliable

queueing and production-inventory systems. Our research was motivated by

the challenging problems of preventive maintenance planning and scheduling in

semiconductor manufacturing.

The main contents of the thesis are roughly composed of two parts. The

first part studies structural properties of optimal PM and joint PM/production

control policies under different problems settings. The principal technique em-

ployed are (Semi-)Markov decision processes and dynamic programming. The

second part studies the optimal scheduling problem of multiple PM tasks on a

group of tools, and mathematical programming is employed.

In Chapter 3, our first result is Theorem 3.1 on the optimality of a deter-

ministic PM policy for a simple case in which no queueing is considered. Our

second result is the study of optimal PM policies for an M/G/1 queueing system

with an unreliable server. Under some conditions, we show in Theorem 3.2 that

for fixed queue length, the optimal PM policy exhibits a control-limit structure

such that if and only if the machine’s age is greater than the control limit, then
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it is optimal to do PM. More properties of the optimal cost function and corre-

sponding optimal policies are established for a simplified discrete-time queueing

model with simple cost structure and stochastic processes.

In Chapter 4, we have obtained several results. We first study an unreli-

able production-inventory system that experiences time-dependent failures. We

prove again the control-limit type structure of the optimal joint policy under

some conditions as stated in Theorem 4.1. We also prove the intuitive result in

Proposition 4.1 that when the production system has backlogged demand, if the

optimal action is not to do PM, then the production should make the inventory

non-negative as soon as possible. Another intuitive result proved in Theorem 4.3

states that when the production-inventory system is at a high inventory level,

then it is optimal to not produce at all. For systems experiencing operation-

dependent failures, we show in Theorem 4.4 that the control-limit type structure

holds for the optimal joint policy under relaxed conditions. Another interesting

result (Theorem 4.5) regarding the optimal joint policy, is that when the system

has high enough inventory, the optimal action is to just stay idle, no matter how

deteriorated the system is.

In Chapter 5, we solve an optimal PM scheduling problem for cluster tools

in semiconductor manufacturing fabs. A mixed-integer programming model is

developed. After an appropriate transformation, the model can be solved using

any commercial LP/IP software. Results of a simulation study comparing the

performance of the model-based PM schedule with that of a baseline reference

schedule are presented to illustrate the usefulness of our solutions.
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6.1 Future Work

In characterizing optimal PM policies, we have shown that the control-limit

type structure always holds with respect to system deterioration degree, under

some reasonable conditions, e.g., IFR, and/or PM costs lower than CM costs.

However, we have not been able to show analytically the same structure holds

in the other dimension, i.e., system buffer/inventory level, although numerical

studies indicate such structure exists. Thus one obvious possible direction of

future work is to establish some sufficient conditions under which the optimal

PM policies have such monotonic structure with respect to system buffer level.

The MDP/SMDP formulation of the optimization problems allows us to de-

rive optimal policies and analyze structures they might have, and provides us

with insights. However, for practical problems with large state space, the tech-

nique is not computationally efficient, due to the well-known “curse of dimen-

sionality”. It is thus of great importance to come up with some heuristics policies

that have simpler structures. Like the (n,N, k) policy proposed in [17] and the

“double-threshold” policy proposed in [31], such sub-optimal heuristics policies

can provide fast performance evaluation and will have significant use in real

situations.

Many opportunities exist for incorporation of PM models into other areas.

One interesting problem that has not been addressed in depth is the considera-

tion of PM policies in capacity planning. In current capacity planning, the issue

of PM is not considered at all, or the projected capacity spent on maintenance

is often too conservative. With the incorporation of the PM planning models

and derived optimal policies, more accurate estimation of the capacity used for

maintenance can be achieved. As a result, the capital cost on capacity expansion
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could be possibly reduced.

Regarding future work in the scheduling model, there are several directions

in which the model can be extended. One direction is to incorporate statistical

process control (SPC) data into the model. The idea is that the PM schedule

would be able to respond to possible “out of control” events, by triggering a

“pull” or “push” of the planned time window of the corresponding PM. An-

other direction is to consider PM policies without time windows, with a penalty

imposed if its starting time differs from a planned time. It would be easy to

extend our developed MIP model to this case simply by removing time window

constraints and adding a penalty function into the model objective.
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