
ABSTRACT

Title of Document: A SURVEY OF THE ATTACK ON MD5.

Prathap Sridharan, Master of Science, 2006

Directed By: Professor Lawrence Washington, Mathematics

In Eurocrypt 2005, Wang et al. presented an exciting paper that showcased her

method of breaking MD5 by attacking its collision resistance propery. However,

Wang’s paper does not give a thorough exposition of the attack and much of their

techniques are shrouded in mystery. This paper attempts to explain Wang’s attack on

MD5 in greater detail by consolidating the various expository works on the subject.

A SURVEY OF THE ATTACK ON MD5.

By

Prathap Sridharan

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2006

Advisory Committee:
Professor Lawrence Washington
Professor Jonathan Katz
Professor Jeffrey Adams

© Copyright by
Prathap Sridharan

2006

ii

Acknowledgements

I would like to thank my advisor, Professor Lawrence Washington, for his

encouragement, constructive comments and helpful insights during the writing of this

thesis. I would also like to thank Professor Jonathan Katz for giving me the idea to

write this thesis, and providing me with the resources to conduct my research. Finally,

I would like to thank Yiqun Lisa Yin and Phillip Hawkes for referring me to good

sources of research on the topic.

iii

Table of Contents

Acknowledgements... ii
Table of Contents... iii
Chapter 1: Introduction ... 1

1.1 Applications of Hash Functions.. 2
1.2 The Merkle-Damgård Construction for Hash Functions 4
1.3 Structure of the Thesis .. 6

Chapter 2: The MD5 Algorithm ... 7
Chapter 3: A Toolbox for Cryptanalysis of MD5... 12

3.1 Modular Differences and XOR Differences ... 12
3.2 Modular Addition and Bit Rotation .. 17
3.3 Difference Propagation ... 20

Chapter 4: Wang’s Attack on MD4 .. 27
4.1 Computing Necessary Conditions for the Differential Characteristics....... 33
4.2 The Message Block Differentials and Differential Pattern......................... 36
4.3 Message Modification... 42

Bibliography ... 48

1

Chapter 1: Introduction

A cryptographic hash function is a hash function with certain additional security

properties to make it suitable for use as a primitive in various information security

applications, such as authentication and message integrity. A hash function takes a

long string (or message) of any length as input and produces a fixed length string as

output, sometimes termed a message digest or a digital fingerprint. In various

standards and applications, the two most-commonly used hash functions are MD5 and

SHA-1 ; however, as of 2005, security flaws have been identified in both algorithms.

Definition 1.1 (Cryptographic Hash Function) A cryptographic hash function is a

mapping

h : {0,1}*→{0,1}n

where {0,1}* denotes the set of bit strings of arbitrary length. The image h(X) of

some message X Є {0,1}* is called the hash value of X.

Broadly speaking, a cryptographic hash function should behave as much as

possible like a random function while still being deterministic and efficiently

computable. There is no formal definition which captures all of the properties

considered desirable for a cryptographic hash function. The properties below are

generally considered prerequisites and a violation of any of these properties implies a

weak hash function:

Preimage resistant: given h it should be computationally infeasible to find any m

such that h = hash(m).

2

Second preimage resistant: given an input m1, it should be computationally infeasible

to find another input, m2 (not equal to m1) such that hash(m1) = hash(m2).

Collision-resistant: it should be computationally infeasible to find two different

messages m1 and m2 such that hash(m1) = hash(m2).

It should be noted that the meaning of “computationally infeasible” is very

much a subjective phrase. One can define a problem to be “computationally

infeasible” if solving it would require more than a pre-specified upper bound in space

or computing speed. However, considering the current rate with which computing

machines are being improved, what might be deemed “computationally infeasible”

today might be perfectly feasible tomorrow.

1.1 Applications of Hash Functions

A particularly important application of hash functions occurs in the context of digital

signature schemes. Digital signature is a type of method for authenticating digital

information analogous to ordinary physical signatures on paper, but implemented

using techniques from the field of public- key cryptography.

Digital signature schemes rely on public-key cryptography. In public-key

cryptography, each user has a pair of keys: one public and one private. The public key

is distributed freely, but the private key is kept secret and confidential; another

requirement is that it should be infeasible to derive the private key from the public

key. A general digital signature scheme consists of three algorithms:

• A key generation algorithm

• A signing algorithm

• A verification algorithm

3

For example, consider the situation in which Bob sends a message to Alice and wants

to be able to prove it came from him. Bob sends his message to Alice and attaches a

digital signature. The digital signature is generated using Bob's private key, and takes

the form of a simple numerical value (normally represented as a string of binary

digits). On receipt, Alice can then check whether the message really came from Bob

by running the verification algorithm on the message together with the signature and

Bob's public key. If the verification algorithm accepts the message, then Alice can be

confident that the message really was from Bob, because the signing algorithm is

designed so that it is very difficult to forge a signature to match a given message

(unless one has knowledge of the private key, which Bob has kept secret).

The problem with such a scheme is that the signature is usually about as big as

the message itself. Thus, for efficiency reasons, Bob first applies a cryptographic hash

function to the message before signing. This makes the signature much shorter and

thus saves time since hashing is generally much faster than signing in

implementations. However, if the message digest algorithm is insecure (for example,

if it is possible to generate hash collisions), then it might be feasible to forge digital

signatures.

To elaborate, suppose Alice and Eve agree to sign a document detailing some

financial transactions between them. Also, suppose that Eve is dishonest and is able

to produce two documents which are mapped to the same hash value and whose

contents differ significantly. That is, suppose Eve was able to find another document

with another set of conditions benefiting Eve that has the same hash value as the

4

original financial document. Now, Alice might be in agreement with the conditions of

the original document. So Eve asks Alice for her digital signature on the original

document and what Eve receives is not only a valid signature for the original

document but also for the forged document as well. The signature is valid for both

messages because the verification process only refers to their common hash value.

Eve can now replace one message by the other and claim that Alice signed the second

message, the document that unfairly benefits her. Hence, it is important to require

hash functions to be collision resistant.

1.2 The Merkle-Damgård Construction for Hash Functions

The Merkle-Damgård method or MD-design principle is a generic method of

constructing a cryptographic hash function. A cryptographic hash function must be

able to process an arbitrary-length message into a fixed-length output. This can be

achieved by breaking the input up into a series of equal-sized blocks, and operating

on them in sequence using a compression function that processes a fixed-length input

into a shorter, fixed-length output, each time combining a block of the input with the

output of the previous round.

Definition 1.2.1 (Compression Function) A compression function is a mapping

 g : {0,1}m x {0,1}l→{0,1}m

with 1 ≤ m < l which can be evaluated efficiently. Here the {0,1}m part of the domain

is some fixed parameter IV (initial value) and the compression function g is denoted

by gIV (and maps {0,1}l→{0,1}m).

5

Typically an input message is padded such that the length of the padded input

message is a multiple of l. An algorithm for the Merkle-Damgård construction

proceeds as follows:

Given: Compression function g : {0,1}m x {0,1}l→{0,1}m;

l-bit constant IV;

Input : Message M;

1. Break M into m-bit blocks M0,…, Mk-1, padding if necessary;

2. Let h0 = IV;

3. For i = 1 to k let h i = 1 1(,);i ig h M− −

4. Output hk;

Since compression functions can be seen as small hash functions in themselves, it

seems natural that the collision resistance of a compression function implies the

collision resistance of the hash function. We make this more precise with the

following definitions and theorem:

Definition 1.2.2 (Collision of the Compression Function) A collision of the

compression function g consists of an initial value IV and different inputs X and 'X

such that

gIV(X) = gIV
'()X

Theorem 1.2.4 ([5]) Let g be a collision resistant compression function and h be a

hash function, constructed from g by using the MD-design principle. Then h is

collision resistant.

6

1.3 Structure of the Thesis

It seems intuitively clear that the property of collision resistance is the most important

for hash functions and not surprisingly it is the target of most attacks on hash

functions. The attack on the MD5 hash function by Xiaoyun Wang proved that MD5

is not collision resistant. In this thesis, we will attempt to explain Wang’s attack on

MD5. In order to understand the attack on MD5 we will need some background

knowledge. In chapter 2 we explain the MD5 algorithm and some of its important

characteristics. In chapter 3 we provide a toolbox for the cryptanalysis of MD5.

Firstly, theorems pertaining to additions of integers modulo 2n , bit rotations, and

bitwise Boolean functions are presented. These theorems are taken from Magnus

Daum’s PhD thesis [2]. Most of the theorems will be stated without proof (for proofs

see [2]). Secondly, we analyze difference propagation in hash functions. It seems

intuitive that in order to understand the attack on the collision resistance of hash

functions we would need to study the effect of input differences on the output

differences. Particularly, we are interested in studying the conditions under which

non-zero input differences produce a zero output difference. Finally, in chapter 4 we

attempt to explain Wang’s attack on MD5 using the background knowledge from the

previous chapters.

7

Chapter 2: The MD5 Algorithm

The MD5 hash function belongs to a class of hash functions called the MD4-Family.

The hash functions of this class use the iteration scheme as dictated by the Merkle-

Damgård construction. In Crypto ’89, Merkle and Damgård submitted a seminal

article on the construction of hash functions using the iteration scheme. Inspired by

this article, Rivest proposed the MD4 hash function, a predecessor of MD5, one year

later. After cryptanalysis of MD4 revealed certain unexpected properties that raised

concerns about its security, Rivest proposed the MD5 hash function in 1992. It

incorporated many of the ideas used to design MD4 but with more emphasis on

security rather than efficiency. Thus, Wang’s attack on MD5 is applicable to MD4 as

well. In fact, Wang’s method produces collisions in MD4 much more quickly than in

MD5.

MD5 processes a variable length message into a fixed-length output of 128

bits. The input message is broken up into chunks of 512-bit blocks. The message is

padded so that its length in bits is divisible by 512. The padding works as follows:

first a single bit, 1, is appended to the end of the message. This is followed by as

many zeros as are required to bring the length of the message up to 64 bits less than a

multiple of 512. The remaining bits are filled up with a 64-bit integer representing the

length of the original message. Obviously, restricting the length of the message to 64

bits precludes the possibility of processing “arbitrarily long” messages but in practice

a message length greater than 642 1− is highly unlikely. Hence, for all practical

purposes, we can consider the hash function as being able to process messages of

arbitrary length. Details about the padding of an input message do not play any role in

8

our explanation of Wang’s attack. Thus we will assume that the input message length

is a multiple of 512.

The main MD5 algorithm operates on a 128-bit state, divided into four 32-bit

words (or registers), denoted a, b, c and d. As usual, 32-bit words are integers mod

232. These are initialized to certain fixed constants collectively called IV (or initial

value). The main algorithm then operates on each 512-bit message block in turn, each

block modifying the state. The processing of a message block consists of four similar

stages, termed rounds; each round is composed of 16 similar operations (or step

operations) based on a non-linear function fi, modular addition, and left rotation. Here

0 ≤ i <64 denotes the ith step operation.

Recall that MD5 is only one hash function in the class of hash functions called

MD4-Family. The non linear boolean functions used for the MD4-Family are:

XOR(X, Y, Z) = X Y Z⊕ ⊕

MAJ(X, Y, Z) = () () ()X Y X Z Y Z∧ ⊕ ∧ ⊕ ∧

ITE(X, Y, Z) = () ()X Y X Z∧ ⊕ ∧

ONX(X, Y, Z) = ()X Y Z∨ ⊕

Sometimes the functions ITE and ONX are applied with swapped parameters. Thus,

for example, we will denote ITE(Z, X, Y) by ITEzxy.

Since MD5 is a member of the MD4-Family, a subset of the functions from

the above list is used. A different boolean function, fi is used in each round of MD5.

Note that MAJ is not used for MD5:

fi(X, Y, Z) = ITE = (X ∧ Y) ∨ (¬X ∧ Z), 0 ≤ i ≤ 15

fi(X, Y, Z) = ITEzxy = (X ∧ Z) ∨ (Y ∧ ¬Z), 16 ≤ i ≤ 31

9

fi(X, Y, Z) = XOR = X ⊕ Y ⊕ Z, 32≤ i ≤ 47

fi(X, Y, Z) = ONXxzy = Y ⊕ (X ∨ ¬Z), 48 ≤ i ≤ 63

⊕ , ∧ , ∨ , ¬ denote the XOR, AND, OR and NOT operations.

Let ti and si denote step dependent constants, the + operator denote addition

modulo 232 and « denote the rotational left shift operator. If M is a 512 bit message

block, then M = <m0, m1,…, m15> where mk is a 32 bit word. In each round of sixteen

step operations, these sixteen 32 bit words are used exactly once and wi denotes the

round dependent permutations of these sixteen 32 bit words that make up the message

block. The round dependent permutation is given as follows:

Let k Є {0,1,2,3} indicate the rounds. Then

w16k +i = mi mod 16 , if k = 0

w16k +i = m5i + 1 mod 16 , if k = 1

w16k +i = m3i + 5 mod 16 , if k = 2

w16k +i = m7i mod 16 , if k = 3

Let [abcd i] denote the following operation:

((, ,))i i ia b a f b c d w t= + + + + « is

Then the algorithm for the MD5 hash function can be written as follows:

MD5(x)

external MD5-PAD
global t0,…,t63
global s0,…,s63

5 ()y MD PAD x← −

1 2 ... , 512n kdenote y M M M where each M is a bit block= −P P P
a = 0x67452301
b = 0xefcdab89

10

c = 0x98badcfe
d = 0x10325476

for each 1{ ,..., }k nM M M∈
begin

aa = a
bb = b
cc = c
dd = d

/*Do the following 16 operations for round 0*/
[abcd 0] [dabc 1] [cdab 2] [bcda 3]
[abcd 4] [dabc 5] [cdab 6] [bcda 7]
[abcd 8] [dabc 9] [cdab 10] [bcda 11]
[abcd 12] [dabc 13] [cdab 14] [bcda 15]

/*Do the following 16 operations for round 1*/
[abcd 16] [dabc 17] [cdab 18] [bcda 19]
[abcd 20] [dabc 21] [cdab 22] [bcda 23]
[abcd 24] [dabc 25] [cdab 26] [bcda 27]
[abcd 28] [dabc 29] [cdab 30] [bcda 31]

/*Do the following 16 operations for round 2*/
[abcd 32] [dabc 33] [cdab 34] [bcda 35]
[abcd 36] [dabc 37] [cdab 38] [bcda 39]
[abcd 40] [dabc 41] [cdab 42] [bcda 43]
[abcd 44] [dabc 45] [cdab 46] [bcda 47]

/*Do the following 16 operations for round 3*/
[abcd 48] [dabc 49] [cdab 50] [bcda 51]
[abcd 52] [dabc 53] [cdab 54] [bcda 55]
[abcd 56] [dabc 57] [cdab 58] [bcda 59]
[abcd 60] [dabc 61] [cdab 62] [bcda 63]

a = a + aa
b = b + bb
c = c + cc
d = d + dd

end

return (a, b, c, d)

11

An important part of the step operations in MD5 are the non linear Boolean

functions, which are applied bitwise to the registers. These functions have been

chosen because:

• They support a strong avalanche effect, which means that small differences in

the registers are mapped to large differences in only a few step operations.

• The functions are balanced, which means that | 1(0)f − | = | 1(1)f − |.

• The correlation between a boolean function and an arbitrary linear mapping

{0,1}3 → {0,1} is quite small so the boolean function is non linear.

• The Boolean functions produce their output from the bits of X, Y, and Z, in

such a manner that if the input bits of X, Y, and Z are independent and

unbiased, then the output bit of the corresponding function will be

independent and unbiased.

12

Chapter 3: A Toolbox for Cryptanalysis of MD5

In this chapter we provide the background theory necessary for the cryptanalysis of

MD5. In fact, much of the theory presented here is an indispensable tool for

understanding other hash functions and block ciphers. After introducing some

notation, we will present some theorems on the relationship between modular

differences (mod 232) and xor differences in section 3.1. In 3.2 we will then focus our

attention on the relationship between bit rotations and modular addition (mod 232) and

explicitly analyze what happens when we interchange the application of the two

operations. To conclude the background theory, we will investigate difference

propagation in section 3.3.

3.1 Modular Differences and XOR Differences

Modular addition and xor addition are two of the most important operations used in

the design of hash functions. To denote the difference between two 32 bit registers x

and 'x we have to consider:

XOR difference: x⊕∆ = 'x x⊕ and Modular difference: x+∆ = 'x x− mod 322

We state that all bit positions are indexed from 0. Since a 32 bit number will include

many zeroes in its bit representation, and to avoid writing out such lengthy

representations, we use the following notation:

1[,...,]ri i = (xn-1,…,x0) where
1

... 1,
ri ix x= = = and

13

xj = 0 for all 1{ ,..., }.rj i i∉

This means:

1 2
1 0(,...,) 2 2 ... 2 ri i i

nx x x−= = + + +

On occasion, we will not only need to know the modular difference of two

bits but also their exact values. To that end we introduce the concept of signed bitwise

differences denoted by:

x±∆ = ' '
1 1 0 0(,...,)n nx x x x− −− − '() { 1,0,1}n

i iwhere x x− ∈ −

To abbreviate values from { 1− ,0,1}n, we introduce the notation ki to denote

ki
x = 1− . For example,

[i1 , 2i , 3i ,i4] = x±∆ where
1 4

1i ix x= = ,
2 3

0i ix x= = ,
1 4

' ' 0i ix x= = ,

2 3

' ' 1i ix x= = and

'
j jx x− = 0 for all j ∉{i1,…,i4}.

It should be noted that the signed bitwise difference ()±∆ has no direct relation to the

modular difference ()+∆ .

Another piece of notation that will prove to be useful later pertains to how we

can express step operations concisely and clearly. In most descriptions of MD5, the

registers are labeled a, b, c, d and the step operations are defined as in Chapter 2. That

is, the algorithm is usually defined in the form “first do F(a,b,c,d), then F(d,a,b,c),

14

then F(c,d,a,b), then F(b,c,d,a)…” and so on. In the new notation we use the fact that

in every step operation only one register is modified. We denote the content of the

register changed in step i by Ri. If we initialize R-1=b, R-2=c, R-3=d,

R-4=a, we denote the step operation in step i by

1 4 1 2 3((, ,))i i i i i i i i iR R R f R R R W T− − − − −= + + + + « is (3.1.1)

Notice that with the above notation we can solve for Ri-4 and Wi respectively:

4 1()i i iR R R− −= − » is − fi(Ri-1,Ri-2,Ri-3) i iW T− − (3.1.2)

1()i i iW R R −= − » is − fi(Ri-1,Ri-2,Ri-3) – Ti – Ri-4 (3.1.3)

We state the following very important theorem and its corollaries governing the

relationship between modular differences, xor differences and signed bitwise

differences mostly without proof.

Theorem 3.1.1 ([2]) Let , ' {0,1}nx x ∈ with some fixed signed bitwise difference

.x±∆ Then the ⊕ -difference x⊕∆ and the modular difference x+∆ are uniquely

determined.

Proof.

This is obvious because knowing the signed bitwise difference directly gives you the

values of x and 'x in the bit positions that have non zero differences. So computing the

xor difference and modular difference for these bit positions is trivial. For bit

positions with a signed bitwise difference of zero, the xor difference and modular

difference is zero because x and 'x have the same values in these bit positions.

15

Theorem 3.1.2 ([2]) Let , ' {0,1} ,nx x ∈ 0 1k n≤ ≤ − and define

()
0

()
1

max{0 | 0 1},

max{0 | 1 1},

k
i

k
i

l j n k x for k i k j
l j n k x for k i k j

= ≤ ≤ − = ≤ ≤ + −

= ≤ ≤ − = ≤ ≤ + −

Then it holds

() () ()
0 0 0

() () ()
1 1 1

[, 1,...,], ,
2

[1,...,],

[, 1,...,], ,2
[1,...,], .

k k k
k

k k k
k

x k l k l k if k l n
x

or x n k else

x k l k l k if k l nx
or x n k else

±
+

±

±
+

±

 ∆ = + + − + < ∆ = ⇔  
∆ = −  

 ∆ = + + − + < ∆ = − ⇔  
∆ = −  

The theorem shows that when transforming a modular difference into an

⊕ -difference, a modular difference of 2k can affect more than just the kth bit of the

⊕ -difference or signed bitwise difference depending on the input bits. That is, for a

given modular difference, there can be many XOR differences. For example, when

the modular difference 6' 2x x− = for some value x, then we have the following

possibilities for the XOR difference:

• One bit difference in bit 6, i.e., 0 00000040x x⊕∆ = . This means that bit 6 in x

is a 1 and bit 6 in 'x is 0.

• Two bit difference where a carry is transferred from bit 6 to bit 7, i.e.,

0 000000 0x x c⊕∆ = . This means that 6 70, 1x x= = and ' '
6 71, 0x x= = .

• Three bit difference where a carry is transferred from bit 6 to bit 7 and then to

bit 8, i.e., 0 000001 0x x c⊕∆ = . This means that 6 7 80, 0, 1x x x= = = and

' ' '
6 7 81, 1, 0x x x= = = .

• In general, there can be more carries propagating to further bits and the bit

pattern is x = 1000… and 'x = 0111…

16

In case the modular difference is -26, the XOR difference remains unchanged but

the values of x and 'x are exchanged.

Corollary 3.1.3 ([2]) 2 2 0 : [,...,]k kx or x l x k l k+ + ⊕∆ = ∆ = − ⇒ ∃ ≥ ∆ = + .

The next corollary corrects the incorrect probabilities stated in [2].

Corollary 3.1.4 ([2]) For fixed 2 ,0 1 {0,1}k nx l n k and x+∆ = ≤ ≤ − − ∈ chosen

uniformly at random

(1)

()

Pr([, 1,...,]) 2 ,

Pr([1,...,]) 2 .

l

n k

x k l k l k

x n k

± − +

± − −

∆ = + + − =

∆ = − =

For fixed 2kx+∆ = − the following probabilities hold:

(1)

()

Pr([, 1,...,]) 2 ,
Pr([1,...,]) 2 .

l

n k

x k l k l k
x n k

± − +

± − −

∆ = + + − =

∆ = − =

Thus in both cases we have

(1)

()

Pr([,...,]) 2 ,
Pr([1,...,]) 2

l

n k

x k l k
x n k

⊕ − +

⊕ − −

∆ = + =

∆ = − =

Proof.

For 2 ,kx+∆ =

(1)
1Pr([, 1,...,]) Pr(1, ... 0) 2 l

k l k l kx k l k l k x x x± − +
+ + −∆ = + + − = = = = = = and

()
1Pr([1,...,]) Pr(... 0) 2 n k

n kx n k x x± − −
−∆ = − = = = = =

For 2 ,kx+∆ = −

()
1Pr([, 1,...,]) Pr(0, ... 1) 2 l l

k l k l kx k l k l k x x x± − +
+ + −∆ = + + − = = = = = = and

()
1Pr([1,...,]) Pr(... 1) 2 .n k

n kx n k x x± − −
−∆ = − = = = = =

17

We can also consider more complicated modular differences like

0 1
0 12 2 , .m mx m m+∆ = − > Here the signed bitwise difference is of the form

0 0 0 0 0 1 1 1 1 1[, 1,..., , , 1,...,]x m l m l m m l m l m±∆ = + + − + + −

as long as 0 1 1,m m l> + where () , 0,1,ik
i il l i= = are defined as in Theorem 3.1.2. As a

concrete example, consider the modular difference 6 23 271 2 2 2x+∆ = − − + − with a

corresponding signed bitwise difference of the form

[0,1,2,3, 4,5,6,7,8,9,10,11, 23, 24, 25,26, 27,28, 29,30,31]x±∆ = .

3.2 Modular Addition and Bit Rotation

We start by defining the following notation

[|]l i rA A A=

which means that for 1 0(,...,)nA a a−= we have 1(,...,)l n iA a a−= and 1 0(,...,).r iA a a−=

We also define an indicator function by 1, where

1
1, ,

()
0, ,

if x is true
x

if x is false

 
 =  
 
 

We assume that 0 < k < n and A and B are two integers such that 0 ≤ A,B < 2n and

[|]l n k rA A A−= and [|]l n k rB B B−= .

18

Using this notation we can now state some important lemmas and theorems:

Lemma 3.2.1 ([2])

A«k [|],r k lA A=

[|],l l r n k r rA B A B c A B+
−+ = + + +

[|],l l r n k r rA B A B c A B−
−− = − − −

where

(2),

()

n k
r r r

r r r

c A B
c A B

+ −

−

= + ≥

= <

1
1

¢

are the carry bits coming from the right half of the computation.

With the knowledge of Lemma 3.2.1 we can deduce the following theorems

which describe the error that occurs when we modify equations by reversing the order

of addition and bit rotation:

Theorem 3.2.2 ([2])

(A+B)«k – (A«k+B«k) = [|],k rc c+ +−

where

(2),

(2)

n

n k
r r r

c A B
c A B

+

+ −

= + ≥

= + ≥

1
1

¢

¢

are the carry bits from the full and right side additions respectively.

Theorem 3.2.3 ([2])

(A B−)«k – (A«k − B«k) = 2k
rc c− −−

where

19

(),
()r r r

c A B
c A B

−

−

= <

= <

1
1

are the carry bits coming from the full and right side subtractions respectively.

Theorem 3.2.4 ([2]) Let Pα,β (with , {0,1}α β ∈) be the probability that

(A+B)«k – (A«k+B«k) = [|].kα β−

1. If we suppose A to be fixed and B to be chosen uniformly at random, then

0,0 2 (2)(2)n n k k
r lP A A− −= − −

2. If we suppose A and B to be chosen independently and uniformly at random, then

()
0,0 (1 2 2 2) / 4n k k nP − − − −= + + +

Theorem 3.2.5 ([2]) Let Pα,β (with , {0,1}α β ∈) be the probability that

(A − B)«k – (A«k − B«k) = 2 .kα β−

1. If we suppose A to be fixed and B to be chosen uniformly at random, then

0,0 2 (1)(1)n
r lP A A−= + +

2. If we suppose A to be chosen uniformly at random and B to be fixed, then

0,0 2 (2)(2)n k n k
l rP B B− −= − −

3. If we suppose A and B to be chosen independently and uniformly at random, then

()
0,0 (1 2 2 2) / 4n k k nP − − − −= + + +

The most important lesson to extract from the last two theorems is that if A and B are

chosen uniformly at random then the most probable difference is zero. For example,

we will often find it simpler to replace (A«k-B«k) with (A-B)«k. Why? Because if A

and B are chosen uniformly at random then the probability that the difference

between the quantities (A«k-B«k) and (A-B)«k is zero is given by case 3 of Theorem

20

3.2.5. This also turns to be the most likely difference. This is important in our

cryptanalysis because it enables us to simplify equations.

3.3 Difference Propagation

Before we directly dive into the subject of difference propagation in hash functions, it

is worthwhile to mention a few sentences on the measurement of avalanche effect in

hash functions. Because the ideal of a cryptographic hash function is to behave like a

random function, a hash function is designed so that it has a strong avalanche effect.

This means that an average of one half of the output bits should change whenever a

single input bit is complemented. The avalanche factor tries to mathematically

abstract the desirable property of high nonlinearity between input and output bits, and

specifies that the hashes of messages from a close neighborhood in the domain are

dispersed over the whole range. Another property of random functions and thus

desired of good hash functions is completeness. Completeness is defined as the fact

that every output bit depends on all the input bits, and not a proper subset of them.

The concept of completeness and the avalanche effect can be combined to define

what is called the strict avalanche criterion. A cryptographic hash function satisfies

the strict avalanche criterion when each output bit changes with a probability of

1
2

whenever a single input bit is complemented. There are ways to measure the

strength of the avalanche factor of hash functions. Though MD5 demonstrates good

avalanche effect, it can be empirically shown that it behaves far from a random

function ([2]).

21

Recall that in section 3.1 we introduced a notation to express step operations.

That is we denoted the content of the register changed after step operation i by Ri and

the formula for a step operation was given by equation 3.1.1. We also showed that the

step operations can be reversed (cf. equation 3.1.2, 3.1.3), i.e. we can go backwards

through all the steps by computing 4iR − from 3 2 1, ,i i iR R R− − − , and Ri. Typically, the

focus of the attacks on the collision resistance property of hash functions is on the

difference between register values generated by the different messages rather than on

the actual register values themselves. In other words, consider two different messages

resulting in input words Wi and '
iW in the ith step operation. Denote the computed

register values by Ri and '
iR respectively. Then we are generally interested in

iR+∆ and how this difference propagates in the computation of successive step

operations. It turns out that in Wang’s collision finding scheme this difference has a

structural pattern which can be exploited to break MD5.

It can be shown that MD5 has a much stronger avalanche effect in the forward

direction than in the reverse direction ([2]). Although we are merely speculating, it

seems intuitive that this effect can be exploited, when looking for a differential

pattern, because it is much easier to control small differences when computing

backwards than forwards. The notion of a differential pattern will be properly

explained in the next chapter. However, for now it will suffice to know that a

differential pattern provides some sort of structure to the output differential of each

step operation by explicitly stating what that modular and xor differential must be

after each step operation. The attack will then succeed with a high probability if we

can find two different messages whose output differential (modular and xor) after

22

each step operation matches the differential pattern. No one really knows how Wang

computed the differential pattern but we can make some intelligent guesses as to how

she arrived at the pattern. Thus what follows is purely speculation. In chapter 4 we

will give another speculative method by which Wang might have computed the

differential pattern.

Note that in order for a collision to occur we must

have 60 61 62 63 0R R R R+ + + +∆ = ∆ = ∆ = ∆ = . Then using equation 3.1.2, we can

approximately compute:

59 63 62()R R R+ + +∆ = ∆ − ∆ » 63s
63 62 61 61 63(, ,)f R R R W+ + + +− ∆ ∆ ∆ − ∆ .

Roughly speaking, we can continue in this fashion and build a differential pattern

bottom up that needs to be satisfied in order for a collision to occur. Because of the

weak avalanche effect of MD5 in the reverse direction, we may approximately

compute the differential pattern in the reverse direction as well.

To be more concrete, we start by fixing some modular differences

3,...,i iR R+ +
−∆ ∆ for register values and iW+∆ for input word value after step i. Strictly

speaking, using equation 3.1.2 to compute iR+∆ as above isn’t mathematically correct.

However, Corollary 3.1.4 and Theorem 3.2.5 will tell us with what probability using

such a reformulation is correct. It turns out that this probability is sufficiently high.

For example, if we have a fixed difference 2tR+∆ = for registers R and 'R , and let s

denote the number of bits to rotate by, then by the notation used in section 3.2 we

have,

23

[0 | 2], ,
2

[2 | 0],

t
n s

t

t s n
n s

if t n s

if t n s

−

+ −
−

 < −
 

=  
 ≥ − 

and using Theorem 3.2.5, we obtain the following corollary.

Corollary 3.3.1 ([2]) Let 0 < s < n and 2tR+∆ = with 0 ,t n≤ < and denote

'() .s s sR R R+∆ = −= = = Then for R chosen uniformly at random

Pr(() 2) 1 2 , ,
Pr(() 2) 1 2 , .

s t s t s n

s t s n t n

R if t n s
R if t n s

+ + + −

+ + − −

∆ = = − < −

∆ = = − ≥ −

=

=

Thus as long as ()n t− or ()n s t− − is not too small, rotating the difference is a good

approximation to the difference of the rotated values. This is the reason that we can

replace 1(()i iR R+
−∆ − » is) with 1()i iR R+ +

−∆ − ∆ » is in the reformulation to

compute iR+∆ .

Analyzing the differential resulting from the boolean functions is a little more

complicated. When a modular difference 0iR+∆ ≠ is used in the boolean function, we

need to make assumptions about the signed bitwise difference .iR±∆ By Corollary

3.1.4, for a modular difference of 2k or 2k− , the most likely (with probability 1
2

)

signed bitwise difference is []k or []k respectively. We will use this fact and

information from Table 3.1 in the following example to illustrate how the differential

pattern is computed.

Example 3.3.1

Suppose we want to have a collision appearing in step 25 of the compression

function of MD5. This means that we must have

24

25 22... 0.R R+ +∆ = = ∆ =

We proceed by computing the differential pattern backwards as follows:

Step 25:

21 25 24()R R R+ + +∆ = ∆ − ∆ »9
25 24 23 22 25(, ,)f R R R W+ + + +− ∆ ∆ ∆ − ∆ .

Given that 25 22... 0R R+ +∆ = = ∆ = , we have 21 25.R W+ +∆ = −∆

Here we can introduce an input difference, say, 9
25 2W+∆ = and thus we have

established 9
21 2R+∆ = − as part of the differential pattern.

Step 24:

20 24 23()R R R+ + +∆ = ∆ − ∆ »5
24 23 22 21 24(, ,)f R R R W+ + + +− ∆ ∆ ∆ − ∆ .

Because 24 23 0R R+ +∆ = ∆ = , we only need to concern ourselves with 9
21 2R+∆ = − in

the boolean function. First of all, we need to make an assumption on the signed

bitwise difference 21.R±∆ As stated earlier, by Corollary 3.1.5, 9
21 [9] 2R±∆ = = − with

probability 1 .
2

Since 24 zxyf ITE= , from Table 3.1, we see that the 9th bit of 24 :f

24 23 22 21(, ,)f R R R+ + +∆ ∆ ∆ 23 22 21(, ,) (0,0, 1) 1.zxy zxyITE R R R ITE x+ + += ∆ ∆ ∆ = − = −

Because this depends on the actual value of x, the 9th bit of f24 is zero with probability

1 .
2

 Now, choosing not to introduce an input difference in 24W+∆ , we see that with

probability 1
2

 we have 20 0R+∆ = .

Why do we choose not to introduce an input difference in 24W+∆ ? Because

minimal input differences causes minimal output differences. Since our goal is

maximize our chance of finding different inputs that map to the same output, we only

25

introduce an input difference when necessary. The inspiration for this idea comes

from Hans Dobbertin’s attack on the compression function of MD5 [8].

Step 23:

19 23 22()R R R+ + +∆ = ∆ − ∆ »20
23 22 21 20 23(, ,)f R R R W+ + + +− ∆ ∆ ∆ − ∆ .

Again, 9
21 2R+∆ = − appears in the boolean function. Since 23 zxyf ITE= , from Table

3.1, we see that the 9th bit of 23 :f

23 22 21 20(, ,)f R R R+ + +∆ ∆ ∆ 22 21 20(, ,) (0, 1,0) .zxy zxyITE R R R ITE x+ + += ∆ ∆ ∆ = − = −

Because this depends on the actual value of x, the 9th bit of f23 is zero with probability

1 .
2

 Now, choosing not to introduce an input difference in 23W+∆ , we see that with

probability 1
2

 we have 19 0R+∆ = .

Step 22:

18 22 21()R R R+ + +∆ = ∆ − ∆ »14
22 21 20 19 22(, ,)f R R R W+ + + +− ∆ ∆ ∆ − ∆ .

Since 21R+∆ 92= − appears in the rotation part of the equation, we use Corollary 3.3.1

with t = 9, s = 14, n = 32, to deduce that

14
22 21()R R+ +∆ − ∆ ? = 9 14 9 14 27(0 (2)) (2) 2− − = =? ? with probability 91 2−− .

As in step 23, we see that the 9th bit of f22 is zero with probability 1
2

. We again

do not introduce an input difference for 22W+∆ and we have 27
18 2R+∆ = as part of the

differential pattern.

26

We can continue in this fashion and determine differential characteristics for all 64

steps. This concludes our treatment of difference propagation and consequently our

presentation of the background knowledge necessary to understand Wang’s attack.

∆±x ∆± y ∆± z ∆± XOR ∆± ITE ∆± MAJ ∆± ONX

0 0 0
0 0 1
0 0 −1
0 1 0
0 1 1
0 1 −1
0 −1 0
0 −1 1
0 −1 −1
1 0 0
1 0 1
1 0 −1
1 1 0
1 1 1
1 1 −1
1 −1 0
1 −1 1
1 −1 −1

−1 0 0
−1 0 1
−1 0 −1
−1 1 0
−1 1 1
−1 1 −1
−1 −1 0
−1 −1 1
−1 −1 −1

0
1 − 2(x ⊕ y)
2(x ⊕ y) − 1
1 − 2(x ⊕ z)

0
0

2(x ⊕ z) − 1
0
0

1 − 2(y ⊕ z)
0
0
0
1

−1
0

−1
1

2(y ⊕ z) − 1
0
0
0

−1
1
0
1

−1

0
1 − x
x − 1

x
1

2x − 1
−x

1 − 2x
−1

y − z
y

y − 1
1 − z

1
0

−z
0

−1
z − y
1 − y
−y

z
1
0

z − 1
0

−1

0
x ⊕ y

−(x ⊕ y)
x ⊕ z

1
0

−(x ⊕ z)
0

−1
y ⊕ z

1
0
1
1
1
0
1

−1
−(y ⊕ z)

0
−1

0
1

−1
−1
−1
−1

0
−1 − 2(x − 1)y
1 + 2(x − 1)y

(1 − x)(2z − 1)
−x
x

(1 − x)(1 − 2z)
−x
x

y(1 − 2z)
y − 1
1 − y

0
−1

1
1 − 2z

0
0

y(2z − 1)
y − 1
1 − y

2z − 1
0
0
0

−1
1

Table 3.1: Propagation of signed bitwise differences.

27

Chapter 4: Wang’s Attack on MD4

In this chapter we will discuss Wang’s attack on MD5 in detail. First we present a

high level view of the attack by giving the general algorithm and further dissect the

algorithm in the following sections.

The objective of the attack is to find two colliding 1024-bit messages. Let

0 1(,)M M M= be 1024-bit message such that 0 1| | | | 512M M= = . Also define

31 15 31
0

31 15 31
1

(0,0,0,0, 2 ,0,0,0,0,0,0, 2 ,0,0, 2 ,0)

(0,0,0,0, 2 ,0,0,0,0,0,0, 2 ,0,0, 2 ,0),

δ

δ

=

= −

and let ' ' '
0 1(,)M M M= be another 1024-bit message such that '

0 0 0M M δ= + and

'
1 1 1M M δ= + . If M and 'M are colliding messages then MD5 (M) = MD5 ('M).

Note that the message block differential index starts at 0 and 0th word differential

starts at the left. For example, for 0δ the fourth word differential is 312 and the

eleventh word differential is 152 .

Let '
i i iR R R+∆ = − . From the previous chapter, we know that iR+∆ and

iR⊕∆ represent the modular difference and xor difference respectively of the output

after the ith step operation. In Wang’s attack these differences must attain certain pre-

specified values after each step operation called a differential characteristic (cf. Table

4.1 below). For example, in the case of modular differences,

3 0R+∆ = whereas 6
4 2R+∆ = . Recall from section 3.1 that as a consequence of

Theorem 3.1.3, a particular modular differential does not determine a unique xor

differential. In addition, given a nonzero xor differential alone for the ith step

28

operation, we cannot determine the exact bit values for '
iR and iR . In Wang’s method,

xor differences after each step operation are implicitly given by specifying values of

certain bits of iR and '
iR . To show this, we need another notation. All bit positions are

indexed from 0:

'
1 2 3 4 5[, , , ,]X X i i i i i= − − denotes that

1 4 5
0i i iX X X= = = and

2 3
1i iX X= = whereas,

1 4 5

' ' ' 1i i iX X X= = = and
2 3

' ' 0i iX X= = and,

'
i iX X= for all 1 2 3 4 5(, , , ,).i i i i i i∉

For example, in the 4th step operation, '
4 4[6,..., 21, 22]R R= − , which means that for

4R bit 6 (,6iR) to bit 21 (,21iR) are set to 0, and bit 22 (,22iR) is set to 1, whereas for

'
4R bit 6 to bit 21 are set to 1, and bit 22 is set to 0. All other bits are the same for

4R and '
4R . Thus we know both the xor difference and modular difference of 4R and

'
4R . The collection of these differential characteristics is collectively called the

differential pattern. Since we are processing 1024-bit messages each consisting of

two 512-bit blocks, the differential pattern is composed of 128 differential

characteristics; 64 for the first block and 64 for the second block. Table 4.1 gives the

differential characteristics for the first block. These tables were copied from [1] with

modifications to reflect our notation. The first column denotes the step operation

number, the second column denotes the output value of the step operation, the third

column denotes the message word for 0M in each step, the fourth column denotes the

shift rotation, the fifth column denotes the modular difference in the message word,

29

the sixth column denotes the modular difference in the step operation output, and the

seventh column denotes the step operation output for '
0M . The empty items and the

unlisted steps have zero differences in the fifth and sixth columns.

The idea of the attack is to find two messages such that their step operation

differentials match the differential pattern laid out by Wang, which consequently

results in a collision. Furthermore, Wang computes what are called necessary

conditions for the differential characteristics to hold with improved probability. These

necessary conditions dictate the actual values in certain bit positions of the output of a

step operation. For example, to ensure that the differential characteristics in step i are

satisfied with high probability, the necessary conditions will require that certain bit

values of 4 ,...,i iR R− are set to 1 and certain other bits are set to 0. For example, the

necessary conditions for the differential characteristics to hold in step 16

are 16,3 15,3 16,17 15,15 16,17 16,31, , 0, 0R R R R R R= = = = . As a matter of fact, the seventh

column of Table 4.1 also gives some of the necessary conditions because they

explicitly provide the bit values of the step operation output. Obviously given a

randomly chosen 1024-bit message M and a second message 'M computed as above,

it is more likely that the all the differential characteristics are not satisfied and thus

yields no collision. However, Wang uses message modification techniques to ensure

that the necessary conditions are met, which in turn ensures that the differential

characteristics are satisfied with high probability. Given this the algorithm for finding

a collision in MD5 proceeds as follows:

1. Repeat the following steps until all first block differential characteristics are

satisfied:

30

(i) Select a random 512-bit block 0M .

(ii) Use message modification techniques on 0M to ensure that most of

the necessary conditions for the first block differential pattern are

met.

(iii) Let '
0 0 0M M δ= + and apply the compression function to check

that the step operation differentials satisfy the differential

characteristics for the first block as laid out in Table 4.1.

2. Repeat the following steps until a collision is found:

(i) Select a random 512-bit block 1M .

(ii) Use message modification techniques on 1M to ensure that most of

the necessary conditions for the second block differential pattern

are met.

(iii) Let '
1 1 1M M δ= + and apply the compression function (with the

state variables determined from the output of the first block) to

check if there is a collision.

Notice that we insist that the message modification techniques result in

satisfying only most of the necessary conditions. It is natural to ask: why not require

that the message modification techniques result in satisfying all the necessary

conditions? The answer is that it is computationally inefficient to satisfy all

conditions because there aren’t fast message modification algorithms to do so.

Instead, it is computationally more efficient to run the algorithm probabilistically by

using clever message modification techniques to satisfy as many conditions as

31

possible. There are also many other questions to be answered here. Given the

differential pattern, how are the necessary conditions determined? How are the initial

message block differentials 0δ and 1δ chosen? How is the differential pattern chosen?

What are message modification techniques? All these questions will be answered in

the following sections with concrete examples.

Step The output
in the i th step
of M0

Wi Si iW+∆ iR+∆ The output in the ith

Step for '
0M

3 3R 3m 22
4 4R 4m 7 312− 62 4[6,..., 21, 22]R −
5 5R 5m 12 6 23 312 2 2− − 5[6, 23,31]R −
6 6R 6m 17 6 23 271 2 2 2+ − + 6[6,7,8,9,10, 11, 23, 24, 25,

26,27, 28,29,30,31,0,1, 2,3,4, 5]
R − − − −

−
7 7R 7m 22 15 17 231 2 2 2− + + + 7[0,15, 16,17,18,19, 20, 23]R − − −
8 8R 8m 7 6 311 2 2− + − 8[0,1,6,7, 8, 31]R − − −
9 9R 9m 12 12 312 2− − 9[12,13,31]R −
10 10R 10m 17 30 312 2− − 10[30,31]R
11 11R 11m 22 152− 7 13 312 2 2+ − 11[7, 8,13,...,18, 19,31]R − −
12 12R 12m 7 24 312 2− − 12[24,25,31]R −
13 13R 13m 12 312− 13[31]R
14 14R 14m 17 312− 3 15 312 2 2− + − 14[3, 15,31]R −
15 15R 15m 22 29 312 2− 15[29,31]R −
16 16R 1m 5 312− 16[31]R
17 17R 6m 9 312− 17[31]R
18 18R 11m 14 152− 17 312 2− − 18[17,31]R
19 19R 0m 20 312− 19[31]R
20 20R 5m 5 312− 20[31]R
21 21R 10m 9 312− 21[31]R

32

22 22R 15m 14 22R
23 23R 4m 20 312− 23R
24 24R 9m 5 24R
25 25R 14m 9 312− 25R
26 26R 3m 14 26R
… … … … … … …
33 33R 8m 11 33R
34 34R 11m 16 152− 312− 34[31]R
35 35R 14m 23 312− 312− 35[31]R
36 36R 1m 4 312− 36[31]R
37 37R 4m 11 312− 312− 37[31]R
38 38R 7m 16 312− 38[31]R
… … … .. … … …
44 44R 9m 4 312− 44[31]R
45 45R 12m 11 312− 45[31]R
46 46R 15m 16 312− 46[31]R
47 47R 2m 23 312− 47[31]R
48 48R 0m 6 312− 48[31]R
49 49R 7m 10 312− 49[31]R −
50 50R 14m 15 312− 312− 50[31]R
51 51R 5m 21 312− 51[31]R −
… …. … … … … …
57 57R 15m 10 312− 57[31]R −
58 58R 6m 15 312− 58[31]R
59 59R 13m 21 312− 59[31]R
60 60 60 4R R R−= + 4m 6 312− 312− 60[31]R
61 61 61 3R R R−= + 11m 10 152− 312− 61[25,31]R
62 62 62 2R R R−= + 2m 15 312− 62[25, 26,31]R −
63 63 63 1R R R−= + 9m 21 312− 63[25, 31]R −

Table 4.1. The differential characteristics for the first block

33

4.1 Computing Necessary Conditions for the Differential Characteristics

The best way to explain this is to do an example. The following example is from [3].

Let us determine the necessary conditions for the differential characteristic in step 4

for the first message block (cf. Table 4.1). Typically the step operation of the ith step

is given by equation 3.1.1. We can rewrite the step operation as follows:

1 2 3 4

1

(, ,)

()i

i i i i i i i i

s
i i i

Q f R R R R W T

R R Q

− − − −

−

= + + +

= + =

We can reformulate the modular differential: '
1 (() ())i is s

i i i iR R Q Q+ +
−∆ = ∆ + −= =

by using Corollary 3.2.5 to produce:

1 (())is
i i iR R Q+ + +

−∆ = ∆ + ∆ = , where

1 2 3 4(, ,)i i i i i i iQ f R R R R W+ + + +
− − − −∆ = ∆ + ∆ + ∆ (4.1.1)

Though it is not indicated in Tables 4.1, if
+∆ is an important intermediate step in

computing iR+∆ . However Hawkes et al. [3], provide this information and we will use

it to compute the necessary conditions. It isn’t hard to arrive at the values for if
+∆ ,

given that we have equation 4.1.1. In our example, in order to have

6 23 31
5 2 2 2R+∆ = − − given that we also have 6

4 2R+∆ = and 5 12s = , it is easy to see

that 19 11
5 2 2 ,Q+∆ = − − which implies that 19 11

5 2 2f+∆ = − − because 1 5 0R W+ +∆ = ∆ = .

We are given 6
2 3 40, 0, 2R R R+ + +∆ = ∆ = ∆ = , and we want 19 11

5 2 2 .f+∆ = − −

• Obtaining the correct 4R⊕∆ :

Because 2 3 0R R+ +∆ = ∆ = , the only way to obtain 19 11
5 2 2f+∆ = − − is to have

4R⊕∆ propagate into higher order bits via carries. This should be clear because

34

6
4 2R+∆ = is the only non zero differential we have to work with in 5f . This

means that we have 4, 0kR = for 6 19k≤ ≤ and 4,20 1R = (cf. Theorem 3.1.2).

Wang’s attack dictates that 4, 0kR = for 6 21k≤ ≤ and 4,22 1R = , although

4, 0kR = for 6 19k≤ ≤ and 4,20 1R = is more probable. However, we shall be

satisfied with Wang’s conditions. Thus so far we have the conditions:

4,6 4,7 4,21... 0R R R= = = = and 4,22 1.R =

• Obtaining the correct 5f
+∆ :

We want to figure out the fewest conditions necessary to obtain 19 11
5 2 2f+∆ = − − .

To do this we make use of what we obtained previously. Specifically, we have

4,11 4,19 1R R± ±∆ = ∆ = − (Note the use of signed bitwise difference). Thus, somehow

we need to arrive at 5,11 5,19 1f f± ±∆ = ∆ = − .

We have two cases to consider:

(i) Zero value bits of 4R⊕∆ :

For this case we consider 4, 0kR⊕∆ = for 0 5k≤ ≤ and 23 31k≤ ≤ . The

Boolean function is 5 4 3 2 4 3 4 2(, ,) () ()f R R R R R R R= ∧ ∨ ¬ ∧ . Observe that this

function evaluates according to the following rule:

If (4, 1kR =) then “output 3,kR ” else “output 2,kR ”.

That is why this function is called the “If then Else” function and

consequently abbreviated as ITE. Thus we have,

− Select 5, 3,k kf R= and ' '
5, 3,k kf R= when '

4, 4, 1k kR R= = , or

− Select 5, 2,k kf R= and ' '
5, 2,k kf R= when '

4, 4, 0k kR R= = .

35

Since 2 3 0R R+ +∆ = ∆ = and consequently 2 3 0R R⊕ ⊕∆ = ∆ = , we see that

5 5 0f f+ ⊕∆ = ∆ = for these bits and no conditions are required.

(ii) Nonzero value bits of 4R⊕∆ :

For 6 21,k≤ ≤

We have 4, 0kR = and '
4, 1kR = , which implies that

5, 2,k kf R= and ' '
5, 3,k kf R= .

For 21, 20,12 18,6 10,k k k k= = ≤ ≤ ≤ ≤ we require that '
5, 5,k kf f= ,

which implies that '
2, 3, 3,k k kR R R= = .

For 19k = and 11k = , we want 5, 1kf±∆ = − which implies

that '
3, 2, 3, 2, 1k k k kR R R R− = − = . Here the minus sign represents signed

bitwise subtraction. This results in 3, 1kR = and 2, 0kR = .

For 22,k =

We have 4, 1kR = and '
4, 0kR = , which implies that

5, 3,k kf R= and ' '
5, 2,k kf R= .

Thus the conditions obtained for the 4th step operation are:

4, 0kR = for 6 21,k≤ ≤

4, 1kR = for 22,k =

3, 1kR = for 11k = and 19,k =

2, 0kR = for 11k = and 19,k =

3, 2,k kR R= for 6 10,12 18, 20, 21k k k k≤ ≤ ≤ ≤ = = .

36

4.2 The Message Block Differentials and Differential Pattern

The calculation of the differential pattern and message block differentials are the

heart of Wang’s attack on MD5, and not coincidentally the differential pattern and

message block differentials are shrouded in mystery. However, we can make

intelligent conjectures as to how the differential pattern was computed, and how the

message block differentials were chosen. Recall that in section 3.3, we speculated on

how to compute the differential pattern by taking advantage of the weak avalanche

factor of MD5 in the reverse direction. In this section we present yet another idea on

how to compute the differential pattern. We also present an idea that could potentially

explain how the message block differentials are chosen. Both the ideas and the

illustrated example are due to [4]. Before we delve into the illustration, a remark is in

order. Wang states that the message block differentials are picked so that the

differential pattern in round 3 and round 4 of MD5 for each message block are

satisfied with high probability. Given what we know now about difference

propagation, this claim should not seem unreasonable. The differential pattern in

Wang’s attack is there to ensure that a collision will take place. So by the time the

step output differentials have arrived at round 3, further propagation of these step

output and message block differentials had better satisfy the differential

characteristics in round 3 and round 4 if we are to have a good chance at arriving at a

collision. Roughly speaking then we would expect to work backwards to arrive at a

differential pattern for round 1 and round 2 similar to example 3.3.1.

Because Wang states that the message block differentials are picked so that

the third and fourth round differential characteristics are satisfied with high

37

probability, we will start by analyzing the differential pattern in these rounds. We

begin by making the following important observations which apply to both the first

and second blocks:

• For the step operations in round 3 and round 4 that have nonzero modular

difference, these modular differences are exactly 31 312 2− = (cf. Table 4.1).

• The modular difference in the last few steps of round 2 and the first few steps

of round 3 is zero (cf. Table 4.1).

• The Boolean function used in round 3 is if XOR= for 32 47i≤ ≤ . This is

important because if is a linear function, i.e.

(, ,) (, ,) (, ,)i i if x u y v z w f x y z f u v w⊕ ⊕ ⊕ = ⊕ . Observe that any change in a

particular bit position of any one of the three input words necessarily results in

a change of the output in that same bit position.

Let us just consider the differential pattern for the first block. So how is the

modular difference of 312 propagated through round 3 and round 4? To answer this

we make use of the facts that the differential is zero in the last few steps of round 2

and the first few steps of round 3, and the Boolean function is linear. The first bit

difference in round 3 is introduced in step 34 due to the message block difference.

Step 34:

We have ' ' ' ' ' ' ' 16
34 33 30 34 33 32 31 34 34((, ,))R R R f R R R W T= + + + + = .

Because the differential in the last few steps of round 2 and round 3 is zero, and

' ' 15
34 11 11 2W m m= = + , we can write:

' 15 16
34 33 30 33 32 31 11 34((, ,) 2) .iR R R f R R R m T= + + + + + =

38

From Theorem 3.2.4, we can infer that ' 15 16 31
34 34 34(2) 2R R R= + = += as stated in

Table 4.1.

Step 35:

Here ' ' 31
35 14 14 2W m m= = + .

So we have ' ' ' 31 23
35 34 31 35 34 33 32 14 35((, ,) 2)R R R f R R R m T= + + + + + = .

Substituting 31
34 2R + for '

34R we obtain,

' 31 31 31 23
35 34 31 35 34 33 32 14 352 ((2 , ,) 2)R R R f R R R m T= + + + + + + + = .

Using the linearity property of 35f we get,

' 31 31 31 23
35 34 31 35 34 33 32 14 35

31 23 31
34 31 35 34 33 32 14 35 35

2 ((, ,) 2 2)

2 ((, ,)) 2 .

R R R f R R R m T

R R f R R R m T R

= + + + + + + +

= + + + + + = +

=

=

Step 36:

Here no difference is introduced by the message word. Thus making substitutions and

using the linearity property of the Boolean function, we get:

' ' ' ' 4
36 35 32 36 35 34 33 36 36((, ,))R R R f R R R W T= + + + + =

31 31 31 4
35 32 36 35 34 33 36 362 ((2 , 2 ,))R R f R R R W T= + + + + + + + =

31 31 31 4
35 32 36 35 34 33 36 362 ((, ,) (2 2))R R f R R R W T= + + + + + + + =

31 4 31
35 32 36 35 34 33 36 36 362 ((, ,)) 2 .R R f R R R W T R= + + + + + = +=

Step 37:

Here a message word difference is introduced. That is, ' ' 31
37 4 4 2 .W m m= = +

39

' ' ' ' ' 31 11
37 36 33 37 36 35 34 4 37

31 31 31 31 31 11
36 33 37 36 35 34 4 37

31 31 31 31 31 11
36 33 37 36 35 34 4 37

31
36 33 37 36 35 34 4

((, ,) 2)

2 ((2 , 2 , 2) 2)

2 ((, ,) (2 2 2) 2)

2 ((, ,)

R R R f R R R m T

R R f R R R m T

R R f R R R m T

R R f R R R m T

= + + + + +

= + + + + + + + + +

= + + + + + + + + +

= + + + + +

=

=

=

11 31
37 37) 2 .R= +=

Since no message block differentials are used for the rest of the steps in round 3, it is

easy to see how this differential of 312 propagates down to these steps. How this

differential propagates through round 4 is not well known. However, we can make an

educated guess about how this phenomenon might occur. Let us look at Table 4.2

which is due to [4]. This table tells how changes in the input of the Boolean function

used in the fourth round affect the output of the function. Here we can see cases

where changes in the input do not change the output value and this phenomenon is

not uncommon. For example, for (, ,)ONX x y z where 0, 1, 0x y z= = = , we can see

that flipping x does not change the output. Thus it seems possible that this absorbing

quality of ONX contributes to the propagation of the differential.

x y z x F∆ ⇒ ∆ y F∆ ⇒ ∆ z F∆ ⇒ ∆
0 0 0 X X
0 0 1 X X X
0 1 0 X X
0 1 1 X X X
1 0 0 X
1 0 1 X X
1 1 0 X
1 1 1 X X

 Table 4.2. Output differences for F = fi 48≤ i <64

40

From our analysis above, it seems that the following algorithm might be used

to determine the message block differential and the step operation output differential

pattern:

1. Assume that message block differentials can be introduced such that the step

operation output differential for the first few steps of round 3 is zero.

2. Let i denote the first step operation in round 3 for which it is decided that the

step operation output differential should be nonzero. In Wang’s method, this

was step 34. Since this differential must be 312 , and must also propagate down

to the successive steps as illustrated in our example above, set 31' 2 is
i iW W −= + ,

' 31
1 1 2i iW W+ += + , ' 31

3 3 2i iW W+ += + . Then, without introducing any further

message block differences, the step operation output differential of 312 should

propagate to the rest of the step operations in round 3. Similar to Example

3.3.1, we introduce as few input differences as possible to minimize

complications.

3. Using the message differential chosen in the previous step, find a differential

pattern in the first and second rounds such that the step operation output

differential for the last four steps of the second round is zero. To understand

how this might be possible, let us look at Table 4.3 and Table 4.4 which are

due to [4]. These tables tell us about the correlation between changes in the

input and output of the Boolean functions used in the first and second rounds

respectively. Again for these functions, it is common that changes in the input

do not translate into changes in the output. Thus it seems plausible that the

41

absorbing quality of these Boolean functions could aid in searching for such a

differential pattern in the first and second round.

x y z x F∆ ⇒ ∆ y F∆ ⇒ ∆ z F∆ ⇒ ∆
0 0 0 X
0 0 1 X X
0 1 0 X X
0 1 1 X
1 0 0 X
1 0 1 X X
1 1 0 X X
1 1 1 X

 Table 4.3. Output differences for F = fi 0≤ i <16

x y z x F∆ ⇒ ∆ y F∆ ⇒ ∆ z F∆ ⇒ ∆
0 0 0 X
0 0 1 X
0 1 0 X X
0 1 1 X X
1 0 0 X X
1 0 1 X X
1 1 0 X
1 1 1 X

 Table 4.4. Output differences for F = fi 16≤ i <32

In conclusion we stress, yet again, that the analysis given in this section is pure

speculation and Wang has yet to publish a thorough exposition of her method of

computing the message block differentials and the differential characteristics of the

step operation outputs.

42

4.3 Message Modification

In section 4.1 we illustrated how to compute the necessary conditions for the

differential pattern to hold. It turns out that most of the conditions are for the step

operations in the first round and this proves to be a very important characteristic of

the structure of the differential pattern. For example, when processing the first block,

there are a total of 290 conditions and most of them pertain to the first round of the

compression function. When we pick a random message for the first block, as

dictated by the algorithm in the beginning of this chapter, it is more likely that we

will have to modify it to satisfy the conditions for the first block. By having most of

the conditions in the first round, modifying the message block does not affect

previous computations because there are no previous computations. For instance,

modifying the 32-bit word 1m of the message block to meet the conditions in step

1(round 1) is easier than having to modify 1m to meet the conditions in step 16 (round

2). This is because a modification in round 2 affects the step operation differentials

computed in round 1. Thus we will have to go back to round 1 and make adjustments.

There are two types of message modification techniques. The message

modification technique used to modify messages to satisfy the necessary conditions

of the first round is called single message modification. In order to improve the

probability of satisfying the differential pattern in the second round, messages will

need to be modified to satisfy the conditions in this round. The message modification

technique used for the second round is called multi message modification. We will

now explain both message modification techniques with illustrations that are due to

[4].

43

The idea behind single message modification is quite simple. We simply

execute the following steps until the differential characteristics of the first round have

been satisfied:

a. Pick random values for 0 15,...,R R , and flip their bits until all the

conditions of round 1 are met.

b. Compute the message words using equation 3.1.3. That is, evaluate

1 1 2 3 4() (, ,)is
i i i i i i i i i im W R R f R R R T R− − − − −= = − − − −? .

We iterate the fact that these conditions are “necessary” and not “sufficient” as

incorrectly stated by Wang. Thus satisfying the conditions doesn’t guarantee that the

differential pattern in round 1 will automatically hold. We might need to run the

single message modification technique until the first round differential pattern holds.

The time complexity required to satisfy the differential pattern in the first round is

much less than the overall collision finding algorithm. Thus we are guaranteed to

satisfy the differential characteristics of the first round.

The best way to explain the multi message modification technique is through

examples. We will illustrate a simple example first and then illustrate a slightly more

complex example to communicate the gist of the technique.

Example 4.3.1

Suppose that in the 16th step operation (first step of round 2), we

have 16,31 1R = . Then as dictated by the necessary conditions, we will need to correct

this bit to 16,31 0R = by modifying the message word, 16W , used in the step operation.

Since 16 1W m= , and 1m is used in the 1st step operation (second step operation in round

44

1), modifying 1m could change 1R , which consequently could propagate through out

the steps in round 1. Then the differential characteristics of round 1 would no longer

be satisfied.

We first begin by modifying 1m by adding 262 to it. That is, 26
1 1 2newm m= + .

This corrects 16,31R by flipping the 1 to 0. How? Observe that the shift amount in the

16th step is 5. Thus adding 262 to the message word is tantamount to adding

26 5 31(2) 2== to the step operation output 16R , which results in flipping its most

significant bit. In order to correct the change to 1R , we recomputed 1R with the new

1m as follows:

12
1 0 3 1 0 1 2 1 1((, ,))new newR R R f R R R m T− − −= + + + + = .

To ensure none of the other successive step operations in round 1 are modified, we

recomputed 2 3 4, , ,m m m and 5m to absorb the change to made to 1R . After the 5th step

operation 1
newR has been completely absorbed. Thus we have,

17
2 2 1 2 2 1 0 1 2

22
3 3 2 1 3 2 1 0 3

7
4 4 3 0 4 3 2 1 4

12
5 5 4 1 5 4 3 2 5

() (, ,)

() (, ,)

() (, ,)

() (, ,)

new new new

new new

new new

new new

m R R R f R R R T

m R R R f R R R T

m R R R f R R R T

m R R R f R R R T

− −

−

= − − − −

= − − − −

= − − − −

= − − − −

?

?

?

?

We have now corrected 16,31R and ensured that the first round differential

characteristics are satisfied as well. This method of computing new message words

for successive steps to absorb the effect of 1
newR is due to [7].

45

Example 4.3.2

In this example we show how to satisfy the conditions in steps 16, 17, 18 and 19. This

technique is originally due to [9]. There is a total of 10 conditions:

Step 16:

16,3 15,3 16,16 15,15 16,17 16,31, , 0, 0.R R R R R R= = = =

Step 17:

17,17 17,29 16,29 17,311, , 0.R R R R= = =

Step 18:

18,17 18,310, 0.R R= =

Step 19:

20,31 0.R =

The algorithm to satisfy these 10 conditions as written in [4] is:

1. Choose 2 15,...,R R such that they satisfy the conditions in the first round.

2. For 6 15,i≤ ≤ compute im :

1 1 2 3 4() (, ,) .is
i i i i i i i i im R R f R R R R T− − − − −= − − − −?

3. Pick a random value for 16R with its conditions satisfied, and compute

9
17 16 13 17 16 15 14 17 17

14
18 17 14 18 17 16 15 18 18

((, ,))

((, ,))

R R R f R R R W T

R R R f R R R W T

= + + + +

= + + + +

?

?

until conditions for 17R and 18R are satisfied. Since there is only a total of 9

conditions for 16 17, ,R R and 18R , it can be done quickly. However it may be the

case that no value of 16R satisfies the conditions for 17R and 18R because

46

17R and 18R are functions of 13 14, ,R R and 15R as well, which might prove to be

too inflexible. In this case, we will have to pick new values for 2 15,...,R R and

start the algorithm all over again. If the conditions for 16 18,...,R R are satisfied

then proceed to step 4 otherwise go to step 1.

4. Pick a random value for 19R with its only condition fulfilled, and

compute 20
19 0 19 18 15 19 18 17 16 19() (, ,)W m R R R f R R R T= = − − − −? .

5. Compute 0R from the new value of 0m computed in the previous step.

6. Compute 16 1W m= by rearranging the formula for the 16th step operation.

7. Compute 1R from the new value of 1m computed in the previous step.

8. To absorb the new value of 1R , compute 2 5,...,m m :

1 4 1 2 3

2 5,

() (, ,)is
i i i i i i i i i

for i
m R R R f R R R T− − − − −

≤ ≤

= − − − −?

After computing step 8, 33 conditions in the remaining step operation remain

unsatisfied. Thus we should expect to pick 332 messages for the first block before all

the differential characteristics for the first block are met. This means that the time

complexity of the overall collision finding algorithm can be improved by clever

algorithms to perform multi message modification techniques and to satisfy more

second round conditions. Since there isn’t a general method to satisfy second round

differentials, the algorithms are quite specialized and invented from having clever

insights into how the differentials propagate. Actually Wang does not perform the

complex multi message modification as detailed in example 4.3.2 which improves the

complexity of the collision finding algorithm. Instead she opts for the multi message

47

modification similar to the one in example 4.3.1. Thus she is left with 37 unsatisfied

conditions for the first block and consequently her time complexity to find the first

block is 392 MD5 operations. Similarly, 30 conditions are left unsatisfied for the

second block and her time complexity to find the second block is 322 MD5 operations.

In conclusion, the goal of the message modification techniques is to satisfy as many

of the conditions as possible in the first and second round. This will then drastically

increase the probability of satisfying the differential characteristics which

consequently increases the collision probability. We give a collision found by Wang,

where H is the hash value:

48

Bibliography

[1] WANG, X., AND YU, H. How to break MD5 and other hash functions, Eurocrypt

2005, LNCS 3494, pp. 19-35, 2005.

[2] DAUM, M., Cryptanalysis of hash function of the MD4-family, PhD thesis, Ruhr-

University of Bochum, May 2005. http://www.cits.ruhr-uni-

bochum.de/imperia/md/content/magnus/dissmd4.pdf.

[3] HAWKES, P., PADDON, M., AND ROSE, G.G. Musings on the Wang et al.

MD5 collisions, October 2004. http://iacr.eprint.org/2004/264.

[4] BLACK, J., COCHRAN, M., HIGHLAND, T., A study of the MD5 attacks:

insights and improvements, FSE 2006.

http://www.cs.colorado.edu/~jrblack/papers/md5e-full.pdf.

[5] STINSON, D., Cryptography: Theory and Practice, Second Edition, pp. 129-130.

[6] RIVEST, R., The MD5 Message Digest Algorithm, Request for Comments (RFC

1320), Internet Activities Board, Internet Privacy Task Force, 1992.

[7] CHAUBAUD, F., JOUX, A., Differential Collisions in SHA-0, Crypto 1998,

LNCS 1462, pp. 56-71, 1998.

[8] DOBBERTIN, H., Cryptanalysis of MD5 Compress, Presented at rump session of

Eurocrypt 1996.

[9] KLIMA, V., Finding MD5 collisions on a notebook using multi-message

modification technique. In International Scientific Conference Security and

Protection of Information (May 2005).

