

ABSTRACT

Title of dissertation: DYNAMIC ONTOLOGIES THAT ENCODE AND
MANAGE RELEVANCE IN CONTEXT AWARE
SYSTEMS

 Nicholas Gramsky
 Doctor of Philosophy, 2018

Dissertation directed by: Professor Ashok Agrawala, Department of Computer
Science

Context aware systems, to date, tend to fall into one of two categories: domain

specific or generic across multiple domains. Domain specific systems are single-use

instances – that is, establishing the ability to manage context for an additional domain

necessitates the creation of an additional system. Authors of such systems should instead

strive for generic ones. Generic context management systems require a generic modeling

and context delivery system.

Previous research has shown that generic context aware systems prove to be quite

dynamic through their use of ontologies. These ontologies, however, are very rigid in

nature, requiring additional software to mature and manage instantiated models, filter

relevant information, or pre-cache information. The result is users who wish to use generic

systems must encode relevance across ontological models, filters, and newly created

external software with each re-use in order to manage context manipulation at run time.

Through the design and implementation of Rover3, while leveraging the concept of

an Automatic and Dynamic Information Model (ADIM) methodology, we outline what we

believe how context aware systems should function. By providing a framework to encode

relevance within ontologies, we minimize the way to present and consume relevant

information. Our context management framework uses dynamic ontologies to deliver

relevant information to users striving to achieve goals for any given situation.

Walking through an accident response case study we showcase the aforementioned

features of Rover3, showing how such incidents can benefit from context aware systems.

The value of Rover3 is expressed through an extensibility study where efforts to expand

existing ontological models are compared between Rover2 and Rover3.

This dissertation presents:

• The notion of relevant context and how it can be managed at runtime

through a generic context aware system.

• The required primitives and rules for modeling any generic situation.

• The Automatic and Dynamic Information Model (ADIM) methodology,

how one can encode relevance in a general information model, and

exhaustive grammar and rules for this version of ADIM.

• The Rover3 system and its application of ADIM, showcasing how it

provides a generic framework to model and manage context that does not

require any additional software.

DYNAMIC ONTOLOGIES THAT ENCODE AND MANAGE RELEVANCE IN
CONTEXT AWARE SYSTEMS

by

Nicholas A. Gramsky

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

	

Advisory Committee:
Professor Ashok Agrawala, Chair
Professor Min Wu, Dean’s Representative
Professor Adam Porter
Professor Alan Sussman
Professor Atif Memon

© Copyright by
Nicholas A. Gramsky

2018

 ii	

Dedication

For my children - Miles, Bryce, and Rainer. For my wife Denise. And anyone else who

finds this work moving.

 iii	

Acknowledgements

First, I want to thank my advisor, professor, and friend in Dr. Ashok Agrawala. I

had a very rough first semester at UMD. After ignoring the advice of my assigned advisor

I decided to take a seminar taught by Dr. Agrawala. His motivation, inspiration, and free

thinking allowed me to blossom. This was the start of a long and exciting journey where

computer science, philosophy, and all aspects of science were discussed. During this time,

you challenged me in ways few ever have. You planted a few seeds and helped them

flourish to the ideas in this dissertation. As a result, I now view the world and problem

solving in a whole new light thanks to your time and energy. I only hope I give back to a

few the ways you have given to so many students such as myself. The collaborative

environment you foster within the MIND lab is great. My only regret was I did not spend

more time with the lab and fellow students. I hope we continue to have coffee and lengthy

discussions like those had during this exploration.

My lab/class partners over the years have done so much more than help me

complete projects, they taught me about software dev, how to think, and other views on

life. Robert Gove, Ken Knudsen, and Preeti Bhargava are a few I worked at length with.

My time with each of you was beneficial both in terms of the innovative challenges we

solved as well as the personal and technical growth I underwent with each of you.

To my managers/supervisors that allowed me to run to College Park for day classes

I thank you. You didn’t have to allow me the flexibility to do this but your willingness to

allow me to grow was pivotal in my ability to continue my career during this journey. Bill

Milligan, Mauricio Martinez, Dan Domingue, Rizza Eklund, and Joe Walker, I thank you

profusely for allowing this to take place.

 iv	

To my friends who never knew how painful it was to be asked “are you almost done

yet?”, thank you for pushing me. The list is lengthy but there were a few of you who just

never let up are Michelle Castro, Ines Mason, Blair Lockamy, Ted Moore, Andre Williams,

and many others.

To my dad and my grandfather, thank you for instilling in me the value of hard

work. Seeing my father work tirelessly every day with ever-increasing high standards

eventually caused this to be pre-wired in my brain. My deceased grandfather, Ed

Crescenze, who still holds a UMD baseball school record, thank you for teaching me to

never give up, aim high, and work hard.

Though their interactions with my schoolwork was mostly in the form of sitting on

my lap and asking if they could push keyboard buttons, messing up my office, or distracting

me, my kids were one of my biggest motivators to finish. So many times I wanted to give

up. Quit. Return to a life without school. Each time that thought cross my mind I cringed

at the story I would have to tell my kids “I was almost there, but it got too tough and I

decided to quit…”. That has not been, nor will it ever be how I operate. In my most difficult

periods, I thought of them and the lesson I would them by finishing.

Lastly, but surely not least, absolutely none of this would be possible without my

loving and supporting wife, Denise. It was her encouragement, dedication, sacrifice, and

fortitude that allowed me the time and energy to embark on and complete this long journey.

I thank the world I have been graced with her presence. Her tolerance and support of this

effort is just one of many examples of how loving and committed of a life partner she is. I

hope these words provide some semblance of thanks for the many days she handled the

kids, let me sleep in after an all-nighter, took care of affairs around the house, and dealt

 v	

with my grouchiness, all while I toiled away at this degree. Readers of this dissertation

should be prouder of her role in the production of this document than they should be of my

writing of it.

 vi	

Contents

Dedication .. ii

Acknowledgements .. iii
Contents .. vi

1 Introduction .. 1
1.1 Motivation ... 1
1.2 Current Context Aware Systems .. 5
1.3 Human Knowledge is not Static .. 8
1.4 Contribution .. 10
1.5 Organization of this Dissertation .. 12

2 Context, Relevance, and Ontologies ... 13
2.1 What is Context? ... 13
2.2 Ontologies as the Method for Modeling .. 14
2.3 Relevance .. 20
2.4 Primitives Required to Model Context .. 24
2.5 Ontologies that Contain Relevance and Instantiation Logic ... 27

3 Context Aware Systems ... 31
3.1 What is a Context Aware System? ... 31
3.2 Tenets of a Context Aware System .. 32

4 Dynamic Ontologies ... 36
4.1 What is a Dynamic Ontology .. 37
4.2 Why do we need a Dynamic Ontology ... 38
4.3 Dynamic Information Ontology in use .. 41

4.3.1 Encoding of Variable Relationships ... 41
4.3.2 Variable Hierarchal Entities ... 44
4.3.3 Collection of Actions Goal-Driven Entities Can Take .. 45

5 Introducing ADIM as a Means to Encode Relevance ... 50
5.1 ADIM .. 50

5.2 ADIM Grammar ... 53
5.3 Advantages of ADIM ... 56
5.4 Modeling More than just Surroundings, Modeling Thought .. 58

6 System Overview .. 61
6.1 Rover3 General Framework ... 61
6.1.1 Graph Database as the Data Store .. 65

6.1.2 Controller ... 66
6.1.3 Template Manager ... 68

6.1.4 Context Engine ... 69
6.1.5 Activity Manager ... 71
6.1.6 Situation Handler ... 72
6.1.7 UI Console ... 73

6.2 Domain Independent Framework .. 74
7 Putting it all Together – Dynamic Ontologies in use via Rover 3 and ADIM 75

7.1 ADIM Grammar .. 76

 vii	

7.1.1 Basic Grammar ... 76
7.1.2 Attribute Tests .. 79
7.1.3 Ontologies .. 80

7.2 Variable Relationships .. 81
7.2.1 Types .. 82
7.2.2 Variable Relationships Grammar ... 82

7.3 Enriching / pre-caching information based on current information 84
7.3.1 Grammar .. 86
7.3.2 Formatting of Pre-Caching grammar ... 86
7.3.3 Example .. 87

7.4 Collection of Actions Goal-oriented entities can take .. 88
7.4.1 The Activity ... 89
7.4.2 Goals .. 91
7.4.3 Grammar .. 92

7.5 Dynamic Situations .. 98
7.5.1 Grammar .. 99

7.6 Web API ... 99
7.6.1 Retrieving context .. 100
7.6.1.1 Commands for retrieving context .. 101
7.6.2 Creating context ... 103
7.6.2.1 Commands for creating context .. 104
7.6.3 Updating context .. 106
7.6.3.1 Commands for updating context ... 107

7.7 Browsing Context and Ontologies .. 109
7.7.1 Browsing the Situation Graph and the Context Store .. 110

7.7.2 Browsing Ontologies and the Template Store .. 112
8 Modeling and using Rover3 to handle a car accident – A Case Study 114

8.1 Building the Ontology ... 115
8.2 Consuming the Ontology .. 128
8.3 Achieving Goals with the Ontology .. 134

9 Extensibility Study ... 140
9.1 Extending Existing Models in Rover3 ... 140
9.2 Extending Existing Models in Rover2 ... 142
9.3 Comparison of the Two Systems .. 145

10 Contribution and Future Work .. 147
10.1 Contribution ... 147
10.2 Future Work .. 148

Bibliography .. 150

 1	

1 Introduction

1.1 Motivation

Any situation itself has a lot of information. The simple act of me typing this paper

has a wealth of information that surrounds the scenario. I am in my house, in the den, at

6:12 AM, typing with low light, I have 10 windows open in the background of my

computer, and the kids are still asleep. I am sitting in a metal chair, wearing a sweatshirt,

and the inside temperature is 70 degrees. The walls in the den are painted golden amber,

the doors are glossy white and the newly installed windows have yet to be painted. As

everyone else is asleep in my house and outside activity is mostly limited to nature, the

amount of ambient noise is very low. In fact, the sound of me typing on the keyboard is

the loudest thing within 50 meters. This list of surrounding environmental data goes on

and on and I am only discussing the act of typing this paper. Most of this information,

however, provides me with no value in my ability to write the paper.

If we consider a more interesting situation, say a two-car accident, there exists an

even larger set of information; information we can actually capture and use to help us if we

are motivated to help rectify the situation. We have both cars, the driver of each car, any

passengers, the driver’s health records, the driver’s police records, the history of the car,

the location and time of the accident, and so on. As the event unfolds there will be

emergency personnel supporting those involved, the possible need to locate a hospital to

transport anyone that is hurt, as well as additional police force if the accident was crime

related. Amongst other dimensions, information can be classified in two areas – static

information and changing information [1]. The color of the cars, the history of each person,

 2	

the location of the nearest hospitals, and driving ability of each driver is static and will not

change within the temporal context of the situation. Other information however is

changing almost rapidly. Blood pressure of those involved, safety of the cars involved,

position of nearest ambulance, and capacity of a hospital and its ability to take on new

patients given their ailments could be changing by the minute or even second. Despite the

volatility of the information, those involved in trying to assist with the situation will want

to constantly react and re-evaluate their actions at any moment in order to ensure any safety

issues are mitigated.

Data for any scenario can be found in many places. Internal systems and databases

may hold health information for individuals. Different databases hold police and criminal

records. As the Internet of Things (IoT) continues to increase the number of smart devices

around us to 75 billion devices in 2020 [2], the rate upon which information is created and

collected grows daily. Cameras are aplenty, providing both closed circuit systems and

public view of almost any point on the globe. Police cars in the US are outfitted with

cameras continuously reading license plates, allowing officers to passively record

information as they drive. The billions of cell phones double in function as both a

communication device and a multi-sensor device. With the proliferation of smart devices

to include smart watches and other wearable, the multiple sources to passively collect data

has continued to exponentially grow. Knowing ‘where’ to simply gather information itself

can prove to be quite the challenge, much less efficiently fetching data for processing

purposes

Meta-data about the information itself is quite valuable as one evaluates any single

piece of information. Despite her best intentions, my mother’s account of my health

 3	

records as a child are likely overshadowed by the records the various doctors I visited. An

eyewitness to a crash might provide an account of where one car was when it hit another

and how fast it was going, but a camera with a full account of the incident would provide

images that allow for an exact re-creation of the event that could include exact speeds,

times, and placements to the inch. Well calibrated GPS sensors could provide an even

more accurate description of speed and location than an objective camera, resulting in yet

an even more reliable account of the incident.

Despite the wealth of information found in any situation, not all data is really

relevant for any particular goal. Revisiting the situation where I am working in my office,

if I want to ensure I am able to work productively the fact that the tone of white paint on

the doors is less important than the fact that the kids are asleep. The amount of ambient

noise surrounding my office is likely relevant to my ability to concentrate, but only on

certain tasks. I have found that some tasks, such as software coding or mathematical

problem solving, are actually bolstered by music of certain types. That said, outside of

using the computer that contains references material for this task, consuming this

information does not assist in my ability to accomplish the goal of writing this dissertation.

Likewise, emergency responders reacting to the car accident scenario above will

want to resolve the situation quickly. For example, mitigating any risk to those not

involved in the accident, treat any injured, and clean up the scene are all possible goals of

such emergency responders. Immediate and optimal response of such a situation is one

where complete and relevant information can help expedite the necessary actions to take.

For example, when dealing with an injured person in the car accident, their professional

history might not do much, but knowing that a bleeding passenger has blood clotting issues

 4	

might help prioritize who to treat. Various involved parties will have goals relative to this

accident. Some will want to help the injured, others are looking to clean the scene, and

others will look to ensure no foul play was had. Each member or group of members will

need different pieces of information pertaining to this incident. Collecting and sorting

through all information to determine the best course of action however can be a challenge

for humans. The wealth of historical information as well as current and changing

information can best be handled by context aware systems that employ Human-Centered

Computing [3] (HCC) principals.

Delivering relevant information on a situational basis is accomplishable through

context aware systems. Such systems should deliver any information that can assist in

changing the state of the situation to a more ideal state; whether the information be

complete or simply a reference to information that needs to be obtained. The ability to do

so, however, typically involves domain specific models or software that need to be created

each time a new circumstance warrants such. In doing so, relevance is typically spread

throughout the model, filters, and delivery software. Such solutions have opportunities to

lower the friction on having relevant information ready for any given situation.

In this dissertation, we present what we believe a context aware system to be

through the definition and creation of a dynamic information ontology and the delivery of

the Rover3 system. A dynamic information ontologies is the mechanism that encodes

relevance within an information model. As relevance is situationally based, every possible

thing that can exist in an ontology, the way any two (or more) things relate to one another,

and all attributes for both can be defined as a function of the situation. We are presented

with the ability to define an expansive information model that defines how any part of it

 5	

can assist with any encoded situation. The result is the eradication of information filters

and the ability for an appropriate framework to instantiate only relevant information for

consumers as situations arise.

Rover3 is a context aware system designed to process, store, handle, deliver and

explore the information surrounding given situations, providing human beings the

assistance they need to quickly model, sort through, and receive relevant information. We

believe this classification of information is critical to assisting humans resolve situations.

Rover3 consumes dynamic information ontologies and automatically delivers relevant

information by adopting a novel ontological modeling methodology we call the Automatic

and Dynamic Information Model. This allows Rover3 to store and pre-cache any enriching

information, and deliver information that assists in resolving any situation the users of the

system are presented with. Rover3 is a general context management system, meaning it

processes, delivers, and manages contexts of all types. As the system consumes dynamic

information ontologies, Rover3 is the last context management system one would need to

develop. Adding a new domain simply means creating an additional or expanding an

existing ontology. Adding or modifying relevance is a simple model adjustment. This

removes the need to write any additional software. The result is users who need to consume

relevant information just need to create ontologies for their domains and let Rover3 handle

the model instantiation and information management.

1.2 Current Context Aware Systems

The notion of context aware systems [4] [5] [6] has been around for many years. A

quick survey today shows a majority of the research [7] [8] and applications for context

 6	

aware systems are limited to mobile applications [9] [10] and users [11]. Such systems

require software and coding that is very specific to the domain itself. Evolution of the

domain requires changes to the modeling and the software managing the context. Attempts

to generalize the approach can be seen through Rover [12] [13], Rover2 [14] and a handful

of ontological modelling techniques that Rover2 has used [15] [16]. Ontologies can help

minimize this effort as the modeling aspect of the context can be abstracted away from the

software management aspect of a context aware system. Yet all of these approaches need

something else to truly manage relevant information as the collection of information

evolves.

Rover is a context-aware, middle-ware platform that provided relevant information

for any individual or entity. Through a set of APIs, Rover provides a framework to provide

the context of an entity on demand. Rather than create many separate service calls and

iterating over multiple APIs and data endpoints, Rover provides a middle-ware solution

that standardized how such relevant information queries and data sources were handled.

This set of libraries was the first of its kind to template and abstract such calls. Services

and queries were generalized through the framework, empowering developers. By

providing filters or methods to supply relevant data on demand, applications and end users

quickly get information that would aid in the specific goal or situation an entity was

presented with.

Rover2 provides a more extensible framework through the use of ontologies. For

the first time, multiple information taxonomies across multiple domains can feed Rover2’s

generalized information modeling framework. Utilizing the Rover Context Model

Ontology (RoCoMo) [15] [16] as a generic ontology for any information set, the

 7	

information framework defines the rules of how a context aware middle-ware system

should model any data. A set of primitives were defined as the base set of objects any

dynamic information system could use when modeling and working with data. Entities and

relationships found in existing ontologies are instantiated within Rover2, assigning them

to events and enacting activities on the instantiations as needed.

While both Rover and Rover2 define the rules for context aware computing and

generalize the methods and data structures for dealing with information from any domain,

there is still a bit of encoding that is required to model and work with information [17] [18]

[19]. Subject Matter Experts (SMEs) are required to define their respective information

taxonomies and capture how different entities within their field are defined and how they

relate to one another. Yet this is not enough. Before one can use the data from Rover2 one

is required to write extensive code or software whenever a new domain is to be used.

Though the types of calls and modeling are extensible enough to adapt, the refinement of

data and definition of relevant information still requires external functions outside of the

framework. Filters exist to provide only the relevant data, but that requires one to apply the

specific filter. Single pathways exist that define how information is instantiated and used

at run-time for any one situation. If system designers want to manipulate context models

as information or situations evolve, they are forced to write software that executes the logic

for such manipulations. Ideally the framework for a context aware information

management system is extensible enough to remove the need for coding as it should only

require a SME to craft his ontology itself and not write custom code for context

management.

 8	

We argue that context aware systems can be developed for any domain without the

need for software to define relevance or manage. Rather than delivering context for a

particular use case, limited applications, or needing additional software to manage context,

we believe that with the correct modeling framework in place any end system, user, or

application can receive relevant information with no additional computation or

management. This unbounded use extends beyond mobile applications. Simply calling it

middle ware is rather limiting. As it can provide information discovery capabilities, direct

navigation through the UI console and RESTful API’s, our proposed solution allows for

information discovery and management.

Lastly, there is nothing in any of the aforementioned systems about managing

relevant information as the situations they represent change. Situations evolve over time

and the relevant information for any one situation changes. Whether we model the domain

with an ontology, or as a part of the software that comprises the context aware system itself,

something must evolve the relevant information model as the situation being modeled

evolves. All of the above system require additional software any time we can construct a

new way a situation can evolve.

1.3 Human Knowledge is not Static

Despite relevant information being provided to end users and systems, many

systems handle real-time decisions about information in code [20] [7] [14] [21] [8] [22]

[23]. We argue there are actions, explorations and filters that should be applied at run-time

to information systems that become aware of such information. To date, those actions,

discoveries, and filters are facilitated through code and not solely a function of a model

 9	

itself. We also argue that the modeling of data should not be limited to the structure of the

entities and relationships themselves, but a bridging of the gap between thought and

reasoning needed to take place as situational modeling [24] is to occur. Relevant

information is a combination of known, preconceived models, whatever data exists for any

scenario, and the appropriate filters that should be applied. The result is information

systems that spread the notion of relevance across the models, filters, and software.

Software must orchestrate actions across all such systems in order to consistently

manipulate what is considered relevant information.

Many general models have been considered when discussing context aware systems

[4] [11] [25]. Key-value models are simple in nature and look to define uniform structures

for knowledge definition. UML and object-oriented modeling provide a little more

structure to the context that can be delivered with the latter allowing for interfaces to the

data itself. Markup models allow for tagging of data and are seen in the efforts of the

semantic web and RDF.

In this dissertation, we show that an ontological model is the best mechanism to

deliver relevance as they allow for a wide array of things to be modeled, including concepts

and relationships between models. Yet all current implementations of ontological models

are limited in that the relationships, interfaces, or structures are locked in; any variability

is only handled as makes decisions about how to instantiate the taxonomy either in code or

through an external exercise. As is, the reasoning around when requires the various

components of today’s information systems are handled outside of standard context

brokering systems, much less the structure of the information model itself.

 10	

We believe that ontologies [26] themselves need to be extended beyond their

conventional approach to date. The rules around how to form an ontology need to be as

dynamic as human thought and modeling. Relationships in the real world that tie entities

together are dynamic and vary based on given situations. Understanding how humans

model their thought process is key. Situational awareness/handling can also be modeled

despite the fact that actions humans take are dynamic and vary based on what information

is presented to them at a given time. Though typically stored in logical computer programs,

we believe this general relevance can be captured in an ontological model, managed and

delivered through a proper context management system, and no longer distributed across

multiple aspects of an information system.

1.4 Contribution

In this dissertation, we deliver a framework that delivers relevant information for

any given domain with minimal effort. Through the delivery of a new ontological

modelling system that captures relevance and a context-aware system to facilitate this

methodology, we believe this is easily achieved.

 In this dissertation, we:

• Define the notion of managing relevant context at run-time.

• Define what it means to model any given situation. Through an extensive

exploration in the various components needed for context modeling, we

look to provide all of the necessary components to do so in a way that best

represents the reality around us.

 11	

• Define the notion of a dynamic information taxonomy. Existing ontologies

and modeling methodologies are quite static in nature. We define what it

means to define a dynamic information taxonomy, how to encode relevance

in an information model, as well as show how this method of modeling is a

step closer in mirroring the physiological habits about how humans learn

and represent their reality. This will be accomplished with the Automatic

and Dynamic Information Model methodology (ADIM) described in

chapter 5. We then look to implement this and show a case study,

highlighting the flexibility on onboarding the system as well as the unique

ways to model and process real-time relevant information.

• Design, implement, and deploy the framework described above through the

delivery of Rover3. Rover3 is an advancement of the existing Rover and

Rover2 systems. Like its predecessors, Rover3 is a context-aware system

that provides relevant information as needed for any given scenario. Unlike

the previous systems however, Rover3 requires no coding for use across

unlimited domains as relevance is encoded in the ontologies it consumes

through the use of ADIM. Through the use of visualization tool and web

interfaces, users can experience the expansion of models, context delivery,

and how information discovery can take place as well as augment the model

instantiation process.

• Demonstrate the Rover3 system by walking through an example public

safety situation, providing context and relevant information to consumers

as needed. This case study will also show how the Rover3 system allows

 12	

for information discovery ease of use and added context delivery for any

given situation.

• Perform an extensibility study between Rover3 and Rover2, showing the

relative use and scalable uses of such a context aware system.

1.5 Organization of this Dissertation

This dissertation is organized in multiple chapters. In Chapter 2 we outline the

various mechanisms that are required to model information and situations. Chapter 3

explains how we believe a context aware system should be built, defining design tenets to

solidify this approach. The notion of a dynamic information ontology is introduced and

explained in chapter 4. The Automatic Dynamic Information Model is a dynamic

information ontology that is introduced in chapter 5. The Rover3 framework and system

are described in detail in chapter 6. We explore the complete ADIM grammar in detailed

in chapter 7. We then model and walkthrough the evolution of an emergency response case

study in chapter 8 that makes full use of the ADIM and Rover3 technologies. An

extensibility study is explored in chapter 9, where the effort to add additional domains is

compared between Rover3 and existing systems. We conclude in chapter 10 with future

work.

 13	

2 Context, Relevance, and Ontologies

2.1 What is Context?

 According to Merriam-Webster, one of the definitions of the word context is:

“the interrelated conditions in which something exists or occurs
: environment, setting”

This definition of context is quite broad as it suggests any and all information that exists

and relates to any one thing or setting would suffice as context. Users that would want to

consume ‘context’ by this definition would need to filter out that information they might

prefer, ignoring all other inter-related information.

The broadness of the above definition places quite the burden on anyone or

anything that would use context. As the interrelated conditions for any set of entities is

vast as time evolves and the environment potentially and perpetually changes, one would

have to manage the context and only use / consume what is desired. It is then more

appropriate to suggest that context is a subset of all interrelated things that relate to one

another for a particular environment or setting. Yet if we want to extract value from any of

this information we would have to define why we only need a subset and what drives the

subset.

 Maybe more appropriate to the world of computer science, Dey [27] defines

context as:

“..any information that can be used to characterize the situation of an entity. An

entity is a person, place, or object that is considered relevant to the interaction

between a user and an application, including the user and applications themselves.“

 14	

Other attempts [28] [29] [30] have outlined the various definitions of context and how the

definition of context is often relevant to the domain being discussed. Dev’s definition better

refines the notion of ‘environment’ in the previous definition and we should consider the

concept of the situation as that which bounds context. Context could be considered any

relevant information that an end user or system would find useful and applicable for a given

goal or a given situation, where relevant information is information that is useful to attain

any number of goals for any given set of situations.

One important aspect of Dev’s definition are the first two words: “any information”.

Just because a consumer or computer system does not have or know about any specific

piece of information does not mean such unknown information is not considered to be a

part of the context of the situation. Situations are not static either. Like mathematical

functions, they can easily evolve over an infinite number of discrete values. For example,

a person who is hurt in a hospital might transition from critical, to serious, to stable

conditions over the course of their stay and the interactions between the entities in that

situation may vary. Thus, the definition of context might be extended to include all possible

interactions and entities that have yet to be considered or realized in a situation, as well as

how those interactions vary as a function of any one given set of information.

2.2 Ontologies as the Method for Modeling

As defined and discussed above, the definition of context, in its simplest form, is a

collection of information. While many methods to manage context [1] [4] have been

proposed, ontologies [31] [32] are one such method. Looking at definitions and properties

of an ontology, we outline why it is the mechanism of choice for modeling context.

 15	

According to Wikipedia [33] the definition of an ontology in the context of

computer science is:

“a model for describing the world that consists of a set of types, properties, and

relationship types.”

Working in the field of Artificial Intelligence, [34] Gruber used ontologies for

general knowledge sharing when designing artificial intelligence and defined them as:

“An ontology is a description (like a formal specification of a program) of the

concepts and relationships that can formally exist for an agent or a community of

agents. This definition is consistent with the usage of ontology as set of concept

definitions, but more general.”

Commenting further on Gruber’s definition we can define some of our own terms

and clarify this definition. Rather than concept we will use the term entity. In an attempt

to identify any component of an ontology we will use the term ‘primitive’ to mean either

an entity or a relationship as each of these will share some common traits across both.

Further simplifying the definition, one can say an ontology is a collection of primitives put

together as needed by a pre-defined set of possible rules. These rules might be better

known as a language.

Ontology languages adhere to a standard grammar. It is this grammar that

facilitates the rules and jargon about how they are constructed. This jargon, among other

 16	

things, differentiates relationships and entities, provide ways to assign attributes, and

expand entities to more specific types. It is the toolset to enable an information model. The

rules of the grammar ultimately dictate what can and cannot exist in an ontology and it

defines how to build a specific ontology. The grammar can vary and is a function of the

ontological framework that is used. Not all ontological grammars are the same and thus

the grammar and ways one can construct discrete ontologies is a function of the ontological

framework that is used. It is the grammar and the rules about the grammar that authors

need to consider as they look to create an information model. The right framework with

the right ruleset can allow one to model anything.

It is this property of extreme flexibility that make ontologies the ideal mechanism

to model context. The ability to model any collection of entities and relationships allows

one, with the right framework and grammar, to present an information model that is generic

and broad enough to model any situation. Such ontological frameworks are extensible and

abstract enough to allow for any domain, collection of entities, and/or situation. With

ontologies, we can instantiate some or all parts of an ontology into a software system.

Doing so allows consumers of ontologies to instantiate a version of reality that the ontology

supports, ensuring the structure of the information is consistent across applications.

While typically there are more than two, the two primitives that exist in every

ontological framework are relationships and entities. Relationships are simply exercised

rules that explain how one or more entities relate to or interact with one another. These

rules stitch together the many ways the components of the ontology interact and help

provide the rules for any possible instantiation of the model. A relationship makes a

connection between one or more entities, though they commonly connect two or more

 17	

entities. A relationship can simply define an interrelation from one entity to itself. The

relationship can be cyclical and define a state change for another entity. You can, for

example, feed yourself.

Both of these terms, entity and relationship, can be decomposed into collections of

other entities and relationships. The human body, for example, is a collection of limbs,

torso, head, mind, organs, and many other components. The actual body is one entity and

each sub-component is another entity. Limbs, for example, have other sub-components

like joints, flesh, and skin. Each of these are composed of smaller components such as

cells, molecules, atoms, etc. The relationship ‘is composed of’ is one such relationship that

builds all of these entities up to the model of the body itself. Decomposing entities through

a collection of refined entities and relationships is a further refinement of the model itself,

suggesting that an ontology can be a collection of models at any given point of

decomposition.

Both primitives can further be described through the use of attributes. While

relationships provide the rules for how entities engage with one another, evolve, or interact,

attributes are the characteristics of individual primitives that serve to refine a particular

instance of any primitive. An example of this could be the color of the entity ‘car’, the

weight of the entity ‘frame’, the amount of torque on the relationship ‘turns’, or the time

of the relationship ‘started’. Attributes can either be linked to entities through relationships

“entity X has attribute Y with value Z” or the ontological framework can support the

assignment of an attribute. An example of the latter would be a JSON object with any

number of key:value pairs that represent attributes.

 18	

Models that are created in ontologies can be generic or refined as needed. Consider

an accident response example, a generic accident might involve the relationships and

entities required to identify who was involved in the accident, any possible additional

people who could end up getting hurt, evacuation plans, danger radius, and response teams.

More specific accidents may involve car accidents or chemical accidents. These models

might bring with them more specific sets of relationships and entities or refine that set,

removing some generalized ones. For example, a model for a two-car accident by default

might not include the need to identify evacuation routes.

Figure 2.2.1 – Sample Hierarchy of Generic and Specific Accidents

This decomposition and refinement of models can continue. The 2-car accident we

discussed earlier would be an even more refined model of a generic car accident. A 2-car

accident has different connotations and needs regarding cleanup versus, say an 80-car

pileup. As a result, the model for both accidents would be different and contain with it

different sets of default relationships and entities for each accident type. They both,

 19	

however, might inherit goals of a generic ‘car accident’ model which might be to ensure

the safety of all those involved.

There are multiple ways to use ontologies and the use is independent of the domain

the ontology is facilitating. Ontologies can simply be an information model for something

(person, computer program, etc.) that one wishes to represent or reference. Such ontologies

can act as a reference to an information model for the purpose of having all or parts of the

ontology instantiated for discrete uses. An example of this might be an ontology of the

human body where a software program instantiates a copy of that ontology to perform some

computations on a simulated version of a human body that may exist in the real world.

Other ontologies are living copies and are expanded and populated with discrete

information. An example is the use of ontological storing of information in the Semantic

Web. In this implementation, new sites have the ability to add on to the ever-expanding

information store that is the reference to the entire internet. It is thus important to realize

that the term ontology can be used to reference an abstract ontology or an instantiated one.

The use of ontologies in this dissertation will be of the first example. We will refer

to an ontology that was or is being produced to model and standardize the information

structure of a domain. Once created, the intended use will be such that some or all of the

ontology can be instantiated in order to perform some function on the instantiated copy as

deemed relevant. As we author an ontology, we are building an information model and

using the ontological language we propose to do just that.

 20	

2.3 Relevance

We have mentioned before that relevant information is information that is useful in

the attaining of a goal. Our claim is that any system or entity, be it biological or

mechanical, is looking to either stabilize or modify some environmental baseline around

or about itself. In the first case, something has happened that disrupted what is considered

to be acceptable – some state has changed, some entity is not as it should be and the desired

action is to return the environment to the same state again or a new acceptable state. In the

latter, a new baseline is desired and some method of mutating the environment is desired.

In each case, there was a general end goal of achieving a desired state.

Relevance is simply the notion of how a select set of primitives (amongst all

possible primitives for a given domain) are connected for achieving the goals of various

situations. As we build models, our aim should be to ensure the relevance for any and all

situations across the primitives is complete. That is, if we turn to the ontology to dictate all

possible entities and relationships that can ever exist, we will be presented just that. As we

go to instantiate the ontology for a discrete implementation, we can use a relevance filter

and get only the subset of the model; a relevant subset that will assist us in achieving a

particular goal.

Let’s return to the example of a two-car accident and specifically look at how one

might utilize an ontological model for a person in such an example. There may be many

reasons to model a person in such a situation – the people responding to the accident will

create pre-conceived mental models or computer systems might need to model the

environment. First let’s assume the default ontological model for a person that includes all

possible relationships is that which is show in figure 2.3.1. In this example, we see that a

 21	

person might own a car, be the driver of a car, has personal attributes, health records,

professional records, and a social network. However, a person does not always have all of

these traits. Not every person owns a car or home and the professional credentials may

vary or be missing altogether in some circumstances.

Figure 2.3.1 – Sample Complete Model for a Person

Additionally, this general model contains things that need not be fully used in the

situation of a car accident. The fact that they own a house, their profession credentials, and

social network have no bearing on the actions one responding to the accident will take.

Those responding to the accident have a goal in mind to resolve the accident. The

previously mentioned information does nothing to assist them in their ability to resolve the

accident. We can conclude the general model of the person that incudes these bits of

information is a bit excessive. A more relevant and filtered model of a person for a car

accident might be that in figure 2.3.1.2 where the relevant portions of the model are blue

and irrelevant information is greyed out. This might be the exact model we would

 22	

instantiate if we were to instantiate a subset of this generic model. Within the larger

framework of the 2-car accident model, each person involved might be modeled as such.

The expectation that the person might be hurt warrants including medical records for the

individual. We need to know their personal information as we do for any car accident, and

knowing what cars they own helps with any insurance issues.

Figure 2.3.2 – Default Model for a Person in a Car Accident

As the car accident unfolds and that instantiated model of the situation expands, it

might be the case that one of the cars involved in the accident is holding explosives. In

this evolving situation, it might be beneficial to know the social network of the driver and

the passenger of that car to see if there are any terrorist ties within their friends and

colleagues. This would require a slightly larger instantiated model for that individual as

noted in picture 2.3.1.3

 23	

Figure 2.3.3 – Model of a Person expanded to include Social Network

Initially these models are all of a generic person. There was a base set of

components we needed (personal information) to help identify the person. The template

for the model included all possible models one could instantiate. The situation upon which

we needed to instantiate each model is what drove the actual composition of the model in

the run state.

The ontological models we look to build, however, need to have the ability for one

to encode relevance within them. When we say we encode relevance within a model we

mean we capture what components of a vast model would ever assist in achieving particular

goals. Any one domain might contain an enormous collection of entities and relationships,

yet every single component at comprises the ontology is likely not relevant for every

situation. Encoding relevance into a model is the placement of the rules that dictate what

is instantiated and mutated at run-time.

 24	

As we choose to instantiate parts of an ontology (be it entities, situations, or entire

domains) we should include all entities, attributes, and relationships that could ever exist

for that desired situation we are modeling in our instantiated ontology. In doing so, we

should also capture the relevance for all possible goals. We will revisit this two-car

example again and see how we might encode the relevance within the ontological store

itself and we discuss how to place relevance logic within every aspect of an ontological

model.

2.4 Primitives Required to Model Context

The ability to provide proper context for any given scenario relies on proper

modeling and mechanisms to deliver the relevant parts of that model. Defining a context

modeling ontology that is truly abstract is key. Our framework is one that needs to be truly

flexible, so our primitives need to be as basic as the raw components of knowledge itself.

We believe that means defining a modeling methodology that incorporates all aspects of

this chapter.

The RoCoMo context model [35] defined what is necessary to model relevant

information for a given situation. In order to effectively model information, RoCoMo

defines the necessary primitives for an information management system. The primitives

outlined in this system include Entity, Activity, Relationships, and Events. Any piece of

information that needs to be handled or modeled is contained in a primitive. Multiple

primitives are related and joined in an effort to model given situations. Though sufficient

in finding relevant context of a given situation, the system needs a fair amount of software

development to process a given situation. For example, when requesting relevant

information, applications needed to define their own relevance filters. These filters then

 25	

provide the data that is relevant to their situation at hand. Both the models used and the

instantiated models were available for the end system, though the decision to use a model

was limited in the situation that was modeled. We argue that the ontology itself can do this

filtering through the instantiation of the model as it is needed in real time.

Though other models have been proposed [36], we believe the RoCoMo [16] model

closely aligns with the way to model and abstract reality. It does, however, require some

improvements in order to better represent the world around us with minimal data loss. We

propose extending this model, expanding on Entity and adding two new primitives –

Situations and Goals. The resulting primitives and definitions we propose any context

model should include are:

• Entity – Real or virtual. The basic building block for any model. Entities

can be permanent or temporary. Examples include people, inanimate

objects, data structures (ex: emails). Within the Rover3 ontologies that we

will utilize, all physical entities will leverage the notion of location. This

location can be both specific (lat/long or street address for example) or

relative (within a 2-mile radius of College Park).

• Activity – Carries out the physical or virtual manipulation of information

or entities. Generates information, takes time, and results in a change of the

system, specifically modifying attributes of some primitives or introducing

or removing primitives.

• Goal – Final state in an activity. Goals also server as the desired end state

for a situation. Goals are either a modification of the current context or the

stabilization of context that is no longer desired by entities. Situations exist

 26	

until the corresponding goal is met or no longer a valid goal. A goal does

not have to accompany an activity, but every situation must have a goal.

• Relationship – Describes how primitives relate to one another. These

relationships have attributes and information as well and can be derivative

or transitive. Relationships allow entities to be hierarchical in nature as they

can aggregate more refined entities into larger, abstracted versions. For

example: The body entity might decompose into varies entities like limbs,

mind, torso, feet, hands, etc. All of the entities could be bound together

with the ‘is composed of’ relationship. Each of those could also be broken

down into another set of cells that also are ‘composed of’. Different

situations/instantiations would define where in the hierarchy of the model

we need to be, or rather, what entities are considered relevant.

• Situation – This is what a person or system is handling. This can be one or

multiple events. Situations define the boundaries of the use of the system.

A situation can be very brief (cell phone needing current location) or

extensive (extinguishing a prolonged building fire). This, like all

primitives, situations can be organized as a graph or collection of primitives.

Rover2 has situations, but they are not primitives but rather templates of

primitives. It was very close in nature though being a primitive we can build

hierarchal situations just the same as any other collection of primitives.

As information relevance is situationally influenced, the need for a situation

primitive is apparent. It is the situation primitive that really frames the context. As many

context-aware systems are written for particular domains or require coding to help define

 27	

the domain, the situation primitive is the mechanism that helps bridge an end application

to this framework. Existing ontologies and primitives can be re-used over and over, and

new situations can be added to any collection. Each situation has a distinct goal that helps

end applications. As a result, the model is complete and does not need any outside tooling

in order to describe how it works or how it is used. The exception is the code needed to

instantiate models, help propagate data, and continually evolve what portions of the model

are considered relevant as situations evolve. This will become clear as we discuss the

necessary framework to deliver this in the next two sections.

2.5 Ontologies that Contain Relevance and Instantiation Logic

So far, we have described the mechanisms and primitives required to build an

information model. We have decided that an ontological modeling approach is extensible

enough to capture any combination of entities in the world and is best suited to deliver

relevant context to aid consumers sorting through information to achieve a goal. With a

goal to embed relevance in the ontological model itself coupled with relevance being

dictated by a given situation, we must look to establish a way to ensure the ontological

model has a mechanism to only instantiate what is relevant for a given situation.

These ontologies, however, can be quite vast. As we expand the composition of an

ontology itself (say, as the domain expands or we more accurately model a collection of

entities and by result, make the model larger), we are faced with a dilemma of how to

determine what portions of the ontology to instantiate at any one given time. Furthermore,

we need to determine this subset to instantiate rather quickly and efficiently – some of the

situations could require immediate resolution. In either way, we need to minimize the effort

 28	

to gather only the relevant portions of the ontology. We need to optimize both the accuracy

of the relevance and the speed of gathering such relevant information. We thus must turn

to mechanisms within the ontology to automatically determine what is relevant. Without

this, the performance of a user will suffer as they sort through either a larger than necessary

information model or the necessary steps to filter a generic ontology.

Having the situation primitive as a building block is not enough to mechanize the

instantiation of relevant portions of any ontological model. Within a domain, any subset of

primitives can or cannot be relevant for any one given situation. As our goal is to not have

a software program per domain to manage what is continually relevant or an external filter

to determine what components of an ontological store are relevant, we need to place the

logic that determines what is relevant into the ontological store itself. In order to do so,

one must utilize an ontological grammar that contains the instantiation logic dictating

which components of the ontological store are considered relevant for any subset of

situations.

Revisiting the example model of a person and the two-car accident from section

2.3, there are places where the relevance could be encoded in the ontological store itself.

In figure 2.3.2, the relationships and corresponding entities that we considered relevant

(owing the automobile, having medical records, and personal information) could only be

instantiated if the situation ‘accident’ were to exist. Attributes of these relationships could

state that if a situation of an accident were to exist in an instantiated context model then

the relationships and corresponding linked entities themselves are considered relevant and

too should be instantiated.

 29	

In figure 2.3.3 we found the person to be a dangerous person, so the relationships

and entities that comprise the social network extension to the model might be instantiated

if the situation is of ‘terrorist situation’ or attribute of ‘considered dangerous’ is tagged to

the person themselves. Situations need not be discretely known or instantiated to drive the

further instantiation or modification of an instantiated ontological model. A situation can

be inferred through the existence of known information – a man who is present in a simple

situation (let’s say, ‘having a conversation’) but found to be bleeding might infer an ‘injury’

situation or a man driving recklessly with a bomb in his car might warrant a ‘public safety’

situation. An ontological framework that encodes relevance in an ontological store needs

to embrace logic to modify the ontological model based on the current known situation –

we must have the ability to evolve what is considered relevant with every information

update we receive. That that logic must allow for updates from multiple information

sources and not just the existence or omission of a discrete situation.

This instantiation logic must be programmable – situations evolve and our

relevance filter within the ontological store needs to accommodate for this. This concept

is important for the figure 2.3.3. In that example, a subset of the information store had

already been deemed relevant (medical records, automobile, personal information) when

the situation was a two-car accident. As more information was known about the real-world

situation, it warranted a larger subset of the ontological store to be instantiated. Common

software external to the ontological model needs to both instantiate and monitor the

ontology itself in order to continue to provide a relevant subset. After all, an ontology is

not a software system, it is just an information store. A properly designed context aware

 30	

system leveraging an ontological language and framework can perform the run-time

actions described.

 31	

3 Context Aware Systems

As described in the last chapter, an ontology alone cannot instantiate relevant

information models for a given situation. Software systems such as context aware systems

are one mechanism that can consume both abstract and instantiated ontologies. An

appropriately constructed generic context aware system can deliver relevant context to any

type of consumer (person, machine, etc.) and does not require business logic to exist in

code. We now look at what a context aware system should look like so we can deliver

relevant information with the purpose of helping humans and/or systems to achieve any

given goal.

3.1 What is a Context Aware System?

Asked what context aware systems are today and the academic world seems to think

this concept is mostly confined to mobile computing [37], IoT [38], and ubiquitous

computing [30]. Common approaches and modeling have been levied in these attempts in

order to produce common contextual data for these domains. Data such as location,

activity, and surroundings are often returned and many have worked to provide a common

platform to deliver such information. There have been attempts to create context aware

systems for other, specific applications [39] [40, 12]. Each of these systems tend to define

new models for those domains as well as created certain APIs for the end application at

hand. With the exception of the Rover systems and very few others [41] [28], none of these

systems handle, model [42] [43] [25] and process context in a generic form that is domain

agnostic.

 32	

Those systems that strive for a generic context model or ontological framework still

require a bit of software to deliver relevant information after information is instantiated

[44] [45] [46]. We argue that a real context aware system does not need to be limited to

any particular domain nor require additional software to extract, manage and deliver

relevant information. As context is any information that is relevant to a query, thought,

situation, group of people, physical reaction, or mental state to name a few, a context aware

system should be one that can facilitate any domain as well as the ability to deliver what is

relevant. Such a system must have the ability to model both the domain and what ‘relevant’

means. Through the correct abstractions and decomposition of the primitives that make up

knowledge, beings, and real-world representation, a context aware system can provide

what is relevant for anything.

3.2 Tenets of a Context Aware System

One goal in this dissertation is to design and build the Rover3 system in order to

store and deliver relevant information as we believe it to be. Users or systems of Rover3

can use it as a data store in any capacity – either augmenting external data stores or

completely relying on Rover3 as their database of choice, both to aid in the accomplishment

of any generic goal. Before we start to lay out how Rover3 works, let’s define how we

believe a context aware system should be constructed. The tenants of a context aware

system as we believe them to be are:

• Extensible modeling framework – Models are re-usable and can be re-

used and extended as needed. Using ontologies is an example of this tenet.

 33	

Not doing so will require users to create redundant information models each

time they wish to add a new domain to the

• Provide relevant information - Relevant information is, of course,

relevant to the current situation at hand. The system should not be confined

to one domain but rather have the ability to provide any kind of relevant

information. Relevance also requires knowing all information available.

Rather than just returning what an end application asks for or believes it

simply needs, a context aware system should have all relevant information

that has yet to be asked. The adage ‘we don’t know what we don’t know’

is applicable here; the system should provide data deemed useful based on

models and not only what an end has requested or acquired to date.

Information discovery is as important as information retrieval, and context

aware systems should not be limited to only provided what one asks for.

Without this tenet, consumers are left to sort through every bit of context.

• Minimize abstraction of reality – Functions and software programs should

look to update and fetch data as much as possible. Programs that help model

discrete data add noise to the stored data. We look to have the model itself

define how information is used, not software external to the model.

• Proactively fetch data and expand models at run time – Information

should be available when humans or systems need it. If the information

needed could have been pre-cached, a later need for a query or computation

is removed and the data is delivered and consumed faster. Likewise, as

situational exploration continues and possibilities are explored, models

 34	

should be expanded as the models dictate. This requires the models

themselves to self-prune and expand as well as direct the system to take

action in order to pre-fetch data or expand models.

• Provide for hierarchical context – Information and the effort to abstract

information needs to be hierarchical. As needed, data should be enriched

or simplified. The modeling of data needs to do the same; the framework

should have the ability to model something as generic or as detailed as

possible and the abstraction of that model should be a part of the framework

itself.

• Remove the need for manual context management – This is the big

tenant for management of context. End users should simply receive what is

needed or relevant. Though interactions can be provided to help guide the

system further, the management of filters, data expansion, and model

instantiation should be minimal or completely effortless. Simply put,

context should evolve at runtime.

• Help humans make decisions – The system should be an aid for humans

that are looking to resolve a situation. The relevant information should be

valuable enough to help do just that. As the system is here to help the

human, the outputs cannot be without human intervention. Mechanisms

need to exist that allow humans to modify what is considered relevant, by

either pruning or adding information that the system might not otherwise.

 35	

• Adopt features of HHC systems – As noted in [47], HHC systems “can be

defined as ‘the development, evaluation, and dissemination of technology

that is intended to amplify and extend the human capabilities to:

o perceive, understand, reason, decide, and collaborate;

o conduct cognitive work;

o achieve, maintain, and exercise expertise.’”

Context Aware systems should be developed using these tenets. Not doing so will

result in consumers to exert extra effort to manage context and spend energy creating

redundant models and software systems.

 36	

4 Dynamic Ontologies

Embracing the tenants of a context aware system in chapter 3, specifically the HHC

tenant around the notion to “perceive, understand, reason, decide, and collaborate” [47],

the providing of relevant information should be as empowering as possible. As Rover2

[14] noted, context aware systems need to be free of any one domain or use case [15]. The

ontologies typically used in context aware systems and pervasive computing systems [48]

are quite static in nature and do not allow the structure of the model to change. We must

look to improve the notion of how one simply constructs ontologies for such uses.

It is thus important to understand the difference between the templated model that

can be used, the difference between the instantiated model, and how the evolution of the

instantiated model processes. The dynamic ontology is the collection of all possible models

for a given domain (or domains) that has the relevance logic used to instantiated relevant

subsets encoded within it. One can think of this as a template store – every entity, every

possible relationship, activity, situation, etc. is stored in this ontology. As situations unfold

and context aware systems instantiate them (a situation is required for any active,

instantiated model), templates from the ontology are instantiated into working models.

Logic, encoded into the template store along with all of the primitives, is what helps drive

the evolution of the instantiated model. Context aware system then deliver the relevant

information to end users via these working models.

We now discuss the notion of a dynamic ontology, how such a concept embraces

the HHC tenant, and the overall benefits of using one.

 37	

4.1 What is a Dynamic Ontology

We define a dynamic ontology as a standard ontology that allows for:

• Encoding of variable relationships – Rather than simply stating how

entities always relate to one another, a relationship can be variable or may

not exist based on a situation or collection of primitives. The variability

itself is also captured within the ontology in some manner.

• Variable hierarchical entities – Ontological models can be extensive,

hierarchal models. In such situations entities can be related to entities,

which in turn can be related to more entities. These can be hierarchal or

sprawling in nature. Despite this, the filtering or pruning of any one model

is done outside of the model in information systems to date. A dynamic

information ontology should allow for the encoding of these expansion rules

to exist within the model itself.

• Collection of actions that goal-driven entities may take - Relevant

information suggests there is a use for the data with an end goal in mind.

The model should support the ability to drive towards goals. Additionally,

the ontology should allow itself to be embedded with rules that allow for

automatic model expansion; the framework itself has a goal to continuously

provide possible relevant information.

• Relevance to be defined at run-time without effort – True ‘relevance’ for

any situation need not be manually defined through filters or additional

models or templates. Nor does the ability to delivered relevant information

require additional code. Relevance is the intersection of a properly defined

 38	

model and the instantiation of the model itself, allowing for only relevant

primitives to be used and created. The rules of the collection of model

should such that the existence of entities and relationships and information

is acquired and models are instantiated, only relevant information is placed

in the instantiated model.

4.2 Why do we need a Dynamic Ontology

Reviewing previous context aware systems that leverage ontologies, we see areas

to further abstract such a framework and minimize the need for additional software to

deliver relevance. Rover2 [14] utilized ontologies in single and cross domain uses.

Relevance filters were created for given situations and this helped deliver the critical set of

information that was needed to help users achieve a goal for any given situation. Though

this provided relevant information for an instantiated model, we did not have a way to

automatically define what information was relevant as filters were provided for either end

applications or set situations. Though Rover2 automatically delivered the necessary

context for a situation, the ability to handle complex situations needed specific code –

context was always the same for situations and varying real-world information as situations

unfolded all had to use the same instantiated context. We propose and later explain in

detail that a dynamic information ontology provides the ability to encode the logic and

provides a dynamic filter to ensure relevant information evolves as situations do. The

flexibility of such an ontology and accompanying context management system will allow

one to onboard any domain without any coding – the structure and grammar of the

 39	

taxonomy will allow for a correctly developed framework to do so with no additional

coding.

As relevant information is that which helps one resolve a situation, the goal of any

context aware system should be to deliver such information. Yet the ontology that can be

used as the collection of primitives for that domain can be quite large. A mechanization of

the instantiation of the ontology must exist to produce relevant information at any one time.

Automatically providing the relevant information allows one to resolve the situation and

not have to manage the orchestration of the information structure.

Defining relevance, however, has always been a challenge in existing context aware

systems. Relevance is typically manually created per domain [4] [20] [7] while attempts

to generalize relevance were done so through the need to create specific filters per situation

[14]. Dynamic ontologies provide abstract templates that can be instantiated in one of

many ways. The rules of the model should be such that as situations, entities, relationships,

and other primitives are instantiated, the model continues to expand and contract as the

model’s definition dictates it should with evolving information. This results in an

instantiated model that is relevant to the current situation at hand, removes the need to

further define what is relevant at run time, and is provided with no effort to the end user.

Providing relevant information is not the only area a dynamic information ontology

can empower a context aware system. Revisiting how the data was populated in many

context aware systems [14], there was nothing to pre-fetch or auto expand the model itself.

As we define the grammar for such an ontology, we will show that pre-caching and the

expansion of models can also be handled through such a system, thus removing the need

for anyone to have to code an end solution for any given domain. The result is a SME can

 40	

simply create their ontology and the dynamic ontology and context aware system will be

the relevant information broker both for data that entered the system as well as data the

user hasn’t yet asked for, but the system knew they likely would. Ignoring the tenet to pre-

fetch data and not working this into an ontological framework, users are forced to create

independent software systems to both pre-fetch data and manage such information

enrichment rules.

Lastly, goal definition and creation need not be limited to the user of the system.

The general use case of an abstract context aware system is one where the user presents a

goal or situation to the system, and either through pre-existing data or data that continues

to be populated (either manually or automatically), relevant information is presented.

However, new information may create the need for new goals to arise – goals that are

general in nature and not bound to any situation. Consider the domain of law enforcement

and the notion of stolen cars. License plate numbers can be run against state databases that

show when a car is listed as stolen or not. The goal to 1) check a license plate and 2)

apprehend the current driver of a car are always persistent, yet one need not create a special

filter or situation that always checks for this. Rather, the ontology itself should direct one

to lookup a license plate when the plate information is present. When that plate is deemed

as stolen, the instantiated model should expand and a new goal of apprehending the suspect

should be instantiated in the working model by reading the rule built into the ontology

itself.

 41	

4.3 Dynamic Information Ontology in use

As information evolves for a given situation and is propagated into the instantiated

model, the rules in the templated model define what information is relevant. These rules

help evolve the instantiated model automatically, whether is be from a consumer evolving

the model or any new piece of information being added/removed from the instantiated

model. Let us revisit each of the caveats of a dynamic information ontology in section 4.1.

Through the use of examples, we will further illustrate each principle.

4.3.1 Encoding of Variable Relationships

When instantiating a model, not all relationships are necessary. Though the model

should contain all possible relationships that could exist between two entities, they must

not always be instantiated. The model is simply what is allowed to exist. Though that is

understood in taxonomies and ontologies today, the deciding factor of when a relationship

exists is not encoded into the model itself. Rather, an external system with logic and

reasoning of its own dictates when these relationships should and should not exist. We

argue this level of variability is just an integral part of the model as the model itself and

should not be dictated through independent software.

Consider an ontology about a person. A person might have many attributes about

themselves and may be modeled through multiple relationships with other entities. This

collection of possible relationships and corresponding entities can be quite extensive.

Figure 4.3.1.1 shows all possible relationships and attributes that might exist and be stored

in a small template store.

 42	

Figure 4.3.1.1 – Sample complete ontology of a person

However, the full model need not be instantiated for each person involved in the

accident. Each passenger involved in the accident might really only require the model in

figure 4.3.1.2 to be used. However, the template model for ANY person (independent of

being involved in a car accident situation or not) might be to automatically instantiate the

portion of the possible model around medical records., resulting in the model of an injured

passenger to look like that of figure 4.3.1.3. The dynamic ontology can be coded to look

at the attributes of each person in the instantiated model and if they are considered ‘injured’,

the additional parts of the person template can be instantiated. Furthermore, the dynamic

ontology can have an action encoded within itself that could reach out and pre-cache all

medical records for the person. For example, we can encode the ontology to direct a

context aware system to not only expand the set of information deemed relevant but collect

that information from various sources before it is ever asked for. This would be done in

anticipation of it being needed given the current state of the situation and all information

known to date.

 43	

Figure 4.3.1.2 – Instantiated model of Passenger (Refined Person Model)

Figure 4.3.1.3 - Expanded instantiated model of passenger as information shows the individual is injured.

We propose that the model of any entity could take this variability of relationships

into account. Such a framework that works with such models could automatically expand

this model accordingly and ensure the relevant model is always instantiated.

 44	

4.3.2 Variable Hierarchal Entities

When we consider how people think about objects, one must be aware of the

varying levels or refinement that take place. As a person walks by a building, their mental

capacity about the building might only necessitate that they consider the outer boundaries

of the building; that is the exterior walls that they can see or are aware of. There is a height

the building has, a color, collection of shapes, number of windows, and a number of floors

that the person may or may not be aware of. Entrances are present and there might be a

glimpse of what is inside the building if windows are present that allow for a view into the

structure. If the person has an appointment in the building and they have been inside the

building, their mental model is more refined. They know there is at least one space (likely

a room) of which they know how to access from within the building. Any stairs, hallways

or elevators needed to access that space are known as well as a general layout.

The building maintenance worker, however, likely has an even more refined mental

model of the building. All floor layouts (including those that might be under construction

and only have planned walls) would be known and a mental model would exist for that

worker. Visible items, such as doorways, room numbers, and stairs as well as items not

seen by many such as plumbing lines and electrical wiring would all be present. The

maintenance worker might not always think about these things when the notion of the

building is brought to the forefront of his mind, but the model he has in his head can go as

deep as needed.

Just as relationships can be variable as noted in the previous section, the

composition of entities can follow a similar path and allow for the auto-refinement or auto-

simplification as needed. A rather extensive model can allow for both general and specific

 45	

representations of the real-world thing they are referencing within the computer system.

Returning to the building example, we can create a model of an abstract building. This

abstract model might include the relationship ‘contains’ ‘a floor’ relationship, entity tuple.

The building itself might have the attribute ‘number of floors’. We could then specify that

the number of the ‘contains’ ‘a floor’ tuple is instantiated for the number of times there are

floors in the building.

The extent for which a floor is initially modeled can be encoded as well. If a floor

is considered ‘complete’ it might contain rooms, access methods, and attributes like

‘number of rooms’. If the floor is ‘under construction’, many child entities simply might

now apply. Rather other entities might relate to the room. For example, ‘builds’ and

‘contractor X’ might be associated with the particular floor if this is a high rise. This

process of how to extend any particular component of the model can all be self-contained

within the model. As the framework consumes information, the entity itself is refined and

expanded as needed. Like most of the context aware system design tenets, not adopting

this hierarchal context modeling tenet requires consumers to craft both rules around

primitive refinement/generalization and software systems to manage this transformation at

run-time.

4.3.3 Collection of Actions Goal-Driven Entities Can Take

As we argue that a context aware system’s purpose is to provide information to end

users or systems with particular goals in mind, the framework should also have the ability

to track and help achieve goals. After all, if there is nothing a user of an information system

 46	

intends to do with the data, then there is no such thing as relevant data. The notion of the

data being relevant means someone needs one subset of data over another.

These goals can vary. The assumed goal could always be simply ‘provide what

most likely is relevant to the situation to make a more informed decision’. However, at

times it is likely that the creator of a system knows when certain information requires some

of the entities to take action. The activity required to achieve these goals is nothing more

than a collection of goals that change state for entities as well as the fetching of relevant

information to assist in this accomplishment. The various entity states can be tracked

within the system. As attributes change or relationships are formed with entities, the

activity tracker will advance and continue to monitor for proper states.

Revisiting a two-car accident scenario within the domain of a public safety

responder, if one individual is hurt on the scene, the goal of ‘transport hurt individuals to a

hospital’ could very well be encoded into the template model by creating an activity named

the same. Figure 4.3.3.1 shows a sample activity. Note how once the state of the person

is ‘injured’, the activity is triggered and the system looks for resources (ambulances),

performs an external action (calls and dispatches an ambulance), then tracks the various

states of entities involved in the activity.

 47	

Figure 4.3.3.1 – Sample Activity of Transporting Injured Passenger

This activity would ultimately end in the hurt individual being in a state of ‘in a

hospital’. Prior to that state being achieved, the framework can do the following:

• Identify what other entities are needed and considered relevant to the

situation. For example, an ambulance will need to be identified, a local

hospital with space will need to be identified, and the paramedics will need

to remove the individual from the wreck to the ambulance.

• The activity can track the status of each step. The ‘goal’ state can be the

establishment of a set of relationships for entities (ex: an injured person can

be ‘loaded into a’ (relationship) ‘responding ambulance’ (entity)) or simply

contain the proper attributes (ex: person: (heart-rate: ‘<120 bpm’))

• Accomplished via an activity tracker. An activity template needs to be

created within the model. The activity tracker will track all relevant entities

and relationships.

 48	

Activities are not necessary for any model; they are to be used at the discretion of

the SME creating the model. However, revisiting the HHC tenant of what a context aware

system should deliver, the ability to define how to work within your environment should be

considered just as importantly as what information is relevant. We claim the modeling that

takes place within a domain and various situations can be extended to involve the desired

manipulation of data.

As with other primitives, goals need to be hierarchal as well. Designers of context

aware systems should allow users to reference and model both high-level or very detailed

level goals. Just as goals might have sub-goals, any one goal can be more specific than a

related general goal or more general than a related specific goal. Coming back to the car

accident again, “tow away the broken-down cars” and “drive off dented car” are both more

specific goals of “remove accident-involved cars”. In a similar fashion, “clean up debris

from the road” is a more general goal than “cleanup dangerous chemical spills”.

The need for these hierarchal goals is a result of not always knowing what the exact

situation will be for any general circumstance. As information becomes present and

situations become more specific our relevance model is refined and perfected; and this

should include the goals. This goal refinement is both a by-product of refinement and a

necessary method of model creation. As we initially instantiate a general situation we have

general goals. More specific situations yield more specific goals, goals that help rectify

the baseline in question. The modeling of the situation is what allows us to instantiate more

specific goals as the situation unfolds. This is only possible through the required act of

building a model that accurately provides relevant goals to relevant information –

information that is used to achieve the goal. For example, we would not want to consider

 49	

the goal of “cleanup dangerous chemical” if there are no dangerous chemicals at the scene

of the accident. We may initially just want the “cleanup debris” goal for any accident that

has debris in the road. As the details about the debris are made known we can then make

the goal more specific.

Similarly, as we do not always know what goals need to be met for a given situation

(until our system suggests to the end user that is), we may not know what actions are

required to reach the goals before us. Just as entity / attribute combinations can dictate

what relationships or entities are considered relevant to any one situation or model, having

a goal can make related primitives required. As goals can be met through pre-determined

actions, goals can trigger the necessary existence of activities. For example, if you are

dehydrated and the goal is to become hydrated, there is a required activity of “increase

hydration in the body”. Goals are not limited to simply instantiating activities, supporting

entities that support the ability to perform the action can also be triggered by goals. Back

to the hydration example, water of some other liquid would be a require entity that, prior

to needing to accomplish that goal, was not considered a relevant entity. Such a goal could

make this entity relevant and instantiate it. The triggered primitives can be specific or

general as well and vary as a goal is refined or broadened throughout its hierarchy.

 50	

5 Introducing ADIM as a Means to Encode Relevance

In this chapter I introduce the Automatic and Dynamic Information Model

methodology (ADIM) as a new approach to defining dynamic ontologies. ADIM is a

unique and novel way to think about ontologies. Using ADIM, ontology authors are not

bound to the normal static nature of modeling and presented with a dynamic modeling

methodology. This methodology is intended to provide relevant information for any

situation based on existing, instantiated models and information. ADIM models, when

instantiated present all information it deems relevant for a given situation. As situations

evolve over time, ADIM provides the ability to automatically expand models at run time

in effort to continually evolve the relevant information as needed.

This self-evolving trait of ADIM satisfies the need for the manual context

management tenet. I enable this use of template auto-evolution by implementing them

within a graph database, allowing for exploration and expansion as needed or warranted.

The resulting methodology is one which delivers the notion of the dynamic information

ontology and enables a novel modeling approach.

I will briefly discuss ADIM, during which I will use Cypher [49] notation as I

describe examples of ADIM in use. I will explain later in chapter 6 why Cypher is used

with the implementation of Rover3 is explained, but for now focus on ADIM.

5.1 ADIM

The argument for ADIM is that one creates an ontology that allows for the

flexibility of the types of models we have described above. Reviewing typical ontologies

 51	

like RDF [50] and OWL [51] [44] [52] we hardly find the level of flexibility we believe

one should have. The notion of a dynamic ontology has been proposed in [53] and [54],

but those concepts were targeted at automatically updating a static ontology and removing

the need for one to keep the ontology up to date. Components in these existing ontology

frameworks are binary in nature; they either exist or they don’t. Despite allowing for any

ontology to be defined, systems that tend to use ontologies [8] [20] [48] [55] are limited to

the structure of the ontology itself. The ontology must be fully instantiated, or a specific

filter must be created for each use case, before the use case is exercised. Furthermore, the

rigid nature of the taxonomy only allows for some entities to exist or not; there just hasn’t

been an ontology that encodes the variability of the domain itself.

ADIM changes that. Rather than needing an external software system for every

consuming system of an ontology, ADIM (and a system with the same properties as

Rover3) allows one to simply define an ontology and only consume what is relevant.

Authors of the ontology can encode many different relevance models within the entire

ontology itself. Using the ADIM grammar, one can dictate which relationships, attributes,

subsets of the ontology, actions (the consumer of the ontology should take), or pre-caching

should be instantiated at run-time throughout complete models. The result is only a subset

or pruned version of the overall ontology is instantiated at one time or expanded or

contracted as the instantiated model evolves. This reduces the need to create a filter for

each iteration of an ontology and is a more complete model of any domain.

Recall that a situation is what defines the context, or the subset of the entire possible

collection of information of a surrounding environment. As such, an ontological designer

can encode the relevance for any number of situations. This is done by enabling or

 52	

disabling sections of the model using ADIM grammar. Working through the entire

possible model for any domain or set of domains, the creator can carefully cauterize

sections that do not assist in the remediation of the situation. Situations alone need not be

the initiating characteristic for any pruning/expanding function – entity/attribute tuples and

other primitives that may exist in the instantiated model and dictate how to expand/prune

a large model. The ADIM grammar is designed to allow for this as well. The application

of ADIM grammar in an ontology is broad – it can define variable relationships, sub sets

of entities to instantiate, prune attributes, define actions or goals to take, and even work to

deliver information pre-caching.

Adding the ADIM verbs and actions to an ontology dictates to Rover3 (or any

system that would instantiate the ontology) how to prune and produce only the relevant

sub-graph. Thus, the goal of ontology creation or modification of an existing one is to

understand the ADIM grammar and how to apply it as they create a new or enhance an

existing ontology. As the ontology can always be updated, future iterations or additional

situations can easily be added to an ontological model.

In creating a specific ontology within ADIM, one should work to ensure the

resulting instantiated models are relevant. The ADIM grammar is a tool that allows an

ontological model to always produce a relevant model, but it does not guarantee the

resulting instantiation will be relevant. Like any programming or scripting language, the

resulting action the ADIM grammar will drive could result in an instantiated model that is

difficult to manage or more vast than it should be. While tools cannot always prevent this

(an example is a fork bomb that can easily be created through a scripting language) one

needs to provide guardrails around such performance issues. Aside from proper modeling

 53	

techniques, the context aware system must optimize the management of the relevant data

set. As context aware systems need to be suggestive in nature, anything that presents the

instantiated model must ensure the end user can remove portions that are deemed

irrelevant. Additionally, subsets of the ontology that were not instantiated should be

identified as relevant at the direction of the end user. For example, if a model dictates that

health records of the 300 subjects are not relevant but the weather at the given moment it,

the system instantiating the dynamic ontologies must allow a user to prune unnecessary

components while adding others.

Not all components of an ontology need to have relevance encoded within them.

Anything that does not have a relevance function used to instantiate it is considered default

and will always be considered relevant. Likewise, using some of the other features of

ADIM, one can assign hierarchal rules or fuzzy matching to the ontology, removing the

need to have to discretely define how every single part of an ontology could be instantiated

for a given situation.

5.2 ADIM Grammar

The full grammar ontology is outlined in chapter 7 but we will briefly explore the

high-level features of the ADIM grammar. The ontology and ADIM grammar together are

a superset of the Cypher language (the decision to use Cypher is explained later but a result

of the data base chosen to model and store ontologies). A standard, non-dynamic ontology

can simply be written in Cypher for Rover3 to instantiate. Without any ADIM rules, the

entire ontology would be instantiated as situations or entities are to be created in the

Context Store (more to come in chapter 6). Using ADIM grammar and revisiting the traits

 54	

of a dynamic ontology as outlined in section 4.1, authors can ensure the following actions

take place on the instantiation of an ontology:

• Variable Relationship – Any linking of two entities can be a function of a

specific situation, a collection of entities and attributes, goal, or active

activity in the instantiated space. The author can cauterize or enable such

relationships with the ADIM grammar accordingly.

• Enriching Data – Through the existence of attributes for any one entity, an

author can indicate within the ontology data sources or other URI actions to

fire. The result can place additional or enriched information into the

instantiated model.

• Goals and Actions – By creating a situation or evolving the collection of

information in the instantiated model, goals and actions can be considered

relevant. Authors can encode the ontology to trigger an action or goal based

on the existence of a situation or a specific entity/attribute tuple. Likewise,

goals or actions can instantiate additional entities as the ADIM grammar

permits. Lastly, an author can ensure that a situation being instantiated

created new actions or goals when determining the relevant portions of an

ontological model.

• Dynamic Situations – Not all situations lifecycles need to be defined in the

ontology – that is, the ontology can define when new situations are to be

created or existing ones should evolve. Authors can allow for goals or

entity/attribute tuples to spur new situations, resulting in infinite ways

situations can be stitched together.

 55	

An example of the grammar can be found in automatic pre-fetching of enrichment

data. Consider again the example of a vehicle where we know the license plate. A simple

grammar statement that would fire an action based on a value would be:

“Action GET http://website.com submittedVariable pointerVariable”

This means fire the action of querying the web service with the submitted variable

and place the return value in the pointerVariable. Using this grammar as we craft the

ontology, a specific entry within the ontology could be:

CREATE (m:CarOntologyroot:Car:car:entity {licensePlate: ‘’, isStolen: ‘’,

preCacheTag: ‘Action: GET http://localhost:8080/Rover3/tagQueryDatabase

m.licensePlate m.isStolen’})

Spoken in a natural language, this says if the license plate of the vehicle is known,

tell the activity manager to go query an external web database.

ADIM ontologies can be re-used and extended, allowing for models to span

multiple domains or use cases. It is through this grammar that we can encode relevance.

Associating relationships and the instantiation of entities through discrete rules or fuzzy

logic, we provide a way for the ontology to define what is to be instantiated into the context

store at any given time.

 56	

5.3 Advantages of ADIM

Existing systems employ the RoCoMo methodology in order to define and present

context in standardized methods. Doing so, authors of ontologies and consumers of context

are ensured the information they are consuming will adhere to specific rules about the

existential structuring of said information. This information, however, is static in nature

and does not vary at run-time. ADIM, when used with RoCoMo ontology modeling

definitions, continues to deliver this same information structuring assurance. The benefit

of using ADIM is in the modification of relevance models at run time – we still are

delivered relevant information for a given situation but the effort to evolve what is relevant

over time is drastically lowered as Rover3 can do this automatically as it executes the

ADIM logic built into the ontology. Reflecting back to our tenets of a context aware

system, “Remove the need for manual context management” and “Proactively fetch

information and expand models” were two such tenets that one should use when building

such systems. ADIM helps delivers on these tenets.

Rover2 is an example where these tenets are not built into the system or modeling

framework. The result is system designers need to account for this in unique ways each

time they encounter a new domain or application that will consume context provided by

Rover2. Context on a per application or situation basis is delivered by creating filters for

each discrete scenario. While filters can be re-used, the instantiation of such information

still requires external software. The result is a user of Rover2 knows what the generic

situation may look like for anyone situation, but as situations blend and evolve, the

consuming systems must have logic external to the context aware system that manages

what is instantiated, how to blend it, etc. Figure 5.3.1 shows an example of the filter that

 57	

helps define relative context. Outside of the filters, there is nothing else to define what is

instantiated or how situations should be merged or managed.

Figure 5.3.1 – Example context filter used in the Rover2 system.

Proactively fetching information for instantiated models is not something that exists

in generic context aware systems. If one were to ignore this design tenet, external software

would need to be written for each domain or model. Ensuring this feature exists in the

 58	

ADIM language allows consumers to benefit from data-enrichment by simply writing a

rule and no longer requiring additional software for this workflow.

5.4 Modeling More than just Surroundings, Modeling Thought

Computer systems that employ and use these ontologies make the decision when

certain relationships are considered relevant. The software receiving the information itself

tends to have logic that defines when one relationship is more relevant than the other. Yet

in ADIM we allow for these relationships to be a part of the model itself. Either through

existing relationships, entities, or attributes, we can encode that variability as a function of

the aforementioned within the ontology. This aims to capture the ‘thought’ process that

mirrors the mental model we humans might employ and place all of the login within the

model itself and not distributed across the data store and an external logical reasoning

system.

As noted in [14], the use of filters allows systems to define what is relevant. While

imperative to a context aware system, the filters themselves (including next steps, goals,

and model refinement) need management as the situation itself unfolds. For example, let’s

revisit the need to gather the social network of the suspected terrorists as outlined in chapter

2. If you had to gather the social network of those individuals manually and you are only

armed with a computer and nothing more, you might simply start your search in google. A

quick search of both names yields they each have a Facebook profile. So, by default a next

step might be to search each user’s page, gather what public information exists, noting

other social ties they have, where they have lived, etc.

 59	

Yet when you look at the 2nd google search result you note something different.

The result for person A is a link for a running race with results. The result for person B is

an academic paper. This delta in the type of results yield a different flavor to the same

action you would take for each. You now have some context about the types of social

networks they are contained in. Person A is likely connected with other runners and

athletes while person B likely spends some of their time with other academics. The results

of their efforts are different as well. Person A may have run multiple races, so the goal for

the refined search of ‘what have they done’ would be to look for races for person A and

look for papers for person B.

All that really differs is where you perform your search and what your goal is. You

are still going to look for ‘something’ related to the individual. You might do a more

refined google search such as ‘Person A’s name + race results’ for the one and ‘Person B’s

name + research paper’ for the other. If you knew something about both domains you

might go directly to other database sources. You might go to athlinks.com and search for

Person A as that website might have the most comprehensive list of race results. If the

person has run for university teams, you now know their social network likely extends to

that which represents a NCAA athlete. You can then check the school they attended and

gain a more refined model of that person. Similarly, you could go to google.schaolar.com

and search for Person B. Here you have both results of other papers they may have written

but also have a new social network, namely their peers with whom they have published

papers with. University affiliations again might arise and the model of person B is equally

as refined as it was for person A.

 60	

In both scenarios, we started with the general model of a person. We expected

google to return a result and we explored social networks with the Facebook results. We

then did a more refined search given the results that returned but leveraged different

repositories in order to do so. In each situation, our model for search was the same, we just

simply took the information that was given to us and refined our approach. While we could

have used filters to get the final product, the decision-making process would have had to

have been uniform for both person A and person B. As the filter is static, something would

have had to have told us that we need one filter over the other. Rather than a filter, if the

ontology itself defines what information is relevant and where we should search, the need

of a filter is removed. The result is expansion of the model at run-time given the data at

hand. Such data expansion and refinement is very general in nature and doesn’t need

special code. It is the actual model that drive the software, not the software driving which

models we need to use.

This model we believe more closely resembles what we consider. Our claim is that

we can encode this dynamic model of relevance into an ontology itself. Using the grammar

defined within ADIM, we argue that thought, though requiring a bit of work through the

creation of the model, can just as easily be modeled as any other domain.

 61	

6 System Overview

In this chapter, I layout the design of Rover3 – a context aware framework that

implements the tenants outlined in chapter 3 and the modeling features in chapter 4.

Rover3 acts as a middleware system for both end users and applications. This system

provides a domain agnostic platform for delivering and exploring relevant data.

Applications and users that need to store, retrieve, and model data are able to do so through

simple API calls. Using RESTful APIs, any application can simply request, create, store,

and explore data for a particular use case. The goal of Rover3 is to reduce the need for

customized software when the need for relevant information is needed. Such a platform

re-defines the notion of an information taxonomy as this is the driving force behind data

manipulation, extraction and refinement.

6.1 Rover3 General Framework

The architecture put forth in [14] was one that we believe is appropriate for a

context aware system. The approach in Rover2 provides context for any situation. Rather

than be bound to mobile computing, location based awareness, or any typical context

delivery system, the authors of Rover2 laid out a design that allowed for generic context to

be delivered through a common middleware platform rather than a custom one so

frequently designed.

Though similar in nature, we believe modifications to the existing Rover2

architecture is necessary. A visual of the architecture is found in figure 6.1.1 below.

 62	

Figure 6.1.1 – Rover3 System Architecture

Defining the main parts of design the system:

• Controller – Dictates the actions each other module is to take. All

information flows through the controller. This most resembles an HTTP

server. Heartbeats are sent when context is updated from the controller to

each module in an effort to keep context relevant while allowing modules

to run autonomously. These heartbeats help evolve the instantiated or

relevant information.

• Template Manager – Stored the generic models that the system works

with. The Ontological Template Store is the collection of models that

SME’s generate for the system. The Template Manager interfaces between

the store and the controller. Requests for models and expansions are

handled here.

 63	

• Context Engine – Stores the real-time, instantiated models. Having

external inputs relayed through the controller, the context engine helps

evolve the relevant information as it executes the ADIM logic. This could

also be considered the active cache or database for the active portion of the

system. Relevant context is delivered via the context engine. Though the

controller is the module that directly delivers data to the end user or system,

it is the context engine that defines what is to be delivered. The Context

Storage is the actual repository of relevant information. This is the

collection of all instantiated models. It may contain only active or active

and existing models. These are discrete models with specific data and

instantiations unlike the template store which contains abstract and vast

models.

• Activity Manager – The activity manager monitors activities that the

context engine deems are necessary for given instantiated situations. The

Activity Store is nothing more than a logical partition of the ontological

template store. As activities are instantiated, the activity manager track

status of entities and help drive outside users and systems to complete the

goals the activity seeks to accomplish.

• Situation Handler – The situation handler manages individual situations

through the full life cycle. As situations appear and wain, the situation

handler monitors the situation, looking for opportunities to merge multiple

situations together as well as maintain the state of situations.

 64	

• UI Console – This UI console is the mechanism that allows users to view

the current state of the situation graph. Users can select which graph they

wish to view as the system can work with multiple situations at a given time.

Data and its relationships are visualized through this UI. Users can expand

and shrink both instantiated models at the given times as well as proposed

models. Attributes and their values are shown as well. Logging for each

engine is displayed through a text console. As data is entered and processed,

the action each module takes is logged. This console is an effort to help

users understand how to use the system and better showcase the prototype.

It will also serve as an interface for users to automatically expand models

as they see fit (an extension of proposed API calls to be discussed later).

Rover3 is designed to be used by users or applications alike. As an information

management and brokering system, Rover3 caters to an end user or an application.

Designed to act as a real-time or long-term data-store, Rover3 is as little or as much of a

database as needed for any application. Through the tracking of various situations, Rover3

provides relevant information for each situation. Applications and users can access this

information through the use of web service calls or visual inspections through the use of

the UI. As the information brokered by Rover3 is to be used to help accomplish goals and

help influence the decisions the UI and web calls should allow for modification of the

instantiated model. Rover3 is not meant to be authoritative but rather helpful.

 65	

6.1.1 Graph Database as the Data Store

The data stores for each of these are handled through graph databases. Graph

databases allow for unrestrained modeling and were chosen based on the ‘Extensible

modeling framework’ tenet. Existing database technologies such as SQL or even NonSQL

solutions require either arduous schema updates on a per-model scenario or relationship

management overhead. The ability to model entities and relationships with graph databases

affords one the flexibility to model any entity, relationship, or situation. Activities can be

modeled through the collection of entities and desired attributes. The limits of how to

model are merely in the minds of the SME’s – designers of the models. There is no limit

on the number of relationships to relate independent entities or decompose high-level

entities into more detailed explanations. The unbounded and unstructured nature of the

graph components as well as the attribute stores (similar to JSON objects) allows for

simplification of data management and better scalability.

We argue this graph database is better for data and ontologies. As we argued above,

computer systems and models should strive to minimize the abstraction of the reality

around it. Convention SQL databases, though efficient in indexing, require a bit of

massaging of information through code to convert stored data into processed and delivered

data. The standard MVC approach to software design requires an extraction of data in one

format, massaging, merging, and processing, only to deliver in another. Using graph

databases, data is considered to be in the final state. The need to massage is removed by

leaving the data modeled as the domain or situation deems relevant. Processing this data

(aside from the functions of Rover3) are left up to the end user, but the removal of the need

 66	

to massage the data outside of the data store frees the system of restrained representations

and minimizes the effect of data representation.

We now take a deeper dive into each of the other modules, explaining their

functionality a bit more while detailed some of the specific calls and rules of engagement

with one another.

Table 6.1.2.1 Sample Controller API Calls

6.1.2 Controller

The controller is the main interface within the system. All communications from

one engine to the other goes through the controller. One main reason for doing this is to

alert the entire system that context has been updated. Every time data is entered or

processed or models are expanded or instantiated, that is a relevant change to the context

at hand. Heartbeats are sent out across the system via the controller. Both the context

engine and the activity manager have the ability to take actions based on data at any given

point. All communication is handled internally within the system and within the

programming language the system is written in. Sample calls are presented in table 6.1.2.1.

Type of Call Example Explanation

Create
Situation http://RoverServer/createContext /createEvent/carAccident

A car accident situation is created.
All necessary entities for this graph
are instantiated. A situation ID is
returned.

Query model
composition http://RoverServer/getContext/situation/carAccident/061705 The situation model is returned as it

exists at this point for ID 061705.

Populate
Data

http://RoverServer/createContext/updateEvent
/carAccident?person2=true&first name=John &last
name=Doe&address=123FakeStreet &injured=no&id=061705

Situation ID 061705 has some of
the data updated for the
corresponding models

Query
specific
entity

http://RoverServer/getContext
/carAccident/061705/person2

Returns all data and structure of the
person entity for the given
accident; more specifically person 2.

 67	

The controller additionally serves as the external interface between the Rover3

system and the end system or user. This external interface serves to deliver context,

describe context (and models), accept new information, define new situations, and end

situations/events. Using a RESTful API, commands are sent to the controller for such

queries and updates. Both meta data about the relevant information as well as specific

information can be retrieved through these calls. As any receiving entity does not know

what is necessarily relevant (Rover3 helps deliver just what is relevant), nor do they know

what the actual data is that exists for the situation, the controller allows for all of that

discovery to take place. By querying for the model composition, end users or systems can

see what the actual structure of relevant information is. Entities and relationships are

labeled. When the actual data itself is required, specific primitives can be returned, as well

as whole or sub graphs.

Data returned from the controller to an external entity is in the form of a JSON

object. As relevance can vary from second to second, the structure of the data is just as

dynamic as the actual data values. JSON objects allow for proper key:value

store/organization of the data and provide an unstructured, yet detailed mapping for any

data structure. This JSON formatting easily captures the state of the situation graph and

any subgraphs. As entities can be quite large and expansive and contain many attributes,

a JSON object allows for easy organization and indexing of any entity.

 68	

6.1.3 Template Manager

All of the models and logic that Rover3 can instantiate a model are stored in the

template store. The template manager is the interface to this store. As the activity manager

or context engine need models delivered, the template manager does so.

The ontological template store is merely a collection of models within a graph

database. Similar to other ontologies, the template store is a collection of abstract entities

and relationships. Entities need to be modeled with all attributes they might have directly

assigned to them. Logic is encoded in this store within the ontology using ADIM.

 Relationships link other entity types together and references can be made to more

general entities. For example, an ontology for a person can be rather vast and contain

hundreds of attributes and another hundred or so relationships. As a domain may contain

many other situations or events that contain one or more persons, the model must reference

the general entity of person. This requires us to label our primitives. The result is we

simply walk the labels to refine to generalize any given primitive.

The database of choice for Rover3 is Neo4J. Neo4J was chosen as it was one of

the more mature graph databases. The query langue Cypher [49] is what Neo4J uses to

create, query and mutate entries within the database. Templates are merely a collection of

multiple queries that define all primitives as well as possible relationships between all

possible entities. As the template is a collection of individual queries, labeling is used to

decipher between entity definition and references to the entity. Examples of such models

can be found in figure 6.1.3.1.

 69	

 The template store is the aggregate of all possible ways to instantiated something,

such as a person entity in chapter 2. Yet all possible options are not always used. The

storing of the model within a dynamic ontology allows only the relevant components of

that template to ever be instantiated. Templates are written with ADIM and are re-

usable/extensible.

6.1.4 Context Engine

As data is populated with the system and models are instantiated, the context engine

manages that information. Its purpose is to contain the relevant context for any given

//	
 Person	
 Entity
CREATE	
 (person:Entity:Person	
 {first_name:'',	
 last_name:''}	

	

//	
 Person	
 instantiation	

CREATE	
 (person:Person	
 {first_name:'John’,	

last_name:'Smith'})"});	
 	

//	
 Referencing	
 Person	
 in	
 another	
 component	
 of	
 model
Match	
 (auto:Automobile),	
 (person:Person)	

CREATE	
 (person)-­‐‑[:OWNS]-­‐‑>(auto);	

CREATE	
 (person)-­‐‑[:DRIVES]-­‐‑>(auto);	

CREATE	
 (person)-­‐‑[:RIDES_IN]-­‐‑>(auto);	

	

//FOAF,	
 with	
 new	
 person	
 type

Match	
 (person:Person)CREATE	
 (person)-­‐‑
[:HAS_BROTHER]-­‐‑>(brother:Person)CREATE	
 (person)-­‐‑
[:IS_RELATED]-­‐‑>(brother)CREATE	
 (person)<-­‐‑
[:IS_RELATED]-­‐‑(brother)CREATE	
 (brother)-­‐‑
[:IS_BROTHER_OF]-­‐‑>(person)w	
 entity	
 types	
 for	
 person

Figure 6.1.3.1 - Sample Model written in Cypher

 70	

situation (or situations) and broker that data back to the end user or system via the

controller, satisfying the design tenet to do just so. Recall, that context can be known

information for that given situation or placeholders for information that is relevant and

needs to be discovered. Through its own instance of Neo4J, the context engine stores all

instantiated data in that graph database instance. As templates are used or referenced, the

context engine replicates those components into its own instance. Using graph traversal

and copying components within the Neo4J libraries, the subcomponents of the ontology

are easily referenced and copied. One is presented with a situation graph for each situation

that is being managed. (Note: throughout the rest of this dissertation, situation graph will

be used synonymous with the concept of the given situation being stored in the context

store).

The context engine maintains the context store where it stores both the relevant,

filtered models and all relevant information for any given set of situations. As situations

are created by external users, the context store is first populated with a filtered, or relevant

version of the ontology from the template store. Only the portions of the ontology that are

considered relevant are instantiated within the context store. As external users populate

the context store (and the controller sends updates via hearbeats) with specific information

about the situation, further portions of the ontology can also be instantiated and placed into

the context store if the logic in the ontological store deems it necessary.

As the context store stores both relevant filter versions of a larger ontology and

actual information for a situation, the controller can return either the relevant information

structure of the actual relevant information itself as dictated by the service call. As both

 71	

templates and instantiated data stores are all graphs within the graph database, subgraphs

or entire graphs can be returned as well and individual entities.

6.1.5 Activity Manager

The activity manager, among other things, ensures the relevant information is

always up to date, either through the expansion of models or pre-fetching of relevant data.

As heartbeats are sent, the activity manager looks to see what rules are or are not in place

within the context store. Any rules that define activities to fire do so if the combination of

context and ontology rules define so.

The activity manager can also process larger, templatized activities. As mentioned

earlier, goals are a part of relevant information. A chain of entities and desired entity states

can be modeled and instantiated to help achieve that goal. For example, consider the two-

car accident again. If a passenger is noticed to be injured, the goal might be to transport

the injured to a safe place such as a hospital. The activity manager can expand the situation

graph to include paramedics and an ambulance. The location of the passenger would want

to change from ‘in-vehicle’, to ‘in-ambulance’, to ‘in-hospital’. During these state changes

the activity manager can be fetching information about local hospitals, seeing which ones

have room for a patient as well as which ones might not be able to treat a patient with the

types of injuries they are suffering from.

The activity manager does not necessarily accomplish the above activities, but

merely tracks the state changes, though it has the ability to do so. As state changes are

tracked, relevant information is adjusted and can be brokered to end users. The actions that

are coded into the model can be performed by the activity manager and could actually reach

 72	

out to external entities. The framework of Rover3 does allow for external messaging. The

calling of the ambulance, the reserving of the hospital bed, and transferring of medical

records are all possible actions the activity manager can undertake provided those actions

are RESTful actions.

6.1.6 Situation Handler

Rather than have external software to manage the various states a situation can go

through, the situation handler is always monitoring what situations are instantiated. The

goal of this monitoring agent is to take any and all possible evolving actions on the

situations in the situation graph. These actions include refining or broadening situations,

creating new ones, removing situations that are no longer deemed relevant, or archiving

completed situations.

Using the hierarchal properties of primitives in ADIM, we can enact actions on the

situations according to the rules in the template store. As information is added to the

situation graph and heartbeats are sent via the controller, the situation handler can refine or

broaden situations. Rules for more specific situations can fire a trigger to instantiate a more

specific situation in the context store, thereby also instantiation relevant primitives to

support that situation. Both the supporting general situation would continue to exist with

the child situation. The same chain of events can remove the specific situation if deemed

necessary.

Using outside information to fill out the situation graph, the situation hander can

also create situations. Just as above, the handler will continuously monitor all instantiated

primitives that have situation creating rules, instantiating if certain conditions materialize.

 73	

An example of this would be a person entity that is deemed to be hurt really bad. The

enriching of the person entity might fire a trigger to create a injuredPerson situation that is

separate or combined with the existing situation.

Lastly, as activities complete and goals are met, the situation handler marks a

situation as no longer active and archives them. Doing so does keep entities and other

primitives open for discovery as they represent previous representations of real-world

primitives.

6.1.7 UI Console

The UI console is merely a visual look into the current situational graph. This

module serves to allow end users to see what data has been instantiated, what values exist,

as well as templates that have yet to be expanded. Tooling will be engaged to show what

next-level components of a model exist for any given entity.

The tool will also look to allow end users to populate data and expand models as

the user feels fit. As Rover3 is not designed to be the authoritative source on context and

actions but rather a suggestive source to help influence users make decisions about how to

resolve a situation, the system must allow for such input and manipulation of relevant

information. As one of the controller functions will be ‘expand context’, users will be able

to expand a model, drill into a hierarchal entity, or add relationships within the ontology as

they see fit.

A text console will accompany the visual aid as well. This component will

articulate all actions the various modules undertake. Heartbeats and resulting triggers will

be listed as the system receives and processes data. The logic the system takes based on

 74	

the ontology being referenced will be expressed, providing a play-by-play as to how the

system is ‘thinking’ and behaving.

6.2 Domain Independent Framework

The Rover3 framework is one that is truly domain independent. While individual

ontologies will need to be created for any given domain, the modeling of data, the

underlying system that manages and presents the data as well as the mutation of data will

truly be domain independent. This independence is realized as SMEs can build such a

system without any coding. Through the use of the Rover3 and ontology grammar, a SME

can define an ontology that not only lays out the structure of entities and the relationships

between them for any given domain, but also capture how data and relationships evolve

and vary based on individual content.

In order for a SME or organization to utilize Rover3, all they need to do is define

the ontology themselves. There is no need for additional software to be written when a new

ontology is written as the framework will handle the information processing itself.

Instantiation of models and expansion of data is all handled automatically as Rover3

processes the logic encoded in the dynamic ontology.

 75	

7 Putting it all Together – Dynamic Ontologies in use via Rover 3 and

ADIM

We now turn our attention to the specifics of how one uses Rover3 ADIM to create

their own dynamic ontologies and deliver relevance. There are two classes of Rover3

users. The first is a set of users that craft ADIM ontologies for Rover3 to use, instantiate,

and model. These people are SME’s in their field of work. They understand how the

various entities in their domain relate to one another and can add to existing ADIM models

in an effort to adequately represent what is necessary for real-time information

management. These users are the ones who create the ADIM models in the template store

and use the verbs in sections 6.1 – 6.4 below. The second set of users are those that benefit

from the by-product of the Rover3. They can view the models on the template store in

order to explore how a SME believes a model can expand or exist. As models are

instantiated and a relevant model is provided to the context store, they can view and explore

what exists.

The following sections act as a reference / API manual as it outlines the full ADIM

grammar; rules one can use when defining an abstract relevance model as well as the web

calls the controller uses to receive input from external users and systems. Each dynamic

feature of dynamic ontologies is outlined below both with a detailed explanation of each

way the specific component of the ontology encodes relevance as well as the full grammar

or ontological spec. As the Neo4J language of Cypher is used to create the dynamic

ontologies within Rover3, the examples are expressed in Cypher. Some of the matching

 76	

and constraint grammatical rules are simple extensions of the Cypher language. Rover3 is

designed to process the ADIM grammar outlined below.

7.1 ADIM Grammar

We start with the general ADIM grammar concepts and common components that

make up the ADIM language.

7.1.1 Basic Grammar

The ontologies that are stored in the template store are done so through the use of

the Neo4J language Cypher. Stringing together multiple statements that embrace the

ADIM relevance grammar allow one to create a dynamic ontological model. All primitives

are modeled through the crafting of individual statements. Entities, Situations, and Activity

states (to include goals) are all modeled as nodes. Relationships are modeled the same as

their Neo4J namesake – the relationship. An activity is really a string of activity states

(nodes) and links (relationships).

We use the Neo4J label operator ‘:’ to define or refine the specific primitive being

defined. Every node in Neo4J needs a label. As entities are nodes, we must label each

entity. The entity labels act as the type of entity. Labels read left to right in terms of

generality; that is the left-most label is the most specific type for that primitive and the

rightmost of the least specific. Every primitive that is a node (Entity, Situation, Activity

State) has at least three labels, with the right-most label being that type of primitive it is.

The left most label is the label to be used the immediate stanza and is not used beyond the

single line. This label can be anything but is used when referencing that primitive in any

 77	

other part of the stanza. Relationships do not require a starter node nor do they require a

primitive declaration as they are automatically known to be relationships. Activity links

do require a general label called activityLink.

Labels can be re-used in the template store and should be re-used in order to

implement an ontology over and over again. Consider the following two examples:

CREATE (m:PersonOntologyroot:Person:person:entity {first_name:’’,

last_name:’’, id:’’, ssn:’’})-[:worksAs {situation_contains_text_professional: 6,

situation_exists: ‘careerQuery’}]->(o:Profession:profession:entity {title:’’})-

[r:employedAt]->(p:Company:company:entity {name:’’})

CREATE (y:Person1:person:entity),(z:Person2:person:entity)

In the first of the above two stanzas we create a person ontology which acts as the

general person. All future instantiations of ‘person’ in the context store will always

instantiate that model and take into account the ADIM verbs when expanding relationships

or not. The second stanza creates two more ‘persons’ for other use in the template store.

The use of the ‘person:entity” labels tells Rover3 to re-use the person ontology. In both of

these examples the single character (m, then y) labels are the leftmost labels that are not

used but required due to Cypher syntax rules.

This use of multiple labels also doubles as a method for providing hierarchal

models. For example, when creating models of situations in the template store, a general

situation of an accident can be defined. A subsequent carAccident can also be defined that

would inherit properties of the accident model. More specific activities and rules overwrite

conflicting rules and triggers of the more generic model.

 78	

The following example shows the creation of a situation labeled carAccident

(which is also a generic accident), an entity which is Person1 (which is also known as a

generic person), and the linking of the two in a car-accident through the relationship

involvedIn:

MATCH (f:CarAccident:accident:situation

{location:’’}),(g:Person1:person:entity)

MERGE (g)-[:involvedIn]->(f)

Note the re-use of the throw-away labels f and g and the Cypher language rules.

The person type is called Person1 in this example as the model this stanza was taken from

had multiple people in the car accident and the use of the label Person1 allowed Rover3 to

differentiate between that person and Person2 (not shown but used in other stanzas with

the dynamic ontology this was pulled from).

This dissertation does not go over the varies properties of the Cypher language and

one should refer to the documentation of that language for more info. The template store

will accept any acceptable Cypher stanza but Rover3 has only been designed and tested to

work with the following Cypher keywords/concepts:

 CREATE

 MATCH

 MERGE

 SET

 RETURN (simply for stanza completion)

 attributes

 79	

 nodes

 relationships

7.1.2 Attribute Tests

There are a few places in ADIM where an attribute test is an optional or required

part of the language used to determine relevance. We adopt and process a subset of the

Cypher language operators in order to allow attribute values to determine when to

instantiate a model or modify information in the context store at run time. Attribute tests

can validate user defined values on attributes of nodes and relationships. Both text and real

numbers can be used. Depending on the verb calling the attribute test the attribute can be a

stand-alone attribute or a label-attribute pair, delimited with a period ‘.’.

These tests are valid tests in the Neo4J language and are embedded in the Rover 3

/ ADIM framework:

 Text = ‘text’

 Attribute of type string ‘Text’ equals the exact value

 Text STARTS WITH ‘text’

 Attribute of type string ‘Text’ starts with the value ‘text’

 Text ENDS WITH ‘text’

 Attribute of type string ‘Text’ starts with ‘text’

 Text CONTAINS ‘text’

 Attribute of type string ‘Text’ contains the pattern ‘text’

 Number ==, >, < integer | real number

 80	

Attribute of type real named ‘Text’ meets the numerical criteria of either ‘==’, ‘>’,

or ‘<’

7.1.3 Ontologies

The starting point for any ontology is the ontologyroot node type. Neo4J only

supports two native types, relationships and nodes. Though not a Rover3 primitive, we use

the ontologyroot as a grammatical starting point for the creation of any ontology.

A dynamic ontology may contain many ontology roots. The ontology root defines

the abstract starting point for any model. Every entity that will be referenced in other areas

of a dynamic ontology needs an ontological root somewhere in the template store. This

root defines the basic structure for that entity. Any additional references to that entity

always reference back to the ontological model – the model is the set of properties,

relationships, and actions that are applied by default to that entity. This allows Rover3 to

instantiate such a model whenever needed. It also allows any other reference to the

ontological root for that entity type to be referenced later in the dynamic model. Ontology

roots are also used to navigate the various models in the GUI as well. When browsing the

template store only ontological roots are displayed as starting points.

The following example creates the ontological model of a person:

CREATE (m:PersonOntologyroot:Person:person:entity {first_name:’’,

last_name:’’, id:’’, ssn:’’})-[:worksAs {situation_contains_text: ‘professional’,

situation_exists: ‘careerQuery’}]->(o:Profession:profession:entity {title:’’})-

[r:employedAt]->(p:Company:company:entity {name:’’})

 81	

The earlier example also created the entity Person1 which was also a person. When

instantiating the Person1 model, Rover3 looks at the label person and checks the template

store to see if an ontological root exists. If the above was defined, every instantiation of a

person would automatically expand all relevant relationships and linked nodes according

to the rules of the ontology root.

Other instances of ontological roots can simply reference the root through the

‘isAnInstantiationOf’ keyword. Doing so allows one to re-use the model within the

template store. Primitives that reference an ontological root via this term have all attributes

and default entity-relationship pairs copied to the instantiated one in the context store.

7.2 Variable Relationships

A relationship in an ADIM model is one of two types – it either always exists (or

is instantiated) when one of the two linking nodes exists in the context store or it is subject

to criteria of the current context store and its existence is variable. These variable

relationships are the easiest and arguably most natural components of a dynamic ontology.

Vast models for a given domain might have many relationships that are only deemed

relevant and instantiated as the situation demands it. The variable relationship feature

allows these models to be vast yet ensures only relevant ones propagate to the context store.

Within the context store, as different primitives exist, have labels of a particular type, or

attributes are set, relationships are instantiated or removed as the relevance dictates.

 82	

7.2.1 Types

 There are 2 drivers that dictate when a relationship should exist: the current

situation(s) or attributes that are set for any given entity. These rules can be encoded in the

dynamic ontology itself. When such conditions are met in the instantiated model the rules

fire, resulting in the newly formed (or removed) relationship and subsequent node. Any

subsequent nodes that are required due to the existence of the newly linked node also

expand and are placed in the context engine. An exhaustive search (pruned at each

relationship when deemed not relevant) continues to all node-relationship pairs that branch

out from the new node.

 A situation based variable relationship is one where the attribute of the relationship

dictates what situations must be present for the variable relationship to be instantiated.

Discrete situation names or names that match patterns/words can trigger the variable

relationship.

The variability of the relationship existence can also be based on entity status. As

an entity and the status of an entity can essentially constitute a situation it is only natural

that this also be a driver for relationships. Like the relationship and situations where the

discrete names or text patterns of names can trigger the creation of relationships, the same

applies for entities.

7.2.2 Variable Relationships Grammar

Making a relationship relevant based on a situation existing

situation_exists: ‘situation_name

 83	

Optional attribute assigned to a relationship primitive type. The specific situation

must exist in the situation graph and be active for the trigger to fire. As situations can be

hierarchical, any one of the situations whose label is an exact pattern match that may exist

in the hierarchy.

The following example creates the relationship containsBloodPressureRecords

only when the situation ‘carAccident’ exists:

CREATE (a:HealthRecords:healthrecords:entity)-

[:containsBloodPressureRecords {situation_exists: ‘carAccident’}]-

>(b:BloodPressureRecords:bloodpressurerecords:entity)

situation_contains_text: ‘user_defined_text’

Optional attribute assigned to a relationship primitive type. A situation containing

the user_defined_text must exist in the context store for the relationship to be

instantiated. As situations can be hierarchical, any one of the situations whose

name contains the pattern match that may exist in the hierarchy.

The following example creates the relationship containsBloodPressureRecords

when a situation that has the pattern ‘accident’ exists. Thus, a situation such as

‘carAccident’ existing would cause this variable relationship to be instantiated:

CREATE (a:HealthRecords:healthrecords:entity)-

[:containsBloodPressureRecords {situation_contains_text: ‘accident’}]-

>(b:BloodPressureRecords:bloodpressurerecords:entity)

Making a relationship relevant based on entity composition

 84	

entity_attribute_criteria: ‘attribute test’

Optional attribute applied to relationship primitive type. For any given entity if the

general primitive attribute match is true the relationship will be considered relevant.

See section 6.1.2 for an explanation on what a valid attribute test is.

The following example sets the hasKnownLastLocation relationship for the entity

car when the attribute stolen is set to true:

CREATE (m:CarOntologyroot:Car:car:entity {vinNumber: ‘’, licensePlate: ‘’,

isStolen: ‘’, model: ‘’, make: ‘’, year: ‘’, preCacheTag: ‘Action: GET

http://localhost:8080/Rover3/tagQueryDatabase m.licensePlate m.isStolen’})-

[:hasLastKnownLocation {entity_attribute_criteria: ‘car.stolen = yes’}]-

>(o:KnownLocation:entity)

The following example would instantiate the hasCriminalRecord relationship for

the entity Person when the attribute BAC is > 0.08:

CREATE (p:Person)-[r:hasCriminalRecord {entity_attribute_criteria: ‘BAC >

0.08’}]-(r:criminalRecords)

7.3 Enriching / pre-caching information based on current information

One of the tenets of a context aware system defined earlier was to proactively fetch

data and expand models. The variable relationships outlined in section 7.2 accomplish that

tenet. We now look at the notion of pre-caching information: collecting relevant and real-

 85	

time information for an instantiated model as defined by the rules in the dynamic

information store.

There are two triggers that can initiate a pre-caching process. The first is when

certain model criteria are met upon instantiation. As template stores are instantiated and

initial information is provided or exists within the situation graph, an action can take place

to fetch information from a data source. This is a one-time action that auto-populates the

various attributes of a node or relationship. The grammar requires a source, allows for the

use of HTTP protocols and methods to interact with end services, and can send data as a

part of the call.

The second way Rover3 can pre-cache is through active monitoring. Attributes can

be flagged for constant updates. Similar methods exist for monitoring as above, the only

difference is the monitoring verb ensures information is kept up to date. This is best used

for resource tracking or information that has a lot of churn. Whenever any of the source

variables are updated the monitor action fires. Using the monitor verb alone does not auto-

populate the attribute. Doing so requires the attribute to receive its first value through

external/manual means such as the web API.

Pre-caching has a subset of grammar for each verb. These pre-caching verbs are

actions that are given to the Activity Manager. The activity manager processes the single

or recurring actions needed to retrieve external information from Rover3. Both

preCacheTag and monitor commands can exist on a single primitive/attribute tuple. None

of the actions fire if any of the required variables are null. The activity manager queues

the actions either until they fire (preCachTag) or perpetually until the parent entity of the

attribute to be populated is removed from the situation graph or made inactive.

 86	

7.3.1 Grammar

One-time pre-caching

preCacheTag ‘HTTP-method endpoint [variable1 variable2 …] target-attribute’

 Optional attribute for any entity or relationship. Requires a valid stanza to follow.

The target attribute is set/updated with the information that is returned from the endpoint.

The string of variables is used as parameters in the URI.

Continual pre-caching

Monitor ‘HTTP-method endpoint [variable1 variable2 …]’

Optional attribute for any entity or relationship. Requires a valid stanza to follow.

The target attribute is set/updated with the information that is returned from the endpoint.

The string of variables can be used as parameters in the URI.

7.3.2 Formatting of Pre-Caching grammar

Valid methods Rover3 supports:

 HTTP

GET

 POST

 87	

Endpoint options:

 Any valid HTTP URI will work as a valid endpoint.

Variables:

Mandatory set of variables to be sent to an endpoint. When the endpoint is an

HTTP URI the variables represent URL parameters to be added to the end of the URL in a

REST like fashion. There is no limit on the number of variables that can be declared for

HTTP endpoints. The last variable is the attribute in the ontology that is set with the return

value from the HTTP call. HTTP calls must return a valid type for use with Cypher

attributes. When referencing existing information via the model, use Cypher notation to

identify what information is valid. The standard lable:attribute tuple suffices. Use the

throw-away single-letter label for this reference.

Target-attribute:

This is the primitive-attribute tuple that is to be updated through the defined action.

This parameter must be in cypher notation and cannot be a static reference.

7.3.3 Example

The following example creates a simple car ontology that uses the preCacheTag

verb. The resulting HTTP request would be a GET of

http://localhost:8080/Rover3/tagQueryDatabase/mlicensePlate where m.licensePlate is the

value of the license plate of the car on the other side of the instantiated node. The isStolen

attribute is then updated once the action fires.

 88	

CREATE (m:CarOntologyroot:Car:car:entity {vinNumber: ‘’, licensePlate: ‘’,

isStolen: ‘’, model: ‘’, make: ‘’, year: ‘’, preCacheTag: ‘Action: GET

http://localhost:8080/Rover3/tagQueryDatabase m.licensePlate m.isStolen’})-

[:hasLastKnownLocation {source_node_attribute_stolen: ‘Yes’}]-

>(o:KnownLocation:entity)

The following example monitors the location of a car and updates the county

jurisdiction each time a new location is provided:

CREATE (m:CarOntologyroot:Car:car:entity {positionLat: ‘’, positionLon: ‘’,

IsInCounty: ‘’, vinNumber: ‘’, licensePlate: ‘’, isStolen: ‘’, model: ‘’, make: ‘’,

year: ‘’, monitor: ‘Action: GET http://localhost:8080/Rover3/countyLookup

m.positionLat m.positionLon m.isInCoutny’}) – [:hasLastKnownLocation

{source_node_attribute_stolen: ‘Yes’}]->(o:KnownLocation:entity)

7.4 Collection of Actions Goal-oriented entities can take

Context aware systems and dynamic ontologies were created to manage

information as situations evolve. Every situation has at least one end goal, some of which

can be achieved through discrete activities. When we talk about activities and goals we

first must understand the domain of both as well as how Rover3 models these primitives.

This is accomplished by modeling the individual activity steps (or discrete actions) as well

as an end goal. We will look at each type now, how the activities are relevant for a given

situation or an entity/attribute tuple, and then explore the grammar that accomplishes this.

 89	

7.4.1 The Activity

An activity is a collection of graph nodes where each node represents a state of that

given activity. This chain of states is stored in the ontology. This holds true both in the

template store and the activity store. The activities are atomic themselves. Activities are

generated either implicitly through states of the situation graph (a situation or some

combination of entities/attributes exist) or explicitly through the ontological structure of

entities or situations. An implicit trigger is one that is encoded in an activity primitive

within the template store. Such triggers require the activity manager to query the template

store every time and update comes in as it must look for uninstantiated activites to see if

the composition of the context store has a state that warrants the creation of an activity.

This is a rather expensive search through the template store but allows activities to be re-

used through multiple ontologies and maximizes on hierarchical situations or general

entities. Explicit definition is more efficient as triggers for such activities are defined in

certain entities/situations and the ability to ascertain when the activity needs to fire requires

only monitoring the current instantiated entities.

To clarify the difference between explicit and implicit definitions let us consider

two different ways the trigger of a single activity can be modeled. Let us supposed the

action of getMedicalCare that would be initiated if any entity has the attribute ‘Injured’.

This is an implicit definition for an activity and that trigger would be defined in the

structure of the activity in the ontology itself. In comparison, suppose getMedicalCare

were to be instantiated using the ‘newActivity’ verb when a specific person entity has the

attribute ‘Injured’. In this case since the trigger for the activity is defined within an

individual primitive other than itself in the template store it is considered explicit.

 90	

Any activity requires at least one entity to be linked to the activity. In order for any

action to be performed onto an entity, that entity must exist in the situation tree before the

activity can be instantiated. Entities are not the only thing that can be required for an

activity to exist – a situation, relationship, or any other primitive can also be required for

the activity to exist. Any primitives the activity mutates or enriches information for

requires the activity to be linked to those primitives. All required primitives are linked via

a ‘requires-these-primitives’ relationship. All explicit and implicit primitives that fire the

creation of the activity must exist in the situation graph. Some primitives can be required

but not exist at the time of the activity being fired. Those primitives must be created at the

time of the activity generation and will be linked to the activity. For example, the activity

getMedicalCare might require someone to provide on-site medical response.

Linking occurs by copying the nodeID of the instantiated neo4j node into the

attribute of the node that represents the required primitive. The Rover3 framework does

this automatically as a part of interpreting and actioning the grammar. Activities are

waterfall in nature, so there is ever only one state that is current at one time. A master node

must exist in the template store. This node is the reference to the activity and links to all

activity states through the isAnActivityStateOf relationship. This relationship originates at

the individual state and terminates at the master node. This master node and all states are

copied to the context store upon instantiation and acts as the pointer to the current state of

the activity.

Each activity has an order. The first activity state will have the attribute

firstActivityState set to true. The isSucceededBy relationship must follow from that state,

through all of the states until it reaches the goal.

 91	

Every activity state has a few default characteristics that must exist in the various

nodes or relationships for Rover3 to process. If these attributes or characteristics are

missing in the template store Rover3 will not process the activity. Each activity state has

a Boolean attribute ‘met’ that conveys if that state has been reached in the activity stream.

Additional mandatory grammatical items are outlined below in the grammar index.

7.4.2 Goals

Goals are a primitive that can optionally be the final node in an activity chain or a

generic goal for a situation. Goals represent a desired end state. The context stores tracks

all goals for a given situation. Achieving all goals warrants the situation to no longer be

active in the context store. When the goal is a terminal node in an activity chain, the act of

reaching such a state prior to visiting previous states terminates the activity as the desired

effect of the activity has been achieved. Every goal primitive also has the mandatory

Boolean attribute ‘met’ and a label which is the name of the goal. Additional mandatory

attributes include ‘time_goal_created’ and ‘time_goal_met’.

Activity states are reached when defined criteria are met. All state transition rules

are defined within the activity itself and must be implicit. The activity manager monitors

the situation graph to see if the explicit criteria has been met. Once all states have been

reached the goal of the activity is complete. A complete activity is kept in the activity store

until the situation or entity that triggered the activity is no longer in the context store. This

node is the reference to the activity and links to all activity states through the relationship

isAGoalOf relationship.

 92	

Goals that are not a part of an activity are simply monitored by the context store.

Such goals are defined as a part of the situation themselves. When creating situations

within the template store, one must ensure each situation has at least one goal to close,

either through a related activity or a stand-alone goal. All goals must either be an

ontological root of the goal or a reference to the root.

7.4.3 Grammar

activity

Mandatory label for every activity master node. This informs Rover3 that the

primitive is a master activity node. This can be considered the same as an ontologyroot

label for entities.

activityState

Mandatory label for every activity state. This informs Rover3 that the primitive is

an activity state.

Goal

Mandatory label for a goal primitive. Ontology roots must also have the

*OntologyRoot suffix in the label (see below example).

hasAGoalOf

 93	

Optional situation attribute that tracks a goal for a given situation. The named goal

must have an ontological root defined in the ontological store. The following example

details how one can link a goal to a situation (and create a stand-alone goal):

CREATE (g:CarAccidentOntologyroot:CarAccident:accident:situation

{location:’’, hasAGoalOf:’carAccidentClear’})

CREATE (g:carAccidentClearOntologyRoot:carAccidentClear:goal)

ifEntityExistsAs ‘attribute test’

Optional attribute for activity master node. This attribute implicitly defines the

criteria for instantiating the activity. The named entity must exist in the context store with

the attribute set to the user-defined-value for the instantiation of the activity to fire. The

template manager will check all activities for this rule each time the Rover3 system sends

out a heartbeat that the context of the system was updated.

The following example details how the activity getMedicalHelp is implicitly

triggered when the Person entity has a status that contains the pattern ‘injur’, allowing the

status to be ‘injured’ or ‘injury’. See section 6.1.2 for an explanation on what a valid

attribute test is.

CREATE (a:getMedicalHelpActivity:activity {ifEntityExistsAs: ‘status

CONTAINS injur’}), (b:callAmbulance:activityState {met: ‘false’}),

(c:ambulanceArrives:ActivityState {met: ‘false’}), (d:loadInjured:goal {met:

‘false’, time_goal_created: ‘’, time_goal_met: ‘’})

IfSituationExists ‘situation_name’

 94	

Optional attribute for activity master node. This attribute implicitly defines the

specific situation that must exist in the context store for the activity to be instantiated.

When named situation exists in the context store the trigger is engaged and the activity will

instantiate. The template manager will check all activities for this rule each time the Rover3

system sends out a heartbeat that the context of the system was updated.

The following example creates the 3 steps for an activity called

getMedicalHelpActivity and the activity is instantiated when the situation injuredPerson

exists in the context store:

CREATE (a:getMedicalHelpActivity:activity {ifSituationExists:

‘injuredPerson’}), (b:callAmbulance:activityState {met: ‘false’}),

(c:ambulanceArrives:ActivityState {met: ‘false’}), (d:loadInjured:goal {met:

‘false’, time_goal_created: ‘’, time_goal_met: ‘’})

linkNodeTo ‘newNode realtionshipName existingPrimitive direction’

Optional auto-instantiation for an activity-produced entity. Entities that are created

either through the instantiation of an activity or the entering of a specific state can be auto-

related to existing primitives in the context store. This verb links the newly created node

to a required node for the activity with the named relationship. The existing primitive must

already exist in the context store for this to fire. The direction variable is one of either

fromNew or toNew. The optional keywords triggeredSituation, triggeredRelationship,

and triggeredEntity allow an ontology author to link a new node to a node that triggered

the activity.

 95	

newActivity ‘Activity_Name’ [attribute test]

Optional explicit trigger to create activities for entity, relationship, or situation. The

user-defined activity name will be instantiated when the respective primitive is instantiated.

The named activity must exist in the template store or it will throw a run-time error.

The following example is an explicit definition of an activity that will be

instantiated through the definition of a Person of a particular type. This requires that the

getMedicalHelpActivity exist in the template store or the verb will not trigger any activity

in Rover3:

CREATE (n:CarAccidentOntologyroot:ontologyroot {newActivity:

‘getMedicalHelpActivity’})

newEntity ‘Entity-name’

Optional attribute for an activity state to create a new entity when the state is active.

This verb will create an entity of specific name provide it exists in the template store.

requiredEntity ‘true|false’

Mandatory Boolean attribute for each primitive that is required for the activity. If

this is true that entity must exist at the time of instantiation. If this is false the entity will

be created at the time of instantiation.

updateGoalWhen ‘primitiveLabel.attibute: user-defined-value’

 96	

Optional attribute for the last activity state. This primitive / attribute tuple must be

met in the context store for the goal to be met. When this happens the goal’s attribute met,

is set to true. The primitiveLabel:attribute variable must be a in valid Cypher node/

attribute syntax. The optional keywords triggeredSituation, triggeredRelationship, and

triggeredEntity allow an ontology author to link a new node to a node that triggered the

activity.

updateStateWhen ‘primitiveLabel.attibute: user-defined-value’

Mandatory attribute for every activity state. This primitive / attribute tuple must

be met in the context store for the individual state to be considered met. The

primitiveLabel:attribute variable must be a in valid Cypher node/attribute syntax. The

optional keywords triggeredSituation, triggeredRelationship, and triggeredEntity allow

an ontology author to link a new node to a node that triggered the activity.

The following example shows how a simple three-state activity of getMedicalHelp

is defined in the template store. Note that this example is implicit as the activity fires when

a situation exists of a certain type. The new Person entity FirstResponder is created and is

a re-use of the Person ontology. This FirstResponder is connected to the situation itself

and is created in the context store at the time the activity is instantiated:

CREATE (a:getMedicalHelpActivity:activity:ontologyRoot {ifSituationExists:

‘injuredPerson’, ifEntityExistsAs: ‘status CONTAINS injur’}),

(b:callAmbulance:activityState {met: ‘false’, firstActivityState: ‘true’}),

(c:ambulanceArrives:ActivityState {met: ‘false’}, updateStateWhen

‘Ambulance.status called’), (c:ambulanceArrives:ActivityState {met: ‘false’,

updateStateWhen: ‘Ambulance.location ‘onScene’}), (d:loadInjured:goal {met:

 97	

‘false’, time_goal_created: ‘’, time_goal_met: ‘’, updateGoalWhen

‘triggeredEntity.location inAmbulance’}), (e:FirstResponder:person:entity

{requiredEntity: ‘false’, linkNodeTo: ‘e providesMedicalSupportTo

triggeredSituation fromNew’, linktNodeTo: ‘e assists triggeredEntity’})

MATCH (f:getMedicalHelpActivity:activity {ifSituationExists: ‘injuredPerson’,

ifEntityExistsAs: ‘status CONTAINS injur’}), (e:FirstResponder:person:entity

{requiredEntity: ‘false’, linkNodeTo: ‘e providesMedicalSupportTo

triggeredSituation fromNew’, linktNodeTo: ‘e assists triggeredEntity’})

MERGE (e)-[:isAResponderWith]->(f)

MATCH (m:PersonOntologyroot:Person:person:entity {first_name:'', last_name:'',

id:'', ssn:''}), (e:FirstResponder:person:entity {requiredEntity: ‘false’, linkNodeTo:

‘e providesMedicalSupportTo triggeredSituation fromNew’, linktNodeTo: ‘e

assists triggeredEntity’})

MERGE (e)-[:isAnInstantiationOf]->(m)

MATCH (f:getMedicalHelpActivity:activity {ifSituationExists: ‘injuredPerson’,

ifEntityExistsAs: ‘status CONTAINS injur’}), (g:callAmbulance:activityState

{met: ‘false’})

MERGE (f)-[:isAnActivityStateOf]->(g)

MATCH (f:getMedicalHelpActivity:activity {ifSituationExists: ‘injuredPerson’,

ifEntityExistsAs: ‘status CONTAINS injur’}), (h:ambulanceArrives:ActivityState

{met: ‘false’})

MERGE (f)-[:isAnActivityStateOf]->(h)

MATCH (f:getMedicalHelpActivity:activity {ifSituationExists: ‘injuredPerson’,

ifEntityExistsAs: ‘status CONTAINS injur’}), (i:loadInjured:goal {met: ‘false’,

time_goal_created: ‘’, time_goal_met: ‘’})

MERGE (f)-[:isAnActivityStateOf]->(i)

 98	

MATCH (f:callAmbulance:activityState {met: ‘false’}),

(g:ambulanceArrives:ActivityState {met: ‘false’})

MERGE (f)-[:isSucceedededBy]->(g)

MATCH (f:ambulanceArrives:ActivityState {met: ‘false’}), (g:loadInjured:goal

{met: ‘false’, time_goal_created: ‘’, time_goal_met: ‘’})

MERGE (f)-[:isSucceededBy]->(g)

7.5 Dynamic Situations

Situations alone do not dictate what is relevant. The information in any setting can

change, resulting in an evolving situation, a situation to no longer be present, or become

an entirely new situation all together. Rover3 has two ways of modifying the situation

present in the context store. As ADIM grammar provides the ability to evolve relevant

information at runtime, we allow the information in the context store to inform Rover3

about how to modify the given situations. Additionally, the Rover3 REST API allows for

users or external systems to modify the situation (to be discussed in section 6.5 – API

reference manual). The setSituation ADIM verb can be applied to any primitive. Without

additional constraints, the existence of that verb instantiates the situation when the entity

itself is instantiated in the context store. Instantiating a situation allows the situation

manager to merge, refine, or broaden the current situation in the context store as a result,

but that is left up to the processing in the situation manager. An ontology author has the

option to dictate additional constraints on the attribute of the entity as well.

 99	

7.5.1 Grammar

setSituation ‘Situation_name [attribute test]’

Optional attribute for any entity in the template store. The situation name must be

a valid situation in the template store for the trigger to fire. Optional constraints allow for

the evaluation of an entity’s attribute. The situation manager will track the rule once the

owning primitive is instantiated. The rule will always be valid and possible rule as

situations can churn. If there is no attribute test, the act of instantiating the primitive into

the context or activity store will set the situation. See section 6.1.2 for an explanation on

what a valid attribute test is.

Note that there can be more than one situation active at any given time. The

situation manager will handle the merging and aggregation of situations. The ADIM rules

simply determine what relevant situations evolve over time and trigger Rover3 to

instantiate them.

The following example sets the medical emergency situation when the Person entity

has a status representing an ‘injured’ state. Note this setting is such that the instantiation

of the Person entity does not set this situation but rather the status is monitored and only

when the status reflects an inury does that situation become present:

CREATE (n:PersonOntologyroot:ontologyroot {setSituation:

medicalEmergencySituaiton ‘status CONTAINS injur’})

7.6 Web API

 100	

Creating ontologies is what allows Rover3 to work with models. Placing them in

the template store is not enough to instantiate a model. The Web interface is what allows

external systems or users to actually instantiate situations, manually extend or shrink

situation graphs (by adding or removing primitives), search the entire context store, enrich

the information that exists in the context store to date, or even remove and delete any and

all primitives that exist. The API is a RESTful interface and calls are easily crafted through

simple rules to modify or view any information in the context or activity store. It is the

Web API that allows the second class of users defined in section 6.1 to use the Rover3

system.

Additional read-only calls exist within Neo4J that allow UI components to browse

graphs. We leverage these calls and modified the popoto package to provide users

browsing mechanisms to view the ontologies and situation graphs that live in the template

store and context store respectively.

7.6.1 Retrieving context

As Rover3 is a context-aware system, we chose to refer to information and

relevance as context when naming the API calls. The first set of API calls relates to

obtaining context – or information that exists in the context store. While items also exist

in the activity store, what does exist in the activity store are the rules and triggers for the

activity manager. Activities and states are returned by browsing the context store. All ‘get’

functions essentially query the context store.

 101	

7.6.1.1 Commands for retrieving context

The getcontext command retrieves specified aspects of information for a primitive.

You can also list the labels or IDs of all primitives that are associated with a situation. All

data is returned via a JSON object. The getcontext command is used both to discover what

exists in the context store as well as to retrieve discrete values/components of the structure.

getContext/Situations/[lables | ids]

The GET call returns all situations that exist in the situation graph. The user must

specific labels or ids to be returned.

Example:

 http://localhost:8080/Rover3/getContext/Situations/ids

getContext/Situation/id/[entities | relationships | activities]

The GET call returns all entities and relationships that exist in the situation graph.

Optional delimiter of entities, relationships, or activities will list only the respective

primitive type.

getContext/Situation/ID/primitive/[lables | ids | all]

The GET all returns the items that exist in the situation graph of type primitive.

Valid options are [labels | ids]. The use of this call is to be able to iterate on the specific

IDs for future calls or identifying labels within the situation graph. The following primitive

types are supported:

 Entity

 102	

 Relationship

 Activity

The following example returns all ID’s for a situation:

 http://localhost:8080/Rover3/getContext/Situation/65/entity/ids

Returns:

[{“(id(m))”:65},{“(id(m))”:66},{“(id(m))”:67},{“(id(m))”:68},{“(id(m))”:

74},{“(id(m))”:75},{“(id(m))”:69},{“(id(m))”:71},{“(id(m))”:72}]

getContext/PrimitiveType/ID/values

The GET call returns the items and values as described. The following primitive

types are supported:

 Entity

 Situation

 Relationship

The following values are supported and one of each must be a part of the call:

 Properties

 Relationships (only for situation and entity)

The following example returns all of the attributes of the entity with an ID of 66:

 103	

 http://localhost:8080/Rover3/getContext/Entity/66/properties

Returns:

{“properties(n)”:{“last_name”:””,”id”:””,”model_id”:”66”,”first_name”:”

”,”ssn”:””}}

7.6.2 Creating context

The createContext API call allows users to create primitives in the context store.

All default relationships, related entities, and activities will be created when creating

situaitons. Creating a situation will create a new situation graph and all default (or those

considered relevant) relationships, entities, and activities for the situation in the ontological

store will auto-instantiate.

When creating primitives (other than situations) one must later reference the

situation graph the primitive is to be a member of. This can be done directly by linking the

entity to the situation itself or another entity that is already in the situation graph. The

updateContext command in the next section provides the tooling needed to associate the

newly created primitive with the current situation and completing the relevance. We

provide users the ability to create entities and relationships based on the system helps the

user tenet – without this function, users would only ever consume information Rover3

considered relevant. As Rover3 is meant to be an aid and not an authoritative source of

relevant context, we must provide this mechanism for users to manually evolve the context

store.

 104	

There is no need to link situations to existing situations as the situation manager

will merge/refine situations as warranted. The updateContext call in the next section does

allow Rover3 users to manually manage situations as warranted. The createContext call

does, however, have the ability through optional commands to allow one to create an entity

and relate it to a situation or entity that already exists in the context store.

There are no WEB API commands for creating activities. In order for activities to

exist they must be instantiated from the template store when the situation graph warrants

the activity to be relevant.

7.6.2.1 Commands for creating context

createContext/Situation/situation_name

This POST call creates a situation with the named situation_name as provided by

the user. The situation name does not have to exist in the template store, but without such

an entry in the template store the situation is just a primitive with the label provided by the

user. Entities, relationships, and other primitives can further be added to the situation

graph, but any situational rules will not apply until the situation is one that represents

something in the template store.

The following example creates a situation called carAccident:

 http://localhost:8080/Rover3/createContext/Event/CarAccident

The output of the call is the following text:

 105	

Created new situation with System id of 77
 Finished creating Context...

createContext/Entity/entity_name

This POST command creates the names entity as provided by the user defined

entity_name parameter. If the entity type exists in the template store all attributes of the

entity will be created. The entity does not have to exist in the template store. When a user

creates an entity that does not exist in the template store it will simply be a node with a

label of entity_name and not inherent any attribute or relevance rules (that linking to a

situation or entity via updateContext would later accomplish).

The following example creates the entity ‘Person’:

 http://localhost:8080/Rover3/createContext/Entity/Person

The output of the call is the following text:

 Created new entity with System id of 78
 Finished creating Context...

createContext/Entity/entity_name/LinksTo/primitive_ID/Via/relationship_name

This POST command creates the named entity entity_name and links it to the

primitive ID primitive_ID by creating the relationship relationship_name. The entity

 106	

and relationship need not exist in the template store, though if the entity and relationship

do exist in an ontology in the template store the context engine will expand any variable

realtionships and instantiate any activities or other primitives as deemed relevant.

The following example creates an entity called ‘Person’ and links it via the

relationship ‘providesMedicalAssistanceTo’ to an existing entity with an ID of 78:

http://localhost:8080/Rover3/createContext/Entity/Person/LinksTo/78/Via/

providesMedicalAssistanceTo

The output of the call is the following text:

 Created new entity with System id of 79
 Created new relationship with System id of 80
 Linked entity 79 -> entity 78 via relationship id 80
 Finished creating Context...

7.6.3 Updating context

Updating context is likely the most used of the web API commands. It is through

this command that information specific to the situation and collection of entities is actually

entered. The createContext command creates and links primitives within the context

storein an effort to deliver a relevant graph for the situation at hand. The updateContext

family of commands is how actual information that is observed in the real world (the

attributes) is entered for the situation. For example, after using createContext to create a

car accident, updateContext can set the location for the accident, the name of one of the

people in the accident, or update the health status or medical records for one of the injured.

 107	

The updateContext command family should be used as situations unfold and continue to

evolve and is the mechanism to keep relevant information in the situation graph.

As information is entered, the Rover3 system constantly monitors the part of the

context store and activity store for that situation graph. As information is entered or

updated into the situation graph via updateContext calls, Rover3 will constantly check to

see if the situation graph needs to expand or contract. The ADIM language described is

what facilitates this. Through proper ontology creation and use of the Web API calls,

automatic relevance recognition is accomplished through Rover3.

Unlike createContext there are multiple updateContext commands. As primitives

can have the same label we sometime need more specific ways to update one.

updateContextById allows a user to update a primitive by ID and is specific. A more

general approach is had as updateContextByLabel allows one to reference the primitive by

a set of labels.

7.6.3.1 Commands for updating context

updateContextById/nodeID/attribute/value

This PUT command updates a primitive that is identified by the nodeID. The

attribute and value are user defined and can be any valid text. Attributes do not need to

exist as default attributes in the template store and thus do not necessarily need to be

defined in the ontology itself.

The following example sets the ‘ssn’ attribute to ‘123456789’ for the primitive

whose ID is 17:

 108	

 http://localhost:8080/Rover3/updateContextByID/17/ssn/123456789

The output of the call is the following text:

The ssn attribute was updated to 123456789 for primitive ID 17

updateContextByLabel/primitive/label_list/attribute/value

This PUT command updates a primitive that is identified by a list of labels. All

labels must exist for the primitive. The list of labels must be unique, that is, there must be

no other primitive with that label combination in the information store. The label list is

unbounded in length and delimited by forward slashes as the URI is extended. The attribute

and value are user defined and can be any valid text. Attributes do not need to exist as

default attributes in the template store and thus do not necessarily need to be defined in the

ontology itself.

The following example sets the ‘ssn’ attribute to ‘123456789’ for the primitive

whose label set is Person:Nick:

http://localhost:8080/Rover3/updateContextByLabel/Person/Nick/ssn/123

456789

The output of the call is the following text:

The ssn attribute was updated to 123456789 for
primitive whose label set was Person:Nick

 109	

The following examples sets the location_long and location_lat attributes for the

primitive Situation:CarAccident:TwoCarAccident

http://localhost:8080/Rover3/updateContextByLabel/Situation/CarAcciden

t/TwoCarAccident/location_lon/38.78827634

The output of the call is the following text:

The location_lon attribute was updated to 38.78827634 for primitive
whose label set is Situation/CarAccident/TwoCarAccident

http://localhost:8080/Rover3/updateContextByLabel/Situation/CarAcciden

t/TwoCarAccident/location_lat/-140.345234

The output of the call is the following text:

The location_lat attribute was updated to -140.345234 for primitive
whose label set is Situation/CarAccident/TwoCarAccident

7.7 Browsing Context and Ontologies

Extending popoto.js [55] we provide a front-end GUI that allows users to freely

browse what ontologies exist in the template store as well as what the current situations

exist in the context store. This visual guide is used to both witness how the situation graph

expands automatically as Rover3 defines what parts of the ontology in the template store

is considered relevant for the given situation. It also provides a mechanism to browse the

 110	

ontologies in the template store instead of simply reading over the lengthy list of Cypher

commands that otherwise make up an ontology.

7.7.1 Browsing the Situation Graph and the Context Store

The following URL pops up a popoto :

http://localhost:8080/Rover3/currentContext.html

The resulting page resembles this:

We can use the built-in controls of popoto to expand the situation (referenced by

ID 22) to see the following:

 111	

Expanding all nodes, we see what Rover3 considers to be relevant for this situation

given the current information and situation that is present in the context store:

 112	

7.7.2 Browsing Ontologies and the Template Store

 The ontology browser has similar controls as the context browser. By

default, the page is empty and a pull-down allows the user to select which ontology they

want to explore:

After selecting an ontology, you will see the blue node that is the seed of the

ontology. In this view, we have expanded the model out one layer:

 113	

If we expand all the way out we can see all possible relationships and entities that

might exist when starting from one situation:

Note that this entire graph is not what would be instantiated in the context store.

Rather Rover3 would provide a relevant graph by following the rules of the ADIM

grammar that exists in the ontology itself.

 114	

8 Modeling and using Rover3 to handle a car accident – A Case Study

In this chapter, we walk through an end-to-end use case where we use Rover3 and

ADIM to assist with a car accident. We start by creating and re-using existing ontologies.

Using ADIM we will create some of the potential models that could arise during a car

accident. Using the ADIM grammar we will encode relevance in the model to ensure the

only thing in the context store is a model framework that would be considered relevant.

We will explore existing ontologies in the template store in an effort to minimize redundant

efforts and reuse existing models. We then will craft the necessary cypher commands

needed to complete the modeling for a car accident, expanding any existing models and

ensuring relationships and entities that might come into play are created.

Once we feel the template store is sufficient in its ability to emulate the situation,

we will use the Web API to instantiate the situation. At this point the context engine will

receive a situation graph from the template manager and build a skeleton graph for the

situation. There will be no real information other than the fact that a car accident has

occurred. A goal will be created and tracked via the activity manager. The situation graph

will be a model that is relevant to the situation and a sub graph of the larger ontology we

have in the template store. At this point we will be able to view the situation in the web

browser as well as the Neo4J graph browser as it has additional abilities to disclose the

ADIM rules in the views.

As we use the Web API to add information to the context store, node and

relationship attributes in the situation graph will be updated. As these attributes match the

rules and triggers defined in ontology, the information that is considered relevant will

 115	

change if warranted. This will be observed by the situation graph expanding according to

the ADIM rules that exist in the ontology that has been instantiated. Activities will also be

created and progress as needed, with possible goals being created or met.

8.1 Building the Ontology

Before we start building the ontology itself we will want to see what models already

exist that we could use. We have 2 different ways to browse the ontologies that are stored

in the Template Store: we can use the Front-End Gui as well as the Neo4j Browser [56].

The Front-End is best for general browsing and exploration. Once the specific ID’s are

known, the Neo4J can be used to browse and expand the ontology as needed. An area of

continued research and system design would be to expand the Front-End GUI to allow for

complete ontology exploration, expansion and modification.

Exploring the GUI in our sample template store, we see an existing ontology for a

person:

8.1.1 1 – Ontology Browser shows we have one ontology in the template store; that of the person.

Selecting the person ontology and fully expanding it we see it contains a few

relationships to other items but it is rather limited for our situation of a car accident:

 116	

8.1.2 1 – Selecting the PersonOntology model and expanding the model we see there are three

relationships: the person can have government records, he can work as a profession, and that profession can be

employed at a company. We also see the nodeID is 101.

Here we see a person is modeled to workAs a profession and be employedAt a

company. We also see this generic person can have accompanying government records.

Using the individual nodeIDs we can use the getContext web API call to see what the exact

properties of each node are. For example, to see what attributes are listed for the person

entity in the context store we can make the following call:

8.1.3 1 – Results of the getContext call to the id in the template store.

We can also query the context store directly via the Neo4J web browser and see

what properties exist with each node and relationship. Using the following query in the

browser:

MATCH p = (n:PersonOntologyroot)-[rs1*]->()

 117	

WHERE ALL(rel in rs1 WHERE NOT EXISTS(rel.situation_exists) AND

type(rel) <> ‘isAnInstantiationOf’)

RETURN p

We can explore the situation graph in the context store that contains the ontology

for that entity. Using the isAnInstantiationOf key word we ensure we do not include

references to the entity in other ontologies by omitting those relationships. Ensuring the

situation_exists attribute does not exist in any relationships also filters existing dynamic

relationships that exist in the ontology. Our resulting query shows us what is instantiated

by default for any person. Clicking on each primitive we can see what attributes exist.

Note that when we omit the filter for situation_exists we have an additional relationship

present between the person entity and the profession entity. This relationship is a

conditional relationship and will not automatically be instantiated when the person entity

is moved to the context store. The resulting images showing the browsing of the attributes

and graphs follow.

 118	

8.1.4 1 – Using the Neo4J browser and pruning situation_exists and isInstantiationOf relationships, we see what the

default instaitaion of the person entity entails.

 119	

8.1.5 1 – Using the Neo4J browser and only pruning isAnInstationof relationships we see what the entire

person ontology entails. Notice the worksAs relationship is a conditional relationship and will only be instantited if

the JobInterview situation exi

 120	

8.1.6 1 – Using the Neo4J browser and viewing the entire person ontology we can explore the attributes of

nodes that only are instaitaed if the conditional relationships are created.

As we are creating an ontology for a car accident we will want to add to the template

store the necessary entities and relationships required to model the situation. We will keep

this simple for the sake of the example as we model the following:

• Create the car accident ontology itself (the subgraph in the context store that

must be instantiated when a car accident is instantiated).

• Define the goal and actions to take to clear the accident.

• Extend the existing person ontology in a way that can be used for the car

accidents or any other situation that might involve a person getting hurt.

 121	

• Create a vehicle model (as we do not currently have one) to include actions

to perform if the vehicle is stolen as well as relationships to show ownership

and who is driving.

• Add all necessary contributors to the situation, referencing the person

ontology in order to re-use the existing model.

Let’s start with creating the car accident itself. We will create the basic accident

ontology root, a model for a two-car accident and an activity to track the goal of clearing

the accident. The accident ontology root and the two-car accident situation is pretty basic:

CREATE (g:CarAccidentOntologyroot:CarAccident:accident:situation

{location:’’, newActivity:’clearCarAccident’})

And

CREATE (c:TwoCarAccident:CarAccident:Accident:situation)

MATCH (t:TwoCarAccident),

(c:CarAccidentOntologyroot:CarAccident:accident:situation)

MERGE (t)-[:isAnInstanitationOf]->(c)

Notice that the CarAccident situation automatically instantiates a clearCarAccident

activity, so we should model that in the template store as well. That instantiation is not

called out in the two-car accident as it is inherited by it being an instantiation of the general

car accident ontology. The activity will be 2 simple steps and a goal. The steps will be

 122	

annotating the accident and then clearing the accident. The goal of the scene being clear

is what we will be after. The Cypher commands required to do this are:

CREATE (a:clearCarAccidentOntologyroot:clearCarAccident:activity),

(b:annotateScene:activityState {met: ‘false’, firstActivityState: ‘true’}),

(c:clearScene:activityState {met: ‘false’}), (d:sceneClear:goal {met: ‘false’,

time_goal_created: ‘’, time_goal_met: ‘’, updateGoalWhen:

‘triggeredSituation.itemsOnScene 0’})

MATCH (f:clearCarAccidentOntologyroot:clearCarAccident:activity),

(g:annotateScene:activityState {met: ‘false’})

MERGE (g)-[:isAnActivityStateOf]->(f)

MATCH (f:clearCarAccidentOntologyroot:clearCarAccident:activity),

(c:clearScene:activityState {met: ‘false’})

MERGE ©-[:isAnActivityStateOf]->(f)

MATCH (f:clearCarAccidentOntologyroot:clearCarAccident:activity),

(g:sceneClear:goal {met: ‘false’})

MERGE (g)-[:isAGoalOf]->(f)

MATCH (f:annotateScene:activityState {met: ‘false’}), (g:clearScene:activityState

{met: ‘false’})

MERGE (f)-[:isSucceededBy]->(g)

MATCH (f:clearScene:activityState {met: ‘false’}), (g:sceneClear:goal {met:

‘false’})

MERGE (f)-[:isSucceededBy]->(g)

 123	

CREATE (a:clearCarAccident:activity), (b:annotateScene:activityState {met:

‘false’}), (c:clearScene:ActivityState {met: ‘false’}), (d:sceneClear:goal {met:

‘false’, time_goal_created: ‘’, time_goal_met: ‘’, updateGoalWhen

‘triggeredSituation.itemsOnScene 0’})

We now want to extend the existing person ontology for this situation. We will add

the notion of medical records through multiple entities and add the concept of a person

having them. Creating the records looks like this:

CREATE (a:HealthRecords:healthrecords:entity)-

[:containsBloodPressureRecords {situation_exists: ‘accident’}]->

(b:BloodPressureRecords:bloodpressurerecords:entity)

And linking them to the general person ontology can be accomplished with the

following stanza:

Match (d:Person:person:entity),(e:HealthRecords:healthrecords:entity)

CREATE (d)-[:containsHealthRecords {situation_exists: ‘accident’}] ->(e)

Lastly, as this is a 2-car accident we will assume the default model has at least two

drivers. We then ensure our model has 2 people in it and that each person we use is a copy

of the PersonOntologyRoot by using the isAnInstantiationOf:

CREATE (y:Person1:person:entity),(z:Person2:person:entity)

 124	

MATCH (n:Person1),(m:PersonOntologyroot:Person:person:entity)

MERGE (n)-[:isAnInstantiationOf]->(m)

return m

MATCH (n:Person2),(m:PersonOntologyroot:Person:person:entity)

MERGE (n)-[:isAnInstantiationOf]->(m)

return m

Creating the vehicles is similar to the process required to create and use the person

ontology. We will first create the ontology root for a vehicle. We then create a reference

to a vehicle for each person. Finally, we link each vehicle to the two people that are

involved in the car accident. Starting with the vehicle ontology:

CREATE (m:CarOntologyroot:Car:car:entity {vinNumber: ‘’, licensePlate: ‘’,

model: ‘’, make: ‘’, year: ‘’, preCacheTag: ‘Action: GET

http://localhost:8080/Rover3/tagQueryDatabase m.licensePlate m.isStolen’})

And then creating and linking to the carOntology for the individual cars as the car

accident ontology as this is for a 2-car accident:

CREATE (s:Car1:car:entity),(t:Car2:car:entity)

MATCH (n:Car1),(m:CarOntologyroot:Car:car:entity)

MERGE (n)-[:isAnInstantiationOf]->(m)

MATCH (n:Car2),(m:CarOntologyroot:Car:car:entity)

 125	

MERGE (n)-[:isAnInstantiationOf]->(m)

Linking the cars to the individual drivers involved in the accident:

Match (m:Person1:person:entity),(n:Car1:car:entity)

MERGE (m)-[:wasDriving]-(n)

Match (m:Person2:person:entity),(n:Car2:car:entity)

MERGE (m)-[:wasDriving]-(n)

And finally associating these cars with the accident by saying they are involved in

the two-car accident:

MATCH (n:Car1), (c:TwoCarAccident:CarAccident:Accident:situation)

MERGE (n)-[:isInvolvedIn]->(c)

MATCH (n:Car2), (c:TwoCarAccident:CarAccident:Accident:situation)

MERGE (n)-[:isInvolvedIn]->(c)

We want to also include the person who is acting as the first responder, an activity

to help those injured and an arrest activity. All of these primitives might be required if one

of the cars in the accident is listed as stolen or someone is found to be injured. We add a

third person to include a support person in the relevant information set for this situation.

This person will, by default, be instantiated when the car accident situation occurs. The

activities are not auto-instantiated but a part of the model in the template store. The first

stanza makes a first responder an added entity when the accident is instantiated:

 126	

CREATE (y:Person3:person:entity)

MATCH (y:Person3),(p:PersonOntologyroot:Person:person:entity)

MERGE (y)-[:isAnInstantiationOf]->(m)

MATCH (y:Person3),(m:CarAccident:accident:situation)

MERGE (y)-[:isAFirstResponderTo]->(m)

 We then create an activity to make an arrest if one of the vehicles in the accident

is stolen:

CREATE

(a:arrestPersonActivityOntologyroot:arrestPersonActivity:activity{ifEntityExists

As: ‘isStolen IS Yes’}), (b:arrestPerson:activityState {met: ‘false’, person: ‘’}),

(c:personArrested:goal {met: ‘false’, time_goal_created: ‘’, time_goal_met: ‘’})

MATCH (a:arrestPersonActivityOntologyroot:arrestPersonActivity:activity),

(b:arrestPerson:activityState {met: ‘false’, person: ‘’) MERGE (b)-

[:isAnActivityStateOf]->(a)

MATCH (a:arrestPersonActivityOntologyroot:arrestPersonActivity:activity),

(c:personArrested:goal {met: ‘false’, time_goal_created: ‘’, time_goal_met: ‘’})

MERGE (c)-[:isAnActivityStateOf]->(a)

MATCH (b:arrestPerson:activityState {met: ‘false’, person: ‘’),

(c:personArrested:goal {met: ‘false’, time_goal_created: ‘’, time_goal_met: ‘’})

MERGE (c)-[:isSucceededBy]->(b)

 127	

Finally, we add an activity to get medical support if someone is injured. Note that

this activity would also be instantiated if a person in the context store was injured but there

was no carAccident situation present in the context store:

CREATE (a:getMedicalHelpActivity:activity:ontologyRoot {ifSituationExists:

‘injuredPerson’, ifEntityExistsAs: ‘status CONTAINS injur’}),

(b:callAmbulance:activityState {met: ‘false’, updateStateWhen ‘Ambulance.status

called’}), (c:ambulanceArrives:ActivityState {met: ‘false’, updateStateWhen:

‘Ambulance.location onScene’}), (d:loadInjured:goal {met: ‘false’,

time_goal_created: ‘’, time_goal_met: ‘’, updateGoalWhen:

‘triggeredEntity.location inAmbulance’}), (e:FirstResponder:person:entity

{requiredEntity: ‘false’, linkNodeTo: ‘e providesMedicalSupportTo

triggeredSituation fromNew’, linkedNodeTo: ‘e assists triggeredEntity’})

MATCH (f:getMedicalHelpActivity:activity {ifSituationExists: ‘injuredPerson’,

ifEntityExistsAs: ‘status CONTAINS injur’}), (e:FirstResponder:person:entity)

MERGE (e)-[:isAResponderWith]->(f)

MATCH (m:PersonOntologyroot:Person:person:entity {first_name:'', last_name:'',

id:'', ssn:''}), (e:FirstResponder:person:entity)

MERGE (e)-[:isAnInstantiationOf]->(m)

MATCH (f:getMedicalHelpActivity:activity {ifSituationExists: ‘injuredPerson’,

ifEntityExistsAs: ‘status CONTAINS injur’}), (g:callAmbulance:activityState

{met: ‘false’})

MERGE (f)-[:isAnActivityStateOf]->(g)

MATCH (f:getMedicalHelpActivity:activity {ifSituationExists: ‘injuredPerson’,

ifEntityExistsAs: ‘status CONTAINS injur’}), (h:ambulanceArrives:ActivityState

{met: ‘false’})

 128	

MERGE (f)-[:isAnActivityStateOf]->(h)

MATCH (f:getMedicalHelpActivity:activity {ifSituationExists: ‘injuredPerson’,

ifEntityExistsAs: ‘status CONTAINS injur’}), (i:loadInjured:goal {met: ‘false’,

time_goal_created: ‘’, time_goal_met: ‘’})

MERGE (f)-[:isAnActivityStateOf]->(i)

MATCH (g:callAmbulance:activityState {met: ‘false’}),

(h:ambulanceArrives:ActivityState {met: ‘false’}) MERGE (h)-[:isSucceededBy]-

>(g)

MATCH (h:ambulanceArrives:ActivityState {met: ‘false’}), (i:loadInjured:goal

{met: ‘false’, time_goal_created: ‘’, time_goal_met: ‘’}) MERGE (i)-

[:isSucceededBy]->(h)

8.2 Consuming the Ontology

Now that we have created all of the necessary primitives in the template store we

are ready to consume the ontology for real-world examples. Once we have the ontology

built we no longer deal in the world of Cypher and all interactions are handled through the

web service through REST API calls. Using the REST URI commands outlined in section

6.5 we can instantiate models as situations occur and need to be represented, populate them

with additional information as external entities observe them, track the progress of

activities, and query any component of the context store. As we do that Rover3 will manage

the relevance at runtime and work to ensure a relevant model is always present in the

context store.

 129	

We begin by simply creating a situation. Continuing with the example above we

will start by creating a two-car accident. The following URI will create a two-car accident

in the context store:

http://localhost:8080/Rover3/createContext/Situation/twoCarAccident.

The output is:

Created new Situation with System id of 145

The Context Store now has a situation with an id of 145. Consumers can use this

ID for updating, referencing, exploring, and linking to other objects in the Context Store

as needed. Using the Web API, we can see all entities associated with the context. For

example, we can pull the labels and ids for the entities in the situation with the following

call:

 http://localhost:8080/Rover3/getContext/Situation/65/entity/all

And the output for that will be:

[{"Person:person1":65},{"Person:person2":66},{"Car:car1":67},{"Car

:car2":68},{"HealthCareRecords:healthcarerecaords1":74},{"HealthCa

reRecords:healthcarerecaords1":75},{"BloodPresureRecords:bloodPres

sureRecord1":69},{" BloodPresureRecords:bloodPressureRecord2":71}]

Using any of the ids that we get from the above output, we can further explore an

entity. For example:

http://localhost:8080/Rover3/getContext/Entity/66/properties

The output will be:

 130	

{"properties(n)":{"last_name":"","id":"","model_id":"66"

,"first_name":"","ssn":""}}

We can also visually browse the context store. Prior to this the context store was

empty. Going to the context browser and expanding on the tool we see the following in

the context browser:

8.2.1 – The two-car accident situation in the context store after being instantiated through a createContext

Web API call..

Now that the model exists in the context store we are ready to start placing discrete

information about the entities and relations for the given situation into the context store.

Using the ID and the various API calls, we can update the ssn, first, and last names

accordingly:

http://localhost:8080/Rover3/updateContextByID/65/ssn/123456789

 and the output is:

 131	

The ssn attribute was updated to 123456789 for primitive ID

65

Finished updating context...

http://localhost:8080/Rover3/updateContextByID/65/first_name/Nick

and the output is:

The first_name attribute was updated to Nick for primitive ID

65

Finished updating context...

http://localhost:8080/Rover3/updateContextByID/65/last_name/Gramsky

and the output is:

The last_name attribute was updated to Gramsky for primitive

ID 65

Finished updating context…

Querying that entity again we see the attributes are updated:

 http://localhost:8080/Rover3/getContext/Entity/66/properties

and the output is:

{"properties(n)":{"last_name":"Gramsky,"model_id":"66"

,"first_name":"Nick","ssn":"123456789"}}

The instantiated model for the 2-car accident might not be enough to properly

represent the actual situation at hand. Let us suppose the first car has a passenger and that

passenger is injured. We can add the person and the update their status with the following

WEB API calls:

 132	

http://localhost:8080/Rover3/createContext/Entity/Person/LinksTo/67/Via/

wasAPassengerIn

and the output is:

Created new entity with System id of 78 Created new

relationship wasAPassengerIn with System id of 80 Linked

entity 79 -> entity 78 via relationship id 80.

Finished creating Context...

http://localhost:8080/Rover3/updateContextByID/78/status/injured

and the output is:

The status attribute was updated to injured for primitive ID

78

New Activity getMedicalHelp with ID 81 created and initiated

for ID 78

New Goal loadInjured with ID 82 created

Finished updating context...

Notice we created the 3rd person (the passenger of the first car) and linked it to the

situation merely by creating a new relationship wasAPassengerIn. That relationship does

not exist in the ontological store but is added to the context store. As the Rover3 framework

does not require the ontological store to be the absolute authority on how entities can relate,

external users can create a primitive with any label to properly reflect their surroundings.

Despite the fact that a passenger did not exist as an option in the template store, when we

set the status to injured an activity and a goal are created. The relevance for the situation

has evolved and Rover3 automatically does that update. We now have 2 goals for the given

situation and an activity is kicked off to get the injured person to a hospital.

 133	

Through template rules the act of updating context can instruct Rover3 to pre-cache

additional information and kick off activities and/or expand goals. Police officers using

this system for this situation would want to enter the license plate for the cars involved. In

this case study, we enter a license plate, the status about it being stolen is pre-cached using

the rules entered in the ontology, and an activity is kicked off to arrest the driver.

Interfacing with the API and viewing the results looks like so:

http://localhost:8080/Rover3/updateContextByID/68/licensePlate/ABC123

and the output is:

The licensePlate attribute was updated to injured for

primitive ID 68

Activity Manager is pre-caching the isStolen attribute for ID

68

The isStolen attribute is set to true

New Activity arrestPersonActivity with ID 88 created and

initiated for ID 78

New Goal personArrested with ID 89 created

Finished updating context...

We now have a new activity and goal simply by adding a value to an attribute for

one of the cars in the instantiated model. Recall from section 7.1 when we built the activity

arrestPerson activity we created a rule that kicked off that activity is any entity was labeled

stolen. The pre-caching is what set the entity of the car to stolen and the constant relevance

management of Rover3 is what allowed the new goals and activities.

While we have only added one discrete entity in this sub chapter (the passenger of

car1), many other primitives were added through activities or supporting entities. Viewing

all of the above changes in Neo4J’s viewer we see the context store has expanded a bit.

 134	

8.2.1 – Updated Context Store after adding a passenger and enriching context of situation, resulting in

added activities and entities.

We see a similar update through the web API:

http://localhost:8080/Rover3/getContext/Situation/145/entity/all

And the output for that will be:

[{"Person:person1":65},{"Person:person2":66},{"Car:car1":67},{"Car

:car2":68},{"HealthCareRecords:healthcarerecaords1":74},{"HealthCa

reRecords:healthcarerecaords1":75},{"BloodPresureRecords:bloodPres

sureRecord1":69},{"

BloodPresureRecords:bloodPressureRecord2":71},{“Person:person3”:78

},{“Person:firstResponder”:86}]

8.3 Achieving Goals with the Ontology

The work in section 8.2 instantiated and enriched the two-car accident situation.

After gathering the initial information, the situation evolves from a single goal and single

activity to a total of 3 goals and 3 activities. Consumers of the relevant information can

 135	

use that guidance and information in the context store to help achieve those goals. Systems

or users that directly interface with the Rover3 system can view the goals and activities

through the web s API. Our current list of activities and activity steps can be seen

through the following call:

http://localhost:8080/Rover3/getContext/Situation/activityList

And the output will be:

[{"arrestPersonActivity":88, met:false},{“getMedicalHelp”:81,

met:false}, “clearAccident”:85, met:false}]

http://localhost:8080/Rover3/getContext/Situation/goals

And the output will be:

[{"accidentClear”:40, met:false},{personArrested:89,

met:false},{“loadInjured”:82, met:false}]

http://localhost:8080/Rover3/getContext/Activity/81/states

And the output will be:

[{state1:"callAmbulance”, met:false, id:201},

{state2:”ambulanceArrives”, met:false, id:202},

{state3:”loadInjured”, met:false, id:203}, {goal:”

getPersonMedicalHelp”, met:false, id:204}]

Knowing the goals and activities allows users to take the recommended actions to

remedy the situation. With the 3 goals we have defined, we have varying levels of

activities. The activities can either initiate actions for Rover3 to make or for consumers to

enact. For example, Rover3 can take actions to call an ambulance through a web service

call if a particular context were reached. This would be similar to the action we encoded

in the car model where we pre-cached the isStolen attribute when the licensePlate attribute

is populated in the context store.

 136	

Looking at what it takes to accomplish the goal personArrested, we look at the

arrestPerson activity:

http://localhost:8080/Rover3/getContext/Activity/88/states

And the output will be:

[{state1:"arrestPerson”, met:false, id:301},

{goal:”personArrested”, met:false, id:302}]

We see we have an activity that has a single activity state and then a single goal.

We can expect each state through the getContext call:

http://localhost:8080/Rover3/getContext/Activity/state/301

And the output will be:

[arrestPersonActivityState {state:1, met:false, person:’’}]

http://localhost:8080/Rover3/getContext/Activity/state/302

And the output will be:

[personArrested {state:goal, met:false, time_goal_created: ’12:49

01/18/2018’, time_goal_met: ‘’}]

Using the updateContext command we can set the states of each activity as they are

accomplished. When all activity states are completed the goal for the activity also

completes. Closing out the activity to arrest the person, we can simply set the met flag to

true for the first state:

http://localhost:8080/Rover3/updateContextByID/301/met/true

 137	

And the output will be:

The met attribute was updated to true for primitive ID 301

The arrestPerson activity state has been set to met.

The goal arrest Person has been met and the activity arrestPerson

has completed.

Finished updating context...

We do not have to discretely accomplish each state of an activity. While the activity

list is there to guide how to bets accomplish the goal, there might be external ambulance

happened to be onsite already, one could simply add the ambulance to the situation. Using

the updateContext API call we can link the ambulance to the situation and accomplish most

of the getMedicalHelp activity with the following call:

http://localhost:8080/Rover3/createContext/Entity/Ambulance/LinksTo/Sit

uation/145/AssistsWith

And the output will be:

Created new entity with System id of 111 Created new relationship

AssistsWith with System id of 112 Linked entity 111 -> situation 145

via relationship id 112.

Finished creating Context...

http://localhost:8080/Rover3/updateContextByID/111/location/onScene

And the output will be:

The location attribute was updated to onScene for primitive ID 111

The callAmbulance and ambulanceArrives activity states have been set

to met.

Finished updating context...

 138	

 Looking at the activity states for the getMedicalHelp activity we now see the first

two states have been met and all that remains it to load the injured. Using updateContext

to set the goal to true, we can then follow-up and validate that the goals are met for the

situation:

http://localhost:8080/Rover3/getContext/Activity/81/states

And the output will be:

[{state1:"callAmbulance”, met:true, id:201},

{state2:”ambulanceArrives”, met:true, id:202},

{state3:”loadInjured”, met:false, id:203}, {goal:”personHelped”,

met:false, id:204}]

http://localhost:8080/Rover3/updateContextByID/203/met/true

And the output will be:

The met attribute was updated to true for primitive ID 203

The goal getPersonMedicalHelp has been met and the activity

getMedicalHelp has completed.

Finished updating context...

http://localhost:8080/Rover3/getContext/Activity/81/states

And the output will be:

[{state1:"callAmbulance”, met:true, id:201},

{state2:”ambulanceArrives”, met:true, id:202},

{state3:”loadInjured”, met:true, id:203}, {goal:”

getPersonMedicalHelp”, met:true, id:204}]

Following the same convention with the activity created with the situation itself,

we can eventually bring the situation to a close. We omit that last bit of activity as it is

 139	

merely a repeat of the last two activities. We can continue to add information to the

situation. The situation is no longer active (the active flag is no longer set and the situation

handler archives the situation) but this is kept in the context store as it represents a

collection of discrete primitives that existed in the real world at one time.

 140	

9 Extensibility Study

 So far, we have seen ADIM and the Rover3 system utilized through an

emergency response scenario. Let us now explore the effort to add another domain or

scenario to our ontological store. In doing so, we will compare the effort to do the same

exercise for the existing Rover2 system.

 Using the ontological models in chapter 8 as the basis for expansion, let us

loosely explore what would be required. We will briefly discuss what is required for each

step. For each evaluation, we will consider expanding or adding onto existing models as

well as creating new primitives. Any situation needs new situation primitives added as

situations are what is needed to derive context. We will also look at new activities, entities,

and triggers. We will omit goals (as they are necessary with situations and activities and

must also be created) and relationships as they do not impact this study. As we explore the

efforts to create a new domain in the proceeding sections, we will consider the supporting

primitives for adding the situation ‘interview’.

9.1 Extending Existing Models in Rover3

Re-using existing models is relatively easily as one can simply append to the

existing ontological store as needed. The process is the same one would adopt when

initially creating primitives, one simply writes Cypher statements to load into the

ontological store. An example here would be adding professional certifications to the

Person entity for an interview situation. This can be seen as:

 141	

CREATE (a:ProfessionalRecords:professionrecords:entity)-

[:containsCertifications] -> (b:Certifications:certifications:entity)

MATCH (d:Person:person:entity),(e:ProfessionalRecords:entity)

CREATE (d)-[:contains {situation_exists: ‘interview’}]->(e)

When adding a new situation, we simply create new ones. As all this requires are

new Cypher entries, this is rather straight forward. An example would be:

CREATE (g:InterviewOntologyroot:Interview:accident:situation {location:'',

newActivity:'conductInterview'})

New activities or triggers require the same effort as we can do so through new

Cypher commands. The same holds true for modifying activities or triggers. When creating

new situations or entities, we can modify existing activities based on the new primitives.

An example of modifying an existing activity upon creating a new situation would be:

MATCH (a:arrestPersonActivityOntologyroot:arrestPersonActivity:activity)

SET a.ifSituationExists = ‘assultedInterviewer’

Similarly, instantiating new entities at runtime or having new situation instantiate

existing or new entities is as simple as writing or modifying the ontological store through

Cypher commands; we add triggers the same way we did in the previous chapter.

 142	

9.2 Extending Existing Models in Rover2

Expanding the ontological store in Rover2 [14] can require a little bit more effort.

If we are simply adding new primitives to the ontological store, the effort is the same as if

one were creating new primitives. Rover2 uses the OWL ontological framework, so we

simply draft new primitives in XML using the OWL language. Figure 9.2.1 shows an

example entity in Rover2. Adding to this model (either creating new primitives or adding

attributes to the existing one) is as simple as drafting and modeling the primitive in question

or expanding the OWL object as needed.

Figure 9.2.1 – Sample primitive in OWL notation from Rover2

New situations, however, require more than just creating a new model. Rover2,

much like Rover3, uses situations as the basis for defining context. Filters are created for

 143	

given situations or applications (application can have assumed situations or a subset of

situations that are inferred). Figure 9.2.2 is an example of such a filter. These filters,

however, are rather static in nature and context is static for any given situation. That is,

every time the same situation is instantiated, the same contextual model is delivered. If

additional information is learned and the situation evolves, end users must self-manage the

relevant context. Any automatic expansion or of the instantiated context is only

accomplished through additional, external software. In order to do this at runtime, the

external software must monitor the information store within the Rover2 system and take

necessary blocking actions on each update.

 144	

Figure 9.2.2 – Sample context filter used in Rover2

New activities or triggers are where the effort to manage context starts to increase

drastically. Rather than simply append to existing ontological store and create new filters,

users of the system are forced to write external software to manage the efforts. Rover2 does

not have an activity manager that progresses through the various states of a given activity.

Though activities had goals, there is no way to encode the various steps and systematically

track progress to the goal without external software. Instantiation too was only

 145	

accomplished through external software, meaning we could not trigger the existence of an

activity at runtime based on the ontological model itself. The result is multiple pieces of

software have to be written for each activity after we create the ontological model for the

activity itself.

Instantiating new entities carries a similar tax and scaling issues. Though we were

able to extend the ontological store quite easily as outlined in the beginning of this section

(simply creating new OWL objects or extending existing one), instantiating them requires

one, if not two, additional steps. Each time an entity is appended, all filters that contain that

entity must be updated. If a new entity is created, all filters need to be evaluated if the entity

is relevant to the situation or application. As the Rover2 application was centered around

context and not auto-instantiation, users are required to write new software to instantiate

new entities.

9.3 Comparison of the Two Systems

 Evaluating the two systems on a case by case basis, we see the effort in each

scenario is more favorable for Rover3 than it is for Rover2. Figure 9.3.1 summarizes the

different scenarios. In summary, Rover3 allows for the addition of new domains and

collections of primitives without external software. Ontology authors just need to model

their domain, defining the structure of the information that represents the entities of that

space as well as the rules for context manipulation at runtime. Rover2, however, requires

external software to be written or modified in most scenarios in order to break free from

rigid and very discrete context as situations evolve.

 146	

Figure 9.3.1 – Table summarizing the impacts of adding new primitives to the ontological store in Rover2

and Rover3

 147	

10 Contribution and Future Work

We have explored new ways to manage and deliver context to end users. Explaining

what a context aware system is and the principals of how one should be built, we explored

how existing systems and approaches had more to offer. Seeking to deliver relevant

context, we defined the basic building blocks necessary when delivering such information.

Leveraging our proposed design principles, we presented how a system should deliver and

evolve context at run time. Such systems continually present and update consumers with

the information deemed relevant for any given situation. ADIM was presented as a

methodology to encode relevance in ontological models. This modeling, when used with a

proper context management system can manage run time evolution of context. We built

Rover3 as an extensible framework with this purpose in mind. We showcased how this

could work with our case study of an emergency response situation. We closed with a

comparison of Rover3 and Rover2 and showed how consumers of Rover3 need not write

any additional software to instantiate and manage relevant context.

10.1 Contribution

In this dissertation, our contributions have been the following:

• Defining what it means to model any situation. By exploring the various

components needed for context modelling, we provide all of the necessary

components to do so in a way that best represents reality.

• Defining and designing how a system that delivers situationally relevant

context at run-time should be engineered. We do so by outlining what it

means for context to expand at run time, how to ensure such a system

 148	

delivers relevant context to end consumers, and how such a system should

be designed.

• Introducing, implementing, and utilizing the Automatic Dynamic

Information Model (ADIM) methodology as a way to encode relevance

within an information model. Doing so enables context aware systems to

deliver relevant information without additional software.

• Designing, implementing, and deploying the Rover3 context aware system,

leveraging the design tenets of context aware systems. Using Rover3 and

ADIM, we walkthrough a case study of developing information models for

and delivering context within the emergency services domain. An

extensibility study is performed to show how effortless it is to use Rover3

and ADIM over Rover2.

10.2 Future Work

While we have made several contributions in context management and context

aware systems, our work outlined in this dissertation could greatly benefit from follow-on

work. Opportunities to significantly lower the friction to create and edit both ontological

and instantiated context models, additional levels of fidelity to define relevance, and

additional ontological primitives all could further strengthen this area of research.

The methods for creating, editing, and viewing context models could benefit from

substantial gains in usability. We chose to simply rely on Cypher as the method for

encoding ADIM and context in our ontological store simply as it did not require any

additional work. Developing an easier way to input and manage ontological models would

 149	

further lower the barrier for SMEs to use the system. Doing so should look to better align

with the Minimize Abstraction of Reality tenet as the existing modeling method requires a

bit of effort. Once models are instantiated in the context store, simply clicking on and

editing primitives would be much easier than individual web service calls. The current

method requires context switching between viewing a model in the context store and

sending individual POST calls to the controller. Moving this action to the GUI represented

entity is the next logical step for managing instantiated and existing context. Lastly, color-

coding goals and actions would help consumers of the system quickly identify what state

the various primitives are in. Currently one has to inspect each object through web calls.

This is another example of context switching, this time to observe current values.

The relationships and variability in the ontological model have opportunities to be

more than binary in nature. Throughout our contribution, any relationship, attribute, ADIM

action/trigger, or ontology were binary in nature – some criteria defined if something were

to be considered relevant (and thus instantiated in the context store) or not.

 150	

Bibliography

	

[1]	
 	
 K.	
 Henrickson	
 and	
 Jawiga	
 Indulska,	
 "Modeling	
 context	
 information	
 in	

pervasive	
 computing	
 systems.,"	
 in	
 LNCS	
 2414:	
 Proceedings	
 of	
 1st	
 International	

Confer	
 ence	
 on	
 Pervasive	
 Computing,	
 Berlin	
 /	
 Heidelberg,	
 2002.	
 	

[2]	
 	
 F.	
 J.	
 Riggins	
 and	
 S.	
 F.	
 Wamba,	
 "Research	
 Directions	
 on	
 the	
 Adoption,	
 Usage,	
 and	

Impact	
 of	
 the	
 Internet	
 of	
 Things	
 through	
 the	
 Use	
 of	
 Big	
 Data	
 Analytics.,"	
 in	

48th	
 Hawaii	
 International	
 Conference	
 on	
 System	
 Sciences	
 (HICSS),	
 2015.	
 	

[3]	
 	
 A.	
 Jamies,	
 N.	
 Sebe	
 and	
 D.	
 Gatica-­‐‑Perez,	
 "Human-­‐‑centered	
 computing:	
 a	

multimedia	
 perspective.,"	
 in	
 Proceedings	
 of	
 the	
 14th	
 annual	
 ACM	
 international	

conference	
 on	
 Multimedia.,	
 Santa	
 Barbara,	
 2006.	
 	

[4]	
 	
 M.	
 Baldauf,	
 S.	
 Dustdar	
 and	
 F.	
 Rosenburg,	
 "A	
 survey	
 on	
 context-­‐‑aware	
 systems,"	

Int.	
 J.	
 Ad	
 Hoc	
 and	
 Ubiquitous	
 Computing,	
 vol.	
 2,	
 no.	
 4,	
 pp.	
 263-­‐‑277,	
 2007.	
 	

[5]	
 	
 K.	
 Pathan,	
 S.	
 Reiff-­‐‑Marganiec	
 and	
 N.	
 Channa,	
 "Reaching	
 activities	
 by	
 places	
 in	

the	
 context-­‐‑aware	
 environments	
 using	
 software	
 sensors.,"	
 Journal	
 of	
 Emerging	

Trends	
 in	
 Computing	
 and	
 Information	
 Sciences,	
 vol.	
 2,	
 no.	
 12,	
 2011.	
 	

[6]	
 	
 H.	
 Yin,	
 B.	
 Cui,	
 L.	
 Chen,	
 Z.	
 Hu	
 and	
 C.	
 Zhang,	
 "Modeling	
 location-­‐‑based	
 user	
 rating	

profiles	
 for	
 personalized	
 recommendation.,"	
 ACM	
 Transactions	
 on	
 Knowledge	

Discovery	
 from	
 Data	
 (TKDD),	
 vol.	
 9,	
 no.	
 3,	
 p.	
 19,	
 13	
 April	
 2015.	
 	

[7]	
 	
 P.	
 Bhargava,	
 N.	
 Gramsky	
 and	
 A.	
 Agrawala,	
 "SenseMe:	
 a	
 system	
 for	
 continuous,	

on-­‐‑device,	
 and	
 multi-­‐‑dimensional	
 context	
 and	
 activity	
 recognition.,"	
 in	

Proceedings	
 of	
 the	
 11th	
 International	
 Conference	
 on	
 Mobile	
 and	
 Ubiquitous	

Systems:	
 Computing,	
 Networking	
 and	
 Services,	
 2014.	
 	

[8]	
 	
 H.	
 Chen,	
 T.	
 Finin	
 and	
 A.	
 Joshi,	
 "n	
 Ontology	
 for	
 Context-­‐‑Aware	
 Pervasive	

Computing	
 Environments,"	
 Cambridge	
 University	
 Press,	
 Baltimore,	
 2003.	

[9]	
 	
 W.	
 Woerndl,	
 C.	
 Schueller	
 and	
 R.	
 Wojtech,	
 "A	
 hybrid	
 recommender	
 system	
 for	

context-­‐‑aware	
 recommendations	
 of	
 mobile	
 applications.","	
 in	
 Data	

Engineering	
 Workshop,	
 2007	
 IEEE	
 23rd	
 International	
 Conference	
 on,	
 2007.	
 	

[10]	
 	
 M.	
 V.	
 Setten,	
 S.	
 Pokraev	
 and	
 J.	
 Koolwaaij,	
 "Context-­‐‑aware	
 recommendations	
 in	

the	
 mobile	
 tourist	
 application	
 COMPASS.,"	
 in	
 International	
 Conference	
 on	

Adaptive	
 Hypermedia	
 and	
 Adaptive	
 Web-­‐‑Based	
 Systems.,	
 2004.	
 	

 151	

[11]	
 	
 S.	
 Yang,	
 A.	
 Huang,	
 R.	
 Chen	
 and	
 S.-­‐‑S.	
 Tseng,	
 "Context	
 Model	
 and	
 Context	

Acquisition	
 for	
 Ubiquitous	
 Content	
 Access	
 in	
 ULearning	
 Environments,"	
 in	

IEEE	
 International	
 Conference	
 on	
 Sensor	
 Networks,	
 Ubiquitous,	
 and	
 Trustworthy	

Computing	
 (SUTC'06)	
 ,	
 2006Taichung.	
 	

[12]	
 	
 C.	
 B.	
 Almazan,	
 "Rover:	
 Architectural	
 Support	
 for	
 Exposing	
 and	
 Using	
 Context,"	

College	
 Park,	
 2010.	

[13]	
 	
 C.	
 Almazan,	
 M.	
 Youssef	
 and	
 A.	
 Agrawala,	
 "Rover:	
 An	
 integration	
 and	
 fusion	

platform	
 to	
 enhance	
 situational	
 awareness.,"	
 in	
 007	
 IEEE	
 International	

Performance,	
 Computing,	
 and	
 Communications	
 Conference,	
 2007.	
 	

[14]	
 	
 S.	
 Krishnamoorthy,	
 "ROVER-­‐‑II:	
 A	
 CONTEXT-­‐‑AWARE	
 MIDDLEWARE	
 FOR	

PERVASIVE	
 COMPUTING	
 ENVIRONMENTS,"	
 University	
 of	
 Maryland,	
 College	

Park,	
 2012.	

[15]	
 	
 P.	
 Bhargava,	
 S.	
 Krishnamoorthy	
 and	
 A.	
 Agrawala,	
 "An	
 ontological	
 context	

model	
 for	
 representing	
 a	
 situation	
 and	
 the	
 design	
 of	
 an	
 intelligent	
 context-­‐‑
aware	
 middleware,"	
 in	
 Proceedings	
 of	
 the	
 2012	
 ACM	
 Conference	
 on	
 Ubiquitous	

Computing,	
 2012.	
 	

[16]	
 	
 P.	
 Bhargava,	
 S.	
 Krishnamoorthy	
 and	
 A.	
 Agrawala,	
 "RoCoMo:	
 a	
 generic	
 ontology	

for	
 context	
 modeling,	
 representation	
 and	
 reasoning	
 in	
 a	
 context-­‐‑aware	

middleware,"	
 in	
 Proceedings	
 of	
 the	
 2012	
 ACM	
 Conference	
 on	
 Ubiquitous	

Computing,	
 2012.	
 	

[17]	
 	
 S.	
 Krishnamoorthy	
 and	
 A.	
 Agrawala,	
 "M-­‐‑Urgency:	
 a	
 next	
 generation,	
 context-­‐‑
aware	
 public	
 safety	
 application,"	
 in	
 Proceedings	
 of	
 the	
 13th	
 International	

Conference	
 on	
 Human	
 Computer	
 Interaction	
 with	
 Mobile	
 Devices	
 and	
 Services,	

2011.	
 	

[18]	
 	
 S.	
 Krishnamoorthy,	
 "Context-­‐‑aware,	
 technology	
 enabled	
 social	
 contribution	
 for	

public	
 safety	
 using	
 M-­‐‑Urgency,"	
 in	
 Proceedings	
 of	
 the	
 14th	
 international	

conference	
 on	
 Human-­‐‑computer	
 interaction	
 with	
 mobile	
 devices	
 and	
 services,	

2012.	
 	

[19]	
 	
 S.	
 Krishnamoorthy	
 and	
 A.	
 Agrawala,	
 "M-­‐‑Urgency:	
 a	
 next	
 generation,	
 context-­‐‑
aware	
 public	
 safety	
 application,"	
 in	
 Proceedings	
 of	
 the	
 13th	
 International	

Conference	
 on	
 Human	
 Computer	
 Interaction	
 with	
 Mobile	
 Devices	
 and	
 Services,	

2011.	
 	

[20]	
 	
 M.	
 Miraoui,	
 S.	
 El-­‐‑etriby,	
 C.	
 Tadj	
 and	
 A.	
 Zaid	
 Abid,	
 "Ontology-­‐‑Based	
 Context	

Modeling	
 for	
 a	
 Smart	
 Living	
 Room,"	
 in	
 Proceedings	
 of	
 the	
 World	
 Congress	
 on	

Engineering	
 and	
 Computer	
 Science	
 ,	
 San	
 Francisco,	
 2015.	
 	

 152	

[21]	
 	
 N.	
 Gramsky	
 and	
 H.	
 Samet,	
 "Seeder	
 finder:	
 identifying	
 additional	
 needles	
 in	
 the	

Twitter	
 haystack.,"	
 in	
 Proceedings	
 of	
 the	
 6th	
 ACM	
 SIGSPATIAL	
 International	

Workshop	
 on	
 Location-­‐‑Based	
 Social	
 Networks,	
 Orlando,	
 2013.	
 	

[22]	
 	
 Y.	
 Zou,	
 T.	
 Finin	
 and	
 H.	
 Chen,	
 "F-­‐‑owl:	
 An	
 inference	
 engine	
 for	
 semantic	
 web.,"	
 in	

nternational	
 Workshop	
 on	
 Formal	
 Approaches	
 to	
 Agent-­‐‑Based	
 Systems,	
 Berlin,	

2004.	
 	

[23]	
 	
 R.	
 Gove,	
 N.	
 Gramsky,	
 R.	
 Kirby,	
 E.	
 Sefer,	
 A.	
 Sopan,	
 C.	
 Dunne,	
 B.	
 Shneiderman	
 and	

M.	
 Taieb-­‐‑Maimon,	
 "NetVisia:	
 Heat	
 map	
 &	
 matrix	
 visualization	
 of	
 dynamic	

social	
 network	
 statistics	
 &	
 content.,"	
 in	
 Privacy,	
 Security,	
 Risk	
 and	
 Trust	

(PASSAT)	
 and	
 2011	
 IEEE	
 Third	
 Inernational	
 Conference	
 on	
 Social	
 Computing	

(SocialCom),	
 Boston,	
 2011.	
 	

[24]	
 	
 W.	
 J.	
 Clancey,	
 Situated	
 Cognition,	
 Cambridge:	
 Cambridge	
 University	
 Press.	
 	

[25]	
 	
 H.	
 Yin,	
 B.	
 Cui,	
 L.	
 Chen,	
 Z.	
 Hu	
 and	
 Z.	
 Huang,	
 "A	
 temporal	
 context-­‐‑aware	
 model	

for	
 user	
 behavior	
 modeling	
 in	
 social	
 media	
 systems.,"	
 in	
 Proceedings	
 of	
 the	

2014	
 ACM	
 SIGMOD	
 international	
 conference	
 on	
 Management	
 of	
 data,	
 2014.	
 	

[26]	
 	
 M.	
 Uschold	
 and	
 M.	
 Gruninger,	
 "Ontologies:	
 Principles,	
 methods	
 and	

applications,"	
 Knowledge	
 Engineering	
 Review,	
 vol.	
 11,	
 no.	
 2,	
 pp.	
 93-­‐‑155,	
 1996.	
 	

[27]	
 	
 A.	
 Dey,	
 "Understanding	
 and	
 Using	
 Context,"	
 in	
 Personal	
 and	
 ubiquitous	

computing.	
 	

[28]	
 	
 N.	
 A.	
 Bradley	
 and	
 M.	
 Dunlop,	
 "Towards	
 a	
 Multidisciplinary	
 Model	
 of	
 Context	
 to	

Support	
 Context-­‐‑Aware	
 Computing,"	
 HUMAN	
 –	
 COMPUTER	
 INTERACTION,,	
 vol.	

20,	
 pp.	
 403-­‐‑446,	
 2005.	
 	

[29]	
 	
 G.	
 D.	
 Abowd,	
 "owards	
 a	
 better	
 understanding	
 of	
 context	
 and	
 context-­‐‑
awareness.,"	
 in	
 nternational	
 Symposium	
 on	
 Handheld	
 and	
 Ubiquitous	

Computing,	
 Berlin,	
 1999.	
 	

[30]	
 	
 P.	
 Bellavista,	
 A.	
 Corradi	
 and	
 M.	
 Fanelli,	
 "A	
 survey	
 of	
 context	
 data	
 distribution	

for	
 mobile	
 ubiquitous	
 systems.,"	
 ACM	
 Computing	
 Surveys	
 (CSUR),	
 vol.	
 44,	
 no.	
 4,	

p.	
 24,	
 1	
 August	
 2012.	
 	

[31]	
 	
 F.	
 Azouaou	
 and	
 C.	
 Desmoulins,	
 "	
 Using	
 and	
 modeling	
 context	
 with	
 ontology	
 in	

e-­‐‑learning:	
 the	
 case	
 of	
 teac	
 her’s	
 personal	
 annotation,"	
 in	
 Hndbook	
 of	
 Research	

on	
 Interactive	
 Information	
 Quality	
 In	
 Expanding	
 Social	
 Communications,	

Hershey,	
 PA:	
 IGI	
 Global,	
 2014,	
 p.	
 435.	

 153	

[32]	
 	
 H.	
 Guermah,	
 T.	
 Fissa,	
 H.	
 Hafiddi,	
 M.	
 Nassar	
 and	
 A.	
 Kriouile,	
 "An	
 Ontology	

Oriented	
 Architecture	
 for	
 Context	
 Aware	
 Services	
 Adaptation,"	
 International	

Journal	
 of	
 Computer	
 Science	
 Issues,	
 vol.	
 11,	
 no.	
 2,	
 p.	
 10,	
 2014.	
 	

[33]	
 	
 "Ontology,"	
 [Online].	
 Available:	
 https://en.wikipedia.org/wiki/Ontology.	

[Accessed	
 8	
 May	
 2016].	

[34]	
 	
 Z.	
 Ming,	
 S.-­‐‑x.	
 Li	
 and	
 X.-­‐‑r.	
 Fang,	
 "Research	
 on	
 Ontology-­‐‑Oriented	
 Domain	

Analysis	
 on	
 MIS,"	
 in	
 Formal	
 Methods	
 and	
 Software	
 Engineering	
 4th	

International	
 Conference	
 on	
 Formal	
 Engineering	
 Methods,	
 Shanghai,	
 China,	

2002.	
 	

[35]	
 	
 S.	
 Krishnamoorthy,	
 P.	
 Bhargava,	
 M.	
 Mah	
 and	
 A.	
 Agrawala,	
 "Representing	
 and	

Managing	
 the	
 Context	
 of	
 a	
 Situation,"	
 The	
 Computer	
 Journal,	
 vol.	
 55,	
 no.	
 8,	
 pp.	

1005-­‐‑1019,	
 2011.	
 	

[36]	
 	
 A.	
 Zimmermann,	
 A.	
 Lorenz	
 and	
 R.	
 Oppermann,	
 "An	
 operational	
 definition	
 of	

context,"	
 in	
 International	
 and	
 Interdisciplinary	
 Conference	
 on	
 Modeling	
 and	

Using	
 Context,	
 Berlin,	
 2007.	
 	

[37]	
 	
 P.	
 Makris,	
 D.	
 Skoutas	
 and	
 C.	
 Skianis,	
 "A	
 Survey	
 on	
 Context-­‐‑Aware	
 Mobile	
 and	

Wireless	
 Networking:	
 On	
 networking	
 and	
 computing	
 environments’	

integration,"	
 IEEE	
 COMMUNICATIONS	
 SURVEYS	
 &	
 TUTORIALS,	
 vol.	
 15,	
 no.	
 1,	

pp.	
 362-­‐‑386,	
 2013.	
 	

[38]	
 	
 C.	
 Perera,	
 A.	
 Zaslavsky,	
 P.	
 Christen	
 and	
 D.	
 Georgakopoulos,	
 "Context	
 Aware	

Computing	
 for	
 The	
 Internet	
 of	
 Things:	
 A	
 Survey,"	
 Communications	
 Surveys	
 &	

Tutorials,	
 vol.	
 16,	
 no.	
 1,	
 pp.	
 414-­‐‑454,	
 2014.	
 	

[39]	
 	
 A.	
 Dey	
 and	
 G.	
 Abowd,	
 "CybreMinder:	
 A	
 Context-­‐‑Aware	
 System	
 for	
 Supporting	

Reminders,"	
 Handheld	
 and	
 Ubiquitous	
 Computing,	
 pp.	
 172-­‐‑186,	
 2000.	
 	

[40]	
 	
 M.	
 Frejus,	
 M.	
 Dominici,	
 F.	
 Weis,	
 G.	
 Poizat,	
 J.	
 Guibourdenche	
 and	
 B.	
 Pietropaoli,	

"Changing	
 Interactions	
 to	
 Reduce	
 Energy	
 Consumption:	
 from	
 Activity	
 Analysis	

to	
 the	
 Specification	
 of	
 a	
 Context-­‐‑Aware	
 System,"	
 in	
 CHI	
 '13,	
 Paris,	
 France,	

2013.	
 	

[41]	
 	
 K.	
 Rehman,	
 F.	
 Stajano	
 and	
 G.	
 Coulouris,	
 "Architecture	
 for	
 Interactive	
 Context-­‐‑
Aware	
 Applications,"	
 Pervasive	
 Computing,	
 vol.	
 6,	
 no.	
 1,	
 pp.	
 73-­‐‑80,	
 2005.	
 	

 154	

[42]	
 	
 Y.	
 Zhang,	
 S.	
 Song	
 and	
 P.	
 Tan,	
 "A	
 whole-­‐‑room	
 3D	
 context	
 model	
 for	
 panoramic	

scene	
 understanding,"	
 in	
 European	
 Conference	
 on	
 Computer	
 Vision,	
 Berlin,	

2014.	
 	

[43]	
 	
 C.	
 Mettouris	
 and	
 G.	
 Papadopoulos,	
 "Contextual	
 modelling	
 in	
 context-­‐‑aware	

recommender	
 systems:	
 a	
 generic	
 approach,"	
 in	
 Web	
 Information	
 Systems	

Engineering–WISE	
 2011	
 and	
 2012	
 Workshops,	
 Berlin,	
 2013.	
 	

[44]	
 	
 S.	
 Yau	
 and	
 J.	
 Liu,	
 "Hierarchical	
 situation	
 modeling	
 and	
 reasoning	
 for	
 pervasive	

computing,"	
 in	
 he	
 Fourth	
 IEEE	
 Workshop	
 on	
 Software	
 Technologies	
 for	
 Future	

Embedded	
 and	
 Ubiquitous	
 Systems,	
 and	
 the	
 Second	
 International	
 Workshop	
 on	

Collaborative	
 Computing,	
 Integration,	
 and	
 Assurance	
 (SEUS-­‐‑WCCIA'06),	
 2006.	
 	

[45]	
 	
 N.	
 Baumgartner	
 and	
 W.	
 Retschitzeggar,	
 "A	
 survey	
 of	
 upper	
 ontologies	
 for	

situation	
 awareness,"	
 in	
 Proc.	
 of	
 the	
 4th	
 IASTED	
 International	
 Conference	
 on	

Knowledge	
 Sharing	
 and	
 Collaborative	
 Engineering,	
 St.	
 Thomas,	
 US	
 VI,	
 2006.	
 	

[46]	
 	
 Y.	
 Jung,	
 J.	
 Ryu,	
 K.-­‐‑m.	
 Kim	
 and	
 S.-­‐‑H.	
 Myaeng,	
 "Automatic	
 construction	
 of	
 a	
 large-­‐‑
scale	
 situation	
 ontology	
 by	
 mining	
 how-­‐‑to	
 instructions	
 from	
 the	
 web,"	

SciendDirect,	
 vol.	
 8,	
 no.	
 2,	
 18	
 April	
 2010.	
 	

[47]	
 	
 R.	
 Hoffman,	
 "Human-­‐‑centered	
 Computing	
 Principles	
 for	
 Advanced	
 Decision	

Architectures,"	
 Army	
 Research	
 Laboratory,	
 2004.	

[48]	
 	
 J.	
 Ye,	
 L.	
 Coyle,	
 S.	
 Dobson	
 and	
 P.	
 Nixon,	
 "Ontology-­‐‑based	
 models	
 in	
 pervasive	

computing	
 systems,"	
 The	
 Knowledge	
 Engineering	
 Review,	
 vol.	
 22,	
 no.	
 04,	
 pp.	

315-­‐‑347,	
 2007.	
 	

[49]	
 	
 "Intro	
 To	
 Cypher,"	
 Neo4J,	
 22	
 May	
 2016.	
 [Online].	
 Available:	

http://neo4j.com/developer/cypher-­‐‑query-­‐‑language/.	
 [Accessed	
 22	
 May	

2016].	

[50]	
 	
 P.	
 Hayes,	
 "RDF	
 Semantics,"	
 2004.	
 [Online].	
 Available:	

http://www.w3.org/TR/2004/	
 REC-­‐‑rdf-­‐‑mt-­‐‑20040210/.	
 [Accessed	
 22	
 May	

2016].	

[51]	
 	
 M.	
 Dean	
 and	
 RV	
 Guha,	
 "OWL	
 Web	
 Ontology	
 Language,"	
 2004.	
 [Online].	

Available:	
 https://www.w3.org/TR/2004/REC-­‐‑owl-­‐‑ref-­‐‑20040210/.	
 [Accessed	

22	
 May	
 2016].	

[52]	
 	
 X.	
 H.	
 Wang,	
 D.	
 Q.	
 Zhang,	
 T.	
 Gu	
 and	
 H.	
 K.	
 Pung,	
 "Ontology	
 based	
 context	

modeling	
 and	
 reasoning	
 using	
 OWL,"	
 in	
 Pervasive	
 Computing	
 and	

Communications	
 Workshops,	
 2004.	
 	

 155	

[53]	
 	
 M.	
 Niepert,	
 C.	
 Buckner	
 and	
 C.	
 Allen,	
 "A	
 dynamic	
 ontology	
 for	
 a	
 dynamic	

reference	
 work,"	
 in	
 Proceedings	
 of	
 the	
 7th	
 ACM/IEEE-­‐‑CS	
 joint	
 conference	
 on	

Digital	
 libraries,	
 2007.	
 	

[54]	
 	
 F.	
 Zablith,	
 "Dynamic	
 ontology	
 evolution,"	
 2008.	
 [Online].	
 Available:	

http://oro.open.ac.uk/23527/.	

[55]	
 	
 "Popoto.js,"	
 [Online].	
 Available:	
 http://www.popotojs.com/.	
 [Accessed	
 12	

December	
 2016].	

[56]	
 	
 Neo4J,	
 "	
 Neo4j	
 Browser	
 User	
 Interface	
 Guide,"	
 Ne4J,	
 [Online].	
 Available:	

https://neo4j.com/developer/guide-­‐‑neo4j-­‐‑browser/.	
 [Accessed	
 1	
 Oct	
 2017].	

