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Materials with Dirac electronic spectra (“Dirac materialsdye attracted
much interest since the first successful electronic transport measurengraphene
in 2004. Dirac quasiparticles have novel physical properties such as absence of
backscattering and Klein tunneling. Topological insulators are a nueethe
discovered class of materials that have a bulk band gap and gapless &ge/sur
states. The surface state in 3D topological insulators has a Diraoriesectrum
like graphene, but is singly spin-degenerate, with spin-momentum locking. This
thesis will describe electronic transport experiments in graphene argbey Bi
ultrathin films, which are predicted to be either 2D topological insulators or
conventional insulators.
The basic quantum physics of a particle confined in a box is demonstrated

using electrons in single and bilayer graphene as examples of masslessaive m



2D Fermions, respectively. Ballistic metal-graphene-metal desidess Fabry-
Pérot cavities for electrons, and resonant states of the Fabry-Pérpboteatved in
electronic transport are used to measure the density of states asanfahparticle
number for massless and massive 2D Fermions. Nonlocal spin-valve expearsents
demonstrated up to room temperature in mesoscopic graphene contacted by
ferromagnetic electrodes. At low temperature the spin-valve signal sih@amnges in
magnitude and sign with back-gate voltage, which may also result fronuquant
coherent transport through Fabry Pérot cavities.

The temperature- and magnetic-field-dependent longitudgiggland
Hall(pxy) components of the resistivity of graphene were measured. Near the
minimum conductivity poinpx(H) is strongly enhanced apd(H) is suppressed,
indicating nearly equal electron and hole contributions to the current. The data are
inconsistent with the standard two-fluid model, but consistent with the prediction for
inhomogeneously distributed electron and hole regions of equal mobility.

Ultrathin three quintuple layer (3QL) Be; field effect transistors (FETS)
were fabricated by mechanical exfoliation on 300 nm&susbtrates. Temperature
and gate-voltage-dependent conductance measurements show a clear GitF state
negative gate voltage, with activated temperature-dependent conductance ayd energ
barriers up to 250 meV, implying that 3QL>Bg; films are conventional insulators
rather than 2D topological insulators, likely due to coupling of the topological surface

states through the thin bulk.
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Chapter 1. Introduction to Graphene

1.1 Lattice Structure of Graphene

Graphene is a single atomic layer composed of carbon atoms arranged in 2D
hexagonal lattice. Discovery of this true 2D material in 2005[1-3] hagueii
vigorous research in both theoretical and experimental condensed matter.physics
Graphene is unigue since its many physical properties are differentdrorargional

two dimensional electron gas (2-DEG) system.

Brillouin zone

unit cell

Fig.1.1 a)graphene honeycomb lattice. A and B are two carbon atoms in a unit cell[1]
Carbon atoms are located at corners of hexagons ahdsging between carbon

atoms are depicted as linegsaad a are two primitive vectors. b)reciprocal lattice of
graphene. The shaded hexagon is the first Brillouin zone.



As in Fig.1.1(a), graphene has honeycomb lattice structure[4-7]. Each carbon
atoms are located at edges of hexagons. The unit cell of this honeycomb lattice is
triangular and composed of two carbon atoms often called A and B. The unit vectors

in real space are

w /3 a w /3 a
a = 76"5)’ a, = (—2 a——z) (1.1)

where the lattice constant a=2.46A.
The reciprocal lattice is also honeycomb as in Fig.1.1(b), and the recipttical la

vectors are

W 2z 2z, W 27
bl:(Ei?)’bz:(\/éai_ a) (1.2)

where the lattice constant is/4/3a

The Brillouin zone is shown in Figl.1(b) and the two inequivalent corners in the

first Brillouin zone are called K and K’ points.

1.2 Band Structure of Graphene

Out of four valence electrons in carbon atoms, three are used to foonds
hybridizing inspf configuration. The other fourth electron formrbital,
perpendicular to graphene plane and phisrbital forms so-called bands in
graphener bands are the most important in different physical properties of graphene
at low energy regime. Since there are two carbon atoms in a unit cell, gnénear

such bands called andz* bands.



| review the calculation of the band dispersion of graphene by considering a
simple tight binding model[8] following Wallace’s method[4-6]. The Bloch

wavefunction[8] can be written as
v vV W
Wy =28 (xR (L3)
R

w v
where the lattice vectoR=m + m(m , m,=integer) ands(x) is thep, atomic
wave function. Following LCAO approximation, only considering nearest-neighbor
v
interactions and the total wave functig(x) can be described as a linear

combination of two Bloch functions at the two inequivalent carbon atoms at A and B

in Fig.1.1(a).

#(X) = b (X + bg,( 3 v

The Hamiltonian for an electron in graphene can be written as
w>
p vV V ¥ V V v
H=——+> [V(x-x-R+M % %x- B
m R (1.5)
Where>‘21 and )\22 are the position vectors of two carbon atoms in a unit cel\Vand

is the atomic potential.

Applying this Hamiltonian t@,, one obtains

V V v V V v V V
H¢1:E1¢1+{Z[V( X—%— R+ % %= R+ ¥V % ?)§}¢1

(1.6)



whereE; is an eigenvalue of the atomiggrbital state for carbon atom A. With a

similar equation forg, , these two equations can be rewritten using abbreviations as
H ¢1,2 = E1,2+ AVl,? 1,2 1.7)
E;= E, from symmetry and | can further chodses E; =0. Then Eqgn. 1.7 becomes
Hp = AVip, anda He, = AV,0, (1.8)
Now, the Schrodinger equation is used to fiandbs,.
v
By projectingg, and ¢, to the equation (1.9), one gets
v
E(k)<g |¥Y>=<g¢ |AV |¥ > (1.10)
Here, the left-hand side of equation (1.10) can be calculated as
Y vy
. * cik-a sik-ap
< |¥>=b+b, (j¢1¢2)<1+e + gm)
VYV
K. al gk (1.11)
<¢, |¥ >=b,+b(| gp)(1+ & ‘)

| now denote
B=d¢,=]54, w.12)

and these integrals are equal due to symmetry.

The right-hand sides of the equations (1.10) are obtained as

< |AV, [ >= by, (1+ €% + g™ )= gy, f(”k)
<AV, [P 5= by, &5 1+ &) g1k
(1.13)



where

Vo= | 4,0V, = [ FAV 4, 114

These two integrals are also equal due to symmetry.
With equations (1.10)(1.11) and (1.13) into the Schrodinger equation (1.9), the

eigenvalue equation becomes

[ . E(k) f<Y<>*<ﬂE\§Y<>—yo>}(blj_(0j
£ (K)(BE(K) - 70) E(K b,) l0) @19

Considering? is small, from determinant of the left hand side = 0, the dispersion

relation is

E(k) = E(k, k) =27, | f(K] L16)

E(¥)=i70\/1+4co{ ﬁ’aj % 2j+ 406{“) i




[ =i

LT

[~y

Fig.1.2 plot of graphene band structure calculated by tight binding model (Eqgn. 1.17).
Ther (valence) ana*(conduction) bands touch each other at K and K’ points.

The energy dispersion relation (1.17) is plotted in Figl.2. As discussed
earlier, there are two bandgyalence) anat*(conduction) bands. Since these two
bands touch each other at six corners of Brillouin zones,i.e. K and K’ points,
graphene is semimetal or zero gap semiconductor. Since one carbon atom contributes
oner electron, the valence band is completely filled, and thus the Fermi level passes

through K and K’ points anBr = 0.



1.3 Low Energy Dispersion in Single Layer

Graphene — Massless Fermion

In the low energy regime, one only needs to consider the first order expansion
near K and K’ points. From Fig.1.2 it is obvious that the dispersion relation near K,

K’ points will be linear. Near the K point, one can write

I\(’ = AK+ Tg (1.18)
E(K = EAK+ H K (1.19)

If | expand f(l‘é) to the first order, equation (1.15) becomes

\/:_J,}/Oa 0 Ak, —iAK, (b ~ V(b
i, o ) EB)

From setting the determinant equal to zero, this equation is reduced to a siegle li

dispersion relation,

E(AK) =thv. |AK]| L21)
L V3
F T on (1.22)

whereve ~ 18m/s is the Fermi velocity. Thus, in the low energy regime near K, K’

points, the energy changes linearly wﬁl‘é. In other words, the energy dispersion at
low energy can be described by two cones touching each other at the apiees wher

Fermi level passes.



Fig.1.3 Low energy linear energy-momentum dispersion of graphene.

This linear dispersion at low energy gives very interesting properties to
graphene since it resembles equations describing massless ratgiasistles such
as photons. The energy dispersion relation of relativistic particles acctodhgc

equation[9]is given by

E:in%ﬂ@+nf€ (1.23)

If the mass m is zero, the dispersion relation becomes

E:idﬂk| (1.24)

which is exactly the same as graphene low energy dispersion equation (&.1&1) if
replaced by Fermi velocity. Thus, electrons in graphene are called massless Dirac

fermions and the low energy dispersion relation is called Dirac cones.



1.4 Low energy dispersion in Bilayer Graphene

- Massive Fermion

In this section, | discuss the electronic dispersion in bilayer graphenBevithl
(AB) stacking (Fig.1.4) since both naturally occurring graphite and meclignica
exfoliated bilayer graphene obtained from graphite show this structure[1€jialB
stacked bilayer graphene, a unit cell is composed of four carbon atoms, i.e. two
inequivalent atom A1,B1 in the bottom layer and the other two inequivalent atom A2,
B2 in the top layer. A2 in the top layer lies directly above the center of honeycomb of
bottom layer and B2 is located directly above Al as shown in Fig. 1.4a).

The band structure of bilayer graphene can be also calculated usirge sim

tight binding model[11-16]. The Hamiltonian for Bernal stacked bilayaplygne is a
4x4 matrix instead of 2x2 for single layer graphene. While in single layer one only
needs to consider one tight binding paramgjefiollowing the Slonczewski-Weiss-
McClure parameterization[17-18] of relevant couplings, | define two moesEders
v1 andys as seen in Fig. 1.4byis the in-plane coupling constant between Al and
B1(A2 and B2)y is the strongest interlayer coupling, between Al and B2. | also
express weaker coupling between A2 and Bisbyiere | ignore the possibility of
layer asymmetry, i.e. a difference in potential between bottom and top layehs whic
may be caused by the environment or intentionally by top-and bottom-gating, and
which can have additional interesting effects on bandstructure[19].

The Hamiltonian in the basis &f = (¢,,, #s,. P, Ps,) N€Ar K point

(Y = (4o, Par, Pa1, P an)NEAN K poINt ), can be written as



O vp 0 wp
v,p. O vwp 0

0O vwp 0 gy (1.25)
Vo P 0 $r 0

where

_ \/éyoa

° 2h (1.26)
V. = \/§7 3a
’ 2h (1.27)
pi - px * Ipy (1.28)

momentump=(px,py) is measured from K,K’ points arig1 or -1 corresponds to K or
K’ points.

By diagonalizing the Hamiltonian (1.25), the energy-momentum dispers
of bilayer graphene can be obtained. While single layer grapherméanduction
and one valence band, bilayer graphene has two conduction and two \mdedse
since there are four carbon atoms in a unit cell. While twihafe four band€®,

touch each other, the other t&8 are separated by2 E® andE® are given by[7]

10



Fig.1.4 Schematics of bilayer graphene lattice structure. a) Plavaoyi
Bernal(AB) stacked bilayer graphene. b) Atoms Al (blue), B1 (black)n the
bottom layer and A2 (red), B2 (blue) are in the top laygry: ys are tight binding
hopping parameters between atoms as illustrated in (b).
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1/2

E@ :i{V_le_{Vg_,_V_;Z] p2+(_1)a[(712_—\fp2)2+ Bl + ¢ gl+27, v ¥ ﬁcosfy}

(1.29)
wherep=p(co9,sind) near K point.
EY describes dispersion relation in relatively low energy regianthe

intermediate energfE™ can be approximated[11] as hyperbolic:

1
E® ~ £ 7/1(\/1+ g p* Iy = ]) (1.30

The effective mass corresponding to this dispersion relddnis given by

D (/2L + 4xh® iy

= aE(l) /6p (1.31)

Equation 1.29 can be further approximated in two regime; high density and low

density regime. At high density regime, energy dispersion becomes linear,

EY ~ Vo P (1.32)

At low density regime, energy dispersion is quadratic,

2

E®~ P o 2o
m* ! 2 Vg (1.33)
The crossover between these two regimes occurs at carrier déBsity n

2
n® — V1

JETRY: @34

This density can be estimated &-n4.4 x 18°cm? using graphite experimental

values[11]. The density wheE&? starts occupied also is

12



n@ ~ 271 ~ gn®
7Z'h2V§ (1.35)
and the estimated value is accordind® 3.5 x 18%m?. At sufficiently low carrier
density, the quadratic dispersion (1.33) is a good approximation and in most low
energy bilayer experiments, | do not need to take higher density b&hicscE
consideration since they are not occupied.
The low energy dispersion of bilayer near K point is plotted in Fig. 1.5.
Comparing Fig.1.5 with Fig. 1.3, the most distinctive point between low energy

dispersion of single and bilayer graphene is that dispersion of singledayassless

and dispersion of bilayer is massive.

Fig.1.5 Low energy band structure of bilayer graphene (Eqn. 1.29).

13



1.5 Organization of Thesis

The outline of this thesis is as follows;

In chapter 2, | will describe fabrication and characterization of single aagebil
graphene. Two most common characterization methods will be explained; anomalous
guantum hall effect[1, 3, 20] and Raman spectroscopy[21].

In chapter 3, | will demonstrate one of the most basic problems in quantum
mechanics; properties of wavelike particles confined in a hard-walled boxgtd s
and bilayer graphene. | will show that mesoscopic, ballistic[22] singér{2:3] and
bi-layer[15, 23] metal-graphene-metal devices act as Fabry-Peroesduiti
electrons confined between the atomically-sharp partially-reflestetal leads.
Electronic conduction occurs through resonant states of the Fabry-Pérot chigty, w
are exactly analogous to the particle-in-a-box states of an electronezbhfin
perfectly reflective wallsD(n) is measured, and the expected dependences on particle
number will be verifiedD ~ n'? for massless particles in single-layer graphene, and
D ~ constant for massive particles in bi-layer graphene. The resulisshiskcin this
chapter are published Mano ReseardR4].

In chapter 4, | will discuss magnetoresistance of graphene and nature of
charge transport near charge neutrality point. | find a large magnetamesis
associated with the minimum conductivity point, which results from the presence of
two carrier types (electrons and holes) within the sample. The functiomabfdhe
magnetoresistance does not follow a conventional two-fluid model typical of a
semimetal, but instead is consistent with effective-medium-theory résuéia

inhomogenous spatial distribution of regions with equal charge carrier mobility but

14



opposite charge carrier sign[25]. The results support the picture of charge
inhomogeneity dominating the conductivity at the minimum conductivity point in
graphene[26-27]. The results discussed in this chapter are publidPiegsinal
Review B Rapid Communicati$28].

In chapter 5, | will talk about spin valve effect in graphene. | observed clear
switching of the non-local four-probe resistance of graphene spin-valves due to
switching of the magnetization of ferromagnetic spin injector contacts. pline s
signal was observable up to room temperature. Interestingly, the spin signal
fluctuated with gate voltage, even changing sign. | propose that theseatfions, in
my rather short spin valve devices, are due to Fabry-Perot oscillationswssdibin
Chapter 3.The results discussed in this chapter are publisAgglied Physics
Lette29].

In chapter6, | will introduce my research on insulating behavior in ultra-thin
bismuth selenide(Bbe) field effect transistors. Bbes is a newly discovered
material known as 3D topological insulator. Topological insulators are nesvatlas
materials that have a bulk band gap and gapless Dirac surface states which are
topologically protected from back scattering or localization by time-saver
symmetry. The existence of surface states #$8&iwas observed recently by angle-
resolved photoemission spectroscopy (ARPES)[30-32] and scanning tunneling
spectroscopy (STS)[33-35]. I will briefly introduce a topological insulaiar
crossover of it properties from 3D to 2D[36]. Then, | will focus on my experimental
result that shows 2D ultrathin film opens an energy gap and becomes trivial trivial

insulator. Temperature- and gate-voltage dependent conductance measurements show

15



that ultrathin BiSe; FETs aren-type, and have a clear OFF state at negative gate
voltage, with activated temperature-dependent conductance and energg bartce

250 meV. The results discussed in this chapter are publisiNghm Letterg37].
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Chapter 2. Graphene Fabrication and

Characterization

2.1 Graphene Fabrication Method

Since its first discovery[1-3], there have been two categories of graphe
fabrication method; top-down and bottom-up. Bottom-up methods start from carbon
atoms or carbon-containing molecules or solids and assemble graphenensheets i
chemical ways. Epitaxial growth on crystalline silicon carbidesseff3, 38] and
chemical vapor deposition growth[39] have been two most successful methods in this
category. These methods open up possibility of large-area graphehédoita
applications in electronic industry.

The top-down method starts from bulk graphite(HOPG or natural graphite)
and mechanically exfoliates one or several layers of graphene on sufdsBates
There had been many unsuccessful attempts to exfoliate a singlgrizyeene[40-

41] until in 2005 a very surprisingly simple and successful way of fabricatingle sin
layer graphene was discovered[2], which is often called the “Scotcimithed”. |
used this Scotch tape method to fabricate graphene and thus | will descobsh“S
tape method” in details below.

The Scotch Tape Method is simple and easy. As reported in earlier paper[2], |
peel thick layers of graphite from bulk Kish graphite(Toshiba Ceramitk)Seiotch

tape and rub them against a Z8D0nm)/Si surface. During this rubbing, one or two

17



layers of graphene is often peeled off and attached to thes8Strate due to Van
der Waals force

In next step, | take the graphite-rubbed $8Dchips to optical microscope.
Under optical microscope, graphene on£00nm) is clearly visible and somewhat
transparent. There is a slight color and contrast shift due to interferendeji2]
fabrication method is also applicable to obtain graphene on other substrates such as
mica, SgOz and STO.

Even though this method seems dirty because of scotch tape, it produces
graphene of the highest quality among all fabrication methods with cbamger
mobility greater than T8n/Vs[28, 39]. While it is not suitable for mass-production,
| was able to use the scotch tape method to obtain graphene as largenas 100
100Qum.

Bi-layer graphene shows slightly darker color and contrast than siggle la
graphene as seen in Fig.2.1. This is an interference-induced color and contrast
change due to a slightly larger thickness of bilayer graphene. | willildedwow to

characterize single and bilayer graphene in more detail in Section 2.3.
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b)

20 pm

Fig.2.1 Optical images of a) single layer graphene b) bilayer grajpimene
SiO,/Si substrates. Graphene is slightly darker than the substrate, and single
layer graphene is slightly more transparent than bilayer graphene.
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2.2 Gate Tunable Device Fabrication Method

Once graphene is found on the @& chip, | spin two layers of mma/pmma
polymer and bake at 150°C for 10 minutes on a hot plate. Then, | use 30kV electron
beam to pattern electrodes in electron beam lithography and develop the pattern in
MIBK:IPA 3:1 solution. Finally, electrode windows are exposed and | evaporate
metal (for normal contacts, Cr/Au=5nm/50nm) in a thermal evaporator at @essur
below 2x10° Torr. In the final step, | perform lift-off procedure in acetone for two
hours. For quantum hall effect measurement, | choose square shaped graplene piec
and deposit Hall bar electrodes without etching graphene as seen in Fig.2.2 since

etching normally reduces quality of graphene.

i

T N\

Fig.2.2 optical picture of a) single layer b) bilayer graphene device. Haloaetry
was made to measurg,Rnd Ry .

a )— )

[

Sum
e
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Once | finished fabricating devices as in Fig.2.2, | performedraalct
transport measurements in our cryostat in which temperature can be varied from
320K-0.3K.

The heavily doped 300nm thick Si®erves as dielectrics for back gate. By

tuning back gate voltage, the carrier density can be modulated in graphere3iBig

shows the conductivityg,.of a graphene sample as a function of gate voltage

measured at temperature T = 2K. The conductivity curve shows minimum region and
it is called “minimum conductivity point”, or “Dirac point” [2-3, 10]; [1, 3, 28] the

gate voltage at which the minimum conductivity occurs. In this thesis, | Wilt ca

Vpb. As more charge (electron or hole) carriers are induced in graphene bgimgrea

Vg, the conductance in graphene increases since density of states incraages. D
electron-hole symmetry in dispersion relation, the conductivity curve is quite
symmetric with respect to Dirac point. Since the Fermi level lies & Koints as in

Fig. 2.3a), charge-neutral graphene (without tuning carrier density byalttge)

should have zero carrier density and thus show minimum conductance. . The Fermi
level changes with back gate as positive gate voltage increase Felnanigweduces
electron carriers in graphene and vice versa. Due to inevitable environmental doping,
the Dirac pointV/p typically shows small shift from zero gate voltage as in Fig. 2.3 b)

(V, #0) and the value of, changes from device to device.
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Fig.2.3 a) Low energy dispersion of single layer graphene illustratingeffeanet of
tuning gate voltage. b) Conductivity of graphenas a function of gate voltage at a
temperaturd = 2K.
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Fig. 2.3b) shows the conductivityxof a graphene sample as a function of

gate voltage measured at temperature T = 2K. As | induce more chaoje(ete

hole) carriers in graphene by increasityfJ|=|Vy-Vp|, the conductance in graphene
increases since density of states increases. Due to electron-holetsymme
dispersion relation, the conductivity curve is quite symmetric with respectdo Di
point, Vp. Even though the density of states at the Dirac point is zero, there is finite

minimum conductivity which is observed by several groups to fall in the radge ~

10 e2/h[1, 3]. ; the origin of this finite minimum conductivity will be discussed in

more detail in Chapter 4.. The field effect mobility calculated by

1do 1 do
lLlFE = — —
e dn s d\é (2.1)
ranges from 8,000 ~ 20,000 oV in single layer graphene[1, 3, 28].
w | | | | I _BD
| *
. F
L 40
7 30- |
7]
N =
= _D :
c":; ED_ ﬂ:
= x
. -40
= 10+ .
0 S Y
80 o : . )

Vg (V)

Fig.2.4 Charge carrier density (open circle) and mobility (filledejraf graphene as
a function of gate voltage (Figure from Ref. [3]).
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As in Fig. 2.4[3], Hall measurement shows change of sign of carrier density
uponVy passing through Dirac pointpywhich clearly indicates that Fermi level B

passing through charge neutrality point.

2.3. Graphene Characterization; Single layer
and Bilayer Graphene

In addition to identification by optical contrast, | used two other methods to
differentiate single layer and bilayer graphene; the anomalous quantweffdw|1,
3, 28] and Raman spectroscopy[43]. Either of these measurements enables us to
distinguish between single layer and bilayer graphene since they showatopgdyit

different behaviors.
2.3.1 Anomalous Quantum Hall Effect

One of the most important discoveries in condensed matter experimental
physics in the 1980s was the quantum Hall effect by von Klitzing et al[44]. The
guantum Hall effect is fascinating in that it enables us to measure hsihnes in
quantized units of h/2avith an accuracy of one parts per million[reference]. This
high accuracy results from a perfect suppression of back scattering unattteim
Hall regime since electron states carrying current in one diresteélocalized on one
edge and the other states carrying current in opposite direction areddaaliz
opposite edge. In a large enough sample, these two states on opposite edges cannot
overlap and thus back scattering is truly suppressed over a long distance even with

impurities present in the sample.
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High mobility graphene samples also enables us to observe the quantum Hall
effect as in Fig 2.5b)[1, 3, 28]. To measure quantum Hall effect in graphene,ly usual
fixed the magnetic fiel@ at a high value (in Fig.2.5b) B ~ 8 T), and sweep gate
voltage to tune E At high magnetic field, quasi-discrete Landau levels are formed in
graphene. The density of states of these Landau levels are shown in Fig.2.5a). As
Fermi level moves from one Landau level to next ongsRows an oscillation.

When the Fermi level lies between successive Landau leygshows plateaus
while R becomes zero due to ballistic transport of edge states as in Fig. 2.5b). As |
sweep gate voltage from negative to positive, carriers from electrons to holes
successively fill Landau levels ang, changes its sign. The most striking fact is that
the quantized quantum Hall conductivity in graphene shows different values from that
in conventional 2DEG. In conventional 2DEG, the quantized Hall conductivity is

2

Oxy = ignﬁ 2.2)

whereg is the total degeneracy (valley degeneracy times spin degenenady)s

an integer. The factgnis called the “filling factor” and indicates the number of
filled Landau levels, or number of conducting edge modes. In contrast, in single
layer graphene the filling factor is not g n, but g (n+1/2), which is half inskgied

as in Fig.2.5b). Thus, the quantized Hall conductivity is observed to be

2
o,, =*0 n+le—
2)h

Xy (2.3)

25



a) DOS
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n—2 n—-I n=0 n=1 n=2

Fig.2.5 half integer quantum Hall effect in single layer grapmeeasured at T=2.3K
and B=7.94T.
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The half-integer in filling factor originates fromBerry phase in graphene[1, 3].
Degeneracy g in graphene corresponds to 4 since there are is spin degarigracy
and 2 “valleys” (K and K’).

On the other hand, in bilayer graphene, the filling factor is g n as seen in Fig.
2.6 similar to conventional 2DEG since Berry phase of bilayer graphene istalso 2
[20]. Thus, the quantized Hall conductivity in bilayer graphene is given as equation
2.2. The degeneracy g is 8 at zero energy and 4 at all other landau levels.

Since the quantized hall conductivities of single layer and bilayer graphene
shows different filling factors, quantum hall measurement can be used as a
characterization tool to distinguish between single and bilayer graphdaet, Ih
measured quantum hall effect to confirm number of graphene layers in Fabty-Pe

interference experiment, which will be discussed in next chapter.
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2.3.2 Raman Spectra of Graphene

Raman scattering involves inelastic scattering processes of photoesalyen
speaking, Raman scattering occurs in the following way in solids. First, wheera la
beam is shone on a sample, an electron in the sample is excited from valence to
conduction band by absorbing an incident photon. Second, the excited electron is
scattered by emitting or absorbing phonons. Third, the electron relaxes to valence
band by emitting a photon. Since the scattered photon loses energy to phonon, it has
energy smaller than the incident photon by phonon energy. The Raman spectra |
observe is the intensity of the scattered photons as a function of frequency downshift

(energy loss).

{a) monolayer o G'

—
i) ]
=
c
o |
o G
| = |I'|
E " 1 FJ"’ ) " )
3‘ (b} bilayer
‘
c
o
£

1400 1500 1600 1700 " 2700 2800

Raman Shlﬂ {cm 1}

Fig. 2.7 Raman Spectrum of a) single layer graphene and b) bilayer graphgme (
from Ref,[45])
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Raman spectroscopy serves as a strong tool to characterize numbersof layer
in graphene[43, 45]. Here, | will focus on single and bilayer graphene. As in Fig. 2.7,
there are two most prominent peaks in the Raman spectrum of graphene, the G peak
near 1600cm and the G’ (or 2D) peak near 2700tnierrari et al, showed that the
G’ peak in Raman spectrum can be used to distinguish between single and bilayer
graphene. As in Fig. 2.7, while the G’ peak of single layer graphene is fit to one

Lorentz peak, G’ peak of bilayer graphene is fit to four Lorentz peaks.

a) b \\ / / \ /
w N/
| o /0 N
A
K point X e ( \ / \

Fig. 2.8. a) First Order(G peak) b) second order(G’ peak) Raman suattercess in
single layer graphene

As shown in Fig. 2.8 a), Raman scattering for the G peak in graphene
involves one optical phonon at q = 0, and thus it is called first-order Raman
scattering. On the other hand, Raman scattering for the G’ peak involves tvab optic
phonons with opposite momentum+£ 0) as shown in Fig. 2.8b). During this second
order process, an electron is excited by a photaik atate, scatters thk+q state by

a phonon q, scatters backAk state by a phonon —q, and then emits a photon by
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recombining with a hole atk state. Since these two phonons have the same momenta
and hence the same frequencies in single layer graphene, they produce only one

Lorentz component in the G’ peak.
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Fig. 2.9 Raman scattering process for G’ peak in bilayer graphene

Since there are two conduction and two valence bands in Bernal stacked
bilayer graphene, there are four possible transitions of electrons fronceate

conduction band when sample is illuminated by laser beam. Density functional theory
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shows that incident photons couple more strongly with two transitions shown in Fig.
2.9[43]. Thus, there are four possible intervalley scattering processes involving
phonons of four momenta qis, (ba s as in Fig. 2.9a)~d). The zone-boundary
phonon is strongly dispersive due to a Kohn anomaly, hence the four allowed
scattering momenta have discernibly different frequencies, and refult inorentz
components in the G’ peak of bilayer graphene as shown in Fig. 2.7b).

In conclusion, the lineshape of the G’ Raman peak in graphene can distinguish

whether the sample is single or bilayer graphene.
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Chapter 3. Massless and Massive Particle-in-a-

box States In Single and Bilayer Graphene

The problem of a wavelike particle confined to a hard-walled box is one of
the most basic problems in quantum mechanics. The spectra of the particle-in-a-box
are strikingly different for massive and massless particles:lesagsarticles (e.g.
photons) have energies which depend linearly on quantum number, while the energies
of massive particles (e.g. free electrons) depend quadratically on quanturem
For Fermions in two dimensions (2d), this leads to a density of single-parites st
D = dn/dE, whereE is the particle energy amdthe particle density, which varies as
the square root of particle density, D¥n) ~n'?, for massless particles, and is
independent of particle density for massive particlesDi®). ~ constant.

In this chapter, | will demonstrate this basic physics using electromgie-s
and bilayer graphene as examples of massless and massive 2d Fermionselyspect
| show that mesoscopic, ballistic[46] single-layer[2, 47] and bi-layer[23, 4&]lme
graphene-metal devices act as Fabry-Perot cavities for electronsecbbétween the
atomically-sharp partially-reflective metal leads. Electronic cotida occurs
through resonant states of the Fabry-Pérot cavity, which are exaalhgaus to the
particle-in-a-box states of an electron confined by perfectly refeeatalls.D(n) is
measured, and the expected dependences on particle number are Zerified: for
massless particles in single-layer graphene arcconstant for massive particles in
bi-layer graphendd(n) is used to extract the single constants in the dispersion

relations: the Fermi velocity: = 1.09x16 m/s for massless particles in single-layer
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graphene[2, 47], and the effective mags= 0.032m,, wherem is the electron mass,
for massive particles in bilayer graphene[23, 49] in excellent agreemént wit
theoretical expectations[48-5&hd other experimental results[2, 47, 53-55]. The

results discussed in this chapter are publishéthimo ReseardB4].

3.1. Density of States in Single and Bilayer Graphene

| first review the results of the two-dimension particle-in-a-box prabkgs.
3.1A and 3.1B illustrate the massless and massive dispersion relations vegpecti
As shown in Chapter 1, the low energy dispersions for massless and massive Dirac

Fermions in single and bilayer graphenes are:

21,2

E =V, k| (massless)(3.1a) E- gn:( (massive) (3.1b)

*

whereh = h/2r, andh is Planck’s constant; each dispersion relation is characterized
by a single parametan* for the massive dispersion, andfor the massless
dispersion. For particles confined to a 2-dimensional bawdth W and length_ the

hard-wall boundary condition quantizes the wavevector

X1y

k = (k k ):(p%,q%j resulting in two positive quantum numberg. Figs. 3.1C

and 1D illustrate this quantization, where each point repreaaraowed

wavevector. Then the energies in terms of quantum msnaloe given by the

2 2 2 2 2
familiar relationsE = hv_z (ﬁ] +(ﬂj (massless) andEzh—{(—pj +(—qj }
w) L sm|lw) (L

(massive). For Fermions at zero temperature, ¢thapancy of particle-in-a-box state

will be the degeneracy of individual statgfor state of energl < Er (Fermi energy)
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and zero for statds > Er. The number of states wilh< Er is given
byN = gk?WL/4x , wherekr = k(E) is the Fermi wavevector. Figs. 3.1C and 3.1D

illustrate the occupied states included for equsfigiced values &, and Figs. 3.1E
and 3.1F show the energies of the particle-in-adiates as a function of particle
numberN for massless and massive 2d Fermions respectiVdig.linear and square-

root dependences &(N) for massless and massive 2d Fermions respectvely

N _gke

evident in Figs. 3.1E and 3.1F. Using the areakity of particlesn = 4
7T

then have the following relations for the depenésraf the Fermi enerdy and

density of stateB on density:

2

E. =nv.+/n (massless) (3.2a)E, = Z?nn (massive) (3.2b)

*

D =i gn (massless) (3.3a)D = sz
T

(massive) (3.3b)

Thus the measurementBfas a function oh distinguishes massive and massless
particles, and (given knowledge of the degenega@lso determines the constants of
the dispersion relationg andm*.

Single and bilayer graphene may be used to rediezdispersion relations in
Equations 3.3a and 3.3b as follows. Single layaplgene is well-described by a
tight-binding model considering ontyorbitals at each atomic site as described in
Chapter 1. At zero doping, tlheandn* bands meet at two points in the Brillouin
zone with wavevectdk. This crossing is preserved as long as the tanmsiA and

B in the unit cell are equivalent. TakiggK) = 0, and measuringaway from the&K
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Fig. 3.1. (A) Massless dispersion and (B) massigpaision relations in two
dimensions. (C-D) Allowed wavenumbers for particle box of aspect ratid/L =
1.6. Solid lines are contours of equal energyniassless dispersion relation (C) and
massive dispersion relation (D). (E-F) Particleergy as a function of particle
number in a box witW/L = 1.6 for massless dispersion relation (E) andriassive
dispersion relation (F).

point, the band structure is well-approximated loy Ela, withv, = (\/5/2)6170 In=

1.0 x 16 m/s wherea = 2.46 A is the graphene lattice constantaxd3.16 eV[56]

is the nearest-neighbor hopping parameter. Imd&estacked bi-layer graphene[23,
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48-49, 51-52], atom A in one layer is stacked akatoen B’ in the 2 layer, and this
A-B’ coupling breaks the AB equivalency of the dnape unit cell and results in two

bands which may be approximated as hyperbolic:
2
E, (k)= ir[ (nvek ) +7/71 7—21] [49], wherey; =~ 0.4 eV[57] is the inter-layer (A-B’)

hopping parameter. At= 0 the effective mass is given by = y, /2vZ =~ 0.03m..

In both single- and bilayer graphene the degeneagacy, due to the two-fold spin

degeneracy and the two-fold valley degeneracy @¢mas of twdK points).

3.2 Sample Preparation and Characterization

| now discuss the graphene samples used in thdg.sAs$ described in
Chapter 2, | mechanically exfoliated Kish graploite300nm Si@Si substrates to
obtain single and bilayer graphene[2, 23, 47]. Riteyer graphene is more
transparent than two or more layer graphene unaterab microscope as seen in Fig.
3.2A and 3.2B. After locating graphene flakes, @#nm/50nm) were thermally
deposited for electrical contacts. The channelttesigfor Fabry-Perot interference
measurement are 200nm - 300nm and measured byirsgahectron microscope.
The maximum field-effect mobilities at low tempenag estimated from the four -
probe resistivity of the adjacent graphene sectiwasl’5,000 cfiVs and 4,000

cnt/Vs for single- and bilayer graphene respectively.
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Fig. 3.2. Optical micrographs of single-layer grapé device (a) and bilayer

graphene device (b).
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Fig. 3.3 Longitudinal and Hall conductivity as anftion of gate voltage at magnetic
field of 9 T and temperature of 1.3 K for singlgda graphene device (a) and bilayer
graphene device (b).
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Figs. 3.2a) and 3.2b) show completed single- alayda graphene devices
respectively. Electrodes are patterned on eagihgree flakes to form a large-area
Hall-bar arrangement for characterizing the lorgjital and Hall conductivitiess(,
andoyy) of the sample. In addition, pairs of closely«sxh(150-300 nm) electrodes
act as Fabry-Pérot cavities on the same sample.

Figs. 3.3a) and 3.3b) shawy andoyy for the single- and bi-layer graphene
devices shown in Figures 3.1a) and 3.1b), respagtimeasured in high magnetic
field (9 T) and as a function of back-gate volt&gewhich controls the carrier
densityn = coVy/e, wherecy = 1.1 x 10° F/m, ance is the electronic charge. The
quantized Hall effect (QHE) is evident as platewitk oy, = ve’/h, and
corresponding minima iek. As discussed in Chapter 2, Berry's phasesarid Z
lead to QHE in single- and bi-layer graphene &hglfactorsv = 4(+1/2) and 4it+1),
wherei is an integer[2, 23, 47], thus our observationthefhalf-integer QHE, and
full-integer QHE with the missing= 0 plateau, confirm the identification of these
samples as single- and bi-layer graphene respbctive

Figs. 3.4a) and 3.4b) show the two-probe conduetans a function of gate
voltageG(V,) for Fabry-Pérot cavities on the single- and peladevices,
respectively, at zero magnetic field. | shift tueves horizontally by an amouvig
which | identify as the gate voltage at which tleerfi level lies closest to the Dirac
point. The conductance rises away frgga Vp = 0 as observed by previously[2, 23,
47]. Small reproducible fluctuations of the conigimce with magnitude of ordef/h

can be seen (see insets to Figs. 3.4a) and 3thb3k fluctuations are not universal
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conductance fluctuations (UCF) but, as argued belesult from the interference of

ballistic electron waves in the Fabry-Pérot cavi6j|

3
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Fig. 3.4 Two-probe conductance as a function af gattage at zero magnetic field
and temperature of 1.3 K for single-layer graph@aéce (a) and bilayer graphene
device (b)
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3.3 Fabry-Pérot Interference Measurement and

Discussion
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Fig. 3.5. Color-scale two-dimensional plots of elifintial conductandd = d/dV as a
function of bias voltagey and gate voltage/; measured in single graphene at
temperaturd = 1.3K. A smooth background conductance was sciletlato enhance
the patterns. The sample dimensions are 1.B)m(0.3um(). Yellow lines illustrate
the slope of the Fabry-Pérot resonances

42



— 750
— 625
5.00

VimV) 0. 375

250
1.25

— 625

— 500

275
YVimVy 0,
2.50

1.23

— 625

5.00
V) 0 375
2.50

1.25

27 28 29 30 31 32

Vz'VD(V)
Fig. 3.6 Fabry-Perot interference data (similarFtg. 3.5) taken on an additional
single-layer graphene sample with ferromagneticcteddes, of dimensions
350nmV) x 200nm(). Data were taken at temperatufe= 1.3K. A smooth
background conductance was subtracted to enhaagatterns.

43



125

100

75

G (US)

50

25

V (mV)
S A L o v A~ oo

Vo= Vo (V)

b) 80

60

G (US)

40

20

V (mV)
S A L o v A~ oo

Vo= Vo (V)

20

15

G (1S)

10

V (mV)
S A L o v A~ oo

-76 -74 =712 -70

Vo= Vo (V)

-78 -68

Fig. 3.7. Color-scale two-dimensional plots of eifintial conductand@ = dl/dV as a
function of bias voltag® and gate voltag¥y measured in single (A-C) and bilayer
(D-F) graphene at temperatufe= 1.3K. A smooth background conductance was
subtracted to enhance the patterns. The samplengioms are 1.5und{) x 0.3um()

for single layer graphene and 4.3Wk(x 0.2um() for bilayer graphene. Yellow
lines illustrate the slope of the Fabry-Pérot resmes
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Figs 3.5 ~ 3.7 show color-scale maps of the diffeat conductanceldV as
a function of bias voltage applied between the two electrical contacts ane ga
voltageV, for the single- and bi-layer devices shown in &g A pattern of diagonal
lines of increased conductance is evident; thiepats the signature of Fabry-Pérot
interference in a mesoscopic device[46, 58]. Nedgimg diagonal lines have similar
slopes, and diagonal line of similar positive aedative slope are found in ea¢f
region. Each individual diagonal line results frtm enhancement in conductance
when a particle-in-a-box resonance, or a groupotuctively-interfering
resonances, is aligned with the source electrodgdr-drain electrode \f; the
symmetry abouY = 0 reflects the source-drain symmetry of the ceviNote that the
pattern is inconsistent with Coulomb blockade; ¢reme no diamond-shaped low
conductance regions arouldE 0, and the overall conductance’h excludes
Coulomb blockade.

Resonant transmission through a Fabry-Pérot chasybeen reported
previously for carbon nanotubes (CNTs)[58-59] arapgene [46]. In the case of
CNTs, there is a single path lendgtltonnecting the electrodes, and the resonances
are evenly spaced MiandV,. In graphene [46], the resonances are randonalyesp
which may result from a spread of path lengthstduen-parallel electrodes or
electron paths which are not perpendicular to leet®de-graphene interfaces.
However, important information can be gained bylyaiag theslopeAV/AV, of the
resonant lines in Fig. 3.5~3.7. Briefly, the slopeasures the change in enefdy=
eAV/2 (the factor of two results from the potentiale#2 and AV/2 applied to the

two electrodes relative to the graphene in a lialidevice) of the resonance as the
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particle number = c,AVy/eis changed. The slope is then equal WAV, =
(2¢/€")AE/AN = (2¢/€”)DY; i.e. the slope is inversely proportional to tleasity of
states (see Methods for a more rigorous derivatiache same result). From Egns.
3.3a and 3.3b above, | expect thaAV,~ n?~ N, — Vp[*? for the single-layer
(massless dispersion) sample, akd/AVy~ constantfor the bi-layer (massive
dispersion) sample. Figs. 3.5 and 3.6 show thaslthge indeed varies significantly
with gate voltage (electron density) for the siAglger graphene sample, with the
highest slope occurring nedg —Vp = 0. The slope is nearly constant in the bi-layer

graphene sample as seen in Fig 3.7.

T 4 single laver expt. {device 1)
< single kayer expl. {device 2)
40 \(i —— massiess dispersion {v, = 1.09x 10" mis)
1 * bilayer expt
o« i}a —— massive dispersion {m = 0.031 m )
£ 30- l
;%
2 :
o 201
o
A
Q
10 -
0 .

Fig. 3.8. Density of states of single-layer gragh€blue symbols; data from two
devices shown) and bilayer graphene (red symbats, flom one device shown) as a
function of particle density. Solid lines aresfto Eqn. 3a (blue) with = 1.09 x 16
m/s and Egn. 3b (red) witih* = 0.032m..
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Fig. 3.8 plots the density of stat®s= (€7/2¢,)(AV/IAV,)* for the single- and
bi-layer graphene samples extracted from Figs=3.3 as a function of electron
densityn = c4(Vy — Vp)/e. Solid lines are fits to Eqns. 3a and 3b for tingls-layer
and bi-layer data respectively. The expected dégeces on particle number are
verified: D ~ n¥?for massless particles in single-layer graphena(B@a), and ~

constantfor massive particles in bi-layer graphene (Eq8bB Only a single fitting

parameter is used in each fit, = (1.09+ 0.01x 10m f for massless particles in
single-layer graphene and* =(0.0315+ 0.0001jn for massive particles in bi-layer

graphene. As discussed in detail below, the paemare in excellent agreement
with theoretical and other experimental results.

| now discuss the detailed dependence of the geois#ttates on particle
number in single- and bi-layer graphene, and th@igations of the results for
understanding the electronic structure of thesenads. From the fit to Eqn. 3.3a in

Fig.3.8, | determine a Fermi velocity for single«da graphene of

V. =(1.09+ 0.01x 10m k. A tight-binding model of graphene[60] gives

Ve = (@lz)ayo Im =~ 1.0 x 16 m/s wherea = 2.46 A is the graphene lattice constant

andyo~ 3.16 eV[56] is the nearest-neighbor hopping patameThe inclusion of
electron-electron interactions will renormalize ermi velocity slightly[50], and the
slightly highervg observed here is consistent with other experimamigraphene[2,
47, 61-62].

The density of states in single-layer graphene mesrfanite asn — 0 due to
charge inhomogeneity caused by charged impuriges the graphene, as has been

observed previously. The minimum density of st&tem order 2 x 15 eVlcm?
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corresponds to a charge densityn order 16" cni?, in agreement with
theoretical[63] and experimental expectations[6Bf66the minimum charge density
at the Dirac point in the presence of charged imydrsorder due to the SO
Substrate.

| now discuss bilayer graphene. From the fit to.E333b in Figure 3.8, |
determinem = 0.032n.. Assumingve= 1.09 x18 m/s | havey; = 0.40 eV, in
excellent agreement with the experimental valuegfaphite of 0.39 + 0.01 eV [66]
and with other experiments on bilayer graphene®38Because the bands are not
strictly parabolic, the density of states shoulded®l on particle density, increasing
with increasing particle density. The hyperbolature of the bands becomes
important for particle densities roughly greatert?/(4nh?ve?) = 3 x 102 cmi®,
Experimentally, | see little variation in the dapf states for particle densities up to
6 x 102 cmi?, indicating a wider range of validity of the pantib spectrum than
expected. | do not currently understand this digancy, but | note that electron-
electron interactions should again be importantyas pointed out previously in the
failure of the single-particle picture to quaniitaty explain the cyclotron resonance

spectrum in bilayer graphene[54].

3.4 Conclusion

In conclusion, | have probed the density of pagtioka-box states as a
function of particle number for massless 2d Fermi@@mngle-layer graphene) and
massive 2d Fermions (bi-layer graphene) in a phakerent measurement. The

density of states varies as the square-root oicpartumber for massless 2d
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Fermions, and is constant for massive 2d Fermidine single parameters in the

dispersion relations are extracted; the Fermi vglog = (1.09+ 0.01x 10m & for
massless particles in single-layer graphenerand (0.0315+ 0.0001n for massive

particles in bi-layer graphene, in excellent agreeimvith theoretical expectations
and other experimental observations.

Understanding coherent transport in graphene esaential step to realize
other interesting experiments in graphene suchregjative-index Veselago lens for
electrons, Klein tunneling, and graphene supeckdti’-70]. Since this work, Fabry-
Perot oscillations in metal-graphene-metal str@surave been used to measure the
g-factor of graphene electrons[71], and Fabry-Pesctllations in graphene p-n-p

junctions have been used to probe Klein tunnglimgsics[72-74].
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Chapter. 4 Charge Transport and
Inhomogeneity near the Minimum Conductivity

Point in Graphene

In this chapter | use magnetotransport in grapheséudy the nature of
charge transport at the minimum conductivity poihfind a large magnetoresistance
associated with the minimum conductivity point, @hhresults from the presence of
two carrier types (electrons and holes) withingample. The functional form of the
magnetoresistance does not follow a conventionadftwrd model typical of a
semimetal, but instead is consistent with effeethedium-theory results for an
inhomogenous spatial distribution of regions wigjua& charge carrier mobility but
opposite charge carrier sign[25]. The results stppe picture of charge
inhomogeneity dominating the conductivity at themum conductivity point in
graphene[26-27]. The results discussed in thipteinare published iRhysical

Review B Rapid Communicati¢ns].

4.1 Minimum Conductivity and Electron-Hole

Puddles in Graphene

One of the most fascinating aspects of grapheti@aighe quasiparticle

Hamiltonian is identical to that of massless Dii@enions, exhibiting a “Dirac point”
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at which the density of states vanishes linearthouit the presence of an energy gap
as discussed in previous chapters. A striking@spfeexperiments is that a finite
conductivity is observed in graphene for all chatgasities[1], with a minimum
conductivityo,, min ON order of 4°/h (but sometimes significantly smaller[76] or
larger[26, 77]) occurring at the minimum condudtnpoint (MCP; in the absence of
disorder, the MCP and Dirac point are identicat,ibuhe presence of disorder, they
are slightly different[26, 78]). The observatidnadinite minimum conductivity has
sparked significant theoretical interest. Modalgking only short-range
scattering[79-80] give,x min = 4€°/mh only exactly at the MCP, and fail to reproduce
the linear gate-voltage dependence of the condtyctiw(Vy). Other attempts[81]
using the Landauer formalism also obtajn~ 4e’/nh which depends weakly on
aspect ratio, but such models are only expectée tmlid in the ballistic limit for
wide sampled, <L <W, wherel is the mean free path,the sample lengtiVV the
sample width. Some experiments have probed thif 6], but many do not.

In this chapter, | will show that the conductivitgar the MCP is dominated
by charge disorder[78, 80, 82], i.e. spatiallyididtregions, or “puddles” of electrons
and holes. Because of the Klein paradox, the janstbetweep andn regions in
graphene are transparent to electrons, and thenmmiconductivity of graphene...

The imaging of electron and hole puddles in grapheas reported[27] and is
shown in Fig. 4.1. The image in Fig. 4.1 is undssheed, but analysis of the potential
fluctuations in [9], and higher-resolution imagibg other groups[ref Crommie,

Leroy] indicate that the length scale of puddlegraphene is approximately 30nm.
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Fig. 4.1. Spatial density variations in single lageaphene extracted from surface
potential measurements when the average carriegitgan zero. The blue regions

correspond to holes and the red regions to elextrbme black contour indicates the
zero density contour[27].
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4.2. Device Characterization(FE mobility and QHE)

(a)

60 -40 20 C 20
V_(V)

Fig. 4.2 (a) Optical micrograph of graphene deviCentrast is enhanced to show
graphene more clearly. White vertical lines arAGrelectrodes, graphene is visible
as slightly darker region compared to backgrour@/Si substrate. (b) Longitudinal
conductivityocy as a function of gate voltadg at zero magnetic field and
temperature of 1.6 K. (e} and Hall conductivity,y as a function oY/, at
magnetic field of 8 T and temperature of 2.3 K.

The device was fabricated following the method dbed in chapter 2[83].

Figure 4.2a shows an optical micrograph of a cotegldevice; all the data in this
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chapter are from this device. | first characteatitee carrier density dependence of
the conductivity of this device at zero and highgmetic field. Figure 4.2b shows the
longitudinal conductivitysx as a function of gate voltayl. The MCP occurs at
Vgmep = 1.7 V. Away from the MCP, the conductivity ieaises linearly. The field
effect mobilityure = (1icg)dox/dVy is 1.6 Mi/Vs and 2.0 Vs for electrons and
holes respectively, wheg = 1.15 x 1d" F/n?, as determined from the Hall effect at
high density.

Figure 4.2c shows,, and the Hall conductivitg,, as a function of gate
voltage at a magnetic field of 8 T[84]. The Hailhductivity shows the half-integer
quantized plateaux that are a signature of grafhe88]: oy, = ve’/h, with v = 4(n +
1/2) andn an integere the electronic charge, ahdPlanck’s constant. The plateau-

like regioncyy ~ 0 is also evident[86-88].

4.3 Magnetoresistivity near Minimum Conductivity

Point(MCP)

I now discuss the magnetoresistiyity(B) near the MCP. Figure 4.3 shows
pxx(B) atVy= 1.7V and temperatures from 1.6 K to room temjpeeat At low fields
the magnetoresistivity is roughly temperature irdefent. At higher fields the
resistivity tends to saturate at a value h4at low temperatures, and increases with
no saturation foB < 8 T at room temperature. Figure 4.4 shows #te goltage
dependence of the low-field magnetoresistivity,rabterized by the curvature

d?px«(B)/dB? obtained by
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Fig. 4.3. Longitudinal resistivityy as a function of magnetic fieBlat various
temperatures, and a gate voltage of 1.7 V (thetpdimaximum longitudinal
resistivity at zero field). Data are taken on wiaagrfrom low temperature.
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fitting pxx(B) to a quadratic over the range -0.2 B< 0.2 T. The magnetoresistivity
has a sharp peak at the MCP, and falls to nearateyate voltages more than a few
volts from the MCP (a¥y = 10V, the curvature is already 300x lower thathat
MCP).

| now discuss the possible origins of the posithagnetoresistivity. Weak
antilocalization is possible in graphene[89], agslits in a positive
magnetoresistivity. However, this effect shoultlsate at a small magnetic field
scale roughly set by the coherence length squaretishould be strongly temperature
dependent. Also, consistent with an earlier r¢@0}t | observe no weak localization
or anti-localization at larger gate voltages. Hehconclude that the
magnetoresistivity does not result from weak (Jotalization.

Within the Drude model, a two-dimensional conduetah a single carrier
type (e.g. pristine graphene at zero temperatui@pgs no transverse
magnetoresistivity, because the force exerted &yl field cancels the Lorentz
force, and the drift current and resistive voltage in the same direction. However, a
conductor with electrons and holes may exhibitdargnsverse magnetoresistivity,
because the electrons and holes develop compaoietift velocity perpendicular to
the current which cancel to give zero net trangvetsrent. Both holes and electrons
are present at zero temperature in semimetalljghigey and at finite temperature in
graphene. Such a two-fluid model has indeed begpoged to explain the gate
voltage dependence of the Hall conductivity in fiewer[91] and single-layer

graphene[92]. For a conductor with electrons andshof concentrations andp and
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Fig. 4.4. (a) Longitudinal resistivityx as a function of magnetic fieBlat various
gate voltages. From top to bottom, curves cornegpo gate voltages of 1.7, 2.0, 2.4,
2.8, 3.2,3.6,4.0, 10, and 30 V. (b) Longitudicahductivitycy (black line, left

axis) and the second derivative of the longitudrealstivity vs. magnetic field
d’p,/dB? at smallB (filled circles, right axis) as a function of gateltageVy at a
temperature of 1.6 K. Dotted line extrapolatesveen filled circles.
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oy’ (0) =(n, p)ex. Then the resistivity components are:

1+ (uB)*

— Pyy(B) = auBp,, (B)
1+ (auB)

pxx(B) = Pxx (0)

(4.1)
whereo = (p-n)/(p+n). At the MCPa = 0, andhy(B) « 1 + (1B)? andpyy = 0. Far
from the MCP, | expect that||— 1, andpx(B) = px(0). This model thus explains
qualitativelythe sharp peak in(B) at the MCP (Fig. 4.4). However, it does not
explain the functional form gfu(B); Fig. 4.5 showg(B) atT = 300 K, open circles
are the experimental data, while the dotted ant-daslines are fits to Eqn. 4.1 with
u=1.9 nf/Vs ando = 0, ande = 2.3 nf/Vs ando. = 0.4 py(0) = 0.125 in both cases).
In each casg is chosen to match the loBreurvature of the resistivity’pl(B)/dB? =
2u/(1- ¢®) as determined by a fit to the experimental datad.2 T <B < 0.2 T (Fig.
4.5b). The fits are poor outside the IBwvegion. The two-fluid model fails
guantitatively in other respects: The near-absehtemperature dependencepgf is

not explained; at the MCR,= p~ 0.52KT/Ave)?, so | expect,, (0) = (n+ p)eu to

depend quadratically on temperature. TAt 1.6 K,n=p~ 2.3 x 16cm?, and the
peak inVy should have a width less than 1 mV, not ~2 V aeoled in Fig 4.4. As
discussed previously, another mechanism is alreadgled to explain the finite
conductivity on orde€’/h at the MCP. My data puts a further constraintios t
mechanism: it must also explain the magnetoresigta the MCP.

The finite conductivity and the large magnetortesty at the MCP together
do suggesp+n remains finite whilgp-n — 0. There is another scenario in which this

is possible: as discussed above, Adam et al[78pgse that local potential
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Fig. 4.5. Longitudinal resistivitpyx as a function of magnetic fieBlat a temperature
of 300 K. (a) Open circles are experimental ddtdted line is a fit to the two-fluid
model (Egn. 1 in text) with = 0, dash-dot line is a fit to the two-fluid moaéth o =
0.4. Dashed line is a fit to the inhomogeneouseh@Eqn. 2 in text), and solid line is
a fit the the inhomogeneous model with an additipaaallel conductivity (Eqn. 3 in
text), with o1 = 0.88€’h. In all fits, the zero-field resistivity,(0) and the low-
field curvature &,.(B)/dB? are the same, determined by fits to the experiahetata

at-0.2T<B<0.2T, as shown in (b).
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fluctuations may induce electron and hole “puddiasi nominally neutral graphene
sheet. Individual graphene samples are charaeteby a single parameter, the
density of Coulomb impuritiesy,,, which accurately predicts the minimum
conductivity, the carrier density at which the M@ppears, and the field effect
mobility. (An additional parameter, the distané¢énapurities from the graphene
sheet, is determined to be 1 nm from the globabfitata from several research
groups.) Within this model, the impurity densiygiven bynim, = (5 x 13° V7'shu
"1~ 2.8 x 16° m for our sample (using = 1.8 nf/Vs, the average field-effect
mobility for electrons and holes). At the MCP, therent is carried by an effective
carrier densityt ~ 1.1 x 16° m?, the minimum conductivity is given sy min =

(2067/h)(n*/ Nimp) = 7.8°/h, the MCP occurs at a gate voltagguce= ne/c, =

(nimp2/4n*) elcg = 2.5V, while the spatial charge inhomogeneitgxipected to be
important in a region of widthVy = 2n*e/cy= 3.0 V around the MCP. These values
are in good agreement with the experimental vatgsi, = 5.%%/h, andVgmcp= 1.7
V. AVyagrees well with both the width of the peak in neigresistivity vsVy in Fig
4.4, and the width of the plateau whexg= 0 in Figure 4.2b (~2.1 V). The effective
carrier densityr ~ 1.1 x 13° m? is larger than the thermally excited carrier dgnsi
at room temperature 0.8 x20n? (see above), so | expect temperature dependence to
be small at least up to around room temperaturebssrved.

I now discuss the expected magnetoresistivitgfermodel of Adam, et
al[78]. While the general problem of magnetoregistin a spatially inhomogeneous

conductor is complex[93], the magnetoresistivityanfinhomogeneous distribution of
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electrons and holes with equal mobility and eqoakentrations has been solved

exactly[25], and has a simple analytical form:

0u(B) =0, O+ (B | o,(8)=0.
(4.2)
Equation 4.2 predicts a magnetoresistivity whiclinisar inB at high fields, as
shown by the dashed line in Fig. 4.5, with(0) = 8.0e*/h andx = 2.9 nf/Vs. The

low-field

behavior is consistent with Eqn. 4.2. | find hoeethat the fit is greatly improved if

Eqn. 4.2 is modified to the following phenomenotagiform:

=0 (4.3)
1+ (B ) ]

Py (B) = [Jxx,l + ( d
In Fig. 4.5, | plot the experimental data (opemwles) and a fit to Eqn. 4.3 (solid line)
With oy 0 = 7.1€%/h, 641 = 0.88€%/h, andu = 3.1 nf/Vs. The fit is excellent. Again,
px(0) and dpu(B)/dB” = u/(1 +oyx,1/ Oxx0) are determined by the loBrdata alone,
leaving only one additional degree of freedom tohie highB data.

In proposing Eq. 4.3, | did not have a physicajiorior the extra
conductivity term. However, it is reasonable tpeoct deviation from Eqgn. 4.2 for
several reasons: the electron and hole concentratenot perfectly balanced, the
electron and hole mobilities are not equal[26], Hredsample geometry is far from

the ideal Hall bar (some current must flow throtigg electrodes). Subsequent

theoretical work using effective medium theory bbtained very good agreement
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with our experimental results, taking into accoaiisimall imbalance of mobilities or
carrier concentrations for electrons and holes.

From the conductivity and mobility obtained frone tht to Eqn. 4.2 | can
obtain a carrier density* exp = ox«(0)/ue = 6.6 x 16 m®. This density is about half
the predicteai* ~ 1.1 x 18> m?% Overall the data suggest that the mobility rlear
minimum conductivity point is greater than thediglffect mobility; this is consistent
with the experimental observation[26] and theogettorediction of a residual
conductivity at the Dirac point[94].

At low temperatures and high magnetic fielgg(B) saturates to a constant
value ~0.4/¢’. Additionally, a plateau-like region ef, ~ 0 is evident ins,,(Vy).
This latter feature has been interpreted as agentguantum Hall effect (QHE) state
arising either from the splitting of the valley @éegracy in the = 0 Landau level
(LL)[88], or due to spin splitting of thé"0LL resulting in counter-propagating spin
polarized edge states[86]. The latter model gigesto a dissipative QHE state, in
which o,y is only approximately quantized, apg is finite. Such a dissipative QHE
state would also be expected in spatially inhomegaa graphene, in which th8 0
LL lies below or above the Fermi level in electarhole regions respectively. The
bulk then would consist of incompressible electaod hole QHE liquids, separated
by regions in which tha = 0 LL crosses the Fermi level, i.e. fourfold degete
edge states with counter-propagating modes. Frerg.9 ni/Vs andn* ey, = 6.6 X
10" cm’?, | estimate the scattering time= 87 fs, and the LL broadenitigr h/t = 7.6
meV. ForB = 8 T the spacing between tH2#nd £'LL is ~100 meV, the Zeeman

energy iggusB = 0.9 meV assuming= 2. The average densitye,, gives a LL
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filling factorv=2 atB=1.4 T, and 0.34 & = 8 T. Of course, the maximum density
within the puddle must be greater than the avedagsityn*, and the QHE occurs
over a broad range around the quantized fillingoiagfor example, the = +2 plateau
occurs fromv = 1.1 - 3.3), so it is plausible that the puddiesld be in they =+2

QHE states. The imaging of electron and hole puwdidigraphene was reported[27],
and the puddle diameter estimated to be ~30 nitmenl expect that quantum effects
should be important when the magnetic length s tlean the puddle diameter, iBe.
> 0.8 T, and the temperature is less thgim*), i.e. T < 350 K. This is in qualitative
agreement with Fig4.3 where significant deviatiop,(B) from Eqn. 4.3 occurs at
temperature$ < 100K andB> 0.8 T, but, since Ref[80]. is inadequate to priiiiie
behavior in the quantum regime, more work is neé¢deshderstand the high-field,

low-temperature behavior near the MCP.

4.4 Conclusion

In conclusion, | have measured the magnetic fieldethdent longitudinal and
Hall components of the resistivipy(H) andpyy(H) in graphene on silicon dioxide
substrates at temperatures 1.6 K< 300 K. At charge densities near the minimum
conductivity pointpx(H) is strongly enhanced apgd,(H) is suppressed, indicating
nearly equal electron and hole contributions toctimeent. The data are inconsistent
with the standard two-fluid model but consisterttwthe prediction for
inhomogeneously distributed electron and hole regaf equal mobility. At lowl
and highH, px(H) saturates to a valudv/e?, with Hall conductivity <<e’/h, which

may indicate a regime of localized- 2 andv = -2 quantum Hall puddles.
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Chapter 5. Gate Tunable Graphene Spin Valve

5.1 Why Graphene for Spintronics?

Graphitic carbon nanostructures, e.g. carbon ndest(CNT) and graphene,
have been proposed as ideal materials for spinumtioth[95-101] for several reasons.
First, suppression of backscattering[102] allovesritio have long electronic mean
free paths[103-104]. Second, spin-orbit interactsovery small due to relatively low
atomic weight of carbon[105-106]. Spin-orbit cougliallows spin relaxation due to
the transformation of intrinsic electric fieldsarsolid into magnetic fields in
electron’s reference frame, and spin-orbit effentsease rapidly with atomic number.
A theoretical estimation shows that spin-orbit dowgpin graphene is negligible even
for disordered graphene [107]. Third, since 99%aitiral carbon consists of zero-
spin isotopé”C, carbon nanostructures have very weak hypertitegdction, which
is another mechanism of spin relaxation[108]. Tioeeg it is predicted that graphene
will have a long spin life time on the orderust

In this chapter | discuss my efforts to inject ametect spin currents in
graphene devices. | was able to observe cleaclswg of the non-local four-probe
resistance of graphene spin-valves due to switclohgthe magnetization of
ferromagnetic spin injector contacts. The spimaigvas observable up to room
temperature. Interestingly, the spin signal flabtal with gate voltage, even
changing sign. | propose that these fluctuations)y rather short spin valve devices,

are due to Fabry-Perot oscillations as discussé&hapter 3.
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Demonstration of spin injection and detection impirene opens new
opportunities to study spin-dependent transpoeiistic electronic
states such as the quantum Hall[109-110] and quoasjpin Hall[105] states, and

proposed spin-polarized edge states[111] in graphbbons.

5.2 Nonlocal spin valve effect
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Fig. 5.1 a) A schematic of nonlocal spin valve dewonsisting of two ferromagnetic
contact f and K and a normal conductor N. large arrows mnaRd F indicate
directions of magnetization and small arrows in ridi¢ate spin polarizations of
electrons b) Band structure illustration of spineation and spin detection. c)
Electrochemical potentials for spin up @nd spin down|() as a function of position
in F, N, and E. Figures are from ref[112-113].
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A nonlocal spin valve device consists of two latéeeromagnetic contacts {F
and k) laterally separated on a nonmagnetic conductdiig\.5.1(b) shows band
structures of E N and k. To measure nonlocal spin valve signal, chargesotiis
injected from k- to left end of N (opposite to,J; and voltage is measured between F
and right end of N. In the absence of charge ctffew from F, and N, the
electrochemical potentials of spin- up and spin+d@ectrons in N are the same.
When a charge current is injected fromt&N, the majority of electrons at the Fermi
level are spin-up since the density of statesgor-ap electrons at the Fermi level is
higher than spin-down electrons inds in Fig.5.1(b). This leads to spin
accumulation in N near;fas in Fig. 5.1(a). Spin accumulation in N acta apin
electromotive force which produces a voltdge (u;—p,;), wherep, andy, are the
chemical potentials for up and down spins, respelsti This voltage can be
measured at the interface&d N as in Fig.5.1.a) and c). As electron spamshze
flipped by different mechanisms such as spin-arbitpling or magnetic impurity
scattering, this voltagé (I (u,—p,) decreases as the distahdeetween Fand b
increases as shown in Fig.5.1c). The charactehsigth defining how long the spin
polarization can be preserved is called spin difiusength. Even if the charge
current flows only from Fto N, spin polarization diffuses in both directaiowards
left and right side of N. The advantage of the noal spin valve geometry comes
from the decoupling of charge current and spinemirrin the direction from;FRo
right side of N, there is no charge current, buy oret spin polarization occurs. Thus
this geometry excludes the possibility of a voltaggmalV arising from AMR

(anisotropic magnetoresistance) or Hall effect ffemomagnetic electrodes, which
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would require a charge current in the voltage drteortion of the device[113].

5.3 Fabrication and Characterization
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Fig. 5.2 Graphene spin-valve device. a, Opticaragraph of graphene on SISI
substrate. Scale bar is 10 microns, white box stgraphene flake used in this study,
which has similar contrast to other graphene sasriplewhich half-integer quantum
Hall effect was measured. b, Gate voltagg (lependence of four-probe resistivity
(black, left scale) and conductivity (blue, right scale) at a temperature of 1.25 K.
The field-effect mobility e = (1/cy)|do/dV,| is approximately 2500 citv's, wherec,

= 1.15 x 10° F/nt is the gate capacitance. In this local resistiviteasurement,
electrodes F4 and F5 were used as voltage probésha current contacts were F3
and F6. c,d, Schematics of device layout. c, Riaw. d, Side view, showing setup
for non-local resistance measurement. Six ferroratig Permalloy electrodes F1-F6
were deposited on top of graphene strip. To gitleréint coercive fields, F1, F3, F5

have dimensions 1/0m x 3um, and F2, F4, F6 are Qun x 15um. Spaces between
all the electrodes are 450nm.
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The graphene device studied here was fabricatec isimilar method
described in Chapter 2. Once the most transparaphgne flake is exfoliated and
identified on 300nm SiO2/Si substrate as in Figah. ferromagnetic permalloy
electrodes are formed by electron-beam lithogra(feBL) followed by thermal
evaporation as in Fig.5.2b); a second EBL stepbbskees contact to the Permalloy
via normal Cr/Au electrodes. As described in Figb}, six ferromagnetic Permalloy
electrodes F1-F6 were deposited on top of grapkeige To give different coercive
fields of magnetization, F1, F3, F5 have dimensibfsum x 3um, and F2, F4, F6
are 0.4um x 15um. (Higher aspect ratio produces higher coerciedd$i of the
magnetic electrodes.) Spaces between all the etisgrare 450nm. Once device
fabrication is completed, | mounted it in diife cryostat system. | tried not to spend
long time before cooling down the samples sinceroftobserved contact resistance
increases to order of Min 24 hours at room temperature. | believe thatoalerate
increase in contact resistance before measurensablishes a tunnel barrier
between graphene and the ferromagnetic electrodhvimproves spin injection and
allows me to observe an increased spin valve §igh&i118] although it can also
increase signal to noise ratio.

Fig. 5.2b) shows the gate voltagg)(dependence of the four probe resistivity
p and conductivitys measured at the base temperature, T=1.25K iiHricryostat.
Similar to other single- and bi-layer graphene desf109, 119(Vy) shows a broad
minimum around &/h, wheree is the electronic charge armdPlanck’s constant,
increasing linearly withvg away from the minimum a¥.n, (the charge neutrality

point, CNP). Theo(Vg) curve shows a relatively broad plateau regainthe

68



minimum conductivity, which indicates that this a®vhas large amount of charged

impurities[120-121].

5.4 Gate-Modulated Spin Valve Measurement

| performed non-local spin valve measurement bygidour ferromagnetic
electrodes[114-116]. As described in Fig.5.2dpjéct spin current into graphene by
flowing charge current from F3 to F2. Then, ideakyxcess spin diffuses through
channel from F3 to F4 and F5, with no accompanyingrge current. | detect this
spin diffusion by a voltage established betweertteldes F4 and F5, which are
ferromagnetic and therefore preferentially sensite one spin potential. This non-
local spin valve measurement scheme excludes amytended signals from
ferromagnetic electrodes such as anomalous Halkecteffand anisotropic
magnetoresistance (AMR) by separating spin andgeheurrent. It also excludes the
sheet resistance of graphene due to absence ajecflawing through the graphene
channel.

Fig. 5.3a) shows the four-probe non-local resisdtg= V,/l (see Fig. 5.2c
and d) as a function of magnetic fieRlat Vy = +70 V at T=20K with current
I=100nA. Ry is positive at larg8. AsB is swept to negativd, remains positive as
B crosses zero, then switches to a negative vallg~at150 G before returning
positive atB ~ -250 G. Upon sweeping positive, switching occurs & = +150 G
and +250 G. This behavior is very similar to tblserved in all-metal[114-116, 122]
and CNT[117] non-local spin-valves, particularlyetkign change oR, when the
current and voltage circuits are separated[117].12%nce we identify these two

magnetic fields as the coercive fields of F4 andré§ectively. The switching
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behavior may then be explained as follows: at g3 preferentially injects its
majority spin which diffuses to F4 and is detectsdan increase in the chemical

potential of F4’s majority spin (since the magnatians of F3 and F4 are

H V, =+70V, T=20K V, =-20V, T=20K

1 «— — 1
/08 v,=6v, T=20< | [l V, =6V, T=20K | |
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Fig.5.3. Non-local spin-valve effect in grapher@eb, Nonlocal resistané®, (see Fig.
5.2d) as a function of magnetic field measurectmiperaturd = 20K with current
=100 nA. a,b F2, F3 as current leads; F4, Ftagelteads. c,d F4, F5 as current
leads; F2, F3 voltage leads. a, Gate voltdge +70 V. b,Vy= -67 V. c, Gate
voltageVy = -20 V. d,Vy= -69 V. The non-local resistance switches signnup
sweeping magnetic field, which indicates that a spirrent flows from electrodes F3
to F4 (see Fig. 5.2c,d). The reversal of signhaf mon-local resistance with gate
voltage (a vs. b and c vs. d) is discussed in éixe and in Fig. 5.4. e,f, Memory
effect measured &t = 20 K,| = 100 nA,Vy= 0 V. F1, F2 are current leads; F3, F4
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are voltage leads. In a-f, blue curves correspngositive sweep direction of
magnetic field; black curves, negative sweep dect

parallel) resulting in positivdR,. When F3 and F4 are antiparallel, the voltage
reverses, ani, is negative.

Fig. 5.3b)-d) show the same measurement perforineifferent gate voltages
and different electrode arrangements. In Fig.)5aBlol 5.3d), the higB-value is
negative, andr, switches to near zero (or slightly positive) ®retween the two
coercive fields. The sign change is discussechduarbelow. Fig. 5.3e) and 5.3f)
show the memory effect: by reversing the field gwe@ection after flipping the
magnetization of F4 but before flipping the magregion of F3, twdR, states can be
observed aB = 0, corresponding to the two possible magnetnadiates of F4.

First we discuss whethd®, arises due to charge current or spin current
flowing between F3 and F4. Ideally, as mentionadier in this chapter, charge
current would flow only between F3 and F2, elimingtcontributions to th&, from
magnetoresistance of the ferromagnetic electrottes,channel, or the electrode-
channel interface. However, becal®eis ~3 orders of magnitude smaller than the
device resistance, it is possible that some chaugent flows through a tortuous path
from F3 to F4 and F5. We investigate this by meaguthe gate voltage and
temperature dependenceRyf.

Fig. 5.4a) shows the gate voltage dependenc®,oin the parallel and
antiparallel stateR, ,andR, ap as well as their average value. Fig. 5.4b) shiws
non-local spin-valve sigh@lR. Rayg RnipandRy qp all show a peak near the CNP (10

V <Vy < 30 V), whileAR is near zero in this region. Well outside thigioa (V4 < -
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20 orVy > 40 V), R, pandRy aphave nearly equal magnitude and opposite $tggié
near zero) andR is larger and shows quasi-periodic oscillationhwf. The peak

in Ravy(Vg) near the CNP suggests that charge cudeesflow in the region between

F3 and F4 for these gate to voltages. HoweRg¥V,) is not simply proportional to
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Fig. 5.4 Gate-voltage dependence of spin-valveasigna,b, The same electrode
configuration is used as for Fig. 5.3a,b. a, Raste as a function of gate voltage for
electrodes with magnetizations parallgh ), antiparallel R.ap), and their average
Ravg = (Ruip + Raap/2. b, The spin valve signaR = Ry, — Ry apas a function of gate
voltage.
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p(Vy) but rather drops near zero at laxgewhile p(Vy) remains finite. Thus the finite
Ravf(Vg) near the CNP is likely due to the inhomogenousinezof graphene near the
CNP[120, 123] (see Chapter 4); here percolatingtele and hole regions may cause
a tortuous current path.

Away from the CNPRaVy) drops to near zero, indicating small charge
current.  YetRy, and Ry 4 remain finite, with near equal magnitude and ofipos
sign. This is as expected for a pure spin cufiteming from F3 to F4, and cannot be
explained by a magnetoresistive signal arising faomg charge current between F4
and F5. The Hall effect is another possible sooifcé,, however, the Hall voltage
would be expected to grow large and switch sigm treaCNP, rather than showing a
peak.

Fig. 5.5 shows the temperature dependend@,gfand AR for V4 = 0. Here
Ravg Is finite similar to Fig 5.4, but somewhat larder this electrode configuration.
The spin-valve signalR is seen to drop with temperature approximatelyRsc T,
while Rayg is much more weakly temperature dependent; agdlieating a different
origin for AR andRayg The inset shows a measurement at 300 K perfoahkijher
current; the spin-valve signal can still be obsdrveonfirming expectations of
reduced spin scattering in graphene even to higpeeature.

We now discuss the magnitude of the spin-valveaigik. For an Ohmically-

contacted spin-valve device, the non-local signahymbe estimated using
AR=2a?22R,? I (-7 )* LWR}, (where «? is spin polarization. is spin diffusion
length in ferromagnetR}, and R}, are square resistance of ferromagnetic and non-

magnetic material respectively,andw are length and width of channel) [116]. We
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estimate in this case the signal should be on dié2f2. However, we observe finite
contact resistance of order 1@ kper electrode as estimated from the difference
between two-probe and four-probe resistance measmts. In the limit of highly
resistive contacts, we would expect the non-loeistance to be given by;
Ry =touAvexpEL /A )RB 12A, (where p, is bulk resistivity of
nonmagnetic materialj, is spin diffusion length in nonmagnetic materialisAcross-

sectional areaP; are the single F/N interface polarizations of therent at the

contacts Fi/Ni) [122] R , for long spin-scattering lengths, is on the ordéithe

channel resistance (1-10Qk Our intermediate contact resistance, finitenspi
scattering length, and finite polarization of tHec&rodes will give a lower value of
AR, similar to the observation &R ~ 20 Q for a channel resistance 1@ land
contact resistance of a few tens & ik a CNT device[117].

| now discuss the origins of the quasi-periodidltagmns of the non-local spin-valve
signalAR(Vy). Oscillation of the spin-valve signal witfy due to spin-orbit coupling
has been proposed as the basis of a spin trafs&thr However, the spin-orbit
coupling in graphene is expected to be very sn@l],land this effect should not be
observable[125]. Oscillations and sign changeshef 4pin-valve signal have also
been observed when the spin current flows througésanant quantum state, either
due to Coulomb blockade[126] or Fabry-Pérot interfee [100]. It is evident from
Fig. 5.2b) that the sample is not in the Coulombckédde regime, howevei(Vy)
shows quasi-periodic oscillations. Such oscillagiarere studied in detail in Chapter
3, and attributed to Fabry-Pérot interference ettebnic states reflected from the

electrodes[100, 127-128]. | examined similar oatiins in another graphene sample
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Fig. 5.5. Temperature dependence of spin-valveasig The average resistaritgg
(black circles) and spin valve signsR (blue squares) as a function of temperature at
Vg =0 Vandl =100 nA. The temperature dependence of the\sgire signalAR is
much stronger than that dRag (Which likely arises from the charge-current
resistance). The solid line shows a power law @xponent -1. Inset shows the non-
local resistanc&, as a function of field at = 300 K and = 3 pA. Blue curve is
positive sweep direction of magnetic field; blackwe, negative sweep direction. The
spin-valve effect is still observable. The eled&® used for the spin-valve data in
main panel and inset are the same as for Fig.f5.3e,

in a two-probe geometry (Fig 5.6). In the coloaiscplot of differential
conductance vsVy and drain voltage/, conductance maxima and minima occur

along diagonal lines. As discussed in Chapter 8 cttange in electron phase due to

round trip through graphene channel results in bry=Rérot oscillation pattern

1/2
eV, '
(Fig.5.6) with a period in gate voltage/, = %( g ] and in drain voltage
c

g
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Fig.5.6 Color-scale plot of two-probe different@nductance as a function of gate
voltageV, and drain voltag® for a similar graphene sample contacted by Peoyall
electrodes with a spacing 200 nm. The blue anddesthed lines have slopes of
+0.013 andt0.010 respectively.

1/2
2c C
AV = hve . The slope of the lines rséi = —zgi =hv.| ———| , wherevg
el AV, € D(E) 4reV,'

=1 x 10 m/s is the Fermi velocity, andy = [Vg— Vend. For the device in Fig. 5.8,
=200 nm,Venp= -6 V, givingAV= 20 mV. FolVy =10-15V, we findAVy= 2.0-2.5
V, and the slope varies from 0.013 to 0.010. Thesthrprominent minima in
conductivity atv = 0 occur with spacingVy= 1.5-2.5 V, however additional features
are observed more closely space&iandV, than expected from above. This is not
surprising due to the two-dimensional nature opgeme: our analysis includes only
the k-states perpendicular to the electrodes, underoguribe states involved in
transport (the slope is independent of the patbtken). The spin-valve sample also
shows oscillations o$(Vg) in Fig. 5.2b). For this sample= 450 nm, and we would
expectAVy = 2.8 V atVy = 90 V (i.e.Vy = -70 V) which agrees reasonably well with
the observed spacing of dip%/y ~ 6 V at large negativ€, in Fig. 5.2b). The four-

probe geometry is significantly more complicatedrtithe two-probe analysis of

76



Fabry-Pérot interference above, since there ar¢iptauinterfaces which could give
rise to interference. Still it is reasonable tliatantum interference effects are
responsible for the oscillations in the four-pralesistivity (Fig. 5.2b), and for the
observed changes in magnitude and sign of the\gie signal with gate voltage

(Fig. 5.4b).

5.5 Conclusion

In conclusion, we have observed the non-local t&st® arising from a spin
current in graphene in a non-local four-probe meament. The spin-valve signal
varies with gate voltage in magnitude and sign wusterference arising from the
guantum-coherent transport through graphene, wisichlso evidenced by Fabry-
Pérot-like interference patterns observed in alamsample, and oscillations in the
four-probe resistivity of the spin-valve sample.heTmagnitude of the spin-valve
signal is roughly inversely proportional to tempara, and is observable at room
temperature. Injection and detection of pure spimrents in graphene opens
possibilities to examine theoretically predictedviighenomena such as the spin Hall
effect[105] and half-metallicity[111] in graphenébons. Because of the high
current-carrying capability and long mean-free pathoom temperature, graphene is
also an excellent candidate for room-temperatuirgrsmics applications.

The results of this chapter are published in Agpkéysics Letters[129].

After submission of our results[130], another gr¢Lp8] published non-local four-
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probe spin-valve experiments in graphene, submééelier than our work. Ref. 15
showed that spin relaxation time in graphene isegghort and only up to a few
hundredps. The origin of unexpected such a short spin relardime in graphene is
still unknown, and is a subject of significant thetacal[131-132] and experimental
[117-118, 133]work. One of the possible reasomsamentum relaxation due to
charged impurity scattering, but a recent repo@]khows that charged impurity

scattering is not the primary source of spin reii@xain graphene.
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Chapter 6. Insulating Behavior in Ultra-thin

Bismuth Selenide Field Effect Transistors

6.1 Introduction to Topological Insulator

Three-dimensional(3D) topological insulator is avredass of material that
has a bulk band gap and two-dimensional gaple$acgustates on every surface. The
surface state has a Dirac spectrum like grapheres Bingly-degenerate; there is a
single Dirac cone which is singly spin-degenerdike real electron spin plays the
role of the pseudospin in graphene, and the sudiate exhibits spin-momentum
locking and absence of back scattering or locatindy time-reversal symmetric
disorder[30-32, 34-35, 134].

The existence of surface states in topologicallaisuBi,Se; was predicted
theoretically [2] and observed recently by anglesteed photoemission spectroscopy
(ARPES)[30-32] and scanning tunneling spectrosd&y5)[33-35] (see Figure 6.1).
ARPES measurements indicate®s has a single Dirac cone, gapless surface state
in the bulk gap. BSe seems to be one of the most promising in apptinatin that it
has a large bulk band gap ~ 0.3 eV, correspondird$®OK and could therefore
behave as a topological insulator up to high teatpees. However there has been a
big obstacle to achieving electronic transport expents which are dominated by
surface state transport [135-138]: in typical sasphe Fermi level in Bsgis not

located inside the bulk gap, but in the conduckiand. Due to high n-doping,
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metallic bulk conduction dominates electronic tors in BLSe; and makes it

difficult to observe the novel properties of sudatates[139-141]. An increase in the
Fermi level with time has been observed even attéomperature and in ultra-high
vacuum (UHV) in ARPES measurements [30-32], butathgin of high n-doping is
not clear at this time.

One strategy to reduce the contribution of bulkdration is to fabricate very
thin Bi,Se; layers, and some electronic transport experimamthin BbSe;
films[139-140] and crystals[141-142] have been reggh An interesting question is:
How thin can BiSe be while retaining its three dimensional topolotinaulator
character? The thinnest layer that maintains 823 stoichiometry is the quintuple
layer (QL)_of 5 alternating Se and Bi planes, whiile thinnest slab which retains the

symmetry of bulk BiSeis one unit cell, or three QL units, thick.
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Fig. 6.1. a) Energy and momentum dependence oLEH@S b) ARPES spectra of
Bi,Se. Figures are from references [32, 134]
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Fig. 6.2. ARPES spectra of 1~6 QLs measured at neonperature. Figure is from a
reference [36].

In reference[36], Zhang et al, reported ARPES mesmsent in 1~6 QL
Bi,Se; films as seen in Fig. 6.2. They observed openmgreergy gap of surface
states in films of thickness below 6 QLs and regmbthat the gap size increases with
decreased number of QLs as in Fig.6.2. Opening @ing@rgy gap indicates that
ultrathin BpSes films of thickness below 6 QL are not three-dimensi topological
insulators. However, there has been much theotetm on ultrathin topological
insulator films especially about whether they agotogically trivial or nontrivial, in
other words, whether they are conventional insuato two dimensional topological
insulators with gapless spin-full one-dimensiordge states (which cannot be
observed with ARPES technique). Several theoretwoaks[143-145] explain that in
few-QL Bi,Se;, since overlapping between wavefunctions of twiese states is
non-negligible, the surface states may hybridiz @wen a bulk energy gap, resulting
in either a two-dimensional insulator or a quangpim Hall system with insulating

bulk and conducting chiral one-dimensional edge es{i#6-149].
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Fig. 6.3. a) spinless b) spin-full 1D chiral ed¢gtess in a) quantum Hall states and b)
guantum spin Hall states in 2D topological insulakagure is from a reference [149].
2D topological insulators are similar to 3D toggital insulators, but the

difference is that the boundary is edge insteaglidace. Instead of momentum-
locked two-dimensional surface states, the chitakdige states in 2D topological
insulators are spin-momentum locked; i.e. spinHgpagates only one direction, and
spin down the opposite direction. 2D topologicelulators are also similar to
guantum Hall insulators in that both have edgeestadpologically protected from
local perturbation as shown in Fig. 6.3, but tHéedence is that in 2D topological
insulators time reversal symmetry is conservedetiye states come in spin-
momentum locked pairs, preserving time-reversalsginy[149]. 2D topological
insulator was predicted theoretically in 2006[1&60¢ realized experimentally next
year in HgTe quantum well[151]. Konej almeasured a quantized conductance ~
2¢€?/h, indicating ballistic transport through two edgedes, similar to the quantum

Hall effect without external magnetic field as iigF6.4[149, 151].
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Fig. 6.4. a) schematic figure of HgTe quantum walicalculated band structure of
HgTe quantum well ¢) 4 probe resistance measuréed2@mK in HgTe quantum
well devices with various d. Devices Il and IV oesponds to d=7.3nm and show
quantized conductance G-4#te Figures are from references [149, 151].

In the following sections, | will discuss eleatro transport measurement
conducted in ultrathin BSe; devices consisting of three quintiple layers (it cell)
as a function of gate voltage and temperaturesénied clear insulating behavior
beyond a threshold gate voltage, with activatedgngaps up to 250 meV. The
results indicate that 3 QL Be; crystals are conventional insulators with energysy

exceeding 250 meV rather than 2D topological insulaith gapless edge states.

This work is published in Ref [152].
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6.2 Sample Fabrication and Characterization

Fig. 6.5. Atomic force micrograph (a) and opticatrographs (b-c) of a 3.5 nm
thick exfoliated BiSe; sample on SiglSi substrate. Panel (c) shows the completed
device with Pd electrodes contacting the devicelarger Cr/Au electrodes leading
to bonding pads. Scale bars in (a-c) are 4 microns
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Bi,Se; crystals were prepared as described in RefereBsg[Bulk carrier
concentrationsrttype) were in the range of 2-4xX£@m*. Bi,Se; was mechanically
exfoliated on substrate of 300nm Si@er a conducting Si back gate using a “Scotch
tape” method similar to that used for graphene[1BR). 6.5a shows an optical
micrograph of a typical mechanically exfoliateg®# crystal on Si@Si. Crystals
of thickness 3.5nm-30nm were found, and could Heréntiated by color contrast
similar to few-layer graphene[154]. The thicknetthe samples was measured by
atomic force microscopy (AFM), which may overestiethe true thickness of the
crystal as is observed for graphene onHi®1]. The thinnest samples (thicknéss
3.5nm, corresponding to ~3 QLs) were chosen farghidy. Electron beam
lithography was used to define Pd electrodes; F3b.6hows the completed device.
No adhesion layer was used; | found that usingrdii @s an adhesion layer makes
contact resistance increase rapidly with time, Wwhgght be related to oxidation of

adhesion layer.

6.3 Electrical Measurement and Discussion

Fig. 6.6 shows the gate-voltagé) dependent transport properties of four
Bi,Se transistors of various thicknesses. For thickenges (Sample 1= 14 nm;
and Sample 2,= 6.5 nm), the sheet conductivity measured inua-foobe
configuration is shown. For the thinnest samp&angples 3 and 4= 3.5 nm) the
two-probe conductance is shown as a functio¥yofBecause of the high sample
resistance at low temperatures and negafjyéwas unable to perform four-probe

measurements on the thinnest samples. | always\astype doping in exfoliated
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Bi,Se;, and for Samples 1 and 2 the carrier densiigtermined by Hall effect &t =
0,n = 1.5 x 18% cm® for Sample 1, and = 2.5 x 16° cmi” for Sample 2, exceeds the
density of the surface state at the conduction Iealyg: (~5 x 18 cmi® for one
surface, or 1 x 18 cm for top and bottom surfaces[30, 32]) indicatingttthe bulk
conduction band must also be populated. The Hatlility is 1200 cr¥Vs and 300
cm?/Vs for Samples 1 and 2 respectively a=\0. The gate-voltage-dependent

transport in

3000 — 6

2500 - Thickness 19
Sample 1 —%— 14 nm

2000 - Sample 2 —e— 6.5 nm 14

Sample 3 ——3.5nm
Sample 4 —&— 3.5nm

Conductivity (uS)
Conductance (uS)

Gate Voltage (V)

Fig. 6.6. Gate-voltage dependent transport in édoliated BySe; samples. For
thicker Samples 1 and 2, the four-probe condugti\ft axis) as a function of gate
voltage is shown. For thinner Sample 3 and 4fwlreprobe conductance (right axis)
as a function of gate voltage is shown.
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Sample 1 and 2 is qualitatively similar to thatertved by other groups for thicker
exfoliated crystals[141-142] and films[139]. Whieakly (logarithmically)
insulating behavior has been observed in thus&ifilms[139, 155], the observation
here of transistor-like behavior and a strong (evgmtially) insulating state in the
thinnest samples is novel, and below | will focastlois behavior in more detail.
Figures 6.7a and 6.7b shows the two-probe condecetahSample 3 as a
function of gate voltag&(V,) at various temperaturdsshowingn-type field effect
behavior. (Similar results were obtained for Saml At highT (245 K — 320 K,
Fig. 6.7a) | observe that for positive (negatiVg)the conductance increases
(decreases) with decreasing temperature, indicatigtgllic (insulating) behavior. At
lower temperatures (Fig. 6.7b) the conductanceedses with decreasing
temperature at all gate voltages. The maximurd #élect mobility is ~10 cAtVs at

T =245 K.
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Fig. 6.7. Temperature-dependent conductance air@.fick exfoliated BiSe; on
SiO,/Si. (a-b) Conductance of Sample 3 vs. gate volég@arious temperatures. (c-
d) Conductance of Sample 3 vs inverse temperatueesemilog scale (Arrhenius

plot) showing activated behavior. Lines are liniarto the data.

Figs. 6.7c and 6.7d show the conductance datafigs 6.7a and 6.7b on an

Arrhenius plot. At negative gate voltage (Fig.@, strongly activated temperature-

Ea /KT

dependent conductance is observed; straight lireftato G(V,) = G,e” where

Eais the activation energ¥,is Boltzmann’s constant, até a constant prefactor.
At positiveVy and lower temperatures (Fig. 6.7d), activated vienas also seen with

much smaller activation energies.
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Fig. 6.8. Activation energy as a function of gatétage determined from fits in Figs.

6.7c and 6.7d.

Figs. 6.8a and 6.8b show the gate-voltage deperd#rtbe activation
energies extracted from Figs. 6.7c and 6.7d. Egative gate voltages, the activation
energy rises roughly linearly with gate voltagetragolating to zero at a thresholg
=-10V, and rising to 250 meV ¥ = -90 V. | interpret the activation energy insthi
regime as arising due to a barrier to conductiamménbulk; i.e. bulk insulating
behavior. (I find the possibility of the activatitarrier arising from an insulating
contact to a metallic surface state extremely @hjikfirst, | observe Ohmic contacts
similarly fabricated on slightly thicker B%e;, and second, | cannot imagine a
scenario in which the contact, which lies on tophef sample, could show activation
behavior continuously tuned by gate voltage frontatfie to insulating.) | assume
the activated behavior arises from activation et&bns from the Fermi enerdy; to
conduction band edgEg; that isE; = Ec - Er. Then the variation dE, with Vg

reflects the variation d&r: dE-/d(e\)= -dEJs/d(e\y). The fact that the slope
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dE-/d(e\y) << 1 indicates movement of Fermi level with baekegthrough localized
impurity states in the band gap. A change in teetebchemical potential of the gate
eAVy is the sum of the electrostatic potential chaeye and the Fermi energy
changeAEr: eAVy = eAg + AER = €’An/Cy + €An/C; whereAn is the change in charge
number densityC, = 1.15x10° F/cnt is the oxide capacitance per unit area, @
e’D(E) is the quantum capacitance associated with atgiefdocalized stateB(E).
Then the slopdE-/d(eVy) = Cy/(Cy+C:). From the slopdE-/d(eVy) = 3.3 X 10, I can
estimateD(E) = 2.1x13° eV'cm®, and the total charge depleted\gt=-90 V is
estimated as 5x10cm? from the bandwidth 250 meV. It is notable thatiir
behavior was observed in another exfoliated trenmsitnetal chalcogenide,
conventional semiconductor MeEETs on SiG156], where field-effect mobilities
of 10-50 cni/Vs and a localized state density of 7 *1&/*cm? were measured.
Below T = 110K, activated conduction behavior is seen atguositive gate voltage
(Fig. 6.7b) and the activation energy is plottedrigure 6.8b. | attribute the very
small activation energies in Fig. 6.7b to a smalh@&tky barrier between the Pd
contacts and the insulating ultrathinBe.

The energy barrier in our ultrathinBig; FETSs is surprisingly large,
approaching the bulk energy gap of ~300 meV. drjmiet the activation energy as
arising from an insulating state in the8&, due to coupling of the top and bottom
surface states. The magnitude of the energy gegniewhat larger than the gap of 5
— 50 meV theoretically predicted for 3 QL,Bg[143-145] and the gap of 130 meV
observed for 3 QL BEeg; by ARPES experiments[36], though it is comparablthe

measured gap for 2 QL Be;[36]. This suggests that the significant density of
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localized stateB(E) = 2.1x13° eV'’cm? observed in our experiment may reflect
localization of the surface-state-derived bandsd¢lwvhre no longer topologically
protected by localization), and conduction may od@euhe bulk quantum-well states
which should be separated by a gap significantlydiathan the bulk gap of 300 meV.
The absence of arprtype conduction channel observed up/§o- -90 V
indicates that the actual transport gap may be &rger than 250 meV; in principle
one would expect that the high-workfunction Pd ectd would show a smaller
barrier forp-type injection. The observation of conducta@ce 10 nS corresponds
to a mean free path for any one-dimensional edgdesia 1 nm; | therefore conclude

that it is unlikely that the ultrathin B$e; is in the quantum spin Hall state.

6.4 Conclusion

In conclusion, | have fabricated field-effect tsators from ultrathin B5e;
crystals obtained by mechanical exfoliation. ThgSB FETs shown-type behavior,
with a clear insulating OFF state and energy barig to 250 meV. The small
subthreshold swing indicates a large density gf stateD(E) = 2.1x13° eV''em’.
The observation of a true insulating state in togmlal insulator BiSe; is presumed
to be due to coupling of the top and bottom surfages, resulting in a conventional
two-dimensional insulator. Whether 1-2QL and 4-56)¢& 2D insulators
topologically trivial or nontrivial with gapless gd states is still an open question in

experiment.
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