
  

 

 

 

 

 

ABSTRACT 

 

 

 

 

Title of Document: PERFORMANCE ASSESSMENT OF MEMS 

GYROSCOPE AND SHOCK DURABILITY 

EVALUATION OF SAC305-X SOLDERS FOR 

HIGH TEMPERATURE APPLICATIONS 

  

 Chandradip Pravinbhai Patel,  

Doctor of Philosophy, 2014 

  

Directed By: Associate Professor F. Patrick McCluskey, 

Department of Mechanical Engineering 

 

 

Recent advances in MEMS technology have resulted in relatively low cost 

MEMS gyroscopes. Their unique features compared to macro-scale devices, such as 

lighter weight, smaller size, and lower power consumption, have made them popular 

in many applications with environmental conditions ranging from mild to harsh. This 

dissertation aims to address a gap in the literature on MEMS gyroscopes by 

investigating the effects of elevated temperatures on the performance of MEMS 

gyroscopes. 

MEMS gyroscopes are characterized at room and elevated temperatures for 

both stationary and rotary conditions. During the test, MEMS gyroscopes are 

subjected to five thermal cycles at each of four temperature ranges (viz. 25ᵒC to 85ᵒC, 

25ᵒC to 125ᵒC, 25ᵒC to 150ᵒC and 25ᵒC to 175ᵒC). A model is developed in 

MATLAB Simulink to simulate the temperature effect on the MEMS gyroscope. 



  

Simulation results show good agreement with experimental results and confirm that 

Young’s modulus and damping coefficient are the dominant factors responsible for 

temperature-dependent bias at elevated temperatures.  

Solder interconnects are one of the weakest elements in MEMS devices. Thus, 

the reliability of solder interconnects is separately studied in this dissertation. Though 

SAC305 (96.5%Sn3.0%Ag0.5%Cu) is the industry preferred solder in combined 

thermal cycling and shock/drop environments, it exhibits better thermal cycling 

reliability than drop/shock reliability. One of the ways to improve the drop/shock 

reliability of SnAgCu solders is by microalloy addition of various dopants such as 

Mn, Ce, Ti, Y, Ge, Bi, Zn, In, Ni, Co etc. Thus, the second part of this dissertation 

aims to evaluate the shock durability of SAC305 and SAC305-X (where X refers to 

two different concentrations of Mn and Ce dopants). 

High temperature isothermal aging tests are conducted on selected solders 

using QFN44, QFN32 and R2512 package types at 185ᵒC and 200ᵒC up to 1000 

hours. Isothermal aging test results showed that interfacial IMC growth reduction can 

be achieved by microalloy addition of selected dopants in SAC305 on both copper 

and nickel leaded package types. Shock durability of selected solders is examined on 

as-reflowed and thermally aged test boards. Mechanical shock is performed using a 

custom shock machine that utilizes a shock pulse of 500G with 1.3 millisecond 

duration. The shock test results showed that the mechanical shock reliability of 

SAC305 was significantly improved for both as-reflowed and thermally aged test 

boards by microalloy addition of one of the selected dopants in SAC305. 
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1. Introduction 

MEMS (Microelectromechanical System) inertial sensors, like the accelerometer and 

the gyroscope, have gained much attention in the past few years. MEMS 

accelerometers alone possess the second-largest sales volume after MEMS pressure 

sensors [1]. Recently, the MEMS gyroscope also became popular after the success of 

the MEMS accelerometer. 

The MEMS gyroscope is a sensor that measures the rate of change of an angular 

position. There are some similarities and differences between MEMS vibratory 

gyroscopes and MEMS accelerometers. In the majority of the cases, both devices use 

suspended proof mass to measure the physical quantity, like, linear acceleration in the 

case of an accelerometer, or Coriolis acceleration, which is proportional to an angular 

velocity, in the case of a MEMS gyroscope. The MEMS accelerometer has a 

suspended proof mass that moves only in the presence of change in external linear 

acceleration. In contrast, the MEMS gyroscope has a proof mass that starts vibrating 

at its resonance in the drive direction when connected to the power supply, and the 

proof mass moves in the sense direction only during angular rotation.  

1.1. Advantages and Applications of MEMS Vibratory Gyroscope 

There are different varieties of gyroscopes with different designs and working 

principles that can be broadly classified into three different categories: spinning mass 

gyroscopes, optical gyroscopes and vibratory gyroscopes [2]. Out of these 

gyroscopes, vibratory gyroscopes, which use vibrating elements to sense the angular 

rotation, have gained much attention. 
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The reason behind the success of the MEMS vibratory gyroscope compared to other 

gyroscopes is that no rotating parts are involved that require bearing, which increases 

device reliability. In addition, when compared to macro-scale gyroscopes, MEMS 

vibrating gyroscopes also possess other benefits such as reduction in their significant 

size, weight and cost. With advances in fabrication technologies lowering their cost, 

MEMS gyroscope sensors are being used in an ever wider variety of applications 

such as automotive, consumer electronics, Industries, avionics/military etc. 

The automotive applications are vehicle stability control, rollover detection, load 

leveling/suspension control, anti-lock brake and collision avoidances system. A 

consumer electronic market is the largest consumer of the rate grade MEMS 

gyroscope for applications like image stabilization in cellphones and video cameras, 

computer input devices, handheld computing devices, game controllers, virtual reality 

gear, sports equipment, and robots. Industrial applications include motion control of 

hydraulic equipment or robots, platform stabilization of heavy machinery, and yaw 

rate control of wind-power plants. Finally, avionics/military uses precise MEMS 

gyroscopes for applications like missile guidance, platform stabilization of avionics, 

stabilization of pointing systems for antennas, and unmanned air vehicles or land 

vehicles. 

One of the recent applications of the MEMS gyroscope is for navigation and tracking 

where high sensitivity and performance stability are key requirements. The navigation 

system based on inertial sensors has shown many advantages when compared to 

commonly used GPS technology. Such examples include locating an object near or 

inside a building, underground, or in dense urban areas where GPS does not work 
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effectively. Because of the high noise levels generated by GPS signals in such 

conditions resulting from single attenuation and reflection, the navigation and 

tracking system based on inertial sensors is a good alternative. In the majority of 

cases, an inertial navigation unit (INU) consists of an accelerometer, a gyroscope and 

a compass. The linear and angular positions are determined by integrating the 

respective accelerations from accelerometer and gyroscope. Due to this integration 

process, any errors in the sensor measurement are accumulated with time which 

degrades the performance of the inertial navigation system. If these errors are not 

compensated, then the accelerometer and gyroscope introduce an error in the 

navigation proportional to the square and cube of the elapsed time, respectively. 

1.2. Research Motivation 

The low cost of MEMS gyroscopes has resulted in their use in many applications 

where environmental conditions exist from mild to harsh. These severe environments 

include high mechanical shock, high frequency vibration, high frequency acoustic 

environment, high temperature etc. Despite their widespread use, the performance of 

the MEMS vibratory gyroscope in harsh environments is still under question.  

While some studies have been conducted to understand the effects of high mechanical 

shock [3]–[6], high-frequency vibration [7],[8], and high-frequency acoustic 

environment [9]–[11], the effects of elevated temperatures especially temperatures 

that are beyond manufacturer’s recommended temperature range have not been well 

researched.  
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Performance stability and long-term reliability are the greatest challenges for 

commercialization of MEMS gyroscopes. Their vast uses in different applications 

require them to function from medium to harsh environments, making their 

performance more dependent on environmental conditions. Therefore, it is necessary 

to examine the performance and long-term reliability of MEMS gyroscope. 

Due to the high demand of MEMS gyroscopes in consumer electronics, a majority of 

available commercial-off-the-shelf (COTS) gyroscopes have limited operating 

temperature ranges from -40˚C to +85˚C [12]–[15]. In many applications like 

automotive, deep-water energy exploration, down-hole drilling tool navigation, high-

temperature industrial applications etc., the MEMS gyroscope sensor experiences 

temperatures that are beyond the manufacturer’s recommended temperature range.  

Most of the reported gyroscopes are fabricated from silicon or poly-silicon material, 

whose material properties are temperature dependent. Variations in temperature of the 

MEMS structure affects the dynamic system parameters due to temperature-

dependent Young’s modulus, temperature-dependent damping coefficient and 

thermally induced localized stresses. MEMS vibrating gyroscope measures an angular 

velocity via comb structure displacement measurement, which can be on the order of 

micrometers to nanometers. High sensitivity to small changes in displacement causes 

the MEMS gyroscope sensor to be affected if any of the system parameters change at 

elevated temperature conditions. Thus, examining the effects of elevated temperatures 

on the MEMS gyroscope performance is very critical. 
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1.3. Previous Work on Examination of Temperature Effects on the 

MEMS Gyroscope and Its Reliability Concern 

MEMS gyroscope research has substantially increased over the last couple of years. It 

is believed that this research growth was due to advancement in MEMS fabrication 

technology that has allowed MEMS manufacturers to come up with various unique 

designs. Many companies have emerged and entered the market to deliver low-cost 

gyroscopes. With continuous design evolution of the MEMS gyroscope to improve its 

sensitivity and performance, the efforts on examining performance and long-term 

reliability of the MEMS gyroscope in high temperature environments has not been 

explored.  

One of the earliest studies to understand temperature effects on the MEMS gyroscope 

was performed by researchers at the JPL (Jet Propulsion Lab). Shcheglov et al. [16] 

and Ferguson et al. [17] at the JPL found that the resonance frequency of the MEMS 

gyroscope linearly decreases with increases in temperature. Ferguson et al. [17] also 

found that no hysteresis exists in both resonance frequency and Q factor when the 

gyroscope was subjected from 35
ᵒ
C to 65

ᵒ
C at stationary conditions. Because of the 

limited temperature range (35
ᵒ
C to 65

ᵒ
C) examined at a stationary condition in the 

literature [17], this study recommended exploring the performance of the MEMS 

gyroscope over a wider temperature range and also under rotary conditions. 

Other studies also observed similar linear dependency of resonance frequency with 

temperature [18][19][20][21][22]. Table 1-1 shows the summary of previous studies 

conducted to examine temperature effects on the MEMS gyroscope.  
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Table 1-1: Summary of Previous Work on Various Temperature Ranges Examined by 

Researchers. 

Authors Year Temp Range Authors Year Temp Range 

Zhang et al.  [18] 2009 -20°C to 20°C Xia et al. [19] 2009 -40°C to 60°C 

Zhu et al. [23] 2009 -20°C to 60°C Liu et al. [20] 2008 -40°C to 40°C 

Wu et al. [24] 2008 -30°C to 70°C Hou et al.[21] 2011 30°C to 60°C 

Hou et al. [22] 2011 -40°C to 60°C Feng et al.[25] 2011 -35°C to 55°C 

Some of the studies shown in Table 1-1 also explored the temperature compensation 

method. In general, it is clear from Table 1-1 that all previous studies examined 

temperature effect on the MEMS gyroscope with a limited range from -40ᵒC to 70ᵒC. 

Thus, there is a need to examine the effects of elevated temperature on the 

performance of the MEMS gyroscope. 

Studies shown in Table 1-1 confirm that temperature is the dominant source of error 

in the MEMS gyroscope. Temperature affects the performance of the MEMS 

gyroscope by various factors. These factors include Young’s modulus, damping 

coefficient, thermal expansion and coefficient of thermal expansion (CTE) mismatch. 

Young’s modulus: 

Temperature influences the Young’s modulus of the material that changes beam 

stiffness and deviates resonance frequencies of MEMS gyroscope [18], [20], [22]. 

Damping coefficient: 

Air damping is the dominant energy loss mechanism in MEMS resonators when 

operated close to atmosphere pressure [26]. Feng et.al [27] experimentally calculated 
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the Q-factor of the MEMS gyroscope from 238K to 328K. They found that the Q-

factor decreases with increase in temperature from 238K to 328K. 

Thermal expansion:    

Temperature causes expansion of the beams that may change capacitance between 

two comb fingers by altering space between them. 

CTE mismatch: 

The CTE mismatch between silicon and glass substrate produces thermal stress in the 

MEMS gyroscope that leads to change in resonance frequency [22]. In addition, the 

CTE mismatch between MEMS package and board also causes thermally induced 

package stress that compromises the MEMS gyroscope reliability.  

In order to analyze the effect of above temperature-dependent factors on the MEMS 

gyroscope, analytical and numerical methods were developed to simulate the 

behavior of the MEMS gyroscope either at room temperature or at elevated 

temperatures [29–32].  

Some of these methods that simulate the temperature effects on the MEMS gyroscope 

have considered only one temperature-dependent variable [18],[31]. For example, the 

temperature simulation model developed in literature [32] only considered change in 

Young’s modulus due to temperature variation. 

Other methods utilized complex numerical techniques [28],[30] and these methods 

are not experimentally validated [20]. For example, Liu et al. [20] conducted thermal 

numerical simulation that showed that temperature fluctuation from -40ᵒC to +40ᵒC 

causes slight deviation in gyroscope output due to Young’s modulus and thermal 
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deformation. The developed simulation model was not validated with experimental 

results. 

From the current literature, it is clear that there is a need to identify the dominating 

temperature-dependent factors responsible to performance change of the MEMS 

gyroscope under temperature variation. In addition, there is a need to develop an 

experimentally validated simulation model that can consider more than one 

temperature-dependent variable in order to accurately simulate the temperature 

effects on MEMS gyroscope. 

Reliability of the MEMS gyroscope is governed by many factors. In general, the 

MEMS package has a significant impact on its long-term reliability [32]. A dominant 

reliability issue in MEMS devices is the package induced stress. This package 

induced stress can affect many sub-components of the MEMS gyroscope system 

including proof mass, substrate, solder interconnects, package lead etc. Any failure in 

these sub-components will lead to failure of the MEMS gyroscope device. Thus, it is 

necessary to examine the long-term reliability of weak sub-component to improve the 

reliability of the MEMS gyroscope device. 

In general, MEMS gyroscopes are fabricated from silicon material that exhibits no 

plastic deformation or creep below 500°C. Silicon also possesses good fatigue 

properties and, thus, it can last millions of cycles without failure. Due to such 

excellent mechanical properties of silicon, proof mass and substrate of the MEMS 

gyroscope can survive much longer than other sub-components of the MEMS 

gyroscope such as solder interconnects, package lead etc.       
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The literature shows that solder joints are one of the weakest sub-components of the 

MEMS gyroscope system. Yeh et al. [33] and Lu et al. [33], [34] conducted finite 

element thermal fatigue analysis of the MEMS gyroscope, which revealed that the 

maximum equivalent plastic strain was observed in the outer corner solder ball that 

resulted in solder interconnect failure when thermally cycled from -40ᵒC to 125ᵒC. In 

addition, Cui et al. [35] also found that solder joints in the MEMS gyroscope are the 

weakest points that can fracture and fail easily, and thus influence the reliability of 

the MEMS gyroscope under high-G load conditions. 

The above cited literature confirms that solder interconnects of a MEMS gyroscope 

are the weakest sub-components of the MEMS gyroscope system. Thus, examining 

and enhancing the reliability of solder interconnects is necessary to improve the long-

term reliability of the MEMS gyroscope system.  

Many SnAgCu based commercial solders are available in the market. Some of the 

commonly used SnAgCu based solders include SAC105 (98.5%Sn1%Ag0.5%Cu), 

SAC205 (97.5%Sn2%Ag0.5%Cu), SAC305 (96.5%Sn3%Ag%0.5Cu), SAC405 

(95.5%Sn4%Ag0.5%Cu), Sn3.5Ag (96.5%Sn3.5%Ag), Sn0.7Cu (99.3%Sn0.7%Cu) 

etc. SnAgCu containing high levels of Ag (viz. SAC305 and SAC405), are known to 

exhibit inferior resistance to mechanical loads like shock/drop and vibration. Thus, 

SAC105 solder, that contains only 1% of Ag, is recommended for better mechanical 

fatigue resistance. However, reduction in Ag content also reduces creep resistance of 

solder which compromises its thermal fatigue reliability, as SAC405 solder exhibits 

far better thermal fatigue reliability than SAC105 solder. Because of these two 

extremes, SAC305 solder that contains 3% Ag is considered to be an optimum and 
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thus became the industry standard in applications where both thermal and mechanical 

fatigue resistance are necessary. 

Though SAC305 solder is an optimum choice for combined thermal fatigue and 

mechanical shock/drop loading environments, the thermal fatigue resistance of 

SAC305 is better than its resistance to mechanical loads, which limit its performance 

in harsh environment applications.  

Recently, it has been found that the drop/shock reliability of SnAgCu solder can be 

improved by addition of small amount of fourth element (dopant). Some of these 

dopants have the ability to suppress the growth of interfacial intermetallic compound 

(IMC) during isothermal aging. This approach has shown very promising results on 

SAC105, a low Ag solder; however, the effect of dopant on SAC305 to improve its 

drop/shock reliability has not been well examined, especially after exposure to high 

temperatures.  

1.4. Research Objectives 

The research objectives of this dissertation are as follows: 

 Examinnation of the effects of elevated temperature on the performance of the 

MEMS gyroscope and identify the temperature-dependent factors that 

dominate in a high temperature environment. 

o Quantify the MEMS gyroscope performance over a wider temperature 

range 
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o Development of a simulation model to identify the dominating-

temperature dependent factors in a high temperature environment and 

correlate simulation results with experimental results 

 Assessment of dopants that minimize the growth of interfacial IMCs in 

SAC305 solder to improve mechanical drop/shock reliability under high 

temperature environments. 

o Identification and selection of  dopants based on thorough literature 

search 

o Assessment of interfacial IMC growth under high temperature 

isothermal aging on selected SAC305 and SAC305-X solders  

o Assessment of shock reliability of SAC305 and SAC305-X solders 

before and after high temperature isothermal aging 

o Correlation between interfacial IMC growth and shock reliability 

degradation of SAC305 and SAC305-X solders  

1.5.  Dissertation Outline  

Chapter 1 provides the introduction, background and motivation for the research 

presented in this dissertation. Chapter 2 presents the test matrix and discusses effects 

of elevated temperature on the performance of the MEMS gyroscope. In chapter 3, an 

analytical model is developed to simulate temperature effect on the MEMS 

gyroscope. Simulation and experimental results are compared to determine the 

dominant temperature-dependent factor(s) responsible for temperature-dependent bias 

observed at elevated temperatures. Chapter 4 provides motivation and literature 
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search on the high temperature reliability of solders. Chapter 5 discusses various 

experimental selections including solders, components and PCB material for 

examining shock durability of SAC305 and SAC305+X solders. The design of 

experiment, test equipment and monitoring systems for solder testing is summarized 

in chapter 6. The result of microstructural examination and mechanical properties 

evaluation of selected solders are presented in chapter 7. Interfacial intermetallic 

growth during isothermal aging at 185ᵒC and 200ᵒC on QFNs and R2512 package 

types are presented in chapter 8 and chapter 9, respectively. Chapter 10 shows 

detailed mechanical shock reliability results of SAC305 and SAC305+X solder 

performed on as-reflowed and thermally aged at 185ᵒC and 200ᵒC. Finally, chapter 11 

summarizes the research contribution resulting from this dissertation. 
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2. Effects of Elevated Temperatures on the Performance of 

the MEMS Vibratory Gyroscope   

2.1. Introduction 

In this chapter, we discuss the development of a test protocol to assess the effects of 

elevated temperatures on the performance of a MEMS gyroscope. Due to the high 

demand for MEMS gyroscopes in consumer electronics, commercially available off-

the-self MEMS gyroscopes have limited operating temperature ranges from -40ᵒC to 

+85ᵒC. However, due to the interest in examining the effects of elevated temperatures 

on MEMS gyroscopes, wider temperature ranges specifically beyond the 

manufacturer’s recommended temperature range, were selected for the assessment.  

The MEMS gyroscope used in this study is a programmable low-power single-axis 

digital gyroscope (ADIS16255) procured from Analog Devices Inc. This commercial-

off-the-shelf (COTS) gyroscope comes in a laminate-based land grid array (LGA) 

package with 11 mm × 11 mm × 5.5 mm dimensions. A schematic of ADIS16255 

package is shown in Figure 2-1. This gyroscope features an integrated temperature 

sensor that detects the temperature of the die during operation, and on-chip signal 

processing that calibrates and compensates angular velocity measurement output 

within the temperature range of −40°C to +85°C. The manufacturer’s specified 

operating temperature range for ADIS16255 was from −40°C to +85°C. An 

evaluation board (ADISUSBZ) designed by Analog Devices Inc. was used for 

recording the output from ADIS16255. The output of the MEMS gyroscope includes 
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angular velocity in degrees/second (°/s) and MEMS die temperature in degrees 

Celsius (°C). 

 
Figure 2-1: Schematic of MEMS Gyroscope Package 

2.2.   Experimental Set-up and Test Procedure 

An experimental test procedure was developed to examine the effects of elevated 

temperatures on a MEMS gyroscope at stationary and rotary conditions. Since the 

selected MEMS gyroscope indicates nearly zero ᵒ/s angular velocity output at a 

stationary condition, it was necessary to subject the MEMS gyroscope to rotary 

conditions to collect non-zero angular velocity output. During the rotary test, the 

MEMS gyroscope was subjected to a 60ᵒ/s or 10 revolutions per second (rpm) angular 

rotation by placing it on the center of a homemade precise turntable. The turntable 

was fabricated using precise motor assuring 0.65 arc-sec positioning resolution. It can 

maintain precise angular rotation up to + 500 rpm.  

During the experiment at stationary and rotary conditions, the performance of the 

MEMS gyroscope was analyzed at ambient and elevated temperatures. The 

measurement of the MEMS gyroscope at ambient temperature established the 
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baseline. The baseline tests at stationary and rotary conditions are referred to as a 

stationary baseline test (SBT) and rotary baseline test (RBT), respectively. For 

elevated temperature/thermal test, the MEMS gyroscope was subjected to four 

temperature ranges from 25ᵒC to 85ᵒC, from 25ᵒC to 125ᵒC, from 25ᵒC to 150ᵒC, and 

from 25ᵒC to 175ᵒC. Such thermal tests performed at stationary and rotary conditions 

are referred to as a stationary thermal test (STT) and rotary thermal test (RTT), 

respectively. The reason for selecting these temperature ranges was to cover wider 

elevated temperature conditions to examine a MEMS gyroscope’s performance 

within and beyond manufacturer’s recommended temperature limits. Since the 

selected MEMS gyroscope was only recommended to operate up to high temperature 

of +85ᵒC, any temperature beyond +85ᵒC may affect the performance of the MEMS 

gyroscope and also cause permanent damage. In order to evaluate the maximum 

temperature limit and check if the short-term exposure to the MEMS gyroscope at 

elevated temperature ranges caused any permanent damage, it was decided to subject 

the MEMS gyroscope to five thermal cycles at each selected temperature range. It 

was also necessary to observe the MEMS gyroscope’s performance before and after 

five thermal cycles to record any permanent shift in the MEMS gyroscope’s output. 

Thus, for both stationary and rotary conditions, a baseline test was conducted first, 

followed by five thermal cycles test. The primary purpose of conducting the baseline 

test was to observe the sensor characteristics before temperature cycling to allow for 

later comparison. These baseline tests were performed at room temperature 

conditions. An overview of the experimental approach is shown in Figure 2-2. A total 

of nine individual single-axis MEMS gyroscope sensors were analyzed in this test. 
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The objective of this experimental exercise was to examine the performance bias 

caused by the elevated temperature exposure, which is stated here as a temperature-

dependent bias. Performance bias refers to the level of the output signal of the MEMS 

gyroscope that is not related to the input quantity sensed by the gyroscope sensor, 

such as when a MEMS gyroscope produces non-zero angular velocity output at a 

stationary condition.  

 
Figure 2-2: Experimental Approach for MEMS Gyroscope Performance 

Characterization at High Temperature 

2.2.1. Stationary Test 

As the name suggests, a stationary test was performed at the stationary condition. The 

MEMS gyroscope was mounted on a stationary table and its performance was 

evaluated at room and elevated temperatures by conducting stationary baseline and 
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stationary thermal tests, respectively. The detailed test sequence for the stationary test 

is shown in Figure 2-3. 

 
Figure 2-3: Stationary Test Sequence for Evaluating Effects of Elevated 

Temperatures on the MEMS Gyroscope. 

The MEMS gyroscope sensor was securely attached to the stationary table using high 

temperature tape. The evaluation board and ADIS16255_Eval_Rev_1 software were 

used for collecting the output from the MEMS gyroscope. A palmtop was also used 

for data storage purposes.  The test setup for the stationary baseline tests is shown in 

Figure 2-4. One end of the evaluation board was connected to the MEMS gyroscope 

whereas the other end was connected to the USB port of a palmtop.  
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Figure 2-4: Stationary Baseline Test Setup. 

Initially, the first stationary baseline test was performed at room temperature to 

establish a baseline condition for the MEMS gyroscope. The first stationary baseline 

test was conducted until 10,000 data points were acquired. After analyzing the 

MEMS gyroscope output signals from the first stationary baseline test, it was 

subjected to five thermal cycles from 25ᵒC to 85ᵒC. In order to achieve thermal 

cycling conditions, a Temptronic Thermostream air system was used. This apparatus 

has the capability to supply a constant temperature air stream at a wide temperature 

range from -75ᵒC to 225ᵒC. The gyroscope was placed under and at the center of the 

glass hood of the Temptronic Thermostream apparatus such that it was directly 

exposed to hot air flowing from the nozzle at 5 standard cubic feet per minute 

(SCFM). The test set-up for stationary thermal test is shown in Figure 2-5. 
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Figure 2-5: Stationary Thermal Test Setup. 

After completing five thermal cycles from 25ᵒC to 85ᵒC, the MEMS gyroscope was 

subjected to a second stationary baseline test to check if the MEMS gyroscope 

experienced any permanent shift in its output due to exposure to the five thermal 

cycles from 25ᵒC to 85ᵒC. This test sequence was repeated to complete remaining 

baseline and thermal tests at stationary conditions, as shown previously in Figure 2-3. 

2.2.2. Rotary Test 

A rotary test was performed by subjecting the MEMS gyroscope to a constant angular 

rotation of 60ᵒ/s or 10 revolutions per minute (rpm) using a precise turntable. The 

MEMS gyroscope was mounted on the center of a turntable, and its performance was 

evaluated at room and elevated temperatures by conducting rotary baseline and rotary 

thermal tests, respectively. The test sequence of RBT and RTT for the rotary test is 

shown in Figure 2-6.   
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Figure 2-6: Rotary Test Sequence for Evaluating Elevated Temperature Effect on the 

Performance of MEMS Gyroscope. 

For RBT and RTT, the MEMS gyroscope was securely attached to the center of a 

turntable using high temperature tape. The evaluation board and 

ADIS16255_Eval_Rev_1 software were used to collect the output from the MEMS 

gyroscope. The palmtop was mounted onto the turntable using a vertical brace. Care 

was exercised in placing and mounting the palmtop to avoid vibration during 

turntable rotation. 

The test setup for the rotary baseline test is shown in Figure 2-7. Initially, the first 

rotary baseline test was performed by subjecting the MEMS gyroscope to 60ᵒ/s 

rotational velocity at room temperature. The test was conducted until 10,000 data 

points were acquired.  
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Figure 2-7: Rotary Baseline Test Setup. 

After analyzing the MEMS gyroscope output signals from the first rotary baseline 

test, the MEMS gyroscope was subjected to five thermal cycles from 25ᵒC to 85ᵒC at 

60ᵒ/s rotational velocity. For the rotary thermal test, the entire rotating platform was 

placed under the glass hood of the Temptronic Thermostream apparatus such that the 

gyroscope faced hot air directly flowing from the nozzle at 5 SCFM. This 

arrangement for the rotary thermal test is shown in Figure 2-8. 

MEMS 

Gyroscope 

Palmtop Evaluation Board Turntable 



 

22 

 

 
Figure 2-8: Rotary Thermal Test Setup. 

After completing rotary thermal cycles from 25ᵒC to 85ᵒC, the MEMS gyroscope 

along with a rotary table was brought to ambient conditions and a second rotary 

baseline test was conducted in room temperature condition at 60ᵒ/s rotational 

velocity. This test sequence was repeated to complete remaining baseline and thermal 

tests for rotary test as shown previously in Figure 2-6.  

2.3.   Results and Analysis 

In this section, collected MEMS gyroscope results from stationary and rotary tests 

performed at ambient and elevated temperature conditions are discussed in detail. A 

total of nine individual MEMS gyroscopes were examined in this study. Since all nine 

gyroscopes showed similar behavior, for simplicity, the results from the first gyro, 

Unit-A, are used here to describe the elevated temperature effects on the performance 

of the MEMS gyroscope. The results of other MEMS gyroscopes are summarized in 

Appendix-A. 

Turntable 

Controller 

Turntable 
MEMS 

Gyroscope 

Palmtop 

Temptronic 

Thermostream 

Unit 

 



 

23 

 

2.3.1. Stationary Test Results: 

The first stationary baseline test was conducted to observe the gyroscope sensor 

output at room temperature. The plot in Figure 2-9 shows the gyroscope output for 

the first 10,000 angular velocity measurements at room temperature conditions.  

  
Figure 2-9: First Stationary Baseline Test Result: (a) Raw Angular Rate Data; (b) 

Filtered Angular Rate Data with Windowsize = 100. (Mean=0.01ᵒ/s, SD=0.44) 

Plot-(a) in Figure 2-9 shows the raw data of the angular velocity during the first 

stationary baseline test. The scattering of data was easily analyzed by grouping 

(averaging) each set of 100 data points into a single point, which is shown in plot (b) 

of Figure 2-9. The selection of 100 data points as the “window size,” or the reduced 

level of resolution, was driven by a tradeoff between noise reduction and loss of 

signal. The mean and standard deviation of the raw angular rate data for the first 

stationary baseline test were 0.01ᵒ/s and 0.44ᵒ/s, respectively. 

After the first stationary baseline test, the sensor was then subjected to five thermal 

cycles from 25ᵒC to 85ᵒC. Figure 2-10 includes three different plots representing raw 
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angular velocity data (plot-(a)), filtered angular velocity with window size 100 (plot-

(b)), and die temperature (plot-(c)).  

 
Figure 2-10: Stationary Thermal Test Results from 25°C to 85°C (a) Raw Angular 

Rate Data; (b) Filtered Angular Rate Data with Window size = 100; (c) Die 

Temperature. 

When the raw angular velocity data (plot-(a)) are compared with die temperature 

(plot-(c)), the performance variation due to temperature change from 25°C to 85°C is 

less apparent. However, after filtering the raw angular rate data, the effect of 

temperature on an increase in bias is visible, as shown in plot-(b). Since the MEMS 

gyroscope uses internal temperature calibration to compensate for a temperature-

dependent bias from -40°C to 85°C, only a small increase in temperature-dependent 

bias was observed from 25°C to 85°C. The observed temperature dependent bias was 

within 0.3ᵒ/s from 25°C to 85°C, which was agreed well with the manufacturer’s 

suggested temperature bias (bias temperature coefficient = 0.005ᵒ/s/°C). This 

confirms that the MEMS gyroscope performed well within the manufacturer’s 

recommended temperature range.  
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The slight increase in the temperature dependent bias appears only when the 

temperature reaches its peak value of 85°C. The noise level returns to its normal level 

when the temperature returns to room temperature. This observation suggests that 

there wasn’t any permanent shift or degradation in the MEMS gyroscope output as a 

result of the five thermal cycles from 25°C to 85°C. Thus, the short-term durability of 

the MEMS gyroscope was preserved during this test.  

Next, a second stationary baseline test was conducted to observe the gyroscope output 

at room temperature. The plot in Figure 2-11 shows the sensor output for the first 

10,000 angular velocity measurements at room temperature condition. The mean and 

standard deviation of the raw data for the secondary stationary baseline test were -

0.01ᵒ/s and 0.48ᵒ/s, respectively. This confirms that there was not any observable shift 

in the MEMS gyroscope output from the first stationary baseline test. 

 
Figure 2-11: Second Stationary Baseline Test Result: (a) Raw Angular Rate Data; (b) 

Filtered Angular Rate Data with Windowsize = 100. (Mean= -0.01, STD= 0.48) 

After completing the second stationary baseline test, the MEMS gyroscope was 

subjected to a higher temperature range. The MEMS gyroscope was subjected to five 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

-1

0

1

2

O
u

tp
u

t(
D

e
g

/s
)

Minutes

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.2

-0.1

0

0.1

0.2

O
u

tp
u

t(
D

e
g

/s
)

Minutes

(b)



 

26 

 

thermal cycles from 25ᵒC to 125ᵒC. The results of the stationary thermal test from 

25ᵒC to 125ᵒC are shown in Figure 2-12. 

 
Figure 2-12: Stationary Thermal Test Result from 25°C to 125°C: (a) Raw Angular 

Rate Data; (b) Filtered Angular Rate Data with Windowsize = 100; (c) Die 

Temperature. 

Looking at the plot-(a) of Figure 2-12, it can be concluded that the noise level 

increased with an increase in temperature. After filtering the angular velocity data, an 

important phenomenon was observed. Plot-(b) shows that a temperature-dependent 

bias was increased with the increase in temperature. It is essential to notice that there 

was a sudden change in temperature-dependent bias that occurred when the 

temperature went above 85ᵒC. This bias was not related to any change in motion since 

the MEMS gyroscope was at stationary condition during the test. The bias again 

returned to its normal value when the temperature dropped below 85ᵒC.    

It can also be observed that all five thermal cycles resulted in a similar increase in 

temperature-dependent bias. No evidence of permanent degradation or hysteresis can 
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be observed. Table 2-1 summarizes the temperature-dependent bias value for each 

thermal cycle. The average bias turned out to be 3.30ᵒ/s.   

Table 2-1: Temperature-dependent Bias Value of Five Thermal Cycles from 25°C to 

125°C. 

Temperature Cycle 

Temperature 

Dependent Bias    

(ᵒ/s) 

First cycle 3.30 

Second cycle 3.20 

Third cycle 3.45 

Fourth cycle 3.30 

Fifth cycle 3.25 

Average 3.30 

Similar to Gyroscope Unit-A, the remaining eight gyroscopes also showed similar 

behavior when subjected from 25°C to 125°C. A summary of the average 

temperature-dependent bias of all nine gyroscopes from 25°C to 125°C is shown in 

Table 2-2. The calculated average temperature-dependent bias for all nine gyroscopes 

is 3.28ᵒ/s. 

Table 2-2: Average Temperature-dependent Bias of all Nine Gyroscopes from 25°C 

to 125°C 

Gyroscope 

Average 

Temperature 

Dependent Bias    

(ᵒ/s) 

Unit – A 3.30 

Unit – B 3.26 

Unit – C 3.28 

Unit – D 3.27 

Unit – E 3.29 

Unit – F 3.30 

Unit – G 3.29 

Unit – H 3.26 

Unit – I 3.27 

Average 3.28 
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The above results indicate the very interesting behavior of the MEMS gyroscope from 

25°C to 125°C. Since all nine MEMS gyroscopes showed a similar increase in 

temperature-dependent bias from 25°C to 125°C, a temperature compensation 

algorithm can be developed to compensate for the temperature effects on the MEMS 

gyroscope up to 125°C. In so doing, the MEMS gyroscope can be used for 

applications up to a max temperature of 125°C without losing its performance. 

After completing the thermal test from 25°C to 125°C, a third stationary baseline test 

was conducted to observe the gyroscope sensor output. The plot in Figure 2-13 shows 

the sensor output for the first 10,000 angular velocity measurements at room 

temperature conditions. The mean and standard deviation of the raw data for the third 

stationary baseline test were 0.01ᵒ/s and 0.45ᵒ/s, respectively. This confirms that there 

was not any observable shift in the MEMS gyroscope output from the first and second 

stationary baseline tests. 

 
Figure 2-13: Third Stationary Baseline Test Result: (a) Raw Angular Rate Data; (b) 

Filtered Angular Rate Data with Windowsize = 100. (Mean= 0.01, STD=0.45) 
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After completing the third stationary baseline test, the MEMS gyroscope was again 

subjected to an even higher temperature. This time, the thermal cycle temperature was 

raised to 25ᵒC to 150ᵒC. The result of the stationary thermal test from 25ᵒC to 150ᵒC 

is shown in Figure 2-14. Plot-(a) and plot-(b) of Figure 2-14 indicate a significant 

increase in the temperature–dependent bias from 25ᵒC to 150ᵒC. During the 

temperature increase, it was observed that the angular velocity output of the MEMS 

gyroscope initially increased and then started to descend at the peak temperature. 

Such behavior of the MEMS gyroscope was identical for all five temperature cycles 

from 25ᵒC to 150ᵒC. It was also noticed that the MEMS gyroscope did not show any 

kind of permanent shift in its output due to exposure to five thermal cycles with 

150ᵒC peak temperature. The output of the MEMS gyroscope again returned to 

normal value along with a decrease in temperature to room temperature condition. 

 
Figure 2-14: Stationary Baseline Test Result from 25°C to 150°C: (a) Raw Angular 

Rate Data; (b) Filtered Angular Rate Data with Windowsize = 100; (c) Die 

Temperature. 
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Figure 2-15 shows sensor output for the first 10,000 angular velocity measurements at 

room temperature conditions. The mean and standard deviation of raw data for the 

fourth stationary baseline test were 0.01ᵒ/s and 0.46ᵒ/s, respectively. This confirms 

that there was not any observable shift in the MEMS gyroscope output due to short-

term elevated temperature exposure from the previous stationary thermal test. 

 
Figure 2-15: Fourth Stationary Baseline Test Result: (a) Raw Angular Rate Data; (b) 

Filtered Angular Rate Data with Window-size = 100. (Mean=0.01, STD=0.46) 
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Figure 2-16: Stationary Thermal Test Results from 25°C to 175°C: (a) Raw Angular 

Rate Data; (b) Filtered Angular Rate Data with Windowsize = 100; (c) Die 

Temperature. 
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shift that occurred due to the previous stationary thermal test. The plot in Figure 2-17 

shows sensor output for the first 10,000 angular velocity measurements at room 

temperature conditions. The mean and standard deviation of the raw data for the fifth 

stationary baseline test were 0.01ᵒ/s and 0.46ᵒ/s, respectively. 
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Figure 2-17: Fifth Stationary Baseline Test Result: (a) Raw Angular Rate Data; (b) 

Filtered Angular Rate Data with Window-size = 100. (Mean= 0.01, STD=0.44) 

The mean and standard deviation of all five stationary baseline tests are summarized 

in Table 2-3. Since there was no significant difference in the mean and standard 

deviation values among these tests, it can be concluded that the MEMS gyroscope did 

not show any kind of permanent shift in its output due to short-term thermal cycle 

exposure during stationary thermal tests.  
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Standard Deviation 
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1 First stationary baseline test 0.01 0.44 

2 Second stationary baseline test -0.01 0.48 

3 Third stationary baseline test 0.01 0.45 
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5 Fifth stationary baseline test 0.01 0.45 
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was subjected to a 60ᵒ/s angular rotation using a precise turntable. In real 

applications, a MEMS gyroscope is always subjected to non-stationary condition. 

Thus, the rotary test conditions simulate the real usage condition of a MEMS 

gyroscope better than stationary test conditions. 

First, the rotary baseline test was conducted to observe the gyroscope output during 

60ᵒ/s angular rotation at room temperature. The plot in Figure 2-18 shows the MEMS 

gyroscope output for the first 10,000 angular velocity measurements at room 

temperature condition. Plot-(a) and plot-(b) in Figure 2-18 show raw and filtered data 

of angular velocity during the first rotary baseline test. The mean and standard 

deviation of raw data for the first rotary baseline test were 59.87ᵒ/s and 0.84ᵒ/s, 

respectively. 

 
Figure 2-18: First Rotary Baseline Test Result: (a) Raw Angular Rate Data; (b) 

Filtered Angular Rate Data with Windowsize = 100. (Mean= 59.87, STD= 0.84) 

After the first rotary baseline test, the MEMS gyroscope sensor was then subjected to 

five thermal cycles from 25ᵒC to 85ᵒC. Figure 2-19 shows three different plots 

representing raw angular velocity data (plot-(a)), filtered angular velocity with 

windowsize 100 (plot-(b)), and die temperature (plot-(c)).   
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Figure 2-19: Rotary Thermal Test Results from 25°C to 85°C: (a) Raw Angular Rate 

Data; (b) Filtered Angular Rate Data with Window size = 100; (c) Die Temperature. 
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temperature returns to room temperature. This observation suggests that there was not 

any permanent shift or degradation in the MEMS gyroscope output as a results of five 

thermal cycles from 25°C to 85°C. Thus, the short-term durability of the MEMS 

gyroscope was preserved during the rotary thermal test.  

Next, the second rotary baseline test was conducted to observe the gyroscope sensor 

output at room temperature. The plot in Figure 2-20 shows the sensor output for the 

first 10,000 angular velocity measurements at room temperature conditions. The 

mean and standard deviation of raw data for the second rotary baseline test were 

59.98ᵒ/s and 1.49ᵒ/s respectively. This confirms that there was not any significant 

shift in the MEMS gyroscope output from the first rotary baseline test. 

 
Figure 2-20: Second Rotary Baseline Test Result: (a) Raw Angular Rate Data; (b) 

Filtered Angular Rate Data with Windowsize = 100. (Mean= 59.98, STD= 1.49) 

After completing the second rotary baseline test, the MEMS gyroscope was again 

subjected to a higher temperature range. The MEMS gyroscope was subjected to five 
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Figure 2-21: Rotary Thermal Test Results from 25°C to 125°C: (a) Raw Angular Rate 

Data; (b) Filtered Angular Rate Data with Window size = 100; (c) Die Temperature. 

Looking at the plot-(a) of Figure 2-21, it can be concluded that the noise level 

increased with an increase in temperature. After filtering the angular velocity data, an 

important phenomenon was observed. Plot-(b) shows that a temperature-dependent 
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to 125ᵒC.     
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Table 2-4: Angular Velocity and Temperature Dependent Bias of Five Rotary 

Thermal Cycles from 25°C to 125°C. 

Temperature Cycle 

Observed Angular 

Velocity (Deg/s) 

At 125 ˚C 

 Temperature 

Dependent 

Bias (ᵒ/s) 

First cycle 63.3 3.3 

Second cycle 63.4 3.4 

Third cycle 63.3 3.3 

Fourth cycle 63.2 3.2 

Fifth cycle 63.1 3.1 

Avg. 63.26 3.26 

 

Similar to Gyroscope Unit-A, the remaining eight gyroscopes also showed similar 

behavior when subjected from 25°C to 125°C at 60ᵒ/s angular rotation. A summary of 

the average temperature-dependent bias of all nine gyroscopes from 25°C to 125°C is 

shown in Table 2-5. The calculated average temperature-dependent bias for all nine 

gyroscopes was 3.27ᵒ/s. 

Table 2-5: Average Temperature-dependent Bias of all Nine Gyroscopes from 25°C 

to 125°C during 60ᵒ/s angular rotation  

Gyroscope 

Average 

Temperature 

Dependent Bias    

(ᵒ/s) 

Unit – A 3.26 

Unit – B 3.27 

Unit – C 3.28 

Unit – D 3.30 

Unit – E 3.27 

Unit – F 3.26 

Unit – G 3.26 

Unit – H 3.25 

Unit – I 3.28 

Average 3.27 

 

Similar to a stationary thermal test from 25ᵒC to 125ᵒC, the above results indicate 

very interesting behavior of the MEMS gyroscope. Since all nine MEMS gyroscopes 

showed a similar increase in temperature-dependent bias from 25°C to 125°C at 60ᵒ/s 
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angular rotation. A temperature compensation algorithm can be developed to 

compensate for the temperature effects on the MEMS gyroscope up to 125°C. Doing 

so, the MEMS gyroscope can be used for applications up to a max temperature of 

125°C without losing its performance. 

After completing the rotary thermal test from 25°C to 125°C, a third rotary baseline 

test was conducted to observe the gyroscope sensor output. The plot in Figure 2-22 

shows the sensor output for the first 10,000 angular velocity measurements at room 

temperature conditions. The mean and standard deviation of raw data for the third 

rotary baseline test were 59.92ᵒ/s and 0.82ᵒ/s, respectively. This confirms that there 

was not any significant shift in the MEMS gyroscope output from the first and second 

rotary baseline tests. 

 
Figure 2-22: Third Rotary Baseline Test Result: (a) Raw Angular Rate Data; (b) 

Filtered Angular Rate Data with Windowsize = 100. (Mean= 59.92, STD= 0.82) 

After completing the third rotary baseline test, the MEMS gyroscope was again 

subjected to an even higher temperature. This time, the thermal cycling temperature 

range was raised to 25ᵒC to 150ᵒC. The result of rotary thermal test from 25ᵒC to 

150ᵒC is shown in Figure 2-23. Plot-(a) and plot-(b) of Figure 2-23 indicate a 
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significant increase in the temperature–dependent bias from to 25ᵒC to 150ᵒC. During 

the temperature increase, it was observed that the angular velocity output of the 

MEMS gyroscope initially increased and then started to descend at the peak 

temperature. Such behavior of the MEMS gyroscope was identical for all five 

temperature cycles from 25ᵒC to 150ᵒC. It was also noticed that the MEMS gyroscope 

did not show any kind of permanent shift in its output due to exposure to the five 

thermal cycles with a 150ᵒC peak temperature. The output of the MEMS gyroscope 

again returned to its normal value along with a decrease in temperature to room 

temperature conditions. 

 
Figure 2-23: Rotary Thermal Test Results from 25°C to 150°C: (a) Raw Angular Rate 

Data; (b) Filtered Angular Rate Data with Window size = 100; (c) Die Temperature. 
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was not any significant shift in the MEMS gyroscope output due to short-term 

elevated temperature exposure from previous rotary baseline tests. 

 
Figure 2-24: Fourth Rotary Baseline Test Result: (a) Raw Angular Rate Data; (b) 

Filtered Angular Rate Data with Windowsize = 100. (Mean= 59.99, STD= 1.27) 

After completing the fourth rotary baseline test, the MEMS gyroscope was again 

subjected an even to winder temperature range from 25°C to 175°C. The results of the 

rotary thermal test from 25°C to 175°C are shown in Figure 2-25. Here, the effects of 

a decrease in the MEMS gyroscope output at an elevated temperature were quite 

significant. It was also noticed that the MEMS gyroscope did not show any kind of 

permanent shift in its output due to exposure to five thermal cycles with 150ᵒC peak 

temperature. The output of the MEMS gyroscope again returned to normal value 

along with a decrease in temperature to room temperature conditions. Such behavior 

of the MEMS gyroscope was similar to stationary thermal test from 25ᵒC to 175ᵒC.     
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Figure 2-25: Rotary Thermal Test Results from 25°C to 175°C: (a) Raw Angular Rate 

Data; (b) Filtered Angular Rate Data with Window size = 100; (c) Die Temperature. 

After completing the rotary thermal test from 25°C to 175°C, a fifth rotary baseline 

test was conducted to observe the gyroscope sensor output. The plot in Figure 2-26 

shows sensor output for the first 10,000 angular velocity measurements at room 

temperature conditions. The mean and standard deviation of raw data for the fifth 

rotary baseline test were 59.79ᵒ/s and 1.28ᵒ/s, respectively.  

 
Figure 2-26: Fifth Rotary Baseline Test Result: (a) Raw Angular Rate Data; (b) 

Filtered Angular Rate Data with Windowsize = 100. (Mean= 59.79, STD= 1.28) 
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and standard deviation values among these tests, it can be concluded that the MEMS 

gyroscope did not show any kind of damage or permanent shift in output due to short 

term elevated thermal cycle exposure during the rotary tests. 

Table 2-6: Mean and Standard Deviation of Rotary Baseline Test 

No Tests Mean  (°/s) Standard Deviation (°/s) 

1 First Rotary baseline test 59.87 0.84 

2 Second Rotary baseline test 59.98 1.49 

3 Third Rotary baseline test 59.68 0.82 

4 Fourth Rotary baseline test 59.99 1.27 

5 Fifth Rotary baseline test 59.79 1.28 

2.4. Conclusions 

This study has resulted in many interesting findings. The following conclusions can 

be made from this study: 

 A new test protocol has been developed for evaluating the effects of elevated 

temperatures on the performance of MEMS gyroscopes operated within and 

beyond manufacturer’s recommended temperature range. 

 No permanent change or hysteresis in the performance was observed on the 

MEMS gyroscope after exposure to five thermal cycles at various temperature 

ranges during stationary and rotary thermal tests. This was again verified from 

baseline tests performed after each thermal test at stationary and rotary 

conditions. 
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 A temperature increase caused similar performance changes to the MEMS 

gyroscope during the stationary thermal test and the rotary thermal test over 

wider temperature ranges.  

 The MEMS gyroscope showed a small increase in temperature-dependent bias 

when exposed to a temperature range of 25°C to 85°C at stationary and rotary 

conditions. Such small increase in the temperature-dependent bias was well 

within the manufacturer’s specification.  

 There was a significant increase in the angular velocity measured by the 

gyroscope with temperature when the gyroscope was operated from 25
°
C to 

125
°
C. This did not correspond to any actual change in the angular velocity 

either at stationary or rotatory conditions. For nine individual MEMS 

gyroscopes, the average temperature-dependent bias at stationary and rotary 

conditions from 25
°
C to 125

°
C turned out to be 3.28°/s and 3.27°/s, 

respectively. If the observed temperature-dependent bias from 25
°
C to 125

°
C 

was compensated, the MEMS gyroscope could be used in applications where 

temperature goes to 125°C. 

 When a MEMS gyroscope was subjected to 150°C or beyond, it was observed 

that the angular velocity output of the MEMS gyroscope initially increased 

and then started to descend at peak temperature. Further analysis is required to 

investigate such behavior of MEMS gyroscope at or beyond 150°C to enable 

the reliable application of MEMS gyroscopes in high temperature 

environments. However, this was outside the scope of current research.  
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3. Simulation of Temperature Effect on the Performance of 

a MEMS Gyroscope 

3.1. Introduction 

This chapter describes a method to simulate temperature effects on the performance 

of a MEMS gyroscope. Initially, the working principle of the MEMS gyroscope is 

described. Based on the characteristic equations of motion for a MEMS vibratory 

gyroscope, a model is developed to simulate its performance at an ambient condition. 

Thereafter, the effects of temperature-dependent factors are considered to simulate 

temperature effects on the performance of the MEMS gyroscope. In order to check 

the validation of the developed model, the experiment is conducted to characterize the 

MEMS gyroscope’s performance within the manufacturer’s recommended 

temperature range. In addition, to find the validity limit of the simulation model 

beyond the manufacturer’s recommended temperature range, simulation results are 

also compared with previously conducted experimental results over a wider elevated 

temperature range. 

3.2. Working Principle 

A MEMS vibratory gyroscope can be simply visualized as a two degree-of-freedom 

(2-DOF) mass-spring-damper system as shown in Figure 3-1. At the core, it has a 

vibrating mass or a proof mass. The proof mass is suspended above the substrate by 

use of flexible beams, which also work as mechanical springs. The proof mass is 

subjected to vibration at resonance frequency by use of an electrostatic force that 

causes movement of a proof mass in the drive direction. When the gyroscope sensor 
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experiences an angular rotation, a Coriolis force is induced in the direction orthogonal 

to both the drive direction (x) and the angular rotation axis (z). This rotation induced 

Coriolis force causes energy transfer between the drive mode and the sense mode. 

The movement of a proof mass caused by the Coriolis force in the sense direction (y) 

is proportional to the angular rotation applied and can be measured with differential 

capacitance techniques using interdigitated comb electrodes. An example of 

schematic view of the MEMS gyroscope that utilizes interdigitated comb electrodes 

as sense combs is shown in Figure 3-2. 

 
Figure 3-1: Schematic of Two Degree-of-freedom (2-DOF) Mass-spring-damper 

System  
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Figure 3-2: Schematic Illustration of MEMS Vibratory Gyroscope 

There are many ways to increase device output. One of the ways is to vibrate the 

drive and sense mode at a resonance that increases the device output and hence its 

sensitivity. On the other hand, increasing device sensitivity makes the MEMS 

gyroscope more vulnerable to the external parameters like temperature, pressure, 

vibration, and shock that shift the natural frequency, introduce quadrature errors and 

alter device output [36]. Thus, in most of the cases, MEMS gyroscopes are designed 

to have sense-mode slightly shifted from the drive-mode to improve robustness and 

thermal stability. 

Various designs have been explored to make MEMS gyroscopes more robust. One 

such design is shown in Figure 3-3 where two proof masses are placed on either side 

and are driven in opposite directions. During rotation, Coriolis force induced on the 

two proof masses are also in opposite directions. This special arrangement helps to 
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nullify the external inertial inputs caused by undesirable linear acceleration, vibration 

and shock. This concept has been widely used in commercial gyroscopes like the 

ADIS16250 and ADIS16255. 

 
Figure 3-3: Two Proof Mass-spring-damper System 

3.3. MEMS Gyroscope Motion Equations 

In order to derive the equation of motion for a MEMS vibratory gyroscope, the 

system is represented by a two degree-of-freedom, mass-spring-damper system. Since 

the gyroscope structure movement is modeled while it rotates, motion equations can 

be represented based on a stationary frame (gyroscope frame) and a non-stationary 

frame (inertial frame). The mass-spring-damper system, a gyroscope frame and an 

inertial frame, is shown in Figure 3-4. 
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Figure 3-4: Two Degree-of-freedom Mass-spring-damper System Model 

The mass-spring-damper system is initially observed with respect to the gyroscope 

frame. Once the motion equations have been established, these equations are derived 

with respect to the inertial frame. The equations of motion for the mass-spring-

damper system with respect to the gyroscope frame can be represented as: 

                       A 

                B 

Where m is the mass of the vibrating structure, cx and cy are the damping coefficients 

in drive and sense direction, kx and ky are the beam stiffness in drive and sense 

directions, ax and ay are the acceleration components and vx and vy are the velocity 

components in the drive and sense directions, respectively and Fd is an electrostatic 

force applied by drive combs. If these equations are viewed from an inertial frame, 

they can be represented as, 
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   ̈     ̇        +    ̇ C 

   ̈     ̇           ̇ D 

The 2mΩẏ and 2mΩẋ are the rotation-induced Coriolis terms. When the gyroscope 

starts vibrating in the drive direction and experiences an external angular rotation, 

these Coriolis terms cause dynamic coupling between the drive and sense modes of 

vibration, and because of this coupling, the suspended proof mass starts to vibrate in 

the sense direction. 

3.4. Simulink Model 

In order to calculate the drive and sense comb displacement from the characteristic 

equation of motion, it is necessary to solve equations C and D. There are various 

methods to solve these coupled differential equations. The one used in this research is 

by using Simulink tool. Simulink is a toolbox in MATLAB for analyzing multi-

domain dynamic system. A Simulink model is developed by rearranging equations E 

and F as shown below. 

  ̈   
 

 
        ̇     ̇       

E 

  ̈   
 

 
      ̇     ̇       

F 

From equations E and F, a Simulink model is developed that is shown in Figure 3-5. 
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Figure 3-5: Simulink Model 

To calculate drive and sense displacement for a specific angular rotation at room 

temperature through the Simulink model, the values of mass of suspended structure, 

stiffness in drive and sense directions, the damping coefficient in drive and sense 

directions and electrostatic force are required. In order to calculate these parameters, 

equations from the literature were used to calculate the value for these parameters.  

The mass of suspended structure (M) can be calculated as [37]: 

                G 

Where Mm is mass of inner and outer frames, Mb is suspension beam mass, Mc is 

drive and sense combs mass and Me is etch holes mass. 
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The drive beam stiffness (Kx) and sense beam stiffness (Ky) depend on the gyroscope 

design. Based on the configuration of the MEMS gyroscope examined in this study, 

the following equations were used to calculate drive beam stiffness (Kx) and sense 

beam stiffness (Ky): 

       
           

 

   
  

           
 

   
  

H 

Where E is Young’s modulus of polysilicon, tb1 and tb2, wb1 and wb2, lb1 and lb2 are 

thickness, width and length of beam 1 and beam 2, respectively. 

From the mass of suspended structure (M), drive beam stiffness (Kx) and sense beam 

stiffness (Ky) calculated previously, drive mode frequency (fx) and sense mode 

frequency (fy) can be calculated as [38]: 

    
 

  
√
  

 
    

 

  
√
  

 
 

I 

In order to determine the flow regime to calculate the damping coefficient, the 

Kundsen number (Kn) can be calculated as [36] [37]: 

     
 

   
  

   

√                 

 J 

Where λ is the mean free path of the gas molecule, Lc is a characteristic length of 

flow, R is a gas constant, T is ambient temperature, D is the diameter of the gas 

molecule, Na is Avogadro number, and P is ambient pressure. 

Based on the values of the Knudsen number (Kn), the flow regime is determined. 

Proof mass damping coefficient (Cproof mass) and comb structure damping coefficient 

(Ccomb structure) can be calculated as [36] [37] [39]: 
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 K 

Where µ is air viscosity, Aproof mass is proof mass area, Kn is the Knudsen number and 

h is the gap between proof mass and the substrate. 

                   
          

     
 L 

Where µ is air viscosity, N is the number of combs, Acombs is the comb area, gc is the 

gap between the comb fingers and λ is the mean free path of the gas molecule (Kn* 

Lc). 

The net damping is the summation of damping of the proof mass and comb structure. 

Thus, drive damping coefficient (Cdrive) and sense damping coefficient (Csense) can be 

calculated as [36] [37] [39]: 

 
                

                                 
M 

The selected device is actuated by electrostatic combs. Thus, net electrostatic force 

(Fd) can be calculated as [36] [38] [40]: 

 

 

    
                   

   
 

N 

Where N is number of the capacitor formed by the comb finger, є is permittivity of 

air, Vdc is DC voltage, Vac is AC voltage and gc is the gap between the comb fingers. 
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3.5. Simulation Results at Room Temperature 

Based on the above parameters, a Simulink model can be used to calculate drive and 

sense comb displacement at room temperature. In many cases, sense combs use 

interdigitated comb electrodes to measure a differential capacitance that is directly 

proportional to sense comb displacement. This differential capacitance can be 

eventually converted with the help of an application specific integrated circuit 

(ASIC), to a voltage that is measured from the gyroscope output terminal. The 

differential capacitance or capacitance change (ΔCb) can be calculated from sense 

displacement as [37][39]: 

      
                

     
 O 

Where є is the permittivity of air, lp_c is a comb finger overlap, tc is comb finger 

thickness, Ysense is a sense displacement, gc is the gap between comb fingers.  

Based in the construction of MEMS gyroscope used in this research, values of the 

MEMS gyroscope parameters were calculated from equations G through O . The 

calculated MEMS gyroscope parameters are summarized in Table 3-1. Using the 

Simulink model, drive displacement, sense displacement and capacitance change of 

the MEMS gyroscope at room temperature (T=25ᵒC) and 60˚/s angular rotation were 

calculated, which are also shown in Table 3-1. 
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Table 3-1: MEMS Gyroscope’s Parameters and Simulation Result at Ambient 

Condition (Angular Velocity = 60ᵒ/s, Temperature=25ᵒC, Pressure= 1 atm) 

Parameters Calculated values 

Mass of suspended structure (   4      

Drive beam stiffness (    and 

Sense beam stiffness (    
30.95        

Drive mode frequency (    and 

Sense mode frequency (    
14,000      

Knudsen number (    0.0334 

Proof mass damping coefficient (             7.61e-6        

Comb structure damping coefficient (                  1.37e-7        

Drive damping coefficient (         7.75e-6        

Sense damping coefficient  (        7.94e-6        

Electrostatic force (    4.36e-6     

Angular velocity (Ω) 60 (   ) 

Drive displacement (        6.39      

Sense displacement (        6.75      

Capacitance change (     7.45e-18 (F) 

 

The time domain response of the drive and sense comb displacement at 60˚/s angular 

rotation and room temperature are shown in Figure 3-6. These results show that the 

MEMS gyroscope takes around 5 milliseconds to stabilize the output of MEMS 

gyroscope when subjected to 60˚/s constant angular rotation. 
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(a) (b) 

Figure 3-6: Displacement of Drive and Sense Comb at 60˚/s Angular Rotation (a) 

Drive Comb Displacement (m) vs. Time (sec) (b) Sense Comb Displacement (m) vs. 

Time (sec) 

From the Simulink model, output of the MEMS vibratory gyroscope at different 

angular velocities can be calculated to determine the scale factor. An example is 

shown in Figure 3-7, where angular velocity was varied from -50 RPM to +50 RPM. 

 
Figure 3-7: Capacitance Change (F) vs. Angular Velocity (RPM) 

3.6. Simulation over a Wider Temperature Range 

The Simulink model can be used to simulate the temperature-dependent characteristic 

of the MEMS vibratory gyroscope. In recent years, studies have been performed to 

understand the temperature effects on the MEMS gyroscope’s performance. Some of 
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these studies performed suggest that fluctuation in the ambient temperature of the 

MEMS vibratory gyroscope results in a performance bias [41]–[45]. Other studies 

suggest that a prime source of temperature-dependent bias in the MEMS gyroscope is 

a change in resonance frequency [46]–[48] and Q-factor [25], [49]. Resonance 

frequency is a function of stiffness that depends on Young’s modulus. A material 

property, Young’s modulus (E) is a function of temperature, and thus different values 

of Young’s modulus at different temperatures change the resonance frequency of the 

vibrating mass. The Q-factor is the ratio of loss of energy to the stored energy in one 

cycle. A high Q value of an oscillator indicates a lower rate of energy loss relative to 

the stored energy and thus it depends on the damping coefficient. Thus, different 

values of damping coefficients at different temperatures change the Q factor of the 

vibrating mass.  

In order to simulate the temperature effects on the MEMS vibratory gyroscope, two 

factors, found from literature, such as Young’s modulus and damping coefficient, are 

considered in the simulation.  

Many different values of Young’s modulus of polysilicon have been reported in 

literature [50]. In this study, we have considered the value of Young’s modulus of 

polysilicon as 169 GPa at +25˚C. The mechanical properties of polysilicon depend on 

temperature and it changes significantly at higher temperatures [51],[52]. The relation 

between temperature and Young’s modulus of polysilicon reported in the literature 

[51] is considered in the simulation, which is shown below: 

                   
P 
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Where Es and Ts are Young’s modulus (GPa) and temperature (˚C) at ambient 

condition, respectively. A is the temperature dependent Young’s modulus coefficient 

whose value is 0.04.  

Using the equation P, Young’s modulus of polysilicon has been calculated from 25˚C 

to 125˚C which is shown in Figure 3-8 (a). It is clear that temperature increase of 

100˚C from 25˚C to 125˚C resulted reduction in Young’s modulus of 4 GPa from 169 

GPa to 165 GPa. Such reduction in the Young’s modulus of polysilicon affects the 

drive and the sense resonance frequencies. An example of change in drive resonance 

frequency from 0˚C to 140˚C is shown in Figure 3-8 (b).          

  

(a) (b) 

Figure 3-8: (a) Change in Young’s Modulus with Temperature from 25ᵒC to 125ᵒC 

(b) Change in Drive Resoance Frequency with Temperature from 0ᵒC to 140ᵒC. 

Damping coefficient deceases with temperature increase. The relationship between 

damping coefficient and temperature can be established from equations K through M 

which is shown blow: 
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(         √             )  

 

 
           

        √            

 

Q 

Where µ is air viscosity, Aproof mass is proof mass area, R is a gas constant, T is 

ambient temperature, D is the diameter of the gas molecule, Na is Avogadro number, 

and P is ambient pressure, Lc is a characteristic length of flow, h is the gap between 

proof mass and the substrate, N is the number of combs, Acombs is the comb area and 

gc is the gap between the comb fingers.  

An example of change drive damping from 0˚C to 140˚C is shown in Figure 3-9 (b). 

 
Figure 3-9: Change in Drive Damping with Temperature from 0ᵒC to 140ᵒC. 

Using the Simulink model, effect of change in Young’s modulus and damping 

coefficient at various temperatures were considered to determine capacitance change 

over the temperatures. An example of calculated capacitance change from 0˚C to 

140˚C is shown in Figure 3-10. Such increase in capacitance over the temperatures 

was due to larger displacement of drive and sense combs due to change in Young’s 

modulus and damping coefficient from 0˚C to 140˚C. The transient response of drive 

and sense comb displacement are shown in Figure 3-11. The magnified view of the 
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transient response of drive and sense comb displacement is shown in Figure 3-11-((c), 

(d), (e), and (f)), which show an increase in drive and sense displacement with 

temperature increase from 0˚C to 140˚C. Such increase in the drive and the sense 

displacement results in higher angular velocity output of a MEMS gyroscope at a 

constant angular rotation.   

 
Figure 3-10: Capacitance Change with Temperature from 0ᵒC to 140ᵒC 
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(e) (f) 

Figure 3-11: Transient Response of the MEMS Gyroscope at 60 ᵒ/s Angular Rotation 

from 0ᵒC to 140ᵒC Temperatures: (a) Drive Dispacement (m) vs. Time (s), (b) Sense 

Displacement (m) vs. Time (s), (c) Magnified View of Window-(a), (d) Magnified 

View of Windiw-(b), (e) Magnigied View of Windiw-(c) indicates an Increase in 

Drive Amblitude with Temperatures, (f) Magnigied View of Windiw-(d) indicates an 

Increase in Sense Amblitude with Temperatures. 

In absence of direction correlation between capacitance change and angular velocity 

output of the MEMS gyroscope, an indirect approach was followed to establish a 

correction between angular velocity and temperature.  

Using the Simulink model, capacitance change was calculated over a wider input 

angular velocity of the MEMS gyroscope at room temperature. An example of 

capacitance change that resulted from input angular velocity increase from 59.5ᵒ/s to 

64.0ᵒ/s is shown in Figure 3-12. 
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Figure 3-12: Capacitance Change due to Variation in Angular Velocity from 59.5 ᵒ/s 

to 64.0 ᵒ/s. 

Using the interpolation technique between the results from Figure 3-10 and Figure 

3-12, a correlation between angular velocity and temperature was established. An 

example of this interpolation results for temperature increase from 25˚C to 85˚C at 

60ᵒ/s angular rotation is shown in Figure 3-13.     

 
Figure 3-13: Simulated Temperature-Dependent Bias of MEMS Gyroscope at 60˚/s 

Angular Rotation 

It is clear from Figure 3-13 that the simulated temperature-dependent bias turned out 

to be 1.98˚/s when the performance of MEMS gyroscope was simulated from 25˚C to 

85˚C at 60ᵒ/s angular rotation. Similarly, a wider temperature range can be also used 

to calculate simulated temperature-dependent bias at any angular rotation speed.  
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3.7. Model Validation 

In order to perform model validation, an experiment was conducted to characterize 

the MEMS gyroscope’s performance within the manufacturer’s recommended 

temperature range. In addition, to find validity limit of the simulation model beyond 

the manufacturer’s recommended temperature range, simulation results were also 

compared with previously conducted experimental results over a wider elevated 

temperature range. 

3.7.1. Examination of Model Validation within the Manufacturer’s 

Recommended Temperature Range  

In order to examine the validity of the Simulink model within the manufacturer’s 

recommended temperature range, ADIS16250, a single axis MEMS gyroscope, rated 

from -40˚C to +85˚C was selected for the experiment. ADIS16250 features the same 

mechanical structure and package design as previously used ADIS16255 single axis 

MEMS gyroscope. Only the major difference between ADIS16250 and ADIS16255 

is that ADIS16250 does not feature internal calibration; whereas, ADIS16255 

gyroscope output is internally calibrated and compensated within -40˚C to 85˚C. By 

selecting ADIS16250 gyroscope, it was possible to measure the performance bias due 

to temperature increase within the manufacturer’s recommended temperature range.  

For the experiment, 25˚C to 85˚C temperature range was selected for examining the 

performance of ADIS16250. This selected temperature range was within the 

manufacturer’s recommended temperature range. The angular velocity output of 

ADIS16250 was measured at every 10˚C temperature intervals from 25˚C to 85˚C at 
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0ᵒ/s (0 rpm), 60ᵒ/s (10 rpm), 120ᵒ/s (20 rpm) and 240ᵒ/s (40 rpm). At each temperature 

and angular rotation, the MEMS gyroscope’s output was collected for 5 minutes. A 

precise turntable was used for subjecting the MEMS gyroscope to constant angular 

rotation. In addition, a temptronic thermostream unit was used to subject ADIS16250 

to controlled temperature conditions from 25˚C to 85˚C. The experimental set-up and 

data-collection procedure were similar as described in chapter-2 for the ADIS16255 

gyroscope. 

Table 3-2 shows average angular velocity output of the ADIS16250 MEMS 

gyroscope from 25˚C to 85˚C at 0, 60, 120 and 240 deg/s angular rotations. The 

angular velocity measurement at 25˚C establishes the baseline for the measurement at 

higher temperatures. By subtracting the baseline valve from the measurements for 

each angular velocity exposure, temperature-dependent bias can be calculated, which 

is shown in Figure 3-14.  

   Table 3-2: Avarage Angular Velocity Output of the ADIS16250 MEMS Gyroscope 

from 25ᵒC to 85ᵒC 

Temperature 

(Deg C) 
0 Deg/s 60 Deg/s 120 Deg/s 240 Deg/s 

25 (Baseline) 0.85 60.77 120.66 240.41 

35 1.18 61.12 121.04 240.81 

45 1.49 61.46 121.38 241.16 

55 1.79 61.80 121.74 241.54 

65 2.10 62.14 122.09 241.91 

75 2.45 62.50 122.44 242.24 

85 2.80 62.79 122.75 242.55 
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Figure 3-14: Temperature-dependent Bias of ADIS16250 from 25˚C to 85˚C at 0, 60, 

120 and 240 deg/s Angular Rotations 

From Figure 3-14, it can be observed that the MEMS gyroscope showed a small 

increase in temperature-dependent bias with an increase in angular rotation. It is 

believed that this was due to an external force, such as centrifugal force, excited on 

the proof mass of MEMS gyroscope with the increase in angular rotation. By 

subtracting angular velocity measurement at 25˚C from 85˚C measurement, the 

magnitude of temperature-dependent bias value of ADIS16250 from 25˚C to 85˚C 

(ΔT = 60 ˚C) at 0, 60, 120 and 240 deg/s angular rotations can be calculated, which is 

shown in Table 3-3.  
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Table 3-3: Temperature-dependent Bias Value of ADIS16250 from 25˚C to 85˚C (ΔT 

= 60˚C) at 0, 60, 120 and 240 deg/s Angular Rotations 

Angular Rotation (Deg/s) 
Temperature Dependent Bias 

Value (Deg/s) from 25ᵒC to 85ᵒC 

0ᵒ/s Angular Rotation 1.95 

60ᵒ/s  Angular Rotation 2.02 

120ᵒ/s  Angular Rotation 2.09 

240ᵒ/s Angular Rotation 2.14 

From the Simulink model, the simulated temperature bias can be derived by 

deducting an angular rotation (i.e, 60˚/s) from results shown in Figure 3-13. The 

comparison of simulation and experimental temperature-dependent bias and its 

magnitude from 25˚C to 85˚C is show in Figure 3-15 and Table 3-4, respectively. 

 
Figure 3-15: Comparision of Simulation and Experimental Temperature-dependent 

Bias of ADIS16250 from 25˚C to 85˚C  
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Table 3-4: Comparision of Simulation and Experimental Temperature-dependent Bias 

Value of ADIS16250 from 25˚C to 85˚C  

Experimental/Simulation 
Temperature Dependent Bias 

Value (Deg/s) from 25ᵒC to 85ᵒC 

0ᵒ/s Angular Rotation 1.95 

60ᵒ/s  Angular Rotation 2.02 

120ᵒ/s  Angular Rotation 2.09 

240ᵒ/s Angular Rotation 2.14 

Simulation 1.98 

Figure 3-15 and Table 3-4 show that simulation and experimental results agree fairly 

well within the manufacturer’s recommended temperature range. The remaining small 

difference between the simulation and experimental results is likely due to 

unexamined factors, such as CTE mismatch, thermal expansion, centrifugal force etc., 

which were neglected to reduce the complexity of the simulation model. The 

simulation and experimental results confirm that Young’s modulus and damping 

coefficient are the dominating temperature-dependent factors for the temperature-

dependent bias.   

3.7.2. Examination of Model Validation beyond the Manufacturer’s 

Recommended Temperature Range  

The validity of the Simulink model outside the manufacturer’s recommended 

temperature range was also evaluated by comparing simulation results with 

previously conducted experiments at wider temperature ranges. As discussed in 

chapter-2, the ADIS16255 single axis MEMS gyroscope was subjected to wider 

temperature ranges with five thermal cycles from 25ᵒC to 85ᵒC, from 25ᵒC to 125ᵒC, 

from 25ᵒC to 150ᵒC and from 25ᵒC to 175ᵒC. The manufacturer’s recommended 

temperature range for ADIS16255 is from -40˚C to 85˚C. In addition, ADIS16255 
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gyroscope also features internal calibration that compensates any temperature-

dependent variation within -40˚C to 85˚C. Therefore, when ADIS16255 was 

subjected to five thermal cycles from 25ᵒC to 85ᵒC, the MEMS gyroscope did not 

show any significant increase in temperature-dependent bias due to its compensated 

output.  

When ADIS16255 was subjected to five thermal cycles from 25ᵒC to 125ᵒC, it was 

found that for nine individual ADIS16255 MEMS gyroscopes, the average 

temperature-dependent bias at stationary and rotary condition (60ᵒ/s angular rotation) 

from 25°C to 125°C turned out to be 3.28°/s and 3.27°/s, respectively. For reference, 

the result of one of the ADIS16255 gyroscopes for five thermal cycles from 25˚C to 

125˚C at 60˚/s angular rotation is shown Figure 3-16. At each thermal cycle from 

25˚C to 125˚C, ADIS16255 showed significant increase in temperature-dependent 

bias when the temperature went beyond 85˚C or outside the calibration range and, 

thus, ADIS16255 showed non-linear behavior of temperature-dependent bias from 

25˚C to 125˚C for all five thermal cycles.  

 
Figure 3-16: Experimental Results of ADIS16255 for Five Thermal Cycles from 25˚C 

to 125˚C at 60˚/s Angular Rotation 
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From the Simulink model, the simulated temperature-dependent bias from 25˚C to 

125˚C at 60˚/s angular rotation is shown in Figure 3-17. This simulation result shows 

that when the MEMS gyroscope is exposed to a temperature range from 25˚C to 

125˚C, the simulated temperature-dependent turned out to be is 3.23˚/s. 

Table 3-5 shows comparison of simulation and experimental temperature-dependent 

bias value of ADIS16255 from 25˚C to 125˚C. The simulation and experimental 

results agree fairly well beyond the manufacturer’s recommended temperature range 

from 25˚C to 125˚C. The simulation and experimental results confirm that Young’s 

modulus and damping coefficient are the dominating temperature-dependent factors 

for the temperature-dependent bias from 25˚C to 125˚C.  The remaining small 

difference between the simulation and experimental results is likely due to 

unexamined factors, such as CTE mismatch, thermal expansion, centrifugal force etc., 

which were neglected to reduce the complexity of the simulation. 

 
Figure 3-17: Simulated Temperature-Dependent Bias from +25˚C to +125˚C at 60˚/s 
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Table 3-5: Comparison of Simulation and Experimental Temperature-dependent Bias 

value of ADIS16255 from 25˚C to 125˚C 

Experimental/Simulation 

Temperature Dependent Bias 

Value (Deg/s) from 25ᵒC to 

125ᵒC 

Experimental Stationary Bias 3.28 

Experimental Rotary Bias 3.27 

Simulated Bias 3.23 

 

When the MEMS gyroscope was subjected to 150°C or beyond, it was observed that 

the angular velocity output of the MEMS gyroscope initially increased and then 

started to descend at peak temperature. Such behavior of the MEMS gyroscope was 

unexpected and it is believed that it was not related to change in temperature-

dependent parameters such as Young’s modulus, damping coefficient, thermal 

expansion, CTE mismatch, etc. Some unknown phenomenon took place that requires 

further research; however, it is beyond the scope of current study. Thus, the 

developed Simulink model cannot be used to simulate the increasing-decreasing 

temperature-dependent bias observed during the experiment when the MEMS 

gyroscope was subjected to 150°C or beyond. 

The validation approach indicates that the developed Simulink model fairly well 

simulates the temperature-dependent characteristic of the MEMS vibratory 

gyroscope. The simulation results show good agreement with experimental results 

where temperature-dependent bias of the MEMS gyroscope increase linearly or non-

linearly with temperatures within and beyond manufacturer’s recommended 

temperature range. The validation approach also confirms that Young’s modulus and 

damping coefficient are the dominating temperature-dependent factors for the 
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temperature-dependent bias. Thus, when the values of Young’s modulus and the 

damping coefficient at different temperatures are known, the Simulink model can be 

used to simulate the temperature-dependent characteristic of the MEMS vibratory 

gyroscope. The developed model cannot be used to simulate decreasing temperature-

dependent bias at elevated temperature, which is not due to the variation in 

temperature-dependent parameters such as Young’s modulus and damping 

coefficient. 

3.8. Conclusions 

 With the known value of mass, spring stiffness and damping coefficient in the 

drive and sense direction, the characteristic motion equations of the MEMS 

vibratory gyroscope can be easily solved by the Simulink model. 

 The Simulink model shows a good correlation with experimental results to 

simulate the temperature-dependent characteristic of the MEMS vibratory 

gyroscope. Thus, the developed model can be used to get a preliminary idea 

on the behavior of the MEMS gyroscope prior to executing experimental 

efforts.  

 Simulation results confirm that Young’s modulus and damping coefficient are 

the dominant factors affected by temperature change. It is recommended to 

design the structure of the MEMS gyroscope robust enough to have these 

factors minimally effect performance of the MEMS gyroscope. 

 The developed model cannot be used to simulate decreasing temperature-

dependent bias at elevated temperatures that is not due to the variation in 
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temperature-dependent parameters such as Young’s modulus and damping 

coefficient. 
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4. High Temperature Reliability of Solder – Literature 

Review 

Solder joints are a very critical element of electrical and electronic systems as they 

provide electrical, mechanical and thermal interconnections and pathways. Many 

applications require that solder joints be robust at high temperatures, including 

automotive, military, aerospace, and oil and gas exploration electronics, where 

temperatures can reach up to 200ᵒC. Eutectic Sn/Pb solder cannot be used for these 

high temperature applications due to its low melting temperature of 183ᵒC. Therefore, 

high lead-based solders those have high melting temperatures have been used for 

these applications. Some examples of high lead-based solders are 95Pb-5Sn, 93.5Pb-

5.0Sn-1.5Ag and 95.5Pb-2.0Sn-2.5Ag. Although high lead-based solders provide 

good ductility and fair wetting ability, high temperature industries requiring high 

temperature electronics are looking for an alternative due to health risk, toxicity, high 

cost and proposed extensions of RoHS regulation. 

Due to the implementation of RoHS regulation that bans use of lead from electrical 

and electronic components manufactured for standard temperature use after July 1st 

2006, the electronic industries have shifted from eutectic Sn/Pb solder to SnAgCu 

solders. Some of the popular SnAgCu solders are SAC105, SAC305 and SAC405 

which have melting/liquidus temperatures near 217ᵒC, higher than the melting 

temperature of eutectic Sn/Pb solder (183ᵒC). This higher melting temperature of 

SnAgCu solders presents an opportunity for them to be used for high temperature 

applications. However, further investigation is needed to determine the reliability of 

SnAgCu solders under high temperature loading conditions.             
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This chapter discusses the effects of high temperature on lead-free solders, 

summarizes the results of previous studies conducted to assess the high temperature 

reliability of SnAgCu solders and presents a possible way to improve the reliability of 

SnAgCu solder for high temperature applications.   

4.1. Effects of High Temperature on Lead-free Solder 

When a lead-free solder joint is exposed to a high temperature environment, three 

significant changes are noticeable within the solder that can influence the joint’s 

reliability. These three significant changes are interfacial intermetallic growth, 

coarsening of bulk intermetallics and void formation.   

4.1.1. Interfacial Intermetallic Growth 

During the reflow process, molten solder reacts chemically with the substrate and 

initiates the growth of the interfacial intermetallic compound (IMC) layer. The 

formation of this layer is very important for the structural integrity of the solder joint. 

However, excessive growth of this interfacial IMC layer creates reliability concerns.   

Many studies have been performed to understand the growth of interfacial IMC in 

various solders [53] [54] [55]. It is known that interfacial IMC layer growth is a 

diffusion-controlled kinetic phenomenon highly dependent on the temperature [56]. 

Interfacial IMC layers grow over time and growth accelerates at elevated temperature. 

The faster growth of interfacial IMC at high temperature can adversely impact the 

reliability of the solder joints, as it reduces the ductility of the solder joint.  Excessive 

growth of interfacial IMC layers can thus weaken the interface and promote 

interfacial failure. Thus, a thicker interfacial intermetallic poses reliability concerns.  
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Many studies confirm that individual interfacial IMC layer growth is due to 

interdiffusion kinetics as per the following equation [57] [58] [59]: 

     √    
 

Where do is the interfacial IMC thickness after reflow, D is diffusivity and t is time. 

Diffusivity is a temperature dependent process which can be expressed using an 

Arrhenius-type equation as follows: 

       ( 
 

  
) 

Where Do is the diffusivity constant, Q is the activation energy, K is Boltzmann’s 

constant, and T is temperature in Kelvin. 

In addition to increasing the thickness of interfacial IMC, high temperature exposure 

has also been shown to change in the morphology of interfacial IMC. Lee et al. [56] 

examined eutectic SnPb, Sn3.5Ag, Sn3.8Ag0.7Cu, and Sn0.7Cu solders at 125, 150, 

and 170°C for 500, 1000 and 1500 hours. It was found that the scallop-type 

morphology observed after reflow was changed to layer-type morphology after high 

temperature exposure.  

4.1.2.  Coarsening of Bulk Intermetallic 

High temperature exposure also leads to the coarsening of intermetallic particles in 

the solder bulk. Most SnAgCu solders form Ag3Sn and Cu6Sn5 IMC particles in the 

solder bulk after reflow. Figure 4-1 (a-d) shows the results of a high temperature 

exposure test in which an R2512 package was reflowed on an ENIG plated board 

using SAC305 solder. Due to the presence of gold on the solder pad, AuSn4 IMC 
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were formed along with Ag3Sn and Cu6Sn5 IMC particles in a Sn-rich matrix after 

reflow as shown in Figure 4-1 (a). During high temperature, the coarsening of all 

three IMCs can be seen within 100 hours at 185°C. The size of all the IMCs further 

increased during subsequent high temperature exposure after 1000 hours at 185°C as 

shown in Figure 4-1 (d). The AuSn4 IMC morphology also changed from an acicular 

(i.e., needle-type) structure after reflow to a laminar (i.e., plate-type) structure during 

185°C temperature exposure. Similar findings on AuSn4 IMC growth during 

isothermal aging have been reported in literature even at lower temperature. Tian et 

al. [60] investigated a ball grid array (BGA) package reflowed with SAC305 solder 

on a Au/Ni/Cu solder pad. After reflow, the presence of Ag3Sn, Cu6Sn5 and AuSn4 

IMCs were found. During isothermal aging at 150ᵒC up to 120 hours, considerable 

coarsening in AuSn4 IMC took place and its morphology changed from acicular to 

laminar. 

  
(a) (b) 
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(c) (d) 

Figure 4-1: R2512 - SAC305 Solder Joint on ENIG Board (a) After Reflow (b) After 

100 hours at 185ᵒC (c) After 400 hours at 185ᵒC (d) After 1000 hours at 185ᵒC 

SnAgCu solder with a high Ag content also produces large Ag3Sn platelets. Kim et al. 

[54] investigated SAC305, SAC357 and SAC396 where Ag content varied from 3.0% 

to 3.9% by weight. They reported that large Ag3Sn platelets appear in both SAC357 

and SAC396 regardless of the substrate materials. The presence of large Ag3Sn 

platelets found to be detrimental as cracks can easily propagate through Ag3Sn 

platelets. A shift in fracture mode was also observed from ductile to brittle fracture. It 

was also recommended that Ag content should be kept below 3.2% to avoid the 

formation of large Ag3Sn platelets. Based on this finding, for high temperature 

applications, SAC305 seems to be preferable to other higher Ag content SnAgCu 

solder.   

4.1.3. Void Formation 

In addition to interfacial intermetallic growth and coarsening of bulk intermetallic, 

high temperature exposure also leads to the formation of Kirkendall voids at the 

interface between the Cu3Sn IMC layer and Cu leads or board finishes [61] [62]. The 
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formation of such voids at the interface can be detrimental to solder joint reliability as 

voids significantly reduce the interfacial strength, promoting interfacial failure. 

Kirkendall voids form due to the unbalanced interdiffusion of tin and copper at the 

interface. Cu has higher diffusivity in Sn compared to Sn diffusivity in Cu. Thus, 

during migration, vacancies created by Cu atoms are not filled by Sn atoms. 

Eventually, these vacancies coalesce and form microvoids at the interface or within 

the Cu3Sn IMC layer [61]. In this present work, in addition to Kirkendall voids, a 

unique kind of void was found between the Cu6Sn5 IMC layer and solder bulk during 

high temperature exposure, which is discussed in detail in later chapter.   

4.2. High Temperature Reliability of Lead-free Solder 

This section compiles previous studies on thermal cycling and mechanical shock 

reliability of various solders under high temperature conditions.  

4.2.1. High Temperature Thermal Cycling Reliability Test 

The literature on high temperature thermal cycling reliability of lead-free solder is 

limited. Few studies have examined thermal cycling reliability of solder at where  

peak temperature ranges from 160ᵒC to 200ᵒC [63][64][65].   

One of the earliest attempts to evaluate high temperature thermal cycling reliability of 

lead-free solder was conducted by the National Center for Manufacturing Science 

[63]. After performing preliminary assessments on 13 solders, seven lead-free solders 

were identified for detailed analysis. A variety of components including chip resistors 

(0805 and 1206), 20 I/O leadless ceramic chip carrier (LCCC), 80 I/O ultra-thin quad 

flat pack (UTQFP) and 256 I/O ball grid array (BGA) were reflowed using these 
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seven solders on FR-4 PWB substrates containing imidazole finish. Thermal cycling 

was performed from -55ᵒC to 160ᵒC. Based on the results from chip resistors and 

LCCC, it was concluded that SAC405 solder performed as well as or better than 

Sn3.5Ag solder. 

George et al. [64] examined SAC305 and Sn3.5Ag solders under thermal cycling 

from -40ᵒC to 185ᵒC. Various packages including 256 I/O BGA, 144 I/O BGA, 100 

I/O QFP and chip resistors (1210) were assembled on polyimide board featuring 

ENIG and custom Sn-based finishes. Test results showed that no statistical significant 

difference in durability was found between SAC305 and Sn3.5Ag solders.  

More recently, Crandall [65] investigated four lead-free solders including SAC305 

and Sn3.5Ag solders. 256 I/O QFP and chip resistors (2512) were assembled on an 

ENIG finish polyimide boards. Test boards were subjected to two temperature 

profiles where the peak temperature exceeded 160°C. It was concluded that SAC305 

exhibited superior durability compared to the other three lead-free solders. 

From the above studies, it can be concluded that SAC305 and SAC405 are preferred 

candidates for high temperature thermal fatigue performance. However, SAC305 

would be a better choice than SAC405 because Kim et al. [54] showed that formation 

of large Ag3Sn platelets detrimental for solder reliability are found in SAC solders 

with Ag content greater than 3.2%. This might be a reason for better performance of 

SAC305 than Sn3.5Ag under the thermal cycling condition reported by Crandall [65]. 

Thus, SAC305 solder seems to be the best pure SAC solder for high temperature 

thermal fatigue performance. 



 

79 

 

4.2.2. High Temperature Mechanical Drop/Shock Reliability Test 

High temperature mechanical drop/shock reliability refers to the mechanical 

drop/shock reliability of solder examined after high temperature exposure. The 

majority of the studies performed to examine mechanical drop/shock reliability of 

solder under high temperature conditions are limited to temperatures below 150ᵒC 

[66][67][68][69]. The summary of previous studies on mechanical drop/shock 

reliability of solder with their findings is summarized in Table 4-1: 

Table 4-1: Previous Studies of Mechanical Drop/Shock Reliability 

Researchers 

Solder, 

Substrate, 

Finish, Package 

Temperature, 

Duration 
Failure mode Findings 

Chong et al. 

[66]  

SAC405 on OSP 

and ENIG board. 

FPBGA Package 

 

150ᵒC for 120, 

240, and 390 

hours 

Crack was 

found at the 

interface 

between IMC 

and copper 

pad. 

- For 

SAC405/OSP 

joint, the drop 

reliability 

degraded more 

than 50% after 

120 hours at 

150ᵒC, and 

severely reduced 

to less than five 

drops after 240 

and 390 hours at 

150ᵒC due to 

thicker IMC 

growth.  

  

Mattila et al. 

[67] 

CSP 

(Sn0.2Ag0.4Cu-

bumped) 

assembled on 

ENIG and OSP 

FR4 board with 

SAC387 

125ᵒC for 500 

hours 

Void assisted 

cracking of 

component 

side Cu3Sn 

layer 

- Significant 

decrease in drop 

count was 

observed after 

thermal aging 

exposure. 

- Presence of 

Kirkendall voids 

was observed 

within Cu3Sn 

layer on 

component side. 

- Drop reliability 
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was decrease by 

cracking of 

Cu3Sn layer 

through 

Kirkendall voids.   

Peng et al 

[68] 

CSP assembled 

on bare Cu with 

SAC387  

100ᵒC and 

125ᵒC up to 

1000 hours. 

150ᵒC up to 

200 hours.  

Interfacial 

fracture at the 

interface of 

Cu3Sn/Cu6Sn5 

and 

Cu6Sn5/solder 

on the package 

side. 

- Cracking 

through interface 

region was 

dominant. 

- Kirkendall voids 

were observed in 

the Cu3Sn layer 

but did not 

directly 

contribute to 

drop failures.  

 

Lee et al [69] BGA with 

electrolytic NiAu 

finish assembled 

on OSP finish 

FR4 with 

SAC305 on 

NSMD and SMD 

pad 

configuration. 

100ᵒC and 

150ᵒC for 500 

hours 

Before aging, 

for SMD 

configuration, 

majority of the 

failure 

occurred on the 

package and 

the board side 

interfacial 

IMCs. 

 

After aging, for 

SMD 

configuration, 

crack 

propagated 

between 

(Cu,Ni)6Sn5 

IMC and 

Cu3Sn IMC 

layers on the 

board side. 

- NSMD and SMD 

solder 

configurations 

show 53% and 

81% 

degradation, 

respectively in 

drop 

performance 

after aging at 

150ᵒC for 500 

hours. 

- For SMD 

configuration, 

board side IMC 

was the weakest 

interface after 

thermal aging.  

- Shift in failure 

mode was 

observed from 

package side 

interfacial IMC 

to board side 

interfacial IMC. 

 

Several conclusions are apparent from the above mechanical drop/shock reliability 

studies conducted after temperature exposure up to 150ᵒC. First and foremost; 

mechanical drop/shock load causes brittle fracture at the interfacial IMCs. A thick 
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interfacial intermetallic formed after temperature exposure poses a reliability risk as it 

can significantly reduce drop/shock reliability. A failure can occur by crack(s) 

propagating through various locations including solder/IMC1 interface, IMC1/IMC2 

interface, IMC2/solder pad interface, within IMC1, within IMC2 and mixed mode. It 

is also found that the presence of Kirkendall voids may expedite the crack 

propagation and cause early failure.  

When lead-free solder is subjected to high temperatures (temperatures above 150ᵒC), 

formation of thicker interfacial IMCs creates an even bigger concern for solder 

reliability under mechanical shock/drop loading. One of the ways to minimize the 

degradation of lead-free solder mechanical drop/shock reliability after temperature 

exposure is by suppressing the growth of interfacial IMCs. 

The mechanical drop/shock reliability performance of SnAgCu solders is inferior to 

the conventional Sn-Pb eutectic solder. This is due to the fact that SnAgCu solders 

have a higher modulus and a longer stress relaxation time compared to conventional 

Sn-Pb eutectic solder. Though conventional Sn-Pb eutectic solders exhibit superior 

mechanical drop/shock reliability, it cannot be used for high temperature applications 

due to its lower melting temperature. There is however a lack of documentation of 

high temperature mechanical shock reliability of lead-free solders, especially above 

170ᵒC. 

As previously discussed in section 4.2.1, SAC305 solder exhibits superior high 

temperature thermal cycling reliability performance under max temperatures of 185ᵒC 

and 200ᵒC. However, mechanical drop/shock resistance of SnCuAg solders is poor, 

especially SAC305. This is a big concern for high temperature applications where 
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mechanical drop/shock reliability performance is required. Thus, there is a need for 

improving the mechanical drop/shock reliability performance of SAC305.  

4.3.  A Technique to Improve Drop/Shock Reliability of SnAgCu 

Solders 

Recently, many researchers have investigated a unique technique to improve the 

drop/shock reliability of SnAgCu solders. This technique features tailoring the solder 

interconnect properties by alloying with small amounts of additional elements. A 

wide variety of alloying elements doped in SnAgCu solders have been investigated 

including Mn, Ce, Ti, Y, Ge, Bi, Zn, In, Ni, Co etc [70][71][72].    

One comprehensive investigations was performed by Liu and Lee [70] [71] who 

studied effects of various dopants to examine improvement in drop performance. 

These dopants include Ge, Ni, Mn, Ce, Bi, Y and Ti alloyed alone or in combination 

to SAC105, a low Ag SnAgCu solder. For comparison, four commercial solders were 

also examined including SAC305, SAC387, SAC105 and Sn/Pb eutectic solders. 

BGA packages were assembled on electroplated Ni/Au solder pad using commercial 

and modified low Ag solders. The number of drops to failure for each solder is shown 

in Figure 4-2. It can be seen that drop reliability improvement was observed for Mn, 

Ce, Bi, Y and Ti dopants where Mn and Ce dopants showed higher improvement and 

Mn outperform compared to other dopants. In addition to the dopant chemistry, 

concentration also plays major role. There seems to be an optimum concentration 

amount for the dopants to get the best drop performance as indicated with a dotted 

line for Mn, Ce and Y dopants shown in Figure 4-2. For Mn, the drop reliability 

improved with increasing concentration up to 0.13 wt% of manganese. Adding Mn 
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concentration beyond 0.13 wt% decreased the drop performance. Similar phenomena 

were also evident for Ce and Y dopants. Looking at the drop performance of 

commercial solders, high Ag solder including SAC305 and SAC387 performed the 

poorest, and SAC105 performance was better than SAC305 and SAC387 but much 

lower than Sn/Pb eutectic solders.          

 
Figure 4-2: Drop Test Results of As-reflowed Solders [71] [70] 

Many important conclusions can be made from the results published by Liu and Lee 

[71] [70]. Clearly, SAC 105 solder has shown better drop performance when alloyed 

with Mn and Ce dopants. It was also found that an optimal concentration exists for 

these dopants to achieve superior drop performance. SAC305 solder exhibits poorer 

drop performance compared to SAC105 solder. 

Next section shows the detailed information on the advantages of Mn and Ce dopants 

in SnAgCu solders.   
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4.4. Advantages of Mn dopant in SnAgCu Solder 

Many researchers have investigated the effects of the addition of a small amount of 

Mn in various lead-free solders. Effects of Mn dopant in lead-free solders have been 

summarized for five categories including drop/shock reliability, interfacial IMC 

growth, melting behavior, undercooling and mechanical properties.      

4.4.1. Drop/Shock Reliability Improvement 

Liu et al. [73] [74] examined 0.05 wt% Mn doped in SAC105 under drop test 

conditions. Drop test was performed on as-reflowed and various preconditioned test 

boards. Compared to SAC105, SAC105+0.05%Mn exhibited drop performance 

improvement of  20% for as-reflowed, 50% for thermally aged 100 hours at 150°C, 

103% for thermally aged 250 hours at 150°C, and 48% for pre-exposed to 250 

thermal cycles from -40°C to 125°C. 

Liu and Lee [71] also reported superior drop performance by adding 0.13% Mn in 

low Ag SnAgCu solder. Failure analysis of as-reflowed Sn1.1Ag0.64Cu0.13Mn 

solder interconnects after drop test revealed the shift in fracture pattern from 

interfacial failure to increasing mixed-type failure mode. It was also suggested that a 

shift in failure mode indicates stronger bond strength of the interface.   

More interestingly, Liu and Lee [71] [70] found that when 0.085 wt%, 0.13 wt%, 0.16 

wt% and 0.25 wt% concentrations of Mn doped in low Ag SAC solder was thermally 

aged at 150ᵒC for four weeks, higher drop counts were observed for thermally aged 

compared to the as-reflowed condition for all Mn doped solders. It was also suggested 
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that drop reliability improvement could be attributed to softening of solder material 

during thermal aging. 

4.4.2. Interfacial IMC Growth Reduction and its Possible 

Mechanism 

Various studies confirm that trace amount of Mn can help to reduce the growth of 

interfacial IMCs. 

Anderson et al [75] investigated Sn3.7Ag0.6Cu0.3Mn solder on bare Cu under 

isothermal aging at 150ᵒC up to 1000 hours. They found that Mn was the most 

effective dopant to suppress the growth of both Cu3Sn and Cu6Sn5 intermetallic layers 

during isothermal aging. In addition, Mn was also able to suppress void formation 

and coalescence at the interface between Cu3Sn and Cu substrate during isothermal 

aging. Based on the atomic radius and electronegativity, a Darken-Gurry plot was 

developed to find substitution capability of Mn for Cu atoms. Due to the presence of a 

higher concentration of Mn within Cu3Sn phase and Cu3Sn/ Cu6Sn5 interface, it was 

suggested that Mn tends to substitute Cu into interfacial IMCs. This substitution 

produces increased lattice-strain in the intermetallic layers and reduces interdiffusion 

of Sn and Cu to suppress the growth of Cu3Sn and Cu6Sn5 intermetallic layers and 

also void formation and coalescence at the interface between Cu3Sn and Cu substrate.  

Liu et al. [73] [74] also found reduction in the growth rate of board side and 

component side interfacial IMC thickness of SAC105+0.05%Mn solder under 

isothermal aging at 150ᵒC up to 1000 hours. After selectively etching interfacial IMC, 

it was also found that interfacial IMC particles for doped Mn solder thickened more 
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slowly than SAC105 solder during 150ᵒC isothermal aging. It was suggested that 

reduction in the growth rate of interfacial IMC could be due to inclusion of Mn in the 

interfacial IMC layer.   

Liu and Lee [71] reported that they observed a small amount of manganese-

containing particles after reflow near the IMC layer on Sn1.1Ag0.64Cu0.13Mn solder 

joint. As the manganese concentration increased from 0.13 wt% to 0.25 wt%, they 

also reported an accumulation of Mn-Sn intermetallic particles near IMC layer. With 

higher concentration of Mn dopant, Sn1.1Ag0.45Cu0.25Mn showed presence of 

MnSn2 intermetallic particles in the solder near the board side interfacial intermetallic 

layer. The reason for Mn atoms migration and accumulation near the interfacial IMC 

layer in the form of MnSn2 particles was not given.  

Ghosh et al. [76] examined Sn3.64Ag0.7Cu+0.61Mn solder under isothermal aging at 

100ᵒC up to 200 hours. They reported that addition of 0.61%Mn exhibited sluggish 

growth of Cu6Sn5 during isothermal aging.    

More recently, Crandall [65] examined Sn2.6%Ag0.8%Cu solder, doped with 

0.05%Mn under high temperature isothermal aging at 185ᵒC and 200ᵒC for 1000 

hours and 500 hours respectively. He found that the growth rate of board side 

interfacial IMC was lowest in Mn doped solder compared to SAC305.   

4.4.3. Effects on Melting Behavior 

Liu and Lee [71] [70] found that addition of a small amount of Mn has a negligible 

effect on the melting behavior of SAC105. Though it was demonstrated for low Ag 

SnAgCu solder, a similar response is expected for addition of a small amount of Mn 
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on the melting behavior of SAC305. This makes Mn dopant more attractive for high 

temperature applications.  

4.4.4. Effects on Undercooling 

Lin et al. [77] studied SAC105, SAC105+0.15%Mn and SAC105+0.50%Mn solders. 

They reported that addition of Mn dopant drastically reduces undercooling. The 

reported undercooling for SAC105+0.15%Mn and SAC105+0.50%Mn solders were 

9.5ᵒC and 6.8ᵒC respectively; whereas undercooling for SAC105 was 24.0ᵒC.  

Similar observation was also found by other researchers. Kim et al. [78] examined 

SAC305 and SAC305+0.10%Mn solder. They also found that small addition of Mn 

in SAC305 remarkably suppresses the undercooling.  

Boesenberg [79] conducted a detailed study to examine the undercooling effect of Mn 

dopant in SnAgCu solder. He examined 0%, 0.01%, 0.05%, 0.10%, 0.15%, 0.20% 

and 0.25% manganese alloyed in Sn3.5Ag0.95Cu solder. He found that the addition 

of a small amount of Mn, even 0.01% Mn, significantly reduced undercooling from 

12ᵒC to 4ᵒC and remained near 4ᵒC up to 0.25% concentration of Mn. However, it 

was also found that 0.01%, 0.05% and 0.10% Mn showed presence of Ag3Sn blades 

or platelets IMCs. Thus, an optimal concentration of Mn exists that suppress the 

formation of Ag3Sn platelets in the solders they examined. Addition of Mn greater 

than 0.15% in Sn3.5Ag0.95Cu promoted heterogeneous nucleation and limited 

Ag3Sn blade formation. 
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4.4.5. Effects on Mechanical Property  

Liu and Lee [71] [70] found no change in hardness of bulk solder due to the addition 

of Mn dopant. Liu et al. [73] [74] also reported that addition of 0.05%Mn in SAC105 

did not change tensile strength, yield strength and Young's modulus. However, % 

elongation or ductility was found to be higher for SAC105+0.05%Mn than SAC105.   

In contrast, Kim [78] reported that ultimate tensile strength was slightly increased by 

doping 0.10 wt% of Mn in SAC305. In addition, they also found significant 

improvement in ductility for SAC305+0.1%Mn compare to SAC305. It was also 

reported that Mn also caused fine precipitates within primary β-tin dendrites which 

was believed to be the reason for higher strength and a significant improvement in 

ductility.  

Lin et al. [77] [80] studied SAC105, SAC105+0.15%Mn and SAC105+0.50%Mn. 

With the addition of Mn dopant, they reported a reduction in ultimate tensile strength 

(UTS); however, ductility was improved. In addition, nanoindentation results 

indicated that SAC105+0.15%Mn and SAC105+0.50%Mn solders exhibited lower 

elastic modules compare to SAC105. It was also indicated that a reduction in elastic 

modules of solder might help to improve drop life time. 

More recently, Mukherjee et al.[81] [82] investigated time-dependent creep response 

of SAC105 and SAC105+0.05Mn. They found that that the addition of Mn increases 

the creep resistance of SAC105 solder by one to two orders of magnitude at the tested 

stress levels of 2–20 MPa. 
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It is clear from the above summary that addition of a small amount of Mn in lead-free 

solder has positive results on improving the properties of lead-free solder. Only 

limited studies have been performed to assess reliability improvement on Mn doped 

solders. These limited reliability studies have primarily investigated SAC105, a low 

Ag SnAgCu solder. However, high silver content solders, such as SAC305 and 

SAC405, are typically used for high temperature application; it is thus necessary to 

study effects of manganese in high silver content solder. 

4.5. Advantage of Ce dopant in SnAgCu Solder 

It has been observed that a minute amount of Ce addition can greatly enhance the 

properties of an alloy. Effects of Ce dopant in lead-free solders have been 

summarized in five categories including drop/shock reliability, interfacial IMC 

growth, melting behavior, microstructure and mechanical properties.      

4.5.1. Drop/Shock Reliability Improvement 

Liu et al. [73] [74] examined 0.02 wt% Ce doped in SAC105 under drop test 

condition. Drop test was performed on as-reflowed and various preconditioned test 

boards. Compare to SAC105, SAC105+0.02%Ce exhibited drop performance 

improvement of  21% for as-reflowed condition, 223% for thermally aged 100 hours 

at 150°C, 233% for thermally aged 250 hours at 150°C, and 67% for pre-exposed to 

250 thermal cycles from -40°C to 125°C. 

Liang et al. [83] investigated Sn2.5AgO.5Cu (SAC2505) alloyed with 0%, 0.03%, 

0.05% and 0.1% concentrations of Ce. Drop testing was performed on as-reflowed 

and thermally aged test boards at 125ᵒC for 300 hours. For the drop test conducted on 
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as-reflowed boards, SAC2505+0.03%Ce showed the best drop test performance 

among all solder. However, drop testing performed after thermal aging at 125ᵒC for 

300 hours, SAC2505+0.10%Ce outperformed other solders. In addition, 

SAC2505+0.10%Ce showed no observable degradation in drop performance after 

thermal aging compare to as-reflowed condition. 0.03% and 0.05% Ce doped in 

SAC2505 also showed better drop performance than SAC2505 after thermal aging.   

More interestingly, Liu and Lee [71] [70] found that when 0.037 wt% Ce doped in 

SAC105 solder was thermally aged at 150ᵒC for four weeks, higher drop counts were 

observed for thermally aged compared to as-reflowed condition for Ce doped solder. 

It was also suggested that drop reliability improvement could be attributed due to 

softening of solder material during thermal aging. 

4.5.2. Interfacial IMC Growth Reduction and its Possible 

Mechanism 

Wu et al. [84] examined effect of 0.25% and 0.50% concentrations of combined Ce 

and La dopants in Sn3.5Ag and Sn0.7Cu solders. Sn3.5Ag and Sn0.7Cu solders were 

also analyzed for comparison. It was found that the addition of both 0.25% and 0.50% 

concentrations dopants suppressed the growth of Cu6Sn5 and Cu3Sn interfacial IMCs 

in both Sn3.5Ag and Sn0.7Cu solders during isothermal aging at 170ᵒC up to 1000 

hours. Addition of 0.50% concentration of Ce and La resulted in the lowest interfacial 

IMC thickness. It was suggested that the reason for interfacial IMC reduction during 

thermal aging was attributed due to fact that Ce and La reacts with Sn near the 

interface between solder and Cu6Sn5 IMC and form Sn-(Ce,La) compound. Formation 
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of Sn-(Ce,La) compound lowers the activity of Sn at the interface and thus reduces 

the further growth of Cu6Sn5 and Cu3Sn IMCs during isothermal aging. This study 

didn’t show the presence of Sn-(Ce,La) compound at the solder/IMC interface. 

However, It was also mentioned that the size of Sn-(Ce,La) compound would be very 

small and accumulation can only be observed under a slow cooling solidification.    

Law et al. [85] investigated 0.05%, 0.1% and 0.25% concentrations of combined Ce 

and La dopants in SAC357 on copper coupons. Thermal aging was performed at 

170ᵒC for 100, 200, 500 and 1000 hours. It was found that SAC357+X% (Ce and La) 

showed reduced growth of Cu6Sn5 and Cu3Sn interfacial IMCs during isothermal 

aging. It was suggested that inhibition of interfacial IMCs growth in Ce and La doped 

solders could be due to lower activity of Sn at the interface due to Sn-(Ce,La) 

compound formation.  

Liu et al. [73] [74] found a reduction in the growth rate of board side interfacial IMC 

of SAC105+0.02%Ce solder under isothermal aging at 150ᵒC up to 1000 hours. After 

selectively etching interfacial IMC layer, it was also found that interfacial IMC 

particles for doped Ce solder thickened slower than SAC105 solder during 150ᵒC 

isothermal aging. It was speculated that a reduction in the growth rate of interfacial 

IMC could be due to inclusion of Ce in the interfacial IMC layer.  

4.5.3. Effects on Melting Behavior 

Chen et al. [86] examined melting behavior of various concentrations of Ce including 

0%, 0.025%, 0.05%, 0.1%, 0.25%, 0.5% and 1.0% in SAC387 solder. With the 

addition of Ce doping in SAC387, liquids temperature remains within 220ᵒC to 
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225ᵒC. Thus no significant change in meting temperature was observed with addition 

of Ce dopant in SAC387 solder.   

Wu et at. [84] also found a negligible effect from the addition of Ce and La on the 

melting temperature of Sn3.5Ag solder. The observed melting temperature of 

Sn3.5Ag+0.25% (Ce,La) and Sn3.5Ag+0.50% (Ce,La) were 220.9ᵒC and 220.8ᵒC 

respectively, as compared  with 221.4ᵒC for Sn3.5Ag solder.  

Liu and Lee [71] [70] found that addition of small amount of Ce (0.037 wt%) has a 

negligible effect on the melting behavior of SAC105 solder.  

Above studies show negligible effect of Ce dopant addition in various lead-free 

solders. This makes Ce dopant more attractive for alloying with solders used for high 

temperature applications. 

4.5.4. Effects on Microstructure 

Chen et al. [87] conducted a detailed study to examine the effect of Ce on the 

microstructure of SnAgCu solder. They examined 0%, 0.025%, 0.05%, 0.1%, 0.25%, 

0.5% and 1.0% concentrations of Ce in SAC387 solder. With the addition of Ce, β-tin 

dendrite refinement was observed. Further analysis showed that Ce atoms aggregated 

on the boundaries of primary β-tin dendrites and formed a web-like structure 

surrounding β-tin dendrites. Since the atomic radius of Ce (0.183 nm) is around 33% 

larger than Sn (0.141 nm), Ce is less likely to play a role in a solid solution 

strengthening by replacing Sn atoms. Instead, Ce atoms accumulate at the high energy 

region such as the boundaries of β-tin dendrites. Thus, aggregation of Ce on the 
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boundaries of primary β-tin dendrite was observed which led to refinement of primary 

β-tin dendrite during solidification.    

Wu et at. [84][88][89][90] investigated effects of Ce and La on various lead-free 

solders including SnZn, SnAg and SnCu. They found that the addition of Ce and La 

in lead-free solders refines β-tin dendrite and decreases the size of Ag3Sn and Cu6Sn5 

IMCs in solder bulk. Such behavior of Ce and La is due that fact that Ce and La are 

active (surface-active) elements and they accumulate at the interface of various 

phases during solidification. The absorption of these surface active elements 

decreases the surface energy which reduces the further growth of the interface of 

phase during solidification which leads to refinement of the microstructure. In 

addition, Ce has higher affinity for Sn than for Cu and Ag in the solder matrix. Thus, 

effect of decrease in the size of β-tin dendrite is more apparent with addition of Ce 

and La. 

Law et al. [85] investigated SAC357 doped with 0.05%, 0.1% and 0.25% 

concentrations of combined Ce and La dopants. They found that the addition of Ce 

and La reduced β-tin dendrite size. The size of dendrites reduced from 10 to 20 

microns for SAC357 to 5 to 10 microns for SAC357+0.25% (Ce and La). An 

additional phase containing Ce and La was not detected due to the small amount of 

dopant and due to its fine dispersion. In addition, they also found that 0.1% 

concentration for La and Ce resulted in the best wetting behavior. An excessive 

amount of Ce and La concentration (0.25%) deteriorated the benefit of these dopants 

on wetting behavior. 
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4.5.5. Effects on Mechanical Property  

As the microstructure of solder is refined by the addition of Ce dopant, it is foreseen 

that mechanical properties will also improve.  

Chen et al. [87] examined 0%, 0.025%, 0.05%, 0.1%, 0.25%, 0.5% and 1.0% 

concentrations of Ce in SAC387 solder. They found that 0.1%Ce in SAC387 resulted 

in the highest creep-rupture life. Adding concentration of Ce more than 0.1% 

deteriorated creep performance and SAC387+1.0%Ce resulted in the lowest creep-

rupture life. The ultimate tensile strength was increased slightly. Ductility was also 

increased for Ce concentration from 0.025% to 0.25%. However, adding higher 

concentration above 0.25% resulted in a significantly lower ductility. Compared to 

SAC387, addition of 0.025%, 0.05%, 0.1%, 0.25%, 0.5% and 1.0% concentrations of 

Ce resulted in an improvement in elastic modulus of 1.2%, 1.8%, 8.9%, 36.6%, 

45.8%, and 55.7%, respectively.    

Wu et at. [88][89][90] reported that addition of 0.25% and 0.50% Ce and La in SnCu, 

SnAg and SnZn solders resulted in an increase in UTS of about 23%, 15% and 18%, 

respectively. It was also reported that the addition of 0.25% and 0.50% Ce and La to 

various solders also resulted in a reduction in the elongation or ductility. Reduction in 

elongation or ductility could be due to the formation of hard Ce or La bearing 

particles. In addition, significant improvement in creep performance was observed 

with addition of Ce and La dopants.  

Liu and Lee [71] [70] found no change in hardness of bulk solder due to the addition 

of Ce dopant.  
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It is clear from the above summary that addition of small amount of Ce in lead-free 

solder improves the properties of lead-free solder. However, only limited studies have 

been conducted to assess reliability improvement on Ce doped solders. These limited 

reliability studies have primarily investigated SAC105, a low Ag SnAgCu solder. 

However, high silver content solders, such as SAC305 and SAC405, are typically 

used for high temperature application; it is thus necessary to study effects of Ce in 

high silver content solder. 

4.6. Research Gap 

The literature cited above suggests that small amounts of Mn and Ce added to various 

lead-free solders offer significant improvement in solder properties, thus resulting in 

substantial improvement in drop reliability. However, there is a lack of a systematic 

evaluation of Mn and Ce dopant in SAC305 solder. Since SAC305 solder has shown 

superior high temperature thermal cycling reliability, Mn and Ce are the potential 

dopants which can be alloyed in SAC305 solder to improve its drop/shock 

performance without affecting melting temperature of SAC305 solder. If Mn and Ce 

dopants also show drop/shock performance improvement in SAC305 solder, a 

suitable lead-free solder alloy can be available for high temperature applications that 

exhibits both high temperature thermal fatigue and mechanical drop/shock reliability 

to replace currently used high lead based solders for applications with operation 

temperature up to 200°C. 
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5. Experimental Selections  

This chapter describes various experimental selections decision made for this 

research. After careful literature search of potential dopants, Mn and Ce dopants were 

selected to examine in this study. The detail information on solder selection, 

component selection, printed circuit board (PCB) design and fabrication, PCB reflow 

assembly, test board inspection and printed wiring assembly (PWA) are discussed in 

following sections.  

5.1. Solder Selection 

Many SnAgCu based commercial solders are available in the market. Some of the 

commonly used SnAgCu based solders include SAC105 (98.5%Sn1%Ag0.5%Cu), 

SAC205 (97.5%Sn2%Ag0.5%Cu), SAC305 (96.5%Sn3%Ag%0.5Cu), SAC405 

(95.5%Sn4%Ag0.5%Cu), Sn3.5Ag (96.5%Sn3.5%Ag), Sn0.7Cu (99.3%Sn0.7%Cu) 

etc. SnAgCu containing high levels of Ag (viz. SAC305 and SAC405) are known to 

exhibit inferior resistance to mechanical loads like shock/drop and vibration. Thus, 

SAC105 solder, that contains only 1% of Ag, is recommended for better mechanical 

fatigue resistance. However, reduction in Ag content also reduces creep resistance of 

solder which compromises its thermal fatigue reliability as SAC405 solder exhibits 

far better thermal fatigue reliability than SAC105 solder. Because of these two 

extremes, SAC305 solder that contains 3% Ag is considered to be an optimum and 

thus became industry standard in applications where both thermal and mechanical 

fatigue resistance are necessary. For this reason SAC305 solder was selected as a 

baseline solder.  
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Though SAC305 solder is an optimum choice for combined thermal fatigue and 

mechanical shock/drop loading environments, the thermal fatigue resistance of 

SAC305 is better than its resistance to mechanical loads, which limit its performance 

in harsh environment applications. Thus, the goal of this research is to find a 

combination of dopant and its concentration which result in better performance than 

SAC305 in combined high temperature thermal fatigue and mechanical shock 

loading. Based on positive results observed in literature where Mn and Ce dopants 

reduce interfacial intermetallic growth during thermal aging and improve mechanical 

drop reliability when added to SAC105 solder, two different concentrations of these 

dopants are selected for comparison in this study.  

Commercially available SAC305 that contains 96.5% Sn, 3.0% Ag and 0.5% Cu (by 

weight) was manufactured for this study by Indium Corporation. This paste used no 

clean flux, type-3 (mesh size -325/+500 lines-per-inch, average size = 36 micron) 

solder paste particle size and 89% metal load. Four additional solder pastes were also 

used each containing one of two different concentrations of either Mn or Ce dopants 

in SAC305. For manganese doped SAC305 solders, the two different concentrations 

of Mn dopant were 0.05% and 0.17% by weight. While for cerium doped SAC305 

solders, the two different concentrations of Ce dopant were 0.07% and 0.13% by 

weight. These four custom pastes also used no clean flux, type-3 (mesh size -

325/+500 lines-per-inch, average size = 36 micron) solder paste particle size and 89% 

metal load which was same as SAC305 baseline solder. 

In summary, following five solders were considered for comparison in this study: 

(1) SAC305 
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(2) SAC305+0.05%Mn 

(3) SAC305+0.17%Mn 

(4) SAC305+0.07%Ce 

(5) SAC305+0.13%Ce 

In order to simplify further discussion, the selected solders in this study will be 

labelled as shown below: 

(1) SAC305 (SAC305) 

(2) Low Mn (SAC305+0.05%Mn) 

(3) High Mn (SAC305+0.17%Mn) 

(4) Low Ce (SAC305+0.07%Ce) 

(5) High Ce (SAC305+0.13%Ce) 

5.2. Component Selection 

It is known that the amount of time a solder joint takes to fail depends on package 

type (i.e. leaded or lead-less), package size (i.e. big or small), package-lead material, 

and package-lead finish. Based on package-lead material and package-lead finish, the 

interface between solder and package results in different kinds of interfacial 

intermetallic layers after reflow that have different effects on the time-to-failure for a 

solder joint. Thus, in order to have comprehensive understanding of the correlation 

among type of interfacial IMCs at package/solder interface, package size, solder 

material and their effects on solder reliability, five package types were selected in this 

study. 
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These five packages were a quad-flat pack – 256 (QFP256), two quad-flat no-lead 

package types (viz. 44 pad (QFN44), and 32 pad (QFN32)), and two surface mount 

resistors (viz.2512 (R2512) and 2010 (R2010)). All five packages were dummy 

components used for solder evaluation purposes. QFP256, QFN44 and QFN32 

feature daisy chained dummy die inside the package to simulate a functional die in a 

real package and are used in the electrical and electronic industries in order to 

measure resistance continuity during solder testing. The QFP-256, QFN44 and 

QFN32 leads were also aligned with copper traces on the board to form continuous 

circuit path.  

The QFP256 package has gullwing leads made of copper and plated with matte tin 

finish. During reflow, the matte tin finish dissolves in the solder which then forms a 

tin-copper interfacial intermetallic between the copper base metal of the gullwing 

lead and bulk solder. QFN44 and QFN32 packages do not have protruding leads but 

feature a big pad at the center underneath the package and many small terminal pads 

on the periphery of the central pad made of copper and plated with matte tin finish. 

Similar to QFP256, during reflow, QFN44 and QFN32 form tin-copper interfacial 

intermetallic layers between the copper pads and bulk solder. R2512 and R2010 have 

nickel terminals plated in matte tin. During reflow, both resistors form nickel-tin 

interfacial intermetallic layers between the terminal pads and the bulk solder, which is 

different from QFP256, QFN44 and QFN32. More details on these packages are 

summarized in Table 5-1. 

Depending on package type, package size, package-lead material and package-lead 

finish, packages were expected fail at different time intervals. QFP256 features 
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gullwing leads which minimize stress and strain on the solder joint due to its 

compliance behavior. QFN44, QFN32, R2512 and R2010 lack any protruded lead and 

thus cause the solder joint to experience more stress and strain compared to leaded 

package like QFP256, which results in early solder joint failure. More specifically, 

QFN44 and QFN32 packages were bigger than R2512 and R2010 packages and 

featured smaller solder volume per solder joint. It is thus expected that QFN44 and 

QFN32 packages will fail more rapidly than R2512 and R2010 packages.   

Table 5-1: Details on various package types selected in this study 

Package Type QFP256 QFN44 QFN32 R2512 R2010 

Package  

Image 

 
 

  
 

Length  

(mm) 
28.00 7.00 5.00 6.35 5.08 

Width 

(mm) 
28.00 7.00 5.00 3.20 2.54 

Thickness  

(mm) 
3.93 1.00 1.00 0.65 0.56 

# of pins 256 44 32 2 2 

Pitch  

(mm) 
0.4 0.5 0.5 - - 

Lead/pad/terminal 

material 
Copper Copper Copper Nickel Nickel 

Lead/pad/terminal 

plating 
Matte tin Matte tin Matte tin Matte tin Matte tin 
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Supplier Practical components Topline Topline 
Practical 

components 

Practical 

components 

Supplier part no. 
A-QFP256-28mm-

.4mm-2.6-DC-Sn 

QFN44M.5-T-

DE-D 

QFN32T.5-

T-DE-D 

2512SMR-PL-

4K-Sn-0 

2010SMR-

PL-4K-Sn-0 

5.3. Printed Circuit Board (PCB) Design and Fabrication 

A schematic and layout for the printed circuit board (PCB) was created using KiCAD 

open-source software. Due to space constraints, fewer large QFP256 packages were 

used on the test board than for the smaller QFNs and resistors. The PCB layout 

consists of two QFP256, eight R2512, eight R2010, four QFN44 and four QFN32 as 

shown in Figure 5-1. Each package was connected with a separate daisy chain 

configuration to a common ground forming 26 individual daisy chained connections 

on each test board. All packages were placed on the primary side of the PCB only. 

The secondary side of the board features via and copper traces for the circuit 

connection. For QFP256, QFN44 and QFN32 packages, test pads were placed near 

each side of the package to identify the location for a solder joint failure after testing. 

The PCB layout was designed with redundant common grounds such that any 

package can be removed from the PCB without affecting circuit continuity of other 

packages on the board. 14 non-plated mounting holes with diameter of 0.125" were 

added on the border of the PCB board. These mounting holes facilitate assembling 

two 0.25" thick aluminum frames attached together on top and bottom side of the 

PCB with 14 nut-bolt assemblies. These aluminum frames provide additional rigidity 

to the PCB to increase its reliability under harsh environment testing which was also 

representative of field condition usages of electronic assemblies in harsh environment 

applications.  An additional 28 non-plated drilled holes were placed near the 
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monitoring wire region to facilitate the attachment of monitoring wires with a strain 

relieving mounting system.  

 
Figure 5-1: Printed Circuit Board Layout 

The goal of this study was to examine solder performance under harsh environments 

including high temperature aging and mechanical shock. Since high temperature is a 

concern for PCB material, it was thus necessary to fabricate the PCB with a polymer 

featuring high resistance to thermal degradation under high temperature. Polyimide 

was selected as the PCB fabrication material due to its higher glass transition 

temperature (Tg) of 260ᵒC compared to conventional FR-4. PCB layout files in 

Gerber format were sent to the PCB manufacturer for fabrication.  The PCB was 

constructed from two layers of polyimide board and then plated with electroless 

nickel immersion gold (ENIG) finish. ENIG was selected as the solder pad finish due 

to its success in literature as a diffusion barrier to minimize the growth of board side 

interfacial IMC during thermal aging and thermal cycling. The schematic of 
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polyimide PCB layers is shown in Figure 5-2. The primary and secondary side of 

fabricated PCB is shown in Figure 5-3 and Figure 5-4, respectively.  

 
Figure 5-2: Schematic of PCB layers 

 
Figure 5-3: Primary side of PCB 

 
Figure 5-4: Secondary side of PCB 
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5.4. Printed Circuit Board (PCB) Reflow Assembly: 

PCB reflow assembly was carried out by Schlumberger Technology Center in Sugar 

Land, TX, using stencil printing to apply the solder paste and a pick and place 

machine for accurate package location. A CAD simulation of the PCB assembly, 

shown in Figure 5-5, was developed to verify the placement of all packages on the 

board.     

 
Figure 5-5: A CAD Simulation on PCB Assembly 

There were 110 PCB boards which were assembled with five solder pastes that 

include SAC305, Low Mn, High Mn, Low Ce and High Ce. 22 boards were 

assembled with each solder paste in a convection reflow oven. The non-commercial 

solder pastes that were doped with Mn and Ce trace elements do not have an optimum 

reflow profile. However, the amount of Mn and Ce trace element in SAC305 is low 

enough that it has negligible effect on the melting temperature range of SAC305 base 

material (217ᵒC to 220ᵒC). Literature [91] confirms that when SAC105 (low Ag 

SnAgCu solder) was doped with various concentrations of Mn and Ce (0.10%Mn, 

0.13%Mn, 0.16%Mn, 0.02%Ce and 0.037%Ce), the melting behavior of modified 
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SAC105 solders in comparison to SAC105 were unaffected. All five solder pastes 

were reflowed with a peak temperature between 245ᵒC and 250ᵒC, based on a general 

profile provided by Indium Corporation as shown in Figure 5-6 for the reflow of 

lead–free SnAgCu solder paste with melting point approximately around 217ᵒC. The 

assembled PCB after reflow is shown in Figure 5-7. An enlarged view of each 

package type is shown with scale in Figure 5-8.   

 
Figure 5-6: A General Guideline on Reflow Profile for SnAgCu Solder by Indium 

Corporation  

 
Figure 5-7: Assembled PCB after Reflow 
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QFP256 QFN44 

 
 

QFN32 R2512 R2010 

  
 

Figure 5-8: An Enlarge View of Each Package Types after Reflow Assembly 

5.5. Test Board Inspection after Reflow Assembly 

All 110 test boards were first visually inspected after reflow assembly for any missing 

packages or misaligned packages. No such abnormalities were found. Test boards 

were then inspected for continuity by probing with a multimeter. During this exercise, 

it was found that QFP256, QFN44, QFN32. R2512 and R2010 packages resulted in 

10.0 Ω, 1.0 Ω, 0.8 Ω, 0.35 Ω, and 0.33 Ω circuit resistance respectively after reflow 

assembly. All test boards were also inspected using X-ray for the presence of voids. A 

sample X-ray image for all package types is shown in Figure 5-9. It was found that 

the void percentage for all packages was less than 25%, meeting IPC-A-610D voiding 

acceptability criteria [92]. 
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QFP256 QFN44 

 

 

QFN32 R2512 R2010 

 

  

Figure 5-9: X-ray Image of Each Package Types 

5.6.  Printed Wiring Assembly 

In order to complete last stage of the board assembly process, test boards were 

mounted in-between top and bottom aluminum frames with14 nuts and bolts, as 

shown in Figure 5-10 and Figure 5-11. High temperature Teflon coated wires were 

used for in-situ resistance monitoring during test. A strain relieving mounting method 

was used to attach monitoring wires to the test boards to minimize any additional 

stress and strain during testing. Eutectic SnAg solder (MP = 221ᵒC) in wire form was 

used to attach monitoring wires to ENIG plated plated-through-holes (PTH) on the 

test boards. The other end of the monitoring wires was connected to D-Sub connector 

which was later connected to a data collection system for in-situ monitoring.  Glass 
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tape was used to secure the monitoring wires which also provided wear and tear 

protection during testing. Finally, the monitoring wire region was potted with an 

epoxy on primary (top) and secondary (bottom) side to provide additional rigidity to 

monitoring wires during testing. 

 
Figure 5-10: Primary-side of Assembled Test Board 
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Figure 5-11: Secondary-side of Assembled Test Board 
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6. Design of Experiment, Test Equipment and Monitoring 

Systems 

The design of experiments matrix, test equipment, and monitoring system were 

designed for the investigation and assessment of the reliability of lead-free solders 

exposed to high temperature thermal stress (viz. isothermal aging) and mechanical 

stress (viz. mechanical shock) with the goal of determining the most reliable solder in 

these environments. SAC305 solder is known to perform well in thermal fatigue but 

suffers under mechanical loads, and thus the goal here was to find a combination of a 

dopant and its concentration that when added to SAC305 will result in better 

performance under both high temperature mechanical stress loading. Two tests were 

thus developed for this purpose. The first test was a high temperature isothermal 

aging test and the second test was reliability test utilizing mechanical shock stress 

conditions. 

All solder pastes used in this study were non-eutectic solders with melting 

temperature ranges between ~217ᵒC and ~220ᵒC. Two aging temperature conditions 

above 150°C were selected (viz. 185ᵒC and 200ᵒC). The selection of these 

temperatures was based on field conditions observed in high temperature applications 

such as oil and gas well drilling where electronics can be exposed to such high 

temperatures during operations.  

6.1. Aging Test  

The isothermal aging test was conducted at 185ᵒC and 200ᵒC up to 1000 hours. The 

aging test temperatures were very close to melting temperature range (~217ᵒC to 
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~220ᵒC) of the selected solders. The homologous temperatures (i.e. the ratio of 

operating temperature of solder in Kelvin scale to the melting temperature of solder in 

Kelvin Scale), at 185ᵒC and 200ᵒC for the selected solders were TH (185ᵒC) = 0.935 and 

TH (200ᵒC) = 0.965 respectively (Note: Due to onset of melting at the liquidus 

temperature of 217ᵒC, it was considered as the melting temperature for the selected 

solders the homologous temperature calculation). Due to such high homologous 

temperatures, significant diffusion and formation of thick interfacial IMCs were 

expected in the solder joint. 

6.1.1. Design of Experiment (DOE) for Aging Test  

The purpose of the isothermal aging test was to determine the growth of interfacial 

IMCs for selected solders. Out of five package types selected in this study, three (viz. 

QFP256, QFN44 and QFN32) had copper lead/pad plated with matte tin finish and 

soldered to ENIG plated board. During reflow, these package types resulted in Cu-Sn 

based interfacial IMCs on the component side and Ni-Sn based interfacial IMC on the 

board side, which grew further during isothermal aging. Two package types (viz. 

R2512 and R2010) had nickel terminals plated with matte tin finish and soldered to 

ENIG plated board. During reflow Ni-Sn based interfacial IMCs form on both 

component and board side on resistor packages, which also grew further during 

isothermal aging. This study captured the growth of Cu-Sn and Ni-Sn interfacial 

IMCs on component side and Ni-Sn interfacial IMC on board side from selected 

package types. In order to have optimum package types for analysis to cover all 

interfacial IMCs of interest, QFN44 and QFN 32 packages were selected for the aging 

test to be representative of Cu-Sn interfacial IMCs on component side and Ni-Sn 
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interfacial IMC on board side, while R2512 package was selected for aging test to be 

representative of Ni-Sn interfacial IMCs on both component and board side.  

Six aging time intervals were selected for each of the two aging tests. These intervals 

were 0 hour (baseline), 100 hours, 200 hours, 400 hours, 600 hours and 1000 hours. 

Time=0 (0 hour) condition after reflow assembly was used as a baseline for both 

aging tests. The design of experiment (DOE) for the isothermal aging test is shown in 

Figure 6-1 and Figure 6-2. Two solder joints for each selected package types at 

various aging intervals were examined for IMC thickness measurement.  

 
Figure 6-1: Design of Experiment (DOE) for Aging Test 

 

 
Figure 6-2: Detailed Design of Experiment (DOE) for Aging Test 
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6.1.2. Test Equipment and Measurement Systems for Aging Test 

Two Despatch benchtop convection ovens were used to conduct isothermal aging 

tests. One benchtop oven was programmed to run at 185ᵒC and the second was 

programmed to run at 200ᵒC, each for 1000 hours. Prior to testing, both ovens were 

assessed for temperature stability by placing three thermocouples inside each oven for 

two days (48 hours). Temperature data were collected at every 30 seconds using an 

Agilent 34970A multiplexer unit. It was found in-situ temperatures for both ovens 

were within the range of 0ᵒC and +2ᵒC of the targeted temperature, meeting IPC-

9701A standard guideline for isothermal aging test [93]. Prior to aging, samples for 

each selected package type were carefully removed from the test boards using a 

diamond circular saw and then placed in various containers labeled with aging time 

interval for aging test. Since samples were separated from test boards prior to aging, 

no in-situ monitoring was performed for these samples during isothermal aging test.   

6.1.3. Cross-sectioning, ESEM, IMC Measurement, EDS and WDS 

Procedure 

After removing samples at various time intervals from aging tests, samples were cold 

mounted in 1.25" diameter cups with mixture of epoxy resin and epoxy hardener. 

Samples were then removed from mounting cups and manually ground on 240, 400 

and 600 grit silicon carbide grinding papers until an area of interest was reached. 

After ensuring the surface was free of voids and large scratches, samples were 

prepared using Buehler Automet 250 auto-polisher which can hold up to six samples 

at once. Based on many trials, two different polishing methods were developed for 
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QFNs and resistors. Step by step procedure of polishing steps for QFN44 and QFN32 

is shown in Table 6-1, and for R2512 is shown in Table 6-2.  

Table 6-1: Polishing Steps for QFN44 and QFN32 

Polishing Material 
Time 

(mins) 

Load 

(lbs) 

Base 

Speed 

(rpm) 

Head 

Speed 

(rpm) 

Base and 

Head 

Direction 

Fluid 

800 Grit Adhesive SiC Paper 5 1 150 50 CW 
Regular 

Water 

1200 Grit Adhesive SiC 

Paper 
5 1 150 50 CW 

Regular 

Water 

Ultrasonic for 10 minutes 

3 µm Diamond Suspension 

(Glycol Based 

Polycrystalline) 

(Polishing Cloth: Final-A) 

4 1 100 50 CW 
Deionized 

Water  

Ultrasonic for 10 minutes 

1 µm Diamond Suspension 

(Glycol Based 

Polycrystalline) (Polishing 

Cloth: Final-A) 

4 1 100 50 CW 
Deionized 

Water  

Ultrasonic for 10 minutes 

0.05 µm Colloidal Alumina 

Suspension  

(Polishing Cloth: Final-A) 

2-3 1 100 50 CCW 
Deionized 

Water 

Ultrasonic for 10 minutes 

Table 6-2: Polishing Steps for R2512 

Polishing Material 
Time 

(mins) 

Load 

(lbs) 

Base 

Speed 

(rpm) 

Head 

Speed 

(rpm) 

Base and 

Head 

Direction 

Fluid 

800 Grit Adhesive SiC Paper 5 1 150 50 CW 
Regular 

Water 

1200 Grit Adhesive SiC 

Paper 
5 1 150 50 CW 

Regular 

Water 

Ultrasonic for 10 minutes 

1 µm Alumina Suspension 

  (De-Agglomerated) 

(Polishing Cloth: Spec-Cloth) 

4 1 100 50 CW 
Deionized 

Water  

Ultrasonic for 10 minutes 

0.3 µm Alumina Suspension 

  (De-Agglomerated) 

(Polishing Cloth: Spec-Cloth) 

4 1 100 50 CW 
Deionized 

Water  

Ultrasonic for 10 minutes 

0.05 µm Colloidal Alumina 

Suspension 

(Polishing Cloth: Final-A) 

2-3 1 100 50 CCW 
Deionized 

Water 

Ultrasonic for 10 minutes 
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After completion of grinding and polishing, all samples were analyzed using an 

environmental scanning electron microscope (ESEM). For QFN44 and QFN32, 

around 10 images for each solder joint on each samples were captured at 2500x 

magnification. Due to large solder joint area, 10 images for each solder joint on 

R2512 samples were captured at 2000x magnification.   These images captured the 

entire interfacial IMCs on component and board side of a package and later were used 

for determining an average interfacial IMC thickness. All 10 images were used for the 

measurement to capture thickness variation across the interfacial layer. Two image 

processing software packages, Image-J and XTDocument, were used for calculating 

average interfacial IMC thickness. Using the software, the total area of an interfacial 

IMC was measured first and then divided by horizontal distance to calculate an 

average interfacial IMC thickness. A total of 20 measurements were obtained and 

averaged to get the sample average interfacial IMC thickness. Standard deviation of 

these 20 measurements was also measured to find the variations among the total 

measurements. Apart from an average thickness of interfacial IMC, wavelength 

dispersive spectroscopy (WDS) and energy dispersive spectroscopy (EDS) analysis 

were also performed to confirm the stoichiometric composition of interfacial IMCs 

and to study the distribution of dopants within solder bulk and interfacial IMCs. 

6.2. Mechanical Shock Reliability Test 

This test was selected to evaluate mechanical shock reliability of the selected solders. 

In order to study the effects of high temperature isothermal aging on the mechanical 

shock reliability of solders, mechanical shock was performed on un-aged and 

thermally aged test boards.  
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6.2.1. Design of Experiment (DOE) for Mechanical Shock Test 

Two temperature intervals and three time intervals were used for mechanical shock 

testing. These two temperatures were 185ᵒC and 200ᵒC (same as the aging test), and 

the three time intervals were 0 hour, 400 hours and 1000 hours. 0 hour (Time=0) 

condition represents test boards after reflow. It was decided to test two boards per 

solder for every selected interval. This means, a total of 50 test boards (two boards 

per solder for five solders = 10 test boards total at each interval) were tested for 

time=0, 400 hours/185ᵒC, 1000 hours/185ᵒC, 400 hours/200ᵒC and 1000 hours/200ᵒC 

intervals. The design of experiments for the mechanical shock testing is shown in 

Figure 6-3. Due to high temperature exposure during isothermal aging and thermal 

cycling tests, interdiffusion rates will be high, resulting in thick interfacial IMCs.  It is 

hypothesized that these thick interfacial intermetallics will cause solder failure to 

occur more quickly in mechanical shock testing. To avoid any catastrophic failures 

due to high G forces, a lower G-level was preferable for mechanical shock testing. 

Thus it was decided to use a shock pulse of 500G with 1.3 millisecond duration for 

mechanical shock testing. A total of 100,000 mechanical shocks were performed on 

all aged test boards. For 0 hour of aging (Time=0) condition, it was decided to test 

until 600,000 mechanical shocks.  
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Figure 6-3: Design of Experiment (DOE) for Mechanical Shock Test 

6.2.2. Test Equipment and Measurement Systems for Mechanical 

Shock Test 

A custom shock machine was used in this study. The two test boards designated for 

each solder were tested together. In order to mount two test boards on the shock 

machine, a shock plate was designed with holes drilled on inside which were identical 

to the holes on the top and bottom of the aluminum frame of the test board. The shock 

plate also featured eight mounting holes on outside to mount the shock plate onto the 

shock machine. The designed shock plate is shown in Figure 6-4. After mounting two 

boards on the shock plate, the shock plate assembly was mounted on mechanical test 

machine using eight bolts as shown in Figure 6-5. An accelerometer was attached on 

the shock plate at the center near the front edge of the shock plate. The shock 

machine was set up to record a shock pulse of 500G with 1.3 millisecond duration on 

this accelerometer. A typical shock pulse profile recorded by this accelerometer 

during mechanical shock testing is shown in Figure 6-6. Three additional 

accelerometers were also used at various locations on shock machine during the 

testing for feedback control purpose.  
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Figure 6-4: A Shock Plate for Testing Two Test Boards at Once 

 
Figure 6-5: Shock Plate Assembly Mounted on Shock Machine   

 
Figure 6-6: Shock Profile for Mechanical Shock Test 
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During mechanical shock testing, in-situ resistances of all packages on the two test 

boards were monitored using an Agilent 34970A multiplexer unit. One shock takes 

around two seconds to complete one cycle. Based on the limitation of the data 

collection system, in-situ resistance data were recorded every 10 seconds or every 

five shocks. The test was continued until 100,000 mechanical shocks were completed 

on the two test boards. This process was repeated to complete 100,000 mechanical 

shocks on 40 aged test boards and 600,000 mechanical shocks on 10 un-aged test 

boards.     

6.2.3. Failure Criteria for Mechanical Shock Test 

In-situ resistance of all packages on the test board was monitored to determine solder 

joint failure. The failure criterion was developed based on the guideline provided by 

IPC/JEDEC-9703 [94] (Mechanical Shock Test Guidelines for Solder Joint 

Reliability) and JESD-B111 [95] (Board Level Drop Test Method of Components for 

Handheld Electronic Products). A solder joint was considered to be failed at the first 

indication of package resistance above 100 ohms followed by three such indications 

during five subsequent shocks. An example of package failure during mechanical 

shock testing is shown in Figure 6-7 where QFN44, QFN32 and QFP256 failed at 

7665, 12020 and 55310 shocks, respectively. 
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(a) (b) 

 
(c) 

Figure 6-7: Package Failure during Mechanical Shock Testing (a) QFN44 Failed at 

7665 Shocks (b) QFN32 Failed at 12020 Shocks (c) QFP256 Failed at 55310 Shocks 

(Note: Package Resistance is in Ohm Unit). 
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7. Effects of Mn and Ce Dopant on the Microstructure and 

Mechanical Properties of SAC305 Solder.  

This chapter discusses the effects of additions of Mn and Ce on microstructure and 

mechanical properties of SAC305 solder that were observed in this study. As-

reflowed QFN44 and QFN32 package types for all five solders (SAC305, Low Mn, 

High Mn, Low Ce and High Ce) were cold mounted, cross-sectioned and polished for 

examining microstructure and characterizing mechanical properties. 

Microstructure of the solder was examined by comparing five attributes. These 

attributes were number of β-tin grains, size of Ag3Sn IMC particles, number of β-tin 

dendrites, area fraction of eutectic region and area fraction of β-tin dendrites. 

Mechanical properties of the solder were investigated by comparing elastic modulus 

and hardness of the bulk solder.  

7.1.  Microstructure Analysis 

The details on microstructure analysis including number of β-tin grains, size of Ag3Sn 

IMC particles, number of β-tin dendrites, area fraction of eutectic region and area 

fraction of β-tin dendrites are discussed below.  

7.1.1. Number of β-tin Grains 

In order to find the number of β-tin grains in the solder joint, Leica DMEP polarizing 

microscope system was used. Both left and right side of solder joint on QFN44 and 

QFN32 were examined to find total number of β-tin grains for all five solders. 
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Figure 7-1 and Figure 7-2 show the cross-polarized image of left and right side of 

solder joint in QFN44 and QFN32, respectively. Each individual grain is marked with 

a number. It is important to note that in addition to large grains of β-tin in each in 

solder joint, the presence of a few small grains is also found. Due to their smaller 

sizes, they were difficult to distinguish and count for analysis. Thus, such small grains 

were not considered in this analysis. In addition to β-tin grains, circular or elliptical 

bright spots can be seen within the solder joint. These bright spots are process voids 

that occurred during reflow assembly. The summary of total number of β-tin grains in 

each side of solder joint in QFN44 and QFN32 is shown in Table 7-1. Figure 7-3 

shows average number of β-tin grains of five solders observed in QFN44 and QFN32. 

It is clear from Figure 7-3 that addition of Mn and Ce dopant in SAC305 increases 

total number of β-tin grains.    

(a) SAC305 (Left and Right) Solder Joint 

  

(b) Low Mn (Left and Right) Solder Joint 

  
(c) High Mn (Left and Right) Solder Joint 

(1) (2) (3) (1) 

(1) 

(2) (3) 
(4) 

(5) 
(1) 
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(d) Low Ce (Left and Right) Solder Joint 

  
(e) High Ce (Left and Right) Solder Joint 

  
Figure 7-1: Cross-polarized Images of Left and Right Side of Solder Joint in QFN44 

Package (a) SAC305, (b) Low Mn, (c) High Mn, (d) Low Ce, (e) High Ce 

 
(a) SAC305 (Left and Right) Solder Joint 

  
(b) Low Mn (Left and Right) Solder Joint 

  
(c) High  Mn (Left and Right) Solder Joint 

  

(1) 

(2) (3) (4) (5) 
(1) 

(2) 
(3) 

(4) 

(1) (2) 

(3) (1) (2) 

(1) 
(2) 

(3) (1) 
(2) 

(5) 

(1) 
(2) (3) (1) 

(1) 

(2) 

(3) (4) (5) (1) (2) 
(3) 

(1) (2) 

(3) 

(4) (5) (1) (2) 
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(d) Low Ce (Left and Right) Solder Joint 

  
(e) High Ce (Left and Right) Solder Joint 

  
Figure 7-2: Cross-polarized Images of Left and Right Side of Solder Joint in QFN32 

Package: (a) SAC305, (b) Low Mn, (c) High Mn, (d) Low Ce, (e) High Ce 

Table 7-1: Total Number of β-tin Grains in Each Side of Solder Joint in QFN44 and 

QFN32 

 
SAC305 

SAC305+ 

0.05%Mn 

SAC305+ 

0.17%Mn 

SAC305+ 

0.07%Ce 

SAC305+ 

0.13%Ce 

 
Left 

Pad 

Righ

t 

Pad 

Left 

Pad 

Right 

Pad 

Left 

Pad 

Right 

Pad 

Left 

Pad 

Righ

t 

Pad 

Left 

Pad 

Right 

Pad 

QFN44 

(Time = 0) 
3 1 5 1 5 5 3 2 3 2 

QFN32 

(Time = 0) 
3 1 5 3 5 2 3 5 3 3 

(1) 

(2) (3) (1) (2) 
(3) (4) 

(5) 

(1) 

(2) 

(3) (1) (2) (3) 
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Figure 7-3: Average Number of β-tin Grains of Various Solders Observed in QFN44 

and QFN32 

7.1.2. Size of Ag3Sn IMC Particles, Number of β-tin Dendrites, Area 

Fraction of Eutectic Region and Area Fraction of β-tin Dendrites 

An ESEM image (at 2500x magnification) of solder bulk microstructure for each of 

the five solders for QFN32 and QFN44 packages is shown in Figure 7-4 and Figure 

7-5, respectively. By comparing microstructure of solders in QFN32 and QFN44, it 

can be seen that microstructure for the same solder alloy looks similar in both QFN32 

and QFN44 package types. Thus, as expected, the size of QFN package has no 

obvious effect on the microstructure of solder alloy. It is also noticeable that dendrite 

in Mn modified SAC305 solders seem larger and the dendrites in Ce modified 

SAC305 solders seem more elongated than for pure SAC305 solder. 
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(a) SAC305 

 
(b) SAC305+0.05%Mn (c) SAC305+0.17%Mn 

  
(d) SAC305+0.07%Ce (e) SAC305+0.13%Ce 

  
Figure 7-4: ESEM Image at 2500x Magnification of Various Solders in QFN32 

Package: (a) SAC305, (b) Low Mn, (c) High Mn, (d) Low Ce, (e) High Ce 
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(a) SAC305 

 
(b) SAC305+0.05%Mn (c) SAC305+0.17%Mn 

  
(d) SAC305+0.07%Ce (e) SAC305+0.13%Ce 

  
Figure 7-5: ESEM Image at 2500x Magnification of Various Solders in QFN44 

Package (a) SAC305, (b) Low Mn, (c) High Mn, (d) Low Ce, (e) High Ce 
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In order to measure various attributes of microstructure, ESEM images were retaken 

at higher magnification (7000x) and image processing techniques were performed to 

extract microstructure attributes. Image processing software, Image-Pro Plus, was 

used to calculate size of Ag3Sn IMC particles, number of β-tin dendrites/lobes, area 

fraction of eutectic region and area fraction of β-tin dendrites.  

In order to calculate size of Ag3Sn IMC particles, length along major axis and width 

along minor axis of Ag3Sn IMC particles were measured. First step in Image Pro-Plus 

software was calibrating an image from the scale bar given at the bottom of the 

ESEM image. After performing spatial scale calibration, brightness and contract were 

adjusted to have the Ag3Sn IMC particles stand out. For the next step, scale bar at the 

bottom on an image was removed and gray scale thresholding was performed. Gray 

scale thresholding selects all the particles of a given brightness within an image. 

However, the selection criteria of gray scale thresholding should be such that no 

Cu6Sn5 IMC particles (darker than Ag3Sn IMC) and AuSn4 IMC particles (brighter 

than Ag3Sn IMC) get selected. Figure 7-6 shows an example of this process where 

Figure 7-6 (a) shows ESEM image of solder at 7000x magnification; whereas Figure 

7-6 (b) shows selected Ag3Sn IMC particles in the solder bulk. After performing gray 

scale thresholding, length along major axis and width along minor axis were 

measured to calculate average size of Ag3Sn IMC particles.  
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(a) (b) 

Figure 7-6: (a) ESEM Image of Solder at 7000x Magnification (b) Selected Ag-Sn 

IMC Particles in the Solder Bulk  

In order to calculate the remaining attributes of solder microstructure, such as number 

of β-tin dendrites/lobes, area fraction of eutectic region and area fraction of β-tin 

dendrites, a region representing the size of β-tin lobes was manually drawn, as shown 

in Figure 7-7 (b). The manually drawn β-tin lobes are highlighted in yellow color; 

whereas their respective area value is shown in green color. By measuring the area of 

each β-tin dendrites within an image, the area fraction of eutectic region and the area 

fraction of β-tin dendrites were also calculated. In addition numbers of β-tin 

dendrites/lobes were also calculated from this measurement. 
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(a) (b) 

Figure 7-7: (a) ESEM Image of Solder at 7000x Magnification (b) Selected Region 

for β-tin Dendrites 

Figure 7-8 shows an example of microstructure in one unit representative area (URA) 

for all five solders. Column (a) in Figure 7-8 shows ESEM image at 7000x 

magnification, column (b) shows detected Ag3Sn IMC particles, and column (c) 

shows selected β-tin lobes for all five solders.  

For calculating size of Ag3Sn IMC particles, number of β-tin dendrites/lobes, area 

fraction of eutectic region and area fraction of β-tin dendrites for all five solders, four 

URAs were considered for analysis from different locations on the solder joint. The 

calculated attribute values from four URAs by image processing were averaged and 

plotted in bar charts which are presented next.   
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(a) ESEM Image at 7000x 

Magnification 
(b) Ag3Sn IMC Particles (c) β-tin Lobes 

(A) SAC305 

   
(B) SAC305+0.05%Mn 

   
(C) SAC305+0.17%Mn 

   
(D) SAC305+0.07%Ce 
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(E) SAC305+0.13%Ce 

   

Figure 7-8: Column (a) ESEM Image at 7000x Magnification, Column (b) Detected 

Ag3Sn IMC Particles, and Column (c) Selected β-tin Lobes: (A) SAC305, (B) Low 

Mn, (C) High Mn, (D) Low Ce, (E) High Ce  

 
Figure 7-9: Mean Length and Width of Ag-Sn IMC Particles for Solders 
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Figure 7-10: Area Fraction of Eutectic Region 

 

 

Figure 7-11: Area Fraction of β-tin Dendrites 
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Figure 7-12: Number of β-tin dendrites/Lobes 

Table 7-2 shows %change in microstructure attributes of modified SAC305 solders 

compared to SAC305. Looking at the change in the size (length and width) of Ag3Sn 

IMC particles, High Mn solder showed significant increase; whereas, High Ce 

showed smallest increase in the size of Ag3Sn IMC particles. Looking at the change 

in %area fraction of eutectic region, High Mn showed highest increase; whereas, Low 

Ce and High Ce showed reduction in %area fraction of eutectic region compare to 

SAC305. Comparing %change in number of β-tin dendrites/lobes, High Ce showed 

highest increase; whereas, both Low Mn and High Mn showed considerable reduction 

in number of β-tin dendrites/lobes compare to SAC305. 
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Table 7-2: % Change in Microstructure Attributes of Modified SAC305 Solders 

Compared to SAC305 

Solders 

Mean 

Length of 

Ag3Sn 

Mean 

Width 

of Ag3Sn 

%Area 

Fraction of 

Eutectic 

Region 

%Area 

Fraction of 

β-Tin 

Dendrites 

Number of β-

Tin Dendrites 

/Lobes 

SAC305 - - - - - 

SAC305+0.05%Mn 15% 9% 3% -2% -57% 

SAC305+0.17%Mn 79% 64% 18% -9% -82% 

SAC305+0.07%Ce 17% 17% -13% 8% 4% 

SAC305+0.13%Ce 5% 6% -8% 5% 108% 

7.2. Mechanical Properties of Solders 

Mechanical properties of solders were characterized using nanoindentation 

equipment, (i.e., Agilent G200 nano-indenter). The measured mechanical properties 

of solders include elastic modulus and hardness. A continuous stiffness measurement 

(CSM) technique was used for the measurement. Parameters used during the 

indentation were measurement window = 200-300 nm, surface approach velocity = 

10 nm/s, depth limit 300 nm, strain rate target 0.05s
-1

, harmonic displacement target = 

2 nm, frequency target 45 Hz.  

It is important to note that elastic modulus and hardness measured from an indent 

strongly depend on its location. Since solder is a composite material made-up of β-tin 

dendrites and various IMC particles, depending on the location of indentation, 

measurement values may vary. Thus, in order to minimize measurement uncertainty, 

30 measurements were performed for each solder sample. Figure 7-13 shows a few 

examples of indentations on the solder sample. 
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Figure 7-13: Example of Indentations in Solder Bulk 

Figure 7-14 plots the average elastic modulus of solders as measured by 

nanoindentation test. It appears that addition of Mn dopant reduces the elastic 

modulus of SAC305 solder. Increase in Mn dopant concentration further reduces 

elastic modulus. Such an observation has been previously reported in literature by Lin 

et al. [77] [80]. In this study, the reduction in elastic modulus by Mn dopant could be 

due to microstructural changes as Mn doped solders features large β-tin dendrites and 

a coarser and less-packed eutectic region. Reduction in the elastic modulus of solder 

helps to improve drop/shock performance as the compliant solder bulk can absorb 

more energy during deformation and thus transfers less stress to the interfaces. Unlike 

the Mn dopant addition, it appears that the addition of Ce dopant has no observable 

effect on elastic modulus of solder.  
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Figure 7-14: Elastic Modulus of Various Solders 

Figure 7-14 presents the average hardness of all five solders as measured by 

nanoindentation testing. Large scattering in the data was observed for all five solders. 

It is due to variation in hardness measurement from different locations in the solder 

bulk. It appears that addition of Mn and Ce dopant has no observable effect of the 

hardness of the base solder (SAC305). Similar observations have been previously 

reported in literature by Liu and Lee [71] [70]. 

 
Figure 7-15: Hardness of Various Solders 
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8. Interfacial Intermetallic Growth during Isothermal Aging 

at 185ᵒC and 200ᵒC on QFN44 and QFN32 Packages 

This chapter discusses the growth of interfacial IMCs on QFN44 and QFN32 

packages observed during isothermal aging at 185ᵒC and 200ᵒC up to 1000 hours. In 

addition to measurement of the interfacial intermetallic layer thickness, analysis of 

voiding observed during aging at the interface between the Cu6Sn5 IMC layer and the 

solder bulk is also presented. The results of these aging tests help to understand the 

reliability of selected solders subjected to the mechanical shock testing, as discussed 

in chapter 10. 

Both QFN44 and QFN32 packages feature a large pad underneath the package called 

the “Central Pad,” which provides extra rigidity to the package and also assists in heat 

transfer when soldered to the board. To test the worst case condition, the central pads 

of the QFN44 and QFN32 packages were not soldered to the PCB board, thus 

permitting the solder interconnects of the QFNs to experience higher stresses. Both 

QFN44 and QFN32 also feature dummy die to simulate the effect of real die of 

functional QFNs. ESEM images of QFN44 and QFN32 packages after reflow are 

shown in Figure 8-1.   
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QFN44 Package 

 

 

 

QFN32 Package 

 

Figure 8-1: An ESEM Image of QFN44 and QFN32 after Reflow 

8.1. Interfacial Intermetallic Formation during Reflow on QFN 

Packages 

QFN44 and QFN32 packages have peripheral copper interconnect pads plated with 

matte tin finish. QFNs were soldered to ENIG-plated board. A left and a right solder 

joint of QFN44 after reflow are shown in Figure 8-2. During reflow, the matte tin 

finish dissolved in solder, allowing direct access to the copper pad. This resulted in 

direct interaction between tin (from solder) and copper pad, which formed Cu6Sn5 

interfacial intermetallic layer at the component side. The average thickness of the 

Cu6Sn5 interfacial IMC layer after reflow was found to be around 4 to 5 microns.   

On the board side, copper traces were plated with ENIG finish. During reflow, the 

gold on the ENIG finish dissolved in solder, allowing direct access between nickel 

from ENIG and tin from solder. With copper diffusing from the component pad to the 

board side, the interfacial intermetallic layer at the board side was found to be 

(Cu,Ni)6Sn5. The average thickness of the (Cu,Ni)6Sn5 interfacial IMC layer after 

reflow was around 2 to 3 microns. Both interfacial intermetallic layers formed on a 

ENIG Plated Board 

ENIG Plated Board 
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QFN package are shown in Figure 8-3. In addition to interfacial IMCs, bulk IMCs, 

such as Ag3Sn and Cu6Sn5, were also formed during reflow, as shown in Figure 8-3.    

 
(a) Left Solder Joint  

 
(b) Right Solder Joint  

Figure 8-2: Left and Right Solder Joint of QFN44 

 
Figure 8-3: Interfacial IMC Formation on QFN Package during Reflow (SAC305 – 

Time=0) 

8.2. Effect of Isothermal Aging on QFN Package 

In this study, isothermal aging was conducted at 185ᵒC and 200ᵒC up to 1000 hours. 

The aged QFN samples were removed and analyzed at various time intervals 

including 0, 100, 200, 400, 600, and 1000 hours. During isothermal aging, two 

different phenomena were observed. One was the growth of interfacial IMCs, and the 

other was void creation and coalescence at the interface. 

Copper Pad on Component Side 

Solder Bulk Cu6Sn5 IMC Layer 

(Cu,Ni)6Sn5 IMC Layer 

Ag3Sn 
Cu6Sn5 

ENIG Plated Copper on Board Side 
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8.2.1. The Growth of Interfacial Intermetallic Layers during 

Isothermal Aging 

It is well known that interfacial intermetallic growth during isothermal aging is a 

diffusion-controlled mechanism dependent on time and temperature. During 

isothermal aging, significant growth was observed for Cu6Sn5 IMC layer after just 

100 hours of temperature exposure at both 185ᵒC and 200ᵒC aging conditions. During 

further analysis, a second interfacial IMC layer, Cu3Sn was also found between 

Cu6Sn5 and the copper pad on the component side. Formation of this layer has been 

previously observed in the literature. The interfacial IMC layer on the board side, 

(Cu,Ni)6Sn5, also thickens during aging; however, the growth of the (Cu,Ni)6Sn5 layer 

was much slower than that of the Cu6Sn layer observed on the component side. Bulk 

IMCs (Ag3Sn and Cu6Sn5) also coalesced and increased in their size with aging. 

8.2.2.   Void Creation and Coalescence at the Interface during 

Isothermal Aging   

Two types of voids were found near the component side interfaces that were not 

present before aging or after reflow.  

One type of void which was sub-micron in size (called micro-voids) was found at the 

interface between the Cu3Sn layer and the copper pad on the component side as 

shown in Figure 8-4. This type of void has been previously reported in the literature 

as being present at the interface between Cu-Sn IMC and copper pad during high 

temperature exposure for extended periods [96][97][61]. These voids are known as a 

Kirkendall voids, and they form due to the unbalanced interdiffusion of tin and 
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copper at the interface. Cu has a higher diffusivity in Sn than Sn does in Cu. Thus, 

during migration, vacancies created by Cu atoms are not filled by Sn atoms, and 

eventually these vacancies coalesce and form micro-voids at the interface or within 

the Cu3Sn IMC layer [61].   

 
Figure 8-4: Interfacial IMC Growth and Void Creation during Isothermal Aging 

(SAC305 - 185ᵒC/100 hours) 

The second type of void was found at the interface between the Cu6Sn5 IMC layer 

and the solder bulk, and is also shown in Figure 8-4. These voids were quite large and 

significantly reduced the contact area between the Cu6Sn5 interfacial IMC and bulk 

solder. This type of void has not been previously reported in the literature. These 

voids could not be classified as champagne voids or planar micro-voids because they 

were bigger than the reported size of champagne voids and they were neither related 

to galvanic corrosion during immersion plating of silver metal nor formed during the 
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reflow process [97]. During high temperature aging, these voids form at multiple 

interfacial locations; enlarge during subsequent aging; and eventually coalesce with 

neighboring voids to form even bigger voids at the Cu6Sn5 IMC layer/solder bulk 

interface as shown in Figure 8-5.  

 
Figure 8-5: Interfacial IMC Growth and Void Coalescing during further Isothermal 

Aging (SAC305 - 185ᵒC/600 hours) 

The mechanism of such void formation is unknown. It is believed that high diffusion 

rates during high temperature aging are related to void formation. A detailed study is 

recommended to further understand the mechanism of such void formation; however, 

it is beyond the scope of this study. Both types of voids discussed earlier can have 

detrimental effects on the long-term reliability of solder joints, especially in 

mechanical shock/drop loading. The effects these voids have on the long-term 

reliability of solder joints have not been well studied.  
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By looking at Figure 8-3, Figure 8-4, and Figure 8-5, it can be seen that the Cu6Sn5 

interfacial IMC layer had faster growth compared to the Cu3Sn and (Cu,Ni)6Sn5 layers 

during high temperature aging. This combined with its inherent brittleness relative to 

(Cu,Ni)6Sn5 makes the Cu6Sn5 IMC layer the most critical for solder reliability, and 

thus it is the one whose interfacial IMC thickness is measured for QFN44 and QFN32 

packages. In order to measure average thickness of the Cu6Sn5 IMC layer, ESEM 

images at 2500x magnification were taken at various locations covering the 

horizontal Cu6Sn5 IMC layer formed underneath the copper pad on the component 

side as shown in Figure 8-6 (a). Image processing software, XTDocument was used 

to calculate the total area of Cu6Sn5 IMC layer and the horizontal distance from each 

ESEM image at 2500x magnification as shown in Figure 8-6 (b). An average 

thickness of the Cu6Sn5 IMC layer for each ESEM image was calculated by dividing 

the IMC total area by the horizontal distance. Then, the average Cu6Sn5 IMC layer 

thickness for a sample was calculated by averaging the calculated result for each 

ESEM image.    

 

 
(a) (b) 

Figure 8-6 Cu6Sn5 IMC Layer Thickness Measurement (a) Length of the Horizontal 

Cu6Sn5 IMC Layer used for Measurement (b) ESEM Image at 2500x Magnification 

for Average Cu6Sn5 IMC Layer Thickness Measurement.     

Horizontal Distance = 91.80 microns 

IMC Total Area = 1322.68 µm^2 
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In addition to Cu6Sn5 IMC thickness measurement, void measurement was also 

performed to calculate the %voiding (% contact length reduction due to voiding) at 

the Cu6Sn5 IMC layer/solder bulk interface. Using Image-J image processing 

software, the total contact length before and after voiding was calculated. An example 

of %voiding calculation is shown in Figure 8-7.    

 

Figure 8-7: ESEM Image of Solder Joint Indicating Length Measurement Marks for 

%voiding Calculation.  

After the contact length measurement before and after voiding, %voiding was 

calculating using following equation: 

          (
[   ]  [     ]

[   ]
)      

For both aging test measurement parameters (i.e. Cu6Sn5 IMC layer thickness and 

%voiding), multiple readings were measured covering the whole solder joint on the 

left and right sides of QFN44 and QFN32 packages.  

The next few sections provide the detailed information on the Cu6Sn5 interfacial IMC 

growth and %voiding for QFN44 and QFN32 under 185ᵒC and 200ᵒC isothermal 

aging at 0, 100, 200, 400, 600, and 1000 hour intervals. 
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8.3. QFN44 - Cu6Sn5 IMC Growth and %Voiding during 185ᵒC 

Aging  

The average thickness of the Cu6Sn5 IMC layer for each solder with aging time at 

185ᵒC are summarized in Figure 8-8. Also, the results of %voiding at the interface 

between the Cu6Sn5 IMC layer and the solder bulk during 185ᵒC aging are 

summarized in Figure 8-9. The error bar shown in both Figure 8-8 and Figure 8-9 

indicate the standard deviation of measurements.  

 
Figure 8-8: QFN44 - Cu6Sn5 IMC Layer Growth Summary during 185ᵒC Aging 
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Figure 8-9: QFN44 - %Voiding Measurements during 185ᵒC Aging 

It can be seen from Figure 8-8 that after 100 hours of aging at 185ᵒC, there was a 

significant increase in the thickness of the Cu6Sn5 IMC layer was observed for all 

solders. During subsequent aging after 100 hours, the Cu6Sn5 IMC layer had steady 

growth. It is also clear that all modified SAC305 solders were effective in suppressing 

the growth of the Cu6Sn5 IMC layer during 185ᵒC aging. High Mn suppressed the 

growth most effectively and resulted in the thinnest Cu6Sn5 IMC layer. After 1000 

hours of aging at 185ᵒC, High Mn showed a 12% reduction in Cu6Sn5 IMC layer 

thickness compared to that found in SAC305. Low Mn initially formed the thickest 

Cu6Sn5 IMC layer; however, it suppressed the growth of the Cu6Sn5 IMC layer during 

subsequent aging. Overall, SAC305 solder showed the thickest Cu6Sn5 IMC layer at 

each time interval during 185ᵒC aging. 
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In Figure 8-9, it can be seen that substantial voiding (reduction in contact length) was 

observed after 100 hours of aging at 185ᵒC for all solders. Except for the 100 hour 

interval for Low Ce, all modified SAC305 solders were effective in reducing voiding 

at the interface between the Cu6Sn5 IMC layer and solder bulk during 185ᵒC aging. 

High Mn was the most effective solder to form fewer voids, as evident at each time 

interval during 185ᵒC aging. Compared to SAC305, High Mn formed 15% to 29% 

lesser voids during 185ᵒC aging. In general, High Ce is the second most effective 

solder after High Mn to form fewer voids. Compared to SAC305, High Ce formed 

9% to 17% lesser voids.  Overall, SAC305 solder showed the highest voiding at each 

time interval during 185ᵒC aging.  

In order to further evaluate interfacial IMCs, bulk IMCs and voiding during 185ᵒC 

aging, ESEM images at 2500x magnification for all solders after reflow, after 100 

hours/185ᵒC aging, and after 1000 hours/185ᵒC aging are used for the discussion 

present below. 

Figure 8-10 shows a SAC305 solder joint. After reflow, the bulk microstructure 

contained fine Ag3Sn particles, Cu6Sn5 particles and β-tin dendrites. Upon aging, both 

Ag3Sn and Cu6Sn5 particles coalesced and coarsened. After 1000 hours of aging, 

large Ag3Sn particles could be seen in the solder bulk. A few coarsened Ag3Sn 

particles also migrated to the surface of both the component and the board side 

interfacial IMCs. Evidence of Ag3Sn particles within the Cu6Sn5 interfacial IMC layer 

could also be seen during aging. Kirkendall voids found after 100 hours of aging 

resulted in a crack during subsequent aging between the Cu3Sn IMC layer and the 

component pad as shown in Figure 8-10 (c). The interfacial IMC on the board side 
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also changed from acicular (needle-like) after reflow to laminar during 100 hours of 

aging. After 1000 hours of aging, the board side interfacial IMC changed to a scallop 

morphology. As discussed earlier, significant growth in the Cu6Sn5 IMC layer and 

void formation could be seen during 185ᵒC aging.   

 
(a) 

  
(b) (c) 

Figure 8-10: QFN44 - SAC305 Solder Joint (a) After Reflow, (b) After 100 

hours/185ᵒC Aging, (c) After 1000 hours/185ᵒC Aging 

Figure 8-11 shows a SAC305+0.05%Mn solder joint. After reflow, fine Ag3Sn and 

Cu6Sn5 particles formed in the solder bulk. However, the average size of the Ag3Sn 

particles after reflow was larger than that found in SAC305 solder. In addition, the 

size of the Ag3Sn-Sn eutectic region after reflow was also bigger than that found in 
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SAC305 solder. A crack passing through the Cu3Sn interfacial IMC layer on the 

component side, and the scallop type interfacial IMC on the board side, were also 

evident after 1000 hours of aging. The bulk IMCs (Ag3Sn and Cu6Sn5) were also 

coarsened after 1000 hours of aging. The growth of Cu6Sn5 IMC layer was lesser in 

Low Mn solder compared to that of SAC305. 

 
(a) 

  
(b) (c) 

Figure 8-11: QFN44 - SAC305+0.05%Mn Solder Joint (a) After Reflow, (b) After 

100 hours/185ᵒC Aging, (c) After 1000 hours/185ᵒC Aging 

Figure 8-12 shows a SAC305+0.17%Mn solder joint. With higher concentrations of 

Mn, the average sizes of the Ag3Sn particles and the Ag3Sn-Sn eutectic region in 

solder bulk after reflow were much larger than in the SAC305 and 
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SAC305+0.05%Mn solders. However, after 1000 hours of aging, many small and 

only a few large Ag3Sn coarsened particles could be seen in Figure 8-12 (c). This 

indicates that SAC305+0.17%Mn solder suppresses the growth of bulk IMCs during 

aging. The interfacial IMC layer on the board side remains planar without forming 

scallops during aging. In addition, a few small cracks along with Kirkendall voids 

have been observed in the Cu3Sn interfacial IMC layer after 1000 hours of aging. 

Overall, High Mn showed thinner Cu6Sn5 IMC layer, less coarsened bulk IMCs and 

reduced interfacial voiding compared to SAC305 during 185ᵒC aging. 

 
(a) 

  
(b) (c) 

Figure 8-12: QFN44 - SAC305+0.17%Mn Solder Joint (a) After Reflow, (b) After 

100 hours/185ᵒC Aging, (c) After 1000 hours/185ᵒC Aging 
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Figure 8-13 shows a SAC305+0.07%Ce solder joint. After reflow, the microstructure 

of the solder bulk was found to be similar to SAC305. After 1000 hours of aging, the 

size of coarsened Ag3Sn particles was smaller than that for SAC305. Thus, 

SAC305+0.07%Ce solder suppressed the growth of both bulk IMCs during aging. 

The interfacial IMC on the board side exhibited a scallop-type morphology after 1000 

hours of aging. In addition, a crack was also observed passing through the Cu3Sn 

interfacial IMC layer on the component side, as shown in Figure 8-13 (c). 

s  
(a) 

  
(b) (c) 

Figure 8-13: QFN44 - SAC305+0.07%Ce Solder Joint (a) After Reflow, (b) After 

100 hours/185ᵒC Aging, (c) After 1000 hours/185ᵒC Aging 
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Figure 8-14 shows a SAC305+0.13%Ce solder joint. After reflow, more β-Sn 

dendrites with a smaller size were observed in the solder bulk compared to SAC305. 

Upon aging, the size of the resultant Ag3Sn particles after 1000 hours of aging was 

smaller than for SAC305 solder. This suggests that SAC305+0.13%Ce solder 

minimize the growth of bulk IMC during aging. Also, the morphology of the 

interfacial IMC layer on the board size changed from acicular (i.e. needle-like) (after 

reflow) to laminar (after 100 hours/185ᵒC aging) to scallop-shaped (after 1000 

hours/185ᵒC aging).  

 
(a) 

  
(b) (c) 

Figure 8-14: QFN44 - SAC305+0.13%Ce Solder Joint (a) After Reflow, (b) After 

100 hours/185ᵒC Aging, (c) After 1000 hours/185ᵒC Aging 
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8.4. QFN44 - Cu6Sn5 IMC Growth and %Voiding during 200ᵒC 

Aging  

The average thickness of the Cu6Sn5 IMC layer for each solder during 200ᵒC aging 

are summarized in Figure 8-15. The error bar shown in Figure 8-15 indicates the 

standard deviation of measurements.  

 
Figure 8-15: QFN44 - Cu6Sn5 IMC Growth Summary during 200ᵒC Aging 

It can be seen from Figure 8-15 that except for the Low Ce/1000 hour interval, all 

modified SAC305 solders effectively suppressed the growth of Cu6Sn5 IMC during 

200ᵒC aging. After 1000 hours of aging at 200ᵒC, it was found that Low Mn, High 

Mn and High Ce showed 17%, 18%, and 20% reduction in the growth of Cu6Sn5 IMC 

layer, respectively, than that of SAC305.   
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From Figure 8-15, two interesting findings can be observed in the growth pattern for 

the Cu6Sn5 IMC for all solders during 200ᵒC aging. First, there was a sudden growth 

of the Cu6Sn5 IMC layer after just 100 hours of aging at 200ᵒC. And second, an 

additional sudden growth of the Cu6Sn5 IMC layer was observed after 1000 hours of 

aging at 200ᵒC.  

The first sudden growth after 100 hours was due to high diffusivity between the tin 

(from the solder) and the copper (from the component pad) leading to thick Cu6Sn5 

IMC layer at the component side during 200ᵒC aging. From Figure 8-15, it is apparent 

that Cu6Sn5 IMC thickness jumped from ~5 microns (after reflow) to ~24 microns 

within 100 hours of aging at 200ᵒC. It is also important to note that the Cu6Sn5 IMC 

layer thickness after 100 hours at 200ᵒC aging was much higher than that observed 

after 1000 hours of aging at 185ᵒC. Thus, a 15ᵒC increase in the aging temperature 

from 185ᵒC to 200ᵒC can cause a significant increase in the Cu6Sn5 IMC layer 

thickness in a short period of time.     

During subsequent aging after 100 hours at 200ᵒC, the thickness of Cu6Sn5 IMC 

grows steadily up to 600 hours for all solders, as shown in Figure 8-15. An additional 

sudden growth of the Cu6Sn5 interfacial IMC has been observed after 1000 hours. 

Such a rapid increase in the thickness of Cu6Sn5 IMC observed after 1000 hours was 

quite unexpected. Further analyses revealed that such an unexpected increase in the 

growth of Cu6Sn5 IMC layer was due to the consumption of the Ni layer from the 

ENIG finish on the board side.  

In order to explain Ni layer consumption phenomenon, an SAC305 solder joint 

sample was used as an example. Figure 8-16 shows a SAC305 solder joint in a 
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QFN44 package at time intervals of 0, 100, 200, 400, 600, and 1000 hours under 

200ᵒC aging.  

 

Figure 8-16: Ni layer consumption phenomenon in QFN44 package, a demonstration 

using SAC305 solder joint at various time intervals under 200ᵒC aging. 

As shown in Figure 8-16, the Cu6Sn5 IMC layer grew steadily from 100 to 600 hours 

aging at 200ᵒC during which the Ni layer on the board side seemed unaffected. The 

Ni layer in ENIG plating for board finish acts as a diffusion barrier layer to prevent 

the consumption of Cu pad on the board side. If the Ni layer is consumed, no barrier 

layer exists between the copper pad and the board side interfacial IMC. Due to lack of 

the barrier layer, copper atoms from the board side start migrating toward the Cu6Sn5 

IMC layer on the component side. With copper atoms migrating from the board side 

and tin atoms present from the solder bulk, the reaction between the tin and the 

copper continues and eventually forms an even thicker Cu6Sn5 IMC layer as observed 

after 1000 hours of aging at 200ᵒC. The magnified view of consumed Ni layer in 

Cu6Sn5 IMC Cu3Sn IMC 
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SAC305 solder joint after 1000 hours of aging at 200ᵒC is shown in Figure 8-16. In 

addition to copper atoms migration from board side to component side, tin atoms 

from solder bulk also start reacting with copper pad on the board side and form two 

additional IMCs such as Cu6Sn5 and Cu3Sn.  

Similar findings have been also observed for a resistor package, which is discussed in 

detail in chapter 9. It is important to note that even though the Ni layer breaks after 

1000 hours, Low Mn, High Mn, and High Ce solders still suppress the growth of 

Cu6Sn5 IMC layer, as shown in Figure 8-15. High Mn solder almost stabilized the 

growth of the Cu6Sn5 IMC layer between 200 and 600 hours. At 1000 hours of aging, 

Low Mn, High Mn, and High Ce solders resulted in much lower thickness of Cu6Sn5 

interfacial IMCs compared to SAC305; and Low Ce showed the thickest Cu6Sn5 IMC 

at 1000 hours aging at 200ᵒC.  

The results of %voiding at the interface between the Cu6Sn5 IMC layer and the solder 

bulk during 200ᵒC aging are summarized in Figure 8-17. The error bar shown in 

Figure 8-17 indicates the standard deviation of measurements. 
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Figure 8-17: QFN44 - %Voiding Measurements during 200ᵒC Aging 

It can be seen from Figure 8-17 that substantial voiding (reduction in contact length) 

was observed after 100 hours of aging at 200ᵒC. Except for Low Mn solder at the 200 

hour interval, all modified SAC305 solders were effective at reducing voiding at the 

interface between the Cu6Sn5 IMC layer and the solder bulk during 200ᵒC aging. In 

general, High Mn solder is the most effective solder for forming the fewest voids. 

Compared to SAC305, High Mn formed 29% to 41% less voids. High Ce is the 

second most effective in reducing voiding with 16% to 32% less voids than SAC305 

during 1000 hours of aging at 200ᵒC. Except for High Ce at 200 hours, High Mn 

resulted in the thinnest Cu6Sn5 IMC layer during aging. SAC305 solder showed the 

highest voiding at each time interval except for 200 hours during 200ᵒC aging. 

In addition to the Cu6Sn5 IMC layer thickness and %voiding, the evolution of 

interfacial IMCs is also important. ESEM images at 2500x magnification for all 
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solders after 100 hours/200ᵒC aging and after 1000 hours/200ᵒC aging are used in the 

discussion below. 

Figure 8-18 shows a SAC305 solder joint. During 100 hours of aging at 200ᵒC, both 

Ag3Sn and Cu6Sn5 particles were coarsened. Migration of few Ag3Sn particles near 

the IMC surface and within the Cu6Sn5 IMC layer can also be seen in Figure 8-18 (a). 

In addition, a scallop shaped board side IMC layer was also visible after 100 hours of 

aging at 200ᵒC. Evidence of thick Cu6Sn5 IMC layer, Cu3Sn IMC layer and voids can 

be also seen Figure 8-18 (a).   

After 1000 hours of aging, a large Cu6Sn5 IMC layer was observed, as shown in 

Figure 8-18 (b). The solder bulk was completely consumed at the expense of the 

sudden growth of the Cu6Sn5 IMC layer. The consumption of bulk solder was so 

aggressive that it reached close to the board side interfacial IMC layer and resulted in 

large voids between two interfacial IMCs. Large Ag3Sn particles were also visible 

within the Cu6Sn5 IMC layer. In addition, a crack was also observed within the 

Cu6Sn5 IMC layer. Thickness of the Cu3Sn IMC layer was also increased during 

aging from 100 to 1000 hours. The board side interfacial IMC showed large scallops 

after 1000 hours of aging at 200ᵒC.  
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(a) (b) 

Figure 8-18: QFN44 - SAC305 Solder Joint (a) After 100 hours/200ᵒC Aging, (b) 

After 1000 hours/200ᵒC Aging 

Figure 8-19 shows a SAC305+0.05%Mn solder joint. During 100 hours of aging, 

both the Ag3Sn and Cu6Sn5 particles coarsened; however, the size of the larger Ag3Sn 

and Cu6Sn5 particles observed in the Low Mn solder was smaller than that of 

SAC305. The board side interfacial IMC showed laminar type morphology after 100 

hours of aging. Figure 8-19 (b) shows many intermittent cracks passing through the 

Cu3Sn IMC and the interface between the Cu6Sn5 and Cu3Sn IMC layers. The 

presence of large Ag3Sn particles and concentrated tin within Cu6Sn5 IMC layer after 

1000 hours of aging can be also seen in Figure 8-19 (b). It is important to note that 

the thickness of the Cu6Sn5 IMC layer observed in Low Mn solder was much smaller 

than that of SAC305. 
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(a) (b) 

Figure 8-19: QFN44 - SAC305+0.05%Mn Solder Joint (a) After 100 hours/200ᵒC 

Aging, (b) After 1000 hours/200ᵒC Aging 

Figure 8-20 shows a SAC305+0.17%Mn solder joint. Within 100 hours of aging, less 

coarsening of Ag3Sn and Cu6Sn5 particles was observed in the bulk solder, as shown 

in Figure 8-20 (a). This indicates that High Mn solder is effective in reducing the 

growth of bulk IMCs during 200ᵒC aging. The interfacial IMC on the board side 

showed a laminar-type morphology. After 1000 hours of aging, small intermittent 

cracks within the Cu6Sn5 IMC layer were observed. The presence of large Ag3Sn 

particles and concentrated tin within the Cu6Sn5 IMC layer after 1000 hours of aging 

can be also seen from Figure 8-20 (b). Both Figure 8-20 (a) and Figure 8-20 (b) 

clearly show that the thickness of the Cu6Sn5 IMC layer and interfacial voids 

observed in High Mn solder were much smaller than that of SAC305.    
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(a) (b) 

Figure 8-20: QFN44 - SAC305+0.17%Mn Solder Joint (a) After 100 hours/200ᵒC 

Aging, (b) After 1000 hours/200ᵒC Aging 

Figure 8-21 shows a SAC305+0.07%Ce solder joint. After 100 hours of aging, a 

thicker board side interfacial IMC in Low Ce than that of SA305 was observed. In 

addition, coarsening of the Ag3Sn particles in the solder bulk and their migration to 

the Cu6Sn5 IMC layer can be seen in Figure 8-21 (a). After 1000 hours of aging, the 

thickest Cu6Sn5 IMC layer in Low Ce solder was observed. Many small intermittent 

cracks at several locations within the Cu6Sn5 IMC layer can be seen in Figure 8-21 

(b). In addition, a crack passing through the interface between the Cu3Sn IMC layer 

and the copper pad can be also seen in Figure 8-21 (b). 
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(a) (b) 

Figure 8-21: QFN44 - SAC305+0.07%Ce Solder Joint (a) After 100 hours/200ᵒC 

Aging, (b) After 1000 hours/200ᵒC Aging 

Figure 8-22 shows a SAC305+0.13%Ce solder joint. Along with a few large Ag3Sn 

particles, many smaller Ag3Sn particles after 100 hours of aging can be seen in Figure 

8-22 (a). The migration of a few large Ag3Sn particles near the surface and within the 

Cu6Sn5 IMC layer can also be found. After 1000 hours of aging, a crack at the 

interface between the Cu3Sn IMC layer and the copper pad was found. Also, 

intermittent cracks within the Cu6Sn5 IMC layer can be also seen in Figure 8-22 (b). It 

is important to note that the thickness of the Cu6Sn5 IMC layer in High Ce solder was 

much smaller than that of SAC305.  
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(a) (b) 

Figure 8-22: QFN44 - SAC305+0.13%Ce Solder Joint (a) After 100 hours/200ᵒC 

Aging, (b) After 1000 hours/200ᵒC Aging 

In addition to QFN44 packages, QFN32 packages were also analyzed during 

isothermal aging at 185ᵒC and 200ᵒC up to 1000 hours. The aging result summary of 

the QFN32 package is discussed next.  

8.5. QFN32 - Cu6Sn5 IMC Growth and %Voiding during 185ᵒC 

Aging  

The average thickness of the Cu6Sn5 interfacial IMC layer during 185ᵒC aging (up to 

1000 hours) observed in QFN32 package for all five solders are summarized in 

Figure 8-23.The results for %voiding at the interface between the Cu6Sn5 IMC layer 

and the solder bulk observed in QFN32 package during 185ᵒC aging are summarized 

in Figure 8-24. The error bar shown in both Figure 8-23 and Figure 8-24 indicates the 

standard deviation of measurements.   

The results observed in QFN44 and QFN32 packages are quite similar. Thus, only 

key points from QFN32 study are highlighted in this section. ESEM images at 2500x 

Cu6Sn5 IMC Layer 

Cu6Sn5 IMC Layer 
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magnification for all solders observed in QFN32 package after reflow, after 100 

hours/185ᵒC aging, and after 1000 hours/185ᵒC aging are shown in Appendix-B. 

 
Figure 8-23: QFN32 - Cu6Sn5 IMC Growth Summary during 185ᵒC Aging 

It is important to note that the average thickness of the Cu6Sn5 IMC layer for all 

solders found in QFN32 was a little lower than that of QFN44. This is believed to be 

due to the smaller copper pad size of QFN32. From Figure 8-23, it can be concluded 

that except for the Low Ce/1000 hour interval, all modified SAC305 solders were 

effective in suppressing the growth of Cu6Sn5 IMC layer during 185ᵒC. High Mn 

solder was the most effective in reducing the growth and resulted in the thinnest 

Cu6Sn5 IMC layer during aging. After 1000 hours of aging at 185ᵒC, High Mn 

showed 14% lower Cu6Sn5 IMC layer thickness than that of SAC305. Low Ce solder 

does not appear to be effective at suppressing the Cu6Sn5 IMC layer growth during 
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extensive aging (up to 1000 hours) at 185ᵒC. Overall, SAC305 solder formed the 

thickest Cu6Sn5 IMC layer during aging.  

 

 

Figure 8-24: QFN32 - %Voiding Measurements during 185ᵒC Aging 

Comparing solder performance by %voiding measurement from Figure 8-24, it can be 

seen that substantial voiding (reduction in contact length) was observed after 100 

hours of aging at 185ᵒC for all solders. Except for the Low Mn/200 hour and Low 

Ce/1000 hour intervals, all modified SAC305 solders reduced voiding at the interface 

between the Cu6Sn5 IMC layer and the solder bulk during 185ᵒC aging relative to 

SAC305. High Mn was the most effective solder in forming the fewest voids  as 

evident at each time interval during 185ᵒC aging. Compared to SAC305, High Mn 

formed 20% to 28% less voids. In general, High Ce was the second most effective 

solder after High Mn in terms of forming fewer voids. Compared to SAC305, High 
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Ce formed 8% to 14% fewer voids. Overall, SAC305 solder showed the highest 

voiding during 185ᵒC aging.  

8.6. QFN32 - Cu6Sn5 IMC Growth and %Voiding during 200ᵒC 

Aging  

The average thicknesses of the Cu6Sn5 IMC layers during 200ᵒC aging up to 1000 

hours observed in QFN32 packages for each solder are summarized in Figure 8-25. 

The results for %voiding at the interface between the Cu6Sn5 IMC layer and the 

solder bulk observed for the QFN32 package during 200ᵒC aging are summarized in 

Figure 8-27. The error bars shown in both Figure 8-25 and Figure 8-27 indicate the 

standard deviation of measurements. ESEM images at 2500x magnification for all 

solders observed in QFN32 package after 100 hours/200ᵒC aging, and after 1000 

hours/200ᵒC aging are shown in Appendix-B. 
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Figure 8-25:  QFN32 - Cu6Sn5 IMC Growth Summary during 200ᵒC Aging 

It is important to note that average thickness of the Cu6Sn5 IMC layer for all solders 

found for QFN32 was lower than that observed for QFN44 for the same condition. 

This is believed to be due to the smaller pad size of QFN32. Similar to QFN44, a 

sudden growth in the Cu6Sn5 IMC layer thickness was also observed in QFN32 after 

100 hours of aging at 200ᵒC. For Low Ce solder, a second sudden growth of the 

Cu6Sn5 IMC layer was observed after 400 hours of aging. Upon subsequent aging, the 

Cu6Sn5 IMC layer further grew during 600 hours and growth again accelerated that 

formed the thickest Cu6Sn5 IMC layer observed after 1000 hours of aging at 200ᵒC. 

These sudden growths at 400, 600, and 1000 hours aging were believed to be related 

to consumption of the Ni barrier layer, as discussed previously in the section 8.4. 

Evident of a consumed Ni layer for Low Ce solder after 1000 hours of aging at 200ᵒC 
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is shown in Figure 8-26 (b). The formation of Cu6Sn5 and Cu3Sn IMCs can also be 

seen on the board side in Figure 8-26 (b). 

 

 
(a) (b) 

Figure 8-26: (a) SAC305+0.07%Ce Solder Joint after 1000 hours of Aging at 200ᵒC, 

(b) Magnified View of Consumed Ni Layer 

From Figure 8-25, it can be seen that for SAC305, the Ni layer was partially 

consumed at 600 hours, and complete consumption occurred during subsequent 

aging, which resulted in a very thick Cu6Sn5 IMC layer observed after 1000 hours of 

aging at 200ᵒC. Low Mn, High Mn, and High Ce solders also exhibited sudden 

growth; however, the average thicknesses of Cu6Sn5 IMC layers for these solders 

were smaller than for SAC305. High Mn solder was the most effective in suppressing 

the growth of the Cu6Sn5 IMC layer.  After 1000 hours of aging at 200ᵒC, High Mn 

showed a 19% reduction in the Cu6Sn5 IMC layer compared to that of SAC305.  
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Figure 8-27: QFN32 - %Voiding Measurements during 200ᵒC Aging 

Comparing solder performance by %voiding measurement from Figure 8-27, it can be 

seen that substantial voiding (reduction in contact length) was observed after 100 

hours of aging at 200ᵒC for all solders. Except for the Low Ce/600 hour interval and 

the Low Mn/1000 hour interval, all modified SAC305 solders performed better than 

SAC305 at reducing voiding. High Mn was the most effective solder in forming the 

fewest voids as evident at each time interval during aging. Compared to SAC305, 

High Mn formed 24% to 56% less voids. In addition, High Ce was the second most 

effective in reducing voiding. Compared to SAC305, High Ce formed 14% to 37% 

less voids. In general SAC305 solder showed the highest voiding during 200ᵒC aging.  
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8.7.  Conclusions 

This study was conducted to examine the aging effect on five selected solders at two 

different temperatures (viz. 185ᵒC and 200ᵒC) by analyzing two different sizes of 

QFN (viz. QFN44 and QFN32). This study has resulted many in important findings 

as summarized below. 

 A sudden growth in the thickness of Cu6Sn5 IMC layer was observed after just 

100 hours of aging at 185ᵒC and 200ᵒC for all selected solders in QFN44 and 

QFN32 packages.  

 Overall, all modified SAC305 solders were effective in suppressing the 

growth of Cu6Sn5 interfacial IMC during 185ᵒC aging.  

 Except Low Ce solder, remaining modified SAC305 solders were also 

effective in suppressing the growth of Cu6Sn5 interfacial IMC during 200ᵒC 

aging. 

 High Mn solder was the most effective solder in retarding the growth of 

Cu6Sn5 interfacial IMC during both 185ᵒC and 200ᵒC aging conditions. 

 After 1000 hours of aging at 200ᵒC, a sudden increase in the thickness of 

Cu6Sn5 IMC layer was observed for all solders in the QFN44 package. It was 

found that this unexpected growth was related to consumption of the Ni layer 

which allows direct path for copper atoms to migration from the board side to 

the component side to further increase the thickness of the Cu6Sn5 IMC layer 

on the component side. In addition, QFN32 package examined under 200ᵒC 

aging also revealed Ni layer consumption; however, SAC305 and Low Ce 
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solders showed the Ni layer consumption around 400 or 600 hours of aging at 

200ᵒC which resulted the thickest Cu6Sn5 interfacial IMC. Once the Ni layer 

was consumed, two additional IMCs, such as Cu6Sn5 and Cu3Sn, were found 

of the board side.  

 A sudden increase in voids or reduction in contact length IMC was observed 

after just 100 hours of aging at 185ᵒC and 200ᵒC for all selected solders in 

QFN44 and QFN32 packages.  

 High Mn showed the lowest %voiding, and SAC305 showed the highest 

%voiding during aging at 185ᵒC and 200ᵒC in QFN44 and QFN32 packages.  

 SAC305 and High Mn show direct correction between the Cu6Sn5 IMC layer 

growth and the void growth. For other solders, no such direct correlation was 

observed.  
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9. Interfacial Intermetallic Formation and Growth during 

Isothermal Aging at 185ᵒC and 200ᵒC on R2512 Package 

This chapter discusses the growth of interfacial IMCs on a R2512 package observed 

during isothermal aging at 185ᵒC and 200ᵒC up to 1000 hours. The interfacial IMC 

thickness measurement was conducted on both the component side and the board side 

interfacial IMCs of R2512 package.  This study was conducted to understand the 

growth of interfacial IMCs on R2512 during 185ᵒC and 200ᵒC aging that can affect 

the reliability of R2512 package when subjected to the mechanical shock testing after 

exposing to thermal aging, as discussed in the chapter 10.  

A R2512 package consists of an alumina (Al2O3) substrate with leads or terminations 

coated with electroplated nickel. These nickel leads are again plated with matte tin 

finish. A left and a right side solder joint of R2512 after reflow are shown in Figure 

9-1. When a R2512 package is soldered to the ENIG-plated board, during reflow, 

electroplated nickel on the component side and electroless nickel on the board side 

react with solder bulk and form Ni3Sn4 IMC on the component side and (Ni,Cu)3Sn4 

IMC on the board side, as shown in Figure 9-2 (a). In addition to interfacial IMCs, 

IMCs within the solder bulk were also found. These bulk IMCs were Cu6Sn5, Ag3Sn, 

and AuSn4, as shown in Figure 9-2 (b). During subsequent aging at 185ᵒC and 200ᵒC 

up to 1000 hours, both IMCs at the interface and within the solder bulk grow with 

time and temperature. In this study, emphasis is placed on the interfacial IMCs 

because exposure to high temperature can lead to significant growth in the interfacial 

IMCs, and they can became primary failure sites during mechanical shock loading. 
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The detailed information on the growth of interfacial IMCs on the component and 

board side of R2512 package at 185ᵒC and 200ᵒC up to 1000 hours is discussed next. 

  
(a) (b) 

Figure 9-1: A Left and a Right Solder Joint of R2512 after Reflow (SAC305 – 

Time=0) 

 
 

(a) (b) 

Figure 9-2: (a) Interfacial IMCs (b) bulk IMCs formation after Reflow on R2512 

Package (SAC305 – Time=0) 

In order to measure average thickness of interfacial IMCs on R2512 package, ESEM 

images at 2000x magnification were taken at various locations covering the entire 

IMC layer region on the component and board side. Figure 9-3 shows regions of 

interfacial IMC on the component and board side that were used for IMC layer 

thickness measurement. Image processing software, Image-J was used to calculate the 

total area of IMC layer and the horizontal distance from each ESEM image. An 

average thickness of the IMC layer for each ESEM image was calculated by dividing 

(Ni,Cu)3Sn4 

Ni3Sn4 
Ag3Sn 

Ag3Sn 

Cu6Sn5 
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the IMC total area by the horizontal distance. Then, the sample average IMC layer 

thickness was calculated by averaging the calculated result for each ESEM image. 

 
Figure 9-3: Regions of IMC Layer on the Component and Board Side for Calculating 

Interfacial IMC Layer Thickness 

The next few sections provide the detailed information on IMC layer growth on the 

component and the board side of R2512 package under 185ᵒC and 200ᵒC isothermal 

aging at 0, 100, 200, 400, 600, and 1000 hour intervals. 

9.1. R2512 – Interfacial IMC Growth on the Component and the 

Board side during 185ᵒC Aging  

Figure 9-4 and Figure 9-5 show the growth summary of interfacial IMC on the 

component side and the board side, respectively, during 185ᵒC aging up to 1000 

hours. 
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Figure 9-4: R2512 - Component Side Ni3Sn4 Interfacial IMC Growth Summary 

during 185ᵒC Aging 

 
Figure 9-5: R2512 – Board Side (Ni,Cu)3Sn4 Interfacial IMC Growth Summary 

during 185ᵒC Aging  
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From Figure 9-4, it can be concluded that all modified SAC305 solders were effective 

in suppressing the growth of the Ni3Sn4 interfacial IMC on the component side. High 

Mn solder was the most effective in suppressing the growth, and resulted in the 

thinnest Ni3Sn4 IMC layer during 185ᵒC aging. After 1000 hours of aging at 185ᵒC, 

High Mn achieved a 22% reduction in the growth of Ni3Sn4 IMC layer compared to 

that of SAC305. Low Ce solder seems less effective during extended aging hours 

especially after 1000 hours. Overall, SAC305 solder showed the thickest Ni3Sn4 IMC 

layer during 185ᵒC aging, except Low Ce/1000 hour interval. 

By comparing the growth of board side (Ni,Cu)3Sn4 interfacial IMC from Figure 9-5, 

it can be concluded that all modified SAC305 solders were also effective in 

supressing the growth of (Ni,Cu)3Sn4 IMC layer. High Mn solder was the most 

effective in supressing the growth, and resulted in the thinnest (Ni,Cu)3Sn4 IMC layer 

on the board side during 185ᵒC aging. After 1000 hours of aging at 185ᵒC, High Mn 

achieved a 26% reduction in the growth of (Ni,Cu)3Sn4 IMC layer compared to that 

of SAC305. High Ce initially formed thick (Ni,Cu)3Sn4 IMC layer after reflow; 

however, during subsequent aging, High Ce was effective in supressing the IMC layer 

growth, and turned out to be the second most effective after High Mn solder. Overall, 

SAC305 solder showed the thickest (Ni,Cu)3Sn4 IMC layer on the board side at all 

intervals during 185ᵒC aging. 

It is important to note that, after reflow, the Ni3Sn4 IMC layer on the component side 

for all solders was initially thinner than the (Ni,Cu)3Sn4 IMC layer on the board side. 

During aging, both these IMCs continued to grow and resulted thicker IMC layer; 

however, after some period of aging, it was found that the growth rate of the Ni3Sn4 
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IMC layer was faster than the growth rate of (Ni,Cu)3Sn4 IMC layer. Figure 9-4 and 

Figure 9-5 show that after 200 hours of aging at 185ᵒC, the thickness of Ni3Sn4 IMC 

surpassed the thickness of (Ni,Cu)3Sn4 IMC layer, and resulted higher thickness in 

Ni3Sn4 IMC layer during subsequent aging at 185ᵒC.   

In order to further discuss the growth of interfacial and bulk IMCs during 185ᵒC 

aging, ESEM images for all five solders at 2000x magnification after reflow and after 

1000 hours/185ᵒC aging (solder interfaces and solder bulk) are shown next. 

Figure 9-6 shows a SAC305 solder joint. After reflow, both Ni3Sn4 and (Ni,Cu)3Sn4 

interfacial IMCs were acicular (needle-like), as shown in Figure 9-6 (a). During aging 

both IMCs grew and become laminar (planar-type) after 1000 hours of aging, as 

shown in Figure 9-6 (b). Due to aggressive polishing, both side interfacial IMC layers 

were found to be partially shattered. Ni barrier layer on the board side was also found 

to be partially consumed after 1000 aging, as shown in Figure 9-6 (b). Figure 9-6 (a) 

also shows bulk IMCs that includes fine particles of Ag3Sn and AuSn4 IMCs. During 

aging, both these particles also coarsened. Figure 9-6 (c) shows solder bulk IMCs 

after 1000 hours of aging at 185ᵒC. Clearly, significant coarsening and enlargement 

can be seen in both Ag3Sn and AuSn4 IMCs. After 1000 hours of aging, these 

particles were found to be migrated to the surface of interfacial IMC layers, as shown 

in Figure 9-6 (b). The migration of coarsened bulk IMC particles to the interfacial 

IMCs can also be seen in Figure 9-6 (b).    



 

179 

 

  
(a) (b) 

 
(c) 

Figure 9-6: R2512 - SAC305 Solder Joint (a) After Reflow, (b) Solder Interfaces after 

1000 hours/185ᵒC Aging, (c) Solder Bulk after 1000 hours/185ᵒC Aging 

Figure 9-7 shows a SAC305+0.05%Mn solder joint. From Figure 9-7 (a), it can be 

seen that Ni3Sn4 IMC layer is acicular type; whereas, (Ni,Cu)3Sn4 IMC layer is planar 

type. In addition, after reflow, (Ni,Cu)3Sn4 IMC layer is also found to be thicker than 

the Ni3Sn4 IMC layer. Interfacial IMCs grow during aging but slower than SAC305 

solder, as shown in Figure 9-7 (b).  After 1000 hours of aging, both Ag3Sn and AuSn4 

IMCs were found to be much smaller than those observed in SAC305. This shows 

that Low Mn solder is also effective to minimize coarsening of bulk IMCs during 

185ᵒC aging. 
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(a) (b) 

 
(c) 

Figure 9-7: R2512 - SAC305+0.05%Mn Solder Joint (a) After Reflow, (b) Solder 

Interfaces after 1000 hours/185ᵒC Aging, (c) Solder Bulk after 1000 hours/185ᵒC 

Aging 

Figure 9-8 shows a SAC305+0.17%Mn solder joint. Figure 9-8 (a) shows that both 

Ni3Sn4 and (Ni,Cu)3Sn4 IMC layers are laminar type. After 1000 hours of aging at 

185ᵒC, both interfacial IMC layers showed sluggish growth and resulted in the 

thinnest IMC layers. In addition to reduction in growth in the interfacial IMCs, bulk 

IMCs were also found to coarsen less. Both Figure 9-8 (b) and Figure 9-8 (c) show 

many small Ag3Sn and AuSn4 IMC particles distributed in the solder bulk. Thus, 

High Mn solder effectively reduces the growth of both interfacial and bulk IMCs 

during 185ᵒC aging.  
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(a) (b) 

 
(c) 

Figure 9-8: R2512 - SAC305+0.17%Mn Solder Joint (a) After Reflow, (b) Solder 

Interfaces after 1000 hours/185ᵒC Aging, (c) Solder Bulk after 1000 hours/185ᵒC 

Aging 

Figure 9-9 shows a SAC305+0.07%Ce solder joint. Figure 9-9 (a) shows acicular 

type interfacial IMCs on both the component and the board side. After 1000 hours of 

aging, considerable growth in the Ni3Sn4 IMC layer was observed compared to the 

(Ni,Cu)3Sn4 IMC layer. Due to aggressive polishing, both side interfacial IMC layers 

were found to be shattered, as shown in Figure 9-9 (b).  Many large coarsened IMC 

particles of Ag3Sn and AuSn4 can also be seen in Figure 9-9 (c).     
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(a) (b) 

 
(c) 

Figure 9-9: R2512 - SAC305+0.07%Ce Solder Joint (a) After Reflow, (b) Solder 

Interfaces after 1000 hours/185ᵒC Aging, (c) Solder Bulk after 1000 hours/185ᵒC 

Aging 

Figure 9-10 shows a SAC305+0.13%Ce solder joint. After 1000 hours of aging, both 

Ni3Sn4 and (Ni,Cu)3Sn4 IMC layers were found to be much thinner than those of 

SAC305, as shown in Figure 9-10 (b). Both layers were found to be laminar type.  

Both Figure 9-10 (b) and Figure 9-10 (c) show many small Ag3Sn IMC particles 

distributed in the solder bulk. In addition, both Figure 9-10 (b) and Figure 9-10 (c) 

also show many smaller and few larger particles of AuSn4. Thus, it can be concluded 

that High Ce is more effective in suppressing the growth of both side interfacial IMCs 

and Ag3Sn bulk IMC particles, and less effective in suppressing the growth of AuSn4.  
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(a) (b) 

 
(c) 

Figure 9-10: R2512 - SAC305+0.13%Ce Solder Joint (a) After Reflow, (b) Solder 

Interfaces after 1000 hours/185ᵒC Aging, (c) Solder Bulk after 1000 hours/185ᵒC 

Aging 

9.2. R2512 – Interfacial IMC Growth on Component and Board side 

during 200ᵒC Aging  

Figure 9-11 shows the growth summary of Ni3Sn4 interfacial IMCs on the component 

side during 200ᵒC aging. It can be concluded that in general all modified SAC305 

solders were effective to suppress the growth of Ni3Sn4 interfacial IMC on component 

side. Overall, High Mn solder was the most effective to suppress the growth and 
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resulted in the thinnest Ni3Sn4 IMC layer during 200ᵒC aging. In general, SAC305 

solder had  the thickest Ni3Sn4 IMC layer on component side during 200ᵒC aging. 

 
Figure 9-11: R2512 - Component Side Ni3Sn4 Interfacial IMC Growth Summary 

during 200ᵒC Aging 

During interfacial IMC measurement analysis on the board side for 200ᵒC aging, a 

strange phenomenon was observed. The interfacial IMC growth on the board side for 

all solders except High Mn was quite unexpected. All solders except High Mn 

showed very rapid growth on the board side IMC after 100 hours aging, and this 

unexpected trend continued during the aging at 200ᵒC. Upon further analysis, it was 

found that this strange phenomenon was related to the Ni layer consumption which 

resulted in very thick interfacial IMC layer on the board side. First this phenomenon 

is discussed in detail, and then the board side IMC layer thickness measurements for 

all solders are presented.  
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9.2.1.  Evolution of Ni Layer Consumption during 200ᵒC Aging 

SAC305 solder joint is used for a reference to explain the evolution of Ni layer 

consumption on the board side during 200ᵒC aging. ESEM image of SAC305 solder 

joint at six different aging time intervals including (a) after reflow, (b) after 100 hour, 

(c) after 200 hour, (d) after 400 hour, (e) after 600 hour, and (d) after 1000 hour 

exposure to 200ᵒC are shown in Figure 9-12. After reflow condition as shown in  

Figure 9-12 (a), a uniform Ni layer was found between the copper pad on the board 

side and (Ni,Cu)3Sn4 IMC layer as shown in Figure 9-12 (a). Ni layer also contains 

phosphorus used during electroless Ni layer deposition as a part of ENIG plating 

process. This Ni layer works as a diffusion barrier layer to prevent the solder 

interaction with the copper pad on the board side. However, during aging, phosphorus 

reacts with the Ni layer and forms a Ni3P dark layer which contains many small 

vertical voids after just 100 hours of exposure at 200ᵒC, as shown in Figure 9-12 (b). 

This dark layer (Ni3P) is also called the reaction layer, and it forms at the cost of Ni 

layer consumption. As aging continues, the reaction layer further transforms into 

Ni2SnP layer by completely consuming the Ni barrier layer, as shown in Figure 9-12 

(b). Once Ni2SnP layer is formed, no barrier layer exists. Thus reaction between Sn 

atoms (present in the solder) and Cu atoms (present at the copper pad) starts occurring 

that forms two additional IMC layers, Cu3Sn and Cu6Sn5, between the copper pad and 

Ni2SnP layer, as shown in Figure 9-12 (a). It is important to note that Ni layer 

consumption phenomenon is not uniform throughout the copper pad on the board 

side. It starts randomly at multiple locations during the initial phase of aging, and 

eventually forms four IMC layers within a small pocket during subsequent aging. 
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These pockets are visible in Figure 9-12 (b), Figure 9-12 (c), Figure 9-12 (d), and 

Figure 9-12 (f). These small pockets eventually combine and form thick layers on the 

board side, as shown in Figure 9-12 (f). The magnified view of Figure 9-12 (f) is 

shown in Figure 9-13. The presence of Kirkendall voids can also be seen between 

Cu3Sn and Cu pad on the board side in Figure 9-13.  

EDS (Energy dispersive spectroscopy) point analysis was performed to find the 

composition of four intermetallic layers found after 1000 hours of aging at 200ᵒC. 

Before Ni layer consumption, it was found that the interfacial IMC on the board side 

was (Ni,Cu)3Sn4. After the Ni layer was consumed, Cu atoms started migrating 

towards the (Ni,Cu)3Sn4 IMC layer (top layer) changing the layer composition from 

(Ni,Cu)3Sn4 to (Cu,Ni)6Sn5, as shown in Figure 9-13. 
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(c) (d) 

  
(e) (f) 

Figure 9-12: R2512 - Board side Interfacial IMC evolution for SAC305 Solder joint, 

(a) After Reflow, (b) After 100 hours/200ᵒC Aging, (c) After 200 hours/200ᵒC Aging, 

(d) After 400 hours/200ᵒC Aging, (e) After 600 hours/200ᵒC Aging, (f) After 1000 

hours/200ᵒC Aging 
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Figure 9-13: R2512- EDS Point Analysis on Board Side IMC Layers (SAC305 

Solder, 1000 hours/ 200ᵒC Aging) 

9.2.2. Board Side Interfacial IMC Thickness Measurement  

Due to the non-uniform formation of four layers at different locations on the board 

side during 200ᵒC aging, it was difficult to measure the average thickness of any 

individual layer formed on the board side. In order to keep consistency with the 

component side Ni3Sn4 IMC layer thickness measurement, it was decided to measure 

the thickness of only the top layer for all solders during 200°C aging. It is important 

to note that the composition of the top layer on the board side can vary from location 

to location as confirmed from EDS analysis. Thus, for simplicity, this top layer is 

referred as Ni-Cu-Sn layer.  

Figure 9-14 shows the growth summary of Ni-Cu-Sn interfacial IMC layer on the 

board side during 200ᵒC aging. The asterisk for Low Ce solder is used to indicate that 

Cu6Sn5 
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even though Ni-Cu-Sn interfacial IMC layer thickness was found to be smaller for 

Low Ce than that of SAC305 solder, severe Ni layer consumption was observed for 

Low Ce solder. More detail is provided for Low Ce solder with ESEM images in a 

later part of this section. From Figure 9-14, it can be concluded that High Mn solder 

was the most effective solder to suppress the thickness of board side IMC layer. In 

addition, it was also found that High Mn did not show any sign of Ni layer 

consumption, and thus it did not form four different IMC layers on the board side. 

Low Mn solder was the second most effective to suppress the growth of Ni-Cu-Sn 

interfacial IMC layer. In general, SAC305 and Low Ce formed the thickest Ni-Cu-Sn 

interfacial IMC layer during 200ᵒC aging. 

 
Figure 9-14: R2512 – Board Side Ni-Cu-Sn Interfacial IMC Growth Summary during 

200ᵒC Aging 

In order to further discuss the effect of Ni layer consumption on the IMC growth 

during 200ᵒC aging, ESEM image of both component and board side IMC at 2000x 
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magnification after 100 hours and 1000 hours aging for all solders is shown next. In 

addition, ESEM image of whole left and right solder joint of R2512 at 170x 

magnification aged after 1000 hours at 200ᵒC for all solders is also shown. 

Figure 9-15 shows a SAC305 solder joint after 100 hours and 1000 hours aging at 

200ᵒC. Figure 9-16 shows the left and the right side of SAC305 solder joint after 

1000 hours aging at 200ᵒC. Initiation and complete consumption of Ni layer after 100 

hours can be seen from Figure 9-15 (a). Upon further aging, Ni layer consumption 

starts occurring at various locations and eventually merges to form four layers on the 

board side which can be seen after 1000 hours of aging, as shown in Figure 9-15 (b). 

The severity of these layers is so high that it completely consumed tin within the 

solder underneath the resistor package, as shown in Figure 9-15 (b). At few locations 

underneath the package, voids can also be seen due to tin migration form the solder to 

the board side to form Cu3Sn and Cu6Sn5 IMCs near the copper pad on the board side. 

Figure 9-16 shows ESEM image of the left and the right side of solder joint of R2512 

package after 1000 hours of aging at 200ᵒC. Both Figure 9-16 (a) and Figure 9-16 (b) 

show many pockets on the board side indicating the evidence of Ni layer 

consumption. 
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(a) (b) 

Figure 9-15: R2512 - SAC305 Solder Joint (a) After 100 hours/200ᵒC Aging, (b) 

After 1000 hours/200ᵒC Aging 

  
(a) (b) 

Figure 9-16: R2512 – SAC305 (a) Left Solder Joint (b) Right Solder Joint after 1000 

hours/200ᵒC Aging 

Figure 9-17 shows a SAC305+0.05%Mn solder joint after 100 hours and 1000 hours 

aging at 200ᵒC. Figure 9-18 shows left and right side of SAC305+0.05%Mn solder 

joint after 1000 hours aging at 200ᵒC. After 100 hours of aging, complete 

consumption of Ni layer can be seen from Figure 9-17 (a). The initiation of Cu6Sn5 

IMC formation between copper pad and Ni2SnP layer can also be seen in Figure 9-17 

(a). After 1000 hours of aging, few evidence of four layers formation can be seen 

from Figure 9-17 (b). The formation of four layers due to Ni layer consumption had 

created many voids underneath the package on both the left and the right side of the 

solder joint after 1000 hours of aging, as shown in Figure 9-18 (a) and Figure 9-18 

Initiation of Ni layer 

consumption 

Complete 

consumption on 

Ni layer 
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(b). It is also important to note that only few pockets can be seen on the board side in 

Figure 9-18 (a) and Figure 9-18 (b) indicating less consumption of Ni layer after 1000 

hours of aging at 200ᵒC.   

  
(a) (b) 

Figure 9-17: R2512 - SAC305+0.05%Mn Solder Joint (a) After 100 hours/200ᵒC 

Aging, (b) After 1000 hours/200ᵒC Aging 

  
(a) (b) 

Figure 9-18: R2512 – SAC305+0.05%Mn (a) Left Solder Joint (b) Right Solder Joint 

after 1000 hours/200ᵒC Aging 

Figure 9-19 shows a SAC305+0.17%Mn solder joint after 100 hours and 1000 hours 

aging at 200ᵒC. Figure 9-20 shows the left and the right side of SAC305+0.17%Mn 

solder joint after 1000 hours aging at 200ᵒC. After 100 hours of aging, Ni layer 

remains unaffected, as shown in Figure 9-19 (a). Ni3Sn4 IMC layer on the component 

side and (Ni,Cu)3Sn4 IMC layer on the board side remain laminar (planar-type). Many 

fine Ag3Sn particles and a few large AuSn4 IMCs can also be seen in the solder bulk 
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in Figure 9-19 (a). After 1000 hours of aging, Ni layer still remains unaffected. Both 

component and board side interfacial IMCs were coarsened due to aging. Partial 

cracking of both interfacial IMCs can be found. This was due to an aggressive 

grinding and polishing. The component side interfacial IMC was found to be thicker 

than the board side interfacial IMC. Looking at the complete solder joint on the left 

and the right side from Figure 9-20 (a) and Figure 9-20 (b), no evidence of Ni layer 

consumption can be found after 1000 hours of aging at 200ᵒC.  Two voids can be seen 

in Figure 9-20 (b); however, these voids were process related and formed during 

reflow.   

  
(a) (b) 

Figure 9-19: R2512 - SAC305+0.17%Mn Solder Joint (a) After 100 hours/200ᵒC 

Aging, (b) After 1000 hours/200ᵒC Aging 

  
(a) (b) 

Figure 9-20: R2512 – SAC305+0.17%Mn (a) Left Solder Joint (b) Right Solder Joint 

after 1000 hours/200ᵒC Aging 
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Figure 9-21 shows a SAC305+0.07%Ce solder joint after 100 hours and 1000 hours 

aging at 200ᵒC. Figure 9-22 shows the left and the right side of SAC305+0.07%Ce 

solder joint after 1000 hours aging at 200ᵒC. After 100 hours of aging, complete 

consumption of Ni layer at two locations can be found from Figure 9-21 (a). A void 

in the solder bulk on the surface of top layer can be also found in Figure 9-21 (a). 

Upon further aging, Ni layer consumption starts occurring at various locations and 

eventually these locations merge together and form layers which can be seen after 

1000 hours of aging from Figure 9-21 (b). The severity of these layers is so high that 

it consumed most of the tin within the solder bulk and formed big voids at multiple 

locations, as shown in Figure 9-21 (b), Figure 9-22 (a), and Figure 9-22 (b). Low Ce 

solder was found to be severely affected due to Ni layer consumption compared to 

other solders during 200ᵒC aging. The formation of multiple IMC layers and voids 

can significantly affect the reliability of a solder joint especially in mechanical 

drop/shock condition.   

  
(a) (b) 

Figure 9-21: R2512 - SAC305+0.07%Ce Solder Joint (a) After 100 hours/200ᵒC 

Aging, (b) After 1000 hours/200ᵒC Aging 
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(a) (b) 

Figure 9-22: R2512 – SAC305+0.07%Ce (a) Left Solder Joint (b) Right Solder Joint 

after 1000 hours/200ᵒC Aging 

Figure 9-23 shows a SAC305+0.13%Ce solder joint after 100 hours and 1000 hours 

aging at 200ᵒC. Figure 9-24 shows the left and the right side of SAC305+0.13%Ce 

solder joint after 1000 hours aging at 200ᵒC. After 100 hours of aging, the Ni layer 

was found to be consumed, as shown in Figure 9-23 (a). Upon further aging, 

consumption of Ni layer started and formed four IMC layers at the board side. After 

1000 hours of aging, the growth of IMCs at the location on the board side is shown in 

Figure 9-23 (b).  It was found to be significant that the board side IMC formed a big 

scallop that merged with the component side interfacial IMC, as shown in Figure 9-23 

(b). A formation of big void can also be seen Figure 9-23 (b). Looking at the 

complete solder joint on the left and the right side after 1000 hours of aging at 200ᵒC 

from Figure 9-24 (a) and Figure 9-24 (b), it can be concluded that severity of Ni layer 

consumption in High Ce solder was lower than Low Ce solder as fewer locations on 

High Ce solder joint were found with Ni layer consumption. Presence of voids can 

also be seen in Figure 9-24 (a) and Figure 9-24 (b).    
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(a) (b) 

Figure 9-23: R2512 - SAC305+0.13%Ce Solder Joint (a) After 100 hours/200ᵒC 

Aging, (b) After 1000 hours/200ᵒC Aging 

  
(a) (b) 

Figure 9-24: R2512 – SAC305+0.13%Ce (a) Left Solder Joint (b) Right Solder Joint 

after 1000 hours/200ᵒC Aging 

Based on the finding from 200ᵒC aging test, it can be concluded that High Mn solder 

turned out to be an exceptionally good solder to prevent Ni layer consumption and 

suppress the growth of interfacial IMCs even up to 1000 hours of aging at 200ᵒC. In 

order to further investigate the mechanism of such extraordinary behavior, High Mn 

solder was further analyzed with two elemental analysis techniques namely EDS 

(Energy Dispersive X-ray Spectroscopy) and WDS (Wavelength Dispersive X-ray 

Spectroscopy). The results of EDS and WDS analysis are discussed in the next 

section.  
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9.3. EDS and WDS Analysis on High Mn Solder Sample 

The first technique used for elemental analysis was EDS. Two types of analyses were 

performed using EDS technique. The first type of analysis was point scan analysis 

and the other type of analysis was line-scan analysis. Due to small concentration of 

Mn dopant (0.17% by weight) in High Mn solder, more accurate analysis was also 

performed using WDS technique. WDS technique has higher detection sensitivity 

especially for trace elements.  

For both elemental analysis techniques, High Mn solder sample that was aged for 

1000 hours at 200ᵒC was used for the analysis. The results from both EDS and WDS 

techniques are discussed next.  

9.3.1. EDS Analysis Result 

Due to the lower resolution of EDS technique to detect a smaller concentration, 

numerous attempts had been made to detect Mn dopant in High Mn solder sample. 

After several attempts, it was found that the high concentration of Mn atoms was 

present at the interface between the Ni(P) layer and the (Ni,Cu)3Sn4 interfacial IMC 

layer on the board side. Results of point analysis and line-scan analysis using EDS 

technique are discussed next. 

9.3.1.1. Point Scan Analysis 

Figure 9-25 (a) shows the location of 10 points used for point scan analysis on High 

Mn solder sample. The first eight points were located at the interface between the Ni 

(P) layer and the (Ni,Cu)3Sn4 interfacial IMC layer indicated by X1 to X8, as shown 
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in Figure 9-25 (a). X9 was located within (Ni,Cu)3Sn4 interfacial IMC layer; whereas, 

X10 was located within Ni(P) layer. Figure 9-25 (b) shows the elemental spectrum for 

the location X3. Three peaks of Mn element can be found in Figure 9-25 (b). The first  

peak was near 1 keV, and two additional peaks were near 6 keV. The measured 

concentrations of Mn by weight% for all 10 points are summarized in Figure 9-25 (c). 

All eight points measured at the interface between the Ni(P) layer and the (Ni,Cu)3Sn4 

interfacial IMC layer show the presence of Mn atoms with concentration varying 

from 0.38 to 1.74 weight%. No Mn was found at X9 and X10 locations. In order to 

further confirm the presence of Mn element at the interface where Mn was detected 

by point scan analysis, a line-scan analysis was further carried out using EDS 

technique at the same interface. 

 

 
(b)  

Locations 
Mn by 

wt% 
Locations 

Mn by 

wt% 

X1 0.98 X6 0.98 

X2 1.74 X7 0.79 

X3 1.35 X8 1.09 

X4 0.38 X9 0.00 

X5 0.86 X10 0.00 
 

(a) (c) 

Figure 9-25: R2512 – (a) Locations of Point Scan Analysis, (b) Elemental Spectrum 

of X3 Location (c) Measurement of Mn Dopant by Weight% (High Mn Solder after 

1000 hours/200ᵒC Aging) 
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9.3.1.2. Line Scan Analysis 

Figure 9-26 shows ESEM image of High Mn solder at 5000x magnification. The 

location for the line-scan analysis and reference line is shown in Figure 9-26. It is 

important to note that scan line passes through the bulk solder, Ag3Sn bulk IMC 

particles, (Ni,Cu)3Sn4 interfacial IMC, Ni(P) layer, and the copper pad on the board 

side. Reference line was located at the interface between (Ni,Cu)3Sn4 interfacial IMC 

layer and the bulk solder. Due to the lower sensitivity of EDS technique to detecting 

small concentrations, a line scan analysis measurement was performed continuously 

for 4 hours to get higher counts to differentiate noise signal from raw signal. The 

qualitative representations of different elements found along the line scan with their 

elemental plots are shown in Figure 9-27. The elemental plot of Mn can be seen in 

Figure 9-27 (b). The measured counts for Mn element were less than other elements 

due to its smaller concentration in High Mn Solder. Though the counts are few, the 

presence of high concentration of Mn atoms can be seen at the interface between 

Ni(P) layer and (Ni,Cu)3Sn4 interfacial IMC layer from Figure 9-27 (b). The 

magnified view of the elemental plot of Mn is shown in Figure 9-28. This finding 

confirms the presence of high concentration of Mn atoms as previously found during 

the point scan analysis from the measurement at X1 to X8 locations.    
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Figure 9-26: R2512 - Location of Line Scan Analysis and Reference Line for EDS 

Technique (High Mn Solder after 1000 hours/200ᵒC aging) 

 

Location for Line 

Scan Analysis 

Reference 

Line 



 

201 

 

 
Figure 9-27: R2512 - EDS Line Scan Measurement Results (a) Compiled Elemental 

Plot with Line Scan and Reference Line (b) Elemental Plot of Mn (c) Elemental Plot 

of Ni (d) Elemental Plot of Sn (e) Elemental Plot of P (f) Elemental Plot of Ag (g) 

Elemental Plot of Cu (h) Combined Elemental Plot of All Elements (High Mn Solder 

after 1000 hours/200ᵒC Aging) 
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Figure 9-28: R2512 - Elemental Plot of Mn during EDS Line Scan Analysis (High 

Mn Solder after 1000 hours/200ᵒC Aging) 

9.3.2. WDS Analysis Result 

High Mn solder sample was further analyzed with WDS technique that has higher 

detection sensitivity especially for trace elements. A line scan analysis was again 

performed using WDS technique. The location for line scan is shown in Figure 9-29. 

It is important to note that line scan passes through the bulk solder, Ag3Sn bulk IMC 

at the surface of (Ni,Cu)3Sn4 interfacial IMC, (Ni,Cu)3Sn4 interfacial IMC, Ni(P) 

layer, and the copper pad on the board side. The qualitative representation of different 

elements found along the line during WDS analysis is shown in Figure 9-30. Looking 

at Mn plot from Figure 9-30, a clear peak for Mn can be seen at the interface between 

Ni(P) layer and (Ni,Cu)3Sn4 interfacial IMC layer. The magnified view of Mn 

elemental plot with the raw data and refined data signal are shown in Figure 9-31. 
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Figure 9-30 and Figure 9-31 confirms results from EDS technique by accurately 

showing presence of high concentration of Mn atoms at interface between Ni(P) layer 

and (Ni,Cu)3Sn4 interfacial IMC layer.  

 
Figure 9-29: R2512 - Location of Line Scan Analysis for WDS Technique (High Mn 

Solder after 1000 hours/200ᵒC aging) 

Location for Line Scan 

Analysis 
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Figure 9-30: R2512 - WDS Line Scan Measurement Results. Elements are ordered as 

follow Ni, Mn, Sn, P, Cu and Ag (High Mn Solder after 1000 hours/200ᵒC aging)     

 

  
(a) (b) 

Figure 9-31: R2512 - Elemental Plot of Mn during WDS Line Scan Analysis (a) Raw 

Signal (b) Refined Signal (High Mn Solder after 1000 hours/200ᵒC Aging) 
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All three different analysis performed using EDS and WDS techniques confirm the 

presence of high concentration of Mn at the interface between Ni(P) layer and 

(Ni,Cu)3Sn4 interfacial IMC layer. This indicates that migration of Mn atoms at the 

interface is the reason for stopping Ni layer consumption during 200ᵒC aging. It is 

believed that the presence of high concentration of Mn atoms at the interface works as 

a diffusion barrier. This high concentration of Mn atoms does not allow Sn atoms 

migrating from the solder bulk through (Ni,Cu)3Sn4 IMC layer to react with the Ni(P) 

layer. Thus, formation of Ni2SnP IMC layer can be prevented and the integrity of 

Ni(P) layer can be maintained during high temperature thermal aging. In addition, a 

high concentration of Mn atoms at the interface also minimizes the migration of Ni 

atoms from Ni(P) layer to the (Ni,Cu)3Sn4 interfacial IMC layer which suppresses the 

growth of (Ni,Cu)3Sn4 interfacial IMC layer during high temperature thermal aging. 

Overall, the presence of high concentrations of Mn at the interface between Ni(P) 

layer and (Ni,Cu)3Sn4 interfacial IMC layer maintains Ni layer stability and also 

reduces the growth of (Ni,Cu)3Sn4 interfacial IMC layer during 200ᵒC aging. 

9.4. Conclusions 

This study was conducted to examine the aging effect on five selected solders at two 

different temperatures (viz. 185ᵒC and 200ᵒC) by analyzing Ni plated R2512 package 

mounted on ENIG-plated board. This study has resulted many important findings as 

summarized below. 

 All modified SAC305 solders were effective to suppress the growth of both 

the component side and the board side interfacial IMC during 185ᵒC aging. 
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Low Ce was found to be less effective in suppressing the growth of interfacial 

IMCs during extended period of aging at 185ᵒC.   

 High Mn solder was the most effective to suppress interfacial IMC growth and 

resulted in the thinnest interfacial IMC on both the component and the board 

side during 185ᵒC aging. 

 In general, SAC305 solder showed the thickest interfacial IMC on both the 

component and the board side during 185ᵒC aging. 

 During 200ᵒC aging, all solders except High Mn showed an unexpected 

growth of interfacial IMC on the board side. Further analysis found that this 

unexpected growth was related to Ni layer consumption on the board side. 

This phenomenon was observed after just 100 hours of aging at 200ᵒC. During 

subsequent aging, four different IMC layers were found at the board side at 

for all solders except High Mn solder.   

 During 200ᵒC aging, High Mn solder outperformed by preventing Ni layer 

consumption even after 1000 hours of aging at 200ᵒC. High Mn solder also 

very effective in suppressing the growth of (Ni,Cu)3Sn4 interfacial IMC layer 

on the board side during 200ᵒC aging. 

 SAC305 and Low Ce solders showed severe degradation of Ni layer 

consumption compared to other solders under 200ᵒC aging. 

 Based on elemental analysis using EDS and WDS techniques, it was 

confirmed that Mn atoms migrated at the interface between Ni(P) layer and 

(Ni,Cu)3Sn4 interfacial IMC layer during aging. It is believed that presence of 
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high concentration of Mn at the interface between Ni(P) layer and (Ni,Cu)3Sn4 

interfacial IMC layer prevents the consumption of Ni layer and maintain its 

stability. In addition, the high concentration of Mn atoms also reduces the 

growth of (Ni,Cu)3Sn4 interfacial IMC layer during 200ᵒC aging. 
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10. Mechanical Shock Reliability Test 

This chapter discusses the impact of isothermal aging on the mechanical shock 

reliability of selected solders. Mechanical shock reliability of lead-free solders has 

been a concern for electronic industries because, more than a decade after introducing 

lead-free solders into the market, a direct replacement to SnPb solder for mechanical 

shock durability is still missing. This problem creates a big fear especially when lead-

free solders are being used for high temperature applications where electronics are 

also subjected to mechanical drop/shock loading. Interfacial IMC formation within a 

solder joint is governed by thermally activated diffusion process. At high 

temperatures, high diffusion rate leads to formation of thick interfacial IMCs. The 

formation of various interfacial IMCs on QFN44, QFN32, and R2512 package types 

under 185ᵒC and 200ᵒC aging has been thoroughly investigated, as discussed 

previously in chapter 8 and 9.  

The interfacial IMCs of solder play an important role in mechanical shock loading as 

they are usually found to be the primary failure sites. Therefore, it is important to 

correlate the growth of interfacial IMCs to the mechanical shock reliability. From the 

literature, it was found that the effect of high temperature isothermal aging on the 

mechanical shock reliability of lead-free solder has not been thoroughly investigated.  

This study investigates the impact of high temperature isothermal aging on the 

mechanical shock reliability of selected solders. High temperature isothermal aging 

was performed at 185ᵒC and 200ᵒC up to 1000 hours. A set of test boards were 

removed after 400 and 1000 hours of aging at both temperatures (185ᵒC and 200ᵒC) 
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for mechanical shock testing. Two boards per solder at each time and temperature 

interval (i.e., 40 boards total for five solders) were isothermally aged and then tested 

under mechanical shocks. It was decided to subject these boards to 100,000 

mechanical shocks with a shock pulse of 500G with 1.3 millisecond duration. For a 

baseline, un-aged test boards (time=0 or 0 hour of aging) were also tested under 

mechanical shocks. Without any aging, un-aged test boards were expected to last 

longer than aged test boards under mechanical shocks. Thus, un-aged boards were 

subjected to 600,000 mechanical shocks. For the baseline test, two boards per solder 

for five solders making 10 test boards total were tested for 600,000 mechanical 

shocks. The testing outline discussed above is summarized in Figure 10-1.  

 

Figure 10-1: Mechanical Shock Testing Outline 

A test board features five different package types including QFN44, QFN32, 

QFP256, R2512 and R2010. Each test board comprises two QFP256, four QFN44, 

four QFN32, eight R2512, and eight R2010 package types. Due to the dissimilar 

construction of selected package types, time-to-failure for each package type under 

mechanical shocks can also vary. In order to keep the comparison straightforward for 

selected solders, mechanical shock test results of each package type with pre-aging 

are grouped together and presented in the following sequence: QFN44, QFN32, 
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QFP256, R2512 and R2010. The test result of all package types from un-aged test 

boards are combined together, and test data are presented in tabulated form. 

10.1. QFN44 - Mechanical Shock Test Results after Thermal Aging 

at 185ᵒC and 200ᵒC 

Two test boards for each solder comprise a total of eight QFN44 samples per solder. 

All eight QFN44 samples for all five solders failed during 100,000 mechanical 

shocks. The obtained QFN44 cycles to failure data from mechanical shock test were 

plotted using Weibull two-parameter distribution.  

Figure 10-2 shows Weibull plot for QFN44 after 400 hours of aging at 185ᵒC. The 

extracted Weibull parameters from Weibull analysis are shown in Table 10-1. In 

addition to Weibull shape parameter (Weibull slope), Weibull scale parameter 

(characteristic life) and Rho (goodness of fit), Table 10-1 also includes cycles to 1% 

failure, cycles to first failure and cycles to 50% failure. The similar value of Weibull 

slope obtained for all solders indicates that solders failed by the same failure 

mechanism. Mechanical shock reliability of High Mn and High Ce solders is quite 

distinguishable from the rest of the solders. To perform reliability comparison of 

selected solders, characteristic life (Weibull scale parameter) was used as a matrix to 

rank solder performance. Based on characteristic life value, the mechanical shock 

reliability of selected solders can be ranked in the following order: 

High Mn > High Ce > Low Mn > Low Ce > SAC305 

All modified SAC305 solders exhibited better mechanical shock reliability than 

SAC305 after 400 hours of aging at 185ᵒC. High Mn solder showed around 8.0 times 
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better performance than SAC305. Also, High Ce solder showed around 3.8 times 

better performance than SAC305. Low Mn and Low Ce solders were less effective 

compared to High Mn and High Ce; however, they showed improved performance of 

around 1.7 and 1.3 times than SAC305, respectively. In order to determine 

statistically significant difference in the performance of modified SAC305 solders 

compared to SAC305, Kruskal-Wallis test was performed. Table 10-2 shows p-value 

from Kruskal-Wallis test for all modified SAC305 solders in comparison to SAC305. 

P-value < 0.05 shows statistical significant difference between two groups. From 

Table 10-2, it can be concluded that High Mn and High Ce  show a statistically 

significant difference with SAC305; whereas, no statistically significant difference 

exists for Low Mn and Low Ce with SAC305. 

 
Figure 10-2: QFN44 Weibull Plot - 400 hours of Aging at 185ᵒC 
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Table 10-1:  Weibull Parameters for QFN44 - 400 hours of Aging at 185ᵒC 

 SAC305 Low Mn High Mn Low Ce High Ce 

β (Weibull Slope) 1.29 1.22 1.08 1.02 0.99 

Cycles to 1% Failure 38 53 158 20 50 

Cycles to First Failure 295 445 1430 220 505 

Cycles to 50% Failure 1034 1705 7825 1273 3628 

η (Characteristic Life) 63.2% Failure 1376 2301 10972 1821 5253 

Improvement in η (times) - 1.7 8.0 1.3 3.8 

Rho (Goodness of fit) 0.95 0.96 0.98 0.98 0.99 

 

Table 10-2: Kruskal-Wallis Test - QFN44 (400 hours of Aging at 185ᵒC) 

p-value for SAC305-X solders from Kruskal-Wallis test in comparison 

to SAC305 

Solders p-value 

Does statistical 

significant difference 

exist? 

Low Mn 0.294 No 

High Mn 0.003 Yes 

Low Ce 0.674 No 

High Ce 0.036 Yes 

Figure 10-3 shows Weibull plot for QFN44 after 1000 hours aging at 185ᵒC. The 

extracted Weibull parameters are shown in Table 10-3. Based on characteristic life 

value, the mechanical shock reliability of selected solders can be ranked in the 

following order: 

High Mn > High Ce > Low Mn > SAC305 = Low Ce 

Except Low Ce solder, all other modified SAC305 solders exhibited better 

mechanical shock reliability than SAC305 after 1000 hours aging at 185ᵒC. High Mn 

solder showed around 8.2 times better performance than SAC305. High Ce and Low 

Mn solders showed around 3.0 and 2.1 times better performance than SAC305, 

respectively. Low Ce and SAC305 solders exhibited similar mechanical shock 

performance. Table 10-4 shows p-value from Kruskal-Wallis test for all modified 

SAC305 solders in comparison to SAC305. P-value < 0.05 shows statistically 

significant difference between two groups. From Table 10-4, it can be concluded that 
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High Mn and High Ce show a statistically significant difference with SAC305; 

whereas, no statistically significant difference exists for Low Mn and Low Ce with 

SAC305. 

 
Figure 10-3: QFN44 Weibull Plot - 1000 hours of Aging at 185ᵒC 

Table 10-3: Weibull Parameters for QFN44 - 1000 hours of Aging at 185ᵒC 

 SAC305 Low Mn High Mn Low Ce High Ce 

β (Weibull Slope) 1.29 1.00 1.05 1.05 1.38 

Cycles to 1% Failure 28 21 107 13 109 

Cycles to First Failure 205 255 985 140 655 

Cycles to 50% Failure 766 1476 5929 716 2361 

η (Characteristic Life) 63.2% Failure 1019 2131 8396 1015 3082 

Improvement in η (times) - 2.1 8.2 1.0 3.0 

Rho (Goodness of fit) 0.96 0.98 0.98 0.97 0.97 

 

Table 10-4: Kruskal-Wallis Test - QFN44 (1000 hours of Aging at 185ᵒC) 
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p-value for SAC305-X solders from Kruskal-Wallis test in comparison 

to SAC305 

Solders p-value 

Does statistical 

significant difference 

exist? 

Low Mn 0.345 No 

High Mn 0.003 Yes 

Low Ce 0.753 No 

High Ce 0.046 Yes 

Figure 10-4 shows Weibull plot for QFN44 after 400 hours aging at 200ᵒC. The 

extracted Weibull parameters are shown in Table 10-5. Based on characteristic life 

value, the mechanical shock reliability of selected solders can be ranked in the 

following order: 

High Mn > High Ce > Low Mn > Low Ce > SAC305 

All modified SAC305 solders exhibited better mechanical shock reliability than 

SAC305 after 400 hours of aging at 200ᵒC. High Mn solder showed around 5.7 times 

better performance than SAC305. Also, High Ce solder showed around 3.1 times 

better performance than SAC305. Low Mn and Low Ce solders were less effective 

than High Mn and High Ce; however, they showed improved performance of around 

1.6 and 1.3 times than SAC305, respectively.  

Table 10-6 shows p-value from Kruskal-Wallis test for all modified SAC305 solders 

in comparison to SAC305. P-value < 0.05 shows statistically significant difference 

between two groups. From Table 10-6, it can be concluded that High Mn and High 

Ce show statistically significant difference with SAC305; whereas, no statistically 

significant difference exists for Low Mn and Low Ce with SAC305. 
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Figure 10-4: QFN44 Weibull Plot - 400 hours of Aging at 200ᵒC 

Table 10-5: Weibull Parameters for QFN44 - 400 hours of Aging at 200ᵒC 

 SAC305 Low Mn High Mn Low Ce High Ce 

β (Weibull Slope) 1.24 0.99 1.03 1.04 1.18 

Cycles to 1% Failure 21 13 56 13 54 

Cycles to First Failure 175 175 610 125 285 

Cycles to 50% Failure 643 935 3454 787 1975 

η (Characteristic Life) 63.2% Failure 865 1352 4937 1124 2696 

Improvement in η (times) - 1.6 5.7 1.3 3.1 

Rho (Goodness of fit) 0.97 0.97 0.98 0.99 0.99 

 

Table 10-6: Kruskal-Wallis Test - QFN44 (400 hours of Aging at 200ᵒC) 

p-value for SAC305-X solders from Kruskal-Wallis test in comparison 

to SAC305 

Solders p-value 

Does statistical 

significant difference 

exist? 

Low Mn 0.528 No 

High Mn 0.012 Yes 

Low Ce 0.834 No 

High Ce 0.036 Yes 
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Figure 10-5 shows Weibull plot for QFN44 after 400 hours aging at 200ᵒC. The 

extracted Weibull parameters are shown in Table 10-7. Based on characteristic life 

value, the mechanical shock reliability of selected solders can be ranked in the 

following order: 

High Mn > High Ce > Low Mn > SAC305 > Low Ce 

Except Low Ce solder, all other modified SAC305 solders exhibited better 

mechanical shock reliability than SAC305 after 1000 hours aging at 200ᵒC. High Mn 

solder showed around 3.6 times better performance than SAC305. High Ce and Low 

Mn solders showed around 3.0 and 1.7 times better performance than SAC305 

respectively. Low Ce exhibited poor mechanical shock performance than SAC305. 

Table 10-8 shows p-value from Kruskal-Wallis test for all modified SAC305 solders 

in comparison to SAC305. P-value < 0.05 shows statistically significant difference 

between two groups. From Table 10-8, it can be concluded that High Mn and High 

Ce show statistically significant difference with SAC305; whereas, no statistically 

significant difference exists for Low Mn and Low Ce with SAC305. 
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Figure 10-5: QFN44 Weibull Plot - 1000 hours of Aging at 200ᵒC 

Table 10-7: Weibull Parameters for QFN44 - 1000 hours of Aging at 200ᵒC 

 SAC305 Low Mn High Mn Low Ce High Ce 

β (Weibull Slope) 1.59 1.23 1.38 1.35 1.20 

Cycles to 1% Failure 34 26 81 14 40 

Cycles to First Failure 135 195 320 85 255 

Cycles to 50% Failure 491 804 1727 334 1367 

η (Characteristic Life) 63.2% Failure 619 1082 2252 438 1857 

Improvement in η (times) - 1.7 3.6 0.7 3.0 

Rho (Goodness of fit) 0.98 0.98 0.98 0.98 0.99 

 

Table 10-8: Kruskal-Wallis Test - QFN44 (1000 hours of Aging at 200ᵒC) 

p-value for SAC305-X solders from Kruskal-Wallis test in comparison 

to SAC305 

Solders p-value 

Does statistical 

significant difference 

exist? 

Low Mn 0.345 No 

High Mn 0.012 Yes 

Low Ce 0.208 No 

High Ce 0.036 Yes 
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10.1.1. Discussion on QFN44 Mechanical Shock Test Results 

The characteristic life data obtained from Weibull analysis for all solders after 400 

and 1000 hours of aging at 185ᵒC and 200ᵒC are compiled together as shown in 

Figure 10-6. Due to large variation in characteristic life of solders, Y axis of Figure 

10-6 uses a logarithmic scale. From Figure 10-6, it can be seen that as the aging time 

and temperature increase, reduction in the characteristic life of solders is quite 

evident. Thus, it can be concluded that high temperature aging substantially reduces 

the mechanical shock reliability of solders. High Mn solder outperformed at all 

intervals during mechanical shock test. It showed performance improvement of 8.2 to 

3.6 times to SAC305 during mechanical shock testing. High Ce solder was found to 

be the second most effective solder with performance improvement of 3.8 to 3.0 

times to SAC305. The difference in the performance of High Mn and High Ce solders 

is reduced at higher temperature aging. Low Mn solder also exhibited higher 

mechanical shock reliability with improved performance of 2.0 to 1.6 times to 

SAC305. Low Ce solder performed slightly better than SAC305 to mechanical shocks 

after 400 hours of aging at 185ᵒC and 200ᵒC with performance improvement of 

around 1.3 times; however, an extended aging exposure seems to cause more damage 

to Low Ce solder which resulted lower mechanical shock reliability than SAC305 

after 1000 hours of aging at 185ᵒC and 200ᵒC. In general, all modified SAC305 

solders except Low Ce solder performed better than SAC305 to mechanical shocks 

after 400 and 1000 hours of aging at 185ᵒC and 200ᵒC. Characteristic life comparison 

between all modified SAC305 solders and SAC305 is shown in Table 10-9.   
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Table 10-9: QFN44 - Characteristic Life Comparison  

Solders 

Characteristic Life Improvement 

 Compared to SAC305 

185ᵒC Aging 200ᵒC Aging 

Low Mn 8.2 to 8.0 times 5.7 to 3.6 times 

High Mn 3.8 to 3.0 times 3.1 to 3.0 times 

Low Ce 2.0 to 1.7 times 1.7 to 1.6 times 

High Ce 1.3 to 1.0 times 1.3 to 0.7 times 

The improved performance of modified SAC305 solders can be due to the reduction 

in the growth of Cu6Sn5 interfacial IMC and less voiding observed during aging 

analysis, as discussed previously in chapter 8. In order to correlate the mechanical 

shock reliability to Cu6Sn5 interfacial IMC and interfacial voiding, previously 

presented results of Cu6Sn5 interfacial IMC growth and %voiding for all solders after 

400 and 1000 hours of aging at 185ᵒC and 200ᵒC are summarized, as shown in Figure 

10-7 and Figure 10-8, respectively. By carefully comparing results from Figure 10-6, 

Figure 10-7, and Figure 10-8, it can be concluded that there seems to be a correlation 

of mechanical shock reliability of solder with Cu6Sn5 interfacial IMC and interfacial 

voiding. For example, High Mn solder showed, in general, the thinnest Cu6Sn5 

interfacial IMC and lowest interfacial voiding which resulted in the highest 

mechanical shock reliability. In contrast, similar correlation can be seen for SAC305 

for its poor mechanical shock performance. In addition, it also appears that interfacial 

voiding has much more influence on mechanical shock reliability of solder compared 

to Cu6Sn5 interfacial IMC. For Low Ce solder, thicker Cu6Sn5 interfacial IMC after 

1000 hours of aging at 200ᵒC seems be the reason for lower mechanical shock 

reliability.  
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Figure 10-6: QFN44 - Characteristic Life after 400 and 1000 hours of Aging at 185ᵒC 

and 200ᵒC 

 
Figure 10-7: QFN44 – Cu6Sn5 IMC Thickness after 400 and 1000 hours of Aging at 

185ᵒC and 200ᵒC 
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Figure 10-8: QFN44 – %Voiding after 400 and 1000 hours of Aging at 185ᵒC and 

200ᵒC 

10.2. QFN32 - Mechanical Shock Test Results after Thermal Aging 

at 185ᵒC and 200ᵒC 

Similar to QFN44, there were a total of eight QFN32 samples on two test boards for 

each solder. All eight QFN32 samples failed during 100,000 mechanical shocks. The 

obtained QFN32 cycles to failure data from mechanical shock test were plotted using 

Weibull two-parameter distribution and reliability comparison were made.   

Figure 10-9 shows Weibull plot for QFN32 after 400 hours aging at 185ᵒC. The 

extracted Weibull parameters from Weibull analysis are shown in Table 10-10. To 

perform reliability comparison of selected solders, characteristic life (Weibull scale 

parameter) was used as a matrix to rank solder performance. Based on characteristic 

life value, the mechanical shock reliability of selected solders can be ranked in the 

following order: 
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High Mn > High Ce > Low Mn > Low Ce > SAC305 

All modified SAC305 solders exhibited better mechanical shock reliability than 

SAC305 after 400 hours of aging at 185ᵒC. High Mn solder showed around 7.0 times 

better performance than SAC305. Also, High Ce solder showed around 3.6 times 

better performance than SAC305. Low Mn and Low Ce solders were less effective 

than High Mn and High Ce; however, they showed improved performance of around 

1.5 and 1.1 times than SAC305, respectively. In order to determine if there was a 

statistically significant difference in the reliability of modified SAC305 solders 

compared to SAC305, Kruskal-Wallis test was performed.  

Table 10-11 shows p-value from Kruskal-Wallis test for all modified SAC305 solders 

in comparison to SAC305. P-value < 0.05 shows statistically significant difference 

between two groups. From  

Table 10-11, it can be concluded that High Mn and High Ce show a statistically 

significant difference with SAC305; whereas, no statistically significant difference 

exists for Low Mn and Low Ce with SAC305.  
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Figure 10-9: QFN32 Weibull Plot - 400 hours of Aging at 185ᵒC 

Table 10-10: Weibull Parameters for QFN32 - 400 hours of Aging at 185ᵒC 

 SAC305 Low Mn High Mn Low Ce High Ce 

β (Weibull Slope) 1.79 1.65 1.26 1.37 1.31 

Cycles to 1% Failure 603 714 1435 292 833 

Cycles to First Failure 2415 3310 8545 1940 5235 

Cycles to 50% Failure 6381 9272 41124 6400 21232 

η (Characteristic Life) 63.2% Failure 7827 11575 54985 8361 28104 

Improvement in η (times) - 1.5 7.0 1.1 3.6 

Rho (Goodness of fit) 0.96 0.96 0.99 0.96 0.98 

 

Table 10-11: Kruskal-Wallis Test – QFN32 (400 hours of Aging at 185ᵒC) 

p-value for SAC305-X solders from Kruskal-Wallis test in comparison 

to SAC305 

Solders p-value 

Does statistical 

significant difference 

exist? 

Low Mn 0.401 No 

High Mn 0.003 Yes 

Low Ce 0.753 No 

High Ce 0.012 Yes 
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Figure 10-10 shows Weibull plot for QFN32 after 1000 hours aging at 185ᵒC. The 

extracted Weibull parameters from Weibull analysis are shown in Table 10-12. Based 

on characteristic life value, the mechanical shock reliability of selected solders can be 

ranked in the following order: 

High Mn > High Ce >Low Mn > SAC305 > Low Ce 

Except Low Ce solder, all other modified SAC305 solders exhibited better 

mechanical shock reliability than SAC305 after 1000 hours aging at 185ᵒC. High Mn 

solder showed around 5.4 times better performance than SAC305. High Ce and Low 

Mn solders showed around 2.5 and 1.7 times better performance than SAC305 

respectively. Low Ce exhibited poorer mechanical shock performance than SAC305. 

Table 10-13 shows p-value from Kruskal-Wallis test for all modified SAC305 solders 

in comparison to SAC305. P-value < 0.05 shows statistically significant difference 

between two groups. From Table 10-13, it can be concluded that High Mn shows 

statistically significant difference with SAC305; whereas, no statistically significant 

difference exists for Low Mn, Low Ce, and High Ce with SAC305. 
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Figure 10-10: QFN32 Weibull Plot - 1000 hours of Aging at 185ᵒC 

Table 10-12: Weibull Parameters for QFN32 - 1000 hours of Aging at 185ᵒC 

 SAC305 Low Mn High Mn Low Ce High Ce 

β (Weibull Slope) 1.39 1.14 1.25 1.43 1.16 

Cycles to 1% Failure 211 170 776 168 275 

Cycles to First Failure 1105 1225 4905 945 2160 

Cycles to 50% Failure 4395 7023 22852 3236 10589 

η (Characteristic Life) 63.2% Failure 5718 9694 30629 4197 14527 

Improvement in η (times) - 1.7 5.4 0.7 2.5 

Rho (Goodness of fit) 0.99 0.99 0.98 0.98 0.99 

 

Table 10-13: Kruskal-Wallis Test – QFN32 (1000 hours of Aging at 185ᵒC) 

p-value for SAC305-X solders from Kruskal-Wallis test in comparison 

to SAC305 

Solders p-value 

Does statistical 

significant difference 

exist? 

Low Mn 0.294 No 

High Mn 0.005 Yes 

Low Ce 0.462 No 

High Ce 0.074 No 
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Figure 10-11 shows Weibull plot for QFN32 after 400 hours aging at 200ᵒC. The 

extracted Weibull parameters from Weibull analysis are shown in Table 10-14. Based 

on characteristic life value, the mechanical shock reliability of selected solders can be 

ranked in the following order: 

High Mn > High Ce > Low Mn > SAC305 > Low Ce 

Except Low Ce solder, all other modified SAC305 solders exhibited better 

mechanical shock reliability than SAC305 after 400 hours aging at 200ᵒC. High Mn 

solder showed around 6.3 times better performance than SAC305. High Ce and Low 

Mn solders showed around 2.9 and 1.5 times better performance than SAC305, 

respectively. Low Ce exhibited poorer mechanical shock performance than SAC305.  

Table 10-15 shows p-value from Kruskal-Wallis test for all modified SAC305 solders 

in comparison to SAC305. P-value < 0.05 shows statistically significant difference 

between two groups. From  

Table 10-15, it can be concluded that High Mn and High Ce show statistically 

significant difference with SAC305; whereas, no statistically significant difference 

exists for Low Mn and Low Ce with SAC305.   
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Figure 10-11: QFN32 Weibull Plot - 400 hours of Aging at 200ᵒC 

Table 10-14: Weibull Parameters for QFN32 - 400 hours of Aging at 200ᵒC 

 SAC305 Low Mn High Mn Low Ce High Ce 

β (Weibull Slope) 1.45 1.17 1.15 1.07 1.34 

Cycles to 1% Failure 131 88 362 37 295 

Cycles to First Failure 645 780 2415 195 1525 

Cycles to 50% Failure 2436 3326 14452 1932 6969 

η (Characteristic Life) 63.2% Failure 3138 4555 19886 2721 9164 

Improvement in η (times) - 1.5 6.3 0.9 2.9 

Rho (Goodness of fit) 0.99 0.97 0.98 0.97 0.99 

 

Table 10-15: Kruskal-Wallis Test – QFN32 (400 hours of Aging at 200ᵒC) 

p-value for SAC305-X solders from Kruskal-Wallis test in comparison 

to SAC305 

Solders p-value 

Does statistical 

significant difference 

exist? 

Low Mn 0.529 No 

High Mn 0.005 Yes 

Low Ce 0.674 No 

High Ce 0.021 Yes 
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Figure 10-12 shows Weibull plot for QFN32 after 1000 hours aging at 200ᵒC. The 

extracted Weibull parameters from Weibull analysis are shown in Table 10-16. Based 

on characteristic life value, the mechanical shock reliability of selected solders can be 

ranked in the following order: 

High Mn > High Ce > SAC305 > Low Ce > Low Mn 

Only High Mn and High Ce solders exhibited better mechanical shock reliability than 

SAC305. High Mn solder showed around 4.7 times better performance than SAC305. 

High Ce solders showed around 2.3 better performances than SAC305. Low Mn and 

Low Ce solders exhibited poorer mechanical shock performance than SAC305.  

Table 10-17 shows p-value from Kruskal-Wallis test for all modified SAC305 solders 

in comparison to SAC305. P-value < 0.05 shows statistically significant difference 

between two groups. From  

Table 10-17, it can be concluded that High Mn shows statistically significant 

difference with SAC305; whereas, no statistically significant difference exists for 

Low Mn, Low Ce, and High Ce with SAC305. 
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Figure 10-12: QFN32 Weibull Plot - 1000 hours of Aging at 200ᵒC 

Table 10-16: Weibull Parameters for QFN32 - 1000 hours of Aging at 200ᵒC 

 SAC305 Low Mn High Mn Low Ce High Ce 

β (Weibull Slope) 1.23 1.44 1.13 0.98 1.23 

Cycles to 1% Failure 68 70 230 18 155 

Cycles to First Failure 420 425 1435 190 925 

Cycles to 50% Failure 2120 1334 9725 1358 4824 

η (Characteristic Life) 63.2% Failure 2854 1722 13446 1974 6497 

Improvement in η (times) - 0.6 4.7 0.7 2.3 

Rho (Goodness of fit) 0.98 0.97 0.99 0.99 0.99 

 

Table 10-17: Kruskal-Wallis Test – QFN32 (1000 hours of Aging at 200ᵒC) 

p-value for SAC305-X solders from Kruskal-Wallis test in comparison 

to SAC305 

Solders p-value 

Does statistical 

significant difference 

exist? 

Low Mn 0.294 No 

High Mn 0.012 Yes 

Low Ce 0.462 No 

High Ce 0.115 No 
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10.2.1. Discussion on QFN32 Mechanical Shock Test Results 

For QFN32, the characteristic life data obtained from Weibull analysis for all solders 

after 400 and 1000 hours of aging at 185ᵒC and 200ᵒC are compiled, as shown in 

Figure 10-13. Due to large variation in characteristic life of solders, Y axis of Figure 

10-13 uses logarithmic scale. From Figure 10-13, it can be noticed that with time and 

temperature increase, reduction in the characteristic life of solders under mechanical 

shock testing is quite evident. This finding is similar to QFN44, as discussed 

previously. Thus, it can be concluded that high temperature aging substantially 

reduces the mechanical shock reliability of selected solders.  

High Mn solder outperformed and resulted in the highest mechanical shock reliability 

at all intervals. It showed performance improvement of 7.0 to 4.7 times to SAC305 

during mechanical shock testing. High Ce solder was found to be the second most 

effective solder with performance improvement of 3.6 to 2.3 times to SAC305. Low 

Mn solder seems to perform well during 185ᵒC aging and resulted in performance 

improvement of 1.7 to 1.5 times SAC305; however, its mechanical shock reliability is 

reduced especially after 1000 hours of aging at 200ᵒC. Low Ce solder performed 

comparable to SAC305 after 400 hours of aging at 185ᵒC; however, with an extended 

aging exposure at 185ᵒC and further increase in aging temperature to 200ᵒC, Low Ce 

solder resulted in the lowest mechanical shock reliability with respect to  SAC305.  

In general, High Mn and High Ce solders performed far better than SAC305 solder 

after 400 and 1000 hours of aging at 185ᵒC and 200ᵒC. Low Mn solder performed 

better than SAC305 at 185ᵒC aging; however, it performs either equivalent or lower 

than SAC305 at 200ᵒC aging. Low Ce exhibited lower mechanical shock reliability 
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than SAC305 during 200ᵒC aging. Characteristic life comparison between all 

modified SAC305 solders and SAC305 is shown in Table 10-18.    

Table 10-18: QFN32 - Characteristic Life Comparison 

Solders 

Characteristic Life Improvement 

 Compared to SAC305 

185ᵒC Aging 200ᵒC Aging 

SAC305+0.17%Mn 7.0 to 5.4 times 6.3 to 4.7 times 

SAC305+0.13%Ce 3.6 to 2.5 times 2.9 to 2.3 times 

SAC305+0.05%Mn 1.7 to 1.5 times 1.5 to 0.6 times 

SAC305+0.07%Ce 1.1 to 0.7 times 0.9 to 0.7 times 

In order to correlate the mechanical shock reliability to Cu6Sn5 interfacial IMC and 

interfacial voiding, the  results of Cu6Sn5 interfacial IMC growth and %voiding 

measured from QFN32 for all solders after 400 and 1000 hours of aging at 185ᵒC and 

200ᵒC are summarized as shown in Figure 10-14 and Figure 10-15, respectively. By 

carefully comparing the results from Figure 10-13, Figure 10-14, and Figure 10-15, 

similar to QFN44, a correlation of mechanical shock reliability with Cu6Sn5 

interfacial IMC and interfacial voiding can be found. For example, High Mn and 

High Ce solders showed thinner Cu6Sn5 interfacial IMC and lower interfacial voiding 

resulted higher mechanical shock reliability. For Low Mn solder, higher voiding was 

observed after 1000 hours aging at 200ᵒC which might be the reason for lower 

mechanical shock reliability. For Low Ce solder, excessive thickness of Cu6Sn5 

interfacial IMC at 185ᵒC and 200ᵒC aging seems like the reason for poor reliability in 

mechanical shock.  
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Figure 10-13: QFN32 - Characteristic Life after 400 and 1000 hours of Aging at 

185ᵒC and 200ᵒC 

 
Figure 10-14: QFN32 – Cu6Sn5 IMC Thickness after 400 and 1000 hours of Aging at 

185ᵒC and 200ᵒC 
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Figure 10-15: QFN32 – %voiding after 400 and 1000 hours of Aging at 185ᵒC and 

200ᵒC 

10.3. QFP256 - Mechanical Shock Test Results after Thermal Aging 

at 185ᵒC and 200ᵒC 

A total of four QFP256 samples were tested on two boards for each solder after 400 

and 1000 hours of aging at 185ᵒC and 200ᵒC. All four QFP256 samples failed during 

100,000 mechanical shocks. Due to a sample size of only four, rather than comparing 

solder performance through Weibull two-parameter distribution, it was decided to bin 

the number of failed packages into four different mechanical shock ranges based on 

their cycles-to-failure data. Table 10-19 shows all four QFP256 samples for all five 

solders at each time and temperature interval segregated into four mechanical shock 

ranges. It is important to note that mechanical shock range intervals were determined 

such that four QFPs can be binned into intervals so that easy comparison can be made 
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between solders. Due to wide variation in time-to-failure for QFPs among various 

aging time and temperature conditions, the selected interval values of mechanical 

shock ranges are also different.    

From Table 10-19, solder performance comparison can be made by ranking each 

solder. Based on the lifetime of QFP256 samples, all selected solders can be ranked in 

the following orders at various aging time and temperature intervals tested. 

For 400 hours aging at 185ᵒC, solder ranking is: 

High Mn > High Ce > SAC305 > Low Mn > Low Ce 

For 1000 hours aging at 185ᵒC, solder ranking is: 

High Mn > High Ce > Low Mn > Low Ce > SAC305 

For 400 hours aging at 200ᵒC, solder ranking is: 

High Mn > High Ce = Low Mn > SAC305 > Low Ce 

For 1000 hours aging at 200ᵒC, solder ranking is: 

High Mn > High Ce > Low Mn > SAC305 = Low Ce 

It appears that High Mn and High Ce solders performed better than the remaining 

three solders. High Mn and High Ce solders maintained their first and second 

performance ranking, respectively, as previously seen with QFN44 and QFN32 

package types. For the most part, Low Mn solder performed better than SAC305 

solder. SAC305 and Low Ce solders showed poor mechanical shock reliability. Due 

to lack of information on interfacial IMC growth and interfacial %voiding data during 

thermal aging for QFP256, a correlation between mechanical shock and interfacial 
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IMC and void cannot be confirmed. However, the lead material and lead finish of 

QFP256 were same as QFN44 and QFN32 package types, thus a similar correlation 

can be expected for QFP256 as observed for QFN44 and QFN32. 

Table 10-19: QFP256 - Mechanical Shock Test Result Summary after 400 and 1000 

hours of Aging at 185ᵒC and 200ᵒC 

Time/ 

Temperature  

Interval 

Mechanical 

Shock  

Range 

# of QFP256 Failure  

SAC305 Low Mn High Mn Low Ce High Ce 

400 Hrs 

/185ᵒC 

1 - 10000 1 2 0 2 1 

10001 - 25000 1 1 1 2 0 

25001 - 50000 2 1 1 - 2 

50001 - 100000 - - 2 - 1 

1000 Hrs 

/185ᵒC 

1 - 2000 1 0 0 0 0 

2001 - 10000 2 2 1 3 2 

10001 - 25000 1 2 2 1 1 

25001 - 100000 - - 1 - 1 

400 Hrs 

/200ᵒC 

1 - 1000 1 0 0 1 0 

1001 - 5000 3 2 1 2 2 

5001 - 15000 - 2 2 1 2 

15001 - 100000 - - 1 - - 

1000 Hrs 

/200ᵒC 

1 - 500 1 0 0 1 0 

501 - 2000 2 3 1 2 3 

2001 - 3500 1 1 2 1 0 

3501 - 100000 - - 1 - 1 

10.4. R2512 and R2010 - Mechanical Shock Test Results after 

Thermal Aging at 185ᵒC and 200ᵒC 

Two test boards for each solder comprise total 16 samples of R2512 and R2010 

package types. During 100,000 mechanical shocks, only few R2512 and R2010 

failed. Due to the limited number of failed samples, solder comparison were made by 

comparing number of failed samples during 100,000 mechanical shocks. 
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10.4.1. R2512 Mechanical Shock Test Results after Thermal 

Aging at 185ᵒC and 200ᵒC 

Out of 16 R2512 samples tested, only a few R2512 failed during 100,000 mechanical 

shocks at each aging time and temperature interval, as shown Table 10-20. Green 

label indicates no failure, blue label indicates 1 to 2 failures; whereas, red label 

indicates 4 to 6 failures. High Mn solder had no failures at any aging intervals in 

mechanical shocks. Low Mn and High Ce solders performed well with no failures 

except after 1000 hours aging at 200ᵒC. Low Mn solder resulted lesser failure than 

High Ce solder. High Ce solder exhibited sudden increased failure after 1000 hours of 

aging at 200ᵒC. Failure analysis is required to find the causes of such unexpected 

behavior of High Ce solder. Both Low Ce and SAC305 solders showed gradual 

increase in failure during mechanical shock with increase of aging time and 

temperatures. SAC305 had the highest number of package failures compared to other 

solders. Based on the total number of R2512 failure, all solders can be ranked in the 

following orders: 

High Mn > Low Mn > High Ce > Low Ce > SAC305 

Table 10-20:R2512 - Mechanical Shock Test Result Summary after 400 and 1000 

hours of Aging at 185ᵒC and 200ᵒC 

Time/ 

Temperature  

Interval 
SAC305 Low Mn High Mn Low Ce High Ce 

400 

Hrs/185ᵒC 
0/16 0/16 0/16 0/16 0/16 

1000 

Hrs/185ᵒC 
1/16 0/16 0/16 1/16 0/16 

400 

Hrs/200ᵒC 2/16 0/16 0/16 1/16 0/16 

1000 

Hrs/200ᵒC 
6/16 2/16 0/16 4/16 5/16 
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In order to find the correlation between package failure and interfacial IMCs for 

R2512, both the board and the component side interfacial IMC thickness measured 

for R2512 for all solders after 400 and 1000 hours of aging at 185ᵒC and 200ᵒC are 

summarized, as shown in Figure 10-16 and Figure 10-17, respectively. It is important 

to note that the board side interfacial IMC thickness measurement at 400 and 1000 

hours shows large variation due to four IMC layers growth as a result of Ni layer 

consumption discussed previously in chapter 9. By carefully comparing results from 

Table 10-20, Figure 10-16 and Figure 10-17, there seems to be a correlation between 

R2512 failure and interfacial IMCs. More specifically, for R2512 samples aged at 

185ᵒC, it appears that R2512 failure is correlated to both the board and the component 

side interfacial IMCs since the solder that showed higher IMC growth also resulted in 

an increased number of R2512 failures during mechanical shock testing. For R2512 

aged at 200ᵒC, Ni layer consumption occurred on the board side for all solders except 

High Mn resulting in significant variation in the board side interfacial IMC thickness 

among five solders. It can be seen that R2512 failure trend follows the board side 

IMC growth trend quite well compared to the component side IMC growth trend. 

Thus, it can be concluded that for R2512 exposed to 200ᵒC aging, the board side 

interfacial IMC growth plays an important role in solder interconnect reliability.  
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Figure 10-16: R2512 – Ni-Cu-Sn Board Side Interfacial IMC Thickness after 400 and 

1000 hours of Aging at 185ᵒC and 200ᵒC 

 
Figure 10-17: R2512 – (Ni,Cu)3Sn4 Component Side Interfacial IMC Thickness after 

400 and 1000 hours of Aging at 185ᵒC and 200ᵒC 
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10.4.2. R2010 Mechanical Shock Test Results after Thermal 

Aging at 185ᵒC and 200ᵒC 

Similar to R2512, out of 16 R2010 samples tested, only a few R2010 failed during 

100,000 mechanical shocks at aging time and temperature intervals as shown Table 

10-21. Green label indicates no failure, blue label indicates 1 to 2 failures; whereas, 

red label indicates 4 to 6 failures. High Mn solder outperformed having no failure in 

mechanical shocks at any aging intervals. High Ce solder performed well with no 

failure except 1000 hours aging at 200ᵒC. Low Mn solder performed well at 185ᵒC 

aging; however, its performance slightly degraded at 200ᵒC aging. Both Low Ce and 

SAC305 solders showed a gradual increase in failure during mechanical shock with 

increase of aging time and temperatures. SAC305 had the highest number of failures 

compared to other solders. Based on the total number of R2010 failure, all solders can 

be ranked in the following orders: 

High Mn > High Ce > Low Mn > Low Ce > SAC305 

Table 10-21: R2010 - Mechanical Shock Test Result Summary after 400 and 1000 

hours of Aging at 185ᵒC and 200ᵒC 

Time/ 

Temperature  

Interval 
SAC305 Low Mn High Mn Low Ce High Ce 

400 

Hrs/185ᵒC 
0/16 0/16 0/16 0/16 0/16 

1000 

Hrs/185ᵒC 
1/16 0/16 0/16 1/16 0/16 

400 

Hrs/200ᵒC 2/16 1/16 0/16 2/16 0/16 

1000 

Hrs/200ᵒC 
5/16 1/16 0/16 2/16 2/16 

 

Due to lack of the board and the component side interfacial IMC growth data during 

thermal aging for R2010, a correlation between mechanical shock and interfacial IMC 
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cannot be established. However, R2512 and R2010 packages were identical except 

package size, thus a similar correlation can be expected for R2010, as observed for 

R2512. 

10.5. Time=0 Test Boards - Mechanical Shock Test Results 

For a baseline, Time=0 (un-aged) test boards were also tested under mechanical 

shocks. Without any aging, Time=0 test boards were expected to last longer than 

thermally aged test boards under mechanical shocks. Thus, Time=0 boards were 

subjected to 600,000 mechanical shocks. For a baseline test, a total of 10 test boards 

(two boards per solder for five solders) were tested for 600,000 mechanical shocks. 

For each solder, the two test boards featured eight QFN44 samples, eight QFN32 

samples, four QFP256 samples, sixteen R2512 samples and sixteen R2010 samples.  

Even after 600,000 mechanical shocks, it was found that only a few components 

failed. The large package types such as QFP256 and QFN44 failed much earlier than 

small package types such as QFN32, R2512 and R2010. The failure summary of 

various package types during 600,000 mechanical shocks is presented in Table 10-22. 

Based on cycles to failure detail for all package types, an additional summary of 

cycles to failure for all package types within first 100,000 mechanical shocks is also 

presented, as shown in Table 10-23. Green label indicates no failure, blue label 

indicates 1 to 3 failures; whereas, red label indicates 4 or more failures. 
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Table 10-22: Failure Summary of various Package Types (Time=0) during 600,000 

Mechanical Shocks 

Packages SAC305 Low Mn High Mn Low Ce High Ce 

QFN44 5/8 2/8 1/8 3/8 2/8 

QFN32 1/8 0/8 0/8 1/8 0/8 

QFP256 4/4 4/4 4/4 4/4 4/4 

R2512 3/16 0/16 0/16 0/16 0/16 

R2010 4/16 2/16 0/16 2/16 0/16 

 

Table 10-23: Failure of various Package Types (Time=0) during 100,000 Mechanical 

Shocks 

Packages SAC305 Low Mn High Mn Low Ce High Ce 

QFN44 1/8 0/8 0/8 1/8 0/8 

QFN32 0/8 0/8 0/8 0/8 0/8 

QFP256 4/4 3/4 2/4 3/4 3/4 

R2512 0/16 0/16 0/16 0/16 0/16 

R2010 0/16 0/16 0/16 0/16 0/16 

 

Based on the test results presented in Table 10-22 and Table 10-23, it can be seen that 

the QFP256 package failed much earlier than other package types during mechanical 

shock testing. This was unexpected because QFP256 features gullwing leads that add 

compliance to the package. During thermal fatigue (thermal cycling), gullwing leads 

help to reduce stress and strain to solder joint and thus improve thermal fatigue 

reliability. However, based on the finding from mechanical shock test, it can be 

concluded that the heavy mass of QFP256 adversely affects the solder joint reliability 

under mechanical shocks. By comparing package failure from Table 10-22 and Table 

10-23, all solders can be ranked in the following orders: 
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High Mn > High Ce > Low Mn > Low Ce > SAC305 

To find a correlation between interfacial IMC and package failure detail from Time=0 

mechanical shock test, the interfacial IMC thickness measurement after reflow for 

QFN44, QFN32 and R2512 are extracted and presented, as shown in Figure 10-18. 

By carefully comparing the results from Table 10-22, Table 10-23 and Figure 10-18, 

it can be concluded that no correlation exists between interfacial IMC and package 

failure for as-reflowed package types. Thus, interfacial IMC formed after reflow is 

not responsible for solder interconnect failure during mechanical shock test. In such 

situation, mechanical properties of bulk solder, number of β-tin grains, size and 

distribution of bulk IMCs play an important role for solder failure under mechanical 

shock stress conditions.    

 
Figure 10-18: Interfacial IMC Thickness Measurement after Reflow of QFN44 

Cu6Sn5 IMC on Component Side, QFN32 Cu6Sn5 IMC on Component Side, R2512 

(Ni,Cu)3Sn4 IMC on Board Side, R2512 (Ni,Cu)3Sn4 IMC on Component Side  
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10.6. Failure Analysis 

The objective of failure analysis was to determine the differences in the failure mode 

due to different solder composition. The components that failed during mechanical 

shock test but were still attached to the board after completion of mechanical shock 

testing were further analyzed. After performing electrical probing and optical 

inspection on failed components, these components were carefully removed from the 

board, cold mounted, cross-sectioned, and further analyzed under an ESEM. 

Two package types were selected for failure analysis. One was the QFN44 package 

and the other was the R2512 package.  The failure analysis detail of both package 

types for all five solders is discussed next.     

10.6.1. SAC305 Solder 

Figure 10-19 shows failed SAC305 solder joints in QFN44 and R2512 packages. 

Figure 10-19 (a) and Figure 10-19 (b) show failed QFN44 in mechanical shock after 

1000 hours of aging at 200ᵒC. Both failed solder joints confirm that failure occurred 

at the interface between Cu6Sn5 interfacial IMC and the bulk solder. This type of 

failure mode was consistent for all failed SAC305 solder joint in QFNs. The voids 

developed during high temperature thermal aging at the interface between Cu6Sn5 

interfacial IMC and the bulk solder reduced the interfacial strength. During 

mechanical shock, a crack developed at high stress concentration region. This crack 

propagated through a weak interface connecting interfacial voids and caused 

complete separation between the component side interfacial IMC and the bulk solder. 
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This finding confirms the lower mechanical shock reliability of SAC305 solder 

observed in QFNs after high temperature aging exposure.  

For R2512 package, a failed SAC305 solder joint is shown Figure 10-19 (c). The 

failure mode for R2512 package was crack propagation at the board side interface 

region. Figure 10-19 (c) shows four IMC layers on the board side after 1000 hours of 

aging at 200ᵒC. The magnified view is also shown in Figure 10-19 (d). As discussed 

previously, the four layer phenomenon was related to Ni layer consumption during 

200ᵒC aging. The development of four layers on the board side caused substantial 

reduction in the interfacial strength. During mechanical shock, a crack can easily 

initiate at any weak point on this layer and quickly propagate through the interface to 

cause complete separation of component from the board. This confirms a large 

number of R2512 package failures for SAC305 solder in mechanical shock testing. 

This finding also confirms that four IMC layers developed during 200ᵒC aging causes 

considerable reduction in mechanical shock reliability of solder joint.    

  
(a) (b) 
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(c) (d) 

Figure 10-19: SAC305 Solder Failure during Mechanical Shock Test (a) QFN44 – 

1000 hours/200ᵒC Aging (b) Additional QFN44 - 1000 hours/200ᵒC Aging (c) R2512 

- 1000 hours/200ᵒC Aging (d) Magnified view of  R2512 Crack 

10.6.2. Low Mn Solder 

Figure 10-20 shows failed SAC305+0.05%Mn solder joints in QFN44 and R2512 

packages. Figure 10-20 (a) and Figure 10-20 (b) show the solder joint of failed 

QFN44 in mechanical shock after 1000 hours of aging at 200ᵒC. During failure 

analysis, an interesting finding was observed for Low Mn solder. Two types of failure 

modes were found for Low Mn solder in QFN44 package. The first one was pure 

interfacial failure as shown in Figure 10-20 (a). This failure mode was similar to as 

observed in SAC305 solder. Second type of failure mode was mixed mode where a 

crack propagated through the interface and solder bulk. The failure caused by mixed 

mode is shown in Figure 10-20 (b). For Low Mn solder, only a few solder joints 

showed the mixed type of failure mode. Most of the solder joints failed by pure 

interfacial failure. It is important to note that mixed mode failure indicates a stronger 

interface. A crack takes a longer time to propagate for mixed mode compared to pure 

interfacial mode and thus the solder joint can last longer. The evidence of mixed 
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mode failure in addition to pure interfacial failure confirms better performance of 

Low Mn solder in mechanical shock testing compared to SAC305 solder. 

The failed R2512 Low Mn solder joint is shown Figure 10-20 (c). The magnified 

view of the crack in R2512 can be seen from Figure 10-20 (d). Low Mn solder joint 

showed a few spots of Ni layer consumption. Four IMCs can be seen within each 

spot; however, these spots did not merge and form layers.  A crack was initiated 

underneath the package, propagated through the board side interface until it reached 

to Ni termination bend in vertical direction. Due to higher resistance to continued 

crack propagation through the interface region, the crack propagated vertically 

following component side interfacial IMC and eventually cracked through solder 

bulk, causing complete separation. This type of crack propagation usually takes a 

longer time to cause a failure compared to crack propagation in severely consumed Ni 

layer as previously observed in SAC305 solder joint. This is believed be the reason 

for lower resistor package failure for Low Mn solder in mechanical shock testing 

compared to SAC305 solder.  

  
(a) (b) 



 

247 

 

  
(c) (d) 

Figure 10-20: SAC305+0.05%Mn Solder Failure during Mechanical Shock Test (a) 

QFN44 – 1000 hours/200ᵒC Aging (b) Additional QFN44 - 1000 hours/200ᵒC Aging 

(c) R2512 - 1000 hours/200ᵒC Aging (d) Magnified view of  R2512 Crack 

10.6.3. High Mn Solder 

None of the resistor packages failed for High Mn solder during mechanical shock 

testing. Thus only failed QFNs underwent failure analysis. Figure 10-21 shows a 

failed High Mn solder joint in QFN44 package after 1000 hours of aging at 200ᵒC. 

Failure analysis revealed a quite interesting crack path pattern for High Mn solder. It 

was found that High Mn solder showed a more mixed type of failure mode compared 

to a pure interfacial type. Further analysis revealed that solder failed by mixed mode, 

with a crack generally initiated at the end of component side Cu6Sn5 interfacial IMC. 

After crack initiated at the interface, crack propagated through solder bulk as shown 

in both Figure 10-21 (a) and Figure 10-21 (b). This kind of failure still falls under 

mixed mode, however, it utilized mostly solder bulk for crack propagation. This 

shows that the interface between Cu6Sn5 interfacial IMC and solder bulk is strong 

enough to prevent crack propagation through the solder interface. Such behavior is an 

unusual case compared to other solders where cracks partially or fully propagate 
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through the solder interface. Presence of fewer interfacial voids with thinner Cu6Sn5 

interfacial IMC are believed to be the reason for the type of failure observed in High 

Mn solder. Due to a stronger solder interface on the component side, High Mn solder 

outperformed and showed much higher mechanical shock reliability compare to other 

solders.  

  
(a) (b) 

Figure 10-21: SAC305+0.17%Mn Solder Failure during Mechanical Shock Test (a) 

QFN44 – 1000 hours/200ᵒC Aging (b) Additional QFN44 - 1000 hours/200ᵒC Aging 

10.6.4. Low Ce Solder 

Figure 10-22 shows the failure of SAC305+0.07%Ce solder joints in QFN44 and 

R2512 packages. Figure 10-22 (a) and Figure 10-22 (b) show the solder joint of failed 

QFN44 in mechanical shock after 1000 hours of aging at 200ᵒC. Both failed QFN44 

solder joints confirm that failure occurred at the interface between Cu6Sn5 interfacial 

IMC and bulk solder. Huge growth in Cu6Sn5 interfacial IMC can be also seen in 

Figure 10-22 (b), along with excessive voids formed at the interface during high 

temperature aging which reduced interfacial strength even further. With presence of 

large interfacial voids and thicker Cu6Sn5 interfacial IMC, Low Ce solder joint failed 

at the solder interface during mechanical shock testing. This result confirms lower 
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mechanical shock reliability of Low Ce solder observed in QFNs after high 

temperature aging exposure. 

The failed R2512 Low Ce solder joint is shown Figure 10-22 (c). The failure mode 

for R2512 package was crack propagation at the board side interface region. Figure 

10-22 (c) also shows four IMC layers on the board side after 1000 hours of aging at 

200ᵒC. The magnified view is also shown in Figure 10-22 (d). The failure observed in 

Low Ce solder is identical to the failure previously observed in SAC305 solder joint. 

This confirms higher R2512 package failure for Low Ce solder during mechanical 

shock testing after 200ᵒC aging.  

  
(a) (b) 

  
(c) (d) 
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Figure 10-22: SAC305+0.07%Ce Solder Failure during Mechanical Shock Test (a) 

QFN44 – 1000 hours/200ᵒC Aging (b) Additional QFN44 - 1000 hours/200ᵒC Aging 

(c) R2512 - 1000 hours/200ᵒC Aging (d) Magnified view of  R2512 Crack 

10.6.5. High Ce Solder 

Figure 10-23 shows the failure of SAC305+0.13%Ce solder joints in QFN44 and 

R2512 packages. Figure 10-23 (a) and Figure 10-23 (b) show the solder joint of failed 

QFN44 during mechanical shock after 1000 hours of aging at 200ᵒC. Failure analysis 

revealed that High Ce solder showed two types of failure mode as previously 

observed in Low Mn and High Mn solders. More mixed mode type failures were 

observed in High Ce solder as shown in Figure 10-23 (a) and Figure 10-23 (b). The 

evidence of more mixed mode type failure confirms better performance of High Ce 

solder in mechanical shock testing.  

The failed R2512 High Ce solder joint is shown Figure 10-23 (c). The failure mode 

for R2512 package was crack propagation at the board side interface region. The 

magnified view of the crack in R2512 is shown in Figure 10-23 (d). Both Figure 

10-23 (c) and Figure 10-23 (d) show four IMC layers on the board side after 1000 

hours of aging at 200ᵒC. The failure observed in High Ce solder is identical to the 

failure previously observed in SAC305 and Low Ce solders. This confirms higher 

R2512 package failure for High Ce solder during mechanical shock testing after 

200ᵒC aging. 
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(a) (b) 

  
(c) (d) 

Figure 10-23: SAC305+0.13%Ce Solder Failure during Mechanical Shock Test (a) 

QFN44 – 1000 hours/200ᵒC Aging (b) Additional QFN44 - 1000 hours/200ᵒC Aging 

(c) R2512 - 1000 hours/200ᵒC Aging (d) Magnified view of  R2512 Crack 

10.7. Conclusions 

Many findings were obtained from the mechanical shock reliability test performed on 

thermally aged and un-aged test boards. These findings are summarized as below: 

 This study shows that mechanical shock reliability of solders is significantly 

reduced after high temperature aging exposure. It was confirmed that a 

reduction in mechanical shock reliability of solder joint was due to either 
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growth in interfacial IMCs or combination of interfacial IMC growth and 

voids at the interface.  

 For QFN package without any barrier layer on the component side, interfacial 

voids formed during high temperature aging play significant role for 

mechanical shock reliability reduction. 

 In general, it was found that solder that effectively suppresses the growth of 

interfacial IMC and voids exhibited superior mechanical shock reliability. 

 High Mn solder had the highest reliability in all mechanical shock tests on 

thermally aged test boards. 

 High Ce solder was found to be the second most effective solder for QFN44 

and QFN32 packages. However, for R2512 package, High Ce showed Ni 

layer consumption that reduced solder joint reliability under mechanical shock 

testing.   

 For the most part, Low Mn solder performed better than SAC305 and Low Ce 

solders. 

 Overall, Low Ce and SAC305 solders showed poor solder joint reliability 

under mechanical shock testing. 

 Failure analysis confirms that the improved mechanical shock reliability 

observed for High Mn, High Ce and Low Mn solders were related to the 

stronger solder interface. During failure analysis, all thee solders indicated an 

additional mixed mode type of failure mode. 
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 For un-aged test boards, it was found that package failure was not related to 

interfacial IMC thickness. This indicates that various other factors including 

mechanical properties of bulk solder, number of β-tin grains, size and 

distribution of bulk IMCs play an important role for mechanical shock 

reliability of as-reflowed solder interconnects.  
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11. Contributions 
 

This dissertation resulted in multiple contributions which are summarized below: 

Performance assessment study of MEMS gyroscope: 

 A comprehensive test methodology has been developed to understand the 

performance limit of MEMS gyroscopes under elevated temperature 

conditions that includes characterization of commercially available MEMS 

gyroscopes in high temperature environments. 

 An analytical model which incorporates the effects of multiple temperature 

dependent factors on MEMS gyroscope performance was developed. The 

accuracy of this model was confirmed by experiments. The model enables the 

identification of dominating temperature dependent variables and their effect 

in high temperature environments. 

Shock durability evaluation study of SAC305 and SAC305-X solders: 

 A systematic high temperature thermal aging analysis of Mn doped SAC305 

solders on copper (QFN44 and QFN32) and nickel (R2512) leaded 

components at 185ᵒC and 200ᵒC showed that addition of 0.05%Mn and 

0.17%Mn in SAC305 effectively reduces the growth of interfacial IMCs for 

QFN32, QFN44, and R2512 during high temperature aging.  

 A systematic high temperature thermal aging analysis of Ce doped SAC305 

solders on copper (QFN44 and QFN32) and nickel (R2512) leaded 

components at 185ᵒC and 200ᵒC revealed that addition of 0.13%Ce in 
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SAC305 effectively reduces the growth of interfacial IMCs forn QFN32 and 

QFN44 during high temperature aging. 

 A detailed mechanical shock reliability assessment of SAC305 and SAC305-

X (where X refers to 0.05%Mn, 0.17%Mn, 0.07%Ce and 0.13%Ce) on test 

boards as-reflowed and thermally aged at 185ᵒC and 200ᵒC showed that 

microalloy addition of selected dopants at the prescribed concentrations 

improve the shock duration of SAC305. More specifically, addition of 

0.17%Mn and 0.13%Ce in SAC305 indicated significant improvement in 

shock durability of SAC305.   

 The mechanism was determined by which a 0.17% concentration of Mn 

dopant in SAC305 solder suppresses Ni layer consumption in ENIG-plated 

board, and thus allows the Ni layer to maintain its diffusion barrier capability 

under prolonged exposure to high temperature environment at 200ᵒC. 

 A unique type of void was found at the interface between Cu6Sn5 interfacial 

IMC and the solder bulk that developed during high temperature aging at 

185ᵒC and 200ᵒC, and its effect on SAC305 and SAC305-X solder joint 

reliability under mechanical shock loading was determined.  

 A correlation was established between high temperature aging effects 

(interfacial IMC growth, and void formation and coalescence) and mechanical 

shock reliability of SAC305 and SAC305-X solders showing that interfacial 

IMC growth and especially void formation/coalescence during high 

temperature aging significantly reduces shock reliability of solder joints.    
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Appendix-A 

Appendix-A shows the result of Unit-B and Unit-C. These both the units were used to 

understand the short term effects of an elevated temperature on the MEMS vibratory 

gyroscope. The baseline test results of stationary and rotary conditions are 

summarized in table; while, thermal test results are shown graphically.  

Unit-B 

Stationary Test: 

 
Figure 0-1: (a) Stationary thermal test results from 25°C to 85°C; (b) Mean of angular 

rate data with windowsize = 100; (c) Thermal cycles from 25°C to 85°C. 

 
Figure 0-2: (a) Stationary thermal test results from 25°C to 125°C; (b) Mean of 

angular rate data with windowsize = 100; (c) Thermal cycles from 25°C to 125°C. 
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Cycles Temperature Dependent Bias (ᵒ/s) 

First cycle 3.20 

Second cycle 3.25 

Third cycle 3.25 

Fourth cycle 3.30 

Fifth cycle 3.30 

Avg. 3.26 

Table 0-1: Temperature dependent bias values of five stationary thermal cycles from 

25°C to 125°C. 

 
Figure 0-3: (a) Stationary thermal test results from 25°C to 150°C; (b) Mean of 

angular rate data with windowsize = 100; (c) Thermal cycles from 25°C to 150°C. 
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Figure 0-4: (a) Stationary thermal test results from 25°C to 175°C; (b) Mean of 

angular rate data with windowsize = 100; (c) Thermal cycles from 25°C to 175°C. 

No Tests Mean  (°/s) Standard Deviation (°/s) 

1 First stationary baseline test 0.01 0.43 

2 Second stationary baseline test 0.02 0.49 

3 Third stationary baseline test 0.01 0.45 

4 Fourth stationary baseline test -0.01 0.44 

5 Fifth stationary baseline test 0.02 0.43 

Table 0-2: Mean and Standard Deviation of Stationary Baseline Test 

Rotary Test: 

 
Figure 0-5: (a) Rotary thermal test results from 25°C to 85°C; (b) Mean of angular 

rate data with windowsize = 100; (c) Thermal cycles from 25°C to 85°C. 
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Figure 0-6: (a) Rotary thermal test results from 25°C to 125°C; (b) Mean of angular 

rate data with windowsize = 100; (c) Thermal cycles from 25°C to 125°C. 

Cycles Angular Velocity(Deg/s) at 125 ˚C Bias (Deg/s) 

First cycle 63.30 3.3 

Second cycle 63.15 3.15 

Third cycle 63.40 3.40 

Fourth cycle 63.25 3.25 

Fifth cycle 63.25 3.25 

Avg. 63.27 3.27 

Table 0-3: Angular velocity and temperature dependent bias of five rotary thermal 

cycles from 25°C to 125°C. 

 
Figure 0-7: (a) Rotary thermal test results from 25°C to 150°C; (b) Mean of angular 

rate data with windowsize = 100; (c) Thermal cycles from 25°C to 150°C. 
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Figure 0-8: (a) Rotary thermal test results from 25°C to 175°C; (b) Mean of angular 

rate data with windowsize = 100; (c) Thermal cycles from 25°C to 175°C. 

No Tests Mean  (°/s) Standard Deviation (°/s) 

1 First Rotary baseline test 59.92 0.93 

2 Second Rotary baseline test 59.98 1.05 

3 Third Rotary baseline test 59.85 1.20 

4 Fourth Rotary baseline test 59.79 1.33 

5 Fifth Rotary baseline test 59.88 1.01 

Table 0-4: Mean and Standard Deviation of Rotary Baseline Test 

 

Unit-C 

Stationary Test: 

 
Figure 0-9: (a) Stationary thermal test results from 25°C to 85°C; (b) Mean of angular 

rate data with windowsize = 100; (c) Thermal cycles from 25°C to 85°C. 
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Figure 0-10: (a) Stationary thermal test results from 25°C to 125°C; (b) Mean of 

angular rate data with windowsize = 100; (c) Thermal cycles from 25°C to 125°C. 

Cycles Temperature Dependent Bias (ᵒ/s) 

First cycle 3.20 

Second cycle 3.25 

Third cycle 3.35 

Fourth cycle 3.30 

Fifth cycle 3.30 

Avg. 3.28 

Table 0-5: Temperature dependent bias values of five stationary thermal cycles from 

25°C to 125°C. 

 
Figure 0-11: (a) Stationary thermal test results from 25°C to 150°C; (b) Mean of 

angular rate data with windowsize = 100; (c) Thermal cycles from 25°C to 150°C. 
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Figure 0-12: (a) Stationary thermal test results from 25°C to 175°C; (b) Mean of 

angular rate data with windowsize = 100; (c) Thermal cycles from 25°C to 175°C. 

No Tests Mean  (°/s) Standard Deviation (°/s) 

1 First stationary baseline test 0.01 0.46 

2 Second stationary baseline test 0.01 0.48 

3 Third stationary baseline test 0.01 0.44 

4 Fourth stationary baseline test 0.02 0.45 

5 Fifth stationary baseline test 0.01 0.45 

 

Rotary Test: 

 

Figure 0-13: (a) Rotary thermal test results from 25°C to 85°C; (b) Mean of angular 

rate data with windowsize = 100; (c) Thermal cycles from 25°C to 85°C. 
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Figure 0-14: (a) Rotary thermal test results from 25°C to 125°C; (b) Mean of angular 

rate data with windowsize = 100; (c) Thermal cycles from 25°C to 125°C. 

Cycles Angular Velocity(Deg/s) At 125 ˚C Bias (Deg/s) 

First cycle 63.30 3.30 

Second cycle 63.15 3.15 

Third cycle 63.30 3.30 

Fourth cycle 63.40 3.40 

Fifth cycle 63.25 3.25 

Avg. 63.28 3.28 

Table 0-6: Angular velocity and temperature dependent bias of five rotary thermal 

cycles from 25°C to 125°C. 

 

 

Figure 0-15: (a) Rotary thermal test results from 25°C to 150°C; (b) Mean of angular 

rate data with windowsize = 100; (c) Thermal cycles from 25°C to 150°C. 

0 10 20 30 40 50 60 70 80
55

60

65

70

O
u

tp
u

t(
D

e
g

/s
)

Minutes

(a)

0 10 20 30 40 50 60 70 80

60

62

64

O
u

tp
u

t(
D

e
g

/s
)

Minutes

(b)

0 10 20 30 40 50 60 70 80

40
60
80

100
120

T
e

m
p

(D
e

g
)

Minutes

(c)

0 5 10 15 20 25 30 35 40 45 50 55
55

60

65

70

O
u

tp
u

t(
D

e
g

/s
)

Minutes

Unit-9

(a)

0 5 10 15 20 25 30 35 40 45 50 55

60

65

O
u

tp
u

t(
D

e
g

/s
)

Minutes

(b)

0 5 10 15 20 25 30 35 40 45 50 55

50

100

150

T
e

m
p

(D
e

g
)

Minutes

(c)



 

264 

 

 

Figure 0-16: (a) Rotary thermal test results from 25°C to 175°C; (b) Mean of angular 

rate data with windowsize = 100; (c) Thermal cycles from 25°C to 175°C. 

No Tests Mean  (°/s) Standard Deviation (°/s) 

1 First Rotary baseline test 59.94 1.07 

2 Second Rotary baseline test 59.85 0.91 

3 Third Rotary baseline test 59.88 0.99 

4 Fourth Rotary baseline test 59.97 1.22 

5 Fifth Rotary baseline test 59.90 1.23 

Table 0-7: Mean and Standard Deviation of Rotary Baseline Test 
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Appendix-B 
 

Part-A - QFN32 185ᵒC Aging 

 
(a) 

 
  

(b) (c) 

Figure 0-1: QFN32 - SAC305 Solder Joint (a) After Reflow, (b) After 100 

hours/185ᵒC Aging, (c) After 1000 hours/185ᵒC Aging 

 

 

 

 

 

 

 



 

266 

 

 
(a) 

  
(b) (c) 

Figure 0-2: QFN32 - SAC305+0.05%Mn Solder Joint (a) After Reflow, (b) After 100 

hours/185ᵒC Aging, (c) After 1000 hours/185ᵒC Aging 
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(a) 

  
(b) (c) 

Figure 0-3: QFN32 - SAC305+0.17%Mn Solder Joint (a) After Reflow, (b) After 100 

hours/185ᵒC Aging, (c) After 1000 hours/185ᵒC Aging 
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(a) 

  
(b) (c) 

Figure 0-4: QFN32 - SAC305+0.07%Ce Solder Joint (a) After Reflow, (b) After 100 

hours/185ᵒC Aging, (c) After 1000 hours/185ᵒC Aging 
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(a) 

  
(b) (c) 

Figure 0-5: QFN32 - SAC305+0.13%Ce Solder Joint (a) After Reflow, (b) After 100 

hours/185ᵒC Aging, (c) After 1000 hours/185ᵒC Aging 
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Part-B - QFN32 200ᵒC Aging 

 

 
(a) 

  
(b) (c) 

Figure 0-6: QFN32 - SAC305 Solder Joint (a) After Reflow, (b) After 100 

hours/200ᵒC Aging, (c) After 1000 hours/200ᵒC Aging 
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(a) 

  
(b) (c) 

Figure 0-7: QFN32 - SAC305+0.05%Mn Solder Joint (a) After Reflow, (b) After 100 

hours/200ᵒC Aging, (c) After 1000 hours/200ᵒC Aging 
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(a) 

  
(b) (c) 

Figure 0-8: QFN32 - SAC305+0.17%Mn Solder Joint (a) After Reflow, (b) After 100 

hours/200ᵒC Aging, (c) After 1000 hours/200ᵒC Aging 
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(a) 

  
(b) (c) 

Figure 0-9: QFN32 - SAC305+0.07%Ce Solder Joint (a) After Reflow, (b) After 100 

hours/200ᵒC Aging, (c) After 1000 hours/200ᵒC Aging 
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(a) 

  
(b) (c) 

Figure 0-10: QFN32 - SAC305+0.13%Ce Solder Joint (a) After Reflow, (b) After 

100 hours/200ᵒC Aging, (c) After 1000 hours/200ᵒC Aging 

 

 



 

275 

 

References 
[1] S. Nasiri, “A Critical Review of MEMS Gyroscopes Technology and 

Commercialization Status.” InvenSense Inc. 

[2] M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in 

Gyroscope Technologies, 1st Edition. Springer, 2010. 

[3] M. P. de Boer, B. D. Jensen, and F. Bitsie, “Small-area in-situ MEMS test 

structure to measure fracture strength by electrostatic probing,” in Society of 

Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 1999, vol. 

3875, pp. 97–103. 

[4] T. G. Brown, “Harsh military environments and microelectromechanical 

(MEMS) devices,” in Sensors, 2003. Proceedings of IEEE, 2003, vol. 2, pp. 753 

– 760 Vol.2. 

[5] T. G. Brown, B. Davis, D. Hepner, J. Faust, C. Myers, C. Muller, T. Harkins, M. 

Holis, and B. Placzankis, “Strap-down microelectromechanical (MEMS) sensors 

for high-g munition applications,” Magn. IEEE Trans. On, vol. 37, no. 1, pp. 

336 –342, Jan. 2001. 

[6] H. Hyvönen, “Thermomechanical and Mechanical Characterization of a 3-Axial 

MEMS Gyroscope,” Aalto University School of Electrical Engineering, 2011. 

[7] R. Dean, G. Flowers, S. Hodel, K. Macallister, R. Horvath, A. Matras, and R. 

Glover, “Vibration isolation of MEMS sensors for aerospace applications,” 

SPIE Proc. Ser., pp. 166–170. 

[8] D. M. Tanner, J. A. Walraven, K. S. Helgesen, L. W. Irwin, D. L. Gregory, J. R. 

Stake, and N. F. Smith, “MEMS reliability in a vibration environment,” in 

Reliability Physics Symposium, 2000. Proceedings. 38th Annual 2000 IEEE 

International, 2000, pp. 139 –145. 

[9] R. N. Dean, S. T. Castro, G. T. Flowers, G. Roth, A. Ahmed, A. S. Hodel, B. E. 

Grantham, D. A. Bittle, and J. P. Brunsch, “A Characterization of the 

Performance of a MEMS Gyroscope in Acoustically Harsh Environments,” Ind. 

Electron. IEEE Trans. On, no. 99, pp. 1–1, 2011. 

[10] R. N. Dean, G. T. Flowers, A. S. Hodel, G. Roth, S. Castro, R. Zhou, A. 

Moreira, A. Ahmed, R. Rifki, B. E. Grantham, D. Bittle, and J. Brunsch, “On the 

Degradation of MEMS Gyroscope Performance in the Presence of High Power 

Acoustic Noise,” in IEEE International Symposium on Industrial Electronics, 

2007. ISIE 2007, 2007, pp. 1435–1440. 

[11] G. Roth, “Simulation of the Effects of Acoustic Noise on MEMS Gyroscopes,” 

thesis, Auburn University, 2009. 

[12] “ADIS16135 from Analog Device Inc.” . 

[13] “ISZ-1215 from InvenSense Inc.” . 

[14] “MLX90609 from MELEXIS Inc.” . 

[15] “LY330ALH from STMicroelectronics.Inc.” . 

[16] K. Shcheglov, C. Evans, R. Gutierrez, and T. K. Tang, “Temperature dependent 

characteristics of the JPL silicon MEMS gyroscope,” in Aerospace Conference 

Proceedings, 2000 IEEE, 2000, vol. 1, pp. 403–411. 



 

276 

 

[17] D. Keymeulen, C. Peay, K. Yee, and D. L. Li, “Effect of Temperature on 

MEMS Vibratory Rate Gyroscope,” in Aerospace Conference, 2005 IEEE, 

2005, pp. 1 –6. 

[18] Q. Zhang, Z. Tan, and L. Guo, “Compensation of Temperature Drift of MEMS 

Gyroscope Using BP Neural Network,” in Information Engineering and 

Computer Science, 2009. ICIECS 2009. International Conference on, 2009, pp. 

1 –4. 

[19] D. Xia, S. Chen, S. Wang, and H. Li, “Microgyroscope Temperature Effects and 

Compensation-Control Methods,” Sensors, vol. 9, no. 10, pp. 8349–8376, Oct. 

2009. 

[20] G. Liu, A. Wang, T. Jiang, J. Jiao, and J.-B. Jang, “Effects of environmental 

temperature on the performance of a micromachined gyroscope,” Microsyst 

Technol, vol. 14, no. 2, pp. 199–204, Oct. 2007. 

[21] Z. Hou, D. Xiao, X. Wu, P. Dong, Z. Niu, Z. Zhou, and X. Zhang, “Effect of 

parasitic resistance on a MEMS vibratory gyroscopes due to temperature 

fluctuations,” in Nano/Micro Engineered and Molecular Systems (NEMS), 2011 

IEEE International Conference on, 2011, pp. 293 –296. 

[22] Z. Hou, D. Xiao, X. Wu, P. Dong, Z. Chen, Z. Niu, and X. Zhang, “Effect of 

Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes,” 

Sensors, vol. 11, no. 1, pp. 296–309, Dec. 2010. 

[23] X.-H. Zhu, H.-J. Chu, Q. Shi, A.-P. Qiu, and Y. Su, “Experimental Study of 

Compensation for the Effect of Temperature on a Silicon Micromachined 

Gyroscope,” Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst., vol. 222, no. 

2, pp. 49–55, Jun. 2008. 

[24] L. F. Wu and F. X. Zhang, “Effect of the temperature on the performance of 

silicon micro-machined gyroscope using for rotating carrier,” in Control and 

Decision Conference, 2008. CCDC 2008. Chinese, 2008, pp. 4876 –4879. 

[25] R. Feng, A. P. Qiu, Q. Shi, X. H. Zhu, L. Yang, and Y. Su, “A Research on 

Temperature Dependent Characteristics of Quality Factor of Silicon MEMS 

Gyroscope,” Adv. Mater. Res., vol. 159, pp. 399–405, Dec. 2010. 

[26] B. Kim, M. A. Hopcroft, R. N. Candler, C. M. Jha, M. Agarwal, R. Melamud, S. 

A. Chandorkar, G. Yama, and T. W. Kenny, “Temperature Dependence of 

Quality Factor in MEMS Resonators,” Microelectromechanical Syst. J. Of, vol. 

17, no. 3, pp. 755 –766, Jun. 2008. 

[27] R. Feng, A. P. Qiu, Q. Shi, X. H. Zhu, L. Yang, and Y. Su, “A Research on 

Temperature Dependent Characteristics of Quality Factor of Silicon MEMS 

Gyroscope,” Adv. Mater. Res., vol. 159, pp. 399–405, Dec. 2010. 

[28] H. Chang, Y. Zhang, J. Xie, Z. Zhou, and W. Yuan, “Integrated Behavior 

Simulation and Verification for a MEMS Vibratory Gyroscope Using 

Parametric Model Order Reduction,” Microelectromechanical Syst. J. Of, vol. 

19, no. 2, pp. 282 –293, Apr. 2010. 

[29] S. Mohite, N. Patil, and R. Pratap, “Design, modelling and simulation of 

vibratory micromachined gyroscopes,” J. Phys. Conf. Ser., vol. 34, pp. 757–763, 

Apr. 2006. 



 

277 

 

[30] C. C. Painter and A. M. Shkel, “Structural and thermal modeling of a               z               

-axis rate integrating gyroscope,” J. Micromechanics Microengineering, vol. 13, 

no. 2, pp. 229–237, Mar. 2003. 

[31] J. Fang and J. Li, “Improved temperature error model of silicon MEMS 

gyroscope with inside frame driving--《Journal of Beijing University of 

Aeronautics and Astronautics》2006.” 

[32] W. M. van Spengen, P. Czarnecki, R. Poets, J. T. M. van Beek, and I. De Wolf, 

“The influence of the package environment on the functioning and reliability of 

RF-MEMS switches,” in Reliability Physics Symposium, 2005. Proceedings. 

43rd Annual. 2005 IEEE International, 2005, pp. 337 – 341. 

[33] M. K. Yeh and C. L. Lu, “Thermal Stress and Thermal Cycling Analyses of 

Microgyroscope Chip Models,” Key Eng. Mater., vol. 462–463, pp. 622–627, 

Jan. 2011. 

[34] C.-L. Lu and M.-K. Yeh, “Thermal cycling analysis of microgyroscope chip 

embedded with through-silicon vias by finite element method,” in Microsystems 

Packaging Assembly and Circuits Technology Conference (IMPACT), 2010 5th 

International, 2010, pp. 1 –4. 

[35] J. Cui, B. Sun, Q. Feng, and S. Zeng, “Study on MEMS board-level package 

reliability under high-G impact | PHM Society,” presented at the Annual 

Conference of the Prognostics and Health Management Society 2011. 

[36] C. Acar and A. Shkel, MEMS Vibratory Gyroscopes: Structural Approaches to 

Improve Robustness, 2nd ed. Springer, 2008. 

[37] N. Patil, “Design And Analysis Of MEMS Angular Rate Sensors,” Master’s 

thesis, Indian Institute of Science, Bangalore, India., 2006. 

[38] V. Kaajakari, Practical MEMS: Design of microsystems, accelerometers, 

gyroscopes, RF MEMS, optical MEMS, and microfluidic systems. Small Gear 

Publishing, 2009. 

[39] S. Mohite, N. Patil, and R. Pratap, “Design, modelling and simulation of 

vibratory micromachined gyroscopes,” J. Phys. Conf. Ser., vol. 34, pp. 757–763, 

Apr. 2006. 

[40] R. Dean, G. Flowers, N. Sanders, R. Horvath, M. Kranz, and M. Whitley, 

“Micromachined vibration isolation filters to enhance packaging for 

mechanically harsh environments,” J. Microelectron. Electron. Packag., vol. 2, 

no. 4, pp. 223–231. 

[41] J. K. Bekkeng, “Calibration of a Novel MEMS Inertial Reference Unit,” IEEE 

Trans. Instrum. Meas., vol. 58, no. 6, pp. 1967–1974, Jun. 2009. 

[42] Fang Jiancheng and Li Jianli, “Integrated Model and Compensation of Thermal 

Errors of Silicon Microelectromechanical Gyroscope,” IEEE Trans. Instrum. 

Meas., vol. 58, no. 9, pp. 2923–2930, Sep. 2009. 

[43] C. Patel, P. McCluskey, and D. Lemus, “Performance and Reliability of MEMS 

Gyroscopes and Packaging at High Temperatures,” presented at the High 

Temperature Electronics (HiTEC), IMAPS, 2010. 

[44] C. Patel, P. McCluskey, and D. Lemus, “Performance and reliability of mems 

gyroscopes at high temperatures,” in Thermal and Thermomechanical 

Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety 

Conference on, 2010, pp. 1–5. 



 

278 

 

[45] C. Acar, A. R. Schofield, A. A. Trusov, L. E. Costlow, and A. M. Shkel, 

“Environmentally Robust MEMS Vibratory Gyroscopes for Automotive 

Applications,” IEEE Sens. J., vol. 9, no. 12, pp. 1895–1906, Dec. 2009. 

[46] K. Shcheglov, C. Evans, R. Gutierrez, and T. K. Tang, “Temperature dependent 

characteristics of the JPL silicon MEMS gyroscope,” in Aerospace Conference 

Proceedings, 2000 IEEE, 2000, vol. 1, pp. 403–411 vol.1. 

[47] D. Keymeulen, C. Peay, K. Yee, and D. L. Li, “Effect of Temperature on 

MEMS Vibratory Rate Gyroscope,” in Aerospace Conference, 2005 IEEE, 

2005, pp. 1–6. 

[48] L. F. Wu and F. X. Zhang, “Effect of the temperature on the performance of 

silicon micro-machined gyroscope using for rotating carrier,” in Control and 

Decision Conference, 2008. CCDC 2008. Chinese, 2008, pp. 4876–4879. 

[49] S. H. Choa, “Reliability of Vacuum Packaged MEMS Gyroscopes,” 

Microelectron. Reliab., vol. 45, no. 2, pp. 361–369, Feb. 2005. 

[50] W. N. Sharpe, Bin Yuan, R. Vaidyanathan, and R. L. Edwards, “Measurements 

of Young’s modulus, Poisson’s ratio, and tensile strength of polysilicon,” in 

Micro Electro Mechanical Systems, 1997. MEMS ’97, Proceedings, IEEE., 

Tenth Annual International Workshop on, 1997, pp. 424–429. 

[51] M. Shamshirsaz and M. B. Asgari, “Polysilicon micro beams buckling with 

temperature-dependent properties,” Microsyst. Technol., vol. 14, no. 7, pp. 957–

961, Feb. 2008. 

[52] W. N. Sharpe, M. . Eby, and G. Coles, “Effect of Temperature on Mechanical 

Properties of Polysilicon.” Proceedings Transducers ‘01, Munich,1366-1369, 

2001. 

[53] H.-T. Lee, M.-H. Chen, H.-M. Jao, and T.-L. Liao, “Influence of interfacial 

intermetallic compound on fracture behavior of solder joints,” Mater. Sci. Eng. 

A, vol. 358, no. 1–2, pp. 134–141, Oct. 2003. 

[54] K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of intermetallic compounds 

on properties of Sn–Ag–Cu lead-free soldered joints,” J. Alloys Compd., vol. 

352, no. 1–2, pp. 226–236, Mar. 2003. 

[55] J.-W. Yoon, S.-W. Kim, J.-M. Koo, D.-G. Kim, and S.-B. Jung, “Reliability 

investigation and interfacial reaction of ball-grid-array packages using the lead-

free Sn-Cu solder,” J. Electron. Mater., vol. 33, no. 10, pp. 1190–1199, Oct. 

2004. 

[56] T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, 

K. Zeng, and J. K. Kivilahti, “Morphology, kinetics, and thermodynamics of 

solid-state aging of eutectic SnPb and Pb-free solders (Sn–3.5Ag, Sn–3.8Ag–

0.7Cu and Sn–0.7Cu) on Cu,” J. Mater. Res., vol. 17, no. 02, pp. 291–301, 2002. 

[57] D. Q. Yu, C. M. L. Wu, C. M. T. Law, L. Wang, and J. K. L. Lai, “Intermetallic 

compounds growth between Sn–3.5Ag lead-free solder and Cu substrate by 

dipping method,” J. Alloys Compd., vol. 392, no. 1–2, pp. 192–199, Apr. 2005. 

[58] W. K. Choi and H. M. Lee, “Effect of soldering and aging time on interfacial 

microstructure and growth of intermetallic compounds between Sn-3.5Ag solder 

alloy and Cu substrate,” J. Electron. Mater., vol. 29, no. 10, pp. 1207–1213, 

Oct. 2000. 



 

279 

 

[59] P. Chauhan, “MICROSTRUCTURAL CHARACTERIZATION AND 

THERMAL CYCLING RELIABILITY OF SOLDERS UNDER 

ISOTHERMAL AGING AND ELECTRICAL CURRENT,” 2012. 

[60] Y. H. Tian, C. Q. Wang, and W. F. Zhou, “EVOLUTION OF 

MICROSTRUCTURE OF Sn-Ag-Cu LEAD-FREE FLIP CHIP SOLDER 

JOINTS DURING AGING PROCESS,” Acta Metall. Sin. Engl. Lett., vol. 19, 

no. 4, pp. 301–306, Aug. 2006. 

[61] D.W. Henderson, P. Borgesen, P. Kondos, I. De Sousa, L.Patry, and L. Yin, 

“What the Electronics Industry Missed for 80 Years....Interfacial Void 

Formation in Solder Joints with Cu Pad Structures during Thermal Aging.” 

Presentation at TMS 2006 Lead Free Workshop, San Antonio, Mar-2006. 

[62] L. Xu and J. H. L. Pang, “Interfacial IMC and Kirkendall void on SAC solder 

joints subject to thermal cycling,” in Electronic Packaging Technology 

Conference, 2005. EPTC 2005. Proceedings of 7th, 2005, vol. 2, p. 5 pp.–. 

[63] F. W. Gayle, G. Becka, A. Syed, J. Badgett, G. Whitten, T.-Y. Pan, A. Grusd, B. 

Bauer, R. Lathrop, J. Slattery, I. Anderson, J. Foley, A. Gickler, D. Napp, J. 

Mather, and C. Olson, “High temperature lead-free solder for microelectronics,” 

JOM, vol. 53, no. 6, pp. 17–21, Jun. 2001. 

[64] E. George, D. Das, M. Osterman, and M. Pecht, “Thermal Cycling Reliability of 

Lead-Free Solders (SAC305 and Sn3.5Ag) for High-Temperature Applications,” 

IEEE Trans. Device Mater. Reliab., vol. 11, no. 2, pp. 328–338, 2011. 

[65] M. A. Crandall, “Effect of Intermetallic Growth on Durability of High 

Temperature Solders (SnAg, SAC305, SAC+Mn, SnAg+Cu Nano) in Thermal 

and Vibration Environments,” Thesis, 2011. 

[66] D. Y. R. Chong, F. X. Che, J. H. L. Pang, L. Xu, B. S. Xiong, H. J. Toh, and B. 

K. Lim, “Evaluation on Influencing Factors of Board-Level Drop Reliability for 

Chip Scale Packages (Fine-Pitch Ball Grid Array),” IEEE Trans. Adv. Packag., 

vol. 31, no. 1, pp. 66–75, 2008. 

[67] T. T. Mattila and J. K. Kivilahti, “Reliability of lead-free interconnections under 

consecutive thermal and mechanical loadings,” J. Electron. Mater., vol. 35, no. 

2, pp. 250–256, Feb. 2006. 

[68] W. Peng and M. E. Marques, “Effect of Thermal Aging on Drop Performance of 

Chip Scale Packages with SnAgCu Solder Joints on Cu Pads,” J. Electron. 

Mater., vol. 36, no. 12, pp. 1679–1690, Dec. 2007. 

[69] T.-K. Lee, W. Xie, and K.-C. Liu, “Impact of isothermal aging on Sn-Ag-Cu 

solder interconnect board level high G mechanical shock performance,” in 

Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st, 

2011, pp. 547–552. 

[70] W. Liu and N.-C. Lee, “The effects of additives to SnAgCu alloys on 

microstructure and drop impact reliability of solder joints,” JOM, vol. 59, no. 7, 

pp. 26–31, Jul. 2007. 

[71] W. Liu and N.-C. Lee, “NOVEL SACX SOLDERS WITH SUPERIOR DROP 

TEST PERFORMANCE,” presented at the SMTA International Conference 

Proceedings, 2006. 



 

280 

 

[72] M. Amagai, “A study of nanoparticles in SnAg-based lead free solders for 

intermetallic compounds and drop test performance,” in Electronic Components 

and Technology Conference, 2006. Proceedings. 56th, 2006, p. 21 pp.–. 

[73] W. Liu, N.-C. Lee, A. Porras, M. Ding, A. Gallagher, A. Huang, S. Chen, and J. 

ChangBing Lee, “Achieving high reliability low cost lead-free SAC solder joints 

via Mn or Ce doping,” in Electronic Components and Technology Conference, 

2009. ECTC 2009. 59th, 2009, pp. 994 –1007. 

[74] W. Liu, N.-C. Lee, A. Porras, M. Ding, A. Gallagher, A. Huang, S. Chen, and J. 

C.-B. Lee, “Shock resistant and thermally reliable low Ag SAC solders doped 

with Mn Or Ce,” in Electronics Packaging Technology Conference, 2009. EPTC 

’09. 11th, 2009, pp. 49–63. 

[75] I. E. Anderson and J. L. Harringa, “Suppression of void coalescence in thermal 

aging of tin-silver-copper-X solder joints,” J. Electron. Mater., vol. 35, no. 1, 

pp. 94–106, Jan. 2006. 

[76] M. Ghosh, A. Kar, S. Das, and A. Ray, “Aging Characteristics of Sn-Ag 

Eutectic Solder Alloy with the Addition of Cu, In, and Mn,” Metall. Mater. 

Trans. A, vol. 40, no. 10, pp. 2369–2376, 2009. 

[77] L.-W. Lin, J.-M. Song, Y.-S. Lai, Y.-T. Chiu, N.-C. Lee, and J.-Y. Uan, 

“Alloying modification of Sn–Ag–Cu solders by manganese and titanium,” 

Microelectron. Reliab., vol. 49, no. 3, pp. 235–241, Mar. 2009. 

[78] K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of fourth alloying additive on 

microstructures and tensile properties of Sn–Ag–Cu alloy and joints with Cu,” 

Microelectron. Reliab., vol. 43, no. 2, pp. 259–267, Feb. 2003. 

[79] A. Boesenberg, “Development of Al, Mn, & Zn doped Sn-Ag-Cu-X solders for 

electronic assembly,” Theses Diss., Jan. 2011. 

[80] L.-W. Lin, J.-M. Song, Y.-S. Lai, Y.-T. Chiu, and N.-C. Lee, “Alloying design 

of Sn-Ag-Cu solders for the improvement in drop test performance,” in 

International Conference on Electronic Materials and Packaging, 2008. EMAP 

2008, 2008, pp. 33–36. 

[81] S. Mukherjee, A. Dasgupta, B. Zhou, and T. R. Bieler, “Multiscale Modeling of 

the Effect of Micro-alloying Mn and Sb on the Viscoplastic Response of 

SAC105 Solder,” J. Electron. Mater., pp. 1–12. 

[82] S. Mukherjee, T. T. Mattila, and A. Dasgupta, “Effect of addition of manganese 

and antimony on viscoplastic properties and cyclic mechanical durability of low 

silver Sn-Ag-Cu solder,” in 2012 13th IEEE Intersociety Conference on 

Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 

2012, pp. 888–895. 

[83] L. Liang, Q. Wang, and Z. Zhao, “Effect of Cerium Addition on Board Level 

Reliability of Sn-Ag-Cu Solder Joint,” in Electronic Packaging Technology, 

2007. ICEPT 2007. 8th International Conference on, 2007, pp. 1 –4. 

[84] C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, “Properties of lead-free 

solder alloys with rare earth element additions,” Mater. Sci. Eng. R Rep., vol. 

44, no. 1, pp. 1–44, Apr. 2004. 

[85] C. Law, C. Wu, D. Yu, L. Wang, and J. Lai, “Microstructure, solderability, and 

growth of intermetallic compounds of Sn-Ag-Cu-RE lead-free solder alloys,” J. 

Electron. Mater., vol. 35, no. 1, pp. 89–93, 2006. 



 

281 

 

[86] Z. Chen, Y. Shi, Z. Xia, and Y. Yan, “Properties of lead-free solder SnAgCu 

containing minute amounts of rare earth,” J. Electron. Mater., vol. 32, no. 4, pp. 

235–243, Apr. 2003. 

[87] Z. G. Chen, Y. W. Shi, Z. D. Xia, and Y. F. Yan, “Study on the microstructure 

of a novel lead-free solder alloy SnAgCu-RE and its soldered joints,” J. 

Electron. Mater., vol. 31, no. 10, pp. 1122–1128, Oct. 2002. 

[88] C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, “The properties of Sn-9Zn 

lead-free solder alloys doped with trace rare earth elements,” J. Electron. 

Mater., vol. 31, no. 9, pp. 921–927, Sep. 2002. 

[89] C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, “Improvements of 

microstructure, wettability, tensile and creep strength of eutectic Sn–Ag alloy by 

doping with rare-earth elements,” J. Mater. Res., vol. 17, no. 12, pp. 3146–3154, 

2002. 

[90] C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, “Microstructure and 

mechanical properties of new lead-free Sn-Cu-RE solder alloys,” J. Electron. 

Mater., vol. 31, no. 9, pp. 928–932, Sep. 2002. 

[91] W. Liu and N.-C. Lee, “Lead-free solder alloys and solder joints thereof with 

improved drop impact resistance,” EP1977022 A431-Dec-2008. 

[92] “IPC-A-610D Acceptability of Electronic Assemblies - IPC Association 

Connecting Electronics Industries,” 2005. . 

[93] “IPC 9701 A - Performance Test Methods and Qualification Requirements for 

Surface Mount Solder Attachments.” Jan-2002. 

[94] “IPC/JEDEC-9703 - Mechanical Shock Test Guidelines for Solder Joint 

Reliability.” Mar-2009. 

[95] “JESD-B111 - Board Level Drop Test Method of Components for Handheld 

Electronic Products.” Jul-2003. 

[96] Z. Mei, M. Ahmad, M. Hu, and G. Ramakrishna, “Kirkendall voids at Cu/solder 

interface and their effects on solder joint reliability,” in Electronic Components 

and Technology Conference, 2005. Proceedings. 55th, 2005, pp. 415–420 Vol. 

1. 

[97] R. Aspandiar, “Voids in Solder Joints,” J. SMT Artic., Oct. 2006. 

 

 


