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 Materials with Dirac electronic spectra (“Dirac materials”) have attracted 

much interest since the first successful electronic transport measurement in graphene 

in 2004. Dirac quasiparticles have novel physical properties such as absence of 

backscattering and Klein tunneling. Topological insulators are a more recently 

discovered class of materials that have a bulk band gap and gapless edge/surface 

states. The surface state in 3D topological insulators has a Dirac electronic spectrum 

like graphene, but is singly spin-degenerate, with spin-momentum locking. This 

thesis will describe electronic transport experiments in graphene and in Bi2Se3 

ultrathin films, which are predicted to be either 2D topological insulators or 

conventional insulators. 

The basic quantum physics of a particle confined in a box is demonstrated 

using electrons in single and bilayer graphene as examples of massless and massive 



  

2D Fermions, respectively.  Ballistic metal-graphene-metal devices act as Fabry- 

Pérot cavities for electrons, and resonant states of the Fabry-Pérot cavity observed in 

electronic transport are used to measure the density of states as a function of particle 

number for massless and massive 2D Fermions. Nonlocal spin-valve experiments are 

demonstrated up to room temperature in mesoscopic graphene contacted by 

ferromagnetic electrodes. At low temperature the spin-valve signal shows changes in 

magnitude and sign with back-gate voltage, which  may also result from quantum-

coherent transport through Fabry Pérot cavities.  

The temperature- and magnetic-field-dependent longitudinal (ρxx) and 

Hall(ρxy) components of the resistivity of graphene were measured. Near the 

minimum conductivity point ρxx(H) is strongly enhanced and ρxy(H) is suppressed, 

indicating nearly equal electron and hole contributions to the current. The data are 

inconsistent with the standard two-fluid model, but consistent with the prediction for 

inhomogeneously distributed electron and hole regions of equal mobility.  

Ultrathin three quintuple layer (3QL) Bi2Se3 field effect transistors (FETs) 

were fabricated by mechanical exfoliation on 300 nm SiO2/Si susbtrates. Temperature 

and gate-voltage-dependent conductance measurements show a clear OFF state at 

negative gate voltage, with activated temperature-dependent conductance and energy 

barriers up to 250 meV, implying that 3QL-Bi2Se3 films are conventional insulators 

rather than 2D topological insulators, likely due to coupling of the topological surface 

states through the thin bulk. 
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Chapter 1. Introduction to Graphene 

1.1  Lattice Structure of Graphene 

Graphene is a single atomic layer composed of carbon atoms arranged in 2D 

hexagonal lattice. Discovery of this true 2D material in 2005[1-3] has intrigued 

vigorous research in both theoretical and experimental condensed matter physics. 

Graphene is unique since its many physical properties are different from conventional 

two dimensional electron gas (2-DEG) system.  

 

 

Fig.1.1 a)graphene honeycomb lattice. A and B are two carbon atoms in a unit cell[1]. 
Carbon atoms are located at corners of hexagons and sp2 bonding between carbon 
atoms are depicted as lines. a1 and a2 are two primitive vectors. b)reciprocal lattice of 
graphene. The shaded hexagon is the first Brillouin zone.  
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As in Fig.1.1(a), graphene has honeycomb lattice structure[4-7]. Each carbon 

atoms are located at edges of hexagons. The unit cell of this honeycomb lattice is 

triangular and composed of two carbon atoms often called A and B. The unit vectors 

in real space are  

1 2

3 3
( , ), ( , )

2 2 2 2

a a
a a a a= = −
uv uuv

 
(1.1) 

where the lattice constant a=2.46Å.  

The reciprocal lattice is also honeycomb as in Fig.1.1(b), and the reciprocal lattice 

vectors are  

                  1 2

2 2 2 2
( , ), ( , )

3 3
b b

a aa a

π π π π
= = −

uv uuv
                (1.2) 

where the lattice constant is 4π/ 3a  

The Brillouin zone is shown in Fig1.1(b) and the two inequivalent corners in the 

first Brillouin zone are called K and K’ points.  

1.2 Band Structure of Graphene 

Out of four valence electrons in carbon atoms, three are used to form σ bonds 

hybridizing in sp2 configuration. The other fourth electron forms pz orbital, 

perpendicular to graphene plane and this pz orbital forms so-called π bands in 

graphene. π bands are the most important in different physical properties of graphene 

at low energy regime. Since there are two carbon atoms in a unit cell, there are two 

such bands called π and π* bands.  
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I review the calculation of the π band dispersion of graphene by considering a 

simple tight binding model[8] following Wallace’s method[4-6]. The Bloch 

wavefunction[8] can be written as  

                                  
( )i k R

k
R

e x Rφ⋅Ψ = −∑
v uv

v
uv

v uv
                        (1.3) 

where the lattice vector 1 2R m m= +
uv

( 1m , 2m =integer) and ( )xφ
v

 is the pz atomic 

wave function. Following LCAO approximation, only considering nearest-neighbor 

interactions and the total wave function ( )xφ
v

 can be described as a linear 

combination of two Bloch functions at the two inequivalent carbon atoms at A and B 

in Fig.1.1(a).  

1 1 2 2( ) ( ) ( )x b x b xφ φ φ= +
v v v

                (1.4) 

The Hamiltonian for an electron in graphene can be written as 

2

1 2[ ( ) ( )]
2 R

p
H V x x R V x x R

m
= + − − + − −∑uv

uv
v v uv v v uv

       (1.5) 

Where 1x
v

 and 2x
v

 are the position vectors of two carbon atoms in a unit cell and V 

is the atomic potential. 

Applying this Hamiltonian to1φ , one obtains  

1 2 21 1 1 1{ [ ( ) ( ) ( )]}
R

H E V x x R V x x R V x xφ φ φ= + − − + − − + −∑uv
v v uv v v uv v v

                                                                            (1.6) 
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where E1 is an eigenvalue of the atomic pz orbital state for carbon atom A. With a 

similar equation for 2φ , these two equations can be rewritten using abbreviations as  

1,2 1,2 1,2 1,2H E Vφ φ= + ∆                         (1.7) 

E1= E2 from symmetry and I can further choose E1= E2 =0. Then Eqn. 1.7 becomes 

1 1 1H Vφ φ= ∆  and  2 2 2H Vφ φ= ∆             (1.8) 

Now, the Schrödinger equation is used to find b1 and b2. 

( )
k k

H E kΨ = Ψv v
v

                                     (1.9) 

By projecting 1φ  and 2φ  to the equation (1.9), one gets 

( ) | | |i i iE k Vφ φ< Ψ >=< ∆ Ψ >
v

              (1.10) 

Here, the left-hand side of equation (1.10) can be calculated as 

1 2

1 2

*
1 1 2 1 2

*
2 2 1 2 1

| ( )(1 )

| ( )(1 )

ik a ik a

ik a ik a

b b e e

b b e e

φ φ φ

φ φ φ

− ⋅ − ⋅

⋅ ⋅

< Ψ >= + + +

< Ψ >= + + +

∫
∫

v v v v

v v v v
 (1.11) 

I now denote 

                                     
* *
1 2 2 1β φ φ φ φ= =∫ ∫                                   (1.12) 

and these integrals are equal due to symmetry.  

The right-hand sides of the equations (1.10) are obtained as   

1 2

1 2

1 1 2 0 2 0

*
2 2 1 0 1 0

| | (1 ) ( )

| | (1 ) ( )

ik a ik a

ik a ik a

V b e e b f k

V b e e b f k

φ γ γ

φ γ γ

− ⋅ − ⋅

⋅ ⋅

< ∆ Ψ >= + + =

< ∆ Ψ >= + + =

v v v v

v v v v

v

v

                                                                                                                     (1.13) 
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 where  

* *
0 1 1 2 2 2 1V Vγ φ φ φ φ= ∆ = ∆∫ ∫           (1.14) 

These two integrals are also equal due to symmetry.  

With equations (1.10)(1.11) and (1.13) into the Schrodinger equation (1.9), the 

eigenvalue equation becomes 

*
10

20

0( ) ( ) ( ( ) )

0( )( ( ) ) ( )

bE k f k E k

bf k E k E k

β γ
β γ

 −    
=    −    

v v v

v v v
  (1.15) 

Considering β is small, from determinant of the left hand side = 0, the dispersion 

relation is 

                          0( ) ( , ) | ( ) |x yE k E k k f kγ= = ±
v v

                 (1.16) 

2
0

3
( ) 1 4cos cos 4cos

2 2 2
y yx

k a k ak a
E k γ

     
= ± + +           

v
   (1.17) 
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Fig.1.2 plot of graphene band structure calculated by tight binding model (Eqn. 1.17). 
The π (valence) and π*(conduction) bands touch each other at K and K’ points.  
 

The energy dispersion relation (1.17) is plotted in Fig1.2. As discussed 

earlier, there are two bands; π(valence) and π*(conduction) bands. Since these two 

bands touch each other at six corners of Brillouin zones,i.e. K and K’ points, 

graphene is semimetal or zero gap semiconductor. Since one carbon atom contributes 

one π electron, the valence band is completely filled, and thus the Fermi level passes 

through K and K’ points and EF = 0.  
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1.3 Low Energy Dispersion in Single Layer 

Graphene – Massless Fermion 

 In the low energy regime, one only needs to consider the first order expansion 

near K and K’ points. From Fig.1.2 it is obvious that the dispersion relation near K, 

K’ points will be linear. Near the K point, one can write  

                                          k k K= ∆ +
v v uuv

                                         (1.18) 

( ) ( ) ( )E k E k E K= ∆ +
uuv uuv uuv

                     (1.19) 

If I expand ( )f k
v

 to the first order, equation (1.15) becomes 

1 10

2 2

03
( )

02
x y

x y

k i k b ba
E k

k i k b b

γ ∆ − ∆    
− = ∆    ∆ + ∆     

v
    (1.20) 

From setting the determinant equal to zero, this equation is reduced to a simple linear 

dispersion relation,  

( ) | |FE k v k∆ = ± ∆
v v

h                      (1.21) 

03

2F

a
v

γ
=

h                                      (1.22) 

where vF ~ 106m/s is the Fermi velocity. Thus, in the low energy regime near K, K’ 

points, the energy changes linearly with k∆
v

. In other words, the energy dispersion at 

low energy can be described by two cones touching each other at the apices where 

Fermi level passes. 
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Fig.1.3 Low energy linear energy-momentum dispersion of graphene.  
 

This linear dispersion at low energy gives very interesting properties to 

graphene since it resembles equations describing massless relativistic particles such 

as photons. The energy dispersion relation of relativistic particles according to Dirac 

equation[9]is given by 

2 2 2 2 4E c k m c= ± +h                       (1.23) 

 If the mass m is zero, the dispersion relation becomes 

| |E c k= ±
v

h                                           (1.24) 

which is exactly the same as graphene low energy dispersion equation (1.21) if c is 

replaced by Fermi velocity vF. Thus, electrons in graphene are called massless Dirac 

fermions and the low energy dispersion relation is called Dirac cones. 
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1.4 Low energy dispersion in Bilayer Graphene 

- Massive Fermion 

In this section, I discuss the electronic dispersion in bilayer graphene with Bernal 

(AB) stacking (Fig.1.4) since both naturally occurring graphite and mechanically 

exfoliated bilayer graphene obtained from graphite show this structure[10]In Bernal 

stacked bilayer graphene, a unit cell is composed of four carbon atoms, i.e. two 

inequivalent atom A1,B1 in the bottom layer and the other two inequivalent atom A2, 

B2 in the top layer. A2 in the top layer lies directly above the center of honeycomb of 

bottom layer and B2 is located directly above A1 as shown in Fig. 1.4a).  

 The band structure of bilayer graphene can be also calculated using a simple 

tight binding model[11-16]. The Hamiltonian for Bernal stacked bilayer graphene is a 

4x4 matrix instead of 2x2 for single layer graphene. While in single layer one only 

needs to consider one tight binding parameter γ0, following the Slonczewski-Weiss-

McClure parameterization[17-18] of relevant couplings, I define two more parameters 

γ1 and γ3 as seen in Fig. 1.4b). γ0 is the in-plane coupling constant between A1 and 

B1(A2 and B2), γ1 is the strongest interlayer coupling, between A1 and B2. I also 

express weaker coupling between A2 and B1 by γ3.  Here I ignore the possibility of 

layer asymmetry, i.e. a difference in potential between bottom and top layers which 

may be caused by the environment or intentionally by top-and bottom-gating, and 

which can have additional interesting effects on bandstructure[19]. 

The Hamiltonian in the basis of 1 2 2 1( , , , )A B A Bφ φ φ φΨ =  near K point 

( 2 1 1 2( , , , )B A B Aφ φ φ φΨ = near K’ point ), can be written as 
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3 0

3 0

0 1

0 1

0 0

0 0

0 0

0 0

v p v p

v p v p
H

v p

v p

ζ
ζγ

ζγ

+ −

− +

−

+

 
 
 =
 
 
 

           (1.25) 

where                                                    

 
0

0

3

2

a
v

γ
=

h                                       (1.26) 
 

3
3

3

2

a
v

γ
=

h                                        (1.27)
 

                                            x yp p ip± = ±                                      (1.28) 

momentum p=(px,py) is measured from K,K’ points and ζ=1 or -1 corresponds to K or 

K’ points.  

By diagonalizing the Hamiltonian (1.25), the energy-momentum dispersion 

of bilayer graphene can be obtained. While single layer graphene has one conduction 

and one valence band, bilayer graphene has two conduction and two valence bands 

since there are four carbon atoms in a unit cell. While two of those four bands, E(1), 

touch each other, the other two E(2) are separated by 2γ1. E
(1) and E(2) are given by[7] 
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Fig.1.4 Schematics of bilayer graphene lattice structure.  a) Planar view of 
Bernal(AB) stacked bilayer graphene.  b) Atoms A1 (blue), B1 (black) are in the 
bottom layer and A2 (red), B2 (blue) are in the top layer. γ 0, γ1, γ3 are tight binding 
hopping parameters between atoms as illustrated in (b). 
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1/21/22 2 2 2 22
( ) 2 2 2 2 2 2 2 2 33 1 31

0 0 1 3 1 3 0

( )
( 1) [ ] 2 cos3

2 2 4
a av v p

E v p v p v p v v p
γγ

γ ζγ θ
    −
 = ± + + + − + + +   
     

 

                                                                                                               (1.29) 

where p=p(cosθ,sinθ) near K point. 

E(1) describes dispersion relation in relatively low energy region. In the 

intermediate energy, E(1) can be approximated[11] as hyperbolic:  

     ( )(1) 2 2 2
1 0 1

1
~ 1 4 / 1

2
E v pγ γ± + −            (1.30) 

The effective mass corresponding to this dispersion relation, E(1), is given by 

 ( )2 2 2 2
1 0 0 1(1)

* / 2 1 4 /
/

p
m v v n

E p
γ π γ= = +

∂ ∂
h

   (1.31) 

Equation 1.29 can be further approximated in two regime; high density and low 

density regime. At high density regime, energy dispersion becomes linear, 

                                         
(1)

0~E v p                                               (1.32) 

At low density regime, energy dispersion is quadratic,   

                              

2
(1) 1

2
0

~ , *
2 * 2

p
E m

m v

γ
=

                             (1.33) 

The crossover between these two regimes occurs at carrier density n(1) 

2
(1) 1

2 2
04

n
v

γ
π

=
h                                          (1.34) 

This density can be estimated as n(1)~ 4.4 x 1012cm-2 using graphite experimental 

values[11]. The density where E(2) starts occupied also is  



 13 
 

2
(2) (1)1

2 2
0

2
~ ~ 8n n

v

γ
πh                            (1.35) 

and the estimated value is accordingly n(2) ~3.5 x 1013cm-2. At sufficiently low carrier 

density, the quadratic dispersion (1.33) is a good approximation and in most low 

energy bilayer experiments, I do not need to take higher density bands E(2) into 

consideration since they are not occupied.  

 The low energy dispersion of bilayer near K point is plotted in Fig. 1.5. 

Comparing Fig.1.5 with Fig. 1.3, the most distinctive point between low energy 

dispersion of single and bilayer graphene is that dispersion of single layer is massless 

and dispersion of bilayer is massive.  

 

Fig.1.5 Low energy band structure of bilayer graphene (Eqn. 1.29).  
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1.5 Organization of Thesis  

The outline of this thesis is as follows; 

In chapter 2, I will describe fabrication and characterization of single and bilayer 

graphene. Two most common characterization methods will be explained; anomalous 

quantum hall effect[1, 3, 20] and Raman spectroscopy[21].  

In chapter 3, I will demonstrate one of the most basic problems in quantum 

mechanics; properties of wavelike particles confined in a hard-walled box of single 

and bilayer graphene. I will show that mesoscopic, ballistic[22] single-layer[2-3] and 

bi-layer[15, 23] metal-graphene-metal devices act as Fabry-Perot cavities for 

electrons confined between the atomically-sharp partially-reflective metal leads. 

Electronic conduction occurs through resonant states of the Fabry-Pérot cavity, which 

are exactly analogous to the particle-in-a-box states of an electron confined by 

perfectly reflective walls. D(n) is measured, and the expected dependences on particle 

number will be verified: D ~ n1/2  for massless particles in single-layer graphene, and 

D ~ constant for massive particles in bi-layer graphene. The results discussed in this 

chapter are published in Nano Research[24]. 

In chapter 4, I will discuss magnetoresistance of graphene and nature of 

charge transport near charge neutrality point. I find a large magnetoresistance 

associated with the minimum conductivity point, which results from the presence of 

two carrier types (electrons and holes) within the sample.  The functional form of the 

magnetoresistance does not follow a conventional two-fluid model typical of a 

semimetal, but instead is consistent with effective-medium-theory results for an 

inhomogenous spatial distribution of regions with equal charge carrier mobility but 
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opposite charge carrier sign[25].  The results support the picture of charge 

inhomogeneity dominating the conductivity at the minimum conductivity point in 

graphene[26-27].  The results discussed in this chapter are published in Physical 

Review B Rapid Communications[28]. 

In chapter 5, I will talk about spin valve effect in graphene. I observed clear 

switching of the non-local four-probe resistance of graphene spin-valves due to 

switching of the magnetization of ferromagnetic spin injector contacts.  The spin 

signal was observable up to room temperature.  Interestingly, the spin signal 

fluctuated with gate voltage, even changing sign.  I propose that these fluctuations, in 

my rather short spin valve devices, are due to Fabry-Perot oscillations as discussed in 

Chapter 3.The results discussed in this chapter are published in Applied Physics 

Letter[29].  

In chapter6, I will introduce my research on insulating behavior in ultra-thin 

bismuth selenide(Bi2Se3) field effect transistors. Bi2Se3 is a newly discovered 

material known as 3D topological insulator. Topological insulators are new class of 

materials that have a bulk band gap and gapless Dirac surface states which are 

topologically protected from back scattering or localization by time-reversal 

symmetry. The existence of surface states in Bi2Se3 was observed recently by angle-

resolved photoemission spectroscopy (ARPES)[30-32] and scanning tunneling 

spectroscopy (STS)[33-35]. I will briefly introduce a topological insulator and 

crossover of it properties from 3D to 2D[36]. Then, I will focus on my experimental 

result that shows 2D ultrathin film opens an energy gap and becomes trivial trivial 

insulator. Temperature- and gate-voltage dependent conductance measurements show 
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that ultrathin Bi2Se3 FETs are n-type, and have a clear OFF state at negative gate 

voltage, with activated temperature-dependent conductance and energy barriers up to 

250 meV. The results discussed in this chapter are published in Nano Letters[37]. 
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Chapter 2. Graphene Fabrication and 

Characterization 

 

2.1 Graphene Fabrication Method 

Since its first discovery[1-3], there have been two categories of graphene 

fabrication method; top-down and bottom-up. Bottom-up methods start from carbon 

atoms or carbon-containing molecules or solids and assemble graphene sheets in 

chemical ways. Epitaxial growth on crystalline silicon carbide surface[23, 38] and 

chemical vapor deposition growth[39] have been two most successful methods in this 

category. These methods open up possibility of large-area graphene suitable for 

applications in electronic industry.  

The top-down method starts from bulk graphite(HOPG or natural graphite) 

and mechanically exfoliates one or several layers of graphene on substrates[1-3]. 

There had been many unsuccessful attempts to exfoliate a single layer graphene[40-

41] until in 2005 a very surprisingly simple and successful way of fabricating a single 

layer graphene was discovered[2], which is often called the “Scotch tape method”. I 

used this Scotch tape method to fabricate graphene and thus I will describe “Scotch 

tape method” in details below.  

 The Scotch Tape Method is simple and easy. As reported in earlier paper[2], I 

peel thick layers of graphite from bulk Kish graphite(Toshiba Ceramics) with Scotch 

tape and rub them against a SiO2(300nm)/Si surface. During this rubbing, one or two 
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layers of graphene is often peeled off and attached to the SiO2 substrate due to Van 

der Waals force 

In next step, I take the graphite-rubbed SiO2/Si chips to optical microscope. 

Under optical microscope, graphene on SiO2(300nm) is clearly visible and somewhat 

transparent. There is a slight color and contrast shift due to interference[42]. This 

fabrication method is also applicable to obtain graphene on other substrates such as 

mica, Sc2O3 and STO.  

Even though this method seems dirty because of scotch tape, it produces 

graphene of the highest quality among all fabrication methods with charge carrier 

mobility greater than 104cm2/Vs[28, 39]. While it is not suitable for mass-production, 

I was able to use the scotch tape method to obtain graphene as large as 100µm x 

100µm.  

Bi-layer graphene shows slightly darker color and contrast than single layer 

graphene as seen in Fig.2.1.  This is an interference-induced color and contrast 

change due to a slightly larger thickness of bilayer graphene. I will describe how to 

characterize single and bilayer graphene in more detail in Section 2.3. 
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Fig.2.1 Optical images of a) single layer graphene b) bilayer graphene on 
SiO2/Si substrates.  Graphene is slightly darker than the substrate, and single  

layer graphene is slightly more transparent than bilayer graphene.  
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2.2 Gate Tunable Device Fabrication Method  

Once graphene is found on the SiO2/Si chip, I spin two layers of mma/pmma 

polymer and bake at 150°C for 10 minutes on a hot plate. Then, I use 30kV electron 

beam to pattern electrodes in electron beam lithography and develop the pattern in 

MIBK:IPA 3:1 solution. Finally, electrode windows are exposed and I evaporate 

metal (for normal contacts, Cr/Au=5nm/50nm) in a thermal evaporator at pressure 

below 2x10-6 Torr. In the final step, I perform lift-off procedure in acetone for two 

hours. For quantum hall effect measurement, I choose square shaped graphene piece 

and deposit Hall bar electrodes without etching graphene as seen in Fig.2.2 since 

etching normally reduces quality of graphene.  

 

 

Fig.2.2 optical picture of a) single layer b) bilayer graphene device. Hall bar geometry 
was made to measure Rxx and Rxy .  
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Once I finished fabricating devices as in Fig.2.2, I performed electrical 

transport measurements in our cryostat in which temperature can be varied from 

320K-0.3K.  

The heavily doped 300nm thick SiO2 serves as dielectrics for back gate. By 

tuning back gate voltage, the carrier density can be modulated in graphene. Fig. 2.3b) 

shows the conductivity σxxof a graphene sample as a function of gate voltage 

measured at temperature T = 2K. The conductivity curve shows minimum region and 

it is called “minimum conductivity point”, or “Dirac point” [2-3, 10]; [1, 3, 28] the 

gate voltage at which the minimum conductivity occurs. In this thesis, I will call it 

VD. As more charge (electron or hole) carriers are induced in graphene by increasing 

Vg, the conductance in graphene increases since density of states increases. Due to 

electron-hole symmetry in dispersion relation, the conductivity curve is quite 

symmetric with respect to Dirac point. Since the Fermi level lies at K, K’ points as in 

Fig. 2.3a), charge-neutral graphene (without tuning carrier density by gate voltage) 

should have zero carrier density and thus show minimum conductance. . The Fermi 

level changes with back gate as positive gate voltage increase Fermi level and induces 

electron carriers in graphene and vice versa. Due to inevitable environmental doping, 

the Dirac point VD typically shows small shift from zero gate voltage as in Fig. 2.3 b) 

( 0DV ≠ ) and the value of VD changes from device to device.  
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Fig.2.3 a) Low energy dispersion of single layer graphene illustrating the effect of 
tuning gate voltage.  b) Conductivity of graphene σ as a function of gate voltage at a 
temperature T = 2K. 
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Fig. 2.3b) shows the conductivity σxxof a graphene sample as a function of 

gate voltage measured at temperature T = 2K. As I induce more charge (electron or 

hole) carriers in graphene by increasing |∆Vg|=|Vg-VD|, the conductance in graphene 

increases since density of states increases. Due to electron-hole symmetry in 

dispersion relation, the conductivity curve is quite symmetric with respect to Dirac 

point, VD. Even though the density of states at the Dirac point is zero, there is finite 

minimum conductivity which is observed by several groups to fall in the range ~ 4-

10 e
2
/h[1, 3]. ; the origin of this finite minimum conductivity will be discussed in 

more detail in Chapter 4.. The field effect mobility calculated by 

1 1
FE

g g

d d

e dn c dV

σ σ
µ = =

                    (2.1) 

ranges from 8,000 ~ 20,000 cm
2
/Vs in single layer graphene[1, 3, 28].  

 

 
Fig.2.4 Charge carrier density (open circle) and mobility (filled circle) of graphene as 
a function of gate voltage (Figure from Ref. [3]). 
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As in Fig. 2.4[3], Hall measurement shows change of sign of carrier density 

upon Vg passing through Dirac point VD, which clearly indicates that Fermi level EF is 

passing through charge neutrality point.  

 

2.3. Graphene Characterization; Single layer 
and Bilayer Graphene 
 
 

In addition to identification by optical contrast, I used two other methods to 

differentiate single layer and bilayer graphene; the anomalous quantum hall effect[1, 

3, 28] and Raman spectroscopy[43]. Either of these measurements enables us to 

distinguish between single layer and bilayer graphene since they show qualitatively 

different behaviors.  

2.3.1 Anomalous Quantum Hall Effect 

 One of the most important discoveries in condensed matter experimental 

physics in the 1980s was the quantum Hall effect by von Klitzing et al[44]. The 

quantum Hall effect is fascinating in that it enables us to measure hall resistance in 

quantized units of h/2e2 with an accuracy of one parts per million[reference]. This 

high accuracy results from a perfect suppression of back scattering in the quantum 

Hall regime since electron states carrying current in one direction are localized on one 

edge and the other states carrying current in opposite direction are localized on 

opposite edge. In a large enough sample, these two states on opposite edges cannot 

overlap and thus back scattering is truly suppressed over a long distance even with 

impurities present in the sample.  
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 High mobility graphene samples also enables us to observe the quantum Hall 

effect as in Fig 2.5b)[1, 3, 28]. To measure quantum Hall effect in graphene, I usually 

fixed the magnetic field B at a high value (in Fig.2.5b) B ~ 8 T), and sweep gate 

voltage to tune EF. At high magnetic field, quasi-discrete Landau levels are formed in 

graphene. The density of states of these Landau levels are shown in Fig.2.5a). As 

Fermi level moves from one Landau level to next one, Rxx shows an oscillation. 

When the Fermi level lies between successive Landau levels, σxy shows plateaus 

while Rxx becomes zero due to ballistic transport of edge states as in Fig. 2.5b). As I 

sweep gate voltage from negative to positive, carriers from electrons to holes 

successively fill Landau levels and σxy  changes its sign. The most striking fact is that 

the quantized quantum Hall conductivity in graphene shows different values from that 

in conventional 2DEG. In conventional 2DEG, the quantized Hall conductivity is 

 

2

xy

e
gn

h
σ = ±              (2.2) 

where g is the total degeneracy (valley degeneracy times spin degeneracy), and n is 

an integer.  The factor gn is called the “filling factor” and indicates the number of 

filled Landau levels, or number of conducting edge modes.  In contrast, in single 

layer graphene the filling factor is not g n , but g (n+1/2), which is half integer shifted 

as in Fig.2.5b). Thus, the quantized Hall conductivity is observed to be 

21

2xy

e
g n

h
σ  = ± + 

                          (2.3) 
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Fig.2.5 half integer quantum Hall effect in single layer graphene measured at T=2.3K 
and B=7.94T.  
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The half-integer in filling factor originates from π Berry phase in graphene[1, 3].  

Degeneracy g in graphene corresponds to 4 since there are is spin degeneracy of 2, 

and 2 “valleys” (K and K’).  

 On the other hand, in bilayer graphene, the filling factor is g n as seen in Fig. 

2.6 similar to conventional 2DEG since Berry phase of bilayer graphene is also 2π 

[20]. Thus, the quantized Hall conductivity in bilayer graphene is given as equation 

2.2. The degeneracy g is 8 at zero energy and 4 at all other landau levels.  

 Since the quantized hall conductivities of single layer and bilayer graphene 

shows different filling factors, quantum hall measurement can be used as a 

characterization tool to distinguish between single and bilayer graphene. In fact, I 

measured quantum hall effect to confirm number of graphene layers in Fabry-Perot 

interference experiment, which will be discussed in next chapter.  
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Fig.2.6 Integer quantum Hall effect in bilayer graphene measured at T=1.35K and 
B=9T 
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2.3.2 Raman Spectra of Graphene 

  Raman scattering involves inelastic scattering processes of photons. Generally 

speaking, Raman scattering occurs in the following way in solids. First, when a laser 

beam is shone on a sample, an electron in the sample is excited from valence to 

conduction band by absorbing an incident photon. Second, the excited electron is 

scattered by emitting or absorbing phonons. Third, the electron relaxes to valence 

band by emitting a photon. Since the scattered photon loses energy to phonon, it has 

energy smaller than the incident photon by phonon energy. The Raman spectra I 

observe is the intensity of the scattered photons as a function of frequency downshift 

(energy loss).  

 

Fig. 2.7 Raman Spectrum of a) single layer graphene and b) bilayer graphene. (Figure 
from Ref,[45]) 
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Raman spectroscopy serves as a strong tool to characterize number of layers 

in graphene[43, 45]. Here, I will focus on single and bilayer graphene. As in Fig. 2.7, 

there are two most prominent peaks in the Raman spectrum of graphene, the G peak 

near 1600cm-1 and the G’ (or 2D) peak near 2700cm-1. Ferrari et al, showed that the 

G’ peak in Raman spectrum can be used to distinguish between single and bilayer 

graphene. As in Fig. 2.7, while the G’ peak of single layer graphene is fit to one 

Lorentz peak, G’ peak of bilayer graphene is fit to four Lorentz peaks.  

 

  

Fig. 2.8. a) First Order(G peak) b) second order(G’ peak) Raman scattering process in 
single layer graphene 
 

As shown in Fig. 2.8 a), Raman scattering for the G peak in graphene 

involves one optical phonon at q = 0, and thus it is called first-order Raman 

scattering.  On the other hand, Raman scattering for the G’ peak involves two optical 

phonons with opposite momentum ( 0q ≠ ) as shown in Fig. 2.8b). During this second 

order process, an electron is excited by a photon at ∆k state, scatters to ∆k+q state by 

a phonon q, scatters back to ∆k state by a phonon –q, and then emits a photon by 
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recombining with a hole at ∆k state. Since these two phonons have the same momenta 

and hence the same frequencies in single layer graphene, they produce only one 

Lorentz component in the G’ peak.  

 

  

  

Fig. 2.9 Raman scattering process for G’ peak in bilayer graphene 
 
 
 Since there are two conduction and two valence bands in Bernal stacked 

bilayer graphene, there are four possible transitions of electrons from valence to 

conduction band when sample is illuminated by laser beam. Density functional theory 
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shows that incident photons couple more strongly with two transitions shown in Fig. 

2.9[43]. Thus, there are four possible intervalley scattering processes involving 

phonons of four momenta q1A, q1B, q2A, q2B as in Fig. 2.9a)~d). The zone-boundary 

phonon is strongly dispersive due to a Kohn anomaly, hence the four allowed 

scattering momenta have discernibly different frequencies, and result in four Lorentz 

components in the G’ peak of bilayer graphene as shown in Fig. 2.7b).  

 In conclusion, the lineshape of the G’ Raman peak in graphene can distinguish 

whether the sample is single or bilayer graphene.   
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Chapter 3. Massless and Massive Particle-in-a-

box States In Single and Bilayer Graphene 

The problem of a wavelike particle confined to a hard-walled box is one of 

the most basic problems in quantum mechanics. The spectra of the particle-in-a-box 

are strikingly different for massive and massless particles: massless particles (e.g. 

photons) have energies which depend linearly on quantum number, while the energies 

of massive particles (e.g. free electrons) depend quadratically on quantum number. 

For Fermions in two dimensions (2d), this leads to a density of single-particle states 

D ≡ dn/dE, where E is the particle energy and n the particle density, which varies as 

the square root of particle density, i.e. D(n) ~ n1/2,  for massless particles, and is 

independent of particle density for massive particles, i.e. D(n) ~ constant.   

In this chapter, I will demonstrate this basic physics using electrons in single- 

and bilayer graphene as examples of massless and massive 2d Fermions, respectively.  

I show that mesoscopic, ballistic[46] single-layer[2, 47] and bi-layer[23, 48] metal-

graphene-metal devices act as Fabry-Perot cavities for electrons confined between the 

atomically-sharp partially-reflective metal leads. Electronic conduction occurs 

through resonant states of the Fabry-Pérot cavity, which are exactly analogous to the 

particle-in-a-box states of an electron confined by perfectly reflective walls. D(n) is 

measured, and the expected dependences on particle number are verified: D ~ n1/2  for 

massless particles in single-layer graphene, and D ~ constant for massive particles in 

bi-layer graphene. D(n) is used to extract the single constants in the dispersion 

relations: the Fermi velocity vF = 1.09x106 m/s for massless particles in single-layer 
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graphene[2, 47], and the effective mass m* = 0.032 me, where me is the electron mass, 

for massive particles in bilayer graphene[23, 49] in excellent agreement with 

theoretical expectations[48-52] and other experimental results[2, 47, 53-55].  The 

results discussed in this chapter are published in Nano Research[24]. 

 

3.1. Density of States in Single and Bilayer Graphene 

I first review the results of the two-dimension particle-in-a-box problem. Figs. 

3.1A and 3.1B illustrate the massless and massive dispersion relations respectively. 

As shown in Chapter 1, the low energy dispersions for massless and massive Dirac 

Fermions in single and bilayer graphenes are: 

kFvE η=  (massless) (3.1a)      
*2

22

m

k
E

η
=  (massive) (3.1b) 

where ħ = h/2π, and h is Planck’s constant; each dispersion relation is characterized 

by a single parameter, m* for the massive dispersion, and vF for the massless 

dispersion.  For particles confined to a 2-dimensional box of width W and length L the 

hard-wall boundary condition quantizes the wavevector 

( ) 






==
W

q
L

pkk yx

ππ
,,k resulting in two positive quantum numbers p, q.  Figs. 3.1C 

and 1D illustrate this quantization, where each point represents an allowed 

wavevector.  Then the energies in terms of quantum numbers are given by the 

familiar relations
2 2

F

p q
E v

W L
π    = +   

   
h  (massless) and   

2 22

8

h p q
E

m W L

     = +    
     

 

(massive).  For Fermions at zero temperature, the occupancy of particle-in-a-box state 

will be the degeneracy of individual states g for state of energy E < EF (Fermi energy) 
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and zero for states E > EF.  The number of states with E < EF is given 

by π4/2WLgkN F= , where kF ≡ k(EF) is the Fermi wavevector.  Figs. 3.1C and 3.1D 

illustrate the occupied states included for equally-spaced values of EF, and Figs. 3.1E 

and 3.1F show the energies of the particle-in-a-box states as a function of particle 

number N for massless and massive 2d Fermions respectively.  The linear and square-

root dependences of E(N) for massless and massive 2d Fermions respectively are 

evident in Figs. 3.1E and 3.1F.  Using the areal density of particles 
2

4
FgkN

n
WL π

= =  I 

then have the following relations for the dependences of the Fermi energy EF and 

density of states D on density: 

nvE FF πη=  (massless)  (3.2a)    
*2

2

m

n
EF

ηπ
=  (massive) (3.2b) 

π
gn

v
D

Fη
1

=  (massless)  (3.3a)    
22

*

ηπ
gm

D =  (massive)  (3.3b) 

 
Thus the measurement of D as a function of n distinguishes massive and massless 

particles, and (given knowledge of the degeneracy g) also determines the constants of 

the dispersion relations vF and m*.  

Single and bilayer graphene may be used to realize the dispersion relations in 

Equations 3.3a and 3.3b as follows.  Single layer graphene is well-described by a 

tight-binding model considering only π orbitals at each atomic site as described in 

Chapter 1.  At zero doping, the π and π* bands meet at two points in the Brillouin 

zone with wavevector K .  This crossing is preserved as long as the two atoms A and 

B in the unit cell are equivalent.  Taking E(K ) = 0, and measuring k away from the K  
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Fig. 3.1. (A) Massless dispersion and (B) massive dispersion relations in two 
dimensions.  (C-D) Allowed wavenumbers for particle in a box of aspect ratio W/L = 
1.6.  Solid lines are contours of equal energy for massless dispersion relation (C) and 
massive dispersion relation (D).  (E-F) Particle energy as a function of particle 
number in a box with W/L = 1.6 for massless dispersion relation (E) and for massive 
dispersion relation (F). 
 
 
 

point, the band structure is well-approximated by Eqn. 1a, with ( ) η/2/3 0γavF =  ≈ 

1.0 x 106 m/s where a = 2.46 Å is the graphene lattice constant and γ0 ≈ 3.16 eV[56]  

is the nearest-neighbor hopping parameter.   In Bernal-stacked bi-layer graphene[23, 
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48-49, 51-52], atom A in one layer is stacked above atom B’ in the 2nd layer, and this 

A-B’ coupling breaks the AB equivalency of the graphene unit cell and results in two 

bands which may be approximated as hyperbolic: 

( )











−+±=± 24

)( 1
2
12 γγ

kvkE Fη [49], where γ1 ≈ 0.4 eV[57] is the inter-layer (A-B’) 

hopping parameter.  At k = 0 the effective mass is given by 2
1

* 2/ Fvm γ=  ≈ 0.03 me.  

In both single- and bilayer graphene the degeneracy g = 4, due to the two-fold spin 

degeneracy and the two-fold valley degeneracy (presence of two K  points). 

 

3.2 Sample Preparation and Characterization 

I now discuss the graphene samples used in this study. As described in 

Chapter 2, I mechanically exfoliated Kish graphite on 300nm SiO2/Si substrates to 

obtain single and bilayer graphene[2, 23, 47]. Single layer graphene is more 

transparent than two or more layer graphene under optical microscope as seen in Fig. 

3.2A and 3.2B. After locating graphene flakes, Cr/Au(5nm/50nm) were thermally 

deposited for electrical contacts. The channel lengths L for Fabry-Perot interference 

measurement are 200nm - 300nm and measured by scanning electron microscope.  

The maximum field-effect mobilities at low temperature estimated from the four -

probe resistivity of the adjacent graphene sections are 15,000 cm2/Vs and 4,000 

cm2/Vs for single- and bilayer graphene respectively. 
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Fig. 3.2. Optical micrographs of single-layer graphene device (a) and bilayer 

graphene device (b).  
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Fig. 3.3 Longitudinal and Hall conductivity as a function of gate voltage at magnetic 
field of 9 T and temperature of 1.3 K for single-layer graphene device (a) and bilayer 
graphene device (b). 
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Figs. 3.2a) and 3.2b) show completed single- and bilayer graphene devices 

respectively.  Electrodes are patterned on each graphene flakes to form a large-area 

Hall-bar arrangement for characterizing the longitudinal and Hall conductivities (σxx 

and σxy) of the sample.  In addition, pairs of closely-spaced (150-300 nm) electrodes 

act as Fabry-Pérot cavities on the same sample.   

Figs. 3.3a) and 3.3b) show σxx and σxy for the single- and bi-layer graphene 

devices shown in Figures 3.1a) and 3.1b), respectively, measured in high magnetic 

field (9 T) and as a function of back-gate voltage Vg, which controls the carrier 

density n = cgVg/e, where cg = 1.1 x 10-8 F/m, and e is the electronic charge. The 

quantized Hall effect (QHE) is evident as plateaux with σxy = ve2/h, and 

corresponding minima in σxx. As discussed in Chapter 2, Berry’s phases of π and 2π 

lead to QHE in single- and bi-layer graphene at filling factors v = 4(i+1/2) and 4(i+1), 

where i is an integer[2, 23, 47], thus our observations of the half-integer QHE, and 

full-integer QHE with the missing v = 0 plateau, confirm the identification of these 

samples as single- and bi-layer graphene respectively. 

Figs. 3.4a) and 3.4b) show the two-probe conductances as a function of gate 

voltage G(Vg) for Fabry-Pérot cavities on the single- and bi-layer devices, 

respectively, at zero magnetic field.  I shift the curves horizontally by an amount VD 

which I identify as the gate voltage at which the Fermi level lies closest to the Dirac 

point.  The conductance rises away from Vg - VD = 0 as observed by previously[2, 23, 

47].  Small reproducible fluctuations of the conductance with magnitude of order e2/h 

can be seen (see insets to Figs. 3.4a) and 3.4b)); these fluctuations are not universal 
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conductance fluctuations (UCF) but, as argued below, result from the interference of 

ballistic electron waves in the Fabry-Pérot cavity[46]. 

 

 

Fig. 3.4 Two-probe conductance as a function of gate voltage at zero magnetic field 
and temperature of 1.3 K for single-layer graphene device (a) and bilayer graphene 
device (b) 
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3.3 Fabry-Pérot Interference Measurement and 

Discussion 
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Fig. 3.5. Color-scale two-dimensional plots of differential conductance G = dI/dV as a 
function of bias voltage V and gate voltage Vg measured in single graphene at 
temperature T = 1.3K. A smooth background conductance was subtracted to enhance 
the patterns. The sample dimensions are 1.5µm(W) x 0.3µm(L). Yellow lines illustrate 
the slope of the Fabry-Pérot resonances 
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Fig. 3.6 Fabry-Perot interference data (similar to Fig. 3.5) taken on an additional 
single-layer graphene sample with ferromagnetic electrodes, of dimensions 
350nm(W) x 200nm(L). Data were taken at temperature T = 1.3K. A smooth 
background conductance was subtracted to enhance the patterns. 
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Fig. 3.7. Color-scale two-dimensional plots of differential conductance G = dI/dV as a 
function of bias voltage V and gate voltage Vg measured in single (A-C) and bilayer 
(D-F) graphene at temperature T = 1.3K. A smooth background conductance was 
subtracted to enhance the patterns. The sample dimensions are 1.5µm(W) x 0.3µm(L) 
for single layer graphene and 4.3µm(W) x 0.2µm(L) for bilayer graphene.  Yellow 
lines illustrate the slope of the Fabry-Pérot resonances 
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Figs 3.5 ~ 3.7 show color-scale maps of the differential conductance dI/dV as 

a function of bias voltage V applied between the two electrical contacts and gate 

voltage Vg for the single- and bi-layer devices shown in Fig 3.2. A pattern of diagonal 

lines of increased conductance is evident; this pattern is the signature of Fabry-Pérot 

interference in a mesoscopic device[46, 58]. Neighboring diagonal lines have similar 

slopes, and diagonal line of similar positive and negative slope are found in each Vg 

region. Each individual diagonal line results from the enhancement in conductance 

when a particle-in-a-box resonance, or a group of constructively-interfering 

resonances, is aligned with the source electrode (+V) or drain electrode (-V); the 

symmetry about V = 0 reflects the source-drain symmetry of the device. Note that the 

pattern is inconsistent with Coulomb blockade; there are no diamond-shaped low 

conductance regions around V = 0, and the overall conductance > e2/h excludes 

Coulomb blockade.   

Resonant transmission through a Fabry-Pérot cavity has been reported 

previously for carbon nanotubes (CNTs)[58-59] and graphene [46]. In the case of 

CNTs, there is a single path length L connecting the electrodes, and the resonances 

are evenly spaced in V and Vg.  In graphene [46], the resonances are randomly spaced, 

which may result from a spread of path lengths due to non-parallel electrodes or 

electron paths which are not perpendicular to the electrode-graphene interfaces.  

However, important information can be gained by analyzing the slope ∆V/∆Vg of the 

resonant lines in Fig. 3.5~3.7. Briefly, the slope measures the change in energy ∆E = 

e∆V/2 (the factor of two results from the potentials +∆V/2 and -∆V/2 applied to the 

two electrodes relative to the graphene in a ballistic device) of the resonance as the 
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particle number dn = cg∆Vg/e is changed. The slope is then equal to ∆V/∆Vg = 

(2cg/e
2)∆E/∆n = (2cg/e

2)D-1; i.e. the slope is inversely proportional to the density of 

states (see Methods for a more rigorous derivation of the same result). From Eqns. 

3.3a and 3.3b above, I expect that ∆V/∆Vg ~ n-1/2 ~ |Vg – VD|-1/2 for the single-layer 

(massless dispersion) sample, and  ∆V/∆Vg ~ constant for the bi-layer (massive 

dispersion) sample. Figs. 3.5 and 3.6 show that the slope indeed varies significantly 

with gate voltage (electron density) for the single-layer graphene sample, with the 

highest slope occurring near Vg – VD = 0.  The slope is nearly constant in the bi-layer 

graphene sample as seen in Fig 3.7. 

 

Fig. 3.8. Density of states of single-layer graphene (blue symbols; data from two 
devices shown) and bilayer graphene (red symbols, data from one device shown) as a 
function of particle density.   Solid lines are fits to Eqn. 3a (blue) with vF = 1.09 x 106 
m/s and Eqn. 3b (red) with m* = 0.032 me. 
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Fig. 3.8 plots the density of states D = (e2/2cg)(∆V/∆Vg)
-1

 for the single- and 

bi-layer graphene samples extracted from Figs. 3.5 ~3.7 as a function of electron 

density n = cg(Vg – VD)/e. Solid lines are fits to Eqns. 3a and 3b for the single-layer 

and bi-layer data respectively.  The expected dependences on particle number are 

verified: D ~ n1/2 for massless particles in single-layer graphene (Eqn. 3.3a), and D ~ 

constant for massive particles in bi-layer graphene (Eqn. 3.3b). Only a single fitting 

parameter is used in each fit, 6(1.09 0.01) 10 /Fv m s= ± ×  for massless particles in 

single-layer graphene and * (0.0315 0.0001) em m= ± for massive particles in bi-layer 

graphene.  As discussed in detail below, the parameters are in excellent agreement 

with theoretical and other experimental results.   

I now discuss the detailed dependence of the density of states on particle 

number in single- and bi-layer graphene, and the implications of the results for 

understanding the electronic structure of these materials.  From the fit to Eqn. 3.3a in 

Fig.3.8, I determine a Fermi velocity for single-layer graphene of 

6(1.09 0.01) 10 /Fv m s= ± × .  A tight-binding model of graphene[60]  gives 

( ) η/2/3 0γavF =  ≈ 1.0 x 106 m/s where a = 2.46 Å is the graphene lattice constant 

and γ0 ≈ 3.16 eV[56] is the nearest-neighbor hopping parameter.  The inclusion of 

electron-electron interactions will renormalize the Fermi velocity slightly[50], and the 

slightly higher vF observed here is consistent with other experiments on graphene[2, 

47, 61-62].  

The density of states in single-layer graphene remains finite as n → 0 due to 

charge inhomogeneity caused by charged impurities near the graphene, as has been 

observed previously.  The minimum density of states D on order 2 x 1012 eV-1cm-2 
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corresponds to a charge density n on order 1011 cm-2, in agreement with 

theoretical[63] and experimental expectations[64-65] for the minimum charge density 

at the Dirac point in the presence of charged impurity disorder due to the SiO2 

substrate. 

I now discuss bilayer graphene.  From the fit to Eqn. 3.3b in Figure 3.8, I 

determine m* = 0.032me.  Assuming vF = 1.09 x106 m/s I have γ1 = 0.40 eV, in 

excellent agreement with the experimental values for graphite of 0.39 ± 0.01 eV [66] 

and with other experiments on bilayer graphene[53-54]. Because the bands are not 

strictly parabolic, the density of states should depend on particle density, increasing 

with increasing particle density.  The hyperbolic nature of the bands becomes 

important for particle densities roughly greater than γ1
2/(4πħ2vF

2) ≈ 3 x 1012 cm-2.  

Experimentally, I see little variation in the density of states for particle densities up to 

6 x 1012 cm-2, indicating a wider range of validity of the parabolic spectrum than 

expected.  I do not currently understand this discrepancy, but I note that electron-

electron interactions should again be important, as was pointed out previously in the 

failure of the single-particle picture to quantitatively explain the cyclotron resonance 

spectrum in bilayer graphene[54]. 

 

3.4 Conclusion 

In conclusion, I have probed the density of particle-in-a-box states as a 

function of particle number for massless 2d Fermions (single-layer graphene) and 

massive 2d Fermions (bi-layer graphene) in a phase-coherent measurement.   The 

density of states varies as the square-root of particle number for massless 2d 



 49 
 

Fermions, and is constant for massive 2d Fermions.  The single parameters in the 

dispersion relations are extracted; the Fermi velocity 6(1.09 0.01) 10 /Fv m s= ± ×  for 

massless particles in single-layer graphene and * (0.0315 0.0001) em m= ± for massive 

particles in bi-layer graphene, in excellent agreement with theoretical expectations 

and other experimental observations.  

Understanding coherent transport in graphene is an essential step to realize 

other interesting experiments in graphene such as a negative-index Veselago lens for 

electrons, Klein tunneling, and graphene superlattice[67-70].  Since this work, Fabry-

Perot oscillations in metal-graphene-metal structures have been used to measure the 

g-factor of graphene electrons[71], and Fabry-Perot oscillations in graphene p-n-p 

junctions have been used to probe  Klein tunneling physics[72-74].  
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Chapter. 4 Charge Transport and 

Inhomogeneity near the Minimum Conductivity 

Point in Graphene 

 

 In this chapter I use magnetotransport in graphene to study the nature of 

charge transport at the minimum conductivity point.  I find a large magnetoresistance 

associated with the minimum conductivity point, which results from the presence of 

two carrier types (electrons and holes) within the sample.  The functional form of the 

magnetoresistance does not follow a conventional two-fluid model typical of a 

semimetal, but instead is consistent with effective-medium-theory results for an 

inhomogenous spatial distribution of regions with equal charge carrier mobility but 

opposite charge carrier sign[25].  The results support the picture of charge 

inhomogeneity dominating the conductivity at the minimum conductivity point in 

graphene[26-27].  The results discussed in this chapter are published in Physical 

Review B Rapid Communications[75]. 

 

4.1 Minimum Conductivity and Electron-Hole 

Puddles in Graphene 

One of the most fascinating aspects of graphene is that the quasiparticle 

Hamiltonian is identical to that of massless Dirac fermions, exhibiting a “Dirac point” 
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at which the density of states vanishes linearly without the presence of an energy gap 

as discussed in previous chapters.  A striking aspect of experiments is that a finite 

conductivity is observed in graphene for all charge densities[1], with a minimum 

conductivity σxx,min on order of 4e2/h (but sometimes significantly smaller[76] or 

larger[26, 77]) occurring at the minimum conductivity point (MCP; in the absence of 

disorder, the MCP and Dirac point are identical, but in the presence of disorder, they 

are slightly different[26, 78]).  The observation of a finite minimum conductivity has 

sparked significant theoretical interest.  Models invoking only short-range 

scattering[79-80] give σxx,min = 4e2/πh only exactly at the MCP, and fail to reproduce 

the linear gate-voltage dependence of the conductivity σxx(Vg).  Other attempts[81] 

using the Landauer formalism also obtain σxx ~ 4e2/πh which depends weakly on 

aspect ratio, but such models are only expected to be valid in the ballistic limit for 

wide samples, l < L < W, where l is the mean free path, L the sample length, W the 

sample width.  Some experiments have probed this limit[76], but many do not. 

In this chapter, I will show that the conductivity near the MCP is dominated 

by charge disorder[78, 80, 82], i.e. spatially distinct regions, or “puddles” of electrons 

and holes. Because of the Klein paradox, the junctions between p and n regions in 

graphene are transparent to electrons, and the minimum conductivity of graphene… 

The imaging of electron and hole puddles in graphene was reported[27] and is 

shown in Fig. 4.1. The image in Fig. 4.1 is underresolved, but analysis of the potential 

fluctuations in [9], and higher-resolution imaging by other groups[ref Crommie, 

Leroy] indicate that the length scale of puddles in graphene is approximately 30nm.  
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Fig. 4.1. Spatial density variations in single layer graphene extracted from surface 
potential measurements when the average carrier density is zero. The blue regions 
correspond to holes and the red regions to electrons. The black contour indicates the 
zero density contour[27]. 
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4.2. Device Characterization(FE mobility and QHE) 

 
Fig. 4.2 (a) Optical micrograph of graphene device.  Contrast is enhanced to show 
graphene more clearly.  White vertical lines are Cr/Au electrodes, graphene is visible 
as slightly darker region compared to background SiO2/Si substrate.  (b) Longitudinal 
conductivity σxx as a function of gate voltage Vg at zero magnetic field and 
temperature of 1.6 K.  (c) σxx and Hall conductivity σxy as a function of Vg at 
magnetic field of 8 T and temperature of 2.3 K. 

 
The device was fabricated following the method described in chapter 2[83]. 

Figure 4.2a shows an optical micrograph of a completed device; all the data in this 
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chapter are from this device.  I first characterized the carrier density dependence of 

the conductivity of this device at zero and high magnetic field.  Figure 4.2b shows the 

longitudinal conductivity σxx as a function of gate voltage Vg.  The MCP occurs at 

Vg,MCP = 1.7 V.  Away from the MCP, the conductivity increases linearly.  The field 

effect mobility µFE = (1/cg)dσxx/dVg is 1.6 m2/Vs and 2.0 m2/Vs for electrons and 

holes respectively, where cg = 1.15 x 10-4 F/m2, as determined from the Hall effect at 

high density.   

Figure 4.2c shows σxx and the Hall conductivity σxy as a function of gate 

voltage at a magnetic field of 8 T[84].  The Hall conductivity shows the half-integer 

quantized plateaux that are a signature of graphene[1, 85]: σxy = νe2/h, with ν = 4(n + 

1/2) and n an integer, e the electronic charge, and h Planck’s constant.  The plateau-

like region σxy ≈ 0 is also evident[86-88].   

 

4.3 Magnetoresistivity near Minimum Conductivity 

Point(MCP) 

I now discuss the magnetoresistivity ρxx(B) near the MCP.  Figure 4.3 shows 

ρxx(B) at Vg = 1.7V and temperatures from 1.6 K to room temperature.  At low fields 

the magnetoresistivity is roughly temperature independent.  At higher fields the 

resistivity tends to saturate at a value ~0.4h/e2 at low temperatures, and increases with 

no saturation for B < 8 T at room temperature.  Figure 4.4 shows the gate voltage 

dependence of the low-field magnetoresistivity, characterized by the curvature 

d2
ρxx(B)/dB2 obtained by  
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Fig. 4.3. Longitudinal resistivity ρxx as a function of magnetic field B at various 
temperatures, and a gate voltage of 1.7 V (the point of maximum longitudinal 
resistivity at zero field).  Data are taken on warming from low temperature. 
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fitting ρxx(B) to a quadratic over the range -0.2 T < B < 0.2 T.  The magnetoresistivity 

has a sharp peak at the MCP, and falls to near zero at gate voltages more than a few 

volts from the MCP (at Vg = 10V, the curvature is already 300x lower than at the 

MCP).   

I now discuss the possible origins of the positive magnetoresistivity.  Weak 

antilocalization is possible in graphene[89], and results in a positive 

magnetoresistivity.  However, this effect should saturate at a small magnetic field 

scale roughly set by the coherence length squared, and should be strongly temperature 

dependent.  Also, consistent with an earlier report[90], I observe no weak localization 

or anti-localization at larger gate voltages.  Hence I conclude that the 

magnetoresistivity does not result from weak (anti-)localization.   

Within the Drude model, a two-dimensional conductor with a single carrier 

type (e.g. pristine graphene at zero temperature) exhibits no transverse 

magnetoresistivity, because the force exerted by the Hall field cancels the Lorentz 

force, and the drift current and resistive voltage are in the same direction.  However, a 

conductor with electrons and holes may exhibit large transverse magnetoresistivity, 

because the electrons and holes develop components of drift velocity perpendicular to 

the current which cancel to give zero net transverse current.  Both holes and electrons 

are present at zero temperature in semimetallic graphite, and at finite temperature in 

graphene.  Such a two-fluid model has indeed been proposed to explain the gate 

voltage dependence of the Hall conductivity in few-layer[91] and single-layer 

graphene[92]. For a conductor with electrons and holes of concentrations n and p and 
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Fig. 4.4.  (a) Longitudinal resistivity ρxx as a function of magnetic field B at various 
gate voltages.  From top to bottom, curves correspond to gate voltages of 1.7, 2.0, 2.4, 
2.8, 3.2, 3.6, 4.0, 10, and 30 V.  (b) Longitudinal conductivity σxx (black line, left 
axis) and the second derivative of the longitudinal resistivity vs. magnetic field 
d2
ρxx/dB2 at small B (filled circles, right axis) as a function of gate voltage Vg at a 

temperature of 1.6 K.  Dotted line extrapolates between filled circles. 
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µσ epnpn
xx ),()0(, = .  Then the resistivity components are: 
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=   )()( BBB xxxy ραµρ =   
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where α = (p-n)/(p+n).  At the MCP, α = 0, and ρxx(B) ∝ 1 + (µB)2 and ρxy = 0.  Far 

from the MCP, I expect that |α| → 1, and ρxx(B) ≈ ρxx(0).  This model thus explains 

qualitatively the sharp peak in ρxx(B) at the MCP (Fig. 4.4).  However, it does not 

explain the functional form of ρxx(B); Fig. 4.5 shows ρxx(B) at T = 300 K, open circles 

are the experimental data, while the dotted and dash-dot lines are fits to Eqn. 4.1 with 

µ = 1.9 m2/Vs and α = 0, and µ = 2.3 m2/Vs and α = 0.4 (ρxx(0) = 0.125 in both cases).  

In each case µ is chosen to match the low-B curvature of the resistivity d2
ρxx(B)/dB2 = 

2µ/(1- α2) as determined by a fit to the experimental data for -0.2 T < B < 0.2 T (Fig. 

4.5b).  The fits are poor outside the low-B region.  The two-fluid model fails 

quantitatively in other respects: The near-absence of temperature dependence of ρxx is 

not explained; at the MCP, n = p ≈ 0.52(kT/ħvF)
2, so I expect µσ epnxx )()0( +=  to 

depend quadratically on temperature.  At T = 1.6 K, n = p ≈ 2.3 x 106 cm-2, and the 

peak in Vg should have a width less than 1 mV, not ~2 V as observed in Fig 4.4. As 

discussed previously, another mechanism is already needed to explain the finite 

conductivity on order e2/h at the MCP. My data puts a further constraint on this 

mechanism: it must also explain the magnetoresistivity at the MCP. 

 The finite conductivity and the large magnetoresistivity at the MCP together 

do suggest p+n remains finite while p-n → 0.  There is another scenario in which this 

is possible: as discussed above, Adam et al[78]. propose that local potential 
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Fig. 4.5. Longitudinal resistivity ρxx as a function of magnetic field B at a temperature 
of 300 K.  (a) Open circles are experimental data, dotted line is a fit to the two-fluid 
model (Eqn. 1 in text) with α = 0, dash-dot line is a fit to the two-fluid model with α = 
0.4.  Dashed line is a fit to the inhomogeneous model (Eqn. 2 in text), and solid line is 
a fit the the inhomogeneous model with an additional parallel conductivity (Eqn. 3 in 
text), with σxx,1 = 0.88 e2/h.  In all fits, the zero-field resistivity ρxx(0) and the low-
field curvature d2ρxx(B)/dB2 are the same, determined by fits to the experimental data 
at -0.2 T < B < 0.2 T, as shown in (b). 
 



 60 
 

fluctuations may induce electron and hole “puddles” in a nominally neutral graphene 

sheet.  Individual graphene samples are characterized by a single parameter, the 

density of Coulomb impurities nimp, which accurately predicts the minimum 

conductivity, the carrier density at which the MCP appears, and the field effect 

mobility.  (An additional parameter, the distance of impurities from the graphene 

sheet, is determined to be 1 nm from the global fit to data from several research 

groups.)   Within this model, the impurity density is given by nimp = (5 x 1015 V-1s-1)µ 

-1 ≈ 2.8 x 1015 m-2 for our sample (using µ = 1.8 m2/Vs, the average field-effect 

mobility for electrons and holes).  At the MCP, the current is carried by an effective 

carrier density n* ≈ 1.1 x 1015 m-2, the minimum conductivity is given by σxx,min = 

(20e2/h)(n*/nimp) ≈ 7.8e2/h, the MCP occurs at a gate voltage Vg,MCP ≈  gcen /  = 

(nimp
2/4n*)e/cg = 2.5 V, while the spatial charge inhomogeneity is expected to be 

important in a region of width ∆Vg =  2n*e/cg = 3.0 V around the MCP.  These values 

are in good agreement with the experimental values σxx,min = 5.9e2/h, and Vg,MCP =  1.7 

V.  ∆Vg agrees well with both the width of the peak in magnetoresistivity vs. Vg in Fig 

4.4, and the width of the plateau where σxy ≈ 0 in Figure 4.2b (~2.1 V).  The effective 

carrier density n* ≈ 1.1 x 1015 m-2 is larger than the thermally excited carrier density 

at room temperature 0.8 x 1015 m-2 (see above), so I expect temperature dependence to 

be small at least up to around room temperature, as observed. 

 I now discuss the expected magnetoresistivity for the model of Adam, et 

al[78]. While the general problem of magnetoresistivity in a spatially inhomogeneous 

conductor is complex[93], the magnetoresistivity of an inhomogeneous distribution of 
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electrons and holes with equal mobility and equal concentrations has been solved 

exactly[25], and has a simple analytical form: 

( )( ) 2/121)0()(
−

+= BB xxxx µσσ   0)( =Bxyσ .  

 (4.2) 

Equation 4.2 predicts a magnetoresistivity which is linear in B at high fields, as 

shown by the dashed line in Fig. 4.5, with σxx(0) = 8.0 e2/h and µ = 2.9 m2/Vs.  The 

low-field  

 

 

behavior is consistent with Eqn. 4.2.  I find however, that the fit is greatly improved if 

Eqn. 4.2 is modified to the following phenomenological form: 
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In Fig. 4.5, I plot the experimental data (open circles) and a fit to Eqn. 4.3 (solid line) 

with σxx,0 = 7.1 e2/h, σxx,1 = 0.88 e2/h, and µ = 3.1 m2/Vs.  The fit is excellent.  Again, 

ρxx(0) and d2ρxx(B)/dB2 = µ/(1 + σxx,1/ σxx,0)  are determined by the low-B data alone, 

leaving only one additional degree of freedom to fit the high-B data.   

In proposing Eq. 4.3, I did not have a physical origin for the extra 

conductivity term.  However, it is reasonable to expect deviation from Eqn. 4.2 for 

several reasons: the electron and hole concentration are not perfectly balanced, the 

electron and hole mobilities are not equal[26], and the sample geometry is far from 

the ideal Hall bar (some current must flow through the electrodes).  Subsequent 

theoretical work using effective medium theory has obtained very good agreement 
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with our experimental results, taking into account a small imbalance of mobilities or 

carrier concentrations for electrons and holes. 

From the conductivity and mobility obtained from the fit to Eqn. 4.2 I can 

obtain a carrier density n*exp = σxx(0)/µe = 6.6 x 1014 m-2.  This density is about half 

the predicted n* ≈ 1.1 x 1015 m-2.  Overall the data suggest that the mobility near the 

minimum conductivity point is greater than the field-effect mobility; this is consistent 

with the experimental observation[26] and theoretical prediction of a residual 

conductivity at the Dirac point[94].   

 At low temperatures and high magnetic fields, ρxx(B) saturates to a constant 

value ~0.4h/e2.  Additionally, a plateau-like region of σxy ≈ 0 is evident in σxy(Vg).  

This latter feature has been interpreted as an integer quantum Hall effect (QHE) state 

arising either from the splitting of the valley degeneracy in the n = 0 Landau level 

(LL)[88], or due to spin splitting of the 0th LL resulting in counter-propagating spin 

polarized edge states[86].   The latter model gives rise to a dissipative QHE state, in 

which σxy is only approximately quantized, and ρxx is finite.  Such a dissipative QHE 

state would also be expected in spatially inhomogeneous graphene, in which the 0th 

LL lies below or above the Fermi level in electron or hole regions respectively.  The 

bulk then would consist of incompressible electron and hole QHE liquids, separated 

by regions in which the n = 0 LL crosses the Fermi level, i.e. fourfold degenerate 

edge states with counter-propagating modes.  From µ = 2.9 m2/Vs and n*exp = 6.6 x 

1014 cm-2, I estimate the scattering time τ = 87 fs, and the LL broadening Γ ≈ ħ/τ = 7.6 

meV.  For B = 8 T the spacing between the 0th and 1st LL is ~100 meV, the Zeeman 

energy is gµBB = 0.9 meV assuming g = 2.  The average density n* exp gives a LL 
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filling factor v = 2 at B = 1.4 T, and 0.34 at B = 8 T.  Of course, the maximum density 

within the puddle must be greater than the average density n*, and the QHE occurs 

over a broad range around the quantized filling factor (for example, the v = +2 plateau 

occurs from v = 1.1 - 3.3), so it is plausible that the puddles could be in the v = ±2 

QHE states. The imaging of electron and hole puddles in graphene was reported[27], 

and the puddle diameter estimated to be ~30 nm.  I then expect that quantum effects 

should be important when the magnetic length is less than the puddle diameter, i.e. B 

> 0.8 T, and the temperature is less than EF(n*), i.e. T < 350 K.  This is in qualitative 

agreement with Fig4.3 where significant deviation of ρxx(B) from Eqn. 4.3 occurs at 

temperatures T ≤ 100K and B ≥ 0.8 T, but, since Ref[80]. is inadequate to predict the 

behavior in the quantum regime, more work is needed to understand the high-field, 

low-temperature behavior near the MCP.  

 

4.4 Conclusion 

In conclusion, I have measured the magnetic field-dependent longitudinal and 

Hall components of the resistivity ρxx(H) and ρxy(H) in graphene on silicon dioxide 

substrates at temperatures 1.6 K ≤ T ≤ 300 K.  At charge densities near the minimum 

conductivity point ρxx(H) is strongly enhanced and ρxy(H) is suppressed, indicating 

nearly equal electron and hole contributions to the current.  The data are inconsistent 

with the standard two-fluid model but consistent with the prediction for 

inhomogeneously distributed electron and hole regions of equal mobility.  At low T 

and high H, ρxx(H) saturates to a value ~h/e2, with Hall conductivity << e2/h, which 

may indicate a regime of localized v = 2 and v = -2 quantum Hall puddles. 
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Chapter 5. Gate Tunable Graphene Spin Valve 

 

5.1 Why Graphene for Spintronics? 

Graphitic carbon nanostructures, e.g. carbon nanotubes (CNT) and graphene, 

have been proposed as ideal materials for spin conduction[95-101] for several reasons.  

First, suppression of backscattering[102] allows them to have long electronic mean 

free paths[103-104]. Second, spin-orbit interaction is very small due to relatively low 

atomic weight of carbon[105-106]. Spin-orbit coupling allows spin relaxation due to 

the transformation of intrinsic electric fields in a solid into magnetic fields in 

electron’s reference frame, and spin-orbit effects increase rapidly with atomic number. 

A theoretical estimation shows that spin-orbit coupling in graphene is negligible even 

for disordered graphene [107]. Third, since 99% of natural carbon consists of zero-

spin isotope 12C, carbon nanostructures have very weak hyperfine interaction, which 

is another mechanism of spin relaxation[108]. Therefore, it is predicted that graphene 

will have a  long spin life time on the order of µs.  

In this chapter I discuss my efforts to inject and detect spin currents in 

graphene devices.  I was able to observe clear switching of the non-local four-probe 

resistance of graphene spin-valves due to switching of the magnetization of 

ferromagnetic spin injector contacts.  The spin signal was observable up to room 

temperature.  Interestingly, the spin signal fluctuated with gate voltage, even 

changing sign.  I propose that these fluctuations, in my rather short spin valve devices, 

are due to Fabry-Perot oscillations as discussed in Chapter 3. 



 65 
 

Demonstration of spin injection and detection in graphene opens new 

opportunities to study spin-dependent transport in exotic electronic  

states such as the quantum Hall[109-110] and quantum spin Hall[105] states, and 

proposed spin-polarized edge states[111] in graphene ribbons.  

5.2 Nonlocal spin valve effect 

 

 

Fig. 5.1 a) A schematic of nonlocal spin valve device consisting of two ferromagnetic 
contact F1 and F2 and a normal conductor N. large arrows in F1 and F2 indicate 
directions of magnetization and small arrows in N indicate spin polarizations of 
electrons b) Band structure illustration of spin injection and spin detection. c) 
Electrochemical potentials for spin up (↑) and spin down (↓) as a function of position 
in F1, N, and F2. Figures are from ref[112-113]. 
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A nonlocal spin valve device consists of two lateral ferromagnetic contacts (F1 

and F2) laterally separated on a nonmagnetic conductor N. Fig. 5.1(b) shows band 

structures of  F1, N and F2. To measure nonlocal spin valve signal, charge current is 

injected from F1 to left end of N (opposite to F2), and voltage is measured between F2 

and right end of N. In the absence of charge current flow from F1 and N, the 

electrochemical potentials of spin- up and spin-down electrons in N are the same. 

When a charge current is injected from F1 to N, the majority of electrons at the Fermi 

level are spin-up since the density of states for spin-up electrons at the Fermi level is 

higher than spin-down electrons in F1 as in Fig.5.1(b). This leads to spin 

accumulation in N near F1 as in Fig. 5.1(a). Spin accumulation in N acts as a spin 

electromotive force which produces a voltage V ∝ (µ↑−µ↓), where µ↑ and µ↓ are the 

chemical potentials for up and down spins, respectively. This voltage can be 

measured at the interface F2 and N as in Fig.5.1.a) and c). As electron spins can be 

flipped by different mechanisms such as spin-orbit coupling or magnetic impurity 

scattering, this voltage V ∝ (µ↑−µ↓) decreases as the distance L between F1 and F2 

increases as shown in Fig.5.1c). The characteristic length defining how long the spin 

polarization can be preserved is called spin diffusion length. Even if the charge 

current flows only from F1 to N, spin polarization diffuses in both directions towards 

left and right side of N. The advantage of the nonlocal spin valve geometry comes 

from the decoupling of charge current and spin current. In the direction from F1 to 

right side of N, there is no charge current, but only net spin polarization occurs. Thus 

this geometry excludes the possibility of a voltage signal V arising from AMR 

(anisotropic magnetoresistance) or Hall effect from ferromagnetic electrodes, which 
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would require a charge current in the voltage detection portion of the device[113].  

5.3 Fabrication and Characterization 
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Fig. 5.2 Graphene spin-valve device.  a, Optical micrograph of graphene on SiO2/Si 
substrate.  Scale bar is 10 microns, white box shows graphene flake used in this study, 
which has similar contrast to other graphene samples for which half-integer quantum 
Hall effect was measured. b, Gate voltage (Vg) dependence of four-probe resistivity ρ 
(black, left scale) and conductivity σ (blue, right scale) at a temperature of 1.25 K.  
The field-effect mobility µFE = (1/cg)|dσ/dVg| is approximately 2500 cm2/Vs, where cg 
= 1.15 x 10-4 F/m2 is the gate capacitance.  In this local resistivity measurement, 
electrodes F4 and F5 were used as voltage probes, and the current contacts were F3 
and F6. c,d, Schematics of device layout.  c, Plan view.  d, Side view, showing setup 
for non-local resistance measurement.  Six ferromagnetic Permalloy electrodes F1-F6 
were deposited on top of graphene strip. To give different coercive fields, F1, F3, F5 

have dimensions 1.0 μm x 3 μm, and F2, F4, F6 are 0.4 μm x 15 μm. Spaces between 
all the electrodes are 450nm.  
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The graphene device studied here was fabricated in a similar method 

described in Chapter 2. Once the most transparent graphene flake is exfoliated and 

identified on 300nm SiO2/Si substrate as in Fig. 5.2a), ferromagnetic permalloy 

electrodes are formed by electron-beam lithography (EBL) followed by thermal 

evaporation as in Fig.5.2b); a second EBL step establishes contact to the Permalloy 

via normal Cr/Au electrodes. As described in Fig. 5.2b), six ferromagnetic Permalloy 

electrodes F1-F6 were deposited on top of graphene strip. To give different coercive 

fields of magnetization, F1, F3, F5 have dimensions 1.0 µm x 3 µm, and F2, F4, F6 

are 0.4 µm x 15 µm. (Higher aspect ratio produces higher coercive fields of the 

magnetic electrodes.) Spaces between all the electrodes are 450nm. Once device 

fabrication is completed, I mounted it in our 4He cryostat system. I tried not to spend 

long time before cooling down the samples since often I observed contact resistance 

increases to order of MΩ in 24 hours at room temperature. I believe that a moderate 

increase in contact resistance before measurement establishes a tunnel barrier 

between graphene and the ferromagnetic electrod, which improves spin injection and 

allows me to observe an increased spin valve signal[114-118] although it can also 

increase signal to noise ratio.  

Fig. 5.2b) shows the gate voltage (Vg) dependence of the four probe resistivity 

ρ and conductivity σ measured at the base temperature, T=1.25K in our 4He cryostat.  

Similar to other single- and bi-layer graphene devices[109, 119] σ(Vg) shows a broad 

minimum around 4e2/h, where e is the electronic charge and h Planck’s constant, 

increasing linearly with Vg away from the minimum at Vcnp (the charge neutrality 

point, CNP). The σ(Vg) curve shows a relatively broad plateau region at the 
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minimum conductivity, which indicates that this device has large amount of charged 

impurities[120-121]. 

5.4 Gate-Modulated Spin Valve Measurement 

I performed non-local spin valve measurement by using four ferromagnetic 

electrodes[114-116]. As described in Fig.5.2d), I inject spin current into graphene by 

flowing charge current from F3 to F2. Then, ideally, excess spin diffuses through 

channel from F3 to F4 and F5, with no accompanying charge current. I detect this 

spin diffusion by a voltage established between electrodes F4 and F5, which are 

ferromagnetic and therefore preferentially sensitive to one spin potential. This non-

local spin valve measurement scheme excludes any unintended signals from 

ferromagnetic electrodes such as anomalous Hall effect and anisotropic 

magnetoresistance (AMR) by separating spin and charge current. It also excludes the 

sheet resistance of graphene due to absence of charge flowing through the graphene 

channel.  

Fig. 5.3a) shows the four-probe non-local resistance Rnl = Vnl/I (see Fig. 5.2c 

and d) as a function of magnetic field B at Vg = +70 V at T=20K with current 

I=100nA.  Rnl is positive at large B.  As B is swept to negative, Rnl remains positive as 

B crosses zero, then switches to a negative value at B ≈ -150 G before returning 

positive at B ≈ -250 G.  Upon sweeping B positive, switching occurs at B = +150 G 

and +250 G.  This behavior is very similar to that observed in all-metal[114-116, 122] 

and CNT[117] non-local spin-valves, particularly the sign change of Rnl when the 

current and voltage circuits are separated[117, 122].  Hence we identify these two 

magnetic fields as the coercive fields of F4 and F3 respectively.  The switching 
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behavior may then be explained as follows: at high B, F3 preferentially injects its 

majority spin which diffuses to F4 and is detected as an increase in the chemical 

potential of F4’s majority spin (since the magnetizations of F3 and F4 are  
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Fig.5.3. Non-local spin-valve effect in graphene.  a,b, Nonlocal resistance Rnl (see Fig. 
5.2d) as a function of magnetic field measured at temperature T = 20K with current I 
= 100 nA.  a,b F2, F3 as current leads; F4, F5 voltage leads.  c,d  F4, F5 as current 
leads; F2, F3 voltage leads.  a, Gate voltage Vg = +70 V.  b, Vg = -67 V.  c, Gate 
voltage Vg = -20 V.  d, Vg = -69 V.  The non-local resistance switches sign upon 
sweeping magnetic field, which indicates that a spin current flows from electrodes F3 
to F4 (see Fig. 5.2c,d).  The reversal of sign of the non-local resistance with gate 
voltage (a vs. b and c vs. d) is discussed in the text and in Fig. 5.4.  e,f, Memory 
effect measured at T = 20 K, I = 100 nA, Vg = 0 V.  F1, F2 are current leads; F3, F4 
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are voltage leads.  In a-f, blue curves correspond to positive sweep direction of 
magnetic field; black curves, negative sweep direction. 
 

parallel) resulting in positive Rnl.  When F3 and F4 are antiparallel, the voltage 

reverses, and Rnl is negative.   

Fig. 5.3b)-d) show the same measurement performed at different gate voltages 

and different electrode arrangements.  In Fig. 5.3b) and 5.3d), the high-B value is  

negative, and Rnl switches to near zero (or slightly positive) for B between the two 

coercive fields.  The sign change is discussed further below.  Fig. 5.3e) and 5.3f) 

show the memory effect: by reversing the field sweep direction after flipping the 

magnetization of F4 but before flipping the magnetization of F3, two Rnl states can be 

observed at B = 0, corresponding to the two possible magnetization states of F4.   

 First we discuss whether Rnl arises due to charge current or spin current 

flowing between F3 and F4.  Ideally, as mentioned earlier in this chapter, charge 

current would flow only between F3 and F2, eliminating contributions to the Rnl from 

magnetoresistance of the ferromagnetic electrodes, the channel, or the electrode-

channel interface.  However, because Rnl is ~3 orders of magnitude smaller than the 

device resistance, it is possible that some charge current flows through a tortuous path 

from F3 to F4 and F5.  We investigate this by measuring the gate voltage and 

temperature dependence of Rnl.   

Fig. 5.4a) shows the gate voltage dependence of Rnl in the parallel and 

antiparallel state, Rnl,p and Rnl,ap, as well as their average value.  Fig. 5.4b) shows the 

non-local spin-valve signal ∆R.  Ravg, Rnl,p and Rnl,ap all show a peak near the CNP (10 

V < Vg < 30 V), while ∆R is near zero in this region.  Well outside this region (Vg < -
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20 or Vg > 40 V), Rnl,p and Rnl,ap have nearly equal magnitude and opposite sign (Ravg is 

near zero) and ∆R is larger and shows quasi-periodic oscillations with Vg.  The peak 

in Ravg(Vg) near the CNP suggests that charge current does flow in the region between 

F3 and F4 for these gate to voltages.  However, Ravg(Vg) is not simply proportional to 

 

Fig. 5.4 Gate-voltage dependence of spin-valve signal.  a,b, The same electrode 
configuration is used as for Fig. 5.3a,b.  a, Resistance as a function of gate voltage for 
electrodes with magnetizations parallel (Rnl,p), antiparallel (Rnl,ap), and their average 
Ravg = (Rnl,p + Rnl,ap)/2.  b, The spin valve signal ∆R = Rnl,p – Rnl,ap as a function of gate 
voltage. 
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ρ(Vg) but rather drops near zero at large Vg while ρ(Vg) remains finite.  Thus the finite 

Ravg(Vg) near the CNP is likely due to the inhomogenous nature of graphene near the 

CNP[120, 123] (see Chapter 4); here percolating electron and hole regions may cause 

a tortuous current path.  

Away from the CNP, Ravg(Vg) drops to near zero, indicating small charge 

current.  Yet Rnl,p and Rnl,ap remain finite, with near equal magnitude and opposite 

sign.  This is as expected for a pure spin current flowing from F3 to F4, and cannot be 

explained by a magnetoresistive signal arising from any charge current between F4 

and F5.  The Hall effect is another possible source of Vnl, however, the Hall voltage 

would be expected to grow large and switch sign near the CNP, rather than showing a 

peak.   

Fig. 5.5 shows the temperature dependence of Ravg and ∆R for Vg = 0. Here 

Ravg is finite similar to Fig 5.4, but somewhat larger for this electrode configuration.  

The spin-valve signal ∆R is seen to drop with temperature approximately as ∆R ∝ T-1, 

while Ravg is much more weakly temperature dependent; again indicating a different 

origin for ∆R and Ravg.  The inset shows a measurement at 300 K performed at higher 

current; the spin-valve signal can still be observed, confirming expectations of 

reduced spin scattering in graphene even to high temperature.  

We now discuss the magnitude of the spin-valve signal ∆R.  For an Ohmically-

contacted spin-valve device, the non-local signal may be estimated using 

2 2 2 2 22 / (1 )F N
F F FR R LwRα λ α∆ = −W W (where 2

Fα is spin polarization, Fλ is spin diffusion 

length in ferromagnet, FRW and NRW are square resistance of ferromagnetic and non-

magnetic material respectively, L and w are length and width of channel) [116]. We 
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estimate in this case the signal should be on order 10-5 Ω.  However, we observe finite 

contact resistance of order 10 kΩ per electrode as estimated from the difference 

between two-probe and four-probe resistance measurements.  In the limit of highly 

resistive contacts, we would expect the non-local resistance to be given by; 

 1 2exp( / ) / 2NL N N N NR L PP Aρ λ λ= ± − (where Nρ is bulk resistivity of 

nonmagnetic material, Nλ is spin diffusion length in nonmagnetic material, A is cross-

sectional area, Pi are the single F/N interface polarizations of the current at the 

contacts Fi/Ni) [122]. NLR , for long spin-scattering lengths, is on the order of the 

channel resistance (1-10 kΩ).  Our intermediate contact resistance, finite spin-

scattering length, and finite polarization of the electrodes will give a lower value of 

∆R, similar to the observation of ∆R ~ 20 Ω for a channel resistance 10 kΩ and 

contact resistance of a few tens of kΩ in a CNT device[117]. 

I now discuss the origins of the quasi-periodic oscillations of the non-local spin-valve 

signal ∆R(Vg).  Oscillation of the spin-valve signal with Vg due to spin-orbit coupling 

has been proposed as the basis of a spin transistor[124]. However, the spin-orbit 

coupling in graphene is expected to be very small[105], and this effect should not be 

observable[125]. Oscillations and sign changes of the spin-valve signal have also 

been observed when the spin current flows through a resonant quantum state, either 

due to Coulomb blockade[126] or Fabry-Pérot interference [100].  It is evident from 

Fig. 5.2b) that the sample is not in the Coulomb blockade regime, however ρ(Vg) 

shows quasi-periodic oscillations. Such oscillations were studied in detail in Chapter 

3, and attributed to Fabry-Pérot interference of electronic states reflected from the 

electrodes[100, 127-128]. I examined similar oscillations in another graphene sample 
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Fig. 5.5.  Temperature dependence of spin-valve signal.   The average resistance Ravg 
(black circles) and spin valve signal ∆R (blue squares) as a function of temperature at 
Vg = 0 V and I = 100 nA.  The temperature dependence of the spin-valve signal ∆R is 
much stronger than that of Ravg (which likely arises from the charge-current 
resistance).  The solid line shows a power law with exponent -1.  Inset shows the non-
local resistance Rnl as a function of field at T = 300 K and I = 3 µA. Blue curve is 
positive sweep direction of magnetic field; black curve, negative sweep direction. The 
spin-valve effect is still observable.  The electrodes used for the spin-valve data in 
main panel and inset are the same as for Fig. 5.3e,f. 
 

 in a two-probe geometry (Fig 5.6). In the color-scale plot of differential 

conductance vs. Vg and drain voltage V, conductance maxima and minima occur 

along diagonal lines. As discussed in Chapter 3, the change in electron phase due to 

round trip through graphene channel results in a Fabry-Pérot oscillation pattern 

(Fig.5.6) with a period in gate voltage 
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Fig.5.6 Color-scale plot of two-probe differential conductance as a function of gate 
voltage Vg and drain voltage V for a similar graphene sample contacted by Permalloy 
electrodes with a spacing 200 nm.  The blue and red dashed lines have slopes of 
±0.013 and ±0.010 respectively. 
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, where vF 

= 1 x 106 m/s is the Fermi velocity, and Vg’ = |Vg – Vcnp|.  For the device in Fig. 5.6, L 

= 200 nm, Vcnp ≈ -6 V, giving ∆V = 20 mV.  For Vg’ = 10-15 V, we find ∆Vg = 2.0-2.5 

V, and the slope varies from 0.013 to 0.010.  The most prominent minima in 

conductivity at V = 0 occur with spacing ∆Vg = 1.5-2.5 V, however additional features 

are observed more closely spaced in V and Vg than expected from above.  This is not 

surprising due to the two-dimensional nature of graphene: our analysis includes only 

the k-states perpendicular to the electrodes, undercounting the states involved in 

transport (the slope is independent of the path length L).  The spin-valve sample also 

shows oscillations of σ(Vg) in Fig. 5.2b).  For this sample L = 450 nm, and we would 

expect ∆Vg = 2.8 V at Vg’ = 90 V (i.e. Vg = -70 V) which agrees reasonably well with 

the observed spacing of dips ∆Vg ~ 6 V at large negative Vg in Fig. 5.2b).  The four-

probe geometry is significantly more complicated than the two-probe analysis of 
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Fabry-Pérot interference above, since there are multiple interfaces which could give 

rise to interference.  Still it is reasonable that quantum interference effects are 

responsible for the oscillations in the four-probe resistivity (Fig. 5.2b), and for the 

observed changes in magnitude and sign of the spin-valve signal with gate voltage 

(Fig. 5.4b). 

 

 

 

5.5 Conclusion 

In conclusion, we have observed the non-local resistance arising from a spin 

current in graphene in a non-local four-probe measurement.  The spin-valve signal 

varies with gate voltage in magnitude and sign due to interference arising from the 

quantum-coherent transport through graphene, which is also evidenced by Fabry-

Pérot-like interference patterns observed in a similar sample, and oscillations in the 

four-probe resistivity of the spin-valve sample.  The magnitude of the spin-valve 

signal is roughly inversely proportional to temperature, and is observable at room 

temperature.  Injection and detection of pure spin currents in graphene opens 

possibilities to examine theoretically predicted new phenomena such as the spin Hall 

effect[105] and half-metallicity[111] in graphene ribbons.  Because of the high 

current-carrying capability and long mean-free path at room temperature, graphene is 

also an excellent candidate for room-temperature spintronics applications.   

The results of this chapter are published in Applied Physics Letters[129].  

After submission of our results[130], another group [118] published non-local four-
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probe spin-valve experiments in graphene, submitted earlier than our work.  Ref. 15 

showed that spin relaxation time in graphene is quite short and only up to a few 

hundred ps. The origin of unexpected such a short spin relaxation time in graphene is 

still unknown, and is a subject of significant theoretical[131-132] and experimental 

[117-118, 133]work. One of the possible reasons is momentum relaxation due to 

charged impurity scattering, but a recent report[133] shows that charged impurity 

scattering is not the primary source of spin relaxation in graphene.  
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Chapter 6. Insulating Behavior in Ultra-thin 

Bismuth Selenide Field Effect Transistors 

  

6.1 Introduction to Topological Insulator 

 

Three-dimensional(3D) topological insulator is a new class of material that 

has a bulk band gap and two-dimensional gapless surface states on every surface. The 

surface state has a Dirac spectrum like graphene, but is singly-degenerate; there is a 

single Dirac cone which is singly spin-degenerate.  The real electron spin plays the 

role of the pseudospin in graphene, and the surface state exhibits spin-momentum 

locking and absence of back scattering or localization by time-reversal symmetric 

disorder[30-32, 34-35, 134].  

The existence of surface states in topological insulator Bi2Se3 was predicted 

theoretically [2] and observed recently by angle-resolved photoemission spectroscopy 

(ARPES)[30-32] and scanning tunneling spectroscopy (STS)[33-35] (see Figure 6.1). 

ARPES measurements indicate Bi2Se3 has a single Dirac cone, gapless surface state 

in the bulk gap. Bi2Se3 seems to be one of the most promising in applications in that it 

has a large bulk band gap ~ 0.3 eV, corresponding to 3600K and could therefore 

behave as a topological insulator up to high temperatures. However there has been a 

big obstacle to achieving electronic transport experiments which are dominated by 

surface state transport [135-138]: in typical samples the Fermi level in Bi2Se3 is not 

located inside the bulk gap, but in the conduction band. Due to high n-doping, 
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metallic bulk conduction dominates electronic transport in Bi2Se3 and makes it 

difficult to observe the novel properties of surface states[139-141]. An increase in the 

Fermi level with time has been observed even at low temperature and in ultra-high 

vacuum (UHV) in ARPES measurements [30-32], but the origin of high n-doping is 

not clear at this time. 

One strategy to reduce the contribution of bulk conduction is to fabricate very 

thin Bi2Se3 layers, and some electronic transport experiments on thin Bi2Se3 

films[139-140] and crystals[141-142] have been reported.  An interesting question is: 

How thin can Bi2Se3 be while retaining its three dimensional topological insulator 

character? The thinnest layer that maintains a 2:3 Bi:Se stoichiometry is the quintuple 

layer (QL)_of 5 alternating Se and Bi planes, while the thinnest slab which retains the 

symmetry of bulk Bi2Se3 is one unit cell, or three QL units, thick.  

 
Fig. 6.1. a) Energy and momentum dependence of the LDOS b) ARPES spectra of 
Bi2Se3. Figures are from references [32, 134] 
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Fig. 6.2. ARPES spectra of 1~6 QLs measured at room temperature. Figure is from a 
reference [36].   
 

In reference[36], Zhang et al, reported ARPES measurement in 1~6 QL 

Bi2Se3 films as seen in Fig. 6.2. They observed opening an energy gap of surface 

states in films of thickness below 6 QLs and reported that the gap size increases with 

decreased number of QLs as in Fig.6.2. Opening of an energy gap indicates that 

ultrathin Bi2Se3 films of thickness below 6 QL are not three-dimensional topological 

insulators. However, there has been much theoretical work on ultrathin topological 

insulator films especially about whether they are topologically trivial or nontrivial, in 

other words, whether they are conventional insulators or two dimensional topological 

insulators with gapless spin-full one-dimensional edge states (which cannot be 

observed with ARPES technique). Several theoretical works[143-145] explain that in 

few-QL Bi2Se3, since overlapping between wavefunctions of two surface states is 

non-negligible, the surface states may hybridize and open a bulk energy gap, resulting 

in either a two-dimensional insulator or a quantum spin Hall system with insulating 

bulk and conducting chiral one-dimensional edge modes[146-149].  
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Fig. 6.3. a) spinless b) spin-full 1D chiral edge states in a) quantum Hall states and b) 
quantum spin Hall states in 2D topological insulator. Figure is from a reference [149]. 

 

 2D topological insulators are similar to 3D topological insulators, but the 

difference is that the boundary is edge instead of surface. Instead of momentum-

locked two-dimensional surface states, the chiral 1D edge states in 2D topological 

insulators are spin-momentum locked; i.e. spin-up propagates only one direction, and 

spin down the opposite direction.  2D topological insulators are also similar to 

quantum Hall insulators in that both have edge states topologically protected from 

local perturbation as shown in Fig. 6.3, but the difference is that in 2D topological 

insulators time reversal symmetry is conserved and edge states come in spin-

momentum locked pairs, preserving time-reversal symmetry[149]. 2D topological 

insulator was predicted theoretically in 2006[150] and realized experimentally next 

year in HgTe quantum well[151]. König et al measured a quantized conductance ~ 

2e2/h, indicating ballistic transport through two edge modes, similar to the quantum 

Hall effect without external magnetic field as in Fig. 6.4[149, 151]. 
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Fig. 6.4. a) schematic figure of HgTe quantum well, b) calculated band structure of 
HgTe quantum well c) 4 probe resistance measured at T=30mK in HgTe quantum 
well devices with various d. Devices III and IV corresponds to d=7.3nm and show 
quantized conductance G~2e2/h.  Figures are from references [149, 151]. 
 
  In the following sections, I will discuss electronic transport measurement 

conducted in ultrathin Bi2Se3 devices consisting of three quintiple layers (1 unit cell) 

as a function of gate voltage and temperature. I observed clear insulating behavior 

beyond a threshold gate voltage, with activated energy gaps up to 250 meV.  The 

results indicate that 3 QL Bi2Se3 crystals are conventional insulators with energy gaps 

exceeding 250 meV rather than 2D topological insulator with gapless edge states.  

This work is published in Ref [152]. 
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6.2 Sample Fabrication and Characterization 
 
 

 

Fig. 6.5.  Atomic force micrograph (a) and optical micrographs (b-c) of a 3.5 nm 
thick exfoliated Bi2Se3 sample on SiO2/Si substrate.  Panel (c) shows the completed 
device with Pd electrodes contacting the device and larger Cr/Au electrodes leading 
to bonding pads.  Scale bars in (a-c) are 4 microns. 

 
 

a) b) 

c) 
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Bi2Se3 crystals were prepared as described in Reference[135]. Bulk carrier 

concentrations (n-type) were in the range of 2-4x1018 cm-3.  Bi2Se3 was mechanically 

exfoliated on substrate of 300nm SiO2 over a conducting Si back gate using a “Scotch 

tape” method similar to that used for graphene[153]. Fig. 6.5a shows an optical 

micrograph of a typical mechanically exfoliated Bi2Se3 crystal on SiO2/Si.  Crystals 

of thickness 3.5nm-30nm were found, and could be differentiated by color contrast 

similar to few-layer graphene[154]. The thickness of the samples was measured by 

atomic force microscopy (AFM), which may overestimate the true thickness of the 

crystal as is observed for graphene on SiO2[154]. The thinnest samples (thickness t = 

3.5nm, corresponding to ~3 QLs) were chosen for this study.  Electron beam 

lithography was used to define Pd electrodes; Fig.6.5b shows the completed device. 

No adhesion layer was used; I found that using Cr or Ti as an adhesion layer makes 

contact resistance increase rapidly with time, which might be related to oxidation of 

adhesion layer.  

 

6.3 Electrical Measurement and Discussion 
 

Fig. 6.6 shows the gate-voltage (Vg) dependent transport properties of four 

Bi2Se3 transistors of various thicknesses.  For thicker samples (Sample 1, t = 14 nm; 

and Sample 2, t = 6.5 nm), the sheet conductivity measured in a four-probe 

configuration is shown.  For the thinnest samples (Samples 3 and 4, t = 3.5 nm) the 

two-probe conductance is shown as a function of Vg.  Because of the high sample 

resistance at low temperatures and negative Vg, I was unable to perform four-probe 

measurements on the thinnest samples.  I always observe n-type doping in exfoliated 
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Bi2Se3, and for Samples 1 and 2 the carrier density n determined by Hall effect at Vg = 

0, n = 1.5 x 1013 cm-2 for Sample 1, and n = 2.5 x 1013 cm-2 for Sample 2, exceeds the 

density of the surface state at the conduction band edge (~5 x 1012 cm-2 for one 

surface, or 1 x 1013 cm-2 for top and bottom surfaces[30, 32]) indicating that the bulk 

conduction band must also be populated.  The Hall mobility is 1200 cm2/Vs and 300 

cm2/Vs for Samples 1 and 2 respectively at Vg = 0.  The gate-voltage-dependent 

transport in  

 

Fig. 6.6.  Gate-voltage dependent transport in four exfoliated Bi2Se3 samples.  For 
thicker Samples 1 and 2, the four-probe conductivity (left axis) as a function of gate 
voltage is shown.  For thinner Sample 3 and 4, the two-probe conductance (right axis) 
as a function of gate voltage is shown.   
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Sample 1 and 2 is qualitatively similar to that observed by other groups for thicker 

exfoliated crystals[141-142] and films[139].  While weakly (logarithmically) 

insulating behavior has been observed in thin Bi2Se3 films[139, 155], the observation 

here of transistor-like behavior and a strong (exponentially) insulating state in the 

thinnest samples is novel, and below I will focus on this behavior in more detail. 

Figures 6.7a and 6.7b shows the two-probe conductance of Sample 3 as a 

function of gate voltage G(Vg) at various temperatures,T showing n-type field effect 

behavior.  (Similar results were obtained for Sample 4).  At high T (245 K – 320 K, 

Fig. 6.7a) I observe that for positive (negative) Vg, the conductance increases 

(decreases) with decreasing temperature, indicating metallic (insulating) behavior.  At 

lower temperatures (Fig. 6.7b) the conductance decreases with decreasing 

temperature at all gate voltages.  The maximum field effect mobility is ~10 cm2/Vs at 

T = 245 K. 
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Fig. 6.7.  Temperature-dependent conductance of 3.5 nm thick exfoliated Bi2Se3 on 

SiO2/Si. (a-b) Conductance of Sample 3 vs. gate voltage at various temperatures.  (c-

d) Conductance of Sample 3 vs inverse temperature on a semilog scale (Arrhenius 

plot) showing activated behavior.  Lines are linear fits to the data.     

 

Figs. 6.7c and 6.7d show the conductance data from Figs. 6.7a and 6.7b on an 

Arrhenius plot.  At negative gate voltage (Fig. 6.7c), strongly activated temperature-

dependent conductance is observed; straight lines are fits to kTE
g

aeGVG /
0)( −= where 

Ea is the activation energy, k is Boltzmann’s constant, and G0 a constant prefactor.   

At positive Vg and lower temperatures (Fig. 6.7d), activated behavior is also seen with 

much smaller activation energies. 
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Fig. 6.8.  Activation energy as a function of gate voltage determined from fits in Figs. 

6.7c and 6.7d.   

 

Figs. 6.8a and 6.8b show the gate-voltage dependence of the activation 

energies extracted from Figs. 6.7c and 6.7d.  For negative gate voltages, the activation 

energy rises roughly linearly with gate voltage, extrapolating to zero at a threshold Vg 

= -10 V, and rising to 250 meV at Vg = -90 V.  I interpret the activation energy in this 

regime as arising due to a barrier to conduction in the bulk; i.e. bulk insulating 

behavior.  (I find the possibility of the activation barrier arising from an insulating 

contact to a metallic surface state extremely unlikely; first, I observe Ohmic contacts 

similarly fabricated on slightly thicker Bi2Se3, and second, I cannot imagine a 

scenario in which the contact, which lies on top of the sample, could show activation 

behavior continuously tuned by gate voltage from metallic to insulating.)  I assume 

the activated behavior arises from activation of electrons from the Fermi energy, EF to 

conduction band edge, EC; that is Ea = EC - EF. Then the variation of Ea with Vg 

reflects the variation of EF: dEF/d(eVg)= -dEa/d(eVg). The fact that the slope 
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dEF/d(eVg) << 1 indicates movement of Fermi level with back gate through localized 

impurity states in the band gap. A change in the electrochemical potential of the gate 

e∆Vg is the sum of the electrostatic potential change e∆φ and the Fermi energy 

change ∆EF: e∆Vg = e∆φ + ∆EF = e2
∆n/Cg + e2

∆n/Ct where ∆n is the change in charge 

number density, Cg = 1.15x10-8 F/cm2 is the oxide capacitance per unit area, and Ct = 

e2D(E) is the quantum capacitance associated with a density of localized states D(E).  

Then the slope dEF/d(eVg) = Cg/(Cg+Ct). From the slope dEF/d(eVg) = 3.3 x 10-3, I can 

estimate D(E) = 2.1x1013 eV-1cm-2, and the total charge depleted at  Vg = -90 V is 

estimated as 5x1012 cm-2 from the bandwidth 250 meV.  It is notable that similar 

behavior was observed in another exfoliated transition-metal chalcogenide, 

conventional semiconductor MoS2 FETs on SiO2[156], where field-effect mobilities 

of 10-50 cm2/Vs and a localized state density of 7 x 1012 eV-1cm-2 were measured.  

Below T = 110K, activated conduction behavior is seen even at positive gate voltage 

(Fig. 6.7b) and the activation energy is plotted in Figure 6.8b.  I attribute the very 

small activation energies in Fig. 6.7b to a small Schottky barrier between the Pd 

contacts and the insulating ultrathin Bi2Se3.   

The energy barrier in our ultrathin Bi2Se3 FETs is surprisingly large, 

approaching the bulk energy gap of ~300 meV.  I interpret the activation energy as 

arising from an insulating state in the Bi2Se3, due to coupling of the top and bottom 

surface states.  The magnitude of the energy gap is somewhat larger than the gap of 5 

– 50 meV theoretically predicted for 3 QL Bi2Se3[143-145] and the gap of 130 meV 

observed for 3 QL Bi2Se3 by ARPES experiments[36], though it is comparable to the 

measured gap for 2 QL Bi2Se3 [36]. This suggests that the significant density of 
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localized states D(E) = 2.1x1013 eV-1cm-2 observed in our experiment may reflect 

localization of the surface-state-derived bands (which are no longer topologically 

protected by localization), and conduction may occur in the bulk quantum-well states 

which should be separated by a gap significantly larger than the bulk gap of 300 meV.   

The absence of any p-type conduction channel observed up to Vg = -90 V 

indicates that the actual transport gap may be even larger than 250 meV; in principle 

one would expect that the high-workfunction Pd contacts would show a smaller 

barrier for p-type injection.  The observation of conductance G < 10 nS corresponds 

to a mean free path for any one-dimensional edge modes < 1 nm; I therefore conclude 

that it is unlikely that the ultrathin Bi2Se3 is in the quantum spin Hall state.   

 

6.4 Conclusion 
 
 In conclusion, I have fabricated field-effect transistors from ultrathin Bi2Se3 

crystals obtained by mechanical exfoliation.  The Bi2Se3 FETs show n-type behavior, 

with a clear insulating OFF state and energy barriers up to 250 meV.  The small 

subthreshold swing indicates a large density of trap states D(E) = 2.1x1013 eV-1cm-2. 

The observation of a true insulating state in topological insulator Bi2Se3 is presumed 

to be due to coupling of the top and bottom surface states, resulting in a conventional 

two-dimensional insulator.  Whether 1-2QL and 4-5QL are 2D insulators 

topologically trivial or nontrivial with gapless edge states is still an open question in 

experiment. 
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