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Chapter 1

Introduction

1.1 Background

Disruption Tolerant Networks (DTNs) refer to network architectures that are

tolerant of sparse connectivity and long delays between the availability of links from

sources to destinations. The connectivity of the network may be impacted by limited

wireless radio range, sparsity of mobile nodes, energy resources, noise and adver-

sarial attack. Research into DTNs has been motivated by applications including

the deployment of resources into remote, hostile or dangerous environments, such

as a battlefield or post-disaster areas, and to improve communication in inherently

sparse environments, such as remote villages or deep-space. Disruptive environ-

ments provide unique challenges to routing protocols, which do not exist in other

regimes. For example, protocols that rely on establishing end-to-end connectivity,

e.g., TCP, AODV and DSR are ill suited to disruptive environments [4]. Since the

establishment of a connection requires at least one round-trip between the sender

and the receiver, if the round-trip delay exceeds the duration of any link in the

network, no data may flow at all. Even if a momentary connection is established,

frequent link breaks, which are a characteristic of DTNs, will result in a flood of

route maintenance messages, in the case of AODV and DSR, and anemic through-

put rates in the case of TCP. Since persistent routes from sources to destinations
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are rare, DTN networks must use a “Store-Carry-Forward” routing methodology –

storing both its own packets as well as those from other nodes and forward them

on to still other nodes opportunistically. To ameliorate the effect of long latencies

on the application layer, DTN packets usually encapsulate enough data to allow the

application layer to proceed with a meaningful unit of work while waiting for further

packets. For this reason, packets in DTN networks are normally larger than their

counterparts in conventional networks and are often termed bundles. Combined,

these two factors necessitate much larger buffers, and much more intelligent buffer

management, than is normally available in conventional routers.

In response to these issues, numerous DTN routing algorithms have been pro-

posed in the literature. A basic taxonomy of these algorithms divide them along two

axes: the first is the degree to which replication of bundles is used, and the second

is the extent to which the algorithm uses history to glean insights into the topology

and dynamics of the network. A third axis would be the expected a-priori pre-

dictability of the one-hop connectivity of the network, which can vary widely from

largely unpredictable ( e.g., wildlife tracking ), to semi-predictable ( e.g., trans-

portation networks ) to completely predictable ( e.g., space-communications ). In

this thesis, we shall exclude discussion of the completely predictable case. When

connectivity is completely predictable, it is possible to formulate a linear program

to route packets optimally, in the sense of minimum delay, with connectivity and

bandwidth constraints. Details can be found in [7].

In this thesis we shall be studying the convergence properties of a parameter,

called temperature, under a DTN routing algorithm recently proposed by Kalantari
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and La [10] which is motivated by thermodynamics. In general outlines, to each

node is associated a notional temperature based on its exposure to a one or more

sink nodes. Sink nodes are the nodes to which packets are to be delivered and are

maintained at a constant temperature. There are two application domains that need

to be distinguished. The first is when the objective is to route packets to one or more

sink nodes; in a sense, for packets to be pulled towards any one of several sink nodes.

On can visualize, for example, routing packets to any one of several access points

or hubs. The second possibility is that packets need to be routed from the source

node to a particular destination, that may be different from packet to packet, and

source node to source node. In both cases, when two nodes come in contact, meaning

they can communicate with each other, they transfer heat between themselves using

standard laws of thermodynamics. In the first case, each node maintains a single

scalar temperature that measures its direct and indirect exposure to the collection

of sink nodes to which packets need be delivered. The nodes then opportunistically

transfer these packets to ever warmer nodes until, eventually, they are delivered to

one of the sink nodes. In the second case, one can imagine replicating this same

approach for each destination. In this case, each node will maintain an array of

temperatures, one entry per destination, and viz-a-viz measure the nodes direct and

indirect exposure to that particular destination.

The thesis is organized as follows: In the next section, we shall provide a brief

survey of current state of the art in DTN routing protocols. In Chapter 2, the

proposed algorithm is described with the formalism necessary for analysis. Section

2.2 of the chapter will present our results regarding the convergence properties of
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the temperatures under the algorithm for various connectivity models. In Chapter

3, we shall see the algorithm in action through various simulations using standard

mobility models ; Chapter 4 concludes the thesis with a discussion of future work

and other properties that might be of interest.

1.2 Literature Survey

The simplest routing algorithms for DTN networks are direct delivery and

epidemic routing [20]. As the name suggests, direct delivery transfers messages

directly between the source and the destination, relying entirely on the mobility

of each node. epidemic routing, also known as Flooding, in contrast, forwards all

non-duplicated messages, including its own, to every node it encounters – eventually

delivering its messages to the appropriate destinations. direct delivery and epidemic

routing represent two extremes and illustrate a natural trade-off in DTN networks;

suppose, for the purpose of illustration, that there are M nodes in the network,

that messages are N bytes long, and that they can be delivered in their entirety

during the contact times between nodes. Direct delivery would use only N bytes

of bandwidth and minimum buffer space since only its own messages are stored

and the message is transferred only once. However, since delivery depends on the

source and the destination eventually meeting, packets may never be delivered or

may experience long latencies. epidemic routing, on the other hand, forwards all

its messages to intermediaries conceivably using N(M − 1) bytes of bandwidth to

transfer data in addition to the auxiliary information exchanged during encounters
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to determine which packets are non-duplicated and ready for transfer. In addition

to bandwidth, large buffers may be required to store in-transit packets to achieve

minimum latency.

Most practical algorithms seek a compromise between these extremes. These

approaches rely on limiting replications within the network, more intelligently coding

the messages, using heuristics to gain insight into the topology and dynamics of the

network or using a combination of these methods. The simplest of the practical

algorithms is simple replication. In this approach, the source node copies its message

to the first r intermediaries it encounters. These intermediaries then use direct

delivery to deliver the message to the intended destination. Using this approach

the r redundant copies reduce the expected latency of the network while using only

rN bytes of bandwidth. We see that if r = 0 this method is equivalent to direct

delivery, and as r gets larger, it behaves more like epidemic routing. A variant of this

technique proposed in the literature is binary spray and wait [17]. In this approach,

instead of the source node distributing a single copy of the message to the first r

intermediaries it encounters, binary spray and wait didactically transfers r/2k copies

of the message to the kth intermediary it encounters which does not already possess

the message, where k ∈ 1, ..., log r. When only a single copy of the message remains,

the source node switches to direct delivery. Each of the intermediary nodes, likewise,

employ the same scheme with its copies of the message; repeatedly transferring half

its store of messages to other intermediary nodes, without a copy of the message. It

was shown that, when node movements are independent and identically distributed

(i.i.d), binary spray and wait has the minimum expected delay among all simple
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replication-based algorithms.

An alternative to simple replication of packets is to use erasure codes [21].

Borrowed from the Information Theory literature, erasure codes were originally

designed for error correction in the binary erasure channel; a popular example is the

Reed-Solomon codes used in the encoding of compact audio disks. Erasure codes

transform a message of size M into a larger coded message of size rM where r is the

replication factor. This larger coded message is subsequently divided into a large

number, b, of blocks each of size rM/b. The defining feature of these codes is that

the original message can be recovered as long as 1/r of the blocks are recovered.

This feature may be exploited in the design of DTN networks to distribute the

responsibility of delivering a particular message over a larger number of nodes for

the same aggregate bandwidth. To be more precise, erasure coding based algorithms

evenly distribute the b code blocks among the first kr relay nodes, where k is some

integer constant. The aggregate bandwidth of erasure code based algorithms is the

same as simple replication since each of the kr relay nodes carry only rM/b×b/kr =

M/k bytes of data. However, in contrast to simple replication where only one of the

r replicas of the message is required to decode the message at the sink, erasure code

based algorithms require that at least k of the kr relays deliver their packets. The

merits of erasure codes over simple replication become significant when the number

of low latency relays is large in comparison to r. In fact, it was shown in [21] that the

expected delay, when the delay of each relay in delivering its packets is independent

with common distribution function F , approaches the constant ζ1/r as the number

of nodes n = kr gets large, where ζ1/r is the 1
r

th
quantile of the delay distribution
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F .

History based approaches seek to gain inferences into the dynamics of the

network to better facilitate packet delivery. Two examples of this approach that have

been deployed in the field are MaxProp [3] and ZebraNet [9]. ZebraNet is an ad-hoc

wireless network designed for the tracking of zebras in Kenya. Wireless transmitters

are affixed to zebras to record their movements in the wild via GPS. These positions

are to be eventually collected at a central stationary base station. Since zebras herd

over thousands of kilometers and with the possibility of theft or vandalism, the use

of cellular or wireless towers was not an option. The history based algorithm used in

this network seeks to selectively route messages to intermediary zebras more likely

to encounter the base station. This is done via the concept of Hierarchy Levels – a

notional number that corresponds to the zebras’ frequency of contact with the base

station. The transceivers attached to the zebras periodically scan its surroundings

for opportunities to either deliver its messages to the base station or transfer them

to intermediary nodes. In lieu of an opportunity to deliver its messages to the

base station, zebras transfer their messages to the intermediary with the highest

Hierarchy Level (HL) within contact range. If a node remains out of contact with

the base station, its HL is decremented by one for every D consecutive scans that

the base station remains out of range, where D is a tunable parameter. Conversely,

For each scan where the base station is detected, the transceiver delivers its queue

of messages and increments its HL by one. ZebraNet also employs a simple buffer

management system wherein to make room for new packets, each node first deletes

the oldest messages in its queue not originated by that node, followed by its own
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oldest messages. In this way, ZebraNet preferentially propagates newer messages

over older ones in the network. It was found by the authors, in a simulation which

mimicked zebra migrations, that over a broad range of radio ranges, this history

based method outperformed both direct delivery and epidemic routing schemes in

bandwidth and storage constrained scenarios.

MaxProp takes a different and more involved history-based approach. In the

core algorithm, each node maintains a buffer of messages sorted by a Delivery Likeli-

hood (DL) metric that corresponds to the nodes ability to deliver messages, possibly

through intermediaries, to a specified destination d. During transfer opportunities,

the packets with the highest DL are transferred first while packets with the low-

est DL are the first to be deleted to make room for newer packets. The DL of

a packet with a particular destination is estimated in the following manner: each

node i maintains a vector of values f ij that successively estimates the probability

that node j will be in range during the next scan. For all nodes f ij is initially set

to 1/ (|N | − 1). Every time a node j comes into range of node i, the value of f ij

is incremented by 1 and the entire vector f i is renormalized to sum to 1. During

encounters nodes opportunistically transfer their messages as well as these vectors.

To each path from node i to destination d can be associated a cost c (i, i+ 1, ..., d)

that correlates to that paths average availability. In the MaxProp approach this

cost is calculated as the sum of the probabilities that each link along the path does

not exist, i.e.,

c (i, i+ 1, ..., d) =
d−1∑
x=i

[
1−

(
fxx−1

)]
(1.1)
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The DL of node i to deliver messages to node d is then the minimum over all

possible paths of the above expression. This can be computed efficiently using a

modified version of Dijkstra’s algorithm; since the cost monotonically increases in

the number of links, a depth-first search of the paths can terminate once its cost

exceeds that of the current best path. Again, it was found empirically that the

core algorithm disadvantaged newer packets in the network, and a modification was

proposed wherein if the hop-count of an incoming packet was below a threshold,

T , it was enqueued and given priority in the queue by hop-count, while for already

enqueued packets with hop-count greater than T they are prioritized by the DL. A

diagram representing this approach is shown in figure (1.1). It was shown within

reference [3] that the MaxProp algorithm exhibits superior performance, in terms

of both delivery rate and latency in comparison to both random routing, where a

random message from the queue is forwarded at each opportunity, and an Oracle

based Dijkstra algorithm, where future connectivity is known with certainty. This

is so, since even though future connectivity is known, the oracle is not aware of

buffer space and link bandwidth allocations of all peers at all times in the future. A

truly globally optimal routing algorithm where buffer space, bandwidth and traffic

load are all taken into consideration becomes an NP-complete problem which can

be solved via a dynamic programming algorithm as in [7].

In addition to these “pure” methods, it is also possible to combine them in var-

ious ways. For example, it is possible to combine a history based metric with simple

replication or erasure coding to improve performance. An example of a combined ap-

proach that has been suggested in the literature is Estimation-Based Erasure-coding
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Figure 1.1: Buffer management using the MaxProp routing protocol.

[12] (EBEC). Like the basic erasure coding method, messages are transformed into

a large number of coded packets. However, instead of being forwarded to the first

rk intermediaries, they are forwarded in proportion to their Average Contact Fre-

quency (ACF) with the desired destination node. The ACF, τi,j, of node i with j is

defined as the number of encounters between these nodes i and j over a predefined

time interval T , i.e., τi,j = Ni,j/T where Ni,j is the number of encounters between

nodes i and j in time T . The dispersal of packets corresponding to a particular

message by nodes in the network is divided into two states: a spreading state and a

forwarding state, depending, respectively, on whether the number of packets held by

that node is greater than or less than a threshold G. To illustrate, let node A be an

intermediary carrying mA packets destined for node D. In the spreading state, when

mA > G, if node A encounters node B, node A will transfer mB = mA
τB,D

τA,D+τB,D
mes-

sages to node B and retain mA−mB packets. It is presumed that node B does not

already have packets corresponding to this message for node D, in which case it will

not participate in this exchange. In the forwarding state, when mA ≤ G, node A
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on encountering a node B with an ACF greater than its own for destination D will

transfer all its messages to node B. Since a message can be reconstructed as soon

as k packets are delivered, it is unnecessary for an intermediary to retain more than

k packets. Therefore, the threshold is set so that G ≤ k. The authors evaluated the

EBEC algorithm along side binary spray and wait as well as conventional erasure

coding using a random waypoint model on discrete locations, and the EBEC was

found to outperform both of them in terms of delivery latency.

An unbiased evaluation of these various approaches and combinations of ap-

proaches is attempted in [6]. Therein these algorithms were benchmarked against

simulations derived from three popular real-world mobility traces; in ascending or-

der of connectivity: The MIT Bluetooth trace (MITBT), the IBM Access Points

Trace (IBM) and the MIT Cell Towers trace (MIT). In addition to the diversity of

connectivity present in these traces, the available bandwidth along these links were

also varied from low (100 KiB/s), medium (1000 KiB/s) to high (10,000 KiB/s), thus

breaking down the simulation space into to nine categories. It was found that in

terms of delivery rate, Flooding and Perfect Oracle dominated under weak connec-

tivity while MaxProp performed well under high connectivity. MaxProp however,

could not take advantage of higher available bandwidth, delivering about the same

amount of data even as bandwidth was increased 100 fold.
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Chapter 2

A DTN Routing Algorithm Inspired by Thermodynamics

2.1 Basic Model and Assumptions

Consider a set N = {1, 2, · · · ,m} of mobile nodes moving in some domain D,

which is a subset of R2. The mobility of the nodes is allowed to be heterogeneous;

the speed and support or range of the mobility may differ from one node to another.

The location of node i ∈ N at time t ≥ 0 is denoted by Li(t), and the trajectory of

node i is given by Li = {Li(t); t ∈ R+} where R+ = [0,∞). Each node is assumed to

generate messages that arrive according to some stochastic process, and that these

messages are destined for a single source node. Without loss of generality, we may

assume that the sink node is node 1.

We assume that a pair of nodes can communicate with each other through a

wireless communication link if and only if their distance is smaller than or equal to

a fixed communication range of the nodes, which we denote by β > 0. Due to the

mobility of the nodes, the link between two nodes, say i and j, is dynamically set up

and is torn down based on the time-varying distance between them. We can model

the one-hop connectivity between two nodes i and j, i 6= j, using an on-off process

C = {Cij(t); t ∈ R+}, where
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Cij(t) =


1 if ||Li(t)− Lj(t)||2 ≤ β

0 otherwise

(2.1)

where ||Li(t) − Lj(t)||2 is the Euclidean distance between Li(t) and Lj(t). When

Cij(t) = 1, we say that nodes i and j are in contact or connected. As mentioned

previously, for DTNs, it is unlikely that there will be a long-lived end-to-end route

available from a node to the sink. Therefore, the nodes must forward their messages

to the sink in an opportunistic manner by relying only on intermittent links between

nodes.

In practice, it is likely that the contact times (i.e, the amount of time two

nodes spend in contact once they meet) are much larger than the amount of time

needed to complete a transfer of messages. Hence, we assume that a transfer of

messages occurs (almost) instantly and the nodes can complete all necessary transfer

of messages while they remain in contact.

Our goal is to find a model that can capture the heterogeneous mobility of

nodes and allows us to design a simple, yet efficient packet forwarding scheme that

exploits the knowledge of nodes’ mobility. This is achieved by introducing a time-

varying measure that quantifies (direct or indirect) exposure of each node to the sink

(over some period), which obviously depends on nodes’ mobility and frequency at

which they visit the sink. This measure can also be viewed as an estimate of nodes

ability to forward messages to the sink (either directly or indirectly). It is used to

guide packet forwarding decisions by the nodes when they meet. In a nutshell, when

two nodes meet, messages are forwarded from the node with a smaller value to the
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node with a larger value. The intuition behind this is that a node with a large value

is believed to have more access to the sink. Again, this access may take the form

of direct access when the node meets the sink or indirect access through other relay

nodes.

We first list some properties one would expect such a measure to possess:

1. The value of the measure lies in a compact interval. Moreover, it increases

monotonically while the node is in proximity of the sink, i.e., the sink is in

contact with the node.

2. When a node moves out of the communication range of the sink, its value

decreases monotonically while the node is not in contact with any other node.

3. While two nodes are within the communication range of each other, their

values are continually updated; the value of the node with a larger (resp.

smaller) value decreases (resp. increases).

The first two properties are intuitive. The last property can be motivated

as follows: When a node i with a smaller value comes in contact with another

node j with a larger value, loosely speaking, the encounter provides node i with

an opportunity to relay some messages through node j, increasing node i’s indirect

access to the sink. This type of indirect access to the sink needs to be captured

when multi-hop forwarding of messages is necessary. At the same time, as node i

relies on node j to carry some of node i’s messages as a relay node, node j’s ability

to serve as a relay node to other nodes should be discounted.
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The measure proposed in [10] is to associate with each node i a temperature

θi ∈ [0, T ]. The sink node is maintained at a temperature T . The temperature

of the non-sink nodes then evolves according to standard thermodynamic laws first

proposed by Newton. In other words, when two nodes are in contact, the rate

at which the temperature changes is directly proportional to their difference in

temperature. When a node is isolated, that is, not connected to any other node, it

loses heat to the environment at a rate γ. This relationship may be expressed by a

system of differential equations:

d

dt
θi(t) =


0 if i = 1,

−γθi (t) +
∑

j∈Ci(t) λij (θj (t)− θi (t)) otherwise

(2.2)

where Ci(t) = {j ∈ N : Cij(t) = 1}, i.e., the set of nodes that are in contact with

node i at time t. In the rest of this thesis, we will assume that the coefficients of

heat transfer between nodes are symmetric and identical, i.e. λij = λji = λ. This

allows us to simplify the above system of equations as follows.

d

dt
θi(t) =


0 if i = 1,

− [γ + λNi (t)] θi (t) + λ
∑

j∈Ci(t) θj (t) otherwise,

(2.3)

where Ni(t) = |Ci(t)| is the number of nodes connected to node i at time t. As a

linear system of differential equations, it is fruitful to think of the above as a matrix

equation.

d

dt
θ(t) = A(t)θ (t) (2.4)
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where A(t) is a matrix of the form

Aij(t) =


−(γ +Ni(t)λ) if i = j and i 6= 1,

λ if i 6= j , j ∈ Ci(t) and i 6= 1,

0 otherwise,

As a device for understanding, it is useful to consider a typical instantiation

of the above matrix. An example of one is shown below.

A(t) =



0 0 · · · ∗ 0 0

∗ − (γ +N2 (t)λ) · · · λ 0 ∗

...
...

. . .
...

... ∗

∗ λ · · · − (γ +Nj (t)λ) 0 ∗

0 0 · · · 0 −γ 0

∗ ∗ · · · ∗ 0 ∗



(2.5)

where the asterisk represents possibly non-zero entries. We observe that the first

row is zero; the sink node is insulated from heat loss to the environment and other

nodes. Another interesting feature is the fact that the (1, 1)-submatrix, the matrix

with the first row and the first column removed, is symmetric reflecting the fact

that in our model the coefficients of heat loss are identical and symmetric. It will

also be useful to note in the analysis that follows, that each off-diagonal entry where

Ai,j(t) = λ, adds one to the value of Ni(t) and Nj(t). As a consequence, on any row

j, the number of off-diagonal λ’s will be Nj(t).

To study the evolution of θi (t) in this setting requires a rather complicated

apparatus of switched linear systems. Commonly, a stability analysis of such sys-
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tems would entail finding a common quadratic Lyapunov matrix over all possible

system matrices [19]. For the purposes of this paper, we shall study a discrete time

approximation to this continuous time model. We will assume that there exists a

minimum epoch of length h such that the connectivity of the nodes remains constant.

In other words, C(t), or equivalently, A(t) is constant on all intervals of the form

[nh, (n+ 1)h) where n = 0, 1, .... We let Cn = C(t) , An = A(t) and Nn
j = Nj(t)

on the interval [nh, (n+ 1)h). Over each of these intervals the evolution of the tem-

perature vector, θ (t) is governed by the linear differential equation given in (2.4).

We shall examine the temperature vector at the end points of these intervals; that

is, with some abuse of notation, θn = θ (nh). We can write an implicit relationship

between consecutive θn as

θn+1 = θn +

∫ (n+1)h

nh

Anθ (τ) dτ

Stated differently, the temperature vector evolves according to a linear, constant

coefficient, differential equation (LCCDEs) over each time domain. LCCDE’s have

an extensive history and literature [16] and it is well known that the explicit solution

can be written as

θn+1 = eAnhθn (2.6)

where eAnh is the matrix exponential defined by the following infinite series.

eAnh =
∞∑
k=0

Aknh
k

k!
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It can be shown that this series converges uniformly and absolutely on any interval

[−h, h] where h > 0 is arbitrary.

In our analysis, we will make extensive use of an alternative formulation of

the matrix exponential that can be motivated in a heuristic manner similar to the

derivation of the exponential for scalars. Suppose that a interval [tn, tn+1] is divided

into N segments, each of length (tn+1 − tn) /N . Setting h = tn+1 − tn and using

equation (2.4) we can write a first order approximation to the differential equation

over each segment as follows.

θ

(
tn + (k + 1)

h

N

)
≈ θ

(
tn + k

h

N

)
+ Anθ

(
tn + k

h

N

)
h

N

≈
[
I + An

h

N

]
θ

(
tn + k

h

N

)
where k ∈ {0, . . . , N − 1}. Expanding this recursion, the approximation becomes

exact as N →∞.

θ (tn+1) = lim
N→∞

[
I + An

h

N

]N
θ (tn)

Then, over each interval [nh, (n+ 1)h] we can write, setting tn = nh and tn+1 =

(n+ 1)h, that

θn+1 = lim
N→∞

[
I + An

h

N

]N
θn

Setting corresponding terms equal we would expect that

eAnh = lim
N→∞

[
I + An

h

N

]N
(2.7)
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we recognize the similarity of this expression to the standard definition of the

scalar exponential function. This heuristic argument can be made rigorous and a

full proof is provided in appendix A.

2.2 Convergence in Distribution

In this section we will show that the temperature vector θn converges in dis-

tribution under the dynamical model described by equation (2.6). We will do this

by establishing the stronger condition that the iteration converges in norm, i.e. that

there exists a random vector Θ such that ||θn−Θ|| → 0. In the process, we will make

use of results obtained in the study of Iterated Random Maps (IRMs). IRMs are

any iteration of the form θn+1 = f(θn, An) where {An;n ≥ 1} is a random process.

IRMs are an area of active research and have found applications in numerous fields,

including the generation of fractal images [5], queuing theory [14] and stochastic

optimization [13].

In the following analysis we will initially assume that the random process

{An;n ≥ 1} is independent and identically distributed (i.i.d) and later extend the

result to the more general class of stationary random processes. In both cases, the

underlying state space Ξ is constructed in the following manner: Suppose there

are M nodes and let Ξ be the set of all 2(M2 ) possible one-hop connectivity graphs.

To each graph ξ ∈ Ξ, there corresponds a unique connectivity matrix Cξ and heat

transfer matrix Aξ and to each state also corresponds a probability pξ. With some

abuse of notation we will let Ξ indicate the set of graphs, connectivity matrices, or
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heat transfer matrices interchangeably based on context.

2.2.1 The Independent Identically Distributed Case

The convergence of IRMs in the i.i.d setting center on establishing that the

ensemble of maps fξ(x) = {eAξhx : ξ ∈ Ξ} contract on average, in a sense to be

described below. A map fξ over a metric space (S, ‖ · ‖) is a contraction mapping,

if there exists a non-negative constant Kξ < 1, such that

||fξ(x)− fξ(y)|| ≤ Kξ||x− y|| for all x, y ∈ S. (2.8)

In our particular case, S will be the set of all vectors in x ∈ RM , in which x1 is

equal to T – the fixed temperature of the sink node, i.e., S = {x ∈ RM : x1 = T}.

We will show, through a series of lemmas, that for any choice of ξ ∈ Ξ, fξ forms a

contraction mapping on S.

Lemma 2.2.1. for any matrix Aξ ∈ Ξ and h > 0, eAξh is element-wise non-negative.

Proof. (Lemma 2.2.1) In the previous section, we established that,

eAξh = lim
N→∞

(
I + Aξ

h

N

)N
Expanding the base of the exponent on the right hand side, we observe that

I + Aξ
h

N
=



1 if i = j = 1

1− h
N

(γ + |Cξ|λ) if i = j and i 6= 1

h
N
λ if i 6= j , j ∈ Cξ and i 6= 1

0 otherwise
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It is clear that regardless of h we can select an N large enough such that this matrix

is element wise positive - namely when N > h(γ +Mλ) ≥ h(γ + λmaxk∈1···M{Nk})

where M is the number of nodes. The lemma follows since a product of positive

matrices is non-negative.

Lemma 2.2.2. For any Aξ, fξ(x) = eAξhx forms a contraction mapping on the

metric space (S, || · ||∞), where ||x||∞ is the ∞-norm, defined as ||x||∞ = maxi |xi|.

Proof. (Theorem 2.2.2) We begin the proof by finding an upper-bound for the ex-

pression

||eAξhx− eAξhy||∞ = ||eAξh (x− y) ||∞ (2.9)

since x, y ∈ S it is clear that x1 − y1 = 0 is zero. Moreover, since
[
eAξh

]
1,j

= 0 for

j > 1, we see that the value of the above norm is unchanged if we restrict ourselves

to considering only the norm of the product of the (1, 1)-submatrix of eAξh (the

matrix with the first row and the first column removed) and the last M −1 terms of

x−y. Let us designate these as ẽAξh and ||x̃− ỹ|| respectively. It is also easy to show

that ẽAξh = eÃnh where Ãξ is the (1, 1)-submatrix of Aξ. Using these observations

we can rewrite equation (2.9) as

||eAξhx− eAξhy||∞ = ||eÃξh (x̃− ỹ) ||∞

It is possible to bound this quantity by making use of the induced matrix norm.

The induced matrix norm corresponding to the ∞-norm for vectors is the max-

imum of the sum of the absolute values of the rows, i.e., for a matrix ||A||∞ =
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maxi∈1...M

∑M
j=1 |Aij|. It is a property of matrix norms that for square matrices A,

B and vector x, ||AB||∞ ≤ ||A||∞||B||∞ and ||Ax||∞ ≤ ||A||∞||x||∞ [18]. Using

these properties we can write the following sequence of inequalities.

‖eAξhx− eAξhy‖∞ = ‖eÃnh (x̃− ỹ) ‖∞

≤ ‖eÃnh‖∞‖x̃− ỹ‖∞

≤

∣∣∣∣∣∣
∣∣∣∣∣∣ lim
N→∞

(
I +

Ãnh

N

)N
∣∣∣∣∣∣
∣∣∣∣∣∣
∞

‖x̃− ỹ‖∞

= lim
N→∞

∣∣∣∣∣
∣∣∣∣∣I +

Ãnh

N

∣∣∣∣∣
∣∣∣∣∣
N

∞

‖x̃− ỹ‖∞

In proving Lemma 2.2.1 we showed that I +
Aξh

N
is element wise positive. This

property clearly passes to the submatrix I +
Ãξh

N
. Hence, in evaluating the matrix

norm we can drop the absolute value and we obtain the following inequality.

‖eAξhx− eAξhy‖ ≤ lim
N→∞

 max
i∈1,...,M−1

M−1∑
j=1

[
I +

Ãnh

N

]
i,j

N

‖x̃− ỹ‖∞

An arbitrary row i in above sum can take on two possible values, depending on

whether the node i is connected to the sink node or not: either 1 − h
N

(λ+ γ) or

1− h
N
γ. Taking the maximum of these terms we can bound the above expression as

‖eAξhx− eAξhy‖ ≤ lim
N→∞

(
1− h

N
γ

)N
‖x̃− ỹ‖∞

= e−γh‖x− y‖∞

The last expression follows from the definition of the exponential for scalars and the

fact that ‖x̃− ỹ‖∞ = ‖x−y‖∞ for all x, y ∈ S. Lastly, since e−γh < 1 for any γ > 0,

we conclude that fξ (x) = eAξhx is a contraction mapping and e−γh-Lipschitz.
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Using these results we can finally show that (2.6) converges in distribution by using

a result of Diaconis in [5]. Suppose fξ and Kξ are as in (2.8). Then,

Theorem 2.2.3. (Diaconis 1998) Let (S, ‖ · ‖) be a complete separable metric space.

Let {fξ : ξ ∈ Ξ} be a family of Lipschitz Functions on S, and let µ be a probability

distribution on Ξ. Suppose that
∫
Kξ µ (dξ) <∞,

∫
‖fξ (x0)− x0‖ µ (dξ) <∞ for

some x0 ∈ S and
∫
logKξ µ (dξ) < 0.

1. The induced Markov chain has a unique stationary distribution π.

2. ρ [Pn(x, ·), π] < Axr
n for constants Ax and r with 0 < Ax <∞ and 0 < r < 1,

where ρ is the Prokhorov metric 1. This bound holds for all times n and all

starting states x.

3. The constant r does not depend on n or x ; the constant Ax does not depend

on n, and Ax < a+ b‖x− x0‖ where 0 < a, b <∞.

In other words, if the conditions of the theorem are satisfied, the IRM will have a

unique stationary distribution π and will converge to the distribution exponentially

in the Prokhorov metric ρ. In the context of our problem, the above conditions

reduce to

1.
∑

ξ∈Ξ Kξpξ <∞
1Let P (M) denote the collection of all probability measures on the measurable space

(M,B (M)). The Prokhorov metric ρ : P2 (M)→ [0,+∞) between two probability measures µ and

ν is defined as π (µ, ν) = inf {ε > 0 | µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε for all A ∈ B(M)}.

The ε-neighborhood of set A, Aε, is defined as ∪p∈ABε (p) – where Bε (p) is the open ball with

radius ε centered on p. For details see [2].
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2.
∑

ξ∈Ξ ||fξ (x0)− x0||∞ pξ <∞ for some x0 ∈ S

3.
∑

ξ∈Ξ logKξpξ < 0

From condition 3 we see that logKξ < 0 when Kξ < 1 ; this encapsulates the idea of

the maps fξ contracting on average. Substituting our bound Kξ = e−γh we see that

conditions 1 and 3 follow immediately . To prove the second condition, let us select

x0 = (T, 0, · · · , 0), we see that for this value ||fξ (x0)− x0||∞ ≤ (M + 1)T and so

this condition follows. We therefore conclude that {θn;n ≥ 0}, constructed by (2.6)

converges when the sequence {An;n ≥ 0} is i.i.d.

2.2.2 The Stationary Case

To show that the sequence converges when {An;n ≥ 0} belongs to a more general

class of stationary processes we will make use of a lemma by Loynes [14].

Lemma 2.2.4. (Loynes lemma) Let the random variables θn(n ≥ 1) be related by

the transformation

θn+1 = f(θn, An), (2.10)

where {An : −∞ < n < ∞} is a stationary sequence. Suppose in addition that

f(x, y) is monotonically increasing and continuous from the left (even at ∞) in x,

and non-negative.

Then, there exists a stationary sequence of (possibly dishonest) random variables

(Θn : −∞ < n <∞) satisfying

Θn+1 = f(Θn, An),
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such that if θ1 = 0, the distribution function of θn tends monotonically to that of Θ0

as n tends to ∞. Furthermore, Θn is the minimal sequence satisfying (2.10) for all

n, in the sense that if {xn} is any other such sequence, then xn ≥ Θn.

Using this lemma we can prove the following result.

Theorem 2.2.5. Suppose {θn;n ≥ 1} is a sequence of random variables related by

(2.6) with the initial condition that θ1 = 0. Suppose, moreover, that {An;n ≥ 1}

is a stationary sequence of random matricies of the form (2.5). Then, θn → Θ0 in

distribution, where Θ0 is some random variable.

Proof. (Theorem 2.2.5) We can exclude the possibility that Θ0 is dishonest since

the vectors θn are bounded from above by T . The result follows directly from the

Loynes lemma, therefore we show that the conditions of the lemma are satisfied,

i.e.,

f(θn, An) = eAnhθn

is monotonically increasing and positive in θn. In the context of Euclidean space,

increasing and positive are interpreted as element-wise, i.e., if θ ≥ φ for each element

of θ and φ, then

eAnhθ ≥ eAnhφ

or equivalently that eAnh(θ − φ) ≥ 0. Since (θ − φ) ≥ 0 a sufficient condition that

f is monotonically increasing is that eAnh is element-wise non-negative. However,

this is the result of Lemma 2.2.1, and the theorem follows.
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To drop the condition in the above lemma that θ1 = 0, we show that the

limiting distribution is independent of the initial distribution. Specifically, it is

possible to show that, given two initial temperature vectors, φ0, θ0 ∈ S , then

‖φn − θn‖∞ → 0. When this is true, we say that the limiting distribution is stable

with respect to the initial conditions. We begin the demonstration by writing the

evolution of the difference as,

φn+1 − θn+1 =

(
n∏
k=0

eAkh

)
(φ0 − θ0)

Using the fact that the first term of φ0 − θ0 is zero and the form of the

matrix exponential in (2.7), it is clear that the first term of φn+1 − θn+1 is zero

for all n. Moreover, it is also clear that the first term of the difference provides

no contribution to the evolution of the other terms. To show that the norm goes

to zero, it is then only necessary to consider again the (1, 1)-submatrix. We can

continue the development as follows,

‖φn+1 − θn+1‖∞ ≤

∣∣∣∣∣
∣∣∣∣∣
n∏
k=0

eAkh

∣∣∣∣∣
∣∣∣∣∣
∞

‖φ0 − θ0‖∞

≤

(
n∏
k=0

∣∣∣∣eAkh∣∣∣∣∞
)
‖φ0 − θ0‖∞

We can now make use of the bound found in the proof of Lemma 2.2.2 to write

‖φn+1 − θn+1‖∞ ≤

[
n∏
k=0

lim
N→∞

(
1− h

N
γ

)N]
‖φ0 − θ0‖∞

= e−nhγ‖φ0 − θ0‖∞
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Allowing n→∞, we see that ‖φn+1 − θn+1‖∞ → 0 as required.

2.3 The Average Temperature for Homogeneous Nodes with an Er-

godic Temperature Process.

If in addition to assuming that the connectivity process of nodes is stationary,

we also assume that the non-sink nodes are homogeneous, in the sense that they

share a common mobility pattern, and that the temperature is ergodic, in the sense

that the time average of the temperature process converges to the ensemble average,

it is possible to derive the nodes mean temperature in the following way.

For any non-sink node, we can write the temperature dynamics as follows:

θi(n+ 1) = (1− γh)θi(n) + h
N∑
j=1

λCji(n) [θj(n)− θi(n)] + hλC0i(n) [T − θi(n)]

Taking the expectation of both sides we can write

E [θi(n+ 1)] = (1− γh)E [θi(n)]

+h
N∑
j=1

λE [Cji(n)] (E [θj(n)]− E [θi(n)])

+hλE [C0i(n)] (T − E [θi(n)])

Since nodes sharing the same mobility pattern, would also have the same average

temperature, we can set E[θi(n)] = E[θj(n)]. Moreover, from our result that the

temperature vector converges in distribution, in the steady state we can write that

E[θi(n+ 1)] = E[θi(n)] = µθi . Simplifying the above expression we can then obtain,
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µθi =
λTE[C0i(0)]

γ + λE[C0i(0)]
(2.11)

This is an intuitively satisfying result. Indeed, we see that if the non-sink

nodes did not lose heat to the environment (γ = 0), their average temperature

would approach that of the sink node. The results of this calculation are shown in

some of the simulations in the next chapter for homogeneous nodes that follow an

i.i.d and Markov connectivity model.
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Chapter 3

Simulations

To visualize the dynamics of the model and assess the accuracy of the above

analysis we set up four simulations. The first simulation assumes that the connec-

tivity between nodes is governed by an independent identically distributed (i.i.d)

Bernoulli random processes. At each epoch of time, two nodes are connected with

a probability p that is independent of its connectivity at previous time epochs and

disconnected with a probability 1− p. This simple connectivity model will allow us

to see the effects of the various parameters in the model on the overall steady-state

temperature distribution of the nodes.

The second simulation will add an additional level of complexity by using a

Markov connectivity model. A Markov model will allow us to simulate additional

properties of ad-hoc networks. In particular, the connectivity of nodes from one

epoch to the next are not independent; a node in contact with another node may

be more likely to remain in contact with that node in the next time epoch, and

likewise, a node that is not in contact with a another node is likely to remain not in

contact at the next time epoch. For both the i.i.d and Markov connectivity models,

we will simulate one hour worth of dynamics in time steps of 0.1 seconds and allow

connectivity changes every 10 seconds. The empirical mean is calculated from the

last 50% of the samples. This will allow the dynamics to reach a steady state.
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The third and fourth simulations will employ a Random Waypoint (RWP)

mobility model. The RWP model has been extensively studied and is used exten-

sively in mobile networking research. In the first of the RWP simulations we will

assume that mobility is homogeneous, in the sense that all the nodes share the same

domain of mobility as well as other parameters of the RWP model. The second

RWP simulation will introduce heterogeneity by varying the domain of the nodes as

well as furnishing the nodes with mobility parameters in a manner to be discussed

below.

In the fifth simulation we will introduce a new, mean-reverting, mobility model

based on the Ornstein-Uhlenbeck random process. We will then observe the perfor-

mance of the algorithm using this new mobility model.

For each of these simulations we will assume that there are 9 nodes, including

the sink node. The sink node is maintained at a notional temperature of 100 while

the non-sink nodes are initially at a temperature of zero.

3.1 Results using an i.i.d connectivity model.

Figures 3.1 and 3.2 show the dynamics and steady-state distribution of tem-

perature of a typical node for various values of p , λ and γ when the connectivity

between nodes are a i.i.d-Bernoulli as described above.

It is apparent that the empirical average temperature of the nodes, shown in

the figure as the green line labeled as µhat, does indeed correspond to the value

theory expects from equation (2.11). The theoretically expected temperature is

30



Figure 3.1: Temperature distribution of nodes using an independent identically

distributed (i.i.d) Bernoulli connectivity model with p = 0.05.
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Figure 3.2: Temperature distribution of nodes using an independent identically

distributed (i.i.d) Bernoulli connectivity model with p = 0.95.
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shown as the red line labeled as µ. Naturally as p increases, the average temperature

increases; commensurate with increased exposure to the sink node. The effect of the

heat transfer coefficients λ and γ are also visible. We observe that as these values

are increased, in the i.i.d setting, the volatility of the temperature increases. This

behavior is reasonable since nodes would both lose heat to the environment more

quickly as well as gain heat from the source node and other nodes more quickly.

3.2 Results using a Markov connectivity model.

A Markov connectivity model, for the reasons described previously, would

represent a next step in producing a realistic connectivity process. Specifically, this

model assumes that the pair-wise connectivity between two nodes is governed by a

Markov random process. Figure 3.3 is a graphical representation of this model. The

values of p and q can be tuned to values that can serve as proxies for connectiv-

ity characteristics. For example, it is elementary to show that expected number of

epochs during which two nodes would be connected or disconnected would be given

by 1
(1−q) and 1

(1−p) , respectively. It is also straight forward to show that the probabil-

ity that two nodes would be connected or disconnected is given by Πc = (1−p)
(1−p)+(1−q)

and Πd = (1−q)
(1−p)+(1−q) , respectively. Using these calculations, and the fact that

E[C0i(0)] = Πc, we can also derive the expression for the mean temperature as

follows

µθi =
λT (1−p)

(1−p)+(1−q)

γ + λ (1−p)
(1−p)+(1−q)
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1−q

1−p

q

Figure 3.3: Markov connectivity model.

Figures 3.4 and 3.4 shows the temperature evolution of a typical node for

various values of λ, γ, p and q. We see immediately that the Markov connectivity

model possesses a greater diversity of behavior than is present in the i.i.d model.

We observe the effects of sustained periods of connectivity and detachment from the

sink node as evidenced by the sustained periods of exponential growth and decay.

Indeed, we also observe that for particular values of p and q, that the stationary

distribution of temperature can be bimodal, a feature missing from the i.i.d case.

3.3 Results using a Random Way Point mobility model.

The RWP model is used extensively in mobile networking research. In basic

outlines, the model starts with a number of nodes distributed over a subset of R2.

Each node then selects a destination within this domain and a speed within some

interval [vmin, vmax]. The node then travels to the selected destination at the selected

speed. Once it arrives at the destination it rests for a period Trest and the process

then iterates. First used by Johnson and Maltz [8] in the study of ad-hoc source

routing algorithms, the model has become extensively studied in its own right. It

has been shown, for example, that contrary to intuition, for any interval where
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Figure 3.4: Temperature distribution of nodes using a Markov connectivity model

with p = 0.95 and q = 0.95
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Figure 3.5: Temperature distribution of nodes using a Markov connectivity model

with p = 0.95 and q = 0.65
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vmin = 0, the nodes do not move around with average velocity vmax/2. Instead, it

converges to zero, i.e., the nodes eventually become stationary [22]. A number of

results regarding the steady-state distribution of the nodes [11] as well as a number

of connectivity properties of this model have also become available [1].

Our motivation for using RWP is to observe the performance of the algorithm

using a well known mobility model as well as to investigate the effects of hetero-

geneous mobility on the performance of the proposed algorithm. To do this we

present two simulations, the first with a homogeneous mobility pattern and the

second with heterogeneous mobility pattern. In both case, we simulate 9 nodes

moving on a square, 100 square mile area. This would imply an average node den-

sity of 0.1 nodes / square mile ; or conversely 10 square miles per node. Since

we want the network to be disconnected most of the time, we chose a maximum

communication radius of 1 miles <
√

10 miles. In the homogeneous case, the nine

nodes use the entire simulation space, and their speeds are selected from the in-

terval [30 mph, 60 mph].In the heterogeneous case, we segregate the nodes evenly

into three overlapping subsets of the simulation space. The first subset of nodes

occupy a square area from (0, 0) to (4, 4), the second subset from (2, 2) to (8, 8)

and the last from (6, 6) to (10, 10). In the first and third domain the nodes select

their velocities from the interval [10 mph, 30 mph] while in the second the nodes

velocities are selected from the interval [30 mph, 60 mph]. One can envision this as

modeling high speed nodes in less populated areas ferreting messages between slower

moving nodes in more densely populated areas. For both simulation, we also rather

arbitrarily, select λ = 1 and γ = 0.001. Figures (3.6) and (3.7) show the results
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of these simulations for the homogeneous and heterogeneous cases, respectively. In

both figures, the color of the node corresponds to its temperature. The location

of the nominal message is shown as a ’2’ on the plot and the sink node is shown

slightly larger than the rest of the nodes.

In the homogeneous case of Figure (3.6), between plots (a) and (b), the sink

node moves in a north easterly direction from near the origin, while the message

carrying node begins moving in a north westerly direction from the lower right of

the graph. From plots (b) and (c) we see that that the message is transferred to a

warmer intermediary, having been exposed to the sink node earlier. The sink node

in the meantime has moved rapidly to the upper right. Between plots (c) and (d)

we observe the new intermediary moving from the lower left to the the vicinity of

the sink node in the upper right. Between (d) and (e) we see that the message is

transferred yet again to a warmer intermediary and lastly in plot (f) we see that the

message is successfully delivered after 13055 seconds or roughly 3.6 hours. While

in this simulation, the message was delivered as expected in a straight forward

manner, other runs of the simulation presented several unexpected pathologies. For

example, messages would occasionally be passed to warmer nodes that were moving

away from the sink node. If this node was moving at high speed, this would result

in the message being carried far from the sink node. Other times, messages would

be passed to warmer nodes that were moving very slowly, when it, perhaps, would

have been more advantageous for the node to retain the message for a different node

in the future.

In the heterogenous case of Figure (3.7), the initial source of the message was
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chosen randomly among the nodes in the third subdomain and the sink was selected

randomly from the nodes of the first subdomain. In figure (a) we can clearly see

the segregation of the nodes into the three subdomains. From (a) to (b) on the plot

we see that the node containing the message is moving from the upper left to the

lower right. Simultaneously, other nodes have been exposed to the sink and have

commensurately warmed up. Between figures (b) and (c), the message carrying node

from the third subdomain comes into contact with a warmer node from the second

subdomain, having gained indirect exposure to the sink node, and subsequently

transfers its message to this new intermediary. Likewise, from (c) to (d) we notice

that the node containing the message becomes exposed to a node hotter than it

within the same subdomain and transfers its message to it. From (d) to (e) the

message is ferried to within the vicinity of the first subdomain and lastly, on plot

(f) we see that the message has been successfully passed to the sink node in 10125

seconds or roughly 2.8 hours.

The significant improvement in the delivery latency between the homogeneous

and heterogeneous cases, which has been evident over repeated simulations, can be

explained by the fact that heterogeneous nodes carry with them more information

about their surroundings and interactions than their homogeneous counterparts.

In a homogeneous environment, since one node is the same as another, there is

no reason to expect that it would perform any better in delivering packets to the

sink node. Heterogeneous mobility on the other hand, results in varying abilities

among the nodes in their ability to deliver packets and hence manifests itself in

the meaningful diversity of temperatures with the proposed algorithm utilizes in its
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routing decisions.

3.4 An Ornstein-Uhlenbeck mobility model

Like the RWP, another common model that has been used in mobile network-

ing research, more for its simplicity than its accuracy, is the Random Walk (RW).

Under the RW model, nodes follow a Brownian motion trajectory; over each sim-

ulation time step ∆t, the node selects the next increment in each spatial direction

from the normal random variable σ
√

∆tN (0, 1), where σ is the volatility. The RW

model has an infinite domain and, in the two dimensional and higher setting, will

almost surely never return to the origin. This is contrary to an evidence of signif-

icant mean reversion found in empirical mobility studies and from basic reasoning

that, in general, people and machines eventually return to home bases.

In this thesis, we introduce a new mobility model related to the RW, that

with only slightly additional complication allows us to simulate this mean-reverting

behavior. This mobility model, replaces the simple Brownian Motion of the RW

with trajectories derived from an Ornstein-Uhlenbeck (OU) random process. The

OU process can be thought of as a filtered Brownian motion or as a mean reverting

Brownian motion and can be expressed as the stochastic differential equation (SDE)

dXt = θ (µ−Xt) dt+ σdBt

where Bt is a standard Brownian Motion, σ ≥ 0 the volatility, µ the mean and

θ ≥ 0, a measure of the processes’ central tendency. If we momentarily suppress the
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Figure 3.6: Message passing using thermodynamic algorithm on a Random Way-

point mobility model in a homogeneous mobility setting.
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Figure 3.7: Message passing using thermodynamic algorithm on a Random Way-

point mobility model in a heterogenous mobility setting.
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the random component of the above SDE, by setting σ = 0, we see why this process

is mean reverting; if Xt > µ then dXt
dt

< 0 implying a downward tendency towards

µ, while the opposite is true if Xt < µ. In fact the solution of this now deterministic

ordinary differential equations is

Xt = µ
(
1− e−θt

)
+X0e

−θt

and we see that as t → ∞, Xt → µ exponentially with a rate θ. Because of this

mean reverting property, this process has, historically, been used to model several

mean reverting phenomena including interest rates and commodity prices. A general

solution to the the SDE is obtained by an application of Ito’s lemma [15]

Xt = X0e
−θt + µ

(
1− e−θt

)
+ σ

√
1− e−2θt

2θ
N (0, 1)

We see that in the steady state, when t → ∞, the distribution of nodes following

an OU process converges to a normal distribution centered about µ with variance

σ2

2θ
. We can tune the statistical properties of our mobility model by selecting the

appropriate values of µ, σ and θ.

3.4.1 Results using an OU mobility model

For our simulations, we vary the mean reverting tendency µ and compute σ so

that we attain a desired standard deviation for the nodes (i.e., the square root of the

variance.) A single standard deviation encompasses roughly 68% of samples, while

two standard deviations encompass roughly 95% of samples. Therefore, tuning the
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standard deviation of the nodes allows us to model the average spread of nodes in

the simulation. For our simulation we selected a standard deviation of 1, by using

a θ = 0.05 and a corresponding σ ≈ 0.316. Since a new direction is chosen for each

node at every time step, the trajectories of the nodes are naturally more jagged than

is the case with the RWP model. Figure 3.8 shows the results of our simulation. We

see that for these values, the message has been delivered to the sink node in roughly

10 minutes. This has been consistent across a number of repeated simulations.
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Figure 3.8: Message passing using thermodynamic algorithm on a Ornstein-

Uhlenbeck mobility model.
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Chapter 4

Conclusions and Future Work

4.1 Conclusion

In this thesis, we established the convergence in norm and distribution of the

temperature vector of a new thermodynamically inspired routing algorithm for DTN

networks, derived an expression for the mean temperature of the steady-state dis-

tribution in the stationary case, and simulated the proposed algorithm on a number

of mobility models. Through these simulations, we have demonstrated that the al-

gorithm successfully achieves its objective of delivering messages to the sink node,

and performs particularly well in heterogeneous environments. There are, however,

a number of directions this research can be expanded, both to understand additional

properties of the proposed algorithm, as well as to suggest possible improvements.

From a theoretical perspective, there are several interesting problems that can

be asked. While we have established that the algorithm is stable, in the sense that

the temperature vectors converge to a unique stationary distribution under a station-

ary connectivity assumption, perhaps the most important measure of performance

is how efficiently the algorithm routes messages from source to destination. In this

regard, it would be useful to derive an estimate of the expected latency under vari-

ous connectivity models. While this is likely to be intractable for most connectivity

models, it may be possible to attempt to find bounds for simple connectivity models
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like the i.i.d. case. Moreover, while we have established convergence in the discrete

case, convergence in the general continuous time case remains open. As mentioned

in the introduction, a possible attack towards this problem may be the discovery of

a common quadratic Lyapunov function over all possible heat transfer matrices.

From a practical standpoint, it would be interesting to examine the effect of

combining any of the replication schemes described in Section 1.2 to the delivery

performance of the algorithm. In particular, it may be advantageous to replace

the Delivery Likelihood (DL) metric of MaxProp given by Equation (1.1) by our

simpler thermodynamic metric. This would have the advantage of continuing to

measure the indirect exposure of nodes to the sink nodes, while obviating the need

for complicated maximum probability path computations.

Another possible direction for improvement of the basic algorithm, derives

from observing the performance of the algorithm on the RWP and OU mobility

models. A common pathology present in these simulation was that messages would

be passed to nodes, that though warmer than their previous carriers, were moving

away from the destination and often at the same time the original carrier was moving

towards the destination. This motivates an idea that in addition to the absolute

temperature of the nodes, the second derivative of the temperature with respect to

time might be a useful metric in making routing decisions, i.e., if the node is getting

hotter or colder with time. By discriminating along this second metric, it may be

possible that the algorithm will show improved performance in homogeneous settings

where this pathology was most commonly observed, or as the message carrier nears

the vicinity of the sink node where other possible carriers are likely have a similar
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range of temperatures.

The thermodynamically inspired routing algorithm for DTN networks, pre-

sented here, has engendered a number of interesting problems, a few of which have

been answered in this thesis. It is hoped that work on this algorithm will continue

and eventually find an application on deployed systems.
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Appendix A

An Alternative Derivation of the Matrix Exponential Function.

For any square matrix A, We want to show the equality of

lim
N→∞

(
I +

A

N

)N
=
∞∑
k=0

Ak

k!

We do this by showing that

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

Ak

k!
−
[
I +

A

N

]N ∣∣∣∣∣
∣∣∣∣∣ = 0

We begin by splitting the sum in the first term to yield the following sequence of

inequalities

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

Ak

k!
−
[
I +

A

N

]N ∣∣∣∣∣
∣∣∣∣∣ = lim

N→∞

∣∣∣∣∣
∣∣∣∣∣
N∑
k=0

Ak

k!
−
[
I +

A

N

]N
+

∞∑
k=N+1

Ak

k!

∣∣∣∣∣
∣∣∣∣∣

≤ lim
N→∞

∣∣∣∣∣
∣∣∣∣∣
N∑
k=0

Ak

k!
−
[
I +

A

N

]N ∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣
∞∑

k=N+1

Ak

k!

∣∣∣∣∣
∣∣∣∣∣

≤ lim
N→∞

∣∣∣∣∣
∣∣∣∣∣
N∑
k=0

Ak

k!
−
[
I +

A

N

]N ∣∣∣∣∣
∣∣∣∣∣+

∞∑
k=N+1

||A||k

k!

Since it is clear that the second term goes to zero as N →∞, it is only left to show

that the first term also goes to zero. The binomial expression in the first term can

be expanded using the binomial formula, as follows
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[
I +

A

N

]N
= lim

N→∞

N∑
k=0

(
N

k

)(
A

N

)k
IN−k

=
N∑
k=0

N !

k! (N − k)!

Ak

Nk

=
N∑
k=0

N !

Nk (N − k)!

Ak

k!

=
N∑
k=0

[
k−1∏
l=0

(
1− l

N

)
Ak

k!

]

Substituting this formula into the previous expression we obtain

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣
N∑
k=0

Ak

k!
−
[
I +

A

N

]N ∣∣∣∣∣
∣∣∣∣∣ = lim

N→∞

∣∣∣∣∣
∣∣∣∣∣
N∑
k=0

[
1−

k−1∏
l=0

(
1− l

N

)]
Ak

k!

∣∣∣∣∣
∣∣∣∣∣

≤ lim
N→∞

N∑
k=0

[
1−

k−1∏
l=0

(
1− l

N

)]
||A||k

k!

= lim
N→∞

N∑
k=0

||A||k

k!
− lim

N→∞

N∑
k=0

[
k−1∏
l=0

(
1− l

N

)]
||A||k

k!

To show that the above limit is zero, we prove that the second term is identical to

the first. This can be established using a sequence of functions

fN (k) =


∏k−1

l=1

(
1− l

N

)
if k ≤ N

0 if k > N

We see that for any k ∈ Z+, fN (k) is uniformly bounded by 1. Moreover, we note

that
∑∞

k=0
||A||k
k!

= e||A|| ≤ ∞. Combined, we can then make use of the bounded

convergence theorem to interchange the order of sum and limit, i.e. ,
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lim
N→∞

∞∑
k=0

fN (k)
||A||k

k!
= lim

N→∞

N∑
k=0

[
k−1∏
l=0

(
1− l

N

)]
||A||k

k!

=
∞∑
k=0

lim
N→∞

fN (k)
||A||k

k!

=
∞∑
k=0

||A||k

k!

and the equality is established. It follows that

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

Ak

k!
−
[
I +

A

N

]N ∣∣∣∣∣
∣∣∣∣∣ = 0

and equality is proved.
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