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Convergence of ant routing algorithms — Results for a
simple parallel network and perspectives

Joon-Hyuk Yoo, Richard J. La and Armand M. Makowski

Abstract

We study the convergence property of a family of distributed routing algorithms based on
the ant colony metaphor, namely the uniform and regular ant routing algorithms discussed
by Subramanian et al. [8]. For a simple two-node network, we show that the probabilistic
routing tables converge in distribution (resp. in the a.s. sense) for the uniform (resp. regular)
case. To the best of the authors’ knowledge, the results given here appear to be the first formal
convergence results for ant routing algorithms. Although they hold only for a very limited
class of networks, their analysis already provide some useful lessons for extending the results
to more complicated networks. We also discuss some of implementation issues that naturally
arise from the convergence analysis.

1 Introduction

In the past decade, several authors have used the ant colony metaphor to design distributed adaptive
routing algorithms in both datagram networks [5] and telephone networks [7]; a good survey of
these efforts is given in Chapter 2 of [1]. More recently, these ideas have been proposed in the
context of mobile ad-hoc networks (MANETS), e.g., [6].

A common feature shared by these algorithms is their attempt to reproduce the collective be-
havior of a swarm of insects to solve a relatively complex problem in a distributed manner, typ-
ically using only local information. This new paradigm has the potential to deliver a new way
of designing robust, scalable, adaptive, and distributed algorithms for network resource alloca-
tion/management.

Although many ant colony optimization (ACO)-based algorithms [1] have been proposed and
studied in the past, very little is known about their convergence properties. There are several
difficulties in establishing such convergence results. First, it is not always easy to identify a suitable
mathematical framework for analyzing these algorithms with some level of generality, which may
explain the lack of a “general theory” of ant (routing) algorithms. Secondly, even when such a
framework is available, many state variables which are required to capture the dynamics of the
algorithms, are coupled in their evolution. Often this coupling severely limits the usefulness of
traditional techniques of convergence analysis.

*The authors are with the Department of Electrical and Computer Engineering, and the Institute for Systems
Research, University of Maryland, College Park, MD 20742. E-mail: juneki@glue.umd.edu, hyongla@eng.umd.edu
and armand@isr.umd.edu.



In this paper we are concerned specifically with the convergence properties of the class of
ant routing algorithms discussed by Subramanian et al. [8]. These algorithms are randomized
algorithms that implement a form ddackward learning in response to short control messages
calledants.

1.1 Antrouting

Consider the situation where hosts are provided connectivity through a netwBrtooters. Two
routers are said to be neighbors if there exists a bidirectional point-to-point link between them, and
let V, denote the set of routers which are neighbors of router= 1, ..., R). Routerr maintains

a probabilistic routing table with a separate vector efdtyi, p;), i € N,) for each destination
hostd. For each neighboring routéin NV,., we understang,; as the probability with which router

r uses link(r, i) when forwarding alata packet destined fai. There is a cost,; associated with

the use of link(r, 7); this cost is assumed symmetric (i.€., = ¢;;) and is known to router.

An ant is a control message of the form §||c) whered ands are distinct hosts andis some
numerical value to be updated in due course. We refer to hbatsl s as the destination and
source, respectively, and regards an estimate of the cost-to-go for reaching osteriodically,
hostd generates an antl(s||c) which is destined for some randomly selected hogt d with ¢
initially set to zero. The ant is forwarded to the source kaster the network of interconnected
routers and on the way updates the routing tables at intermediary routers (in a way to specified
shortly).

When ant ¢, s||c) arrives at the intermediary routeicoming from routet through link ¢, ),
the cost estimatefor reaching/ from router; is incremented by the cost of the (reverse) link)
with

C 4 c+ ¢,y Q)

and this new value of thus provides an estimate of the cost-to-go to reaftbm routerr. Next,
the vector entry in the routing table for destinatibis updated according to

pi + A Dy
Pim T A PP TEA

(j € N\ {i}) (2)

whereA = f(c) andf(c) is adecreasing function of the justincremented value®fConsequently,
the probability of using the (reverse) link over which the ant arrived at routess been increased
relative to that of other links, while the probability of using the other links is discounted.

Upon completing these various updates, routierwards the updated ant (s||c) to one of its
neighboring routet in NV,. The ant ¢, s||c) eventually reaches its destinatiomvith ¢ now giving
the end-to-end cost value of sending a message froéond, and is destroyed. In fact, the final
value ofc is simply the cost of traversing the network framno d along the (reverse) path followed
by the ant.

1.2 Convergenceresults

The manner in which ant forwarding is carried out distinguishes the various types of ant routing
algorithms, e.g., the uniform and regular ant algorithms studied by Subramanian et al. [8]. This
work deals mostly with a simple two-router network, announces some convergence results but
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provides ndormal proofs. To the best of the authors’ knowledge, this is the extent of the current
state of knowledge concerning tmeathematical convergence of ant algorithms. In this paper

we take some steps towards remedying this state of affairs. Below we review the convergence
statements of [8] and [9], and present our results.

1. Uniform ant algorithms are designed withulti-path routing in mind, and require that ants
arriving, say at router, be forwarded to the next neighboring router with equal probability
L' whereL, is the number of routers iV,..> As a result, uniform ants will utilize each
and every path between a source and a destination with a positive probability. It is claimed
[8, Prop. 2] [9] that the routing tables converge (in an unspecified mode of convergence) to
constant values. Our main result on uniform ant algorithms is contained in Theorem 1 [Sec-
tion 3], and states that for the two-node network (i) convergence takes pldstribution,
and (ii) not to constants. This last fact has implications for the implementation of such ant
algorithms [Section 5].

The key observation behind the proof of Theorem 1 is the identification of the iterates of
the uniform ant algorithm with the output of a very simple collection of iterated random
functions. A large literature is available on the convergence of these iterative schemes, and
the survey in [4] (and references therein) provides a nice introduction to this topic. We
exploit the very simple structure of the underlying collection of random functions to give a
simple and self-contained proof of Theorem 1.

2. On the other handggular ant algorithms attempt to find the least cost path(s), sometimes
also referred to as shortest path(s). This is achieved by forwarding the ants according to the
probabilistic routing tables used to implement the routing of data packets. For the two-node
network the algorithm is claimed [8, Prop. 1] [9] to converge (presumably in the a.s. mode of
convergence) to constant values, but no proof is provided in that reference. Here, in the case
of synchronous instantaneous updates, we show by martingale techniques that regular ant
algorithm will indeed lead asymptotically to least path discovery, in the two-node network,
as desired!

It is true that while the results given here are perhaps the first formal convergence results for
ant routing, they hold only for a very limited class of networks, i.e., a two-node network. Yet, the
underlying analyses given below already provide some useful lessons for extending the results to
more complicated networks. This is discussed at the end of Sections 6 and 7, respectively.

The paper is organized as follows: Ant algorithms are formally described in Section 2 for a
simple two-node network. (Generalized) uniform ant and regular ant algorithms are introduced in
Sections 3 and 4, respectively. The main convergence results are given in Theorems 1 and 2 which
are established in Sections 6 and 7, respectively. Some implementation issues are pointed out in
Section 5.

A word on the notation: For any integér, the /** component of any element in R” is
denoted byr,, £ = 1,..., L, sothate = (z1,...,z;). A similar convention is used fdR “-valued
random variables (rvs).

IMore generallyL,. is the number of links going out efin the case of multiple links.



2 Thebasic setup

We present the two-node model together with the basic ingredients of ant routing algorithms. The

node O node 1

:

Figure 1: Topology.

network is composed of two routers or nodes, thereafter labeled ined& and node; = 1,
connected by a set df parallel bidirectional links as shown in Fig.21All hosts are attached to
either node = 0 or node; = 1. Each linké =1, ---, L, has a transmission costaf > 0 in either
direction. Without loss of generality we assume the links to be labeled in order of increasing cost
with

cr << <cr. (3)

Pick nodei (i = 0,1). Destination hosts attached to nodgenerate ants at timgsg’, n =
1,2,...}with ¢!, < ¢, foreachn = 1,2, .... Forwarding thex" ant to nodel — i requires that
one of thel links from nodei to nodel — i, say/;_;(n), be selected. The™ ant is then sent over
link ¢,_;(n), and arrives at node — 4, say at timez?, with ¢!, < a!. For simplicity of exposition

we assume the non-overtaking condition
afl<a%+1, n=12,... 4)

and takez}, < a} for the sake of concreteness.
Node: maintains a probabilistic forwarding table

p'(n) == (pi(n),---,pL(n)) (5)

with 0 < pi(n) < 1 (¢ = 1,...,L) andX%, pi(n) = 1. The entrypi(n) is interpreted as the
probability that during the intervak! . a2 ), nodei forwards a data packet from nodé node
1 — i over link ¢. Its precise meaning will be clarified shortly.

When, at timed!,, ;, nodel — i receives theén + 1)** ant, say over link;_;(n + 1) = ¢, it

immediately updates its probabilistic forwarding table according to

_ () + Ce(1 )

1—2 1) =
and :
Vin+1) = _ ) k#0 k=1 L 7)
pk _1_'_0[(1_@)7 ) — Ly ey

for constants”,(1 — i) > 0. The selection of these constants is discussed later. The cost update
(1) is superfluous here due to the simplified structure of this two-node network.

2These links can be also thought of as disjoint paths.
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To completely specify ant algorithms we need to provide the rule by which thefligks), ¢, (n), n =
1,2,...} are selected. This will be done in Sections 3 and 4 for uniform and regular ant routing,
respectively.

Before doing so, we introduce some notation: For gael?, 1, and foreachlink = 1,---, L,
define the mapping : [0, 1]* — [0, 1] by

' petCed) oy
¢y p(p) == ¢ 0O p€[0,1]" (8)

1+%k[(z') k#e

for the constant§’,(i) > 0 appearing in (6) and (7). These updating rules can now be written more
compactly as . o
p'(n+1)=¢yp'(n)) if Li(n+1)=¢ n=0,1,... 9)

with p?(0) denoting the forwarding probability vector initially stored at nadee., at timea?).

3 Generalized uniform ants

The class of ant algorithms we now introduce is somewhat more general than the one discussed in
[8]. We specify how ants are propagated by assuming thdtithe ., L}-valued rvs{¢y(n), (1(n), n =
1,2,...} aremutually independent rvs which are taken to bi@dependent of the initial conditions

p°(0) andp'(0). Moreover, for each = 0, 1, the rvs{/;(n), n = 1,2, ...} are taken to bei.d. rvs
distributed according to some probability mass function (pmf)= (v¢,...,v%)on{1,..., L}.

Under these assumptions, it is now plain from (6) and (7) that the probabilistic forwarding
tables of the nodes are updated independently of each other, whence the evolutions of the tables
{p°(n), n = 0,1,...} and{p'(n), n = 0,1,...} are decoupled. Their long-term behavior is
summarized in the next result.

Theorem 1 Under the foregoing assumptions we have:
(i) For eachi = 0, 1, the limit

Pl = Jim (0 0 0z 00 by (P) (10)

n—o0

exists for eachp in [0, 1]*, and is independent gf:
(i) Moreover, there exists a pair of independgnt |- -valued rvgp® andp' distributed likep®
andp!, respectively, such that

(P"(n),p'(n)) = (P, ") (11)

regardless of the initial conditiogp®(0), p'(0)) with =—>,, denoting convergence in distribution
(or in law) (withn going to infinity).

The proof of Theorem 1 is given in Section 6. We emphasize that the result holds for a class
of algorithms which is somewhat more general than the one introduced in [8]: Indeed, the positive
constants entering (6)-(7) are arbitrary and need not be constrained to

Cg(l—i):f(Cg):IAg i:0,1,£:1,...,L (12)

5



for some strictly decreasing functigh: R — (0, c0). Next, when we take the pmis’ andv! to
be the uniform pmf o 1,..., L}, we recover the case discussed in [8], hence the name uniform
ant algorithm.

Finally, the assumptions enforced on the “reception” tifies n = 1,2,...} (s = 1,0) can be
weakened considerably: These times could in principleabdomand Theorem 1 would still hold
provided that they are assumed independent of the link selectiofigyvg, ¢1(n), n =1,2,...}.

The non-overtaking assumption (4) can also be dropped if we now intérptét) as the identity

of the link from nodei to nodel — i which was traversed by theé" antreceived at nodel — i

at the (possibly random) time’,. Then, under the aforementioned independence assumptions,
Theorem 1 will still hold.

4 Regular antswith synchronous updates

With regular ant algorithms, the ants are forwarded according to the routing table at the router,
and the update processes at the two nodes are now coupled. This renders the analysis of regular
ant algorithms more delicate than that of uniform ant algorithms [10]. To make progress, we need
assumptions on threlative timing of the various events. Here we consideritteal situation where

both nodes generate the ants in a synchronized manner and the updates take place simultaneously
and instantaneously. Formally, we require

0=a =t =al, n=12... (13)
Foreachn = 0,1, ..., we introduce the-field F,, generated by the rvs
{p°(0),p"(0),p°(k), P (k), Lo(k), 2(k), k= 1,2,... ,n}.
The rvsly(n + 1) and/;(n + 1) are then specified to be conditionally independent gifgnvith
P[li(n+1) = (|F] =pi " (n) (14)

foreach/ = 1,..., L and: = 0,1. The prescription (14) encodes the fact that ants are routed
through the network according to the very routing tables they help update.

The constants entering (6)-(7) will be assumed of the form (12). The entry fof ltkode
1 —iis increased proportionally tf(c,), which is astrictly decreasing function af,, while those
of the other links are discounted Iy + f(c,))*.

Combining (14) with (6)-(7), we can write the evolution of the routing tables in the more
suggestive (yet somewhat sloppy) manner:#ix0, 1. For eacld = 1,..., L, we have

i(n)+f(c 3
N
=y | 1)
1?}6(0}.) W-p-p}iz(n)v J#FL

foralln = 0,1,.... This formulation clearly shows the coupling of the entgédén) andp' (n) in
the routing tables.
Writing



we readily see from (9) and (14) that the sequence of successive routing {aloles n =
0,1,...} form atime-homogeneous Markov chain on the non-countable state[Spaldex [0, 1]%.

A natural question to wonder is whether or not the Markov chain converges to the desired oper-
ating point, i.e., (1,0,---,0),(1,0,---,0)), which corresponds to the least-cost path. This is the
content of the next result.

Theorem 2 Assumef to be strictly decreasing and that < ¢, for all ¢ = 2,--- L. For each
i = 0,1, the routing table$p‘(n), n =0, 1,...} converge a.s. with
lim p’(n) = (1,0,---,0) a.s.

n—o0

provided the initial conditions are selected such that
p1(0) + p1(0) > 0. (16)

Under the enforced assumptions, there is only one link with minimal cost and it i$.link

5 Implementation issues

We briefly discuss some of the implementation issues associated with the ant routing algorithms
discussed earlier. For simplicity, we do so for the case first described in [8]Dwt2 where the
constants in the probability updates (6) and (7) are selected according to (12).

5.1 Uniform ant routing

Take the pmfw” andwv' to be the uniform pmf o1, 2}. It is easy to see that the probabilistic
routing tables evolve according to

pi(n)+A1  py(n) 1

) 11+A1 1’ liAl W'p E
p'(n+1)= (17)

i(n) ph(n)+As |

f}FAg’ p21+A2 Wp E

where the constants, (¢ = 1, 2) are given by (12).
Selecting the proper values ¢fc,) (¢ = 1, 2) is crucial here for good performance. Indeed, if
the parameters are selected such that

1 - A
14+Ay, 144

then the iterates produced by (17) exhibit an oscillatory behavior with successive values possibly
bouncing around between then-overlapping intervals(0, (1 + Ay)~") and((1 + A;)~'Ay, 1).

This behavior leads to undesirable oscillations in the routing tables, and is clear evidence that
the convergence of Theorem 1 cannot be in the a.s. sense. In fact, convergence takes place in
distribution fot a.s.) to a limiting random variable whose distribution hastraconnected support

on the intervalo, 1].



Subramanian et al. [8, Prop. 2] claim the convergence

nhﬁrglop(n) =L;, i=0,1
for someconstants L, and L, without further indication of the mode of convergence used for this
convergence statement that involves rvs. As the previous discussion implies, this cannot be correct.

5.2 Regular ant routing

By Theorem 2 the regular ant routing algorithm converges to the desired operating point, namely
the least-cost link. However, if the algorithm is implemented on a machine fimitie preci-

sion, as is always the case with computer implementations, there is a positive probability that the
algorithm will converge to the path with a larger cost. Indeed, suppose that the product space
[0,1] x [0, 1] is approximated by a two-dimensional grid with a finite number of points( $ay-)

(with k,¢ =0, ..., K). We can then approximatg(n), pi(n)) using the closest point in the grid,

with resulting outputg?(n), pi (n)) evolving according to a time-homogenedingte-state Markov

chain described by projecting the right hand sides of (15) onto the grid. Regardless of the value
of K, the corner point0, 0) is now an absorbing state, and the probability of reaching it is strictly
positive, so that the probability of converging to the shortest path is strictly smaller than one.

6 A proof of Theorem 1

As remarked earlier, because the forwarding probability tables evolve independently of each other,
we need only establish the convergepte) =, p' for eachi = 0, 1.
Fix: = 0,1 and pickn = 0, 1, .. .. Iterating yields the relation

p'(n+1) (18)
= (¢@i(n+1) O Bpum) © -+ - © 0Py (2) © ¢Z(1)) (p'(0)).

The key observation is the stochastic equivalehce

p'(n+1) (29)
= (Bh1) 0 Bz © -+ 0 By © Bhgurny) (B(0))
which holds by virtue of the i.i.d. assumption on the sequdri¢e:), n = 1,2,...} and its inde-

pendence fronp’(0). The convergencg’(n) =, p. will follow if we can show thepointwise
convergence

Jim (4252(1) © Bp(2) © -+ © Dpymy © ¢2i(n+1)) (P°(0)) = p;. (20)
To do so, we equifR” with the norm defined byz|| := >/, |z,| for any vectorz in R”.

This norm is equivalent to the usual Euclidean norm, but easier to use here.

3Two R—valued rvsX andY are said to be equal in law if they have the same distribution, a fact we denote by
X=4Y.



Fix ¢ =1,..., L. For arbitraryz andy in [0, 1]¥, we get
[¢5(z) — Py(y)l]
L

L) — Be(y)|

_ 2k —yi| 2o+ Co(i) — (ye + Co(2))]
_:zl+@@) 1+ Cy(3)

with

Therefore, . '
Jax [|gp(z) — dp(y)l| < Kil|z —yl| (21)

Using this last inequality, it is a simple matter to check (by inductiomenl, 2, .. .) that

| (¢Z—(1) 0.0l 1O ¢Z(n)) (p)

- (%(1) ©...0 ¢Z—(nf1) ° ¢Z-(n)) (q)]l
< Kilp—dl (22)

for arbitraryp andgq in [0, 1]%. Furthermore, for eachn = 1,2, .. ., we get

| (%(1) O P2y © ... O ¢2i(n+m)) (p)
- (¢Z—(1) O Pz © -0 ¢Z(n)) (p)ll

K| (Shns) © i © - - © Shnsmy) () =
KL uniformly in m. (23)

ININ

From the factk; < 1, it follows for eachp that the sequence

{6,y 0 By © -0 bhimy) (P), m=1,2,...}

forms a Cauchy sequence, and hence is convergent. Eqn. (22) shows that the limit of this conver-
gent sequence is independenpofThis establishes (20) and the proof is now complete.

A careful examination of the arguments given in the proof of Theorem 1 points to the possibility
of establishing the convergence of uniform ants for more general network topologies. Indeed, this
is due to the fact that in uniform ant routing, the evolution of the routing tables are decoupled.
Moreover, it is also clear that weaker assumptions can be imposed on the link selection rvs, e.g.,
the proof given above goes through if itis assumed that each of the seqdiérfegsn = 1,2, ...}

(z = 1,0) is stationary and reversible.



7 A proof of Theorem 2

We need to show that each of the sequerg@sn), n = 0,1,...} and{p'(n), n = 0,1,...}
converges a.s. to the vectdr, 0, - - -, 0). For eachi = 0, 1, this is equivalent to showing that

nh_}r{)lopll(n) =1 a.s. (24)

sincexXl_, pi(n) =1foralln =0,1,....
To establish (24), we introduce the {/8(n), n = 0, 1,...} given by

Z(n) =pi(n) +pi(n), n=0,1,...

and note that the convergence (24) simultaneously for bett) and: = 1 will follow if we can
show that

Jim Z(n) =2 a.s. (25)
To do so, we first note that(c,) > f(c,) foreach? = 2, - - -, L under the enforced assumptions
on f and on the link costs. Fixk= 0,1 andn = 0, 1,.... Upon using (9) and (14) we find
B[+ 1|7 = L 1{t(n+1) = 640 (n) |,
= ZP ¢4k ( ) (26)
foreachk =1, ..., L. Using the constants (12) in (8) we then conclude that

E[Z(n+1) | F)
= Epl(n+1)+pi(n+1)| 7]

M)+ fler) " pi(n) + f(c1) "
- 1+f(cl) 1( )+ 1+f(cl) 1( )

pi(n) pn)
5 (i + 2 i)
Pn) + fle) 1y, pin) + fla) o
e MO T T e pilr

)
pi(n)
+Z(1+f(c1)p (n)+1+f 01 ) (27)
e

v

pi(n) pi(n) | pi(n)f(c) n)f(c)
1+f(01)+1+f(01)+ L+ f(c) " + f(c1)
B 1+f(01) 1+ fla)
B 1+f(01) (n)+1+f(61)p1(n)

= Z(n) a.s. (28)

where the inequality in (27) follows from the fact thétc,) > f(¢,) forall ¢ = 2,... L. Hence,
the rvs{Z(n), n=0,1,2,...} form a bounded,,-submartingale with

0<E[Z(n)] <2, n=0,1,... (29)

10



By the Martingale Convergence Theorem [3, Thm. 9.4., p. 334], the submartingéte, n =
0,1,2,...} converges a.s. to some # and we must have < 7 < 2.
It also follows from the calculations above that

E[Z(n+1)|F,)— Z(n)

-3 (1 T }(Cl)) (B2 )k () + P (o)

L f(Cl) - f(Cg) 0 L ) .
g:z:Q (1+ f(c))(1+ f(cr)) (pl(n)pé(") +p1(n)pl(n)) a.s. (30)

Thus, the a.s. inequality in (27) becomes an equality if and only if
pi(m)pg(n) = pi(n)pg(n) =0, (=2,....L
or equivalently, if and only if

pi(n)(1 = pi(n)) = pi(n)(1 - pi(n)) = 0.

In other words, the equalities hold if and only if eith&fn) = pi(n) = 0 orp)(n) = pi(n) = 1.

It is now a simple matter to check the following (say by direct inspection of the dynamics (15)
for the routing tables): I?(0) = pi(0) = 0, thenZ(n) = 0 foralln = 0,1,... andZ = 0,
while if p(0) = p;(0) =1, thenZ(n) = 2foralln = 0,1,...andZ = 2. However, if the initial
conditions are selected so that< Z(0) < 2, then it is easy to see by induction that we have
0 < Z(n) < 2a.s. foralln = 1,2,.... To conclude the proof we need to show tliat= 2 a.s.
in this case as well. Proceeding by contradiction, we as€fie= 2] < 1, in which case there
exists some > 0 such that

d:=Ple<Z<2—-¢]>0 (31)
sinceZ > 0 a.s. By the a.s. convergence{df(n), n = 0,1, ...} to Z we conclude that

€ € 0
P-<Z 2——| > — > n* 2
2< (n) < 5| 2 9 n>n (32)

with n* determined by andé.

Write
_ fle) = fle2)

(L fle)?)
Taking advantage of (30), for eaeh= 0, 1, .. ., we get
E[Z(n+1)]-E[Z(n)]
= EE[Z(n+1)|F.] - Z(n)]
_ ¥ fler) = fler)
N 42 (1+ f(e)) (1 + flee

KB 3 (snpi o) + o)

=2

5 E [p)(n)p} (n) + pi(n)p}(n)]

v

= K-B[p(n( - pi(m) + ()1~ pi(n))
K- -E {(p[f(n)(l —pi(n)) +pi(n)(1 —p[l)(n))) 1 E <Zn)<2- %”

v
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Next, with K. := {(z,y) € [0,1]* : £ <z +y < 2 — £}, we note that
I(e) :=inf{z+y —2zy: (v,y) € K.} >0.

Therefore, whenever > n*, we find that

E[Z(n+1)]-E[Z(n)] > KI()-P %<Z(n)<2—%

> KI(),

As a resultliminf, ,, (E[Z(n+1)] — E[Z(n)]) > 0, in contradiction with the convergence
lim, . E[Z(n)] = E[Z] that follows from the a.s. convergence{df(n), n = 0,1,...} and
bounded convergence theorem. The proof of (25) is now complete.

The convergence result of Theorem 2 cannot be obtained by traditional methods from the theory
of Markov chains on general state spaces when applied to the time-homogeneous Markov chain
{p(n), n=0,1,...} onthe non-countable state spaeel|* x [0, 1]*. Indeed, the general theory
identifies conditions akin to irreducibility which ensure the weak convergence (11). However,
such irreducibility conditions typically imply a non-degenerate stationary distribution in the limit,
at variance with the situation obtained hre

The analysis above already reveals some of the difficulties inherent in establishing convergence
results for regular ants. Our ability to establish extensions of Theorem 2 to more complex topolo-
gies is likely to depend on a careful timing of updating events. In that vein, we note that a version
of Theorem 2 can also be obtained (through identical arguments) when the updates are triggered
in an asynchronous manner according to mutually independent Poisson processes; we omit the
details in the interest of brevity.
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