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We have developed two models, the stability model and the profile model, to 

identify non-synonymous single base changes (the most common cause of monogenic 

disease) that have deleterious effects on protein function in vivo.  The stability model 

analyzes the effect of the resulting amino acid change on protein stability by utilizing 

structural information such as reduction in hydrophobic area and loss of electrostatic 

interactions. The profile model makes use of the conservation and type of residues 

observed at a base change position within a protein family. In each model, a machine 

learning technique, the support vector machine (SVM) was trained on a set of 

mutations causative of disease, and a control set of non-disease causing mutations. In 

jack-knifed testing, the stability model identifies 74% of disease mutations, with a 

false positive rate of 15%; the profile model identifies 80% of disease mutations, with 

a false positive rate of 10%.  Evaluation of a set of in vitro mutagenesis data with the 

stability model established that the majority of disease mutations affect protein 

stability by 1 to 3 Kcal/mol.  The stability model’s effective distinction between 

disease and non-disease variants strongly supports the hypothesis that loss of protein 

stability is a major factor contributing to monogenic disease. 



Both models are used to identify deleterious SNPs in the human population. 

After carefully controlling of errors, we find that approximately one-fourth of the 

known non-synonymous SNPs are deleterious, thus providing a set of possible SNPs 

contributing to human complex disease traits.  

A web resource has been developed to provide information on disease/gene 

relationships at the molecular level.  The resource has three primary modules. The 

first module is used to publish the deleterious SNPs identified by the two above-

mentioned models.  The second module identifies the candidate genes for a specific 

disease, and the third module provides information about the relationships between 

the sets of candidate genes.  Disease/candidate gene relationships and gene-gene 

relationships are derived from the literature using a simple but effective text profiling 

method. 
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Chapter 1: Introduction 
SNP in Populations and Human Disease

A single nucleotide polymorphism (SNP) is a single nucleotide variation in 

DNA.  In the human population, SNPs are the most abundant genetic variations.  It is 

estimated that human population has approximately 10 million common SNPs with 

minor allele frequency (MAF) of  more than 1% (Kruglyak and Nickerson 2001).  

50,000 – 100,000 of these common SNPs are non-synonymous SNPs (i.e., resulting 

in an amino acid change) (Botstein and Risch 2003; Cargill et al. 1999; Halushka et 

al. 1999). In the current central SNP repository of dbSNP (Sherry et al. 2001), over 

10 million SNPs have been deposited, of which five million have been validated.     

In theory, a SNP may affect gene function through a number of mechanisms 

including changes in transcription, RNA processing, protein translation, folding of the 

polypeptide chain, stability of the folded state, post-translational modification, 

interactions with binding partners, and alterations to catalysis. An analysis of the 

Human Gene Mutation Database (HGMD) (Stenson et al. 2003) has shown that the 

vast majority of known monogenic disease cases act through changes to the coding 

sequence, with mis-sense mutations (a single base change resulting in change of a 

single amino acid) accounting for greater than 60% of all monogenic disease 

mutations.  Mis-sense SNPs may also be the major mutation type underlying human 

complex diseases.  The following reasons support this view: first, this type of 

mutation is prevalent in monogenic disease, and second, in the human genome, 

coding regions are larger than other functional regions, such as those for transcription 

regulation and splicing regulation. However, it has been suggested that complex 
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diseases may be predominantly affected by SNPs within gene regulation regions 

(Hirschhorn and Daly 2005). 

Two Types of Human Disease

Over the past 20 years, more than 1000 disease genes have been identified by 

genetic mapping, especially linkage analysis.  Most of these are genes for rare 

monogenic (one gene/one trait) disease which follow a simple Mendelian inheritance 

pattern.  Common human disease, such as hypertension, diabetes, Alzheimer, stroke, 

and heart disease, on the other hand, follow a more complicated inheritance pattern.  

As a consequence, common diseases prove to be much harder to analyze (Botstein 

and Risch 2003; Carlson et al. 2004; Emahazion et al. 2001).  The difficulty in 

analyzing common diseases may be caused by incomplete penetrance (a person 

carrying a predisposing allele may not exhibit the disease phenotype), genetic 

heterogeneity (mutations on one of several genes may result in identical phenotypes), 

and polygenic inheritance (a trait is controlled by multiple gene interactions so that 

each individual predisposing allele has a low risk factor and shows weak correlation 

with the disease trait).  In addition, environmental factors may also play an important 

role in shaping disease phenotypes.  Many phenotypic traits, such as behavioral 

characteristics and different drug response are also believed to follow such a complex 

inheritance pattern and are thus generally called complex traits.   
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The Allelic Structure of Human Disease

Owning to the extensive data on human monogenic diseases, their allelic 

structure is relatively clear.  Monogenic diseases are usually very rare in the human 

population and the frequency of disease alleles is also very low, usually << 1%.  The 

level of allelic heterogeneity is very high in monogenic diseases.  According to the 

human gene mutation database (HGMD) (Stenson et al. 2003), there are on average 

over 10 disease alleles per disease gene.    

However, little is known about the allelic structure of human complex 

diseases, since very few complex disease genes have been unambiguously identified.  

One popular view is the common disease/common variant (CD/CV) model (Reich 

and Lander 2001), which assumes that human common diseases are caused by one or 

a few predominating alleles at a small number of loci. Those alleles are generally old 

and common across different geographical populations.  Known complex disease 

alleles seem to support this hypothesis, such as the APOE ε4 allele in Alzhemer’s 

disease (Corder et al. 1993) and the PPARγ P12A in type II diabetes (Altshuler et al. 

2000).   However, such a small sample is not sufficient to exclude other possible 

models. For example, complex diseases may be affected by rare susceptibility alleles 

at a large number of loci.   The CD/CV model represents the best case scenario that 

we could possibly have for identifying disease genes. On this basis, association 

studies are proposed as a feasible way to identify disease genes, as discussed in detail 

later. 
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Genetic Mapping of Human Disease

Linkage Analysis 

Linkage analysis is performed on family pedigrees.  The extent to which a 

genetic marker and a disease trait are co-inherited allows one to estimate the 

recombination rate between them, and hence to also estimate the physical distance 

separating them.  Use of multiple genetic markers allows refinement of the position of 

the disease locus. Since its early success in the 1980s, linkage analysis has been used 

to identify many monogenic disease genes.  However, it meets a lot of difficulties 

when applied to complex diseases.  There are two major problems.  The first problem 

is related to the identification of a disease phenotype.  Unlike monogenic diseases that 

are relatively easy to be diagnosed because of their high severity, the precise 

description of a complex disease is no easy task and thus a clear diagnostic standard 

is needed (Botstein and Risch 2003).  The other major challenge arises from a 

consequence of a susceptibility being determined by multiple loci.  As a consequence, 

each disease-susceptible allele may only possess modest relative risk.  Risch and 

Merikangas have estimated that in order to achieve statistically significant results for 

a complex disease, the number of family pedigrees needed is impractically large 

(Risch and Merikangas 1996).   

Association Studies  

The choice for complex disease 

Association studies, also referred to as case-control studies, measure the 

association of a genetic marker, usually a SNP, with a disease trait in a population.  A 
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marker is assumed to be associated with a disease if it has a significantly higher 

frequency in the patient population than the control population.  Currently, it is 

believed that association studies offer a more practical approach for common human 

disease than linkage analysis.  A large population sample is easier to get than a large 

number of suitable families for linkage analysis, which would be needed to obtain 

sufficient statistical power. A population can be regarded as a multigenerational 

family descended from a single or a few founders.  Inside such a big family, all but a 

few most recent generations are missing.  Numerous historical recombination events 

are included, so that only markers very close to a disease mutation will be in LD 

(Linkage disequilibrium) with the disease mutation. While this feature allows high 

precision mapping of disease genes, it does require a large number of markers unless 

the location is already approximately known.  Association studies can be conducted 

within a list of disease candidate genes or on the whole genome (Botstein and Risch 

2003).   

Linkage Disequilibrium 

Linkage disequilibrium (LD) is the non-random association between genetic 

markers in a population.  On average, there is a reverse correlation between the level 

of LD and distance between SNPs because the likelihood of recombination between 

two SNPs increases with the distance between them.  However, it has been found that 

the extent of LD varies in the human genome (Pritchard and Przeworski 2001).  The 

human genome contains “hotspot” regions with relatively high recombination rates.  

Hotspots are separated by relatively large haplotype blocks in which there are low 

recombination rates.  A Haplotype is defined as a set of strongly associated alleles, 
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usually SNPs, inside such a block.  There are typically a small number of common 

haplotypes at each genomic region in a population.  Usually presence and absence of 

a few SNPs can be used to determine which haplotype is present.  These are called 

haplotype tag SNPs.  Using tag SNPs rather than all the SNPs will decrease the 

number of markers required for association studies (Gabriel et al. 2002).   

Haplotype blocks are heterogeneous among different populations (Gabriel et 

al. 2002).  European and Asian populations are relatively more homogenous, with 

larger blocks.  African populations are more heterogeneous, and contain relatively 

small haplotype blocks.  Tishkoff et al. (Tishkoff and Verrelli 2003) argued that this 

difference may be due to several possible factors: African populations are older,  

African populations have a larger effective population size and non-African 

populations experienced a bottleneck event.  It has been proposed that European and 

Asian populations first be used to map a disease trait to a certain chromosomal 

region, and then African populations with smaller haplotype blocks can be used for 

fine-scale mapping (Tishkoff and Verrelli 2003).  

Bioinformatics 

So far, association studies have not delivered many successes in mapping 

complex disease, because of many challenges, including the possibility that complex 

diseases are caused by many rare variants and other statistical problems.  On the other 

hand, the knowledge of the human genome sequence (Lander et al. 2001; Venter et al. 

2001) and a large number of SNPs opens the way for the development of a detailed 

understanding of the mechanisms by which genetic variation results in phenotype 

variation.  In particular, it should now be possible to identify the contribution of SNPs 
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to human disease and thus provide a set of prioritized SNPs for association studies.  

Computational analysis of SNPs can be used as complementary data to confirm 

positive association study results and to identify causative mutations, which should be 

especially helpful when a disease gene is inside a large LD block.  Informatics also 

has a significant role to play in relating the effect of an individual SNP in a protein to 

the gene-gene network environment and hence to the phenotypic impact, as discussed 

later.  

Computational Modeling of SNPs: Overview 

Mis-sense variants are the most frequent known monogenetic disease 

mutation.   As a consequence, many computational methods have been developed to 

model the impact of mis-sense variants on protein function in vivo. All of these 

methods require some formal training and testing to assess their ability to distinguish 

between disease and non-disease data.  A variety of approaches have been used to 

collect deleterious mis-sense variants and non-deleterious mis-sense variants for 

training and testing purposes.  Wang and Moult (Wang and Moult 2001) used a set of 

known human monogenic disease mis-sense variants in the Human Gene Mutation 

Database as the deleterious data set.  Sunyaev et al. (Ramensky et al. 2002; Sunyaev 

et al. 2001) used disease variants annotated in the Swiss-Prot database (Boeckmann et 

al. 2003) as the deleterious data set.  Others (Chasman and Adams 2001; Krishnan 

and Westhead 2003; Ng and Henikoff 2003) used mis-sense mutants that affect the 

phenotype in mutagenesis experiments on Lac repressor and T4 lysozyme as the 

deleterious data set.  Two different methods have been used to collect non-deleterious 

variants.  Sunyaev et al. (Ramensky et al. 2002; Sunyaev et al. 2001) used non-
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synonymous base differences between human proteins and closely related proteins in 

other mammals.  Other groups (Chasman and Adams 2001; Krishnan and Westhead 

2003; Ng and Henikoff 2003)  used the mis-sense mutants that do not show 

phenotype effects in mutagenesis data for Lac repressor and T4 lysozyme as the non-

deleterious data set. 

Two principal strategies have been developed for identifying which mis-sense 

base changes are most likely to be causative of disease. The most common approach 

makes use of the fact that the more critical a position in a protein sequence is to 

viability, the more restricted are the residue types accepted there. A number of 

different methods for assessing the significance of amino acid conservation have been 

developed (Chasman and Adams 2001; Krishnan and Westhead 2003; Ng and 

Henikoff 2003; Ramensky et al. 2002; Sunyaev et al. 2001).  Methods that utilize 

sequence conservation have the advantage of including all kinds of impact on protein 

viability. Also, these methods can be used with any human protein for which a 

suitable set of sequence relatives is known, and so have wide applicability. The 

approach has the disadvantage that it provides no direct insight into the underlying 

mechanism.  The second strategy is to make use of knowledge of protein structure 

and function. For instance, recognizing that a change occurs in a key catalytic residue, 

or one involved in ligand binding, or a target for post-translational modification.  

Wang and Moult (Wang and Moult 2001) used a structure-based model to 

identify amino acid substitutions likely to significantly affect protein stability as well 

as other contributions to function.  Stability impact was assessed using a set of simple 

rules based on changes in hydrophobic burial, backbone strain, overpacking, and 
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electrostatic interactions. Other groups have combined sequence and structure 

strategies to varying degrees.  Sunyaev (Ramensky et al. 2002; Sunyaev et al. 2001) 

predicted the effect of mis-sense mutations using empirically derived rules which 

make use of a variety of data, such as functional information, hydrophobic 

propensity, side-chain volume change and transmembrane location (Ng et al. 2000), 

together with sequence information.  In Chasman’s (Chasman and Adams 2001) 

method, ANOVA (Analysis of variance) and principal component analysis were 

applied to a series of features that capture aspects of structural and sequence context. 

Features showing strong discrimination between mutations affecting or not affecting 

the phenotype, such as the relative residue temperature factor, relative surface 

accessibility, relative phylogenetic entropy (sequence conservation in the protein 

family) and burial of charge, were selected.  A probability model was then 

constructed based on the selected features, and used to estimate the likelihood that a 

given mutation will affect function. A similar probability approach has also been used 

to include function effects (Lau and Chasman 2004). Krishnan and Westhead 

(Krishnan and Westhead 2003) used two machine learning methods, a decision tree 

and a support vector machine, to predict the impact of single amino acid changes 

based on a set of structural (secondary structure and surface accessibility) and 

sequence attributes, such as sequence conservation score calculated using ScoreCons 

(Valdar and Thornton 2001). Secondary structure and surface accessibility data were 

taken from the HSSP database (Dodge et al. 1998) or predicted using PHD 

(Przybylski and Rost 2002). 
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Computational Modeling of SNPs: Hypotheses 

In this project, we have developed both a structure based model and a 

sequence based model.  The central hypothesis of the structure-based model is that 

moderate loss of stability of the folded state of a protein molecule is frequently 

associated with monogenic disease. In principle, the stability could be assessed with 

numerical free energy calculations.  However, at present, such calculations are not 

reliable enough to provide useful answers (Mark and van Gunsteren 1994). 

Knowledge-based methods, dividing stability into a set of factors such as electrostatic 

interaction and hydrophobic burial, provide an alternative approach.  In the present 

work, a knowledge based method has been used to estimate whether or not an amino 

acid substitution reduces protein structure stability significantly.  15 factors that are 

related to the free energy of the folded state of protein are used.  They are described 

more fully later. A machine learning technique (a support vector machine, SVM 

(Vapnik 1995), see the following section ) is used to distinguish deleterious mis-sense 

variants and non-deleterious variants using these 15 factors. 

The underlying hypothesis for the sequence based model is that deleterious 

mutations would be removed during evolution and thus critical amino acids tend to be 

conserved across species.  Five features that capture the relative sequence 

conservation at each position in a multiple-species sequence alignment are used as 

basis for SVM to identify deleterious mis-sense variants.  Those mutations at a 

conserved position tend to be the most deleterious. 
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SNPs3D: a resource for analysis of SNP, identification of candidate genes 

and construction of gene relationship networks 

Some SNP analysis methods form the basis of tools that are available through 

web servers.  Facilities range from tools to visualize SNPs in their three dimensional 

context, such as MutDB (http://www.mutdb.org) (Dantzer et al. 2005; Mooney and 

Altman 2003), TopoSNP (http://gila-fw.bioengr.uic.edu/snp/toposnp) (Stitziel et al. 

2004; Stitziel et al. 2003), SAAP (http://www.bioinf.org.uk/saap/) (Cavallo and 

Martin 2005), to detailed analysis of the molecular effects of mis-sense SNPs.  For 

example, SNPeffect (http://snpeffect.vib.be/)  provides a comprehensive analysis of 

mis-sense SNPs at the protein level (Reumers et al. 2005) including stability analysis 

using FOLD-X (Guerois et al. 2002), and other functional analysis;  PolyPhen 

(http://www.bork.embl-heidelberg.de/PolyPhen) models SNP effects with both 

structure and sequence information (Ramensky et al. 2002); SIFT 

(http://blocks.fhcrc.org/sift/SIFT.html) provides sequence analysis of mis-sense SNPs 

(Ng and Henikoff 2003). 

In the present work, we have used the structure and sequence based models to 

identify deleterious SNPs in the current version of dbSNP (Build 124), and a publicly 

available website, SNPs3D, has been developed to provide easy access to our analysis 

for the scientific community.   

To maximize use of data, it is necessary to put SNP analysis into the pathway 

context.  A number of projects, including the Ingenuity Pathway database 

(http://www.ingenuity.com) and the Protein Reference Database (Peri et al. 2004), 

(http://www.hprd.org), are developing mammalian pathway descriptions by means of 
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manual curation of the literature.  Although these databases provide rather precise 

data, the human-curation process makes development slow.  This problem is 

becoming more serious as the size of the relevant literature increases. Protein 

interaction networks have also been built automatically (Giot et al. 2003; Lee et al. 

2004) (Li et al. 2004; Tong et al. 2004), using probability models to integrate data 

from high throughput experiments such as yeast-2-hybrid (Fields and Song 1989; 

Phizicky et al. 2003) and TAP pull-downs (Jansen et al. 2003).    

In SNPs3D, a network of gene-gene interactions is derived from the literature. 

A variety of computational methods are being developed to automatically extract 

information from the literature.  These methods range from simple technologies 

which process at the word level and require only a limited linguistic context (Stapley 

and Benoit 2000)  to state of the art technologies such as natural language processing 

(NLP), that handle more complex relations across sentences (Daraselia et al. 2004). 

So far, these methods have not been used extensively in generally available gene-

disease interfaces.   

We make use of simple text mining techniques.  Each gene or disease is 

treated as a concept. Words and terms are extracted from relevant PubMed abstracts 

ordered by their relevance to the concept.   The overlap of the keyword profiles 

between a pair of genes is used to build a gene relationship network.  Profiles are also 

used to provide a list of candidate genes for diseases. A Java interface has been 

developed to display gene-gene relationship.  The Java interface also allows access to 

a range of relevant information including pathways (Kanehisa et al. 2004), mRNA 

expression profiles (Su et al. 2002), mouse knockout (http://www.bioscience.org 
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/knockout/knochome.htm), disease-gene relationship databases (Hamosh et al. 2005; 

Stenson et al. 2003) and the underlying literature.     

 

Technology overview

Classification 

The work described in this thesis makes use of a machine learning technique, 

the support vector machine (SVM), to classify mis-sense mutations as deleterious or 

non-deleterious to protein function in vivo. The support vector machine is a 

computational technique for data classification.   

SVMs are one of a large number of machine learning techniques, including 

Decision Trees (Markey et al. 2003; Sachs 2003), Neural Networks (Bidiwala and 

Pittman 2004; Gromiha et al. 2004), Bayesian Networks (Li and Chan 2004; Nariai et 

al. 2004).  These techniques have been used in solving many scientific and 

commercial classification problems.  SVMs were introduced in 1995 and have spread 

into many fields, because they are easy to handle and are usually among the top-

ranking algorithms (Rost and Eyrich 2001).  They have been used successfully to 

solve a number of biological questions (Bhasin et al. 2005; Hua and Sun 2001; 

Mitsumori et al. 2005; Tsirigos and Rigoutsos 2005; Zhao et al. 2005).  

In the present application, we wish to classify mis-sense mutations as 

deleterious or non-deleterious on the basis of a set of features.  The features used for 

the structure based model are 15 stability parameters, such as overpacking, 

electrostatic interactions and hydrophobic effects.  Five features related to sequence 



14 
 

conservation were used for the sequence model.  Figure 1-1 shows a simple example 

for a two feature system. 

A central issue in all data classification is over-fitting.  When a training set is 

presented to a learning algorithm, the algorithm usually tries to find a model which 

correctly classifies as many of the objects as possible. A very complicated model may 

perfectly classify the objects in the training set, but may poorly classify new 

observations because the model is too specific.  This phenomenon is known as over-

fitting.  Cross-validation is used to objectively test the usefulness of a model, by 

training on one dataset and testing on a different one.  In this project, disease causing 

variations and non-deleterious variations are separated into two groups: one group 

functions as a training set, and the other is used to validate each model.  

Comparative modeling 

A protein structure is required in order to evaluate the stability effect of a mis-

sense variant.  Currently, experimentally-solved 3D structures are only available for a 

small fraction of human proteins.  The number of proteins for which structural 

information is available can be increased significantly by modeling.  Comparative 

modeling makes use the fact that when two proteins have similar sequences, 

indicating a common evolutionary origin, their 3D structures will also be similar.  As 

the sequence identity between two proteins decreases, their structural similarity also 

decreases, so that the most reliable models are based on a high level of sequence 

relationship.  A protein whose structure is to be built is called a target.  A protein with 

a sequence similar to that of a target and with a solved structure is called a template.  

A comparative model is constructed simply by coping structural coordinates of 
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Figure 1-1.   Illustration of a Support Vector Machine.   
There are two classes of data represented by squares and round points.  Each data 
point has two features, defining the X and Y coordinates. The support vector machine 
selects a partition in the space (in this case the curved line) that separates the two data 
sets as far as possible. Such a partition is seldom perfect and some points will be mis-
classified.  In general, the further from the partition surface a point lies, the higher the 
confidence.  In this thesis, the data are mis-sense mutations, which are classified as 
deleterious or non-deleterious to protein function in vivo.
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related regions of a template to create a target model and changing the side-chains 

types and coordinates as necessary.  According to the results of CASP (Critical 

Assessment of Structure Prediction), models based on a sequence identity around 

30% have approximately 1.5 Å root mean square (RMS) error for main chain atoms 

(Baker and Sali 2001).  As we shall see later, this is not quite good enough for our 

purpose, and a 40% threshold is used.  Figure 1-2 illustrates the comparative 

modeling process. 
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1ii4_F      PYWTNTEKME KKLHAVPAAN TVKFRCPAGG
FGFR3       PYWTRPERMD KKLLAVPAAN TVRFRCPAAG 

A

B

Step 1 copy main 
chains from 1ii4_F

Step 2 copy identical 
side chains from 1ii4_F

Step 3 model 
other side chains

Template: 1ii4_F Model: FGFR3

Model: FGFR3Final Model: FGFR3
 
Figure 1-2.   The process of comparative modeling. 
A.  Part of the sequence alignment between the protein of a gene FGFR3 and the 
closest available template structure, PDB (Deshpande et al. 2005) code 1ii4_F.  The 
boxed region is used to illustrate the detailed procedure of comparative modeling.  B. 
Comparative modeling, (the structure represented by the green area in Figure B 
corresponds to residues inside the rectangle in Figure A). Step 1. Main-chain 
coordinates are copied to the target from the template based on the sequence 
alignment, for example, the main-chain coordinates of Histidine on the template are 
copied to Leucine on the target.  Step 2. Side-chain coordinates are copied to the 
target from the corresponding identical template residues.  Step 3.  The remaining 
side-chains are modeled, for example the purple for Leucine. 
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Chapter 2: Loss of Protein Structure Stability as a Major 
Causative Factor in Monogenic Disease 
Introduction

The central hypothesis of the present work is that moderate loss of stability of 

the folded state of a protein molecule is frequently associated with monogenic 

disease. To investigate this, we must identify significant changes in the free energy 

difference between the folded and unfolded states of a protein molecule resulting 

from an amino acid substitution. A theoretically rigorous approach would be to use an 

appropriate integration of the energy change as one amino acid is morphed into 

another in the context of the protein structure. These free energy perturbation 

techniques (Beveridge and DiCapua 1989) have been incorporated in a number of the 

more widely used molecular dynamics software packages. Issues of conformational 

sampling, appropriate representation of the unfolded state and force field accuracy 

have generally resulted in poor accuracy (Mark and van Gunsteren 1994).  Recent 

results show encouraging improvement, but require care and method optimization in 

each case (Pan and Daggett 2001), restricting large scale application. Force field 

deficiencies may be reduced by parameterizing using free energy differences obtained 

from site directed mutagenesis experiments (Guerois et al. 2002). The resulting model 

is effective at predicting this type of stability change.  

We have developed a knowledge based method which estimates whether or 

not an amino acid substitution reduces protein structure stability sufficiently to be 

potentially causative of monogenic disease, As in the earlier work (Wang and Moult 

2001), we make use of the extensive literature on the effect of amino acid 
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substitutions on protein stability, as well as knowledge of the underlying factors 

affecting the free energy of the folded state. We identify a set of 15 such factors that 

may contribute to a free energy difference, through changes in interaction energy 

between amino acids, effects on the entropy of the system, and the local rigidity of 

the structure.  A machine learning technique (a support vector machine (Vapnik 

1995)) is used to partition the 15 dimensional space representing these factors into 

two volumes, in such a way that, as far as possible, disease causing mutations fall in 

one volume and non-disease causing ones in the other. Any new mutation may then 

be assigned a position in this space. Mutations falling in one volume are predicted to 

significantly decrease protein stability, and thus to be potentially disease causing. 

Those falling in the other volume are considered non-disease causing. Distance from 

the volume partitioning surface provides an approximate measure of confidence in the 

assignments, as illustrated in figure 1-1. 

The model is trained on a set of mis-sense mutations that cause monogenic 

disease, extracted from the Human Gene Mutation Database (HGMD (Stenson et al. 

2003)). A control set of residue substitutions not contributing to disease susceptibility 

was based on inter-species differences (Sunyaev et al. 2001). Stability effects are 

analyzed using available experimental structures of human proteins, or reliable 

comparative models. Jack-knifed testing shows that this model does differentiate 

between disease and non-disease mutations, validating the hypothesis that stability 

effects play a major and quite general role in monogenic disease. 
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Results

Selection of Data for Analysis 

As described in the methods, 10,263 disease causing mutations in 731 proteins 

were extracted from the HGMD (Stenson et al. 2003).  Appropriate structure 

information was available for 37% (3768 in 243 proteins) of these mutants, forming 

the disease set. 346 of the HGMD proteins had close orthologs in other species. The 

corresponding 16,682 inter-ortholog residue differences provided a set of non-disease 

variants. 14% (2309 in 153 proteins) of the inter-species variants had appropriate 

structure information, and formed the control set.  

Analysis of Factors Likely to Affect Protein Stability 

Eleven contributions to the energy and entropy of proteins stability are 

considered. There are four classes of electrostatic interaction: reduction of charge-

charge, charge-polar or polar-polar energy, or introduction of electrostatic repulsion; 

three solvation effects: burying of charge or polar groups, and reduction in non-polar 

area buried on folding; and two terms representing steric strain: backbone strain and 

overpacking. The other two contributions considered are cavity formation (affecting 

van der Waals energy), and loss of a disulfide bridge. Figure 2-1 shows examples of 

each of these, with the corresponding disease outcome. The crystallographic 

temperature factor and surface accessibility of mutated residues are also considered.  

Figure 2-2A shows the distribution of each of these effects in the disease and 

non-disease data sets.  (Criteria used are described in the Methods section). The red 

bar shows the fraction of all disease data points classified as disease, and the green
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Figure 2-1.   Examples of disease caused by structure destabilizing factors.  
For each case, bonds of wild type side chains are shown purple, and bonds of the 
mutant side chains are yellow. Atoms are colored by type. In a number of cases, more 
than one factor is involved. The selected one is judged to be the most significant. The 
full model considers all factors together. Disease associations are taken from the 
NCBI Refseq database. 
 

(a) Loss of polar-polar interactions. L226P in galactose-1-phosphate 
uridylyltransferase (GALT, PDB code 1HXP_B), causing galactosemia. This 
mutant introduces a proline into an alpha helix, resulting in the loss of a main 
chain hydrogen bond, as well as loss of hydrophobic interactions of the side 
chain. 

(b) Loss of hydrophobic interactions. F234S in GTP cyclohydrolase (GCH1, 
1IR8_I), causing dopamine-responsive dystonia. A large buried non-polar side 
chain is replaced by a small polar one, reducing the burial of non-polar area 
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on folding. A cavity is also created, and there is a small gain in polar-polar 
energy. 

(c) Loss of a salt bridge. R382L in isovaleryl Coenzyme A dehydrogenase (IVD, 
1IVH_C), causing isovaleric acidemia.  R382 forms a salt bridge (charge-
charge interaction) in the wild type protein, lost in this mutant. 

(d) Buried charge. G60D in aspartylglucosaminidase (AGA, 1APY_A), causing 
aspartylglycosaminuria. G60D introduces a charge group into the interior of 
the protein. It also causes over-packing.  

(e) Overpacking. C91Y acyl-Coenzyme A dehydrogenase (ACADM, 1EGE_C), 
causing ACADM hereditary deficiency. C91Y introduces a bulky side chain 
into the interior of the protein, resulting in substantial overpacking.  

(f) Cavity formation. F411I in glucocerebrosidase (GBA, 1OGS_A), causing 
Gaucher’s Disease. F411I replaces a large buried non-polar side chain with a 
smaller one, creating an internal cavity. There is also a loss of hydrophobic 
interaction. 

(g) Electrostatic repulsion. G38D in guanine nucleotide binding protein (GNAT1, 
1TAG), causing night blindness. Introduction of the aspartic acid side chain 
results in an unavoidable electrostatic repulsion with another aspartic acid. 
There is also limited overpacking.  

(h) Buried polar group. A543T in Hexosaminidase B (HEXB, 1O7A_D, causing 
Sandhoff Disease. Here a hydroxyl group is introduced in a buried non-polar 
environment. There is also minor overpacking. 

(i) Breaking of a disulfide bond. C163S in aspartylglucosaminidase (AGA, 
1APY_A), causing aspartylglycosaminuria. C163S replaces one component of 
a disulfide bond.  

(j) Backbone strain. G137V in arylsulfatase B (ARSB, 1FSU), causing 
Maroteaux-Lamy syndrome. G137V introduces a side chain onto a glycine 
residue with backbone dihedral angles unsuitable for other residue types.  

(k) Loss of charge-polar interaction. E167K in uroporphyrinogen decarboxylase 
(UROD, 1R3Q_A), causing familial porphyria cutanea tarda and 
hepatoerythropoetic porphyria. E167 forms charge – polar interactions with 
two main chain N-H groups, providing a helix cap. The mutation removes 
these interactions. 
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Figure 2-2A. Partitioning of each stability factor between the disease and non-disease 
data sets.   
The red bars show the fraction of disease variants covered by the corresponding 
factor, and the green bars show the fraction of non-disease variants covered. An ideal 
factor has high coverage of the disease set, and no examples in the non-disease set. 
Factors are ordered by the discriminatory power (ratio of disease to non-disease 
coverage), best discriminators to the left. The discriminatory power of each factor is 
included in the bar labels. The ratio ranges from infinite for breaking a disulfide 
bridge (no examples in the non-disease set) to 1 for polar-polar interactions (an 
approximately equal number of examples in the disease and non-disease sets).  
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bar is the fraction all non-disease points classified as disease. An ideal factor 

includes a large fraction of the disease points (red bars), and no non-disease points 

(green bar). The 11 energy and entropy factors are ordered by the ratio of the two bar 

heights, with the best discriminators on the left.  

Discrimination power ranges from perfect for disulfide bond breakage – (the 

only instances are in the disease set), to none (loss of polar-polar interactions is as 

common in the disease set as in the control set). Coverage also varies widely, from 

only 3% of disease cases involving disulphide bond loss to 24% of cases involving 

over-packing. The last two terms capture the ability of the structure to relax to partly 

compensate for unfavorable energy or entropic effects. As expected, regions of lower 

crystallographic temperature factor contain more disease mutations than non-disease 

ones. Similarly, buried residues, which generally have least space to adjust to change 

and more other energetic restrictions, have a two fold excess of disease mutations 

over non-disease ones.  

Greater discrimination can be achieved by taking advantage of the fact that 

most mutants affect more than one factor. Figure 2-2B shows some examples of 

discrimination using pairs of factors. For example, combining loss of a polar-polar 

interaction with a non-surface environment increases the ratio of disease to non-

disease cases from about one to approximately three. Highest discrimination will be 

obtained with a method that considers all the factors affected by a mutation. For this 

purpose, each mutant is represented as a point in a 15 dimensional factor space.  

Eleven of the dimensions are the energy and entropy factors shown in figure 2-2A. 

One dimension is the surface accessibility of the mutated residue, relative to
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Figure 2-2B. Improvement in discrimination when two stability factors are considered 
together.  
As in 2-2A, bars show the partitioning between disease and non-disease variants, now 
considering two factors at a time. Discriminatory power is considerably improved. 
For example, adding a non-surface requirement to loss of polar-polar interactions 
increase the discriminatory ratio from 1 to 3. Best discrimination is achieved when all 
relevant factors as considered, as in the full model. 
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the unfolded state. The other three are the Cα temperature factor of the mutated 

residues, the Z value of the temperature factor, and the standard deviation of all Cα

temperature factors. (Three dimensions rather than one are used to allow for variable 

scaling of the experimental values). As described in Methods, a support vector 

machine was used to determine a surface that optimally partitions the disease and 

non-disease points in this space.  

Accuracy of the SVM Model 

Figure 2-3 summarizes the results of the model. 74% of the 3768 mis-sense 

mutations in the disease dataset were assigned as disease causing, and 85% of the 

2309 mis-sense mutations in the non-disease dataset were classified as non-disease.  

For the 82% of data points more than a distance of 0.5 from the SVM partitioning 

surface, the prediction accuracy increases to 79% correctly identified disease data 

points, and 89% correctly assigned non-disease points. The 15% false positive rate 

arises from defects in the model. Since only stability factors are included in the 

model, all mutants that act through other mechanisms, such as effects on catalysis, 

binding and so on, are included in the 26% false negative rate. Some fraction of false 

negatives are mutants included in the HGMD database that do not appear to cause 

disease. For example, the mutant G15D in the alpha chain of Hemoglobin (HBA1) is 

in HGMD, but is predicted to be non-disease causing, with a confident SVM score of 

0.8.  The literature on this mutation (Molchanova et al. 1994) gives no indication of 

disease. Allowing for approximations in the model, a conservative conclusion is that 

substantially more than half of disease mutants operate at least partly through 

destabilization of the folded structure. 
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Figure 2-3.   Evaluation of the Support Vector Machine model.  
The left hand panel shows the fraction of disease variants correctly identified by the 
model in jack-knifed testing. The model is trained only to detect variants that cause 
disease by destabilization of the structure, so that the false negative rate of 26% 
includes all other causes, as well as deficiencies in the model. The bottom bar shows 
the result for the more confident subset of predictions (the 80% of the data with an 
SVM distance greater than 0.5), with a false negative rate of 21%. The right hand 
panel shows the same data for the non-disease data set. Here, the false positive rate 
(variants incorrectly assigned to disease) is 15% for the full set and 11% higher 
confidence classifications. 
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Model Evaluation using in vitro Mutagenesis Stability Data 

The SVM disease model is trained entirely on disease related mutant data, 

containing no explicit information about stability. Evaluation of the model’s 

performance against in vitro mutagenesis free energy data provides an independent 

test of the hypothesis that disease is strongly coupled with structure destabilization. 

We would expect that there should be a strong correlation between a potential disease 

outcome and the change in the free energy difference between the folded and 

unfolded states.  

As described in ‘Methods’, we have run the disease trained prediction model 

against a set of 581 of these in vitro stability data, from four proteins (Table 2-1). 

Figure 2-4 shows the relationship between the change in free energy and the fraction 

of mutations that would be predicted to have a disease outcome.  For mutants that 

stabilize or mildly destabilize the folded state (up to 1 Kcal/mole) the fraction of 

potential disease causing residues is close to the false positive rate of the model 

(16%).  As the change in free energy increases, so does the fraction of potential 

disease-causing mutations, reaching 90% in the 3 - 4 kcal/mol range, and 100% above 

4 kcal/mol.  These results confirm that the model is detecting destabilizing effects on 

structure.  The observation that most potential disease-classified mutations destabilize 

the folded state by about 2 to 3 Kcal/mol suggests that real disease causing mutations 

will be in this range.  That conclusion is supported by the fact that the distribution of 

SVM scores for mutants that destabilize by 
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Protein and PDB structure Structure 
class 

Number of Mutations 
(Total 581) 

Acyl-coenzyme A binding protein 
(2abd) 

All alpha 30 (Kragelund et al. 
1999) 

fk506 binding protein (1fkj) Alpha and 
beta  

34 (Fulton et al. 1999; 
Main et al. 1998) 

Barnase (1bni) Alpha and 
beta  

87 (Serrano et al. 
1992a; Serrano et al. 
1992b; Serrano et al. 
1992d) 

Staphylococcal nuclease (1stn) All beta 430 (Byrne et al. 1995; 
Green et al. 1992; 
Green and Shortle 
1993; Holder et al. 
2001; Meeker et al. 
1996; Schwehm et al. 
1998; Shortle et al. 
1990; Stites et al. 1994) 

Table 2-1.  In vitro mutagenesis data from four proteins, used to test the SVM model.   
Structure class is taken from SCOP (Andreeva et al. 2004) 
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Figure 2-4.   Application of the Disease/Stability model to in vitro site directed 
mutagenesis data.  
The plot shows the fraction of mutants classified as consistent with disease, as a 
function of the free energy difference between the folded and unfolded states. For 
stabilizing and weakly destabilizing mutants, the disease compatible fraction is 
similar to the false positive rate of the model. Above 3 Kcal/mol of destabilization, 
90% of mutants are classified as disease compatible. The results suggest that a typical 
disease causing mutant destabilizes the folded state by 2 – 3 Kcal/mol.  
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more than 2 Kcal/mol is similar to that of the disease causing mutants (means of -0.88 

and -1.00, medians of -0.68 and -0.60, respectively).  

It is informative to examine the outliers in this distribution. Five (L108I, 

L36V, L37V and A132G in staphylococcal nuclease and S92A in barnase) of the 53 

mutants that decrease stability by 3 to 4 Kcal/mol are predicted not to be consistent 

with disease.  The two L -> V mutants differ by one methyl group, and both result in 

a slight loss of hydrophobic burial. There are 24 L -> V mutants in the disease dataset 

and 37 cases in the non-disease dataset, suggesting that this class of mutant is finely 

balanced between disease and non-disease causing, and subtle effects tip the balance. 

Consistent with this, the SVM gives a low confidence score (0.14 and 0.13) for these 

two outliers. L108I creates no change of volume or overall hydrophobicity, so it is 

surprising that it is so destabilizing. There are 25 such mutations in the non-disease 

dataset, and only four in the disease set, suggesting this high level of destabilization is 

unusual. The SVM score is also in the less confident range (0.3). The authors of the 

experimental study (Holder et al. 2001) suggest loss of highly optimal van der Waals 

packing is primarily responsible for the large effect. The remaining two mutations,  

A132G and S92A, are both predicted to be non-disease causing with relatively high 

confidence (SVM scores 0.70 and 0.89).  For A132G, there is a minor loss of 

hydrophobic burial. There are 36 cases of A -> G mutations in the non-disease set and 

only 11 cases in the disease dataset. For S92A, the model identified the loss of a 

hydrogen bond and a slight gain of hydrophobic burial.  Serrano and colleagues 

(Serrano et al. 1992a; Serrano et al. 1992b) note that this residue is the first residue in 

a beta turn between two strands. The hydroxyl group is buried, and makes two 
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hydrogen bonds, suggesting it may be involved in unusually strong interactions.  

There are 77 cases of S -> A mutants in the non-disease set and only two in the 

disease set, indicating that such strong polar electrostatic interactions are unusual.  

Eight of the 52 mutants that increase protein stability are predicted to be 

consistent with disease. All but one are in Staphylococcal  Nuclease. All increase 

stability by less than 1 Kcal/mol. For three cases: N138G, S128A and H124F, the 

SVM returns a low confidence score. In none of the other cases is it clear why there is 

disagreement with experiment. For D21A and D21G, there is a predicted loss of 

charge-charge and charge-polar interactions.  For D21A and D21G, there is a 

predicted loss of charge-charge and charge-polar interactions. The distribution of 

these two mutations between the disease and non-disease datasets are 8/8 and 57/11 

respectively. T41I is predicted to result in a large gain of hydrophobic burial, offset 

by the loss of a charge-polar and polar-polar interactions in a buried environment.  

There are 41 cases of T -> I mutations in the disease dataset and 18 cases in non-

disease dataset, most with a predicted large gain hydrophobic burial and decreased 

electrostatic interactions. G50A is predicted to result in backbone strain. It is probable 

the structure is able to relax to accommodate the change in backbone angles. The 

temperature factor is moderately high, supporting this possibility. The eighth mutant, 

N58D, is in barnase. There is a predicted loss of polar-polar interaction and a slight 

gain of charge-polar interaction.  

Alternative Test Sets 

This work uses disease and non-disease related data for training and testing. 

Others (Chasman and Adams 2001; Ng and Henikoff 2003); (Krishnan and Westhead 
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2003) have used data on the phenotypic impact of single residue mutants in a 

bacterial and a phage protein. We have investigated the relationship between our 

assignment of disease potential and phenotypic impact in these mutagenesis sets. The 

data are a set of about 4000 mutants of the E.coli lac repressor  (Markiewicz et al. 

1994) and  a set of about 2000 mutants of  phage T4 lysozyme (Rennell et al. 1991).    

A total of 1,987 mutations in T4 lysozyme and 3,291 mutations in lac repressor can 

be modeled on the corresponding protein structures (PDB entries 1lbh and 7lzm 

respectively).  Each data set was partitioned into groups based on the phenotype 

annotations in the literature.  For lac repressor, these annotations are: “+” (wild-type 

phenotype, 200 fold repression of  beta-galactosidase activity, but in practice some 

times only 8 -10% of this); “+s” (wild-type phenotype under certain conditions, 

including temperature sensitive mutations);  “+-“ (20 -200 fold galactosidase 

glactosidase repression); “-+“ (4 – 20 fold);  and ”-“ (less than 4 fold repression). For 

T4 lysozyme, the groups are: “++” (wild-type phenotype – plaque size similar to 

control); “+” (signifcanlty smaller plaques); “+/-“ (Similar in size to “+’, but hazy 

morphology); and ”-“ (no plaques produced). 

 The HGMD trained SVM model was used to assign potential disease mutants 

in each of the phenotype categories. Figure 2-5 shows the results.  For both proteins, a 

high fraction of the mutants in the most severe class of phenotype impact are assigned 

as disease like (~90% for Lac repressor and ~100% for T4 lysozyme). However, for 
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Figure 2-5.   Application of the Disease/Stability model to mutants of Lac repressor 
and T4 lyzozyme.  
Symbols below the bars indicate the extent of phenotypic impact for that set of 
mutants, from ‘+’ for the most activity to ‘-‘ for none. Red regions of the bars show 
the fraction of mutants in each category found to be compatible with disease. As 
expected, a high fraction of the low activity mutants are assigned as compatible with 
disease, but a significant fraction of the maximum activity ones are also so classified. 
This result is consistent with the fact that a low % of activity is sufficient for a ‘+’ 
classification for both proteins. Numbers below each column show the number of 
mutants in that category.  
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both proteins, about 40% of ‘wild type’ mutants are also assigned as consistent with 

disease. The probable explanation is that a rather low level of enzyme activity is 

needed for a wild type classification: For T4 lyzozyme, as little of 4% residual 

enzyme activity may be classified as wild type (Rennell et al. 1991), and for Lac 

repressor, 10% activity is some times sufficient (Markiewicz et al. 1994). Such low 

levels of monogenic disease protein activity would likely usually result in disease.  

Functional Analysis of Single Residue Mutations 

An advantage of the structure/stability model is that it provides mechanistic 

insight into why a mutant has a deleterious effect on protein function. In principle, 

functional roles, such as ligand binding and catalysis, may also be assigned to 

particular residues, and so allow more general mechanism based analysis. As 

described in Methods, we have investigated this possibility using SwissProt 

functional annotation and experimentally observed ligand binding. Figure 2-6 shows 

the results. For the disease set, an additional 1.6 % of the mutants that were false 

negatives in the stability model are annotated as functionally important. Seven 

percent of the stability related mutants are also assigned a functional role. These low 

values probably reflect the incomplete assignment of function. Inclusion of these in 

the model would reduce the false negative rate by 1.6%. However, in the non-disease 

set, an additional 2.1% of mutants are assigned a functional role, leading to an 

increase in the fraction of false positives. Thus, we conclude that, at present, residue 

function annotation is too unreliable and incomplete to be useful.  
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Figure 2-6.   Distribution of direct functional effects of variants in the Disease and 
Non-disease data sets.   
Residue function was assigned from Swiss Prot annotation and on the basis of 
contacts with bound ligands. 7% of stability variants also have a known functional 
role, and only an additional 1.6% of false negatives are associated with function. 
2.1% of correctly classified non-disease variants are assigned a functional role. 
Overall, few variants are assigned function, and inclusion of those in a disease 
classification model would slightly increase the false positive rate. 
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Investigation of the Role of Protein Structure Accuracy 

Two-thirds of the mis-sense mutations are analyzed in the context of structure 

models rather than experimental structures.  The accuracy of these comparative 

models therefore plays a role in the accuracy of disease assignment. In general, 

accuracy of a structure model decreases with decreasing sequence identity between 

the structure of interest and the closest available template structure.  

To investigate the significance of this factor, disease assignment accuracy was 

examined as a function of structure/template sequence identity, in ranges between 

25% and 100% (‘100%’ are those cases for which an experimental structure of the 

human protein is available).  A separate SVM model was trained and tested within 

each sequence ID group.  

Results are shown in Table 2-2. Overall, disease assignment using protein 

models based on a structure template with more than 40% sequence identity is not 

significantly less accurate than that based on experimental structures.  For sequence 

identity of 30% or lower, errors in structure models begin to have a significant effect, 

with increases in both the false negative and false positive rates. Multiple factors 

contribute to the decline in accuracy, included less reliable side chain interactions 

arising from higher main chain position errors, an increased frequency of sequence 

alignment errors, and higher number of insertions and deletions (Tramontano and 

Morea 2003).  
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Disease Variants Non-Disease Variants 
%

Identity 
#

Mutants 
% of
Total 

#
Proteins FN 

#
Mutants 

% of
Total 

#
Proteins FP 

100% 1710 35% 85 25.5% 672 23% 50 16.7% 
90-99% 981 20% 67 23.2% 932 33% 61 13.2% 
40-99% 1077 22% 93 24.3% 705 25% 62 16.7% 
25-39% 1181 24% 142 27.5% 551 19% 91 28.2% 

Table 2-2.   Disease Assignment Accuracy as a Function of Structure Model Quality.   
Each row shows data using structure models based on a given range of sequence 
identity to an experimental structure. Accuracy is measured by the false positive rate, 
FP (fraction of non-disease variants classified as disease causing), and the false 
negative rate, FN (fraction of disease variants classified as non-disease causing) The 
‘100%’ row gives data for cases based on an experimental structure, rather than a 
model. Accuracy is unaffected by the use of a structure model for sequence identities 
down to about 40%.  

 



39 
 

Discussion and Conclusion

Role of Protein Destabilization in Monogenic Disease 

This work tested the hypothesis that destabilization of protein structure is a 

major factor in human monogenic disease. A simple factor based model of the 

stability impact of single residue mutants and an objective machine learning 

technique are used. In properly jack-knifed testing, the model is able to distinguish 

between mutants likely to lead to disease and those that do not, with reasonably low 

false negative (26%) and false positive (15%) rates. The false negative rate (those 

non-synonymous base changes that lead to disease not so categorized) partly reflects 

deficiencies in the model, but also includes the fraction of mutants that act through 

mechanisms other than destabilization. We conclude from these results that 

substantially more than half of monogenic disease mutants act through a process 

consistent with destabilization of the folded state.  

Use of the model to classify in vitro mutagenesis data strongly supports the 

role of stability in disease, and implies that a disease causing mutant typically 

destabilizes a protein by 2 – 3 Kcal/mol. For most globular proteins, the free energy 

difference between the folded and unfolded state is between 5 and 15 Kcal/mol 

(Privalov 1979), corresponding to an equilibrium constant between the unfolded and 

folded states of between 10-4 and 10-13. A mutant that destabilized by 2 Kcal/mol 

would increase the concentration of the unfolded state by about two orders of 

magnitude, but the fraction of unfolded molecules is still so small that there would be 

no expected effect on function in an in vitro assay. In vivo, though, chaperone 
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scavenging of unfolded proteins (Hohfeld et al. 2001) may cause such a 100 fold 

increase in the fraction of unfolded molecules to result in a much lower steady state 

protein concentration. 

Although loss of stability is clearly highly related to a disease outcome, it may 

sometimes be an effect on folding which is the actual mechanism. In vitro folding 

studies of simple proteins, such as barnase (Serrano et al. 1992c), show that about 

40% of mutants that affect stability also affect the folding rate. For disease mutants, 

folding may be slowed so much that most molecules are targeted for recycling by the 

quality control machinery in the ER and elsewhere (Plemper and Wolf 1999). Since 

not all mutants that affect stability also affect folding rate, if folding were the primary 

factor, a stability model should generate a high level of false negatives. The 

reasonably high accuracy of the stability model thus suggests that it is the most 

relevant factor. Nevertheless, without extensive experimental studies, it is not 

possible to know for what fraction of cases stability or folding is most relevant.  

Direct experimental evidence for the role of stability is scarce, since there are 

very few studies of the properties of disease-causing mutants in human proteins. One 

exception is for mutants in phenylalanine hydroxylase. Excess phenylalanine is toxic, 

and defects in this enzyme lead to phenylketonuria (PKU). Over 100 single residue 

disease causing mutants are known, and a subset of these have been studied in COS 

cells (Scriver et al. 2003). There is a clear correlation between the set assigned as 

affecting stability by our model and the in vivo total activity and concentration, as 

measured by immuno-precipitation.   
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Why does Protein Stability play a Prominent Role in Monogenic Disease? 

There are many mechanisms by which a single base change may affect the 

function of a protein in vivo: Changes in gene regulatory regions may lead to altered 

transcription rates; changes in the transcribed message may lead to altered processing, 

particularly splicing; message changes may affect translation through, for example, 

altering the secondary structure properties (Pelletier and Sonenberg 1987; Shen et al. 

1999). Surprisingly, data for monogenic disease in HGMD suggest that all these pre-

protein factors account for less than 10% of cases (Stenson et al. 2003). This number 

may be an underestimate of the true value, because of bias in detection methodology. 

Nevertheless, it is clear that protein level effects are by far the more common.  

Once a polypeptide chain has been produced, non-synonymous changes (those 

base changes resulting in an amino acid substitution) may affect in vivo activity in 

two major ways: Aspects of the protein’s molecular function may be altered, 

particularly ligand binding, catalysis, post-translational modification, or an allosteric 

mechanism. The likelihood of this class of effect depends on the fraction of residues 

in critically involved in one or more of these functions.  

The second way in which non-synonymous base changes may affect in vivo 

activity is by reduction of the concentration of protein. This may come about through 

less successful folding, or an increase in the fraction of unfolded protein, caused by a 

reduction in stability. Tests with the stability model, sampling a large number of 

randomly chosen mutants, show that approximately half are consistent with a disease 

outcome. Thus, the high fraction of disease mutants associated with stability loss is 
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likely a consequence of the higher fraction of mutants that can affect stability, 

compared with the other possible causes.  

Distinguishing Properties of Monogenic Disease Proteins 

For the 1000 or so monogenic disease proteins in HGMD,  the average 

number of known single residue mutants leading to disease is just over 10 (Stenson et 

al. 2003). Yet no mutants directly causative of monogenic disease are known in the 

remaining approximately 22,000 human proteins.  What is the difference between 

these two sets of proteins? First, monogenic disease proteins may be abnormally 

unstable or have abnormally fragile folding behavior. There is very little data with 

which to address this possibility, but many are relatively simple metabolic enzymes, 

and compared with most human proteins, the least likely to exhibit this sort of 

fragility. A second possibility is that mutants in many of the other proteins lead to a 

non-viable fetus, and so never be classified as disease causing. Gene suppression in 

C.elegans (Kamath et al. 2003) and Saccharomyces (Cliften et al. 2003; Rubin et al. 

2000), as well as limited mouse knockout data  all suggest that only 10 - 20% of 

proteins are essential in this sense, and so that is unlikely explanation. Third, and 

most probably, monogenic disease proteins may be the subset to which the system is 

least robust to component failure. Analysis of non-synonymous single nucleotide 

polymorphisms in the human population shows a significant fraction that appear to be 

as deleterious to protein structure and function as those found in monogenic disease 

genes (Chasman and Adams 2001; Ng and Henikoff 2003; Ramensky et al. 2002; 

Yue 2005), but with no disease outcome. Limited knowledge of human protein 

networks makes it difficult to rigorously test this possibility. Nevertheless, inspection 
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of the pathway context of monogenic disease proteins supports this explanation. 

Many, such as phenylalanine hydroxylase, appear to perform unique roles, with no 

redundancy alternative pathways. In contrast, inspection of the pathway context of 

proteins that contains SNPs that destabilize protein structure significantly, such as the 

T cell receptors (Wang and Moult 2003), usually suggests a mechanism that makes 

the system robust to failure of a protein component. Many different T cell receptors 

are involved in an antigenic response, so that reduced effectiveness of some will not 

have obvious disease consequences, although it may influence resistance to particular 

infections in subtle but significant ways. 

Advantages and Disadvantages of a Protein Structure Based Approach 

An advantage of the structure based approach is that it provides a detailed 

atomic level model of the precise mechanism by which an amino acid change results 

in a change in protein properties. A disadvantage is that it is limited to stability 

effects.  Use of comparative modeling allowed us to extend the number of mutants 

that can be analyzed. Tests showed that disease prediction accuracy is unaffected by 

the use of a model, down to 40% sequence identity to a known structure. This is in 

keeping with studies of the accuracy of structure modeling methods (Cozzetto and 

Tramontano 2005), and also partly reflects the fact that the method does not depend 

on very accurate structures.  Even so, only about 10% of human protein domains can 

currently be analyzed. The rapid advance of structural genomics (Service 2005) may 

quickly reduce this limitation. 
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Methods

Identification of Single Residue Variants related to Monogenic Disease  

Genes associated with monogenic disease were identified by checking all 

16,220 human gene names in the NCBI Locuslink (Wheeler et al. 2004) database (as 

of 04/26/2002) against the Human Gene Mutation Database(Stenson et al. 2003), 

(HGMD) (as of 02/09/2002).  HGMD contains the most comprehensive collection of 

mutations related to monogenic disease. Most are causative of monogenic disease, 

although a few may be associated with disease as a result of linkage disequilibrium 

rather than directly causative, or contribute to complex trait disease. Later versions of 

HGMD include more of the latter class, and so the earlier version was preferred. 731 

genes containing 10,263 single residue variations were identified.  

Identification of a Set of Single Residue Variants not related to Disease 

We also required a control set of mutants, not causative of disease. It is not 

known which base variants in the human population contribute to complex trait 

disease, and so it is not possible to use these. Following others (Sunyaev et al. 2001), 

we used non-synonymous base differences between human proteins and closely 

related proteins in other mammals. The justification here is that almost all variants 

that are fixed between species are essentially neutral and non-deleterious. To maintain 

compatibility between the disease and control sets, the same 731 monogenic disease 

proteins were used.  The protein sequences of these genes were compared to all other 

mammalian protein sequences in Swiss-Prot (Boeckmann et al. 2003), using BLAST 

(Altschul et al. 1997). Proteins with at least 90% sequence identity over at least 80% 
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of the full length were selected. Single residue differences in these alignments were 

used as a set of pseudo ‘mutations’, providing the non-disease set.  A total of 348 

proteins containing 16,682 such single-residue differences to the human disease set 

were obtained.   

Selection of Sets of Mutants with Protein Structure 

Each of the 731 human proteins was checked for entries in the Protein Data 

Bank (as of 7/26/2004)(Deshpande et al. 2005). Templates for models of human 

proteins were taken from the PDB for cases where there was no human structure 

available, and there was a PDB entry for an X-ray structure at least 3.0 Å resolution 

and with 40% or higher sequence identity to the human protein over at least 100 

residues.  

For the non-disease set, variants that might be partially compensated by other 

species differences in the same protein were eliminated as follows. All clusters of 

variants where there are interatomic contacts of 5Å or less between residues were 

discarded. For example, A2S in the myosin light chain is a variant between human 

and mouse, and between human and rat.  G20T, a variant between human and mouse, 

makes contact with the G20 position, and so both variants were excluded. The rat 

protein has no change at G20, so rat A2S was retained in the non-disease set.  

Support Vector Machine 

The Support Vector Machine software package SVMlight 

(http://svmlight.joachims.org/) was used to determine the partitioning surface 

between the disease and non-disease data in the 15 dimensional parameter space. 
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Continuous variables were normalized in the form of a Z score  [Z=(value-

mean)/standard-deviation]. A radial basis kernel was used, allowing for complex 

surface topology. For this kernel, the higher the parameter γ, the more complex the 

effective surface, allowing better accommodation of the data. Too higher a gamma 

leads to over-fitting, and less accurate prediction on new data. A γ value of  0.2 was 

selected, based on a series of trials. Weights were assigned to the disease and control 

data sets to compensate for their different sizes, such that they contributed equally to 

determining the partitioning surface. The distance of a data point from the 

partitioning surface provides an approximate measure of confidence in a prediction.  

SVM Model Training and Testing 

A subset of 90% of the disease and non-deleterious variations were selected 

randomly to form a training set. The resulting SVM model was used to predict which 

of the 10% of data not included in training are disease causing. The training and 

testing procedure was repeated 30 times, randomly selecting the test data on each run. 

For each trial, the false negative rate (the fraction of disease variations mis-classified 

as non-disease) and false positive rate (the fraction of non-disease variants mis-

classified as disease causing) in the test dataset were calculated.  The average false 

positive and false negative rates provide the measure of the prediction accuracy.  

In-vitro Mutagenesis Data 

Free energy difference data from site directed mutagenesis experiments was 

used to test the ability of the SVM model to identify known destabilizing mutations.  

Four proteins with a large number of associated site directed mutagenesis 
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experiments(Byrne et al. 1995; Fulton et al. 1999; Green et al. 1992; Green and 

Shortle 1993; Holder et al. 2001; Kragelund et al. 1999; Main et al. 1998; Meeker et 

al. 1996; Schwehm et al. 1998; Serrano et al. 1992a; Serrano et al. 1992b; Serrano et 

al. 1992d; Shortle et al. 1990; Stites et al. 1994) were selected. They cover three 

classes of protein folds (SCOP (Andreeva et al. 2004) classification): all alpha, all 

beta and alpha & beta. Table 2-1 lists the proteins, and the number of mutants in each.  

More data are available in the PROTHERM database (Bava et al. 2004)   but 

inconsistencies in format, particularly the sign convention for free energy, prevent the 

large scale use of these.  

Comparative Modeling of Protein Structure 

Comparative models were built using the in-house APSE (Automatic Protein 

Structure Emulator) pipeline. Modeling protocols in APSE are based on experience 

with building comparative models in the CASP experiments (Samudrala and Moult 

1997) and a variety of projects. The procedure can be run in automatic or semi-

automatic mode. A core backbone model is first constructed by copying regions of 

the chosen template structure. Alignments are obtained using CLUSTALW. Co-

ordinates of side chains conserved between the human protein and the PDB template 

are copied. Remaining side chains are added using SCWRL (Canutescu et al. 2003).  

Where necessary, quaternary structure was taken from the PQS (Protein 

Quaternary Structure) database of biological units (Henrick and Thornton 1998).  

Additional subunits are modeled in the same manner as the chain of interest. Side 

chains are modeled in the multimer context.  
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Modeling the Structure of Single Residue Mutants 

All SCWRL library back-bone dependent conformations (Canutescu et al. 

2003) for the new side chains were built.  The conformation least damaging to 

stability was selected, based on the following rules. First, the conformation with the 

least worst overpacking was selected. I.e. if there is one conformation with an 

interatomic contact of 2.6Å and another with 2.7Å, the latter was accepted. No 

distinction was made between conformations with contacts 3.0Å or longer. If more 

than one conformation remained, the one with the least loss of hydrophobic area was 

selected. In cases where there is no loss of hydrophobic area, conformations with loss 

of a salt bridge were next eliminated, then those with electrostatic repulsion, 

hydrogen bond loss, cavity formation, backbone strain, introduction of a buried 

charge, and finally, introduction of a buried polar group. 

Modeling the Stability Impact of a Single Residue Mutant 

Table 2-3 lists the stability factors that provide the 15 dimensions used in 

assessing the impact of each mutant on protein stability. These are divided into those 

factors treated as continuous variables, and those treated as two state variables 

(significantly destabilizing or not).     

Continuous factors 

1. Electrostatic interactions: The difference in electrostatic energy between a 

wild type protein and its corresponding mutant was calculated using a simple 

Coulomb’s law treatment, with no solvent model.  The partial electrostatic interaction 

energy between a pair of polar or charged groups ‘i’ and ‘j’ is calculated in the usual 

manner as: 
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Type Factors 
Electrostatic interaction: polar-polar, polar-charge, charge-
charge. 
Over-packing 
Hydrophobic burial 
Surface accessibility 

Continuous 
factors 

Structural rigidity: Crystallographic B-factor, Z score and 
standard deviation 
Cavity 
Electrostatic repulsion 
Backbone Strain 
Buried charge 
Buried Polar 

Binary factors 

Breakage of a disulfide bond 

Table 2-3.  The 15 factors included in the stability model.  
The effect of each single residue mutant on stability is expressed in terms the value of 
one or more of these contributions to the energy and entropy. ‘Continuous factors’ are 
represented by a continuous variable, ‘binary factors’ are two states, either 
significantly or not significantly affecting stability  
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Eij = K ∑k∑lqkql/rlk 

where the sums are over all atoms 'k' of group ‘i’  and atoms 'l' of group ‘j’, 

the 'q's are the partial atomic charges in electrons, and rlk is the distance between 

atoms 'l' and 'k', in Å. 'K' is the scaling constant (332) nominally converting energies 

to Kcal/mol. (Absolute scale is not significant here, because of the Z score 

normalization). Interactions between a pair of groups are included if the centers of 

charge are less than a cutoff distance dc apart. The center of charge of a group rc is 

defined as: 

 rc = ∑k|qk|rk/∑k|q k|

Where the sum is over all atoms in the group. Electrostatic group definitions 

and partial atomic charges are as in (Pedersen and Moult 1997). The threshold for 

group-group interactions, dc, is 5Å. This protocol for electrostatic calculations has 

been to be effective at identifying incorrect structural features in experimental 

structures(Oliva and Moult 1999). 

2. Overpacking: For each mutant, the closest inter-atomic distance between 

the mutant residue and any neighboring residue was used.  

3. Relative surface accessibility: Solvent accessible surface (Lee and Richards 

1971) was calculated with in-house software. The relative surface accessibility of a 

residue is defined as the surface area of the side chain in the folded state divided by 

an estimate of the average surface area in the unfolded state (Shrake and Rupley 

1973).  
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4. Hydrophobic burial Change: The change in buried non-polar area ∆ANP 

resulting from a single residue mutation is defined as: 

 ∆ANP = ∑i∆ai - ∑j∆aj

where the first sum ‘i’ is the change in non-polar area on folding for all non-

polar atoms in the mutant structure and the second sum ‘j’ is over all non-polar atoms 

in the wild type structure. The change in atomic non-polar area in folding is given by: 

 ∆a = au - af

where au is the estimate of the average atomic surface area in the unfolded 

state (Shrake and Rupley 1973) for that atom, and af is the calculated atomic area in 

the folded structure. Non-polar atoms are those assigned zero charge.  

5. Crystallographic Temperature factors: For each experimental structure used 

directly or as a model, the average temperature factor <B>, and standard deviation 

σ(B) over all Cα atoms was calculated, and used to obtain a temperature factor Z 

score for each Cα: Zi = (Bi - <B>)/σ(B). Bi, Zi, and σ(B) were used as parameters in 

the SVM.  

Binary factors 

6. A Cavity is assigned to any mutation resulting in the loss of volume of an 

aliphatic carbon group or greater at a zero solvent accessibility position. For example, 

Ala mutated to Gly, where the wild type Cβ atom has zero solvent accessibility.  

7. Electrostatic repulsion is assigned to any mutation which results in two like 

charged groups with an unavoidable atomic contact of less than 4.5 Å. 

8. Backbone Strain is assigned to any mutation if one of the following 

conditions is met:  
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A. Replacement of a glycine residue with φ/ψ angles in a non-allowed region 

for other residue types. Allowed regions were those covering 90% of observed φ/ψ

values, as provided in PROCHECK (Laskowski RA 1993), 

B. Replacement of a cis-proline (ω = 0+/-60o) with another residue. 

C. Replacement of another residue by proline, where the φ value is 

inappropriate (Permitted φ for Pro = -60+/-15o).  

9. Buried charge is assigned to any mutation which results in a zero solvent 

accessibility, electrostatically isolated, charge group. 

10. Buried Polar is assigned to any mutation which results in a zero solvent 

accessibility polar group with no hydrogen-bond. A hydrogen bond is defined as a 

donor to acceptor distance   <= 2.5Å, and an angle at the acceptor >= 90.0º.  

11. Breakage of a disulfide bond is assigned to any mutation which replaces a 

cysteine residue in an S-S bond with a non-cysteine residue. 

Evaluation of Discrimination power of each Stability Factor 

The frequencies of each stability factor in the disease and non-disease datasets 

were calculated.  The ratio of the two frequencies defines a discrimination power. For 

this purpose, a threshold was chosen for each of the continuous factors. Any mutation 

with a value higher than the threshold was considered to destabilize protein structure. 

Thresholds were chosen by inspection of the distribution of values for the disease and 

non-disease sets, selecting levels that provide a high fraction of true positives and true 

negatives, while minimizing false negatives and false positives. The following values 

were used: 



53 
 

1. Overpacking: At least one unavoidable atomic contact of 2.5Å or less of 

the mutated residue to a neighboring one. 

2. Hydrophobic burial: Loss of hydrophobic burial of more than 50 Å2. 

3. Electrostatic interaction: Any reduction in electrostatic interaction energy, 

for polar-polar, charge-charge and charge-polar interactions. 

4. Buried residue: Relative residue accessibility of less than 20%(i.e. the wild 

type side chain accessibility is less than 20% of the estimated average unfolded state 

accessibility). 

5. Moderate crystallographic Temperature Factor:  The Cα temperature factor 

of the mutated residue has a Z score of less than  +1 (i.e. the temperature factor is less 

than one standard deviation above the mean for the protein). 

Identification of Residues with a Role in Molecular Function 

Each mutated residue, and all residues with one or more atomic contacts of 6Å 

or less to it, was checked against the SWISS-PROT feature annotation table for 

possible functional effects.  Additionally, a check was made for atomic contacts of 

the mutated residue of 6Å or less to any ligand atom in PDB entries for that protein 

and other X-ray structures with at least 40% sequence identity over at least 100 amino 

acids, and at 3.0Å or better resolution. 
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Chapter 3: Identification and Analysis of Deleterious 
Human SNPs 
Introduction

In this chapter, we analyze non-synonymous or missense SNPs in the human 

population.  We use two methods to identify which missense SNPs are deleterious to 

protein function. Both methods have been developed and tested on amino acid 

changes causative of monogenic disease, and a control set of single residue changes 

fixed between closely related mammalian species (Sunyaev et al. 2001). One method 

analyzes the impact of amino acid changes on protein stability, making use of the 

three dimensional structural environment (Yue et al. 2005) as described in the chapter 

2. We find the majority of single base changes that cause monogenic disease 

significantly destabilize the folded state of the protein concerned. The second method, 

reported in this chapter, makes use of the tendency of critical amino acids to be 

conserved within a protein family. The more conserved and restricted the type of 

amino acid at a position, the more likely that a substitution not consistent with that 

pattern will have a deleterious impact on protein function. This method is more 

general than the stability model, including all types of protein level effect. It is also 

more widely applicable, since it does not require knowledge of three dimensional 

structure. On the other hand, it provides less direct insight into the mechanism by 

which a missense SNP affects protein function. The principles of sequence 

conservation methods have also been explored by others (Chasman and Adams 2001; 

Krishnan and Westhead 2003; Ng and Henikoff 2003; Ramensky et al. 2002; 

Sunyaev et al. 2001).  We have used a machine learning method, the support vector 
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machine, trained on five simple features that capture the relative sequence 

conservation at each position in a multiple sequence alignment. The support vector 

machine allows the identification of a subset of high confidence predictions. The use 

of two separate methods provides an additional means of assessing the reliability of 

the conclusions. 

The two methods have been used to analyze sets of non-synonymous SNPs 

found in the human population, extracted from the dbSNP database (Sherry et al. 

2001), and a subset of those for which population frequency data are available. The 

subset are data from Perlegen (Hinds et al. 2005) and the Hapmap consortium (2003). 

Using stringent criteria, we find that about ¼ of these SNPs are classified as 

deleterious at the same level as those causing monogeneic disease in other genes. 

These are very likely to have a significant impact on protein function, and so 

probably contribute to complex disease traits, and provide a basis for prioritization in 

association studies.  

We have also examined a number of aspects of the relationship between 

monogenic disease genes and the rest. First, we have compared the occurrence of 

deleterious SNPs in monogenic versus non-monogenic disease genes. We find that, 

whereas in monogenic disease genes nearly all deleterious SNPs occur at low 

frequency in the population, in other genes, a larger proportion are found at high 

frequencies, consistent with the idea that the effect of deleterious SNPs in other genes 

is buffered. Second, we have looked at the rate of sequence divergence of monogenic 

versus other genes. An interesting variation with conservation level is found. Third, 

we have found that there is a correlation between the phenotypic impact of mouse 
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knockouts and whether or not the orthologous human gene is implicated in 

monogenic disease. Finally, we have checked to see if monogenic disease genes are 

less likely to have paralogs than the others, exploring the idea that paralogs some 

times can provide substitute function. No such effect is found.  
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Results

Training and Testing Data used for the Classification Methods 

Table 3-1 summarizes the monogenic disease and control datasets used for 

training and benchmarking the sequence profile and structure stability methods. There 

were a total of 10263 deleterious mutants in 731 proteins and 16682 control 

substitutions in 348 proteins available. The profile model includes 92% and 71% of 

these respectively, since profiles can be built for most proteins. In testing, high 

confidence (‘HC’, SVM score > |0.5|) classifications were obtained for over 80% of 

these. Significantly fewer data (37% and 14% respectively) are included in the 

stability model, because of low structural coverage of human proteins. High 

confidence classifications are again obtained for about 80% of cases. The last two 

rows show the data for cases where both methods could be applied. The fraction of 

high confidence predictions is similar.  

Accuracy of the Classification Methods 

Figure 3-1 shows the false positive (blue bars) and false negative rate (red 

bars) for both methods separately, on all data and for just the high confidence 

classifications (an SVM score of greater than 0.5 for non-deleterious classifications 

and less than -0.5 for deleterious ones), as well as the corresponding data for the cases 

where the two methods agree. As expected, the false positive and false negative rates 

are highest for the individual classification methods, lower when only high 

confidence classifications are considered, and lowest of all when only high 

confidence classifications shared by both methods are included (3% false positive, 



58 
 

Deleterious Mutants Control substitutions 
# % Proteins #  %  Proteins 

All Data 10263 100% 731 16682 100% 348
Profile 9468 92% 693 11778 71% 336

Profile HC 7986 78% 673 10171 61% 336
Stability 3768 37% 243 2309 14% 153

Stability HC 3046 30% 229 1904 11% 152
Profile+Stability 3641 35% 235 2141 13% 148
Profile+Stability                   

HC 
2501 24% 216 1498 9% 146

Table 3-1.   Training and Testing Data for the Profile and Stability methods.  
‘Deleterious mutants’ are amino acid changes that cause monogenic disease (Stenson 
et al. 2003). ‘Control substitutions’ are amino differences between human proteins 
and closely related orthologs. ‘HC’ are high confidence classifications from the 
Support Vector Machine. The ‘#’ and ‘%’ columns give the number and percent of 
data in each row. ‘Proteins’ are the number of proteins from which data are included.  
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Figure 3-1.   Evaluation of the profile and Stability Methods. 
False positive and false negative rates are shown for the two methods alone, and for 
cases where both can be applied and the classifications agree. Results are shown for 
all classifications, and for the high confidence subsets (‘HC’, SVN score > |0.5|). 
Higher false negative rates for the stability model reflect the fact that only stability 
and folding effects are included, where as the profile model includes all effects on 
protein function in vivo.
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9% false negative). The false negative rate of the profile method is slightly lower than 

that of the stability method (20% versus 26% for all classifications, 15% versus 21% 

for high confidence ones). This difference is expected, since the profile method 

includes all effects on protein function at the amino acid level, including ligand 

binding, catalysis, allosteric mechanisms, and post-translational modifications, as 

well stability and folding effects, whereas the stability model includes only stability 

and folding contributions. Less expected is the lower false positive rate for the profile 

method (10% versus 15%, 6% versus 11% for high confidence classifications). The 

balance between false positive and false negative rates is determined by the relative 

weights given to the deleterious and control datasets in training the SVM. Equal 

weights, taking into account the differences in data set sizes, were used. Different 

weighting would adjust the false positive rates to be more similar. 

For both methods, the finite error rates reflect both the effects of 

approximations in the methods and the nature of the data sets.  The stability method 

incorporates a number of approximations in modeling the structure of mutants, and 

uses a scenario based analysis of effects on stability (Yue et al. 2005). As discussed 

later, for the profile method, the effect of a limited number of sequences in a profile is 

the main approximation.  The HGMD data (Stenson et al. 2003) used as a disease set 

contains some entries that are not strictly causative of monogenic disease. For 

example, the mutant G15D in the alpha chain of Hemoglobin (HBA1) is in HGMD, 

but is predicted to be non-disease causing, with a confident SVM score of 2.9.  The 

literature on this mutation (Molchanova et al. 1994) gives no indication of disease.  

Since 1999, HGMD have added some mutants that disease ‘associated’ or ‘risk’ 
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polymorphisms. This work uses the HGMD version of 04/26/2002, which includes 

152 mutants identified as not necessarily causative of disease. The false negative rate 

for these is very high: 62% for the profile method and 73% for the stability method. 

The assumption of no deleterious effects fixed between species might contribute to a 

finite false positive rate. There are 41 HGMD mutants where the altered amino acid is 

the wild type in another species. Of these 37 are classified by the profile model, but 

only four are found to be deleterious. Thus, these appear to be largely inappropriate 

entries in HGMD, rather than deleterious mutants fixed in other species. In spite of 

the limitations in the models and data, the errors are sufficiently small that firm 

conclusions about the level of deleterious SNPs in the human population can be 

reached, provided the false positive and false negative rates are taken into account.   

Sensitivity to the Number of Sequences in a Profile 

To classify deleterious nsSNPs, the profile method makes use of five features 

related to the relative sequence conservation, including the probability of accepting an 

amino acid substitution (based on PSSM, position specific scoring matrix) and four 

entropy factors.  The reliability of the PSSM and entropy values depends on the size 

of the sequence alignment. We examined the accuracy of the method as a function of 

the number of sequences available, after filtering out redundant and less reliably 

aligned sequences, as described in Methods. Profiles were divided into sets with 

different numbers of sequences, and the accuracy evaluated for each set. Table 3-2 

shows the results. All sets have similar accuracy, except the set with the smallest 

number of sequences (2 – 9). This group has a similar false negative rate but a higher 
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Deleterious Control No. of 
sequences FN Proteins # FP Proteins #

[2-9] 0.18 60 500 0.31 16 787
[10-19] 0.17 82 1073 0.14 24 1296
[20-39] 0.18 167 1957 0.11 85 2785
[40-59] 0.22 121 1871 0.13 66 2263
[60-79] 0.19 94 804 0.10 48 1578
>=80 0.18 169 3263 0.10 97 3069

Table 3-2.   Accuracy of the Profile method as a function of the number of sequences 
in the alignment.  
Accuracy is measured in terms of the false negative rate (FN) and the false Positive 
rate (FP). The ‘#’ columns show the number of variants analyzed in each alignment 
size range, and ‘proteins’ are the number of human proteins included. Accuracy is 
approximately equal in all but the smallest alignment range, where there is a sharp 
rise in the false positive rate. 
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false positive rate (31%) than the other groups.  The high false positive rate is 

probably a consequence of the low maximum entropy for a small number of 

sequences: the maximum for two sequences is approximately 1 bit, while for 20 

sequences, it is 4.3 bits. Additionally, for small profiles, the PSSM is dominated by 

the BLOSUM scores rather than the pattern of residue use.  

Comparison between BLOSUM, PSSM, and Profile Models  

The full profile method includes the PSSM for the aligned sequences, and 

entropy factors. We compared the performance of a PSSM (Altschul et al. 1997) 

alone, which takes into account which residues are observed at each position in a 

sequence alignment, with performance using an average substitution matrix 

(BLOSUM (Henikoff and Henikoff 1993)), which considers only the likelihood of the 

substitution in all proteins at all positions. It has been suggested that the BLOSUM 

matrix is suitable for use in  identifying damaging nsSNPs (Cargill et al. 1999; Ferrer-

Costa et al. 2002).  Since a PSSM contains information unique to each sequence 

family and sequence position, we would expect it to produce more accurate 

classifications. 

BLOSUM 45 and BLOSUM 62, representing average substitution preferences 

between proteins with different levels of sequence identity, were tested. PSSM and 

BLOSUM method accuracy as a function of a score threshold were examined, and the 

threshold returning the lowest sum of false positives and false negatives chosen in 

each case. The results are shown in table 3-3, with the full profile method included 

for comparison. The BLOSUM matrices both yield similar false positive and negative 

rates, of about 27% and 36% respectively, whereas the PSSM has significantly lower 
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False Positive Rate False Negative 
Rate 

BSOSUM 45 27% 38%
BLOSUM 62 28% 36%
PSSM 22% 28%
Profile model 10% 20%

Table 3-3.   Comparison of Classification accuracy of BlOSUM matrices, a PSSM 
and the full Profile method. 
The PSSM method has substantially lower false positive and false negative rates than 
obtained with either BLOSUM matrix. The additional entropy information in the full 
profile model further improves accuracy.  
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values of 22% 28%. The profile model is substantially more accurate than the PSSM 

alone, with false positive and false negative rates of 10% and 20% respectively, 

establishing the entropy terms do provide significant additional information.  

Comparison of Expected and Observed Accuracy for the Combined 

Classification Methods 

Reliable false positive and false negative rates are essential for accurately 

estimating the fraction of deleterious SNPs in the population. In principle, the values 

obtained from the benchmarks are accurate. A further test is provided by examining 

the consistency of the individual method errors with those of the combined methods. 

Since the two methods are based on different principles and their primary causes of 

error are unrelated, the errors are approximately independent. Under these conditions, 

the expected specificity and sensitivity for the cases where the methods agree can be 

calculated (see Methods). Comparison of these values with the actual ones then 

provides the consistency test.   

Table 3-4 shows the observed and expected values for the combined methods. 

Results for two combined sets are shown. The first includes the subset of data to 

which both methods can be applied. Specificity is substantially higher for the 

combined methods, and sensitivity lower, as expected. The second set includes data 

to which both methods can be applied, and where high confidence classifications are 

returned in all case. For both data sets, the expected and observed values are 

reasonably close, supporting the reliability of the false positive and false negative 

rates returned by single method benchmarking. Observed sensitivities are a little 

higher than expected, suggesting the false negative rate may be slightly 
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Single Model Both Models  
Profile Stability Observed Expected 

SN 80% 74% 63% 59%All Results 
 SP 90% 85% 96% 98%

SN 85% 79% 73% 67%High  
Confidence  SP 94% 89% 97% 99%

Table 3-4.   Sensitivity (SN) and Specificity (SP) for the combined methods, 
compared with that Expected from the accuracy of the individual ones.  
The first pair of columns shows the sensitivity and specificity for each method alone. 
The third column shows the results for the cases where both models can be applied, 
and the fourth column shows the expected sensitivity and specificity of the combined 
models, given the results for the individual methods. The first two rows show the 
results for all classifications. The high confidence set includes only cases where a 
high confidence result is obtained. Agreement between observed and expected 
provides a test of the accuracy values (see Methods). 
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overestimated. Specificities are about 2% lower than an expected, but the values are 

so high (worst case 96%) that any small amount of noise may account for this. 

Analysis of Population SNPs: Approximately a Quarter of Non-Synonymous 

Population SNPs are Deleterious. 

We now use the profile and stability methods to identify deleterious non-

synonymous SNPs (nsSNPs) in the human population. As described in Methods, 

nsSNP data were obtained from three sources: the NCBI dbSNP database (Sherry et 

al. 2001), the Perlegen data (Hinds et al. 2005), and the Hapmap project results 

(2003). dbSNP contains a wide range of data, some of which is based on a single 

observation. Both Perlegen and the Hapmap project have genotyped sets of 

individuals from several different populations. Since these SNPs are all verified, and 

have associated population frequency information, we have analyzed them as a 

separate data set, referred to as the Frequency set. Table 3-5 shows the number of 

data available in the full dbSNP set and the Frequency set, and the number of data 

that can be classified by the stability and profile methods, the combined methods, and 

the number of high confidence classifications in each case.  

Figure 3-2 shows the fraction of population SNPs assigned as deleterious in 

dbSNP (blue bars) and the Perlegen/Hapmap data (purple bars).  Results are again 

shown for the two methods separately, and for the combined methods, for all 

classifications, and those of high confidence. Deleterious classifications in both SNP 

sets are lowest for the most stringent conditions (high confidence classifications for 

the combined methods), with 33% for all dbSNP data and 17% for the Frequency 

subset, The highest deleterious rates are for the stability model alone, with 40% for 
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All Frequency Set 
#

SNPs 
%

SNPs 
#

Genes
#

SNPs 
%

SNPs 
#

Genes
dbSNP Build 

124 
50772 100% 15710 10403 100% 6316

Profile 29081 57% 11129 6377 61% 4297
Profile HC 22067 43% 9782 4911 47% 3549
Stability 5166 10% 2019 885 9% 624

Stability HC 3960 8% 1776 681 7% 509
Profie+stability 3150 6% 1512 531 5% 415
Profile+stability 

HC 
2096 4% 1180 370 4% 304

Table 3-5.   Data used for identifying deleterious Human SNPs. 
The top line shows the number of missense SNPs available in the dbSNP database, 
and the subset of these with population frequency information, from Perlegen and the 
Hapman project. Classifications were made on the full set and the frequency set. The 
number of SNPs classified in each case, and the number of genes are given for the 
profile method, the stability method and the combined methods. In each case, values 
are given the full data and for the subset that are classified with high confidence 
(SVM score > |0.5|).  
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Figure 3-2.   Estimated fraction of Deleterious SNPs in the Human Population.  
Results are shown for all missense SNPs in dbSNP build 124 (blue bars), and a subset 
for which there are population frequency data (purple bars). Deleterious rates are 
calculated using the profile and stability methods, the two methods combined, and 
also, in each case, for high confidence (‘HC’, SVM score > |0.5|) classifications only. 
Consistently lower rates are found for the frequency subset than for all dbSNP data, 
partly reflecting the effect of incorrect entries in the latter. Variations in the rate for 
the different classification methods reflect the differing false positive and false 
negative levels. Lower rates for the high confidence predictions reflect the fact these 
are generally obtained only for more severe effects on protein structure and function. 
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the dbSNP data, and 31% for the Frequency subset. Deleterious SNP rates are 

consistently substantially lower for the Frequency subset than the full dbSNP set, 

presumably reflecting the effect of the unreliable single observation component in 

dbSNP. As a control, we also analyzed the 952 Hapmap SNPs which were found to 

have zero frequency, that is, are in dbSNP, but were not observed in the Hapmap 

population. The profile method classifies 50% of those SNPs as deleterious, a much 

higher value, and close to that obtained in tests introducing random mutations. 

The deleterious population SNP rates in figure 3-2 are distorted somewhat by 

the finite false positive and false negative rates of the classification methods. 

Distortions can occur in both directions: A high false positive rate contributes to over-

estimating the deleterious SNP level, but a high false negative rate contributes to an 

underestimate. We correct for these effects as follows: For a given true deleterious 

rate Dtrue, with a false positive rate fp and false negative rate fn, the expected apparent 

deleterious rate Dexp is given by: 

 

Dexp =  Dtrue - Dtrue * fn + [1- Dtrue ]* fp

Where the second term (Dtrue * fn ) is the underestimate effect of false 

negatives, the third ([1- Dtrue ]* fp ) is the over-estimate effect of false positives. The 

most probable value of Dtrue can then be obtained by examining the difference 

between the expected (Dexp) and observed (Dobs) deleterious rates, as a function of 

Dtrue.
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Figure 3-3 shows the residual |Dobs – Dexp| as a function of possible Dtrue 

values, for each of the method conditions, using the frequency subset. There are well 

defined minima in the residual curves, at values of Dtrue between 15 and 25%. Lower 

values are obtained with the high confidence subsets (~20%), and the lowest value 

(15%) is obtained with the high confidence assignments common to both methods. It 

is expected that high confidence scores are only obtained for the more severe effects 

on protein function and stability. Application of the stability method to site directed 

mutagenesis data where experimental folding free energies are available confirms that 

on average high confidence assignments have a more severe effect in protein stability 

(data not shown), Thus, the lower level (15 – 20%) of deleterious SNPs found for the 

high confidence score subsets are an estimate of the fraction of more severely 

deleterious SNPs in the population. The best estimate of the fraction of population 

missense SNPs that are as detrimental to protein function as those found for 

monogenic disease is provided by the full set of classifications for the profile and 

stability methods, separately and combined. In all three cases, that value is close to 

25%. Thus, the analysis leads to the conclusion that approximately one quarter of 

non-synonymous SNPs found in the population are as deleterious to protein function 

as single base changes known to cause monogenic disease. This value is little lower 

than reports by other groups (Chasman and Adams 2001; Ramensky et al. 2002), 

probably because of the effect of correcting for finite errors rates in the methods.  

Deleterious SNPs in Monogenic Disease Genes 

There are 4,458 nsSNPs in dbSNP located in monogenic disease genes, 

among which 1,656 are assigned as deleterious by the profile method. Only a small 
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Figure 3-3.   Difference between the expected and observed fraction of deleterious 
population SNPs as a function of the underlying true rate.  
Residuals are calculated as a function of possible true values (X axis), using the false 
positive and false negatives rates for each method. Minima give the estimated true 
deleterious rates. The Stability, Profile and combined methods all yield rates close to 
25%. The High confidence classifications yield lower values, reflecting the fact that 
generally only severe effects on protein structure and function have high confidence 
classifications. Data are for the frequency subset of dbNSP.  
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portion (152) is also present in HGMD as known monogenic disease mutants.  The 

reminder might be new monogenic disease causing variants, known variants not yet 

entered into HGMD, or false positives. Given a false positive rate of 10%, we only 

expect 446 in that category. If the additional SNPs really are disease causing, we 

would expect them to be predominantly at low frequencies in the population. Figure 

3-4 shows a comparison of the population frequency distribution of the 970 of these 

in the frequency subset with the corresponding distribution for all other genes. As 

expected, there are many more low frequency SNPs in both sets. Both sets also show 

a higher fraction of deleterious SNPs at low frequency, compared to non-deleterious, 

consistent with their being selected against. That bias is stronger for the monogenic 

disease gene set, and only about 10% are at frequencies higher than 20%, the 

expected fraction of false positives.   

To investigate the possibility that some of the additional deleterious missense 

SNPs in monogenic disease genes are in fact disease causing, we examined the subset 

of 18, in 15 different genes, which are assigned as deleterious with high confidence 

by both classification methods. Table 3-6 summarizes the data for these SNPs. Five 

are already in HGMD, but given the very low false positive rate for this subset (3%, 

as shown in figure 3-1), the others are candidate mutants for monogenic disease. Two 

of these have surprisingly high population frequencies for monogenic disease 

mutants: SEROINA7 L303F, at 20%; and AMACR G175D with a frequency 34%. 

SERPINA7 belongs to a family of serine protease inhibitors, but also functions as a 

thyroid binding–globulin (TBG). There are many mutations associated with TBG 

deficiency, and many of these also have a high population frequency 
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Figure 3-4.   Distribution of SNP Frequencies in the Human Population. 
Solid red bars show the fraction of all deleterious missense SNPs in each frequency 
range, for all non-monogenic disease genes. The hashed red bars show the same data 
for monogenic disease genes, Green bars show the corresponding data for Non-
deleterious SNPs. As expected, low frequency SNPs are the most common, for all 
categories. Deleterious SNPs are biased towards low frequencies in both sets, but the 
effect is considerably stronger for monogenic disease genes. 
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Gene SNP ID SVM 
Stability 

SVM 
Profile 

Substit-
ution 

Freq Source Population HGMD 

CFTR 766874 -0.88 -1.75 S605F 0.002 Hapmap afr,eur,chn,jap  
FCER1A 2298805 -0.73 -2.67 S101N 0.007 Perlegen afr,eur,chn  
NTRK1 6336 -1.06 -1.17 H604Y 0.011 Hapmap afr,eur,chn,jap CM990977 
DNASE1 1799891 -0.54 -0.77 P154A 0.011 Hapmap afr,chn,jap  
CFTR 1800100 -1.06 -2.12 R668C 0.014 Perlegen afr,eur,chn CM950247 
LYZ 1800973 -0.92 -0.72 T88N 0.015 Hapmap afr,eur,chn,jap  
CHAT 8178990 -0.82 -1.26 L125F 0.021 Hapmap afr,eur,chn,jap  
EPX 2302311 -1.32 -0.81 N572Y 0.027 Hapmap afr,eur,chn,jap  
HFE 1800562 -1.00 -1.77 C194Y 0.028 Perlegen afr,eur,chn CM960828   
TAP1 1057149 -0.80 -1.94 R708Q 0.029 Perlegen afr,eur,chn  
CYP2A6 17791931 -0.81 -1.99 L160H 0.035 Perlegen afr,eur,chn CM980517 
KLK3 17632542 -0.58 -1.67 I179T 0.036 Perlegen afr,eur,chn  
PTGS2 5272 -1.40 -1.42 E488G 0.056 Hapmap afr,eur,chn,jap  
HFE 1799945 -0.70 -0.66 H63D 0.085 Hapmap afr,eur,chn,jap CM960827 
CYP2A6 5031017 -1.57 -1.61 G479V 0.125 Hapmap afr  
OTOR 6135876 -0.91 -0.96 L31P 0.141 Perlegen afr,eur,chn  
SERPINA7 1804495 -1.28 -1.38 L303F 0.203 Perlegen afr,eur,chn  
AMACR 10941112 -1.51 -2.35 G175D 0.341 Hapmap afr,eur,chn,jap  

Table 3-6.   Very high confidence classifications of deleterious population SNPs in 
monogenic disease genes.  
‘SVM Stability’ and ‘SVM Profile’ are the scores assigned by the two classification 
methods. A score < -0.5 is high confidence.  The ‘Freq.’ column gives the mean 
frequency of each SNP over the populations. The ‘Population’ column lists the 
populations in which each SNP has been genotyped: afr: African, eur: European, chn: 
Chinese, jap: Japanese populations. Only five of these SNPs are in the HGMD 
database of disease causing mutations (IDs in the last column).  
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(Mori et al. 1990) (Waltz et al. 1990). These mutants alone are not sufficient to cause 

disease, since the resulting tendency for hyperthyroid is usually reversed by reduced 

thyroid hormone secretion. The high frequency is thus likely a consequence of a 

second factor being required for disease. There is no obvious explanation for the high 

frequency of the AMACR SNP. 

Divergence Rates of Monogenic Disease-Associated Proteins  

Figure 3-5 shows a comparison of divergence rates of monogenic disease 

proteins versus all others. A larger proportion of the most highly conserved proteins 

are non-disease, whereas at moderate to high conservation, a higher proportion is 

disease. At the lower conservation levels, non-disease proteins are slightly more 

common. This pattern can be rationalized as follows. Damage to the most conserved 

proteins is more likely to be lethal, and thus, not identified as disease causing. The 

lowest conserved proteins are likely buffered against deleterious changes in some 

way, and so are also not involved in monogenic disease. It is the more moderately to 

highly conserved genes where deleterious SNPs are likely to lead to disease, but not 

to be lethal. Other reports (Huang et al. 2004; Smith and Eyre-Walker 2003), using 

only average values, and separately analyzed Ks and Ka rates, come to contradictory 

conclusions. With more genomes becoming available, further study will be 

worthwhile.  

Comparison with Mouse Knockout Data 

The profile and stability models detect SNPs that reduce the level of protein 

function in vivo. The limit of reduced function is the absence of the gene. Thus, we 
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Figure 3-5:  Protein Sequence Divergence Rates for Human Monogenic Disease 
Proteins (Blue bars) and all others (Purple bars).    
Rates are expressed in terms of the sequence identity between each human protein 
and its mouse ortholog. Disease proteins have a larger proportion of high sequence 
identity mouse orthologs, showing that, on average, their sequences diverge more 
slowly than those of other proteins.   
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would expect a relationship between the response of the human phenotype to 

deleterious SNPs, and the response of mice to knockout of the corresponding 

orthologs. Mouse knockout data were obtained from 

http://www.bioscience.org/knockout/knochome.htm.  In this database, genes are 

clustered into four knockout phenotype groups. The first group is of genes where the 

knockout is compatible with viability. This group is further subdivided into cases 

where there is a detectable effect on the phenotype, and cases where the phenotype is 

apparently unaffected. The other three groups are of genes where knockout causes 

post-, peri- and prenatal mortality.   

Table 3-7 shows the fraction of monogenic disease genes found in each of the 

mouse knockout groups.  The lowest fraction of monogenic genes is for the ‘no 

effect’ group of knockouts (8%), consistent with fully buffered genes generally not 

contributed to monogenic disease. The next lowest fraction is for the prenatal 

mortality set (28%), consistent with defects in these human genes probably resulting 

in a non-viable fetus, and so not be classified as disease associated. Approximately 

half of the other knockout groups have equivalent monogenic disease genes, 

consistent with non-lethal but significant impact on the phenotype often being 

classified as monogenic disease. Overall though, the correlations are not as high as 

might be expected. There are several possible reasons for that. As more mouse 

knockout data becomes available, a fuller analysis will be possible.   

Frequency of Paralogs for Monogenic Disease and other Genes 

A possible distinguishing feature between monogenic disease genes and the 

rest is that the phenotype is robust to reduced function on the latter because of 
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Phenotype Total 
genes 

Disease 
genes 

Fraction  
DIsease 

NO APPARENT 
EFFECT 

 13      1    8% COMPATIBLE 
WITH 
VIABILITY With EFFECT  147     71   48% 
POSTNATAL OR PERINATAL 
MORTALITY 

 51     22   43% 

PRENATAL MORTALITY     29      8   28% 

Table 3-7.   Relationship between Mouse Knockout Phenotypes and Human 
Monogenic Disease Genes. 
 
‘Total genes’ are the number of mouse knockouts in each phenotype category, and 
‘Disease genes’ are the number for which the human ortholog is a monogenic disease 
gene. 
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redundancy of function – other genes can at least partly compensate for reduced 

activity. Full identification of possible substitute genes requires a detailed knowledge 

of human protein networks, not yet available. However, it might be expected that 

paralogs would often perform this role, and a number of such cases are known.  For 

example, E-selectin and P-selectin are paralogous, with 40% protein sequence 

identity.  Single gene knock-out mice show mild phenotypes, while the double knock-

out mice have a severe disease phenotype, consistent with overlapping function 

(Frenette et al. 1996). On the other hand, there are many cases where paralogous 

genes are involved in different biological processes, for example malate and lactate 

dehydrogenases.  

Paralogs were identified by searching each human protein sequence against all 

others, selecting relatives with a BLAST E-score of 10-3 or better.  Table 3-8 shows 

the fraction of monogenic and other genes with at least one paralog. There is no 

difference between the two types of gene – in both cases about 87% have paralogs. 

We conclude from this that buffering mechanisms are more varied than just the use of 

paralogs.  



81 
 

Monogenic Disease Genes Other Genes 
Count % Count %

No paralogs 227 13% 705 13%
Paralogs 1460 87% 4887 87%

Table 3-8.   Fraction of Monogenic and other genes that have paralogs. 
Monogenic disease data are from HGMD (Stenson et al. 2003). ‘Other Genes’ are 
other human genes containing at least one SNP classified as deleterious. There is no 
difference in the fraction with paralogs for the two sets, suggesting other mechanisms 
dominant in shielding the phenotype from the adverse effects of deleterious SNPs in 
the non-monogenic disease genes. 
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Discussion & Conclusion

The main conclusion of this study is that about one quarter of the known 

missense SNPs in the human population are significantly deleterious to protein 

function in vivo. Others have reported a figure of about 1/3 (Chasman and Adams 

2001; Ramensky et al. 2002). It has also been suggested that the fraction is much 

lower (Ng and Henikoff 2003), with false positives, errors in dbSNP, and known 

monogenic disease mutations inflating the apparent value. We have carefully 

controlled for false positives and false negatives in two ways. First, using two 

independent SNP classification methods has allowed us to check that the expected 

error levels are obtained for the combined methods, so validating the individual 

values. Second, we have calculated the apparent deleterious rate taking into account 

the error levels, and obtained a best fit for the underlying true deleterious rate. We 

have also examined the difference in apparent deleterious rate for all of dbSNP and a 

validated subset. There is indeed a higher value of about 1/3 for all dbSNP, but the 

value of a quarter is obtained on reliable data. Some of the deleterious SNPs are in 

known monogenic disease genes, but about 80% of the dbSNP ones, and 70% of the 

validated set, are not.  

Some of the new deleterious SNPs in monogenic disease genes are candidates 

for previously unrecognized disease causes. The deleterious SNPs in non-monogenic 

disease genes are candidates for contributing to complex disease traits. Presumably, 

the network environment of the proteins concerned buffers the effect on the 

phenotype. This view is supported by the analysis of the relationship between 

monogenic disease genes and mouse knockout phenotypes – knockouts with 
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intermediate impact on the phenotype are more likely to be orthologs of human 

monogenic disease genes. A simple form of buffering is overlapping function with 

paralogous proteins. For example, a T cell mediated immune response will involve 

many different T-cell receptors. We have found deleterious SNPs in some of these 

proteins (Wang and Moult 2003), but redundancy through paralogs will provide 

buffering. Surprisingly, we did not find that monogenic disease genes are less likely 

to have paralogs than others, so this mechanism is probably only one of a number. A 

proper understanding these buffering processes will require a detailed knowledge of 

the relationship protein function and network behavior.  

Many of the deleterious SNPs in non-monogenic disease genes are relatively 

rare. In one sense, this is expected, since overall, there are many more rare SNPs than 

common ones. The low frequency of deleterious SNPs may contribute to relatively 

rare complex traits, or they may contribute in many combinations to produce common 

traits (Smith and Lusis 2002) (Pritchard and Cox 2002).  

For complex diseases, variation in a single gene only marginally increases 

risk, and as a consequence, most association studies present weak and sometimes 

inconsistent results (Prince et al. 2001).  The deleterious SNPs found in this and other 

analyses provide additional information that can be used to select SNPs for inclusion 

in association studies, or, in larger scale studies, to provide prior probabilities that can 

be incorporated into the statistical model. 

The analysis of human SNPs was done using a structure based method (Yue et 

al. 2005), and a sequence profile based method. The sequence method has a larger 

coverage of missense SNPs because it does not require knowledge of three 
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dimensional structure.  Also, since sequence methods are based on evolutionary 

selection information extracted from multiple sequence alignments, they are not 

limited by current knowledge of protein function and structure, and so include a wider 

range of effects.   On the other hand, the sequence method assumes that deleterious 

SNPs will eventually be removed during evolution.  While this assumption may be 

true for those genes associated with monogenic disease or serving as major 

contributors to complex diseases, it may not be as true for those with only subtle 

effects on the  phenotype. For this reason, it is desirable to develop broadly based 

mechanistic models of SNP impact. 
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Methods

Construction of the Deleterious Variant Dataset and Non-deleterious Variant 

Dataset 

The same two datasets were also used for the stability model as described in 

Chapter 2.  Please refer to page 44 for the procedures of data construction. 

Source of Human Population Missense SNPS 

SNPs were obtained from NCBI dbSNP, build 124. Many of the dbSNP 

entries are not verified (are based on single observations, or population frequency 

data have not been deposited). A confirmed SNP set was built from data in Perlegen 

(as of May 2005) and the Haplotype genotyping projects (Phase I, as of May 2005).  

Files containing SNP and frequency information were downloaded from Perlegen and 

Hapmap project websites (http://genome.perlegen.com and http://www.hapmap.org/).  

These two datasets was processed as follows: 1) Both datasets were mapped to 

dbSNP RefSNP clusters. Hapmap provides a link from each record to a RefSNP ID; 

the Perlegen submission SNP ID and the mapping table, SNPSubSNPLink, between 

submission SNP IDs and RefSNP IDs in dbSNP build 124 were used to link each 

Perlegen record to the related RefSNP cluster; 2) For each RefSNP entry, mean 

frequencies were calculated from the three Perlegen populations, and from the 

available Hapmap populations; 3) In cases where data are available for both sources, 

the Hapmap information was discarded. dbSNP links were used to map each SNP to 

the corresponding amino acid substitution. 
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Construction of Sequence Profiles 

Each human protein sequence was searched against the NR (Non-redundant 

Protein Database) using PSIBLAST (Altschul et al. 1997) with an E-score cutoff of 

10-3 and three search rounds.  The PSIBLAST sequence alignment (profile) and the 

position specific scoring matrix (PSSM) were retained for further use. Profiles were 

filtered as follows: 

1.  Closely-related proteins were removed: If a pair of proteins has more than 

90% sequence identity in PSIBLAST, one was eliminated from the profile. 

2.  Less reliably aligned proteins were removed: Any protein with less than 

30% sequence identity to the query human sequence was removed.    

3. Regions of the alignment where more than 50% of the sequences have a 

gap were removed. 

 

Features for the Support Vector Machine 

The following five features were used for the SVM: 

1. The probability of substituting the variant residue type ‘a’ at position ‘j’ in 

the sequence alignment, P(a,j), taken from the corresponding matrix element in the 

PSSM.   

2. The Entropy at each position ‘j’ in the alignment is calculated using the 

Shannon entropy formula (Shannon, C.E. A Mathematical Theory of Communication. 

The Bell Systems Technical Journal, 27 (1948), 379-423):  

 Sj = −∑Pilog2Pi
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Where the sum is over the twenty possible amino acids, and Pi is the 

probability of particular residue type ‘i’ at this position. Probabilities are calculated 

from the filtered alignment profile. 

3. The mean entropy <S> over the sequence is calculated by averaging over 

all sequence positions. 

4. The standard deviation of the entropy over all positions is calculated as: 

 σ(S) = [(∑i(Si−<S>)2)/(N-1)]1/2 

Where the sum is over all sequence positions, and Si is the entropy at a 

particular position, and N is number of sequence positions.   

5. The entropy at each position j is expressed as a Z score: 

 Zj = (Sj - <S>)/ σ(S) 

Support Vector Machine (SVM) 

The five parameters described above: probability of accepting that amino acid 

substitution, entropy, mean entropy, standard deviation of the entropy and the entropy 

Z score, were used as features to train a SVM. The deleterious variant set consisted of 

these values for all the monogenic disease causing residue positions, and the control 

set were the values for the inter-species amino acid differences. SVMlight 

(http://svmlight.joachims.org/), an implementation of SVM in C, was used, with a 

linear kernel. Weights were assigned to the disease and control data sets to 

compensate for their different sizes, such that they contributed equally to determining 

the partitioning surface.  40% of each of the two sets was randomly selected to train 

the SVM.  The remaining 60% were used to evaluate accuracy.  The training and 

testing procedure was repeated 30 times. For each trial, the false negative rate (the 



88 
 

fraction of deleterious variations mis-classified as non-deleterious) and false positive 

rate (the fraction of non-deleterious variations mis-classified as deleterious) in the test 

dataset were calculated.  The average false positive and false negative rates provide 

the measure of the classification accuracy. The distance of a data point from the 

partitioning surface provides an approximate measure of confidence in a 

classification. 

Calculation of the Expected Sensitivity and Specificity of the Combined 

Stability and Profile Methods 

Assuming the two methods are independent: For sensitivity, if P1(T) 

represents the probability of identifying a true positive for model 1 and P2(T) 

represents the corresponding value for model 2, the probability that both models 

identify the same true positive is P12(T) = P1(T).P2(T). For specificity, if the 

probability of model 1 producing a false positive is P1(F)  and for model 2 is P2(F), 

the probability that both models identify the same false positive is P12(F) = P1(F). 

P2(F). The expected specificity is then 1 - P12(F). 

Estimate of Protein Divergence Rate from Human and Mouse Orthologous 

Genes 

Mouse orthologs were taken from the NCBI HomoloGene database (Wheeler 

et al. 2005). For each orthologous pair, the BLAST sequence identity was calculated 

between the all refseq mouse protein sequences and those of all the corresponding 

human refseq entries, and the highest value was used. (This procedure is necessary, 

since each gene may have multiple protein isoforms).  
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Matching of Mouse Knockouts with Human Genes 

The OMIM ID of each available mouse knockout gene was extracted and 

matched to the NCBI locuslink database, to identify the corresponding human gene 

name.  Human curation was used to match remaining mouse genes and verify each 

link. The matched human genes were compared to those in the HGMD database, to 

find the subset involved in monogenic disease. 
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Chapter 4: SNPs3D: Candidate Gene and SNP selection for 
Association Studies 
Introduction

Much of our present knowledge of the relationship between genotype and 

disease comes from statistical studies of the correlation between particular genetic 

variants and the likelihood of a specific disease. Linkage analysis, which tracks the 

transmission pattern of genetic markers within a pedigree family, has been successful 

in identifying over one thousand human monogenic disease genes (Stenson et al. 

2003).  On the other hand, there has so far been less success with common human 

diseases, such as hypertension, Alzheimer’s, asthma and cancer. Susceptibility to 

these is affected by multiple genes, as well as environmental factors. The risk from 

any single genetic variant is low, so that linkage analysis sample sizes are usually too 

small to provide statistically significant disease/genotype relationships. Association 

studies, based on analysis of genetic differences, particularly SNPs, between those 

with and without a disease in a broader population, are more powerful for detecting 

such low signals. Approximately 10 million human SNPs have so far been identified 

(Sherry et al. 2001). Currently, association studies depend on choosing a subset of 

these which includes those influencing the probability of disease, or that are in 

linkage disequilibrium with those that do so. A primary purpose of the SNPs3D 

resource is to provide a means of selecting candidate genes likely to influence disease 

susceptibility, and to further select the most relevant non-synonymous SNPs within 

those genes. 
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Rapid accumulation of new data on human SNPs, knowledge of the complete 

human genome sequence, and increasing information on biomarcomolecular 

interactions is opening the way to a more mechanism based understanding of the 

relationship between genotype and disease. At present, the relevant information is 

still very incomplete, and is scattered across many databases and thousands of 

articles. A second primary purpose of the resource is to collect and integrate as much 

as possible of the molecular level data relevant to the mechanisms that link genetic 

variation and disease.  

To achieve these goals, the resource is organized into three modules. One 

module generates lists of candidate genes for any specified disease, based on an 

analysis of the relationship between the disease and genes, as reflected in the 

literature. The second module provides a interactive graphical gene-gene network, 

built from literature associations, known protein-protein interactions (Bader et al. 

2003)(http://bind.ca/), and existing pathways (Kanehisa et al. 2004) 

(http://www.genome.jp/kegg/). The third module provides information on the 

relationship between non-synonymous SNPs and protein function. 

The identification of candidate genes and construction of gene networks both 

make use of simple text mining techniques. Concept profiles are constructed for each 

disease and for each gene.  Each concept (a disease or a gene) is represented by an 

ordered list of words and terms most closely associated with the concept. The set of 

words and terms is complied from the contents of the approximately 80,000 PubMed 

abstracts (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed) that have 

been manually associated with one or more human genes in the NCBI Gene database 
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(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene), using natural language 

processing (http://www.lsi.upc.es/~nlp/SVMTool).  Pairs of concepts, such as two 

genes or a disease and a gene, are linked by the overlap of their keyterm profiles. We 

call the resulting gene-gene network a KnowledgeNet, since it is derived directly 

from knowledge in the literature. Only two types of concept, gene and disease, are 

discussed in this chapter. However, the KnowledgeNet can also be used in others 

ways, for example investigating the relationship between a biological process (e.g. 

glycolysis) and genes.   

In SNPs3D, the likely functional impact of non-synonymous SNPs is assessed 

using two previously developed methods (Wang and Moult 2001; Yue et al. 2005; 

Yue 2005). One method makes use of protein structure to identify which amino acid 

substitutions significantly destabilize the folded state. The results show that up to 

three-quarters of monogenic disease single residue mutants act in that way (Yue et al. 

2005). The second method identifies deleterious substitutions through analysis of the 

extent and nature of amino acid conservation at the affected sequence position (Yue 

2005). Access to details of both analyzes is provided through the web interface. Links 

to another publicly available non-synonymous SNP analysis tool are also provided 

(Dantzer et al. 2005) (http://mutdb.org/).   

SNPs3D aims at integrating all of the available data relevant for assessing the 

likely role of particular genes and SNPs in a disease. The emphasis is on providing 

the users access to as much of the underlying information as possible, so that they 

may make informed judgments. To this end, in addition to SNP impact analysis, links 

are provided to relevant abstracts, the GAD (The Genetic Association Database) 
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(Becker et al. 2004) (http://geneticassociationdb.nih.gov/), OMIM (Hamosh et al. 

2005) (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM) and HGMD 

(Stenson et al. 2003) (http://www.hgmd.org/) disease databases, GO annotation 

(Harris et al. 2004) (http://www.geneontology.org/), expression profile data (Su et al. 

2002), and mouse knockout results 

(http://www.bioscience.org/knockout/knochome.htm). Data are updated regularly. 

Exploration of gene networks and access is to all information is facilitated by a Java 

based graphical interface.   
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Results

Analysis of SNPs in each Human Gene 

A primary function of the SNPs3D resource is to provide a way of identifying 

those non-synonymous SNPs that are likely to have a deleterious impact on molecular 

function in vivo, so these may be included in association studies. An analysis of the 

likely functional impact of all human non-synonymous single base variants in the 

HGMD (as of 02/09/2002 , 9,625 variants in 696 genes) (Stenson et al. 2003) and 

dbSNP (Build 124,  29,485 SNPs in 11,303 genes) databases (Sherry et al. 2001) 

(http://www.ncbi.nlm.nih.gov/projects/SNP/) is provided, using the previously 

developed methods (Yue et al. 2005; Yue 2005). Links to another available analysis 

(Dantzer et al. 2005) (http://mutdb.org/) are also included. The analysis is organized 

by gene. The structure/stability method (Wang and Moult 2001; (Yue et al. 2005)) 

requires knowledge of structure. Availability of experimental structures or 

sufficiently accurate structure models limits coverage to about 37% of monogenic 

disease variants in HGMD and 10% of variants in dbSNP. Greater availability of 

sequence information compared to structure allows a much higher fraction of variants 

to be analyzed (92% and 57% HGMD and dpSNP respectively) with the sequence 

profile method.  

Both methods make use of a machine learning technique, the support vector 

machine (SVM), to assign each SNP as deleterious or non-deleterious to protein 

function. The SVM is trained on monogenic disease data, so that the definition of 

deleterious is ‘sufficiently damaging to protein function in vivo as to be consistent 
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with a monogenic disease outcome’. Benchmarking has yielded false positive and 

false negative rates of 15% and 26% for the stability method and 10% and 20% for 

the sequence profile method. The higher false negative rate for the stability method 

reflects the fact that only stability effects on in vivo function are included. 

Approximately 30% of the non-synonymous SNPs in dbSNP are assigned as 

deleterious. Very few of the dbSNP cases are known to be associated with monogenic 

disease, and so most the deleterious ones are candidates for contributing to complex 

disease traits. As illustrated later, in many cases, low impact on the phenotype is 

likely the result of network level buffering against loss of function for individual 

proteins.  

Details of the analysis of each SNP are provided on additional pages.  For the 

profile model, a user can inspect the multiple protein sequence alignment from which 

the result is derived.  For the structure/stability model, feature values (for example, 

surface accessibility, electrostatic interactions and hydrophobicity) are provided, as 

well as an interactive molecular graphics interface (powered by Jmol, 

http://jmol.sourceforge.net/) displaying the affected residue in its three dimensional 

structural context. 

An example of Deleterious SNP Analysis 

To illustrate the SNP analysis process, we consider SNPs in the selectins, 

proteins involved in the early inflammatory response, playing a role in the 

accumulation of blood leukocytes at sites of inflammation.  SNP analysis for relevant 

genes may be accessed by typing a disease or process name into the corresponding 

search window. Entering ‘inflammation’ returns a ranked list of genes with abstracts 



96 
 

containing that term, hyperlinked to their SNP analysis pages. Entering a more 

specific search term, such as ‘selectin’ returns a list of relevant genes, including the 

members of the selectin family SELE, SELP and SELL, as well as proteins they 

interact with. Entering a specific gene name, such as SELE, takes the user directly to 

the analysis of SNPs in that protein. Table 4-1 shows a composite of the screen 

information for some inflammation related SNPs in selectins E, P and L and VCAM1. 

Each of these SNPs is classified as deleterious by the sequence profile method 

(indicated by the negative SVM scores). The SNPs in SELE (C130W) and SELP 

(G179R) are also analyzed by the structure/stability model, and are found to be 

deleterious by this criterion as well (a disulfide bridge is broken in SELE, there is 

overpacking and backbone strain in SELP). As discussed below, further insight into 

the relationship between these SNPs and the inflammatory response is provided by 

consideration of the inter-gene relationships.  

Gene-Gene Relationships 

Concept profile overlaps were used to score the relationship between all pairs 

of human genes in the current NCBI Entrez Gene database. Table 4-2 shows part of 

the resulting gene-gene relationship matrix, involving hypertension genes.  

Angiotensin-converting enzyme (ACE) and angiotensinogen (AGT) share 96 specific 

keyterms, such as ‘sodium intake’, ‘renin-angiotensin-system’ and ‘blood pressure’; 

generating a very strong (43.8) link between them. Many of the shared keywords also 

have relatively high weights. (That is, the frequency is high in abstracts for these 

genes, compared with all abstracts).  In contrast, the link between ACE and arginine 

vasopressin (AVP) is much weaker, with a score of 0.8, (still above the average for 
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Gene 
symbol 

refseq 
accession  snp  snp_id  svm 

profile 
svm 
structure 

molecular 
effect  model frequency 

SELE NP_000441 C130W 5360 -1.89 
-1.06 

OverPacking 
Breakage of a 
disulfide bond; 

0.02 

SELP NP_002996 G179R 3917718 -0.81 
-1.46 

OverPacking 
Backbone 
Strain;  

0.02 

SELL NP_000646 P213S  4987310 -0.36 0.21 

VCAM1 NP_001069 S318F  3783611 -1.31 0.03 

VCAM1 NP_001069 G413A 3783613 -0.96 0.08 

VCAM1 NP_542413 I624L  3783615 -0.68 0.06 

Table 4-1.   Example interface page of candidate SNPs for inflammation related 
disease.   
Two support vector machine (SVM) models, based on sequence profiles (Yue 2005) 
and structural stability (Yue et al. 2005) are used to analyze SNPs in candidate genes 
for inflammation. SNPs are classified as deleterious (negative SVM score) or not to 
protein function in vivo. SNP population frequency information is extracted from the 
NCBI dbSNP database.  



98 
 

Table 4-2.  Subsection of the KnowledgeNet gene-gene linkage matrix.  
All three genes are associated with blood pressure regulation. ACE and AGT are 
strongly linked, other links are near the average value of 0.5.  

 ACE AGT AVP … 
ACE   43.8 0.8 … 
AGT 43.8   0.4 … 
AVP 0.8 0.4   … 
..  …  … …   
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non-zero relationships in the matrix, which is 0.5). There are only two shared 

keyterms between these genes: 'polydipsia’ and ‘hypotension’. ‘Hypotension’ 

represents a true concept overlap between these two genes, since both are involved in 

the regulation of blood pressure. ‘Polydipsia’ is a symptom found in more than one 

disease.  One of these is Autosomal dominant familial neurohypophyseal diabetes 

insipidus (ADNDI), some times caused by a  missense mutation in AVP (Smith et al. 

2002).  Mutations in ACE have also been shown to be a risk factor in a different 

disease, schizophrenia, for which polydipsia is also a symptom (Shinkai et al. 2003).  

Thus linkage of ACE and AVP through this term is a not a consequence of their joint 

role in blood pressure regulation. These indirect linkages are a source of noise in the 

matrix, but are generally rare.  

Figure 4-1 shows that the distribution of scores between gene pairs has an 

approximately power law distribution, with many scores near the minimum of 0.001, 

and a few high scores of up to 300.  Pairs of genes which are in the same KEGG 

pathway (Kanehisa et al. 2004) tend to have a stronger link than others, with median 

and mean scores of 0.5 and 2.5, while for all genes the corresponding values of 0.2 

and 0.5 respectively.  When only those pairs of genes involved in physical 

interactions included in the BIND database (Alfarano et al. 2005) are considered, the 

median and mean are dramatically higher, at 3.2 and 9.0 respectively.  Note that it is 

not our aim to reproduce either of these known gene-gene relationships, but to 

introduce a more general, literature based measure.  

Figure 4-2 shows the distributions of the number of gene links, for monogenic 

disease (defined by inclusion in the HGMD database (Stenson et al. 2003) and all 
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Figure 4-1.  Log- log plot of linkage scores in the gene-gene KnowledgeNet.  
Scores follow an approximately power law distribution, with a  few very high scoring 
relationships (up to a value of 300), and many relatively weak ones. 
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Figure 4-2.  Distribution of the number of links to each gene in the gene-gene 
 KnowledgeNet. Blue bars show the distribution for all genes with at least one link 
(15,799) and red, the distribution for 1669 linked HGMD monogenic disease genes. 
The tail is truncated – the highest linkage is 493, for TP53. Genes with no interactions 
above the threshold score of 0.5 are not included.  
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genes. Disease genes tend to be linked to more genes than non-disease genes, 

reflecting the fact that they are usually well studied, and have been placed in a 

network context.  

Using the Gene-Gene KnowledgeNet to Investigate SNP-Phenotype 

Relationships 

The SNPs in table 4-1 are classified as significantly deleterious to protein 

function, and are in genes involved in the inflammatory response. However, none of 

these SNPs is known to produce a disease phenotype. We next illustrate how the 

KnowledgeNet can be used to investigate the complex relationships between the 

effect of these SNPs on protein function and the disease phenotype, through network 

level buffering against defective protein components. For simplicity, we consider one 

pair of genes with deleterious SNPs, selectin E and selectin P.  The sidebar on the 

SNP analysis page provides direct access to a wide range of information relevant to 

this question, including OMIM, pathways, GO annotation, mouse knockout results, 

and tissue specific expression data, and relevant abstracts. Clicking ‘Gene Graph’ in 

the left sidebar creates a Java window displaying the gene-gene relationships centered 

on SELE. 

A large amount of information is accessible through the Java interface. At the 

moment, we are specifically interested in possible buffering mechanisms that shield 

the phenotype from these deleterious SNPs. One such buffering mechanism is 

overlapping protein function, and many proteins with overlapping function are 

homologous (Kafri et al. 2005) . Right clicking on the E-selectin node triggers a 

popup menu, including an option for highlighting all sequence homologs of that node 



103 
 

in the graph. L-selectin and P-selectin are seen to be homologous to E-selectin, 

suggesting possible functional redundancy. The redundancy of selectins E and P is 

supported by the information obtained from the mouse knockout link in the same 

menu, which reveals that single mouse knockouts of each gene produce a mild 

phenotype, while the double knockout is severe (Frenette et al. 1996).  Further 

support is provided by inspection of the expression profiles for the selectins, which 

shows a similar tissue specific pattern for Selectin E and selection P, with significant 

expression in multiple tissues, while selectin L is found in only a few tissues. Thus, 

an individual homozygous in either one of the deleterious SNPs will likely have a 

subclinically affected inflammatory response, because of redundancy of function. But 

an individual with both may have an epistatic interaction between them, and be 

seriously sick. Both are candidates for inflammation related disease association 

studies. 

Candidate Gene Lists for Diseases 

As discussed in the Introduction, the candidate gene approach is still widely 

used in association studies. Since knowledge of complex diseases is limited, a 

comprehensive list of candidate genes and a method of ranking those genes by their 

disease-relevance is important in designing a good association study.  The ‘Disease 

Candidate Genes’  module is used to list and rank candidate genes by building a 

concept profile for the disease and comparing it with the profiles for each human 

gene. The resulting ranked list of candidate genes can be edited by the user, before 

further analysis. The Java graphical interface provides access to the resulting gene 

network, helping a user navigate through the relationships and associated data. 
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We have pre-complied candidate genes lists for a set 76 diseases, taken from 

the NCBI on-line book, ‘Genes and Disease’ (http://www.ncbi.nlm.nih.gov/books 

/bv.fcgi?rid=gnd). A list for any additional disease may be generated by entering the 

disease name in the web interface. 

Table 4-3 lists the 16 diseases associated with the most genes, using an 

association threshold of 0.05. (Disease-gene profile overlaps have scores ranging 

from 0 to 24.5 with a mean of 0.04). Figure 4-3 shows the distribution of the number 

of genes using this threshold. Cancers tend to have the largest number of candidate 

genes, with the highest value of 197 genes for lung cancer. Next ranking are well 

studied common diseases such as asthma, hypertension, inflammation, obesity, 

Alzheimer’s disease, epilepsy, atherosclerosis and deafness. The number of genes 

associated with a particular disease primarily reflects the complexity of phenotype, 

but may also partly reflect the current state of knowledge. Not surprisingly, nominally 

monogenic diseases tend to have the least number of candidate genes. However, these 

are often not monogenic in this analysis. For example, Phenylketonuria (PKU) has 14 

associated genes.  As expected, in this case the primary disease gene (PAH - 

phenylalanine hydroxylase) has a very high linkage to the disease, with a score of 23, 

while all other genes have scores less than 0.5. The web resource provides a ranked 

list of candidate genes for each disease. 

In all, 2,582 genes are associated with one or more of the 76 pre-complied 

diseases, using a threshold score of 0.05. TP53 is associated with the most diseases 

(23).  The number of diseases a gene is associated with increases with the number 

articles associated with that gene. 
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Disease 
Score 
>0.05 

Lung Cancer 197 
Prostate cancer 190 
Gastric Cancer 142 
Pancreatic Cancer 134 
Breast Cancer 133 
Diabetes Mellitus 130 
Asthma 124 
Retinoblastoma 116 
hypertension 113 
Bladder Cancer 109 
Epilepsy 107 
Inflammation Related 107 
Atherosclerosis 99 
Alzheimer Disease 99 
Deafness 94 
Cervical Cancer 93 

Table 4-3.  Diseases with the largest number of significantly associated candidate 
genes.  
Cancers tend to have the largest number of candidates, followed by common complex 
trait diseases.  
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Figure 4-3.  Distribution of the number of candidate genes for a set of 76 diseases.  
The curve shows the distribution using a disease-gene linkage threshold of 0.05. 
Cancers and common human diseases tend to have many candidate genes, but 
monogenic diseases typically have more than one candidate as well.  
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KnowledgeNet Analysis of Candidate Genes and SNPs 

Once a candidate gene list is available, it is useful to be able to efficiently 

access the underlying literature, and to generate a list of deleterious SNPs in the genes 

of most interest. As an example of this process, we consider one of the pre-built 

disease candidate lists, for hypertension. Clicking on the disease returns a list of the 

candidate genes, ranked by confidence of disease relevance, based on profile overlap 

with the disease. Table 4-4 shows the top part of the list. Highest ranked are well 

known hypertension-related genes, for example, angiotensinogen (AGT) and 

angiotensin I converting enzyme (ACE).   Each gene in the list is linked directly to 

local copies of the relevant abstracts, with color highlighting of appropriate words, so 

that a user may very rapidly assess the evidence for candidate status. There are also 

links to OMIM (Hamosh et al. 2005) and the NIA genetic association database 

information (Becker et al. 2004), providing sources of expert information on disease 

relevance. 

Since hypertension is a complex trait, with susceptibility related to SNPs in 

multiple genes as well as the interactions between them, the ability to navigate the 

network of candidate genes is an important facility of the resource.  Viewing the set 

of candidate genes in the Java graphical interface provides the mechanism for this. 

Figure 4-4 shows a screen snapshot of the graphical interface for the hypertension 

candidate gene network. Strongly associated genes cluster in the display. In 

particular, in this case, the four primary blood pressure regulation pathways form 

distinct groups, indicated by the black ovals. Among these, the renin-angiotensin 

pathway (A), controlling absorption of sodium, is the most studied, and most of its 
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Gene Symbol Candidate SNPs OMIM GAD 
AGT 1 Y N3/Y19 
ACE 6   N6/Y24 
AGTR1 2 Y Y11 
GNB3 2 Y N1/Y6 
HSD11B2 1   Y1 
CYP11B2 2   N1/Y2 
BMPR2 0     
ADD1 1 Y N5/Y4 
REN 3   Y3 
EDN1 0     

Table 4-4.   Top ranking candidate genes for hypertension.  
The list was complied on the basis of the overlap of the disease concept profile with 
those of the individual genes. ‘Candidate SNPs’ shows the number SNPs classified as 
deleterious in each gene. The ’OMIM’ column indicates which genes are associated 
with essential hypertension in that database. The ‘GAD’ column shows the number of 
votes for or against a role for each gene in hypertension in the Genetic Association 
Database (Becker et al. 2004). 
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A

D

C

B

Figure 4-4.  Graphical Interface for the KnowledgeNet of candidate genes for 
hypertension.  
The four larger ovals circle the clusters of genes in each of the primary blood pressure 
regulation pathways. Oval symbols are used for genes involved in monogenic disease, 
rectangular symbols for the rest. Red indicates that one or more population SNPs are 
classified as harmful at the molecular level.  Italic red text indicates that one or more 
population SNPs with population frequency information are predicted to be 
deleterious.   
The length and color of the edges represent the strength of the link between pairs of 
genes.  Red edges link genes sharing the same abstracts.  Short edges link genes 
sharing a large number of biological keywords.  
Subsets of nodes can be highlighted by a number of criteria, such as membership of 
the same KEGG pathway, or homology, or SNP frequency.   
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genes have been implicated in monogenic types of hypertension (indicated by the 

oval gene symbols). The other pathways all influence blood pressure through vascular 

constriction via: (B), regulation by endothelin (EDN1); (C), regulation of natruretic 

peptide (NPPA, NPPB, NPPC); and (D), the bradykinin-killikrien pathway. Figure 4-

5 shows a simplified version of the pathways and their inter-relationships, derived 

from browsing the interface, reviews (Lifton et al. 2001) (Turner and Boerwinkle 

2003), and on-line data (http://www.cvphysiology.com/Blood%20Pressure 

/BP001.htm). The pathways are highly interconnected. For example, both natruretic 

peptide and bradykinin also act as antagonists of the rennin-angiotensin pathway, and 

are able to relax vascular contraction and down-regulate blood pressure. Conversely, 

ACE, which activates AGT in the renin-angiotensin pathway, can inactivate 

bradykinin.   

This gene/disease network for hypertension provides a number of deleterious 

SNPs for association studies. A sample of these is shown in table 4-5. All are 

classified as deleterious to protein function by the sequence profile method and the 

structure/stability method. The first is R333W in rennin, which results in the loss of 

salt bridge and thus is likely to cause loss of function.  Given rennin’s role an up-

regulator of blood pressure, this SNP is a candidate for involvement in hypotension. 

The second SNP, I444T, occurs in the hydrophobic core of angiotensin-converting 

enzyme (ACE) and causes a large loss of buried hydrophobic area. ACE is in the 

same pathway as rennin, and has an established role in blood pressure related disease. 

Mutants of ACE have been associated with monogenic-type hypertension (O'Donnell 

et al. 1998), and ACE knockout mice show ‘subnormal blood pressure, kidney 
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Figure 4-5.  Simplified view of the four primary candidate pathways involved in 
hypertension.  
A: renin-angiotensin pathway; B: regulation by endothelin (EDN1); C: regulation by 
natruretic peptide (NPPA, NPPB, NPPC); D: the bradykinin-killikrien pathway. 
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RefSNP ID 
Gene 
Name 

Refseq 
Protein SNP 

SVM 
profile 

SVM 
structure 

Structure and 
Sequence 
Properties 

dbSNP ID and 
Population 
Frequency 

rs11571098 REN NP_000528 R33W -1.63 -0.21 Salt Bridge lost 

ss20420843:4% 
(African 
American)  

rs4976 ACE NP_690044 I444T -1.26 -1.15 
Hydrophobic 
Interaction loss 

ss6413:5% 
(Multination) 
(Halushka et al. 
1999) 

rs5247 CMA1 NP_001827 H66R -2.51 -1.49 

Salt Bridge lost; 
key catalytic 
residue, very 
conserved 

ss6694:10% 
(Multination) 
(Halushka et al. 
1999) 

rs5518 KLK1 NP_002248 V193E -1.62 -0.70 

Buried Charge, 
hydrophobic 
interaction 
decreased 

ss6984:5% 
(Multination) 
(Halushka et al. 
1999) 

Table 4-5.   Example candidate SNPs for hypertension 
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obstruction and widening and thickening of infrarenal arterial vessels’ (Krege et al. 

1995). The third SNP, H66R, is in chymase (CMA1), and changes a key catalytic 

residue, as well a breaking a salt bridge. The physiological function of chymase is 

still controversial (Ju et al. 2001) (Takai and Miyazaki 2003). A SNP upstream of the 

transcription initiation site of CMA1 has been reported to be associated with 

hypertensive complications such as HDL cholesterol (possibly related to its lipid 

metabolism function), but not with blood pressure (Fukuda et al. 2002). The fourth 

SNP, V193E, in kallikrein (KLK1) results in a buried charge and loss of hydrophobic 

burial, affecting bradykinin processing. 
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Discussion

There are three unique features of the SNPs3D resource. First, it is designed 

specifically for the analysis of the relationship between SNPs and disease. Second, it 

constructs gene networks based on conceptual relationships derived from the 

literature, rather than experimental data. Third, it integrates access to all available and 

relevant information sources, wherever possible giving the user easy access to the 

underlying data and literature, so that informed judgments can be made.  

We have chosen to construct a network of connections between genes based 

on how strongly they are coupled in the literature, rather than whether there is 

extractable information supporting a physical interaction between them. There are 

two advantages to this approach.  First, relevant connections between proteins may be 

non-physical.  For example, genes that are involved in the same complex disease may 

not directly interact, or even be in the same local pathway, but may nevertheless 

interact in terms of affecting disease susceptibility. Second, the text mining procedure 

will capture considerably more information than is currently in any database, or that 

can be easily formalized in a simple cause and effect pathway description. In this 

sense, the KnowledgeNet expands on existing pathways descriptions by linking genes 

with conceptual relationships.  

The case studies illustrate how all this works in practice. Analysis of non-

synonymous SNPs in the selectins leads to the finding of several that appear to be  

deleterious to protein function, but which do not directly lead to a disease phenotype. 

Inspection of homologs in the KnowledgeNet graphical interface suggests a role for 

functional redundancy in conferring network level robustness, and consulting mouse 
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knockout and expression profile data supports that conclusion. The result also 

strongly suggests an epistatic relationship between the deleterious SNPs in selectin E 

and selectin P: An individual homozygous in either one will likely not display clinical 

symptoms, but an individual homozygous in both will probably have a significantly 

compromised inflammatory response. In the hypertension example, a list of possible 

candidate genes is generated. The KnowledgeNet interface allows a user to browse 

the relationships between those genes, clustering the main pathways, and providing 

access to analysis of the relevant non-synonymous SNPs. As is often the case, the 

roles of the some of the genes in disease susceptibility are complicated, and the 

available information is some times contradictory. For example, for chymase, there is 

considerable uncertainty of function. Instant access to the relevant literature allows 

the user to quickly appreciate the subtleties of the current state of knowledge. 

We now consider the strengths and weaknesses of the approach in more detail. 

Concept profiles for genes are built from the relative frequency of words and 

terms in PubMed abstracts. In turn, overlap of the profiles are used to identify gene-

gene relationships. In practice, the procedure provides intuitively reasonably results, 

but there is no way of rigorously benchmarking such knowledge generated networks.  

The method occasionally makes errors on the side of over-inclusiveness. For 

example, it is not able to distinguish between statements such as ‘protein A is 

associated with disease B’ versus ‘protein A is not associated with disease B’. As 

illustrated in the Results, it is also possible for a disease and gene to be linked by 

irrelevant factors, such as symptoms common to more than one syndrome. Similarly, 

gene-gene relationships may sometimes be based on non-pathway related factors. For 



116 
 

example the 13 members of the human kallikrein family are tightly coupled, because 

of many articles that discuss them as a group. In fact, most of the family members 

operate in quite different pathways. In future, more sophisticated natural language 

processing technology may be applied to reduce these effects. At present, a concept 

overlap weighting scheme that emphasizes relationships to ‘hub’ proteins is used, and 

ensures that proteins weakly linked to these are included. A weighting scheme that 

takes into account the number of papers published on a gene may further improve 

inclusion of relevant weak links. The analysis is limited to abstracts already annotated 

as relevant to a particular gene. Extension to all pubmed abstracts (currently about 8.5 

million) is desirable. In practice, the resource is very effective at narrowing down the 

amount of literature a user must consult in arriving at an informed position, our main 

goal. 

Concept profile overlaps are also used to provide lists of candidate genes for 

involvement in susceptibility to particular diseases. There is no gold standard for 

candidate genes for a disease, with different compilations using different criteria. 

Comparison of our hypertension list with a hand compiled list for essential 

hypertension (Halushka et al. 1999), shows informative similarities and differences. 

That list contains 75 candidate genes rated as ‘strong’, 57 of which are also in the 

SNPs3D hypertension set. Nine of the top ten ranking SNPs3D genes are in the hand 

complied hypertension list. The exception is BMPR2, which is involved in pulmonary 

hypertension, rather than essential hypertension. The 12th ranking gene in the 

SNPs3D list, ADRB2, is also not in the hand complied list, but is clearly associated 

with hypertension in PubMed abstracts. Conversely, some of the additional genes in 
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the hand complied list, such as GALR1, are not linked in any way to hypertension in 

PubMed, even with a more sophisticated profile based search, and including all 

abstracts. Their selection may reflect specialized insights on the part of the compliers. 

Others, such APOC2 and APOC4, are also not associated with hypertension in 

PubMed, but have a chromosome location covered by a known hypertension marker.  

SNPs3D candidate lists can be generated on demand, with little delay, and so 

have the advantage of taking into account all the current literature. On the other hand, 

there is a great deal of relevant specialized knowledge in the scientific community 

that is either not in the literature, or very difficult to extract in a useful way. The 

Genetic Association Database (GAD) is an archive of human genetic association 

studies of complex diseases and disorders (Becker et al. 2004) that provides an 

alternative approach to compiling the relevant information. Any user may submit 

information about an association between a disease and a gene, creating a mechanism 

of capturing community knowledge. We expect that in the long run, the most 

effective candidate lists will be complied by a hybrid of the two approaches. 

SNPs3D analysis is only provided for non-synonymous SNPs. Other sorts of 

SNPs, particularly those affecting transcription, splicing and perhaps RNA message 

structure will also play a role in susceptibility to complex trait disease. Little data on 

is available on the relative importance of the different SNP types, although for 

monogenic disease, the role is relatively small. For example, single base variant 

effects operating through transcription are quite rare, accounting for 0.5% of cases 

(Stenson et al. 2003). Whatever the case, it is clearly desirable to include other classes 
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of SNP. It should shortly be possible to extend coverage in this way, using DNA 

sequence profiles based on the complete genome sequences of higher eukaryotes.  
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Methods

Query Interface 

Each of the three modules (SNP analysis, gene-gene network, and disease 

candidate gene lists and networks) is accessed via a separate simple search window, 

on the site front page.  

The candidate gene search window will accept any word or phrase as an entry, 

and compiles a concept profile, as described below. For SNP analysis and gene-gene 

networks requests, a hierarchal query string processing procedure is used, providing a 

wide choice of input name types, including dbSNP IDs, Entrez Gene IDs, RefSEQ 

IDs, NBCI Gene Symbols, and common protein names, using the following 

procedure: 

1. A query string is first inspected to determine if its composition is consistent 

with a dbSNP ID, Entrez Gene ID or Refseq ID. If one of these name types is 

identified, the query is searched against the corresponding list of possibilities, and if a 

match is found, appropriate results are returned.  

2. If the type of ID cannot be identified, the query string is first treated as a 

NCBI gene symbol, and searched against that set. If an exact match is found, results 

are returned.  

3. If no exact match to a gene symbol is found, the string is searched against 

all words in the NCBI Gene summaries of each gene. Any hit adds to a list of high 

ranked possible genes.  
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4. This hit list is supplemented by a search of the query string against all the 

PubMed abstracts associated with each gene in the NCBI Gene Database. The 

number of times the query string is found in the abstracts for a gene provides a 

ranking weight. Finally, the user is invited to choose the appropriate gene from the 

ranked list of possibilities.  

5. If a search completely fails, the user is offered an alternative search 

window, with explicit query string categories.   

Literature Dataset 

The abstracts of all the medline entries associated with each gene in the NCBI 

Gene database (Pruitt et al. 2000) are the source of words and terms. In the current 

version, there are, 80,249 Medline references linked to 19,228 human genes. Word 

types are identified using SVMtagger (http://www.lsi.upc.es/~nlp/SVMTool/). 

Keyterms are constructed from single nouns and adjectives, adjective/noun pairs, and 

continuous strings of words classified as adjectives or nouns. For example, the phrase 

‘blood pressure’ occurring in an abstract would result in three keyterms: ‘blood’, 

‘pressure’, and ‘blood pressure’. Terms occurring only once are removed. There are 

currently a total of 266,337 keyterms. 

The number of occurrences of each keyterm ‘KW’ in all the abstracts 

(‘Total_count(KW)’ is retained, as well as the number of occurrences of each 

keyterm in the abstracts associated with each gene ‘G’, ‘Count(G,KW)’, and the 

fraction of all occurrences of each keyterm that are associated with each gene is 

calculated as: 

F1(G,KW) = Count(G,KW)/Total_Count(KW) 
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Construction of the Gene-Gene Relationship Matrix 

The interaction strength L(i,j) between every pair of genes i and j is calculated 

as: 

L(i,j) = ∑KW F1(Gi,KW) + ∑KW F1(Gj,KW) 

where the sum is over all keyterms common to the two genes, excluding any 

found in more than 300 genes. More studied genes have more associated abstracts in 

the NCBI Gene database, so that this expression upweights interactions involving 

those. Comparison with a more egalitarian gene-gene weighting, based on a dot 

product sum similar to that used for the disease/gene linkage, suggests that an 

emphasis on the hub-like genes is useful for including links to relevant but more 

weakly coupled genes.  

Because of memory constraints, the interactions are stored as a sparse matrix, 

retaining a maximum of 200 interacting genes per gene. A few well studied genes, 

such as P53, have more than 200 genes linked with significant scores (greater than the 

mean element value of the sparse matrix).  However, in almost all cases, these 

elements will be included in the list of associations for other genes.  

Generation of a Candidate Gene List for a Disease 

Given a disease name, a list of candidate genes is generated as follows: 

A. The subset of abstracts relevant to the disease is identified: 

1. Any abstract containing the full disease name, for example, ‘breast cancer’ 

is selected.  
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2. If this procedure results in less than 20 abstracts, and the disease name 

consists of more than one word, a further search of abstracts is made for the 

combination of words, for example ‘breast’ AND ‘cancer’.  

3. If less than a total of ten abstracts are selected, the process is aborted, 

returning a message of ‘Not enough abstracts to build a profile’. 

B: A keyterm profile is generated for the disease, using the selected abstracts. 

All Keyterms are ranked by the fraction of disease abstracts that contain them: 

 Rank(KW)= Count_abstracts(D,KW)/[Total_abstracts(KW) +50] 

where ‘Count_abstracts(D,KW)’ is the number of abstracts for disease ‘D’ 

containing the keyterm ‘KW’, and ‘Total_abstracts(KW)’ is the total number of 

abstracts containing the keyterm.  A pseudo count of 50 is added to reduce noise. The 

top ranking 40 keyterms are selected, providing Rank(KW) is at least 0.1.  

C: The overlap of the disease keyterms with those of each gene is calculated: 

1. The number of times each selected keyterm ‘KW’ occurs in the abstracts 

associated with the disease ‘D’, ‘Count(D,KW)’, is determined, and the relative 

frequency is calculated as : 

F2(D,KW) = Count(D,KW)/Total_Count(KW) 

2. The strength of association of the disease ‘D’ with a gene ‘G’ is calculated 

as the dot product of the relative frequencies of the disease keyterms with the relative 

frequencies of those same keyterms in that gene:  

SD(D,G) = ∑KW F1(G,KW).F2(D,KW) 

where the sum is only over the up to 40 keywords selected as the keyterm set 

of disease ‘D’. The association strength is deliberately biased towards the keyterms 
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most strongly associated with the disease, as opposed to be associated with particular 

genes.  

D: Finally, all genes with a non-zero score are returned as candidates.  

Database Setup 

The database is implemented in MySQL. As shown in figure 4-6, the central 

table is ‘Gene’, an up-to-date list of human genes from the NCBI Entrez Gene 

database.  The Gene table is linked to other master tables: The SNP model table 

contains our stability and profile analysis of SNPs. There is a table of keyterms for 

each gene, and a table of PubMed abstract IDs for each gene. The KnowledgeNet 

matrix table contains the pairwise gene-gene interaction strengths, and there is also a 

disease/candidate gene matrix. Some other tables linked to the Gene table are: the 

Transcript table (RefSeq mRNAs); the Protein table (RefSeq proteins); the phenotype 

and disease-tables (NCBI OMIM and human gene mutation database (HGMD)); 

Mouse knockout table (Bioscience mouse knockout); pathway (KEGG), protein-

protein interactions (BIND); and protein function (GO).  

Web Interface 

SNPs3D is served using Apache software running on a Linux PC and with 

web pages derived from an early open source version of PHP-NUKE 

(http://www.phpnuke.org/).    

KnowledgeNet Graphical Interface 

The interactive graphical interface for displaying gene-gene relationships is 

based on open source Java code (http://www.touchgraph.com). Genes form nodes in a  
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Figure 4-6.  Database Schema.  
The Blue blocks represent individual modules, which may be single or multiple 
MySql tables. 
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graph and gene-gene relationships are edges. Clicking links and symbols leads to 

more detailed information. Symbol shape; font style; symbol, edge and font color as 

well as hover-over windows are used to provide as much information as possible. 

Gene symbol shape conveys whether or not that gene is involved in disease, gene 

symbol text color indicates whether there are deleterious SNPs. Subsets of genes 

containing one or more SNPs with population frequencies above some threshold may 

be highlighted (identifying those most likely to be involved in complex traits). A 

maximum of 300 genes are displayed in the graphical interface. These are genes most 

strongly associated with a query gene or a query disease. The threshold for displaying 

links between genes is adjustable to show only those most strongly linked, or all 

possible connections. Links may also be based on KEGG pathway connections or 

direct protein-protein interaction information, extracted from BIND (Bader et al. 

2003). Left clicking on a gene provides immediate access to all the gene specific 

information, including SNP analysis using the stability (Yue et al. 2005) and profile 

methods (Yue 2005) and the NCBI Gene summary, as well as pathways, dbSNP 

entries and homologs. 

Content for the graphical display can be generated using the list of genes 

associated with a reference gene or a disease (the candidate genes, with the strongest 

linked gene as initial center), or a specified list of genes.  All gene lists may be edited. 

One important feature is the ability to redraw the graph, using a selected node as the 

new center, allowing the user to smoothly navigate through adjacent regions of the 

knowledgeNet matrix. A pull down menu provides a list of all displayed genes, and 

any gene may be highlighted in the network via this list. Right clicking on a node 
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provides facilities for highlighting genes which share certain properties with the 

reference gene, such as KEGG pathway, associated papers, or sequence homology. 

Left clicking in a gene brings up its SNP analysis. 
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Chapter 5: Discussion and Conclusion 
Progress in Understanding Monogenic Disease

Role of Protein Destabilization in Monogenic Disease 

This thesis describes an investigation into the mechanisms by which mis-sense 

variants (the most abundant known disease variants) cause human disease. Since in 

vitro mutagenesis data show that many single residue variations decrease protein 

stability, we hypothesized that loss of stability plays a major role in causing human 

monogenic diseases.  In order to test this hypothesis, we developed a structure based 

model to evaluate the effect of mis-sense variants on protein stability by looking at 15 

structure features, such as electrostatic interactions, and overpacking.  The model 

successfully identifies 74% of mis-sense variants known to cause human monogenic 

disease with a 15% false positive rate.  We therefore conclude that the majority of 

monogenic disease variants act by destabilization of protein structure.  

Size of the Destabilization Effect 

The stability model was applied to a set of destabilizing mutations for which 

the in vitro change in stability has been experimentally measured.   We found that 

only a small fraction of mutants that stabilize or weakly destabilize a structure are 

assigned a disease-causing outcome, consistent with the overall false positive rate of 

the model, while 90% of mutants that destabilize a structure by 3 Kcal/mol or more 

are classified as disease causing. In addition to supporting the role of destabilization, 

this analysis provides an approximate free energy scale for disease-causing mutants – 

typically 2 to 3 Kcal/mol. 
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Significance of a Small Destabilization Effect in vivo  

The free energy difference between the folded and unfolded state of a globular 

protein typically ranges from 5-15 Kcal/mol (Privalov 1979), corresponding to an 

equilibrium constant between 10-4 and 10-13. A typical disease causing mutant 

destabilizes the folded state by 2 Kcal/mol and so increases the concentration of the 

unfolded state by about two orders of magnitude.  However, the fraction of unfolded 

molecules is still very small, so such a mutant will usually not have a detectable effect 

in vitro. In vivo, the 100 fold increase in the concentration of the unfolded state will 

result in a proportional increase of scavenging by chaperones (Hohfeld et al. 2001).  

We propose that this mechanism may play a role in dramatically lowering the 

concentration of a disease mutant protein in vivo. However, further experiments are 

required to test this hypothesis. 

Structure and Sequence Based Models: Pros and Cons 

The structure based model allows us to investigate how an amino acid variant 

affects protein function.  However, its application is limited by its requirement for 

protein three-dimensional (3D) structure.  Experimentally determining human protein 

3D structure is very challenging, and only a small fraction is so far available.  

Comparative modeling expands the useful structure coverage of human proteins, but 

still only 10% of human proteins can be analyzed by the stability model.  The 

sequence model does not require protein structure information and thus has a broader 

application, and also detects a wider range of functional effects.  It relies on analysis 

of evolutionary constraints which can be inferred from multiple alignments between 

human protein sequences and their homologs.  The drawback of the sequence model, 



129 
 

however, is that it can not provide direct insight on the mechanism by which an 

amino acid variant affects function.  The primary errors in the two models are caused 

by different factors: an incorrect protein structure for the stability method and too few 

sequences in an alignment for the sequence method.  The classification of a given 

variant can be further validated by comparing the results by these two models.   

Analysis of Human Population SNPs

One-Fourth of Human Mis-sense SNPs are Deleterious 

Both models were applied to known human population SNPs.  One major 

conclusion of this thesis is that about one quarter of the known missense SNPs in the 

human population are significantly deleterious to protein function in vivo. Two 

factors have been carefully considered in reaching that conclusion.  The first factor is 

related to the errors caused by the models and the second factor is related to the errors 

in the dataset.  The rate of deleterious SNPs in the population is overestimated due to 

the false positives and underestimated because of the false negatives.  We took both 

types of errors into account in estimation of deleterious SNPs.  False positive and 

false negative rates were obtained from benchmarking the methods against 

monogenic disease and a fitting procedure was then used to find the true deleterious 

rate.  The effect of errors in the dataset is controlled by comparing the results between 

all available SNPs and the SNPs validated by the HapMap project (2003) and 

Perlegen Inc (Hinds et al. 2005).   
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Discussion of Deleterious SNPs 

Most of the newly identified deleterious SNPS are not in human monogenic 

disease genes, and do not have any known role in complex disease.  There are three 

broad categories of explanation for this:   

1. These SNPs are not deleterious to protein function as our models suggest.  

While this explanation can not be entirely ruled out, we have carefully taken into 

account the effect of errors in the models and in the data.   

2. The monogenic disease proteins are somehow especially vulnerable to the 

effect of deleterious mis-sense mutants.  For example, the mechanism of removing 

unfolded proteins by chaperone-dependent processes may be only applicable to 

monogenic disease genes.  Little is known to prove or reject this possibility.  A 

comparison of protein types between disease genes and non-disease genes, based on 

their GO classification of molecular function, does not reveal any significant 

difference. 

3. The phenotype is somehow buffered against deleterious SNPs in most 

genes.  That is, the decrease or loss of function of a single gene caused by a 

deleterious variant does not show any significant impact at the phenotype level.  Such 

a hypothesis is supported by the results of knockout experiments.  Gene suppression 

in C.elegans (Kamath et al. 2003) and Saccharomyces (Cliften et al. 2003) (Rubin et 

al. 2000) as well as limited mouse knockout data  show that loss of function of many 

individual genes does not cause any detectable phenotype change.  One possible 

buffering mechanism is redundant function between genes, especially among 

sequence paralogs (Kafri et al. 2005).  Most human genes have paralogs within the 
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genome, but we found no difference between monogenic disease genes and non-

disease genes.  Therefore, functional redundancy between paralogous genes may not 

be the primary mechanism to buffer effects of damaging mutations in vivo. The 

second possible mechanism lies in the network properties of human gene-gene 

interactions.  Many known pathways contain feedback loops and alternative routes 

that provide system level robustness against damaging mutations.  Inspection of 

individual cases suggests that this type of buffering is the major factor. 

The KnowledgeNet: a knowledge based gene-gene network

In order to understand the impact of a deleterious SNP on the phenotype, it is 

necessary to consider its network environment.  We have constructed a knowledge-

based gene-gene network using a simple text mining method.  In the network, gene 

pairs are linked according to the overlap between their concept profiles.  A concept 

profile is a simple means of capturing the concept associated with each gene in the 

literature.  Each concept profile is a list of words and phrases found in abstracts 

related to a gene.  The advantage of such a network lies in its inclusiveness, because it 

reflects not only the known physical interactions between different genes, but also 

more abstract relationships between them.  For example, two genes may be linked 

because they are both involved in the same disease even though they may not directly 

interact.  The disadvantage of this network is also apparent: precise definitions of the 

relationship between gene pairs are not available.   

Concept profiles are not limited to genes, but can also be compiled for 

diseases or biological processes.  Overlap of disease and gene profiles can be used to 

compile a list of candidate genes involved in a given disease.  The case study of 
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hypertension shows that such an automatically-generated candidate list does include 

most genes in known blood pressure regulation related pathways.  It also suggests 

some new genes that are missing from the available expert curated gene list 

(Halushka et al. 1999). 

Relevance to Public Health

Up to now, most attempts to link SNPs and susceptibility to complex disease 

have relied on statistical association of a SNP with a disease.  While there have been 

some noticeable successes, for example the role of APOE SNPs in Alzhemer’s 

disease, in general it has proven difficult to relate mutations to disease.  There are 

several possible explanations for this, including the role of epistasis effects (non-

linear interactions between SNPs), the small contribution of most SNPs to disease 

susceptibility, and not including the relevant regions of the genome.  Whole genome 

association studies are now being proposed to address the third of these possibilities.  

It is not yet known how effective the studies will be, and new problems of statistical 

significance are raised.   

Understanding the mechanisms by which SNPs are related to disease offers a 

different and complementary approach to identifying disease mutations.  The work 

described in this thesis covers one aspect of mechanism, and has several direct 

applications: 1) potentially deleterious human population SNPs are identified and thus 

provides a list of SNPs for association studies. 2) An automatically generated 

candidate gene list for a given disease can help an investigator in designing a 

candidate gene based association study 3) The gene-gene interaction network can 

help users investigate possible epistasis effects between candidate genes.  More 
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importantly, this work can contribute to understanding of mechanism of common 

human diseases by helping to address the following questions: How does a mutation 

affect protein function? How is the effect on protein function transformed into an 

effect at a phenotypic level?  How do the network properties of gene-gene 

interactions buffer the effect of damage to a single gene? 

Summary of Conclusions and Contributions

The major conclusions and contributions of this thesis can be summarized as 

follows:  

We conclude that the loss of stability plays a major role in the development of 

monogenic human diseases. 

We conclude that approximately 25% of mis-sense SNPs in the human 

population significantly damage protein function.  These mis-sense SNPs provide a 

list of candidates for association with common human diseases. 

A simple gene-gene relationship network is set up to facilitate identification of 

network properties.  The network allows investigation of the impact of mis-sense 

SNPs on phenotypes and identification of sets of mis-sense SNPs for incorporating 

epitasis effect into general association studies. 

Concept profiles provide a means to identify links between gene and disease, 

allowing candidate genes to be compiled. 

A website has been developed to allow free access to the data for the scientific 

community.  
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Limitations and Suggestions for Future Work

Other Mutations Affecting Disease Susceptibility:  

There are many ways in which a SNP may affect a human phenotype. This 

work focuses only on the study of mis-sense SNPs because they are the most 

abundant genetic mutations causing human monogenic diseases.  However, SNPs in 

gene regulatory regions have long been suspected to play a major role in common 

human disease.  In addition, there are many non-gene related regions of DNA that 

display a high level of conservation between species of higher Eukaryotes, suggesting 

unknown but important functions (Loots et al. 2000).  

The sequences of a number of higher Eukaryote genomes, including human, 

mouse, rat and chimpanzee, have been completed and more sequencing efforts are 

ongoing.  With these data available, the principle of the amino acid sequence 

conservation model can be applied to analysis of genome conservation at the DNA 

level, identifying other classes of deleterious SNPs.  Moreover, systematic 

experimental projects, such as ENCODE (2004), will also expand our knowledge of 

the function of these non-coding regions.   

Beside SNPs, genomic structure variations, such as insertion, deletion and 

chromosomal duplication, have been observed in many cases of monogenic disease.  

As to common human diseases, the role of chromosome duplication in cancer has 

been broadly investigated, but so far only seldom studied in other diseases.  

Compared to SNPs, genomic structure variants are not easily detected.  In future, new 

technologies may provide the necessary data and thus allow investigation into the 

wide genomic structure of human disease. 
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Gene-Gene Network Construction 

The current gene-gene network is based on the over eighty thousand gene-

related Medline abstracts in the NCBI Gene database.   A general method of 

automatically identifying papers related to particular genes will broaden the coverage 

of the network.  The current simple literature mining method also has its limitations.  

For example, a paper may state that protein A is not associated with disease C.  The 

KnowledgeNet will ignore the ‘not’ and simply extract disease C as one of the 

keywords associated with protein A and thus erroneously link A to those proteins that 

are truly related to disease C.  In future, natural language processing technology 

should be able to reduce these problems.   

Experimental genetic approaches have been used in model organisms to 

systematically identify gene-gene interaction properties inside biological networks.  A 

recent paper describes a system-level study on epistasis by single and double 

knockout of 890 metabolic genes in yeast (Segre et al. 2005).  Incorporating these 

types of new data into the KnowledgeNet will further increase its usefulness. 
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Glossary 
 

ANOVA: 
Analysis of variance (ANOVA) is a test of the statistical significance of the 
differences among the mean scores of two or more groups. 
 
Backbone Strain:  
An unfavorable contribution to energy of the folded configuration arising from close 
atomic contact.  Backbone strain can be caused in three different ways: replacement 
of a glycine residue with φ/ψ angles in a non-allowed region for other residues, 
replacement of cis-proline with another residue, and replacement of another residue 
by proline where the φ value is inappropriate.  Mutagenesis data show that backbone 
strain may result in up to 2 Kcal/mol loss of free energy of stabilization. 
 
B factor: 
See Crystallographic B-factor. 
 
BIND: 
The Biomolecular Interaction Network Database (BIND) is a database of 
biomolecular interactions.  
 
BLAST:
BLAST (Basic Local Alignment Search Tool) is a computational method for rapid 
searching of nucleotide and protein databases for sequences similar to a query 
sequence. An amino-acid substitution matrix is used by BLAST to calculate the 
sequence similarity score between sequences.  The default matrix of BLAST is 
BLOSUM62. 
 
BLOSUM 
BLOSUM (Blocks Substitution Matrix) is a type of amino-acid substitution matrix.  It 
is derived from sequence alignments within conserved protein families.  The 
frequency of each amino acid substitution is calculated from the alignments.  
Different levels of the BLOSUM matrix can be created from different levels of 
sequence similarity.  For example, the BLOSUM62 matrix is calculated from protein 
blocks where no two sequences are more than 62% identity.  
 
Breakage of a disulfide bond:  
In a protein, a disulfide bond is the bond between a pair of Cysteine residues.  
Breakage of a disulfide bond by mutating one Cysteine to a different residue usually 
has a large effect on protein stability.  
 
Buried charge:  
An unpaired charged residue introduced into the hydrophobic core of a protein by 
mutation.  Buried charged residues are known to destabilize proteins by 3-5 Kcal/mol. 
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Buried Polar:  
An unpaired polar residue introduced into the hydrophobic core of a protein by 
mutation.  A buried polar residue is known to be destabilizing.  
 
CASP: 
CASP (Critical Assessment of Techniques for Protein Structure Prediction) is a 
community-wide experiment to make blind predictions on the structures of a set of 
proteins whose solved structures are temporally hidden from participants. The goal is 
to establish the current state of the art in protein structure prediction. 
 
Cα
The backbone aliphatic carbon atom of an amino acid is called Cα, and is bonded to 
an amino group, a carboxyl group, the side chain and one hydrogen atom.  
 
Cavity:  
A cavity is an interior empty space in a protein structure.  A cavity can be created by 
mutating a residue to one with a smaller side chain in the core of a protein, and is 
known to be destabilizing to a protein structure.    
 

CD/CV 
The common disease-common variant model.  It assumes that common diseases are 
affected by common disease-susceptibility alleles at a small number of loci that exist 
at a high frequency across populations. 
 
CLUSTALW: 
CLUSTALW is a multiple sequence alignment program for DNA or proteins. 
 
Comparative Modeling: 
Comparative Modeling, also termed homology modeling, is a method which is used 
to  model a three-dimensional structure from the structures of homologous proteins.  
 
Concept Profile: 
A concept profile refers to an ordered list of terms that are most closely associated 
with the concept of interest in the literature. 
 
Crystallographic B-factor: (also referred as B factor)  
Atomic B factors are obtained from the crystallographic refinement of protein 
structures, and are a measure of the diffuseness of the electron density distribution 
around atoms.  A high B factor indicates the relatively high mobility of the 
corresponding atom.  It has been suggested that regions with high B factors tend to be 
more tolerant of mutations.    
 
dbSNP: 
dbSNP is a central, public, repository for SNP data. 
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DIP: 
The DIPTM (database of interacting proteins) catalogs experimentally determined 
interactions between proteins. 
 
EcoCyc: 
EcoCyc is a database for the Escherichia coli K-12 MG1655 bacterium.  The 
database contains a range of curated biological information, such as transcriptional 
regulation and metabolic pathways.  
 
Electrostatic interaction:  
Protein structures are organized such that almost all polar and charged groups are in 
locally favorable electrostatic environments.  We divide electrostatic interactions into 
three types: hydrogen-bond between polar-polar groups (PP), hydrogen-bond between 
polar-charge groups (PC), and saltbridge between charge-charge groups (CC).  In 
vitro mutagenesis data show that removing a hydrogen-bond or salt-bridge will 
destabilize protein structure. 
 
Electrostatic repulsion: 
Electrostatic repulsion is the repulsion between two same charges.  Electrostatic 
repulsion is known to destabilize a protein structure. 
 
Epistasis:  
Epistasis is non-linear interaction between genes affecting a single phenotype. 
 
Entropy: 
Entropy is a quantity used to measure the degree of disorder in a system. The higher 
the entropy, the greater the disorder.   
 
E-score: 
Expect value, also termed E-value.  The E-score is a parameter that is used by 
BLAST and PSIBLAST to describe the chance by which a sequence similarity hit can 
be seen when searching a sequence database.  The lower the E-score is, the lower the 
chance. 
 
FN: 
FN is the number of false negatives in a test. 
 
FOLD-X: 
FOLD-X is a program for calculating the effect of a single residue mutations on the 
stability of a protein. 
 
FP: 
FP is the number of false positives in a test. 
 
GAD: 
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The Genetic Association Database (GAD) is an archive of human genetic association 
studies of complex diseases and disorders. 
 
GO: 
The Gene Ontology (GO) is a database that provides a controlled vocabulary to 
describe gene and gene product attributes in any organism. 
 
HGMD: 
The Human Gene Mutation Database (HGMD) is a database of published gene 
lesions responsible for human inherited disease (mostly monogenic disease).  
 
Homolog: 
Homologs are genes that are descendent from the same ancestor.  Paralogs and 
orthologs are two forms of homologs.  
 
HomoloGene: 
HomoloGene is a NCBI database that collects homologs among the annotated genes 
of several completely sequenced eukaryotic genomes. 
 
HSSP: 
The HSSP is a database of homology-derived secondary structure of proteins.  
 
Hydrophobic burial:
The hydrophobic effect is considered to be the major driving force for the folding of 
globular proteins.  It causes nonpolar side-chains to cluster in proteins.  The non-polar 
area buried in a folded protein is used to quantify hydrophobic burial.  
 
Jmol: 
Jmol is a free software package that is used to view three-dimensional structures. 
 
KEGG 
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a suite of databases and 
associated software which facilitate integration of the current knowledge on 
biological information.   
 
LD 
Linkage Disequilibrium (LD) is the non-random association between genetic markers 
in a population. 
 
Machine learning: 
Machine learning refers to a system that is capable of autonomous acquisition and 
integration of knowledge.  It usually requires training an algorithm on a given data set 
and testing it on other data set. 
 
Mis-sense SNPs: 
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Mis-sense SNPs, also termed non-synonymous SNPs, are SNPs that are located in 
coding regions and result in amino acid variation in the protein products of genes. 
 
MySQL: 
MySQL is a database management system.  
 
Natural language processing (NLP): 
Natural Language Processing (NLP) technology is software for analyzing, 
understanding and generating natural human language. 
 
Non-synonymous SNPs: 
See mis-sense SNPs.  
 
NR: 
NR is the NCBI non-redundant protein sequence database. 
 
OMIM  
Online (Mendelian Inheritance in Man) is a database of human genes and genetic 
disorders. 

Ortholog: 
Orthologs are genes in different species that evolved from a common ancestral gene 
by speciation. 
 
Overpacking 
Introducing a residue with a large side chain into the core of a protein may cause 
steric clashes between this residue and the surrounding residues.  This phenomenon is 
called overpacking and destabilizing protein structure.    
 
Paralog: 
Paralogs are genes related by duplication within a genome. 
 
PDB: 
PDB (Protein Data Bank) is the database of the 3-D structures of proteins and nucleic 
acids. 

PHD: 
PHD is a program for predicting protein secondary structure and per residue solvent 
accessibility from multiple sequence alignments.  
 
Phenylketonuria (PKU): 
Phenylketonuria (PKU) is a genetic disorder that is characterized by an impaired 
ability to process phenylalanine into other compounds. 
 
PHP: 
PHP is a scripting language that has been widely used for web development.  
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PHP-NUKE: 
PHP-NUKE is an open source template for web development.  It is written in PHP. 
 
PQS: 
Protein Quaternary Structure (PQS) is a database of probable protein quaternary 
structures based on structures in the PDB database. 
 
Principal component analysis 
Principal component analysis (PCA) is a mathematical procedure that transforms a 
number of (possibly) correlated variables into a (smaller) number of uncorrelated 
variables called principal components. 
 
PROCHECK: 
PROCHECK is a program for assessing the stereochemical quality of a given protein 
structure. 
 
Protein Stability: 
The stability of a protein is the difference in Gibbs free energy (∆G) between the 
folded and the unfolded states of a protein.  
 
ProTherm: 
ProTherm(Protein Thermodynamic Database) is a database that collects numerical 
data of thermodynamic parameters (such as Gibbs free energy change and enthalpy 
change on folding) for wild type and mutant proteins. 
 
PSIBLAST 
PSIBLAST (Altschul et al. 1997) is a program that iteratively searches protein 
databases for sequences similar to the query sequence.  PSIBLAST and BLAST are 
similar except that the former uses position-specific scoring matrices (PSSMs) 
generated in the searching process while the later uses pre-defined substitution 
matrices such as BLOSUM62.  
 
PSIBLAST can be used to repeatedly search target databases.  It uses a multiple 
alignment of high scoring sequences found in each search round to generate a new 
PSSM for use in the next round of searching. PSIBLAST will iterate until no new 
sequences are found, or the user may specify a maximum number of iterations.  A 
maximum of three iterations is used in the profile model.  
 
PSSM 
PSSM is a position-specific scoring matrix.  It is generated by PSIBLAST during the 
process of searching for the sequences related to a query sequence. 
 
RefSeq: 
RefSeq is the NCBI database of reference sequences.  It contains a curated and non-
redundant set of nucleotide and protein sequences. 
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RefSNP: 
RefSNP is a non-redundant set of variations in dbSNP. 
 
Relative Surface accessibility: 
See surface accessibility. 
 
Root mean square (RMS) error: 
In this work, the root mean square (RMS) error is used to measure the distance 
between two 3-dimensional structures.  The RMS error is defined as the root mean 
square distance between sets of related atoms.   
 
SCOP: 
Structural Classification of Proteins (SCOP) is a database of protein structure 
classification.  
 
ScoreCons: 
A program for scoring residue conservation in a multiple sequence alignment.  
 
SCWRL:
SCWRL is a program for adding sidechains to a protein backbone based on a 
backbone-dependent rotamer library.  The library provides lists of χ1-χ2-χ3-χ4 values 
and their related probabilities for residues with given φ-ψ values.  The library is 
generated from a selected list of solved protein structures.  
 
Sensitivity: 
Sensitivity = TP/TP+FN, where TP is the number of true positives and FN is the 
number of false negatives. 
 
Sequence Profile: 
A Sequence Profile in this dissertation is defined as a multiple sequence alignment 
between a human sequence and its homologs.  
 
SNPSubSNPLink: 
SNPSubSNPLink is a mapping table of RefSNP IDs and the corresponding Submitted 
SNP IDs. 
 
Specificity: 
Specificity = TN/TN+FP, where TN is the number of true negatives and FP is the 
number of false positives. 
 
(Relative) Surface accessibility (or solvent accessibility): 
Solvent surface area describes the area of a protein that is accessible to solvent.  In 
order to calculate the solvent surface area of a protein or residue, a probe sphere 
representing the solvent molecule is rolled over the protein surface.  The contact 
surface between the protein molecule (solute) and the solvent molecule is defined as 
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the solvent surface area.  The surface accessibility of a residue is represented by the 
ratio between the solvent surface area of the residue in a folded protein and that in an 
unfolded protein.  A residue is classified as on the protein surface if its surface 
accessibility is more than 20%.   
 
SVM 
SVM is a computational method of data classification. 
 
Swiss-Prot: 
Swiss-Prot is a curated protein sequence database. 
 
Temperature factor: 
See Crystallographic B-factor.  
 
Z-score:  
Z-score is a statistical measure that quantifies the difference (measured in standard 
deviations) between a sample and the mean of a data set. 

 


