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A substantial portion of resource costs incurred by data centers relate to en-

ergy costs, with cooling energy and equipment powering energy accounting for a

major fraction. Other major costs incurred by data centers, is due to huge data

transmission volume and resultant network bandwidth consumption. In this disser-

tation, we study problems inspired by the needs to reduce energy consumption and

network bandwidth billing costs in data centers.

A significant amount of data center cooling energy is wasted due to thermal

imbalance and hot spots. In order to prevent hot spots, it is desirable to schedule the

workload in a data center in a thermally aware manner, assigning jobs to machines

not just based on local load of the machines, but based on the overall thermal pro-

file of the data center. This is challenging because of the spatial cross-interference

between machines, where a job assigned to a machine may impact not only that ma-

chine’s temperature, but also nearby machines due to directional cooling mechanisms

currently used in most data centers and subsequent hot air recirculation effects. We



define the notion of effective load of a machine, that captures this effect and analyze

several different models for two natural (both strongly NP-hard) optimization prob-

lems: 1) maximizing the profit of scheduled jobs under a cooling energy budget, and

a resultant maximum temperature limit; 2) minimizing the maximum temperature

on any machine while scheduling all jobs. For the first problem, we give a 1
2
−O(ε)

approximation for profit maximization on all three models. For the second problem

we give a 2 approximation offline algorithm and a 3 competitive online algorithm

for a single rack of machines, where the approximation factor approaches 4
3

and the

competitive ratio approaches 2, respectively as the cross-interference falls off. The

analysis of all these algorithms is tight.

Apart from cooling issues, servers consume energy while running; hence, shut-

ting down some will reduce energy consumption. In this context, we consider two

problems that have been studied in the literature: 1) the active time problem and

2) the busy time problem, The goal in both cases is to minimize the total time the

machines are ‘on’, however, in the active time model, we have access to a single

machine whereas in the busy time model we have access to unlimited number of

machines. The machines have bounded capacity and the jobs have release times,

deadlines and arbitrary processing lengths. For the active time problem, we give a

3 approximation algorithm for non-unit length jobs with integral preemption and

show our analysis is tight. We give a 2 approximation algorithm via LP rounding,

and also show that the integrality gap of the LP is 2. For the busy time model, we

give a 3 approximation algorithm which improves the best known result of 4. We

consider the preemptive problem as well and give new algorithms.



Data centers need to transmit a huge volume of data every day, and the resul-

tant network bandwidth consumption costs are extremely high. Frequently, Internet

Service Providers charge for Internet use either based on the peak bandwidth usage

in any slot in a billing cycle, or according to a percentile (often the 95th percentile)

cost model. As a result, an enterprise could save on billing costs by optimizing

these measures by delaying some traffic, if possible. However, in reality, traffic is

of different types, where some cannot be delayed, and some traffic (such as ftp,

bulk data transfer) can be delayed. We provide an optimal offline algorithm for the

percentile problem when jobs can have variable delay. We also consider the online

problem of minimizing the maximum bandwidth. There exists a tight e-competitive

online algorithm for the general problem, where the delay allowed for certain jobs

can be arbitrarily large and time is considered to be continuous. We consider smaller

values of delay and discrete time slots, since in practice we may not want to delay

traffic too much. We give new lower bounds, which are much better than e, on the

competitive ratio of online algorithms for several values of delay, and propose and

analyze online algorithms with better upper bounds than e for small delay.



ALGORITHMIC APPROACHES TO REDUCING
RESOURCE COSTS IN DATA CENTERS

by

Koyel Mukherjee

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:
Dr. Samir Khuller, Chair/Advisor
Dr. Amol Desphande
Dr. William Gasarch
Dr. David Mount
Dr. Gang Qu



c© Copyright by
Koyel Mukherjee

2013



Dedication

Dedicated to Ma, Baba, Archi, Tutun and Jeannie, with all my love.

ii



Acknowledgments

The walk to Ph.D. was long, with God guiding me and holding my hand all

along the way, and throughout, it was the constant support of Ma, Baba, Archi

and Tutun that kept me going. I owe this dissertation completely to my father Dr.

Kishalay Bikash Mukherjee, my mother Dr. Shyamali Mukherjee, my husband Dr.

Archisman Majumdar, my sister Rupsa Mukherjee and my advisor Professor Dr.

Samir Khuller.

My parents helped me realize my dream of graduate education in the United

States, when I first joined the University of Texas at Arlington for MS in Electrical

Engineering. I got a wonderful job offer at the end of my course of study, but I

wanted to study more! My family encouraged me all the way. I joined the Ph.D.

program of the Department of Computer Science, in the University of Maryland,

College Park.

I am extremely fortunate to have had Professor Samir Khuller as my advisor,

who has guided and molded me in every way. His patience with me while I came

up to speed from nearly zero background knowledge was infinite. It has been a

truly wonderful and enlightening journey as his student and to him I owe all my

knowledge in the field of Algorithms. It is due to his continued guidance and faith

on me that I am able to graduate with a Ph.D in Computer Science. My gratitude

to him can never know any bound.

Throughout the course of my Ph.D., my family has held me together with all

their care, support, understanding, and faith on me. Their sacrifices and constant

iii



support have made this dissertation possible. When self-doubts plagued my mind,

they bore the brunt of my negativity, restored my faith on myself and helped me sail

through. Ma and Baba have helped me hold strong, and their unwavering faith on

me has made me successful. I have got married during the course of my Ph.D., and

for a major part of these past three years, which were also the first three years of

my marriage, Archi and I have had to stay apart. Throughout these difficult times

of staying away, Archi has been a pillar of support holding me together, not once

complaining, bearing my depressive outbursts, and helping me get over the darkness

to see the light again.

I would like to acknowledge Jessica Chang, my friend and colleague, with whom

I have spent several hours laboring together on algorithmic problems. Working with

her has helped me to achieve better clarity of thought and writing, and I am truly

grateful for all the times she took the extra effort of picking me up and dropping me

home, since I did not have a car. My lab mates Manish Purohit and Kanthi Kiran

Sarpatwar, have become two of my treasured friends, and I will forever remember

all their help on the day of my defense, alleviating much of my stress. I also want

to mention our ex-lab mate Tom Chan, who is a valued friend as well, and the good

times and fun hours that I have spent with Jessica, Kanthi, Manish and Tom will

remain cherished as beautiful moments in my memory.

I would like to thank Professor Dr. Amol Deshpande, with whom I had the

good fortune to collaborate during my graduate studies. Not only was the experi-

ence enriching, but I also learned several latex tricks from him! I want to thank all

my committee members, Professor Samir Khuller, Professor Amol Deshpande, Pro-

iv



fessor William Gasarch, Professor David Mount and Professor Gang Qu, for their

time, help and valued suggestions regarding my dissertation and defense. I was also

fortunate to have got the opportunity to collaborate with Dr. Leana Golubchik

and Dr. Yuan Yao which was an enriching experience. I would like to acknowledge

my mentors during the internships I did during my graduate studies, from each of

whom I learned some thing new that enriched my knowledge and thinking. This

includes Dr. Venkatesan Chakaravarthy, Dr. Dinesh Garg, Dr. Sachin Garg, Dr.

Sambuddha Roy, Dr. Yogish Sabharwal and Dr. Shrutivandana Sharma. I also

want to mention that a part of my graduate studies was funded by NSF grants:

CCF-1217890 and CCF-0937865.

I would like to end by thanking God once again above all.

v



Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Cooling Energy Costs: The Thermal Scheduling Problem . . . . . . . 2
1.2 Equipment Powering Costs: The Busy-Time and Active-Time Problems 6

1.2.1 The Busy Time Problem . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 The Active Time Problem . . . . . . . . . . . . . . . . . . . . 9

1.3 Network Bandwidth Costs: The Percentile Problem and the Min-Max
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 The Percentile Problem . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 The Min-Max Problem . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 14

2 The Thermal Scheduling Problem 16
2.1 Thermal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Effective Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 One Dimensional Cross-interference Model . . . . . . . . . . . . . . . 18
2.3 Two Dimensional Cross Interference Models . . . . . . . . . . . . . . 19

2.3.1 2-D General Model: . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 2-D Horizontal Sibling Model: . . . . . . . . . . . . . . . . . . 22
2.3.3 2-D Indirect Sibling Model: . . . . . . . . . . . . . . . . . . . 22

2.4 Thermal Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Single Rack of Machines: The One Dimensional Model 27
3.1 Fractional Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Minimization of Effective Load . . . . . . . . . . . . . . . . . 28
3.1.2 Maximization of Scheduled Load under Effective Load Con-

straint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Integral Assignments: The Maximum Profit Problem . . . . . . . . . 35

vi



3.3 Integral Assignments: The Minimum Thermal Makespan Problem . . 43
3.3.1 NP-hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Offline Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Online Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Multiple Racks of Machines: Two Dimensional Models 52
4.1 Fractional Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Two Dimensional General Model . . . . . . . . . . . . . . . . 53
4.1.2 Two Dimensional Horizontal Sibling Model . . . . . . . . . . . 55
4.1.3 Two Dimensional Indirect Sibling Model . . . . . . . . . . . . 59

4.2 Integral Assignments for 2D Models . . . . . . . . . . . . . . . . . . . 64
4.2.1 General Model . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Horizontal Sibling Model . . . . . . . . . . . . . . . . . . . . . 71
4.2.3 Indirect Sibling Model . . . . . . . . . . . . . . . . . . . . . . 74

5 The Busy Time Problem 77
5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 Notations and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Interval Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.1 Kumar and Rudra’s Algorithm . . . . . . . . . . . . . . . . . 88
5.6.2 Alicherry and Bhatia’s Algorithm . . . . . . . . . . . . . . . . 90
5.6.3 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Flexible Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.7.1 Prior 4 approximation . . . . . . . . . . . . . . . . . . . . . . 95
5.7.2 A 3 approximation algorithm . . . . . . . . . . . . . . . . . . 101
5.7.3 Preemptive Model . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Active Time 112
6.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Hardness of the problem . . . . . . . . . . . . . . . . . . . . . 114
6.2 Prior Work and Our Contributions . . . . . . . . . . . . . . . . . . . 114
6.3 3 approximation for active time scheduling of chains . . . . . . . . . . 115
6.4 A 2 approximation algorithm based on LP rounding . . . . . . . . . . 121

6.4.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.2 Overview of Rounding . . . . . . . . . . . . . . . . . . . . . . 127
6.4.3 Processing d1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.4.4 Processing deadline di, i > 1 . . . . . . . . . . . . . . . . . . . 131

6.4.4.1 Dealing with a proxy slot . . . . . . . . . . . . . . . 131
6.4.4.2 Processing Yi . . . . . . . . . . . . . . . . . . . . . . 134

6.4.5 LP Integrality gap . . . . . . . . . . . . . . . . . . . . . . . . 145

vii



7 The Percentile Problem 146
7.1 The Percentile Rule and Overview of Results . . . . . . . . . . . . . . 146
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.4 Prior Work and Our Contributions . . . . . . . . . . . . . . . . . . . 150
7.5 Offline Problem: Minimizing Percentile Cost with varying Delays . . 151
7.6 Offline Problem: Minimizing Percentile Cost with Non-unit Sizes . . . 159

7.6.1 Hardness of Approximation . . . . . . . . . . . . . . . . . . . 159
7.6.2 FPTAS for MinPerc for D = 1 . . . . . . . . . . . . . . . . . 160

8 The Min-Max Problem 165
8.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.2 Prior Work and Our Contributions . . . . . . . . . . . . . . . . . . . 166
8.3 Lower Bounds for uniform delay D . . . . . . . . . . . . . . . . . . . 168

8.3.1 Lower Bound for D = 1 . . . . . . . . . . . . . . . . . . . . . 168
8.3.2 Lower bound for 1 ≤ D ≤ 4 . . . . . . . . . . . . . . . . . . . 170

8.4 Lower Bound for variable delay . . . . . . . . . . . . . . . . . . . . . 173
8.4.1 Lower Bound for D ∈ {0, 1} . . . . . . . . . . . . . . . . . . . 174
8.4.2 Lower Bound for Dmax ∈ {2, 3, . . . , 7}. . . . . . . . . . . . . . 175
8.4.3 Lower Bound for D ∈ {0, 1, . . . , d}. . . . . . . . . . . . . . . . 177

8.5 Online Algorithms for variable D . . . . . . . . . . . . . . . . . . . . 178
8.5.1 Performance of Equal Split when D ∈ {0, 1, . . . , Dmax}. . . . . 179
8.5.2 Tight Online Algorithm for D ∈ {0, 1} . . . . . . . . . . . . . 180
8.5.3 Online Algorithm for D ∈ {0, 1, 2} . . . . . . . . . . . . . . . 182

9 Conclusion 184

Bibliography 188

viii



List of Tables

8.1 New Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.2 Lower Bounds for Variable D ∈ {0, . . . , d}, 1 ≤ d ≤ 7 . . . . . . . . . 177

ix



List of Figures

1.1 EPA prepared graph providing future projections of data center en-
ergy consumption based on historical trends [72] . . . . . . . . . . . . 2

1.2 Distribution of energy consumed by data center [20]. . . . . . . . . . 3
1.3 Graph illustrating the potential for energy efficiency gains by server

utilization improvement [52]. . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Heating effect in one dimensional model. Here, we show a rack with
three machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Models of heating effect shown for two racks each with three machines:
(i) General model, (ii) Horizontal Sibling Model, (iii) Indirect Sibling
Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Percentage reduction in maximum effective load across all machines
as K varies, for different values of m . . . . . . . . . . . . . . . . . . 31

4.1 Percentage reduction in maximum effective load across all machines
as (K1, K2) vary, for different values of m1,m2 . . . . . . . . . . . . 55

5.1 (A) Collection of interval jobs, numbered arbitrarily. (B) Optimal
packing of the jobs on two machines with g = 3 minimizing total
busy time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 (A) An instance of interval jobs and g = 2. (B) A possible output by
the algorithms of Kumar and Rudra [42] and Alicherry and Bhatia [1],
of cost = 2 + ε. (C) The optimal solution of cost 1 + ε. . . . . . . . . 94

5.3 (A) An instance of interval and flexible jobs. (B)The optimal solution

of busy time g + g2+g−2
2

ε. (C)The output of the dynamic program of
Khandekar et al. [39] of busy time = 2g − 1 + g(g − 1)ε. . . . . . . . 98

5.4 Here we show the gadget for the factor 4 example. . . . . . . . . . . . 99
5.5 Output of the dynamic program on the instance of interval and flex-

ible jobs for the factor 4 example. . . . . . . . . . . . . . . . . . . . . 100
5.6 Here we show the busy time bundling produced by a possible run

of Kumar and Rudra or Alicherry and Bhatia’s algorithms on one
gadget along with the flexible job and dummy jobs. . . . . . . . . . 101

x



5.7 An example showing the minimum replaceable set of a job j, i.e.,
MRS(j) with respect to a track T . . . . . . . . . . . . . . . . . . . . 104

5.8 An example for Case 3 of Lemma 16. Here replacing MRS(j, T ∗2 ) by
j will increase the span of the union of the tracks: Sp(T ∗1 ∪ T ∗2 ). . . . 105

5.9 Gadget for factor 3 for GreedyTracking . . . . . . . . . . . . . . . 109
5.10 Possible packing by GreedyTracking . . . . . . . . . . . . . . . . 110

6.1 Here we show the optimal solution for the active time problem with
integral preemption, for an instance of 6 jobs and g = 3. . . . . . . . 114

6.2 Example of an instance where the minimal feasible solution is almost
3 times the optimal solution. . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Here we show the flow network construction for finding an integral,
feasible assignment of jobs in integrally open slots. . . . . . . . . . . 123

6.4 LP* is an optimal LP solution, and LP** is the rightshifted solution
of the same cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Here we show the three possible ways in which we charge a barely
open slot when max-flow cannot close it. . . . . . . . . . . . . . . . . 129

xi



Chapter 1: Introduction

Over the last decade, there has been a dramatic proliferation of data centers.

Not only have they increased in number, but existing data centers have expanded

in size [71]. With the ubiquitousness of the Internet, increasing popularity of social

media, and creation of billions of terabytes of new data [53, 59], the reliance on

data centers is likely to increase. The increasing popularity of cloud-computing

facilities, which are offered and hosted by data centers is further contributing to the

tremendous growth rate of data centers.

A rising concern accompanying the growth and proliferation of data centers

has been their energy usage. In fact the energy consumption of data centers has been

compared to that of a small town! This is a significant problem not limited to the

viewpoint of computer scientists, since it has a direct bearing on the environment.

According to a report by the EPA [72], in 2006, data centers consumed 61 billion

KWh of electricity, which is 1.5% of the total US electricity consumption, and cost

the US $4.5 billion, and it has increased manifold since then. In fact EPA had

projected the energy consumption of data centers over the period 2006-2011 (see

Figure 1.1).

In recent years, companies like Amazon, Google, Microsoft and Yahoo! have

1



Figure 1.1: EPA prepared graph providing future projections of data center energy

consumption based on historical trends [72]

made large investments in massive data centers supporting cloud services. Greenberg

et al. [31] attempt to give a breakup of the huge operational costs of cloud supporting

data centers. Over 55% of the costs arise from cooling, power distribution and

equipment powering and networking. In this dissertation we take a multi-pronged

algorithmic approach towards reducing some of the resource costs in data centers

arising from the above issues. We describe the problems in detail in the following

sections, and give a brief overview of our approaches and results.

1.1 Cooling Energy Costs: The Thermal Scheduling Problem

Modern data centers consist of thousands of computers closely packed in a

dense space. The power consumption is increasing with the increase in number and

computing power of servers. However, this also results in higher heat dissipation by

the servers. It is essential to maintain the temperatures of servers and computing

equipment below a certain limit in order to maintain reliability and reduce circuit

2



failures. A significant portion of the energy cost of a data center is the cost incurred

in cooling the machines in the data center [5, 19].

According to Moore et al. [54], data centers spend one-half to one Watt to

power the cooling infrastructure for every Watt of power spent for computation.

Figure 1.2 illustrates this by a pie chart.

Figure 1.2: Distribution of energy consumed by data center [20].

Data center energy management, and in particular cooling strategies have

emerged as a primary challenge. The energy cost of cooling is directly driven by

the supply temperature (denoted by Tsup) of the cold air being blown in to cool the

data center – the incoming air is often kept at a lower than necessary temperature

to prevent hotspots from forming since those can damage the hardware. It has also

been observed that servers near the top of a rack often run hotter and are subject to

higher failure rates [33]. Thermal balancing through judicious task scheduling can

lead to fewer hotspots and thus lower overall cooling costs and lower failure rates.

A reduction of even a few percent in the supply temperature could have a drastic

impact on the overall cooling costs.
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This has led to much work in better cooling technologies as well as reactive

and proactive scheduling policies in recent years. Exotic technologies like heat pipes,

liquid cooling, and immersion have been proposed and are effective to some extent,

but these techniques are expensive and do not scale with technology [29].

The potential of savings by deploying thermal aware scheduling instead of

exotic new cooling technologies can be illustrated by the following example providing

some representative numbers [54]. In a standard 30, 000 square foot data center with

1000 standard computing racks, each consuming 10 kW, the initial cost of purchasing

and installing the computer room air conditioning (CRAC) units is $2-$5 million.

This results in an average electricity cost of $100/MWhr, which translates to $4-$8

million annual cost for cooling alone. If through intelligent thermal management,

the data center can run the same computational workload with the same cooling

configuration, while maintaining an ambient room temperature that is 5◦C cooler,

the CRAC power consumption will reduce by 20%-40% resulting in a $1-$3 million

savings in annual cooling costs [54].

It has been observed that the heat generated by jobs running on a machine

raises its own temperature as well as the temperatures of nearby machines due to

recirculation effects. Such effects are well-documented both for data centers [63,70].

In addition, the geometry of the data center plays a significant role in determining

the cross-effect parameters, which are often asymmetric. For instance, in a standard

raised-floor data center where the cold air is blown in through vents in the floor, the

load on a machine closer to the ground is likely to impact the temperature of the

machines above it, but not vice versa. Thus the temperature of a machine not only

4



depends on its local load but also on the load of nearby machines.

In the first part of the dissertation, we consider the thermal scheduling prob-

lem, motivated by increasing power density and consequent cooling considerations

in data centers. We propose thermally-aware scheduling algorithms of jobs in data

centers, such that either the maximum temperature of the machines while execut-

ing a given set of jobs is minimized, or the number or profit of jobs assigned is

maximized while keeping the maximum temperature below a certain limit. Tra-

ditional scheduling models and algorithms do not provide a satisfactory answer to

these problems. The key differentiating factor here from all of the prior work in

scheduling is the notion of spatial cross-interference or cross effects, which arises

due to thermal effects.

First, we consider the fractional problem, where jobs can be arbitrarily split

between machines. We give optimal fractional strategies for minimizing the effective

load (in other words, the temperature of machines) while scheduling the entire load,

as well as for the dual problem of maximizing the number of jobs scheduled when

there is a budget on the maximum temperature, or effective load of every machine,

determined by the temperature of the cold air supply [55]. We then extend our work

to multiple racks of machines, and the more realistic and complex problem requiring

jobs to be integrally assigned to machines [56]. This is strongly NP-hard, general-

izing the multiple knapsack problem for the budgeted version, and the minimum

makespan problem for the dual problem of minimizing the maximum temperature.

We analyze several different models, and give 1
2
− O(ε) approximation algorithms

for the profit maximization problem on all of the models. For the minimization of

5



maximum temperature problem, we give a 2 approximation algorithm for a single

rack of machines, which approaches 4
3

as the spatial cross-interference factor falls

off. We also give an online algorithm for the temperature minimization problem

with a competitive ratio 3. The competitive ratio approaches 2 with the decrease

in spatial cross-interference. The analysis of all the algorithms is tight.

1.2 Equipment Powering Costs: The Busy-Time and Active-Time

Problems

Cooling is however not the only source of energy consumption. The servers

consume energy while running; hence, shutting down some will reduce energy con-

sumption. This gives rise to another fundamental scheduling problem motivated by

energy issues in a cloud computing context.

The majority of servers in a typical data center run at or below 20% utilization

most of the time, yet still draw full power during the process [62]. The cost of

powering such severely underutilized servers can account for a huge chunk of an

organization’s energy bill [52]. This also leads to increased cooling costs as well as

higher energy footprint. Consolidating underutilized servers to a fewer number of

servers will reduce energy and support costs. In fact, as Figure 1.3 shows, improving

server utilization has the highest potential for increasing energy efficiency.

Recent progress in virtualization has facilitated the consolidation of multiple

virtual machines (VMs) into fewer hosts. As a consequence, many computers can

be shut off, resulting in substantial power savings. Today, products such as Citrix
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Figure 1.3: Graph illustrating the potential for energy efficiency gains by server

utilization improvement [52].

XenServer an VMware Distributed Resource Scheduler (DRS) offer VM consolida-

tion as a feature.

1.2.1 The Busy Time Problem

Motivated by the above, we consider a batch scheduling problem, where broadly,

our goal is to batch jobs in an effective manner so that the servers or machines that

need to be ‘on’ simultaneously is minimized1. This has been studied in literature as

the “busy-time” problem, and not only cleanly captures energy related issues, but

also has connections several key problems in optical network design, perhaps most

notably in the minimization of the fiber costs of Optical Add Drop Multiplexers

(OADMs) [22,23,25,74]. In this model, jobs have a certain processing requirement,

1Some parts of this work have been done jointly with Jessica Chang, and these can also be

found in her thesis [6].
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and a specified time window within which they need to be scheduled. Every ma-

chine, which can be thought of as a virtual server, has a limited capacity for the

number of jobs that can run on it simultaneously. The goal is to batch the jobs in a

feasible manner, so that all jobs get processed, machine capacities are not violated

while the total runtime or busy-time of all machines is minimized. There is no

restriction on the number of machines that can be active at the same time in this

model. We improve the approximation factor of the known/existing algorithms for

this model for the non-preemptive version of the problem. For the special case where

the jobs do not have any flexibility of assignment within their feasible window, a

factor 4 approximation algorithm was known so far, given by Flammini et al. [22].

We show that a 2 approximation algorithm for this problem is implied by the works

of Alicherry and Bhatia [1] and Kumar and Rudra [42] for related problems. We

then consider the general problem where jobs have flexibility of assignment within

their feasible windows. For this problem, a 4 approximation algorithm was given by

Khandekar et al. [39] and also a natural extension of the algorithms of Alicherry and

Bhatia, and Kumar and Rudra give a 4 approximation. We give a 3 approximation

algorithm for this problem [8] and also show that the factor 3 is tight asymptoti-

cally. Furthermore, we also consider the pre-emptive version of this model, and give

an exact algorithm when machine capacities are unbounded and a 2 approximation

algorithm for bounded capacity.
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1.2.2 The Active Time Problem

We then consider a related problem, active time, which was introduced by

Chang et al. [7]. The setting is almost the same as in the busy time problem, except

that in this model, we do not have access to an unlimited number of machines.

There is a single machine in which jobs need to be scheduled and as in the busy

time model, the number of jobs which can run simultaneously on the machine is

limited. Jobs have associated sizes or processing requirements and release times

and deadlines, which define the feasible windows within they need to be processed.

We assume there exists a feasible schedule since determining whether one exists is

an easy problem. The goal is to minimize the total time when any job is running

on the machine, since during all such times, the machine needs to be active, hence

draw power. Chang et al. [7] considered the special case of unit jobs and gave a

polynomial time algorithm. The problem of non-unit jobs with preemption allowed

at integral time boundaries was considered by Chang [6] for which a 5 approximation

algorithm was presented. We improve the analysis of this algorithm to improve the

bound to 3, which we show to be tight. We then give a 2 approximation algorithm

for this problem using LP rounding [8] and also show that the integrality gap of this

LP is 2.
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1.3 Network Bandwidth Costs: The Percentile Problem and the Min-

Max Problem

The previous sections dealt with the energy costs of data centers and possible

optimization solutions. However, as we pointed out earlier, energy is not the only

source of the huge operational costs of data centers. A large part of the resource

costs incurred by data centers is due to the huge volume of data transmission and the

resultant network bandwidth consumption costs. Generally, Cloud Service Providers

(CSP) operate the cloud infrastructure over multiple data centers (DCs), which are

connected by very high capacity data links [58]. Most of the time, these links are

leased by the CSPs from network operators. Google, Amazon and other operators of

large data centers that host cloud computing applications need to provide services

and synchronize processed data across multiple locations, hence transmit a huge

volume of data over these links daily, and consequently pay the Internet Service

Providers (ISP’s) for the heavy bandwidth usage. Multimedia content providers such

as Akamai need to replicate video clips over servers located in different regions for

optimized content delivery. This also results in huge data chunks being transmitted

over the high speed leased links, and cost the senders a significant amount of money

on a daily basis.

Cost accounting for data transfers is performed differently from other utilities

such as energy where we are billed based on total volume used over a period of

time. For network bandwidth cost, two widely used rules for charging are 1) peak
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bandwidth usage, and 2) the 95th percentile rule [44]. Over each billing cycle (say

a day), the cycle is broken into “slots” (for example one minute period of time)

and the bandwidth usage per slot is sampled. In other words, the billing is based

on a vector x where xi is the volume of traffic sent over the ith slot. In the peak

bandwidth charging scheme, one is charged for the maximum bandwidth utilization

over any slot in one billing cycle. In the 95th percentile charging scheme, one is not

charged on the maximum, but on the 95th percentile of this vector for billing.

The CSPs end up paying for peak usage or 95th percentile of it; however a lot

of bandwidth capacity is left unused over the inter-datacenter links [58]. The links

between the data centers are used to carry both client traffic and inter-datacenter

traffic. The CSP has no control over the client traffic which has to be sent over the

link as soon as it arrives. However, the inter-datacenter traffic is primarily composed

of delay tolerant jobs, such as backup traffic, database operations, video processing,

analytics, etc. The performance requirements of such data transfers typically allow

for some transmission delay, within which the data chunks have to be delivered.

Such traffic in fact occupies as much as 40% of the inter-datacenter link bandwidth

[58]. As a result, an enterprise could save on billing costs by optimizing the billing

measures by delaying some traffic, if possible. For example, video replications over

servers at different locations do not have to be carried out exactly at 5:00PM daily.

All that is needed is that they are completed, for instance, before midnight. This

provides opportunities for data senders to optimize data transfers by attempting to

reduce the 95th percentile or peak bandwidth usage.
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1.3.1 The Percentile Problem

We first consider the percentile problem, both online and offline variants of

it. In this setting, the data transfer link has a certain capacity for peak bandwidth,

which cannot be exceeded at any point of time. Specifically, we consider a model

where (data transfer) jobs come with processing requirements (associated sizes) and

also with a specified delay, within which they must be completed. The delay varies

with jobs. We provide an optimal polynomial time offline algorithm for minimizing

the 95th or any percentile of the job transmission vector over a billing cycle for

the case when unit sized data chunks can be transmitted independently of each

other, and different jobs are allowed different amounts of delay [40]. We had earlier

studied the special case where all jobs are allowed uniform delay [28] (This problem

was also considered by Yao [76]). Our new result not only generalizes, but also

subsumes both of the above mentioned earlier works [28, 76]. When the data can

have non-uniform sizes (in other words, dependencies), the offline problem becomes

strongly NP-hard. We give a fully polynomial time approximation algorithm for a

special case. However, for the online variant of the problem, we had earlier shown

that no deterministic online algorithm can have a bounded competitive ratio [28,76].

1.3.2 The Min-Max Problem

We then consider the online problem of minimizing the maximum bandwidth,

which we call the min-max problem. Interestingly, the problem of peak bandwidth

usage minimization has connections to the energy minimization problem. Consider
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a setting where there is a single processor, which can run at variable speeds, and

jobs that need to be processed have associated release times and deadlines. For a

feasible schedule, we might need to adjust the speed of the processor, in order to

finish processing all jobs. However, the power consumed by the processor is directly

proportional to the speed at which they are running, and the speed is dictated by

release times, deadlines and processing requirements of the jobs so as to ensure

feasibility. This model was introduced and analyzed by Yao et al. [75] and since

then both the online and offline problems of energy consumption minimization in

this model has been widely studied in literature [2, 3]. Now consider time to be

discrete and the machine as a time slot, and the volume of data transferred in

the time slot as the amount of processing done by the machine at that instant.

The data requiring transmission has associated sizes, release times and deadlines,

determined by the time slot they arrive in and the allowed delay. Hence, the optimal

offline solution minimizing the peak bandwidth consumption over any time slot is the

same as the optimal offline algorithm minimizing the maximum speed of (and hence,

maximum power consumed by) a processor over a time period ensuring feasibility.

This algorithm was given by Yao et al. [75] for the energy minimization problem

(assuming the energy function is convex). For the online problem an e-competitive

online algorithm was given by Bansal et al. [2] for the general problem, where the

delay allowed for certain jobs can be arbitrarily large and time is considered to be

continuous. We consider the problem of smaller values of delay and discrete time

slots, since in practice we may not want to delay traffic or jobs too much. We

first studied this problem for the special case of uniform delay, where all jobs can
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be delayed by the same amount [28]. We now give improved lower bounds on the

competitive ratio of online algorithms for several values of uniform delay, as well

as variable delay, and give new lower bounds for arbitrarily large discrete delay

which is still small compared to the entire time period [40]. The lower bounds are

much better than the best known bound of e of Bansal et al. [2] for the variable

delay problem, and also directly improve the bounds presented by Yao [76] for the

uniform delay problem. In addition we give an online algorithm matching the lower

bound for D ∈ {0, 1}, where D is the maximum allowed delay for any job, and a 2

competitive algorithm for D ∈ {0, 1, 2} [40], both of which are better than the best

known upper bound of e.

1.4 Outline of the Dissertation

In the following chapters, we formally define the models that we have broadly

outlined in the above sections, and then we present our algorithms, results and

analysis on these models.

We formally define the thermal model in Chapter 2, and present our results for

a single rack of machines in Chapter 3. In Chapter 4, we analyze the more complex

problem of multiple racks of machines.

We introduce the busy time model in Chapter 5 and give improved approxi-

mation algorithms for the non-preemptive model, as well as new algorithms for the

preemptive model. In Chapter 6, we introduce the active time model and present

new and improved results for non-unit length jobs with integral preemption.
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In Chapter 7, we define the network bandwidth problem of percentile billing

and present optimal and near optimal offline algorithms for this problem. Finally,

we define the min-max problem in Chapter 8, and present improved lower and

upper bounds for the online version of this problem. We conclude the dissertation

in Chapter 9.
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Chapter 2: The Thermal Scheduling Problem

In this chapter, we formally define the thermal models and the optimization

problems we consider in the first part of the dissertation. We highlight how our

model abstracts the physical observations presented in the systems literature, and

also present on overview of related work in this area. We use the terms machines and

processors interchangeably. We also use the terms jobs and items interchangeably.

2.1 Thermal Model

The key consideration in thermal management of data centers is to ensure

that the temperature of any processor does not cross the red-line temperature Tred.

We base our model on the abstract heat circulation model suggested by Tang et

al. [67–70], Mukherjee et al. [57], and Varsampoulous et al. [73].

According to this model, under a steady state assumption (see below), the

temperature of the cold air Tsup required for maintaining the temperature of machine

i below the red-line is defined by the following constraint, Ti = Tsup + Di · L where

Ti is the temperature of machine i, and Di is the ith row of the heat distribution

matrix D, and L is the load or power vector. The vector L = {L1, · · · , Lm}, where

m is the number of machines, denotes the loads on the machines in terms of the
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power consumed by the jobs assigned to the machine.

The matrix D represents how the heat or load of any machine j affects machine

i (called cross-interference). Since the temperature of no machine should exceed

Tred, we have that: Tsup + maxi∈[1,...,m] Di · L ≤ Tred. Thus, given a set of jobs, our

goal is to schedule them so as to either:

1. given a constraint on maxi∈[1,...,m] Di ·L, maximize the number of assigned jobs

2. maximize Tsup (or equivalently, minimize maxi∈[1,...,m] Di · L)

For each job, we assume that we can estimate the power that will be consumed

to execute it on a machine; this can be computed using the estimated resources

required to execute the job, its time duration, and standard system power modeling

techniques [16].

The total energy consumption is obtained by adding the energy for processing

and the energy for cooling, and can be modeled as: E = L(1 + 1
CoP (Tsup)

), where

L = ΣLi is the total load on all the machines, and CoP (coefficient of performance)

is a super-linear function of the supply temperature.

The efficiency of cooling units is characterized by the coefficient of performance

(CoP) [57,67–69,73], which is typically a super-linear function of the required supply

temperature, Tsup. The CoP denotes the ratio of heat removed to the work done to

remove heat.

As with much of the prior work on thermal scheduling, we assume that the

system is in steady state. In other words, we assume the jobs are long-lived, and

analyze the system state when all the jobs have arrived and the temperatures have
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stabilized. The size of a job in this setting refers to the power consumed per unit

time to process its entire computation on any machine, instead of its length. The

heat dissipation due to a job is therefore the product of the power requirement and

the time duration over which we are examining the state of the system. This time

duration would thus be the same for all jobs, only the power needed may vary.

2.1.1 Effective Load

We formulate the problem of thermal scheduling in terms of minimizing what

we call the “effective load” on a machine. Effective load on a machine is a lin-

ear combination of the load of the machine itself and the load of other machines.

Specifically, given that the load of machine i is Li, and the effect of machine j’s

load on machine i is captured through the cross-interference coefficient Dij, the

effective load ELi is computed as follows: ELi =
∑

j DijLj where 0 ≤ Dij ≤ 1 and

Dii = 1. Our optimization problem of minimizing the maximum temperature can

now be seen as minimizing maximum effective load instead, an easier quantity to

reason about.

2.2 One Dimensional Cross-interference Model

We assume an asymmetric model of spatial cross-interference that tries to

capture the nature of the heat flow in a data center. Here we consider a model of

machines in a linear array with the cold air blowing from one end. This models the

behavior of a single rack with the cold air blowing from the floor [63] and the warm
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air moving into a vent in the ceiling and back to the HVAC unit.

In this simple model, which we call the one-dimensional model, heat is recir-

culated in one direction. The ith machine is affected only by the heat recirculated

from the machines located below it, closer to the source of the cold air. We number

machines from bottom to top, in increasing order from the cold air source. Machine

i is only affected by machines j ≤ i.

We assume the heat falls off in an exponential manner. Specifically, the heat

felt by a machine i due to machine j is a fraction 1
Kd of the load (heat) of j, where

d = |i− j| is the distance between i and j and K is a constant > 1. More formally,

Di,j = 1
K|i−j|

. For technical reasons we assume that K ≥ 2. In any case, this

is a reasonable assumption, otherwise the heat effect felt by a machine due to its

immediate neighbor in the rack can contribute to more than half of the total heat

it can handle so as not to violate Tred, which is unrealistic.

The number of machines in a rack is m ≥ 2. The effective load of the ith

machine, where 1 ≤ i ≤ m, is given as

ELi =
i∑

j=1

Lj
Ki−j (2.2.1)

Figure 2.1 illustrates the model considered in the one dimensional case.

2.3 Two Dimensional Cross Interference Models

We then generalize the above 1-D model to a 2-D array. We consider not just

one rack of machines, but a two dimensional grid, consisting of several adjacent

racks, such that there is heat distribution among the machines of one rack as in

19



1 

2 

K

L2

K

L1

2

1

K

L

3 

2 

1 

Figure 2.1: Heating effect in one dimensional model. Here, we show a rack with

three machines.

the one-dimensional model, as well as heat distribution laterally between adjacent

racks. We assume as before the cold air source is located at the bottom of the racks,

so the heat flows upward along each rack. We also assume there is a cold air source

at one end of the series of racks, so that the heat also flows laterally from one rack

to another. The heating effect is felt by a machine from the machines located below

it in the same rack, as well as from the machines located on the racks to its left, at

the same or lower position on their respective racks.

The racks are numbered in an increasing order from the cold air source and

also from bottom to top. In previous works [29,49,66] the lateral heat redistribution

is considered much weaker than the vertical one. So, the temperatures of machines

located in the same rack are more strongly coupled than those across racks. To

capture this effect we define three models of heat recirculation in the lateral direction.

In all these models, the number of machines in a single rack is m1 ≥ 2 and the

number of racks is m2 ≥ 1. The total number of machines m is therefore m1m2.
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Figure 2.2: Models of heating effect shown for two racks each with three machines:

(i) General model, (ii) Horizontal Sibling Model, (iii) Indirect Sibling Model.

The heat recirculation coefficient in the vertical direction is called K1 and in the

lateral direction as K2. We assume K1 ≥ 2 and K2 ≥ 2.

2.3.1 2-D General Model:

In the first model, which we call the general model, for a machine located at

jth row of the ith rack, where 1 ≤ j ≤ m1 and 1 ≤ i ≤ m2, we consider the effect

of loads on all machines located in rows j or lower, of all racks numbered [1 . . . i].

The vertical heat redistribution falls off as Kd
1 , and the lateral redistribution falls

off Kd
2 , with K2 > K1 to model the weaker lateral effect compared to vertical one.

The heat redistribution effect from the load on the (i′, j′)th machine on the (i, j)th

machine is
Li′j′

K1
j−j′ K2

i−i′ , i.e., the effective load on the (i, j)th machine is:

ELi,j =
i∑

i′=1

j∑
j′=1

Li′,j′

K1
j−j′ K2

i−i′ (2.3.1)

Fig. 2.2(i) illustrates the heating effect in the general model.
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2.3.2 2-D Horizontal Sibling Model:

In the second model, which we call the horizontal sibling model, the heat re-

distribution in the vertical direction, along a rack, is same as the 1-D model, but the

lateral redistribution is restricted to a single level. The vertical heat redistribution

falls off exponentially as Kd
1 , and the lateral redistribution falls off as K2. In this

model, the effective load on the (i, j)th machine is given as follows.

ELi,j =

j∑
`=1

Li,`

K1
j−` +

Li−1,j

K2

(2.3.2)

Fig. 2.2(ii) illustrates the heating effect in the horizontal sibling model.

2.3.3 2-D Indirect Sibling Model:

In the third model, which we call the indirect sibling model, the effective load

on the
(
ith, jth

)
machine is defined as

ELi,j = Li,j +
ELi,j−1

K1

+
ELi−1,j

K2

(2.3.3)

Fig. 2.2(iii) illustrates the heating effect in the indirect sibling model. (This model

was motivated as a generalization of the 1-D model. The generalization will become

clear when reading Claim 1.)

2.4 Thermal Scheduling Problem

We are given a set of jobs J , with job j ∈ J having a size sj, where the size

of a job denotes its power requirement, and hence, the thermal load caused by it on
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the assigned machine. The jobs may additionally have profits associated with them.

In this case, on scheduling a job j, we can get a profit pj. We are also given a set

of machines, and a capacity ci with each machine i which refers to the maximum

temperature or effective load it can handle (this capacity definition holds for the

maximization problem, where the cooling energy budget fixes Tsup; Tred is of course

a system dependent constant). We are also provided a cross-interference model and

the geometric configuration of the data center. Our goal is to either schedule all the

jobs while minimizing the maximum effective load (assuming that all the jobs can

be scheduled), or alternately, maximizing the number or profit of jobs that can be

scheduled, given upper bounds on maximum effective load. We assume here that

a job can be assigned to any machine. This is a reasonable assumption, if all the

machines are from the same cluster, and all have the same processing capability.

We denote the number of jobs in the given instance, i.e., |J | as n for the integral

assignment problem. For the one-dimensional problem, studied in Chapter 3, we

assume there are m machines arranged on a rack. For the two-dimensional problem,

studied in Chapter 4, there are m1 machines per rack and m2 racks, hence in total,

m1m2 machines.

It is NP-hard to find the optimal scheduling policy for the thermal schedul-

ing problem. We therefore relax the problem to the case when jobs are splittable

between machines, find an optimal solution, and then use this solution to devise

approximations for the integral assignment case. One can use LP to solve the frac-

tional assignment problem, however, we provide combinatorial insights regarding

the structure of such an optimum fractional solution, which we use to devise fea-
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sible packings for the integral case. One central contribution is to show how to

“reduce” the problem to the multiple knapsack problem with appropriately defined

capacities, so that we can safely ignore thermal constraints.

2.5 Related Work

Thermal scheduling in data centers has been an area of active research in recent

years. Spatial cross-interference effects are well-documented (see, e.g., Schmidt and

Cruz [63]). Moore et al. [54] suggest a set of heuristics for workload placement and

scheduling for controlling hot spots. Tang et al. [67] proposes a cross-interference

model to capture heat recirculation in a data center, and that model and its impact

on task scheduling has been explored in a series of works since then [57, 68, 69, 73].

We introduce the thermal scheduling problem [55] allowing fractional assignments,

following the thermal model proposed by them. Shi and Srivastava [65] also use

a similar model, but focus on the storage units (disks) instead of the compute

units (processors). Pakbaznia and Pedram [60], using a similar model, argue that

server consolidation (choosing which servers are on) is critical in minimizing the

power consumption, and address the combined problem of task scheduling and server

consolidation.

Similar to our work here, much of the above work also makes a steady state

assumption leading to a stationary temperature profile that is optimized. Some work

has considered different cooling models and their impact on task scheduling [73].

Zhang et al. [77] take time into account and give an approximation algorithm for
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voltage frequency scaling. Fisher et al. [21] use the Fourier’s cooling model to model

cooling and heating phenomena, and develop algorithms for frequency scaling. Choi

et al. [11] observe that the rise- and fall-times of on-chip temperatures are typically

an order of magnitude larger than the OS scheduler ticks, and develop an OS-

level scheduler to balance the heat and avoid formation of hotspots. Extending our

approach to formally analyze temporal effects is a rich area for future work that we

are planning to explore.

There have been several algorithmic and theoretical papers exploring the power

on and off strategies [4,34]. Yao et al. [75] and Irani et al. [34] consider the problem

of reducing the total energy consumed by controlling processor speed for a single

processor. Bansal et al. [2] and Bansal and Pruhs [3] also consider the problem of

minimizing energy and temperature for a single processor using speed scaling tech-

niques. Our work is fundamentally different since we consider multiple processors

with cross-interference and there is no speed control.

With increasing power density on multi-core chips and a trend toward 3D chip

architectures [50] that tend to exhibit high temperatures, micro-level thermal man-

agement has seen much work in last few years. In addition to investigations into

better cooling technologies, techniques have also been proposed to either reduce the

power consumption locally through frequency and voltage scaling, or by dynami-

cally redistributing the workload to handle hotspots. Gomaa et al. [29] propose a

technique called heat-and-run that uses intelligent thread assignment, and thread

migration to address the problem. Coskun et al. [14] use both voltage/frequency

scaling and task migration to reduce the frequency of hotspots. Ge et al. [26] pro-
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pose using local task swaps between neighboring cores to achieve thermal balancing;

their thermal model looks very similar to the cross-interference model that we use

in this work. Liu et al. [49] also give heuristic solutions to the problem we study.

Li et al. [48] also look at thermal management in micro chips, but when jobs have

precedence constraints. In an earlier work, Kursun et al. [43] examine the effects of

task scheduling on thermal behavior and experimentally show that thermal-aware

scheduling policies can alleviate on-chip temperatures. In recent work, Zhou et

al. [78] propose and analyze several heuristics for thermal-aware scheduling in 3D

chips.

Unlike us, prior work in spatial cross-interference has either presented heuris-

tics or suggested using ILP solvers to solve the problem, and has not attempted

to exploit the structure of the cross-interference matrix to design algorithms with

worst case guarantees.
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Chapter 3: Single Rack of Machines: The One Dimensional Model

In this chapter, we consider a single rack of machines (in essence, the one-

dimensional model). First, we study the energy savings possible when fractional

assignments are allowed, i.e., the load of a job can be split across multiple machines.

Next we consider the more difficult problem of integral assignments. For both these

cases, we consider two optimization problems: maximization of profit or number

of assigned jobs under a cooling energy budget, and minimization of maximum

temperature of any machine when all jobs need to be assigned.

3.1 Fractional Assignments

We know from Chapter 2, that higher the supply temperature, the lower is

the cooling energy consumption. However, in order not to violate the red-line tem-

perature, the supply temperature can be made higher only if the effective load on

machines can be lowered. Hence, we want to minimize the maximum effective load

on any machine. Since we are allowing fractional assignments, this implies that we

should make the effective load across all machines uniform.

A naive scheduler on the other hand would spread the load uniformly across

all the machines. However, due to the thermal cross effects, this leads to a skewed
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effective load that increases as we go left to right. The central question we consider

is: How should the load be distributed in order to minimize the maximum effective

load?

Let us first consider a simple motivating example when m = 2 and K =

2. Suppose we have an effective load capacity of one unit (the capacity being

determined by Tred for a fixed Tsup). How much load can we assign if we distribute

load uniformly? Note that if we assign 2
3

units of load to each machine, then the

effective load on the second machine is already 1 (its load plus half the load on the

first machine). However if we assign one unit of load on the first machine, then we

can assign 1
2

unit of load on the second machine, and now both machines have an

effective load of one unit. Thus we were able to assign more load by distributing

the load in a non-uniform manner.

3.1.1 Minimization of Effective Load

For this problem, all jobs need to be fully assigned and we simply wish to

minimize the maximum effective load maxi∈[1,...,m] ELi. Let the total load (power

requirement for computation of all the jobs over a unit time interval) be L, i.e.,∑
j∈J sj = L. Theorem 1 outlines the reduction in maximum effective load that

a thermally aware scheduler can achieve compared to a naive scheduler uniformly

splitting the load.

Theorem 1. The reduction in effective load that a thermally aware scheduler can

achieve compared to a naive load balanced strategy is ≥ L
m(K−1)+1

(1− 1
K

)
m−1

> 0.
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Before proving Theorem 1, we prove the following.

Claim 1. The effective load of the ith machine can be expressed as: ELi = Li+
ELi−1

K
,

where Li is the local load of the ith machine.

Proof. This claim is proved by induction. For i = 1, it is trivially true, as there is

no machine before machine 1 (i.e., EL0 = 0). Hence, EL1 = L1. Clearly EL2 =

L2 + L1

K
= L2 + EL1

K
. By the induction hypothesis, let us assume, the claim is true

for all i ≤ p, p > 1. The effective load on the p+ 1th machine is ELp+1 = Lp+1 +

Lp
K

+ Lp−1

K2 + . . .+ L1

Kp by definition. Hence, by induction, ELp+1 = Lp+1 + ELp
K

.

Lemma 1. An optimal strategy for minimizing the maximum effective load when

fractional assignments are allowed, would result in uniform effective load of EL =

L
m−m−1

K

.

Proof. An optimal strategy for minimizing the maximum effective load on any ma-

chine, would result in uniform effective load across all the machines, without loss

of generality. This is because, by redistributing load from the machine with the

highest effective load so as to smoothen out the effective load across all machines,

the cost of the solution would not increase. Let us therefore assume that the optimal

strategy makes the effective load on any machine i, ELi = EL ∀i ∈ [1, . . . ,m].

From Claim 1, the total load can be expressed as:

L = EL1 +
∑m

i=2

(
ELi − ELi−1

K

)
. Substituting EL for all ELi, i ∈ [1, . . . ,m],

EL = L
m−m−1

K

.

An optimal strategy minimizing the maximum effective load would therefore,
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assign load L1 = EL on machine 1, and a load Li = EL
(
1− 1

K

)
on machine i for

all 2 ≤ i ≤ m, where EL = L
m−m−1

K

.

Lemma 2. An optimal strategy for minimizing the maximum load for a fractional

assignment with total load L, would result in maximum effective load

ELmax =
L(1− 1

Km
)

m(1− 1
K

)
.

Proof. An optimal strategy for minimizing the maximum load in a fractional assign-

ment setting would distribute the load uniformly among the machines, hence Li = L
m

for all i ∈ [1, . . . ,m]. Machine m would have the maximum effective load because

of the cumulative heating effect from all machines below it. Hence, ELmax = ELm,

where ELm = L
m

(∑m
j=1

1
Km−j

)
= L

m

(1− 1
Km

)

(1− 1
K

)
.

Proof of Theorem 1:

Proof. Let the savings in maximum effective load be ∆EL. From Lemmas 1 and 2,

∆EL =
L

m

(
1− 1

Km

1− 1
K

)
− L

m− m−1
K

=
L
(

1 + 1
m(K−1)

− 1
Km − 1

Kmm(K−1)
− 1
)

m
(
1− 1

K

) (
1 + 1

m(K−1)

)
=
L K

(
1

m(K−1)

(
1− 1

Km

)
− 1

Km

)
m(K − 1) + 1

=
L (Km − 1−m(K − 1))

Km−1 (m(K − 1) + 1) (m(K − 1))

Writing Km = (1 + (K − 1))m, and using binomial series (since K > 1), we get:

Km = 1 +
(
m
1

)
(K − 1) +

(
m
2

)
(K − 1)2 + ... +

(
m
m

)
(K − 1)m. In other words, Km >

1 +m(K − 1) + (K − 1)m, when m ≥ 2. Therefore, the savings in effective load can
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Figure 3.1: Percentage reduction in maximum effective load across all machines as

K varies, for different values of m

be expressed as

∆EL >
L(K − 1)m

Km−1(m(K − 1) + 1)(m(K − 1))
=

L

m(K − 1) + 1
(1− 1

K
)
m−1

.

This proves the theorem.

Consider the following example. Let the total load be 10, the number of

machines in the rack be 7 and K = 3. The maximum effective load by the thermal

aware strategy would be 10
7− 6

3

= 10
5

= 2. The naive uniform load strategy would put

a load of 10
7

unit on every machine, such that the maximum effective load (on the

last machine) would be 10
7

1− 1
37

1− 1
3

, which is equal to 2.142. The percentage savings

would be 6.6%.

In Figure 3.1 we show the percentage reduction in effective load for different

values of m and K.

From Theorem 1, we can see that the savings fall off with increasing m. In

hindsight, this is obvious because, as the number of machines piled up on one rack

increases, and we can only increase the load of the first machine (near the cold air
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source), so the decrease in effective load will reduce. Of course the precise reduction

is a function of the recirculation model we use.

The savings in maximum effective load translates into savings in energy of the

cooling system. Let the maximum effective load without thermal aware scheduling

be ELold and the one with thermal savings be ELnew. We have already noted that

that the energy consumed = energy for processing + energy for cooling is

E = L(1 +
1

CoP (Tsup)
) = L(1 +

1

CoP (Tred − ELmax)
) (3.1.1)

where L is the total load, and CoP is a super-linear function of the supply temper-

ature. Let us assume a simple function for CoP: CoP (T ) = T 1+δ, for some δ > 0.

Therefore, the cooling energy consumption is given by L

(Tred−ELmax)1+δ
. Let us de-

note the cooling energy consumed by a naive strategy splitting the load uniformly

be Eold, and that consumed by the optimal thermally aware strategy be Enew. and

their difference by ∆E = Eold − Enew. The next theorem outlines the fraction of

savings in cooling energy by a thermally aware strategy.

Theorem 2. The fraction of cooling energy that can be saved by an optimal ther-

mally aware strategy is ∆E
Eold

> ∆EL
Tred−ELnew

, where, ∆EL is the savings in effective

load, ELnew is the optimal effective load as generated by the optimal fractional strat-

egy, and Tred is the red-line temperature.

Proof. The difference in energy consumed is:

∆E = L
(

1

(Tred−ELold)1+δ
− 1

(Tred−ELnew)1+δ

)
= L

(Tred−ELold)1+δ

[
1−

(
1−ELold

Tred

1−ELnew
Tred

)1+δ
]

.

32



∆E = Eold

1−

(
1− ELnew

Tred
+ ELnew−ELold

Tred

1− ELnew
Tred

)1+δ


= Eold

[
1−

(
1− ∆EL

Tred − ELnew

)1+δ
]

Obviously, (1− x)1+δ < 1 − x, for any 0 < x < 1 and 0 < δ < 1. Substituting,

we get: ∆E
Eold

>
(

1− 1 + ∆EL
Tred−ELnew

)
= ∆EL

Tred−ELnew
. Hence the savings are directly

proportional to the reductions in effective load.

3.1.2 Maximization of Scheduled Load under Effective Load Con-

straint

Until now we assumed that the total load L needs to be scheduled, and tried

to minimize the cooling energy consumption. The dual problem asks what is the

maximum amount (or profit) of load that can be scheduled without violating the

red-line temperature, when the supply temperature Tsup is fixed. Note that this

fixes the effective load capacity of every machine, since both Tsup and Tred are now

constants. We consider machines to be identical, hence all jobs can be assigned to

all machines, and the effective load capacity of every machine is c, as determined by

Tsup and Tred.

We next outline an optimal packing strategy for the fractional problem.

Lemma 3. Let c be the capacity constraint for the processors. An optimal strategy

packs the first machine completely, and all other machines to an extent of c(1− 1
K

).

Proof. First we show that the above packing strategy is thermally feasible. When
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the first machine is filled to c, the second machine can only be filled to capacity

c(1 − 1
K

) in order to not violate the effective load capacity c. If indeed machine 2

is packed up to c(1 − 1
K

), note that its effective load becomes c, and hence it now

creates an recirculated load of c
K

on machine 3. If all the machines 2 ≤ j < i are

filled to c(1− 1
K

), it can be seen from Claim 1 and induction, that the ith machine

can be filled up to c(1− 1
K

) without violating feasibility and if filled up to c(1− 1
K

)

its effective load due to recirculated heat from earlier machines would be c. Hence

this packing is feasible, and we prove its optimality in the following paragraph.

Suppose for the sake of contradiction, the optimal strategy does not pack the

first machine to capacity c, but to c′ = c− δ, leaving some unused space. The total

extra space (for assigning more load without violating feasibility) available across

all the other machines because of this would be δ( 1
K

+ 1
K2 + ... + 1

Km−1 ) < δ since

K ≥ 2. Hence we will never be able to pack more items by leaving unused space

in the first machine, in the fractional case. Suppose the first machine is filled to c,

and all machines j < i, j ≥ 2 are filled to c(1− 1
K

), and the ith machine is filled to

capacity c(1 − 1
K

) − δ. Then as before, the extra capacity that would be available

across all machines after i, would add up to less than δ, hence it would not be

profitable to leave any unused space, as long as there is unassigned load.

Thus in the above setting, the maximum load L that can be scheduled without

violating thermal constraints is c
(
m− m−1

K

)
.

Theorem 3. The fraction of extra load we can assign by a thermal aware strategy

is
1− 1

Km

m(K−1)
− 1

Km .
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Proof. The total load that can be assigned in the thermal aware strategy is clearly

c
K

+ (1 − 1
K

)mc. If we distribute the load L uniformly (naive scheduler), then as

shown above the maximum effective load on machine m will be (given by Lemma 2)

L
m

(1− 1
Km

)

(1− 1
K

)
. Since this should be at most c, we get the desired bound on L. Putting

it together with the bound on effective load in the thermal aware strategy we get

the desired result.

Note that when m = 2 and K = 2 we get
1− 1

4

2
− 1

4
= 1

8
. This is the improvement

we observed in the prior example (
3
2
− 4

3
4
3

= 1
8
). When m = 4 we can assign an extra

11
64

fraction of load.

3.2 Integral Assignments: The Maximum Profit Problem

We now consider the case where the jobs need to be integrally assigned to

machines. In the maximum profit problem, the goal is to maximize the profit by

scheduling as many jobs as possible without violating thermal constraints, when the

supply temperature is fixed. As in the fractional case, the fixed supply temperature

Tsup creates a budget or capacity constraint on every machine with respect to its

effective load, which we denote as c for all machines. This capacity refers to effective

load, hence the actual space available for accommodating the load assigned to a

machine may be lower than c in order for the effective load not to exceed c, and

violate thermal feasibility.

Recall that in the fractional case, the optimal strategy was to pack the first

machine up to c, and each subsequent machine up to c
(
1− 1

K

)
, till we run out

35



of machines or load to assign. Since now the jobs have to be assigned integrally,

it is possible that the machines cannot be filled completely to occupy the entire

space c in the first machine and c(1 − 1
K

) in the other machines. Suppose in some

packing strategy, the jobs assigned to the first machine occupied a total space c′ < c.

Consequently, the space available in the second machine is now no longer limited

to c
(
1− 1

K

)
for maintaining the effective load capacity, but is slightly more. This

extra space might allow us to fit an extra job in this machine. Hence the optimal

packing may not have a straightforward pattern of c, c(1− 1
K

), ..., c(1− 1
K

) anymore.

Let an optimal solution pack machine i, (i ∈ [1, . . . ,m]) up to a capacity ci, where

0 ≤ ci ≤ c and the effective load at i is ≤ c for all i.

Henceforth we refer to the sequence c1, c2, ..., cm, as a “pattern” or “layout”

of capacities, interchangeably. If c1 < c, we refer to δ1 = c − c1 as the gap left

in the first machine by a strategy. Similarly, if ci < c(1 − 1
K

) for i > 1, we refer

to δi = c(1 − 1
K

) − ci as the gap left in the ith machine by the particular packing

strategy.

An underloaded machine is one for which the effective load is at most c − ∆

where ∆ is the size of the largest job.

Lemma 4. Among all optimal solutions, there is way to assign jobs so that if ma-

chine i is an underloaded machine, then all machines j > i are also underloaded.

Proof. Suppose this is not true. In other words there is an optimal solution that has

an underloaded machine i and machine j > i such that j is not underloaded. Select

the smallest such numbered machine j. We can assume now that j = i + 1. Move

36



jobs greedily from machine i + 1 to machine i until machine i is not underloaded

any more. (The assumption on ∆ ensures that the packing on i remains feasible at

each step.) If the total shifted load is s then the effective load on i goes up by s,

and the load on i+ 1 goes down by s. However the effective load on i+ 1 goes up by

s
K

, but the drop in the real load of s compensates for this and the new effective load

is only lower than the effective load initially. In a similar way, the effective load of

all later machines also decreases.

NOTE: This lemma holds more generally, for any function where the effect

of i on j is monotonically decreasing as j gets further away from i.

However, this does not mean, that for any set of jobs with arbitrary sizes,

the capacity pattern of any optimal strategy is monotonically decreasing or of any

regular form, like the fractional case. The optimal strategy might have a capacity

pattern that is quite irregular, decreasing in the middle, and again rising at the

ends, or any other arbitrary pattern, and this is the case even if we assume a limit

on the sizes of the objects. In fact, when the sizes are allowed to be arbitrary, we can

always construct examples, where the optimal strategy might require a completely

arbitrary distribution.

The following examples show that even when the maximum allowed object

size is fixed, the optimal capacity distribution might follow an irregular and non-

monotonic pattern.

Example 1

Let the maximum object size be c
2
, where c is the effective load limit of every
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processor. There are three processors. There are three objects of size c
2
, and two

objects of size 13c
32

. Let K = 4 in this case. It can be easily verified, that the only

way to fit all these objects, and hence achieve maximum profit without violating

the thermal constraints is to put two objects of size c
2

in processor 1, thus filling it

to capacity, then placing the remaining object of size c
2

in processor 2, thus leaving

a space of c
4

here, and putting the remaining two of size 13c
32

on the third processor,

thus filling it to its capacity of effective load. This does not violate the thermal

constraints for any processor, as the first one does not have any thermal constraints,

the second one still has available space, having an effective load of only 3c
4

, and

the effective load on the third one (following the formulation proved in Claim 1)

is 3c
16

+ 13c
32

+ 13c
32

= c. Thus the actual capacity pattern of the optimal strategy is

c, c
2
, 13c

16
.

The following example shows the pattern might be even more complicated

having “gaps” (less than the size of any object) in two consecutive machines, which

helps to accommodate an extra object in the third one. These gaps get created

because objects need to be assigned completely to machines. However, as can be

seen in the example, these gaps were necessary in order to fit all the objects without

thermal violation.

Example 2

Let K = 4. There are 4 processors, we have one object of size c, 3 objects of size

11c
48

, 3 objects of size 41c
192

, and 4 objects of size 25c
128

. An optimal arrangement fitting

them all is the object of size c in processor 1, 3 objects of size 11c
48

in processor 2,

3 objects of size 41c
192

in processor 3, and 4 objects of size 25c
128

in processor 4. This
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gives an actual load capacity layout of c, 11c
16
, 41c

64
, 25c

32
. With a little effort it can be

seen that this is an optimal packing. The optimal capacity pattern can therefore be

quite arbitrary.

We next describe an algorithm for maximizing profit, given an effective load

capacity of c and an instance of jobs, J , where each job j ∈ J has a thermal size sj,

and profit pj. Let us denote by ∆ be the maximum size of any job: ∆ = maxj∈J sj.

In the following algorithm, we artificially set the actual load capacities of the ma-

chines to the values as dictated by an optimal fractional packing, and show an

existential result, that there exists packing on the modified load capacities which

is close to an optimal integral solution. We can now consider the machines with

modified capacities as knapsacks, and the input instance J as a set of items with

sizes and profits to be packed in the knapsacks without violating the capacities and

maximizing the total profit of items packed. Hence, after setting the machine capac-

ities, Algorithm 1 uses any of the polynomial time approximation schemes (PTAS)

for the strongly hard multiple knapsack problem, due to Chekuri and Khanna [10]

and Jansen [35], for generating a packing with minimal loss. Let µ be a lower bound

on the number of jobs that can be packed in any machine i, once its load capacity

has been artificially set to ci. We assume µ ≥ b c(1− 1
K )

∆
c ≥ 1. In practice it is much

greater than 1 and the approximation guarantee would increase monotonically with

µi.

Lemma 5. Algorithm 1 produces a thermally feasible packing.

Proof. The proof follows from Claim 1.
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Algorithm 1 Algorithm for the One Dimensional Model. Input: c, J
1: Set the load capacity of machine 1, as c1 = c, and the load capacity of any

machine i, i ∈ [2, . . . ,m], as ci = c
(
1− 1

K

)
.

2: Run the PTAS for multiple knapsack using the modified machine capacities on

the instance J .

Theorem 4. Algorithm 1 produces a µ
µ+1
− O(ε) ≥ 1

2
− O(ε) approximation to an

optimal solution for the maximum profit problem on any instance J , in polynomial

time for any fixed ε > 0.

Proof. First we consider the maximum cardinality (or unit profit) problem, and show

that there exists a packing on the chosen capacity pattern in which we can miss out

on at most one job per machine compared to an optimal solution. Let us consider

an optimal solution OPT . OPT might pack some machines i to an extent lower

than ci. Let us refer to such machines as underpacked. Similarly, some machines j

may be packed to an extent greater than cj in OPT . We refer to such machines as

overpacked. If the optimal solution has packed a machine i up to c′i, it is said to have

a gap of δi = ci − c′i. The gaps may be zero, positive or negative, however, the gaps

of interest to us are those which are positive, occurring in underpacked machines.

Let i be the first overpacked machine in OPT , and the sum of sizes of jobs

packed in i in OPT be c′i. (Clearly, for a feasible solution, if there exists any such i,

i > 1). For this arrangement to be feasible, without violating thermal constraints,

some machines j < i must be underpacked with positive gaps.

We repack or reassign the jobs (in arbitrary order) from i to underpacked

machines j < i with gaps using some heuristic such as First-Fit, such that the

40



thermal constraints are not violated. Specifically, as long as i is overpacked, and

there exists a job k in i, such that sk ≤ δj for any underpacked machine j < i, we

reassign k to j from i, and adjust the capacities and gaps accordingly. Note that

by this reassignment, the total effective load on machine j does not exceed c, as

cj − δj + sk ≤ cj.

If i is no longer overpacked, then we move to the next overpacked machine

after i and repeat this process. Otherwise, i is still overpacked, but we are unable

to move any more jobs from i to any j < i due to size constraints. This implies

that among all the jobs remaining in i, the smallest size job si,min > δmax, where

δmax = maxj<i δj, (δj denotes the gap in j after the reassignments). However, from

Claim 1, this implies that the capacity to which i is packed currently must be

c′i ≤ c
(
1− 1

K

)
+ δmax. This is because, the extra space over and above ci in i is the

largest when all of the machines [1, . . . , (i− 1)] are underpacked with each having a

gap of δmax. Therefore, the effective load in machine i is: c′i +
∑

j<i
cj−δmax
Ki−j ≤ c, the

current packing being feasible. On substituting cj for all j < i, we get the bound on

c′i for K ≥ 2. Therefore, if we remove any job from i, it will become underpacked.

We discard any arbitrary job from i and proceed to the next overpacked machine.

By the above procedure, the effective load on i can not increase. This is

because, the new effective load created by a job of size k on being reassigned to a

machine j < i, is sk
Ki−j < sk, where sk is the drop in the local load of i. This implies

that the feasibility in later machines i + d, d ≥ 1 are not affected by this process.

That is because, from Claim 1 and the definition of the one-dimensional model, we

can express ELi+d = Li+d+
∑i+d−1

j=i+1
Lj

Ki+d−j + ELi
Kd , and we have not changed the loads

41



of machines [(i + 1), . . . , (i + d − 1)]. Hence, we now move to the next overpacked

machine after i and repeat the above procedure.

At the end, we would have no overpacked machines, and we have lost at most

one job per machine. Since µ ≥ 1, any overpacked machine must have contained ≥ 2

jobs. Therefore, in the above procedure, when we discard a job from an overpacked

machine, we will still have one job in it, and hence at the end, we get at least

half the number of jobs packed by OPT . In the profit case, while discarding a job

from an overpacked machine, we choose the least profit job from the machine, thus

ensuring that for every job we discard, another distinct job of equal or greater profit

remains in the packing, to which we can charge the profit of the discarded job. No

job is charged more than once, since according to the repacking procedure described

earlier, once a job is discarded from a machine, it is no longer overpacked. Hence,

at the end, we get at least half the profit of OPT .

If we had access to an optimum multiple knapsack oracle, our approximation

would have been ≥ µ
µ+1
≥ 1

2
. However, this being a strongly NP-hard problem,

we use a PTAS for multiple knapsack( [10], [35]) to get a µ
µ+1
− O(ε) ≥ 1

2
− O(ε)

approximation to OPT in polynomial time for any fixed ε > 0.

The factor of 1
2

is asymptotically tight as can be seen in the following example.

Let the effective load capacity of any machine be 1 and there are m machines and

2m jobs. The optimal solution packs 2 objects of size 1−ε
2

in machine 1, 2 objects

of size
1− 1

K

2
+ ε

4K
in machine 2, 2 objects of size

1− 1
K

2
+ ε

8K2 in machine 3 and so
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on, till on machine m it packs 2 jobs of size
1− 1

K

2
+ ε

2mKm−1 . Algorithm 1 would

miss one object from each of machine [2 . . .m], hence it will give an approximation

m+1
2m

= 1
2

+ 1
m
≈ 1

2
when m is large.

3.3 Integral Assignments: The Minimum Thermal Makespan Prob-

lem

In this section we consider the dual problem where we need to assign all jobs

and the objective is to minimize the maximum effective load or thermal makespan

on any machine. We had earlier analyzed this problem where fractional assignments

are allowed, while here we only allow integral assignments. We analyze both offline

and online variants of this problem for a single rack of machines (1D model).

Formally, there are m machines and and n jobs. The objective is to

minimize maxi∈[1...m] ELi while scheduling all the jobs. This problem is obviously

NP-hard for general m and n as it is a generalization of the minimum makespan

problem.

Note that the maximum effective load may be on a machine that may not have

the maximum load assigned among all machines. For example, suppose m = n ≥ 2,

(m− 1) of the jobs are of unit size and assigned to machines [1 . . . (m− 1)], and one

job is of size 1− ε, assigned to machine m. The machine m therefore has the lowest

load among all machines. However, the effective load on m is
1− 1

Km

1− 1
K

− ε. It can be

verified that if ε < 1
Km−1 , then machine m has the largest effective load.
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3.3.1 NP-hardness

The problem of minimizing maximum effective load obviously generalizes the

minimum makespan problem, which is strongly NP-hard. However, when the num-

ber of jobs is less than or equal to the number of machines, the minimum makespan

problem is not NP-hard, and any arbitrary arrangement of the jobs will be optimal.

However, the minimum effective load problem does not have any such trivial

solution for the case of n ≤ m. In fact, we show that the problem remains NP-hard

even when n = m. The reduction is from another scheduling problem inspired by

thermal issues, studied by Chrobak et al. [12]. In their model, they have a single

machine, time is considered to be slotted and the input is a set of unit length

jobs of unit profit, with release times, deadlines, and arbitrary heat contributions

(analogous to heat sizes of jobs in our model). In order to get the profit of a job,

it needs to be scheduled within its feasible window for a unit length of time. There

is temporal drop-off of temperature, specifically, if at the time a job of heat size

h is scheduled, the temperature of the machine is τ , then after the execution of

the job, the temperature of the machine is τ+h
2

. They have a hard constraint on

the maximum temperature that the machine can reach at any time step, which

is normalized to 1, and the goal is to schedule as many jobs as possible without

violating the temperature constraint at any time step. They show that even when

all jobs have the same release times and deadlines, it is NP-hard to maximize the

number of jobs scheduled, by a reduction from numerical 3D matching.

We show that minimizing the maximum effective load on any machine (in the
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one-dimensional model with K = 2) is NP-hard by a reduction from the problem

studied by Chrobak et al. [12]. The crucial observation is that the time axis can be

interpreted to be the space axis; specifically, every time slot can be interpreted as

a separate machine. Chrobak et al. [12] show NP-hardness for an instance where

there are m jobs, each with release time 0 and deadline m, and heat contribution hj

for job j. We create an instance of the minimum thermal makespan problem from

this instance by creating m jobs, with each jobs heat size sj =
hj
2

, and m machines,

with spatial cross-interference coefficient K = 2. It can be seen that if there exists

a schedule for the instance of Chrobak et al. [12] with throughput m, there exists

a schedule of jobs in the one-dimensional model such that the maximum effective

load on any machine is 1. Similarly, if there exists a schedule in the one-dimensional

model with maximum effective load on any machine = 1, there exists a schedule for

the instance of Chrobak et al. of throughput = m.

Therefore, the following theorem follows from the work of Chrobak et al. [12].

Theorem 5. The offline problem of minimizing the maximum effective load for the

one-dimensional case is strongly NP-hard even when the number of jobs n is equal

to the number of machines m.

3.3.2 Offline Algorithm

We show that applying Graham’s LPT scheduling [30] algorithm gives a

max
(

K
K−1

, 4K−3
3K−3

)
approximation to the minimum thermal makespan problem. This

analysis is tight both for K = 2 which is the minimum value of K, as well as
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asymptotically, since for no cross-effects, or K → ∞, it is well known that LPT

gives a 4
3

approximation.

The algorithm is formalized below. The intuition for favoring lower indices

is that these machines are closer to the source of cold air. We denote the load on

machine k as Lk.

Algorithm 2 Algorithm using load as the decision metric

1: Sort and order jobs in a list in non-increasing sizes.

2: Assign the next job on the list to machine k such that, Lk ≤ Lj ∀j ∈ [1 . . .m]

and Lk < Lp ∀p < k.

Theorem 6. Algorithm 2 achieves an approximation ratio of max( K
K−1

,
(

4K−3
3K−3

+ 1
3m

)
)

for 2 ≤ K < 3 and 4K−3
3K−3

for K ≥ 3.

Proof. Let i be the machine with the maximum effective load after all jobs have been

assigned. Machine i was assigned p ≥ 1 jobs. Let the size of the last job assigned

to this machine be si,p. We denote the optimal solution cost as OPT . Consider

the iteration when si,p was placed on i. The following hold in this iteration: 1)

Li ≤ Lj ∀j ∈ [1 . . .m], 2) all jobs assigned so far are larger in size than si,p. So, if

p ≥ 3, obviously OPT ≥ 3si,p. We will consider two cases separately: 1) si,p >
OPT

3

and 2) si,p ≤ OPT
3

.

Case 1. si,p >
OPT

3

As argued above, this case is possible only when p = 1 or p = 2. In this case,

we will show that ELi ≤ K
K−1

OPT .
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Suppose p = 2; consider the iteration when si,2 was placed on i. The following

claims are true at that iteration.

Claim 2. Lj = sj,1 ≥ si,1 ∀j ≤ i

Proof. Algorithm 2 places si,2 on the machine with the minimum load, favoring

lower indices. Hence, Lj > si,1 ∀j < i. Moreover, each j < i could have only

received a single job so far, since Algorithm 2 considers jobs in non-increasing size

order, and assigns them to lowest load machines, favoring lower indices. Hence, jobs

larger than si,1 were placed on machines j < i.

Claim 3. Either Lk = sk,1 = si,1 or Lk ≥ 2si,2 ∀k > i.

Proof. Since Algorithm 2 placed si,2 on i, all machines Lk ≥ si,1 ∀k > i. However,

for each such machine, sk,1 ≤ si,1. If some k > i has only one job, then sk,1 = si,1,

otherwise, si,2 would have been placed on k. On the other hand, if k has ≥ 2 jobs,

since these jobs were placed earlier than si,2, Lk ≥ 2si,2.

Lemma 6. If p = 1 or p = 2, Li ≤ OPT .

Proof. It is obvious for p = 1. For p = 2, we use the above claims to prove the

lemma. If i = m then obviously Li = Lm ≤ OPT . This follows from Claim 2.

Hence, let us assume i < m. Let the number of machines k > i with single jobs be

`. Therefore, from Claim 2, we know that, in OPT, there are i+ ` jobs of size ≥ si,1.

Let us call them big jobs. (Note that if i+ ` = m, once again, trivially, Li ≥ OPT ,

hence, we assume i+ ` < m.)
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We know from Claim 3 that there are at least 2 (m− (i+ `)) + 1 jobs of

size ≥ si,2 that OPT would need to assign. Let us call this set as small jobs. If

the optimal solution paired any of the big jobs with the small jobs, then clearly,

Li ≤ OPT . Hence, we assume that none of the big jobs were paired with any of

the small jobs in the optimal solution. This implies that the small jobs must have

been distributed among (m− (i+ `)) machines. However, that requires at least one

of these machines to have load ≥ 3si,2, which implies, OPT ≥ 3si,2, which is a

contradiction. Therefore, Li ≤ OPT .

From Claim 1, we know ELi = Li+
ELi−1

K
. Since by assumption, ELi ≥ ELj∀j,

ELmax ≤ Li + ELmax
K

. Applying Li ≤ OPT , we get, ELmax ≤ K
K−1

OPT .

Case 2. si,p ≤ OPT
3

.

Consider the iteration in which si,p was assigned to i. Let us denote the load

on any machine j in this iteration as L′j. Since LPT assigned si,p to i for job si,p,

L′i ≤ L′j ∀j. Hence, L′i ≤
∑m
j=1 L

′
j

m
. The total load being L, we have L′i ≤

L−si,p
m

. The

effective load on i is ELmax ≤ L′i + si,p + ELmax
K

. Substituting for L′i, we get

ELmax ≤
K

K − 1

(
L− si,p
m

+ si,p

)
=

K

K − 1

(
L

m
+ si,p

(
1− 1

m

))
.

We know si,p ≤ OPT
3

. From Claim 1, the minimum effective load for the

one-dimensional system when jobs can be distributed fractionally is EL = L
m−m−1

K

.

Therefore this is a lower bound on OPT . Applying these lower bounds on OPT ,
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we get

ELmax <
K

K − 1
OPT

(
1− 1

K
+

1

mK
+

1

3
− 1

3m

)
= OPT

(
1 +

K

3(K − 1)
− K − 3

3m(K − 1)

)
.

Therefore, ELmax ≤ OPT
(

4K−3
3K−3

+ 1
3m

)
for 2 ≤ K < 3 and ELmax ≤ OPT

(
4K−3
3K−3

)
for K ≥ 3.

For K = 2, K
K−1

= 2 ≥
(

4K−3
3K−3

+ 1
3m

)
. For this case, there is a tight example.

Let instance I have a very large number of machines m → ∞. Let the number of

jobs be very large n, however, n << m and all jobs are of unit size. The optimal

strategy would space out the jobs with one job on the first machine, one on the

last machine, and the rest distributed sparsely such that, the effective load on any

machine is ≤ (1 + ε), where ε → 0. This will be possible if n << m. However, our

algorithm will place the jobs on the n consecutive machines, resulting on a maximum

effective load on the nth machine which is
1− 1

Kn

1− 1
K

≈ K
K−1

= 2 for very large n. Hence

the approximation is ≈ 2− o(ε).

For K ≥ 3, K
K−1
≤ 4K−3

3K−3
. For higher values of K, the approximation tends to

4
3
, which is a tight approximation factor for minimum makespan problem as well.

Hence this analysis is tight.
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3.3.3 Online Algorithm

Here we consider the above problem in an online setting. Specifically, we have

m machines, and the jobs arrive in an online fashion. Once a job arrives, we have to

assign it to a machine and the decision is irrevocable. The objective is to minimize

the maximum effective load or the thermal makespan. We assume the jobs are

long-lasting, and hence ignore any temporal effects.

We show Graham’s List Scheduling algorithm gives a 2K−1
K−1
− 1

m
approximation

to the online problem of minimizing thermal makespan. The algorithm is simple.

When a job arrives, assign it to the machine with the minimum load.

Theorem 7. Graham’s list scheduling algorithm gives a 2K−1
K−1

− 1
m

approximation

to the online problem of minimizing thermal makespan.

Proof. Let the machine with the largest effective load ELmax be i. Let the last job

assigned to this machine be si and the load on i before assigning si be Li. We know

ELmax ≤ Li + si + ELmax
K

, or, ELmax ≤ K
K−1

(Li + si). Obviously, si ≤ OPT . When

si was assigned to i, Li ≤ Lj ∀j ∈ [1 . . .m]. Hence, Li ≤
∑
j∈[1...m] Lj

m
. If the total load

to be assigned is L, we have Li ≤ L−si
m

. We know, from Claim 1, OPT ≤ L
m−m−1

K

.

Applying the lower bounds on OPT , we get,

ELmax ≤
K

K − 1
OPT

(
1− 1

K
+

1

mK
+ 1− 1

m

)
≤ OPT

(
2K − 1

K − 1
− 1

m

)
.
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The analysis is essentially tight, since it is well known that for no cross effects,

or K → ∞, list scheduling gives a 2 − 1
m

approximation, which is what we get

asymptotically.
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Chapter 4: Multiple Racks of Machines: Two Dimensional Models

In this chapter we discuss the three different two-dimensional thermal models,

introduced in Chapter 2. For each of these models, we derive optimal fractional

load distribution strategies so as to minimize maximum effective load, as we did in

the previous chapter. From this analysis it is easy to derive the corresponding three

theorems that bound: (a) how much extra load can be assigned due to our strategy

compared to a naive load distribution strategy subject to a thermal constraint, (b)

the reduction in maximum effective load on a machine for a given load that needs

to be distributed, and (c) the savings in cooling costs. In Section 4.2 we discuss

the NP-hard problem of maximizing profit of assigned jobs, in the presence of hard

thermal constraints, when only integral assignments are allowed. We show how

to develop approximation algorithms for assigning jobs by fixing the effective load

capacities for each machine, which lets us now completely ignore thermal constraints

and reduces the problem (as before) to a multiple knapsack problem.
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4.1 Fractional Assignments

4.1.1 Two Dimensional General Model

In this model, the heat redistribution effect of the load on the (i′, j′)th machine

on the (i, j)th machine is
Li′j′

K1
j−j′ K2

i−i′ . That is, the effective load on the (i, j)th

machine is

ELi,j =
i∑

i′=1

j∑
j′=1

Li′,j′

K1
j−j′ K2

i−i′ (4.1.1)

Claim 4. The effective load ELi,j in for the general model can be given as ELi,j =

Li,j +
ELi,j−1

K1
+

ELi−1,j

K2
− ELi−1,j−1

K1 K2
.

Proof. For the first rack, that is i = 1, the machines do not experience any lateral

heating effect, since there are no racks beyond this rack. So the first rack machines

are exactly like the 1-D case, where we already proved, ELj = Lj+
ELj−1

K
. Similarly,

here it would be EL1,j = L1,j +
EL1,j−1

K1
.

From Equation (4.1.1), ELi,j =
∑i

i′=1

∑j
j′=1

Li′,j′

K1
j−j′ K2

i−i′ . Similarly, ELi,j−1 =∑i
i′=1

∑j−1
j′=1

Li′,j′

K1
j−j′−1 K2

i−i′ . Hence,

ELi,j =
ELi,j−1

K1

+
i∑

i′=1

Li′,j

K2
i−i′

=
ELi,j−1

K1

+ Li,j +
Li−1,j

K2

+
i−2∑
i′=1

Li′,j

K2
i−i′ (4.1.2)

Again, from Equation (4.1.1), ELi−1,j =
∑i−1

i′=1

∑j
j′=1

Li′,j′

K1
j−j′ K2

i−i′−1 . There-

fore, Li−1,j = ELi−1,j −
∑i−1

i′=1

∑j−1
j′=1

Li′,j′

K1
j−j′ K2

i−i′−1 −
∑i−2

i′=1

Li′,j

K2
i−i′−1 . Hence we can

write, Li−1,j = ELi−1,j− ELi−1,j−1

K1
−
∑i−1

i′=1

Li′,j

K2
i−i′−1 . Substituting in Equation (4.1.2),
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we have,

ELi,j = Li,j +
ELi,j−1

K1

+
ELi−1,j

K2

− ELi−1,j−1

K1 K2

−
i−2∑
i′=1

Li′,j

K2
i−i′ +

i−2∑
i′=1

Li′,j

K2
i−i′

= Li,j +
ELi,j−1

K1

+
ELi−1,j

K2

− ELi−1,j−1

K1 K2

Therefore, we have proved that ELi,j = Li,j +
ELi,j−1

K1
+

ELi−1,j

K2
− ELi−1,j−1

K1 K2

Lemma 7. Any optimal strategy for minimizing the maximum effective load when

fractional assignments are allowed would result in uniform effective load of

L(
m1−m1−1

K1

) (
m2−m2−1

K2

) , where L is the total load to be assigned.

Proof. An optimal strategy for minimizing the maximum effective load for fractional

assignments, would distribute the load so as to make the effective load uniform across

all the machines. When the effective load is equal for all machines, then from Claim

4, for a machine (i, j) , i > 1, j > 1, the load is Li,j = EL(1− 1
K1
− 1

K2
+ 1

K1K2
), where

EL is the uniform effective load across all machines. For the first rack i = 1, j > 1,

L1,j = EL(1 − 1
K1

). For the first machine in each rack, that is j = 1, i > 1,

Li,1 = EL(1− 1
K2

). For the first machine in the first rack L1,1 = EL. Summing up

the load across all the machines, the total load L is equal to

L = EL

(
1 + (m1 − 1)

(
1− 1

K1

)
+ (m2 − 1)

(
1− 1

K2

)
+

(m1 − 1) (m2 − 1)

(
1− 1

K1

− 1

K2

+
1

K1K2

))
Factorizing, we can see that the above equation is equivalent to

L = EL

(
1 + (m1 − 1)

(
1− 1

K1

)) (
1 + (m2 − 1)

(
1− 1

K1

))

In other words, EL = L(
m1−m1−1

K1

) (
m2−m2−1

K2

) .
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Figure 4.1: Percentage reduction in maximum effective load across all machines as

(K1, K2) vary, for different values of m1,m2

Lemma 8. A naive strategy minimizing the maximum load for total load L, would

split the load uniformly and result in maximum effective load

EL = L
m1 m2

1− 1
K1

m1

1− 1
K1

1− 1
K2

m2

1− 1
K2

Proof. A naive strategy which splits the load uniformly across all machines will

result in maximum effective load at the (m2,m1)th position due to all the other

machines in the grid. The effective load on (m2,m1) is

ELm2,m1 =

m2∑
i=1

m1∑
j=1

L

m1m2

1

K2
m2−i K1

m1−j

=
L

m1 m2

1− 1
K1

m1

1− 1
K1

1− 1
K2

m2

1− 1
K2

4.1.2 Two Dimensional Horizontal Sibling Model

In this section the machines in each rack are numbered starting from 0 and

the racks are also numbered starting from 0. In this model, the effective load on the
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(i, j)th machine is given as follows.

ELi,j = Li,j +

j−1∑
`=0

Li,`

K1
j−` +

Li−1,j

K2

.

Claim 5. The effective load on the (i, j)th machine can be expressed as

ELi,j = Li,j +
ELi,j−1

K1

−
i−1∑
l=0

(
−1

K2

)i−l min (j,i−l+1)∑
p=0

(
−1

K1

)p(
i− l + 1

p

)
ELl,j−p

Proof. We prove this claim by induction. The base case of i = 0 is already proved,

by claim 1, where we proved that for a single rack of machines, the effective load

on the jth machine is given by ELj = Lj +
ELj−1

K
. For the first rack, i = 0, it is

equivalent to a single rack of machines since there is no effect from the top. So

replacing j by (0, j) and K by K1, we get EL0,j = L0,j +
EL0,j−1

K1
which is exactly

what is given by the formula for i = 0. Also, we can verify the case of j = 0 or the

first column. By the definition of our model, the effective load on (i, 0)th machine is

given by ELi,0 = Li,0 +
Li−1,0

K2
. Let us assume the induction hypothesis is true for all

q ≤ i− 1, that is ELq,0 = Lq,0 −
∑q−1

l=1

(
−1
K2

)q−l
ELl,0. So, by applying the induction

hypothesis we get,

ELi,0 = Li,0 +
ELi−1,0

K2

+
1

K2

i−2∑
l=0

(
−1

K2

)i−l−1

ELl,0

= Li,0 −
l=0∑
i−1

(
−1

K2

)
i−l
ELl,0

This proves it for all j = 0.

Now, let us assume by strong induction hypothesis, that the claim is true for

all machines of all racks before the ith rack and all machines before the jth machine
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of the ith rack, that is the claim is true for (q, r), where 0 ≤ q < i, 0 ≤ r < m, and

(i, s), where 0 ≤ s < j. We will prove that in this case, the claim is true for (i, j)th

machine as well. Since the base case of the first machine of any rack of i has already

been proved, this would prove our claim by mathematical induction.

By the definition of the model, we have,

ELi,j = Li,j +
Li,j−1

K1

+
Li,j−2

K2
1

+ ...+
Li,0

Kj
1

+
Li−1,j

K2

Substituting in the above equation, Li,j−1 = ELi,j−1−
∑j−2

l=0
Li,l

K1
j−1−l − Li−1,j−1

K2
,

(which follows from the definition of the model) we get,

ELi,j = Li,j +
ELi,j−1

K1

− Li−1,j−1

K1 K2

+
Li−1,j

K2

(4.1.3)

Now, we apply the induction hypothesis and substitute for Li−1,j−1 and Li−1,j.

By induction hypothesis,

Li−1,j = ELi−1,j −
ELi−1,j−1

K1

−
i−2∑
l=0

(
−1

K2

)i−l−1 min (j,i−l)∑
p=0

(
−1

K1

)p(
i− l
p

)
ELl,j−p

(4.1.4)

Li−1,j−1 = ELi−1,j−1 −
ELi−1,j−2

K1

−
l=0∑
i−2

(
−1

K2

)i−l−1 min (j−1,i−l)∑
p=0

(
−1

K1

)p(
i− l
p

)
ELl,j−1−p

(4.1.5)

Therefore, from equations 4.1.4 and 4.1.5,
Li−1,j

K2
− Li−1,j−1

K1K2
=

=
ELi−1,j

K2

− 2ELi−1,j−1

K1K2

+
ELi−1,j−2

K1
2K2

+
1

K2

i−2∑
l=0

(
−1

K2

)i−l−1
min (j,i−l)∑

p=1

(
−1

K1

)p((
i− l
p

)
+

(
i− l
p− 1

))
ELl,j−p


+

1

K2

i−2∑
l=0

(
−1

K2

)i−l−1
(
ELl,j +

(
−1

K1

)i−l+1

ELl,j−i+l−1

) (4.1.6)
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In the above equation we assume j ≥ i − l + 1 for all l. When j = i − l or

j < i − l, the same proof works with i − l + 1 replaced by j. The above equation

can be simplified to

Li−1,j

K2

− Li−1,j−1

K1K2

=
1

K2

2∑
q=0

ELi−1,j−q

(
2

q

)(
−1

K1

)q

+
1

K2

i−2∑
l=0

(
−1

K2

)i−l−1 min (j,i−l+1)∑
p=0

(
−1

K1

)p(
i− l + 1

p

)
ELl,j−p

where we have used the identity
(
a
b

)
+
(
a
b−1

)
=
(
a+1
b

)
. Therefore we get

Li−1,j

K2

− Li−1,j−1

K1K2

= −
i−1∑
l=0

(
−1

K2

)i−l min (j,i−l+1)∑
p=0

(
−1

K1

)p(
i− l + 1

p

)
ELl,j−p (4.1.7)

Hence substituting equation 4.1.7 in equation 4.1.3,

ELi,j = Li,j +
ELi,j−1

K1

−
i−1∑
l=0

(
−1

K2

)i−l min (j,i−l+1)∑
p=0

(
−1

K1

)p(
i− l + 1

p

)
ELl,j−p

Hence we have proved our claim by induction.

When we want to minimize the effective load, as before we want to make it

uniform all over. The load distribution for uniform effective load of EL all over

would be:

L0,0 = EL, L0,j = EL
(

1− 1
K1

)
,

Li,0 = EL

(
1 +

∑i−1
l=0

(
−1
K2

)i−l)
, and for i > 0, j > 0

Li,j = EL

(
1− 1

K1
+
∑i−1

l=0

(
−1
K2

)i−l∑min (j,i−l+1)
p=0

(
i−l+1
p

)(−1
K1

)p)
.
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The total load L =
∑m2−1

i=0

∑m1−1
j=0 Li,j. Summing up we get,

L = EL

m2−1∑
i=0

(
−1

K2

)i
(m2 − i)

(
(m1 − i− 1)

(
1− 1

K1

)i+1

+
i∑

j=0

(m1 − j)
(
i+ 1

j

)(
−1

K1

)j)

Therefore the effective load EL that results by thermal aware placement of

load L is

EL =L/

(
m2−1∑
i=0

(
−1

K2

)i
(m2 − i)(

(m1 − i− 1)

(
1− 1

K1

)i+1

+
i∑

j=0

(m1 − j)
(
i+ 1

j

)(
−1

K1

)j))

Distributing the load uniformly as L
m1m2

on every machine, the maximum effective

load will result on the topmost machine of every rack after the 0th rack, and is

denoted as ELob = L
m1m2

[
1 + 1

K1
+ 1

K1
2 + . . .+ 1

K1
m1−1 + 1

K2

]
.

ELob =
L

m1m2

[
1− 1

K1
m1

1− 1
K1

+
1

K2

]

=
L

m1m2

[
K1

m1 − 1

K1
m1−1 (K1 − 1)

+
1

K2

]

4.1.3 Two Dimensional Indirect Sibling Model

In this model, unlike the above two models, we define the effective load on a

machine in terms of the effective loads of their neighbors, not the actual loads. The

effective load of machine (i, j) depends on the effective load of its two immediate

neighbors: machine (i, j−1) on the same rack, and machine (i−1, j) in the adjacent

rack in the same row as (i, j). Specifically,

ELi,j = Li,j +
ELi,j−1

K1

+
ELi−1,j

K2

. (4.1.8)
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where i > 1, j > 1.

EL1,j = L1,j +
EL1,j−1

K1

. (4.1.9)

where j > 1.

Eli,1 = Li,1 +
ELi−1,1

K2

(4.1.10)

where i > 1, and EL1,1 = L1,1.

This is a natural way of defining effective load of machine. The effective load

is a measure of the temperature of a machine, and the temperature of machine

is affected by the temperature of its two immediate neighbors in this model.This

recursive definition already takes into account the heat recirculated from previous

machines. In fact, this generalizes the one-dimensional model in a way, because, in

the 1-D model with a single rack, we had proved in Claim 1 that ELi = Li + ELi−1

K
.

Lemma 9. An optimal strategy minimizing the effective load across all machines

when the total load is L would result in an uniform effective load

EL = L K1 K2

m1K1+m2K2+m1m2(K1K2−K1−K2)
.

Proof. An optimal strategy minimizing the effective load across all the machines

would be making the effective load uniform across them, as discussed earlier. Let

this uniform effective load be EL when the total load is L. We know that L =∑m2

i=1

∑m1

j=1 Li,j. When the effective load is uniform everywhere and equal to EL,

then by definition the following are true.

L1,1 = EL

L1,j = EL
(

1− 1
K1

)
where j ∈ [2 . . .m1]
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Li,1 = EL
(

1− 1
K2

)
where i ∈ [2 . . .m2]

Li,j = EL
(

1− 1
K1
− 1

K2

)
where j ∈ [2 . . .m1] and i ∈ [2 . . .m2].

Summing up the loads over all machines we get

L = EL

(
1 + (m1 − 1)

(
1− 1

K1

)
+ (m2 − 1)

(
1− 1

K2

)
+(m1 − 1)(m2 − 1)

(
1− 1

K1

− 1

K2

))
= EL

(
m1

K2

+
m2

K1

+m1m2

(
1− 1

K1

− 1

K2

)) (4.1.11)

Hence, EL = L K1 K2

m1K1+m2K2+m1m2(K1K2−K1−K2)
.

The following lemma gives the dependence of the effective load on machine

(i, j) in terms of the actual loads of other machines.

Lemma 10. The effective load on machine (i, j) in terms of the loads of the other

machines is ELi,j =
∑i−1

p=0

∑j−1
q=0

(
p+q
p

) Li−p,j−q
K1

p K2
q .

Proof. We will prove this by induction. It is obvious that the expression holds for

base case i = 1, j = 1 as EL1,1 = L1,1.

For the machines in the first rack, i = 1, j ∈ [2 . . .m1], let us assume the

induction hypothesis that the expression holds for all j ≤ j1, j1 < m1. Therefore,

∀j ∈ [2 . . . j1], EL1,j =
∑j−1

q=0
L1,j−q
K1

q as
(
n
0

)
= 1 ∀n ∈ Z+ and K2

0 = 1.

By definition, EL1,j1+1 = L1,j1+1 +
EL1,j1

K1
. Substituting the value of EL1,j1 according

to the induction hypothesis, we get,

EL1,j1+1 = L1,j1+1 +

∑j1−1
q=0

L1,j1−q
K1

q

K1

(4.1.12)

=

j1∑
q=0

L1,j1+1−q

K1
q
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which proves it for the first rack.

We now consider the machines in the first row of each rack, i ∈ [1 . . .m2], j = 1.

The base case is (1, 1) which is true. Let us assume by induction hypothesis that the

expression is true for all i ≤ i1, j = 1. Therefore, ∀i ∈ [2 . . . i1], ELi,1 =
∑i−1

p=0
Li−p,1
Kp

2

as
(
n
0

)
= 1 ∀n ∈ Z+ and K0

1 = 1.

By definition, ELi1+1,1 = Li1+1,1 +
ELi1,1
K2

. Substituting the value of ELi1,1 according

to the induction hypothesis, we get,

ELi1+1,1 = Li1+1,1 +

∑i1−1
p=0

Li1−p,1
K2

p

K2

(4.1.13)

=

i1∑
p=0

Li1+1−p,1

K2
p

which proves it for the first row of all racks.

We now apply induction on the racks. We have proved the expression is true

for the first rack i = 1, which is the base case for racks. Let us assume as our

induction hypothesis that the expression holds for all racks i < i1, that is, for all

machines in racks [1 . . . i1]. We have also proved that for any rack i1, the expression

is true for the first machine (i1, 1). This is the base case for the rack i1. Let us

extend our induction hypothesis to hold for all machines j < j1 in rack i1. By

definition, ELi1,j1 = Li1,j1 +
ELi1,j1−1

K1
+

ELi1−1,j1

K2
. Substituting from our induction

hypothesis, we get

ELi1,j1 = Li1,j1

+
1

K1

(
i1−1∑
p=0

j1−2∑
q=0

(
p+ q

p

)
Li1−p,j1−1−q

K1
q K2

p

)

+
1

K2

(
i1−2∑
p=0

j1−1∑
q=0

(
p+ q

p

)
Li1−1−p,j1−q

K1
q K2

p

) (4.1.14)
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The above equation can be written as

ELi1,j1 = Li1,j1

+

(
i1−1∑
p=0

j1−1∑
q=1

(
p+ q − 1

p

)
Li1−p,j1−q
K1

q K2
p

)

+

(
i1−1∑
p=1

j1−1∑
q=0

(
p+ q − 1

p− 1

)
Li1−p,j1−q
K1

q K2
p

) (4.1.15)

ELi1,j1 = Li1,j1

+

(
i1−1∑
p=1

j1−1∑
q=1

((
p+ q − 1

p

)
+

(
p+ q − 1

p− 1

))
Li1−p,j1−q
K1

q K2
p

)

+

j1−1∑
q=1

(
q − 1

0

)
Li1,j1−q
K1

q +

i1−1∑
p=1

(
p− 1

p− 1

)
Li1−p,j1
K2

p

(4.1.16)

We know,
(
p+q−1
p

)
+
(
p+q−1
p−1

)
=
(
p+q
p

)
. Substituting in the above equation, we get

ELi1,j1 = Li1,j1

+

(
i1−1∑
p=1

j1−1∑
q=1

(
p+ q

p

)
Li1−p,j1−q
K1

q K2
p

)

+

j1−1∑
q=1

Li1,j1−q
K1

q +

i1−1∑
p=1

Li1−p,j1
K2

p

(4.1.17)

where we have also used
(
n
0

)
= 1 and

(
n
n

)
= 1,∀n ∈ Z+. In the above equation, the

penultimate summation is for p = 0, q ∈ [1 . . . j1 − 1], and the last summation is for

q = 0, p ∈ [1 . . . i1 − 1]. The first summation is for p ∈ [1 . . . i1 − 1], q ∈ [1 . . . j1 − 1]

and Li1,j1 =
(

0
0

) Li1,j1
K0

1 K0
2

corresponding to the term p = 0, q = 0. Combining and

expressing in a compact manner, we get,

ELi1,j1 =

i1−1∑
p=0

j1−1∑
q=0

(
p+ q

p

)
Li1−p,j1−q
K1

q K2
p (4.1.18)

This proves that the expression for effective load is true for any (i, j)th machine by

induction.
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We would like to compare the savings provided by our thermally aware strategy

to that of naive strategy which splits the load uniformly across all machines. Each

machine now gets a load L
m1m2

. The effective load is obviously maximized on the

machine (m1,m2).

Lemma 11. A naive strategy which splits load uniformly across all machines results

in a maximum effective load ELm1,m2 = L
m1 m2

∑m2−1
i=0

∑m1−1
j=0

((i+j)
i )

K1
j K2

i .

Proof. The proof of this lemma follows from Lemma 10 and the facts that the load

over each machine is uniform and equal to L
m1m2

.

4.2 Integral Assignments for 2D Models

Similar to the one-dimensional model, in this section, we assume there is a

hard limit c on the effective load capacity for all machines. Our goal is to maximize

the number or profit of jobs integrally assigned with respect to this thermal capacity

constraint.

4.2.1 General Model

We first consider the general model and show that by fixing a (load) capacity

pattern, and using the PTAS (polynomial time approximation scheme) for multiple

knapsack by Chekuri and Khanna [10], or that by Jansen [35], we can get a

1
2
− O(ε) approximation to the optimal solution. We are given an instance of jobs,

J , where each job j ∈ J has a thermal size sj, and profit pj. Let us denote

by ∆ be the maximum size of any job: ∆ = maxj∈J sj. We assume that ∆ ≤
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c
(

1− 1
K1

)(
1− 1

K2

)
. Let µ = b

c
(

1− 1
K1

)(
1− 1

K2

)
∆

c. By assumption, µ ≥ 1 ∀i. We

assume there are m1 ≥ 2 machines in each rack and m2 ≥ 1 racks.

Algorithm 3 Algorithm for General Model

1: Set the load capacities of the machines as follows: c for the machine (1,1),

c
(

1− 1
K1

)
for machines (1, j), j ∈ [2 . . .m1], c

(
1− 1

K2

)
for machines

(i, 1), i ∈ [2 . . .m2], and c
(

1− 1
K1

)(
1− 1

K2

)
for the all other machines.

2: Run the PTAS for multiple knapsack using the modified machine capacities on

the instance J .

Lemma 12. The packing produced by Algorithm 3 is thermally feasible for the gen-

eral model.

Proof. This follows from the relation between effective loads and actual loads of the

machine, as given by Claim 4.

Theorem 8. When K2 ≥ 1 + K1

K1−2
, Algorithm 3 produces a ≥ 1

2
−O(ε) approxima-

tion to an optimal solution for the maximum profit problem on any instance J , in

polynomial time for any fixed ε > 0.

Proof. For proving this theorem, we initially assume that we have access to a mul-

tiple knapsack oracle that returns an optimal packing for a set of jobs (items) with

sizes and profits, in machines (knapsacks) of certain capacities (which may not be the

same for all machines). Let us consider an optimal solution OPT which maximizes

the profit of jobs integrally assigned to the machines (with unmodified capacities).

For ease of exposition, first we consider the maximum cardinality problem, (in other
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words, profit is unity for all jobs). We will to show that there exists a packing

that loses at most one job per machine, as compared to OPT , when we fix the

load capacities of the machines as c1,1 = c, c1,j = c
(

1− 1
K1

)
, j ∈ [2 . . .m1], ci,1 =

c
(

1− 1
K2

)
, i ∈ [2 . . .m2], ci,j = c

(
1− 1

K1

)(
1− 1

K2

)
, i ∈ [2 . . .m2], j ∈ [2 . . .m1].

Note that this choice of capacity pattern ensures that if any machine (i, j) is packed

to capacity ci,j, the thermal constraints would not be violated anywhere, provided,

each machine (i′, j′) has been packed to an extent at most ci′,j′ . This follows from

Lemma 12.

In the optimal solution OPT , the machines may be packed to different capac-

ities, which may or may not be equal to their modified load capacities as set by

Algorithm 3. If the sum of the sizes of jobs assigned to a machine (i, j) in OPT

exceeds the capacity ci,j (as set by Algorithm 3), we call it overpacked. On the other

hand, if the sum of the job sizes assigned to (i, j) is lower than ci,j, we call it under-

packed. Let O be the set of overpacked machines and U be the set of underpacked

machines in OPT .

Recall that for the one-dimensional case, we had shown how to derive a packing

from OPT , respecting the artificially set load capacities of the machines, by losing

at most one job per machine in a polynomial number of operations [55]. However,

it is not necessary that we show how such a repacking can be done in polynomial

time; our purpose is to prove that such a packing exists for proving the rest of the

theorem.

For an overpacked machine (i, j) ∈ O, let us number the jobs in (i, j) in

non-decreasing size order. Let k be the largest index such that
∑k

p=1 sp ≤ ci,j.
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Obviously, the remaining jobs in (i, j) could be accommodated because of the extra

space available due to the underpacked machines. Let us denote this set of jobs as

Ji,j for an (i, j) ∈ O, and similarly, we compute this set for all (i, j) ∈ O. Suppose

the load in (i, j) originally was Li,j. If S(Ji,j) > Li,j − ci,j, then discarding any job

from Ji,j will ensure that the total size of the remaining jobs is ≤ Li,j − ci,j. This

follows from the manner in which Ji,j was initially chosen. Let us therefore discard

any job from Ji,j to get the set J ′i,j. On the other hand, if S(Ji,j) = Li,j − ci,j,

then J ′i,j = Ji,j. Since S(J ′i,j) ≤ Li,j − ci,j, the jobs in J ′i,j can be completely

accommodated in the extra space available in machine (i, j) over and above ci,j due

to gaps in underpacked machines. Note that the set J ′i,j may be empty as well. We

compute these sets for all overpacked machines.

Let us denote by J O = ∪(i,j)∈OJ ′i,j, the set of jobs which can be completely

accommodated in the extra space created by gaps (of underpacked machines) in the

overpacked machines in OPT .

Now we consider a multiple knapsack problem defined as follows. For every

underpacked machine (i′, j′) ∈ U , let us consider the gap δi′,j′ in (i′, j′) as a knapsack

of capacity δi′,j′ . Let the items to be packed in this multiple knapsack problem be

the set of jobs in J O. Considering each job ` ∈ J O to be an item of size s` and profit

1, we call our multiple knapsack oracle to pack these knapsacks optimally. If all the

items or jobs have been successfully packed then we have our required packing where

each machine (i, j) is packed to an extent ≤ ci,j, with the loss of at most one job

per overpacked machine. Note that this repacking would not violate the thermal

constraints by definition since the total size of jobs reassigned to a machine (i′, j′)

67



is ≤ δi′,j′ .

If all items or jobs could not be packed, let Jrem be the set of jobs which could

not be assigned to any of the knapsacks. Let us denote by εi′,j′ the space left in

knapsack (i′, j′) after this new packing. Let smin be the smallest size of any job in

Jrem; we know smin > εmax, where εmax ≥ εi′,j′ for (i′, j′) ∈ U .

Now we define the notion of contribution of a gap.

Definition 1. An underpacked machine (i′, j′) packed up to Li′,j′ < ci′,j′, gives rise

to a gap δi′,j′ = ci′,j′−Li′,j′. The contribution of this gap of size δi′,j′ in an overpacked

machine (i, j) is
δi′,j′

K1
j−j′K2

i−i′ . In other words, it denotes the maximum extra space

that this gap can produce in (i, j) for enabling a thermally feasible packing of jobs

exceeding ci,j.

The total contribution of a gap δi′,j′ is its contribution summed over all ma-

chines, and is therefore an upper bound on the total extra space created by δi′,j′

over all machines. Let S denote the sum of the total contribution of all gaps in U .

For feasibility, the following must be true: S ≥ S(J O) = S(Jrem) + S(J O \ Jrem).

Therefore, S(Jrem) ≤ S − S(J O \ Jrem).

The total contribution of each δi′,j′ in S is

Ci′,j′ = δi′,j′

(
m2∑
p=i′

m1∑
q=j′

1

K1
q−j′ K2

p−i′ − 1

)

since the contribution of δi′,j′ can only be on machines located higher up in the

same rack, or on the same row or higher for racks to the right. Obviously, S =∑
(i′,j′)∈U Ci′,j′ . Writing Ci′,j′ in terms of δi′,j′ and εi′,j′ , we get
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Ci′,j′ = (δi′,j′ − εi′,j′)

(
m2∑
p=i′

m1∑
q=j′

1

K1
q−j′ K2

p−i′ − 1

)

+ εi′,j′

(
m2∑
p=i′

m1∑
q=j′

1

K1
q−j′ K2

p−i′ − 1

)

Therefore,

S =
∑

(i′,j′)∈U

(
(δi′,j′ − εi′,j′)

(
m2∑
p=i′

m1∑
q=j′

1

K1
q−j′ K2

p−i′ − 1

)

+εi′,j′

(
m2∑
p=i′

m1∑
q=j′

1

K1
q−j′ K2

p−i′ − 1

))

Since K2 ≥ 1 + K1

K1−2
, it can be verified that

(
K1

K1−1

)(
K2

K2−1

)
− 1 ≤ 1. Moreover,

S(J O \Jrem) =
∑

(i′,j′)∈U (δi′,j′ − εi′,j′). Substituting S(J O \Jrem) and S, and using

the relation
(

K1

K1−1

)(
K2

K2−1

)
− 1 ≤ 1, we get

S(Jrem) ≤
∑

(i′,j′)∈U

(
εi′,j′

(
m2∑
p=i′

m1∑
q=j′

1

K1
q−j′ K2

p−i′ − 1

))

≤
∑

(i′,j′)∈U

εmax

(
m2∑
p=i′

m1∑
q=j′

1

K1
q−j′ K2

p−i′ − 1

)

≤ εmax

where the last inequality follows from the relation between K1 and K2. However,

smin > εmax and smin ≤ S(Jrem), which is a contradiction. Therefore, Jrem = ∅.

Hence we have proved that there exists a packing with the chosen capacity

pattern, which, if packed optimally would lose no more than one job per overpacked

machine. Due to assumption on size, we know a machine which loses one job, has
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at least µ ≥ 1 jobs remaining in it. Hence, any optimal packing on this reduced

instance will give a ≥ µ
µ+1
≥ 1

2
approximation. By using the multiple knapsack

PTAS for the packing, we lose at most an O(ε) factor.

If the jobs have variable profits, we choose the jobs in Ji,j as in the unit profit

case by ordering jobs in non-decreasing size order. Let the jobs remaining in the

machine after removing those in Ji,j be denoted as J R
i,j. If S(Ji,j) = Li,j − ci,j, we

set J ′i,j = Ji,j and proceed. If however, S(Ji,j) > Li,j− ci,j, we need to discard a job

from Ji,j in order to get J ′i,j. We first try discarding least profit job j from Ji,j to get

J ′i,j. If the sum of the profits of the jobs remaining in the machine (i, j) and those in

J ′i,j together is greater than the profit of the job discarded: P (J ′i,j) + P (J R
i,j) ≥ pj,

we discard it safely and proceed with the resultant set J ′i,j. Otherwise, it must be

that J ′i,j is empty, and Ji,j had only consisted of j. Furthermore, P (J R
i,j) < pj. In

this case, we interchange the sets J R
i,j and Ji,j. By definition sj ≤ ∆ ≤ ci,j, hence

it is feasible to make J R
i,j = {j}. Now, we order the jobs in Ji,j in non-increasing

profit order, and let k′ be the largest index such that
∑k′

x=1 sx ≤ (Li,j − ci,j). We set

J ′i,j to be the jobs numbered [1, . . . , k′] in Ji,j, and discard the remaining jobs. Note

that J ′i,j may be empty as in the unit profit case, however, we have ensured that

the profit of the discarded jobs can be charged to the profit of the jobs remaining

in J ′i,j ∪ J R
i,j.

As in the unit profit case, now J O will be the set of jobs that can be ac-

commodated completely in the extra space created by gaps. By the same packing

arguments for the unit profit case, we know that the jobs in J O can be feasibly

packed in the gaps in the underpacked machines. This is a thermally feasible pack-
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ing, which has a total profit at least half of the optimal packing that we started out

with, since we had ensured that the profit of the discarded jobs can be charged to

the profit of the remaining ones. Therefore, any optimal multiple knapsack packing

oracle on the machines with modified load capacities would give ≥ 1
2

the profit of

an optimal solution, and hence, using the multiple knapsack packing PTAS [10,35],

we lose at most O(ε) of the profit.

4.2.2 Horizontal Sibling Model

We now consider the horizontal sibling model and show that by fixing

a capacity pattern we can get a 1
2
− O(ε) approximation to an optimal solution

maximizing the number or profit of jobs integrally assigned in the presence of a

hard thermal constraint fixing the maximum effective load capacity of any machine

at c. Let the number of racks be m2, and the number of machines in rack be m1.

We are given an instance of jobs J , where a job j has a size sj and profit pj.

Algorithm 4 Algorithm for Horizontal Sibling Model

1: Set the load capacity of the (i, j)th machine as:

ci,j = c
(

1− 1
K1

+
∑i−2

`=0

∑min j−1,i−`
p=0 (−1

K2
)
i−`−1

(−1
K1

)
p (i+`

p

))
.

2: Run the multiple knapsack PTAS on instance J using the machines with mod-

ified capacities.

Lemma 13. The packing produced by the Algorithm 4 is thermally feasible for the

horizontal sibling model.

Proof. This follows from the proof of Claim 9.
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Let us denote by ∆ be the maximum size of any job: ∆ = maxj∈J sj. Let cmin

be the minimum value of any ci,j computed as above, and µ = b cmin
∆
c. We assume

µ ≥ 1 as before which is reasonable for data centers. As already stated, µ is much

larger in practice.

Theorem 9. When K2 ≥ 1+ 1
K1−2

, Algorithm 4 gives a 1
2
−O(ε) approximation to an

optimal solution for the maximum profit problem for any instance J in polynomial

time for any fixed ε > 0.

Proof. For proving this theorem, we assume that we have access to a multiple knap-

sack oracle that returns the optimal packing for an instance J maximizing the profit

of jobs (items) assigned integrally to machines (knapsacks) of variable capacities.

Let us consider an optimal solution OPT . First, we will consider the special case of

unit profits; in other words, the maximum cardinality problem. We will show that

there exists a packing that loses at most one job per machine, as compared to the

OPT when we set the load capacities of the machines as:

ci,j = c
(

1− 1
K1

+
∑i−2

`=0

∑min j−1,i−`
p=0 (−1

K2
)
i−`−1

(−1
K1

)
p (i+`

p

))
.

By choosing this capacity pattern we ensure that if any machine (i, j) is packed

to capacity ci,j, the thermal constraints would not be violated anywhere, provided,

each machine (i′, j′) has been packed to an extent at most ci′,j′ .

The rest of the proof, including notations, is similar to that of Theorem 8,

and hence we do not repeat it here in details. The differences are mainly in the

contribution of gaps, since that depends on the thermal cross-interference model

being considered. We highlight these portions of the proof below:
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The total contribution of a gap δi′,j′ (due to an underpacked machine (i, j) ∈ U)

is as follows:

Ci′,j′ ≤ δi′,j′

(
m1∑
q=j′

1

K1
q−j′ +

1

K2

− 1

)
(4.2.1)

since the contribution of δi′,j′ can only be on machines located higher up in the same

rack, or on the machine in the same row of the adjacent rack to the right, if any.

Obviously, the total space due to gaps is the sum of the total contributions of all

the gaps: S =
∑

(i′,j′)∈U Ci′,j′ . Writing Ci′,j′ in terms of δi′,j′ and εi′,j′ , we get

Ci′,j′ ≤ (δi′,j′ − εi′,j′)

(
m1∑
q=j′

1

K1
q−j′ +

1

K2

− 1

)

+ εi′,j′

(
m1∑
q=j′

1

K1
q−j′ +

1

K2

− 1

) (4.2.2)

Therefore,

S =
∑

(i′,j′)∈U

(
(δi′,j′ − εi′,j′)

(
m1∑
q=j′

1

K1
q−j′ +

1

K2

− 1

)

+εi′,j′

(
m1∑
q=j′

1

K1
q−j′ +

1

K2

− 1

)) (4.2.3)

Since K2 ≥ 1 + 1
K1−2

and K1 ≥ 2, it can be verified that

K1

K1−1
+ 1
K2
− 1 ≤ 1. Moreover, after repacking, S(J O\Jrem) =

∑
(i′,j′)∈U (δi′,j′ − εi′,j′).

Substituting S(J O \ Jrem) and S,

S(Jrem) ≤
∑

(i′,j′)∈U

(
εi′,j′

(
m1∑
q=j′

1

K1
q−j′ +

1

K2

− 1

))

≤
∑

(i′,j′)∈U

εmax

(
m1∑
q=j′

1

K1
q−j′ +

1

K2

− 1

)

≤ εmax (4.2.4)
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where the last inequality follows from the relation between K1 and K2. However,

smin > εmax and smin ≤ S(Jrem), which is a contradiction. Therefore, Jrem = ∅. For

the variable profits case, the arguments are exactly similar to that in Theorem 8,

hence not repeated here.

4.2.3 Indirect Sibling Model

We now consider the indirect sibling model and show that by fixing a

capacity pattern we can get at least a 1
2
−O(ε) approximation to an optimal solution

maximizing the number or profit of jobs integrally assigned in the presence of a hard

thermal constraint which fixes the maximum effective load capacity of any machine

at c. Let the number of racks be m2 racks, and the number of machines in each

rack be m1. We are given an instance of jobs J where each job j has a size sj and

a profit pj.

Algorithm 5 Algorithm for Indirect Sibling Model

1: Set the load capacities of the machines as: c1,1 = c, c1,j = c
(

1− 1
K1

)
for j ≥ 2,

ci,1 = c
(

1− 1
K2

)
for i ≥ 2, and ci,j = c

(
1− 1

K1
− 1

K2

)
for i ≥ 2, j ≥ 2.

2: Run the multiple knapsack PTAS on instance J using the machines with mod-

ified capacities.

Lemma 14. The packing produced by the above method is thermally feasible for the

indirect sibling model.

Proof. This follows from the definition of the indirect sibling model.
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Let us denote by ∆ be the maximum size of any job: ∆ = maxj∈J sj. We

assume that ∆ ≤ c
(

1− 1
K1
− 1

K2

)
. Let µ = b

c
(

1− 1
K1
− 1
K2

)
∆

c) ≥ 1.

Theorem 10. When
∑m2−1

i=0

∑m1−1
j=0

(i+ji )
K1

j K2
i ≤ 2, Algorithm 5 gives a 1

2
− O(ε)

approximation to an optimal solution for the maximum profit problem for an instance

J in polynomial time for any fixed ε > 0.

Proof. This is similar to the proof of Theorem 8 and hence we do not repeat the

details here. Below we highlight the differences, which are in the contribution of

gaps, since that depends on the thermal model being considered. First we show the

bound for the special case of unit profits, or the maximum cardinality problem. The

notations are the same as in proof of Theorem 8. The total contribution of a gap

δi′,j′ due to an underpacked machine (i′, j′) ∈ U is as follows:

Ci′,j′ ≤ δi′,j′

(
m2−1∑
i=i′−1

m1−1∑
j=j′−1

(
i+j
i

)
K1

j K2
i − 1

)

since the contribution of δi′,j′ can only be on machines located higher up in the

same rack, or on the machines in the same or higher row in the racks to the right,

if any. The expression for Ci′,j′ follows from Lemma 10. Obviously, the total space

available due to gaps is the sum of their total contributions:: S =
∑

(i′,j′)∈U Ci′,j′ .

Writing Ci′,j′ in terms of δi′,j′ and εi′,j′ , we get

Ci′,j′ ≤ (δi′,j′ − εi′,j′)

(
m2−1∑
i=i′−1

m1−1∑
j=j′−1

(
i+j
i

)
K1

j K2
i − 1

)

+ εi′,j′

(
m2−1∑
i=i′−1

m1−1∑
j=j′−1

(
i+j
i

)
K1

j K2
i − 1

) (4.2.5)
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Therefore,

S =
∑

(i′,j′)∈U

(
(δi′,j′ − εi′,j′)

(
m2−1∑
i=i′−1

m1−1∑
j=j′−1

(
i+j
i

)
K1

j K2
i − 1

)

+εi′,j′

(
m2−1∑
i=i′−1

m1−1∑
j=j′−1

(
i+j
i

)
K1

j K2
i − 1

)) (4.2.6)

Since

(∑m2−1
i=0

∑m1−1
j=0

(i+ji )
K1

j K2
i − 1

)
≤ 1, and S(J O\Jrem) =

∑
(i′,j′)∈U (δi′,j′ − εi′,j′)

after the repacking, we get the following:

S(Jrem) ≤
∑

(i′,j′)∈U

(
εi′,j′

(
m2−1∑
i=i′−1

m1−1∑
j=j′−1

(
i+j
i

)
K1

j K2
i − 1

))

≤
∑

(i′,j′)∈U

εmax

(
m2−1∑
i=i′−1

m1−1∑
j=j′−1

(
i+j
i

)
K1

j K2
i − 1

)

≤ εmax (4.2.7)

where the last inequality follows from the relation between K1 and K2. However,

smin > εmax and smin ≤ S(Jrem), which is a contradiction. Therefore, Jrem = ∅.

The arguments for variable profits is exactly the same as in Theorem 8, hence not

repeated here.
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Chapter 5: The Busy Time Problem

In this chapter we shift gears from the study of thermal energy costs and

possible optimizations in data centers, and focus our attention to the energy costs

for powering machines.

Towards this objective, we consider the busy time problem [22, 39] 1. Tradi-

tionally, scheduling jobs on multiple parallel or batch machines has been studied

mostly in the context of “job-related” metrics such as minimizing makespan, total

completion time, flow time, tardiness and maximizing throughput under various

deadline constraints. However, these objectives do not address the problem of re-

ducing energy consumption. In an effort to capture some central issues in energy

management in cloud computing contexts, the busy time measure was recently in-

troduced [22], and since then studied in a number of subsequent works. We define

the problem formally in the next section.

1Some parts of our work on the busy time problem have been done jointly with Jessica Chang

and can also be found in her thesis [6].
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5.1 Problem Definition

The input is a collection J of n jobs that need to be scheduled on a set of

identical machines. Each job j has release time rj, deadline dj and required process-

ing length pj. Each job j needs to be scheduled non-preemptively within its feasible

time window [rj, dj). If pj = dj − rj, we call them interval jobs. Otherwise, we call

them flexible jobs. We also consider the preemptive version of the problem, where a

job may be scheduled over multiple machines, without any penalty. The processing

capacities of the machines are limited: at most g jobs can run simultaneously on

a given machine at any given instant. A machine is busy at time t if there is at

least one job running on the machine at t; otherwise the machine is idle. The time

intervals during which a machine is busy is called its busy time. The objective is

to find a feasible schedule or assignment of all the jobs on the machines so as to

minimize the cumulative busy time over all the machines. This is known as the

busy time problem. The schedule can potentially use an unbounded number of

machines since each group is really a virtual machine. Figure 5.1 shows a collec-

tion of interval jobs and the corresponding packing that yields an optimal solution

minimizing busy time.

5.2 Prior Work

The busy time problem on interval jobs is well-studied in the literature. Since

each job’s deadline for interval jobs is exactly its release time plus its processing
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Figure 5.1: (A) Collection of interval jobs, numbered arbitrarily. (B) Optimal pack-

ing of the jobs on two machines with g = 3 minimizing total busy time.

time, there is no question about when it must start. The busy time problem is NP -

hard [74] even when g = 2 for interval jobs. For interval jobs, we say the interval

[rj, dj) is the span of job j. The span of a job set J ′ is the union of the spans of

jobs in J ′.

The busy time scheduling problem was introduced by Flammini et al. [22]. In

this paper, they studied interval jobs. They present a very simple greedy algorithm

FirstFit and demonstrate that it always produces a solution of busy time at most
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4 times that of the optimal solution. The algorithm considers jobs in non-increasing

order by length, greedily packing each job in the first group in which it fits. Ad-

ditionally, they consider two special cases for which they present algorithms with

improved approximation guarantees. The first case pertains to “proper intervals”,

where no job’s interval is strictly contained in that of another. For instances of this

type, they show that the greedy algorithm ordering jobs by release times is actually

2-approximate. The second special case involve instances whose corresponding in-

terval graph is a clique - in other words, there exists a time t such that each interval

[rj, dj) contains it. In this case, a greedy algorithm also yields a 2-approximation.

It is not yet resolved whether minimizing busy time on clique instances or on

proper instances is NP -hard. However, when the interval jobs are both proper and

form a clique, a very simple dynamic program gives an optimal solution [51].

Khandekar et al. [39] consider the generalization in which each job has an

associated width or “demand” on its machine. For any set of jobs assigned to

the same machine, the cumulative demand of the active ones can be at most g at

any time. The authors apply ideas from the analysis of FirstFit to this problem

and obtain a 5-approximation. The main idea involves partitioning jobs into those

of “narrow” and “wide” demand. Each wide job is assigned to its own machine,

while FirstFit is applied to the set of narrow jobs. In addition, the authors give

improved bounds for special cases of busy-time scheduling with jobs of unit demand.

When the interval jobs form a clique, they provide a polynomial time approximation

scheme (PTAS). They give a simple exact algorithm when the intervals of the jobs

are laminar, i.e. two jobs’ intervals intersect only if one interval is contained in
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the other. Khandekar et al. [39] also consider the generalization to the busy time

problem where job windows need not be rigid, that is, they consider flexible jobs

as well. They give a 5 approximation algorithm for this problem when jobs may

additionally have non-unit demands. The approach is to first solve the problem for

the case when the machine capacity is unbounded. They give an optimal polynomial

time dynamic program for this problem. This essentially fixes the position of the

jobs within their feasible windows. This serves as the input to the second stage of the

algorithm, where now the jobs are treated as interval jobs (with possibly non-unit

demands). Now, the algorithm for interval jobs with non-unit demands is used to

give the 5 approximation. For unit demands, this result implies a 4 approximation

algorithm for flexible jobs.

We only consider unit demands of jobs. Hence, for the rest of this chapter,

when we refer to any job, it is implicit that its demand is unit.

5.3 Our Contributions

We first show that a 2 approximation algorithm for the busy time problem

for interval jobs is implied by a 2 approximation algorithm given by Alicherry and

Bhatia [1], for a coloring and routing problem on interval graphs, motivated by

by the design of optical line systems. A 2 approximation algorithm developed by

Kumar and Rudra [42] for a closely related problem called fiber minimization also

implies a 2 approximation algorithm for the busy time problem on interval graphs.

We study the general busy time problem, where the jobs windows are not
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rigid, that is, where the jobs may be flexible. For this problem, we have already

stated that Khandekar et al.’s result implies a 4 approximation algorithm. We show

that a natural extension of the 2 approximation algorithm for interval jobs, gives a

4 approximation for the general busy time problem, following the same approach as

Khandekar et al. [39] of fixing the windows of jobs via dynamic programming for the

problem of unbounded g. We then develop a fast algorithm for interval jobs, which

we call GreedyTracking. Again, using the approach of fixing the job windows for

g =∞, and using the output of the first phase as an input for GreedyTracking,

we give a 3 approximation algorithm for the general busy time problem. We also

show that the approximation factor of 3 is asymptotically tight for the algorithm.

For the preemptive version, we give a fast, exact algorithm for unbounded g.

We then use this algorithm to give a 2 approximation algorithm for bounded g for

the preemptive general busy time problem.

5.4 Related Work

Mertzios et al. [51] consider a dual problem to busy time minimization, the

resource allocation maximization version, where the goal is to maximize the number

of jobs scheduled without violating a budget constraint given in terms of busy time

and the parallelism constraint. They show that the maximization version is NP -

hard whenever the (busy time) minimization problem is NP -hard. They give a 6

approximation algorithm for clique instances and a polynomial time algorithm for

proper clique instances for the maximization problem.
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The online version of both the busy time minimization and resource allocation

maximization was considered by Shalom et al. [64]. They prove a lower bound of

g where g is the parallelism parameter, for any deterministic algorithm for general

instances and give an O(g) competitive algorithm. They also consider special cases,

and show a lower bound of 2 and an upper bound of (1 + φ) for a one-sided clique

instances (which is a special case of laminar cliques), where φ is the golden ratio.

They also show that the bounds increase by a factor of 2 for clique instances. For

the maximization version of the problem with parallelism g and busy time budget

T , they show that any deterministic algorithm cannot be more than gT competitive.

They give a 4.5 competitive algorithm for one-sided clique instances.

Flammini et al. [24] consider the problem of optimizing the cost of regenerators

that need to be placed on light paths in optical networks, after every d nodes, to

regenerate the signal. They show that the 4 approximation algorithm for minimizing

busy time [22] solves this problem for a path topology and d = 1 and extend it to

ring and tree topologies for general d.

Faigle et al. [18] consider the online problem of maximizing “busy time” but

their objective function is totally different from ours. Their setting consists of a

single machine and no parallelism. Their objective is to maximize the total length

of intervals scheduled as they arrive online, such that at a given time, at most one

interval job has been scheduled on the machine. They give a randomized online

algorithm for this problem.
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5.5 Notations and Preliminaries

Definition 2. An instance J is said to be an interval job instance if for every job

j ∈ J , dj = rj + pj.

A job j is active on machine m at some time t ∈ [rj, dj) if j is one of the jobs

being processed by machine m at time t.

Definition 3. The length of a time interval I = [a, b) is denoted `(I) = b− a, For

a single contiguous interval, the length is the same as its span, and hence may be

referred to interchangeably as the span of I, |Sp(I)|. For a set of intervals I, the

length of I is `(I) =
∑

I∈I `(I). The span of I is Sp(I) =
⋃
I∈I I.

The length `(j) (span Sp(j), respectively) of an interval job j is the length

(span, respectively) of [rj, dj). Similarly, the length `(J ) (span Sp(J ), respectively)

of a set J of interval jobs is the length (span, respectively) of the set of intervals

{[rj, dj) : j ∈ J }.

By abuse of notation, for flexible jobs, we sometimes denote pj as `(j). Similar

to interval jobs, the length of any set of flexible jobs `(J ) is really the sum of the

processing lengths of these jobs. Specifically, `(J ) =
∑

j∈J pj. Whether we are

referring to the lengths of contiguous intervals, or the processing times of jobs will

be clear from the context. Consider for a moment the non-preemptive variant of

the problem. For the special case of interval jobs, we need to find a partition of

the jobs into groups or bundles, such that in every bundle, there are at most g jobs

active at any time t. We then schedule each bundle on a single machine. Let Bκ
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be the set of interval jobs assigned to bundle κ by some partitioning scheme. Then,

the busy time of the machine on which the bundle κ will be scheduled is given by

|Sp(Bκ)|. Suppose we have partitioned all jobs into k feasible bundles (the feasibility

respects the parallelism bound g as well as the release times and deadlines). Then

the total cost of the solution is given by the cumulative busy time
∑k

κ=1 |Sp(Bκ)|.

The objective is to minimize this cost. We consider both the variants where g is

unbounded and where g < ∞. For the preemptive version of the problem, the

problem definition remains the same, the only difference being that the jobs can be

processed preemptively across various machines.

To minimize busy time for flexible jobs, the difficulty lies not just in finding

a partition of jobs, but also in deciding when each job j should be scheduled. We

study both the preemptive and non-preemptive versions of this problem.

We denote the cost of the optimal solution of an instance J (of flexible or

interval jobs) by OPT (J ). We denote by OPT∞(J ) the cost of the optimal solution

for the instance J when unbounded parallelism is allowed.

Without loss of generality, the busy time of a machine is contiguous. If it is

not, we can break it up into disjoint periods of contiguous busy time, assigning each

of them to different machines, without increasing the total busy time of the solution.

The following lower bounds were introduced in [22] and hold trivially on any

optimal solution for a given instance J .

Observation 1. For an instance J , OPT (J ) ≥ `(J )
g

, where g ≥ 1 and `(J ) denotes

the sum of the processing lengths of the jobs in J , interchangeably referred to as the
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mass of the set J .

This holds because in any machine, we can have at most g jobs active simul-

taneously.

Observation 2. For a set J of flexible or interval jobs, the cost of an optimal

solution OPT (J ) ≥ OPT∞(J ).

The above observation follows from the fact that if a lower cost solution exists

for bounded g, then it is a feasible solution for unbounded g as well. If the jobs in

J are interval jobs, then, OPT∞(J ) = |Sp(J )|.

However, the above lower bounds, individually, can be arbitrarily bad. For

example, consider an instance of g disjoint unit length interval jobs. The mass

bound would simply give a lower bound of 1, whereas the optimal solution pays g.

Similarly, consider an instance of g2 identical unit length interval jobs. The span

bound would give a lower bound of 1, whereas the optimal solution has to open up

g machines for unit intervals, paying g.

We introduce [8] a stronger lower bound, which we call the Demand Profile.

In fact, the algorithm of Alicherry and Bhatia [1] as well as that of Kumar and

Rudra [42] implicitly charge the demand profile. This lower bound holds for the

case of interval jobs.

Definition 4. Let A(t) be the set of interval jobs which are active at time t. In

other words, A(t) = {j : t ∈ [rj, dj)}. We say that |A(t)| is the raw demand at time

t, and define the demand at time t as D(t) = d |A(t)|
g
e.
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Definition 5. An interval within which no job begins or ends is called an interesting

interval.

By definition, the raw demand, and hence the demand, is uniform over an

interesting interval because no job begins or ends within the interval. Let us rep-

resent the raw demand over an interesting interval Ii, as A(Ii) and the demand as

D(Ii). Let I be the set of interesting intervals, I = I1, I2, . . . , I`, where ` ≤ 2n, and

D(Ii) = D(t), ∀t ∈ Ii.
⋃
Ii∈I Sp(Ii) = Sp(J ).

Definition 6. We define the Demand Profile of an instance of interval jobs J ,

DeP (J ) as the set of tuples (Ii, D(Ii)), where Ii ∈ I.

Note that the above definition expresses the Demand Profile in a linear num-

ber of tuples, even when the release times and deadlines of jobs, as well as their

processing lengths are arbitrary (not polynomial).

We denote the cost of the demand profile DeP (J ) as |DeP (J )|. Specifically,

|DeP (J )| =
∑

Ii∈I D(Ii).

Observation 3. The demand profile of an instance is a lower bound on the cost of

any feasible solution. Therefore OPT (J ) ≥ |DeP (J )|.

Proof. There are |A(Ii)| jobs active within an interesting interval Ii. Then any

feasible solution would have d |A(Ii)|
g
e machines busy during the interval Ii. Moreover,

Sp(J ) = Sp(
⋃
Ii∈I Ii). Hence, the proof follows.
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5.6 Interval Jobs

Before describing the more general problem of flexible jobs, we discuss the

simpler case of interval jobs, and outline the algorithms of Kumar and Rudra [42]

and Alicherry and Bhatia [1], which improve the existing approximation algorithms

for the busy time problem on interval jobs by giving a factor 2 approximation. We

start by describing the algorithm of Kumar and Rudra [42] since the problem they

consider is more closely related to the busy time problem.

5.6.1 Kumar and Rudra’s Algorithm

Here we provide an overview of the algorithm of Kumar and Rudra [42] for fiber

minimization problem which implies a 2 approximation for the busy time problem on

interval jobs. The fiber minimization problem is as follows. An optical fiber network

needs to satisfy the given set of requests, that need to be assigned to consecutive

links or edges connected in a line. There are n of these links. Each request needs

some links [i, i + 1, . . . , j], where 1 ≤ i < j ≤ n. Each segment of an optical fiber

can support µ wavelengths over the consecutive links that it spans, and no two

requests can be assigned the same wavelength on the same fiber, if they need to

use the same link. We want a feasible assignment of the requests such that total

length of optical fiber used is minimized. Notice, this is very similar to the busy

time problem on interval jobs. Think of the requests as interval jobs. If a request

needs the consecutive links [i, i + 1, . . . , j], where 1 ≤ i < j ≤ n, then this can be

equivalently thought of as an interval job with release time i and deadline j, i.e.,
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with a window [i, j), with processing length j− i, in a discrete setting where time is

slotted. The total number of links being n, the processing lengths of the jobs here

is linear. In this case, we can think of each slot as an interesting interval (since jobs

begin and end only at slots) and define the demand profile as the tuples (i,D(i)),

where i is a time slot ∈ [1, . . . , n]. Their algorithm proceeds in two phases. In the

first phase they assign the jobs to levels within the demand profile (where the total

number of levels equals the maximum raw demand at any point), and potentially

allow for a limited infeasibility in this packing. Specifically, at most two jobs can be

assigned to the same level anywhere within the demand profile. In the second phase,

they give a feasible packing of the jobs, considering µ levels at a time, removing the

infeasibility introduced earlier, but without exceeding the cost by more than a factor

of 2. This is done as follows. For levels {(i − 1)µ + 1, . . . , iµ}, (i ∈ {1, . . . , Dmax})

where Dmax is the maximum height of the demand profile), Kumar and Rudra [42]

open two fibers, instead of one, and assign jobs to fibers, such that two jobs which

were assigned to the same level in the demand profile, get assigned to separate fibers

according to a simple parity based assignment. Their analysis assumes that the raw

demand at every time slot t, |A(t)| is a multiple of µ and charges to such a demand

profile. It is clear that the demand profile gets charged at most twice, respecting

the µ capacity constraint of the fibers.

The polynomial time complexity of the algorithm crucially depends on the fact

that we have n links, and hence the job lengths being linear, we need to consider

only a linear number of slots. The above does not hold for the busy time problem

for interval jobs with arbitrary release times, deadlines and processing lengths. The
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number of time instants to consider may not be polynomial. However, the key ob-

servation is that even if the release times and deadlines of jobs are not integral, there

can be at most 2n interesting intervals, such that no jobs begin or end within the

interval. The demand profile is uniform over every interesting interval. Therefore,

their algorithm can be applied to the busy time problem, with this simple mod-

ification, still maintaining the polynomial complexity. The assumption regarding

multiple of µ (in the busy time case, this would be g) at every slot, would translate

as a multiple of g jobs over every interesting interval. However, note that for an ar-

bitrary instance, we can add dummy jobs spanning any interesting interval Ii where

the raw demand |A(Ii)| is not a multiple of g without changing the demand profile.

Specifically, if cg < |A(Ii)| < (c+ 1)g, for some c ≥ 0, then DeP (Ii) = c+ 1, hence

adding (c+ 1)g−|A(Ii)| jobs spanning Ii does not change the demand profile. Thus

we can apply their algorithm on the busy time instance, where the demand profile

is defined only interesting intervals and the demand everywhere is a multiple of g.

The assignments to the fibers as done by their algorithm in Phase 2, will give the

bundles for the busy time problem.

5.6.2 Alicherry and Bhatia’s Algorithm

Now, we describe how the work of Alicherry and Bhatia [1], implies another,

elegant algorithm with a 2 approximation for interval jobs. Alicherry and Bhatia

study a generalized coloring and routing problem on interval and circular graphs,

motivated by optical design systems. Though the problems they consider are not
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directly related to the busy time problem, we can use their techniques to develop

the 2 approximation algorithm. Similar to Kumar and Rudra’s work, their goal is

to route certain requests, which require to be assigned to consecutive links or edges

in the interval or circular graph. At each link, we color the requests assigned to

that link. The colors are partitioned into sets, which are ordered, such that colors

in the higher numbered sets cost more. The total cost of the solution is the sum of

the costs of the highest colors used at all the links, and the objective is to minimize

this cost. Though this problem seems quite different from the busy time problem

on interval jobs, the one of the key observations is that the cost needs to be a

monotonically non-decreasing function respecting the set order. It need not be a

strictly increasing function. Hence, we can think of the sets numbered in a linear

order, and give each set g colors. We set the number of all the colors in a set i

as i. If c · g + k requests use a link, the cost of that link would be the cost of the

highest color used at the link, which is c + 1. Hence, what we are really summing

is the total cost of the demand profile defined on a set of interval jobs, which have

integral release times, and deadlines, and linear processing lengths, since the number

of links is n (part of the input). Therefore, a 2 approximation algorithm minimizing

the cost is really providing a solution that costs at most twice the demand profile of

this restricted instance. The technique used involves setting up a flow graph with a

certain structure, depending on the current demands or requests as yet unassigned.

It can be easily proved that the graph has a cut of size at least 2 everywhere if the

demand everywhere is at least 2. Now, we find a flow of size two in this graph from

the source to the sink. Each flow path will consist of a set of disjoint requests or
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demands (where the disjointness refers to the links they need to use), and the union

of the two flows will reduce a demand of at least unity from every link. This is

repeated till the demand is 0 or 1 everywhere.

As in Section 5.6.1, we use the following observation: the time slots can be

considered to be interesting intervals for a set of interval jobs. The busy time in-

stance with non-polynomial job lengths and arbitrary release times and deadlines

has a linear number of interesting intervals, and hence we can think of our instance

in this discretized setting. Therefore, we can apply their algorithm, modified ac-

cordingly, to our problem to get an algorithm within twice of the optimal solution.

The algorithm will consider a busy time instance with the demand profile defined

on interesting intervals and with a multiple of g jobs everywhere without any loss

of generality. It will first open up two bundles. The flow graph is then set up as

defined by Alicherry and Bhatia. For the first g iterations, the algorithm will find 2g

flow paths (each consisting of disjoint interval jobs), the union of which removes at

least a demand of g from everywhere. We assign g of these paths to one bundle and

the remaining g to the other. Each flow path consists of disjoint jobs, hence, each

bundle will have at most g jobs at time instant. Moreover, together, these bundles

have removed a demand g from everywhere in the demand profile, hence they have

charged the lowermost level (which is also the widest level) of the demand profile

at most twice. The demand profile is now suitable modified after removing the jobs

already assigned. Once again two bundles are opened, and the same procedure is

performed for the next g iterations. This continues till the demand profile becomes

empty everywhere, in other words, all jobs are assigned. The resultant bundles are
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feasible and charge the demand profile at most twice.

5.6.3 Lower bound

Though the upper bound of 2 was shown by Kumar and Rudra [42] and

Alicherry and Bhatia [1] for their algorithms, a lower bound on the performance

of the algorithms was not provided. Here we show that for both these algorithms,

the approximation ratio obtained can be arbitrarily close to 2. Figure 5.2 shows

an instance of interval jobs, for which both the algorithms implied by the work of

Kumar and Rudra and Alicherry and Bhatia approach a factor of 2 of the optimal

solution. In this example, g = 2 and there are two interval jobs of length 1, one

interval job of length ε, one of length ε′ < ε, and one of length ε− ε′. As required by

the analysis of Kumar and Rudra and Alicherry and Bhatia, the demand everywhere

is a multiple of g. A possible output by both algorithms (adapted to the busy time

problem as described) has cost 2 + ε, whereas the optimal solution has cost 1 + ε.

For ε→ 0, the approximation factor approaches 2.

Theorem 11. There exist 2 approximation polynomial time algorithms for the busy

time problem on interval jobs. The approximation factor is tight.

Proof. The proof follows from the discussions of Sections 5.6.1, 5.6.2, and 5.6.3.
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Figure 5.2: (A) An instance of interval jobs and g = 2. (B) A possible output by

the algorithms of Kumar and Rudra [42] and Alicherry and Bhatia [1], of cost =

2 + ε. (C) The optimal solution of cost 1 + ε.
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5.7 Flexible Jobs

5.7.1 Prior 4 approximation

In this section we discuss the more general problem of flexible jobs. This

problem was studied by Khandekar et al. [39], who refer to this problem as the

real-time scheduling problem. They gave a 5 approximation for this problem when

the jobs can have arbitrary widths. For the unit width jobs, their analysis can be

modified to give a 4 approximation.

As a first step towards proving the 5-approximation for the general problem

with flexible windows and non-unit width, Khandekar et al. [39] prove that if g

is unbounded, then this problem is polynomial-time solvable. The output of their

dynamic program essentially converts an instance of jobs with flexible windows to

an instance of interval jobs (with rigid windows), by fixing the start and end times

of every job.

Theorem 12. [39] If g is unbounded, the real-time scheduling problem is polynomial-

time solvable.

From Theorem 12, the busy time of the output of the dynamic program on

the set of flexible interval jobs J is equal to OPT∞(J ).

Once Khandekar et al. obtain the modified interval instance, they apply their

5 approximation algorithm for non-unit width interval jobs to get the final bound.

However, for jobs with unit width, their algorithm and analysis can be modified

without loss to apply the 4 approximation algorithm of Flammini et al. [22] for
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interval jobs with bounded g to get the final bound of 4.

The 2 approximation algorithm [42] for interval instance charges the demand

profile, hence it is immediately not clear how to extend it to handle flexible jobs since

the demand profile cannot be defined analogous to the interval case. One possible

natural extension is to follow the approach of Khandekar et al., to convert a flexible

instance to an interval instance, and then apply the algorithm to this modified

instance. Furthermore, the algorithm of Kumar and Rudra assumes that the demand

profile everywhere is a multiple of g. Hence, after modifying the instance to an

interval instance, we need to add dummy jobs accordingly to interesting intervals to

bring up their demands to multiples of g. However, there exists an instance where

this algorithm will approach a factor of 4 of the optimal solution. This is the worst

that it can do, since we prove in the following lemma that the demand profile of the

modified instance of interval jobs is at most twice the demand profile of the optimal

solution (note that once the jobs have been assigned in the optimal solution, their

positions get fixed, and hence the demand profile can now be computed easily).

Lemma 15. The demand profile of the output of the dynamic program converting

the flexible jobs to interval jobs is at most 2 times the demand profile of an optimal

solution structure.

Proof. The objective function of the dynamic program (12) is to minimize the total

busy time of a flexible job instance assuming g is unbounded. Since the dynamic

program is optimal, it will pack as many jobs and as much length as possible to-

gether. Hence, if a job has a choice of being assigned to a spot where other jobs
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need to be assigned as well, then it will be assigned at that spot instead of at some

other spot where no jobs need to be assigned. Therefore, at any level of the demand

profile, we can charge it to the mass of the level below, and if it is the first level, we

charge it to OPT∞ bound. Hence, in total the optimal solution gets charged twice,

once by the mass bound, and once by the span bound, giving a 2 approximation.

There exists an instance of flexible jobs for which the demand profile output

by the dynamic program of Khandekar et al. approaches 2 times the cost of the

demand profile of the optimal solution structure. We have shown such an instance

in Figure 5.3. The instance consists of the following types of jobs: one interval job

of unit length, followed by (g − 1) disjoint sets of identical g interval jobs, where in

the ith set, each job is of length 1 + iε, (i ∈ [1, . . . , (g− 1)]). Apart from these, there

are g− 1 flexible jobs, where the ith job is of length 1 + iε, where i ∈ [1, . . . , (g− 1)]

and has a feasible window spanning the the windows of the first i+ 1 disjoint sets of

interval jobs, as shown in the figure. An optimal solution would pack the g−1 flexible

jobs with the first interval job, and the remaining (g− 1) disjoint sets of identical g

interval jobs in their respective windows, with a total busy time of g+
(
g(g+1)

2
− 1
)
ε.

The dynamic program however disregards capacity constraints of the machines, and

simply tries to minimize the span of the solution. Hence, with a little effort it can

be seen that the unique output of the dynamic program (as shown in Figure 5.3)

would have a span of g + g(g−1)
2

ε, and the demand profile on imposing a capacity of

g is of cost 2g − 1 + g(g − 1)ε, which approaches 2 the cost of the optimal solution

when ε→ 0.
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Figure 5.3: (A) An instance of interval and flexible jobs. (B)The optimal solution

of busy time g + g2+g−2
2

ε. (C)The output of the dynamic program of Khandekar et

al. [39] of busy time = 2g − 1 + g(g − 1)ε.
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Theorem 13. A natural extension of the 2 approximation algorithm of Kumar

and Rudra [42] (or the algorithm of Alicherry and Bhatia [1]) for the interval jobs

problem, to the flexible jobs problem, gives an approximation of 4. This factor is

tight.

Proof. The approximation upper bound of 4 follows from Lemma 15 and Theorem

11. However, there is a tight example as well. In this example, we have an instance

of interval and flexible jobs. The instance consists of a unit length interval job,

followed by g−1 disjoint occurrences of the gadget shown in Figure 5.4. The gadget

consists of g unit length interval jobs, 2g−2 interval jobs of length ε, 2 interval jobs

of length ε′ and 2 jobs of length ε− ε′, as shown in the figure. There are g − 1 unit

length flexible jobs, each with windows spanning the windows of the union of all of

the interval jobs.





2g-2 

 g 

ϵ’ 

ϵ 

1 

Figure 5.4: Here we show the gadget for the factor 4 example.
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On running the dynamic program to minimize span, a possible output is when

each of g− 1 flexible jobs are packed along with the g− 1 gadgets. For applying the

algorithms of Kumar and Rudra (or Alicherry and Bhatia), we need to make sure

the demand everywhere is a multiple of g. Hence we add g − 1 dummy jobs of unit

length coincident with the first unit length interval job, as well as with each of the

g − 1 gadgets with a flexible job. This is shown in Figure 5.5.





2g-2 

 g 

ϵ’ 

ϵ 

1 



Repeated  
(g-1) 

times. 



 (g-1) dummy jobs 

 flexible job 

 (g-1) dummy jobs 

1 

Figure 5.5: Output of the dynamic program on the instance of interval and flexible

jobs for the factor 4 example.

Now, one possible run of the algorithm of Kumar and Rudra (or Alicherry and

Bhatia) may result in the packing shown in Figure 5.6, of cost 1 + 4(g − 1) +O(ε),

whereas the optimal solution is to pack the flexible jobs with the first unit length

interval job, and pack all the identical unit length jobs together, with a total cost

of g +O(ε). Hence the ratio approaches 4 for large g and small ε.
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Figure 5.6: Here we show the busy time bundling produced by a possible run of

Kumar and Rudra or Alicherry and Bhatia’s algorithms on one gadget along with

the flexible job and dummy jobs.

5.7.2 A 3 approximation algorithm

We now give a 3 approximation algorithm for the problem of flexible jobs.

Let us consider a set of flexible jobs J ′. Analogous to Khandekar et al. [39], we

first convert this instance to an instance of interval jobs by running the dynamic

program on J ′. Let J be the resultant set of interval jobs on fixing the job windows

according to the output of the dynamic program, and let OPT∞(J ′) denote the cost

or busy time of the output of the dynamic program. From Observation 2, we know

that OPT∞(J ′) ≤ OPT (J ′).

On the interval job instance J , we run our algorithm, which we call Greedy-

Tracking. Note that, now the span of the effective windows of every job becomes
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equal to its processing length. For an interval job j, we denote its window [rj, dj) as

the span of j: Sp(j). For the rest of the section, we assume that our input consists

of interval jobs.

Before we describe the algorithm, we define the notion of a track.

Definition 7. A track of interval jobs is a set of interval jobs with disjoint spans.

Given a feasible solution, one can think of each bundle B as the union of g

individual tracks of jobs. The main idea behind the algorithm is to identify such

tracks iteratively, bundling the first g tracks into a single bundle, the second g tracks

into the second bundle, etc. FirstFit [22] suffers from the fact that it greedily

considers jobs one-by-one; GreedyTracking is less myopic in that it identifies

jobs whole tracks at a time.

In the ith iteration, i ≥ 1, the algorithm identifies a track Ti ⊆ J \
⋃i−1
k=1 Tk

of maximum length `(Ti) and assigns it to bundle Bp, where p = d i
g
e. One can find

such a track efficiently via weighted interval scheduling algorithms [13]. We consider

the lengths of the interval jobs as their weights, and find the maximum weight set of

interval jobs with disjoint spans. If the final solution has κ bundles, the algorithm’s

total cost is
∑κ

i=1 |Sp(Bi)|. The pseudocode for GreedyTracking is provided in

Algorithm 62.

We next prove a key property of GreedyTracking: the span of any track

is at least half that of the remaining unscheduled jobs. In particular, the span of

any bundle is at most twice that of the first track to be assigned to it.

2This algorithm was also given by Chang [6], however the proof given here is shorter and simpler.
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Algorithm 6 GreedyTracking. Inputs: J , g.
1: S ← J , i← 1.

2: while S 6= ∅ do

3: Compute the longest track Ti from S and assign it to bundle Bd i
g
e.

4: S ← S \ Ti, i← i+ 1.

5: end while

6: return bundles {Bp}
d i−1
g
e

p=1

Lemma 16. Let Ti be the ith track found by GreedyTracking, i ≥ 1. Let J ′i ⊆ J

denote the set of unscheduled jobs J \
⋃i−1
k=1 Tk. Then |Sp(J ′i )| ≤ 2 · |Sp(Ti)|.

Proof. In order to prove this, we first prove the following. There exists two tracks

T ∗1 and T ∗2 , such that T ∗1 ⊆ J ′i and T ∗2 ⊆ J ′i , T ∗1 ∩ T ∗2 = ∅ and Sp(T ∗1 ) ∪ Sp(T ∗2 ) =

Sp(J ′i ). Let us assume, by way of contradiction, that the above is not true. In other

words, for every pair of disjoint tracks from the set of yet unscheduled jobs J ′i , the

union of their spans does not cover Sp(J ′i ).

Let T ∗1 and T ∗2 be two disjoint tracks from J ′i , such that the union of their spans

is maximum among all such tracks. By our assumption, |Sp(T ∗1 ∪ T ∗2 )| < |Sp(J ′i )|.

This implies that there exists an interval I ∈ Sp(J ′i ), such that I /∈ Sp(T ∗1 ∪ T ∗2 ).

Let I be [tI , t
′
I).

Clearly, no job j ∈ J ′i has a window ⊆ [tI , t
′
I), by the maximality of Sp(T ∗1 ∪

T ∗2 ). In fact, all jobs intersecting I, must intersect with some job in both T ∗1 and

T ∗2 , because of the same reason.

In the following we prove that no such interval I can exist given our assump-
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tions on T ∗1 and T ∗2 .

Let us first define the notion of minimum replaceable set.

Definition 8. Consider a track T and an interval job j with window [rj, dj). Let

jf ∈ T have the earliest deadline djf > rj such that rjf ≤ rj. Let j` ∈ T have

the latest release time rj` < dj, such that dj` ≥ dj. Then the set of jobs in T

with windows in [rjf , dj`) is the minimum replaceable set MRS(j, T ) for j in T .

In other words, it is the set of jobs whose union has the minimum span, such that

{T ∪ j}\MRS(j, T ) is a valid track. If there exists no such job jf (respectively, j`),

then MRS(j, T ) would consist of jobs in the interval [rj, dj`) (respectively, [rjf , dj)).

If there exists no such job jf as well as j`, then MRS(j, T ) = ∅. (See Figure 5.7

for an example).
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Figure 5.7: An example showing the minimum replaceable set of a job j, i.e.,

MRS(j) with respect to a track T .

Now we proceed with the proof.
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Case 3. There exists a job j in J ′i \ {T ∗1 ∪ T ∗2 }, such that rj < tI and tI < dj < t′I .

Consider MRS(j, T ∗1 ) and MRS(j, T ∗2 ). Without loss of generality, they can-

not be empty, as otherwise, by adding j to the corresponding track, we could

have increased Sp(T ∗1 ∪ T ∗2 ). Let je be the job with the earliest release time re

in MRS(j, T ∗1 ) ∪ MRS(j, T ∗2 ), and without loss of generality, suppose it belongs

to T ∗1 . Replacing MRS(j, T ∗2 ) with j will increase Sp(T ∗1 ∪ T ∗2 ). This is be-

cause, whereas Sp(MRS(j, T ∗1 )∪MRS(j, T ∗2 )) < [re, tI), Sp(j) ≥ [de, tI ], and hence

Sp(MRS(j, T ∗1 ) ∪ j) > [re, tI ]. See Figure 5.8 for an example.
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Figure 5.8: An example for Case 3 of Lemma 16. Here replacing MRS(j, T ∗2 ) by j

will increase the span of the union of the tracks: Sp(T ∗1 ∪ T ∗2 ).

Hence, this case is not possible.

Case 4. There exists a job j in J ′i \ {T ∗1 ∪ T ∗2 }, such that tI < rj < t′I and dj > t′I .
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Consider MRS(j, T ∗1 ) and MRS(j, T ∗2 ). Without loss of generality, they can-

not be empty sets as argued in Case 1. Let the job j` have the latest deadline d` in

MRS(j, T ∗1 ) ∪MRS(j, T ∗2 ). Without loss of generality, suppose j` belongs to T ∗1 .

Then we can replace MRS(j, T ∗2 ) with j, thereby increasing Sp(T ∗1 ∪ T ∗2 ). This is

because, Sp(MRS(j, T ∗1 ) ∪MRS(j, T ∗2 )) ≤ [t′I , d`), whereas Sp(MRS(j, T ∗1 ) ∪ j) >

[t′I , d`), since Sp(j) > [t′I , dj).

Hence, this case is also not possible.

Case 5. There exists a job j, such that [rj, dj) ⊃ [tI , t
′
I).

Let the earliest release time of any job in MRS(j, T ∗1 ) ∪MRS(j, T ∗2 ) be re

(the corresponding job is je) and the latest deadline of any job in MRS(j, T ∗1 ) ∪

MRS(j, T ∗2 ) be d` (the corresponding job is j`). Once again we assume WLOG,

that these sets are not empty. If both the jobs je and j` belong to the same track,

say, T ∗1 , we can replace MRS(j, T ∗2 ) with j in T ∗2 and increase the union of the

span of T ∗1 ∪ T ∗2 . This is because, Sp(j) ≥ [de, r`) and includes I = [tI , t
′
I), whereas

Sp(MRS(j, T ∗2 )\MRS(j, T ∗1 )) is at most [de, r`)\ [tI , t
′
I). Therefore, je and j` must

belong to different tracks.

Without loss of generality, let je ∈ T ∗1 and j` ∈ T ∗2 . Let us replace MRS(j, T ∗2 )

with j. Next, we put j` in T ∗1 replacing MRS(j`, T ∗1 ). Note that de ≤ tI , r` ≥ t′I ,

and t′I − tI > 0 by our assumptions. Therefore, je /∈ MRS(j`, T ∗1 ). In fact, none

of the jobs in T ∗1 with release time < t′I are included in MRS(j`, T ∗1 ), and hence

none of them are discarded. Therefore, the loss of coverage by T ∗1 after putting j` in

place of MRS(j`, T ∗1 ) is at most the interval [t′I , r`). However, we have added j to
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T ∗2 , and not only does j span [tI , t
′
I), but also the interval [t′I , r`], since dj ≥ r` for

j` to be originally a part of MRS(j, T ∗2 ). Hence, we would increase Sp(T ∗1 ∪ T ∗2 ),

which is a contradiction. Therefore, this case is also not possible,

Since no job window in J ′i can intersect I, there exists no such I in Sp(J ′i ).

Therefore, Sp(T ∗1 ∪ T ∗2 ) = Sp(J ′i ). Furthermore, |Sp(T ∗1 ∪ T ∗2 )| ≤ |Sp(T ∗1 )| +

|Sp(T ∗2 )|, in other words, the longer of T ∗1 and T ∗2 is ≥ |Sp(J ′i )|
2

. Since, Ti is the

longest track in J ′i , therefore, |Sp(J ′i )| ≤ 2|Sp(Ti)|.

We next prove that our algorithm generates a solution within 3 times the cost

of an optimal solution via the following lemmas.

Lemma 17. For any i > 1, the span of bundle Bi can be bounded by the mass of

the bundle Bi−1 as follows: |Sp(Bi)| ≤ 2 `(Bi−1)
g

.

Proof. Let T 1
i denote the first track of the bundle Bi. From Lemma 16, it follows

that |Sp(Bi)| ≤ 2|Sp(T 1
i )|. The jobs in T 1

i are disjoint by definition of a track,

hence |Sp(T 1
i )| = `(T 1

i ), and |Sp(Bi)| ≤ 2`(T 1
i ). Since T 1

i started the ith bundle,

bundle Bi−1 must already have had g tracks in it. Furthermore, the lengths of these

tracks are longer than that of T 1
i since GreedyTracking chooses tracks in non-

increasing order of length. Therefore, `(Bi−1) =
∑g

p=1 `(T
p
i−1) ≥ g · `(T 1

i ). It follows

that |Sp(Bi)| ≤ 2 `(Bi−1)
g

.

Lemma 18. The total busy time of all the bundles except the first one is at most

twice that of an optimal solution for the entire instance. Specifically,
∑

i>1 |Sp(Bi)| ≤

2OPT (J ′).
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Proof. This proof follows from Lemma 17. For any i > 1, |Sp(Bi)| ≤ 2 `(Bi−1)
g

.

Summing over all i > 1, we get the following:
∑

i>1 |Sp(Bi)| ≤ 2
∑
i>1 `(Bi−1)

g
=

2
∑
i>1

∑
j∈Bi−1

`(j)

g
. Therefore,

∑
i>1 |Sp(Bi)| ≤ 2 `(J )

g
. Note that `(J ) =

∑
j∈J ′ pj,

where J ′ is the original flexible interval job instance. This is true because the

dynamic program converting a flexible instance to an interval instance, does not

reduce the processing length of any job. Hence, from Observation 1, OPT (J ′) ≥

`(J ′)
g

. It follows that
∑

i>1 |Sp(Bi)| ≤ 2OPT (J ′).

Theorem 14. The cost of the algorithm is at most 3 times the cost of an optimal

solution. Specifically,
∑

i |Sp(Bi)| ≤ 3OPT (J ).

Proof. From Lemma 18,
∑

i>1 |Sp(Bi)| ≤ 2OPT (J ′). Furthermore, |Sp(B1)| ≤

OPT∞(J ′). From Observation 2, OPT∞(J ′) ≤ OPT (J ′). Therefore,
∑

i |Sp(Bi)| ≤

3OPT (J ′).

Figure 5.9 shows that the approximation factor of 3 achieved by Greedy-

Tracking is tight. In the instance shown, a gadget of 2g interval jobs is repeated

g times. In this gadget, there are g identical unit length interval jobs which overlap

for ε amount with another g identical unit length interval jobs. The g gadgets are

disjoint from one another, which means, there is no overlap among the jobs of any

two gadgets. There are 2g flexible jobs, whose windows span the windows of all the

g gadgets. These jobs are of length 1− ε
2
. An optimal packing would pack each set

of g identical jobs of each gadget in one bundle, and the flexible jobs in 2 bundles,

giving a total busy time of 2g + 2 − ε. However, the dynamic program minimizing

the span does not take capacity into consideration, hence in a possible output, the
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flexible jobs may be packed 2 each with each of the g gadgets, in a manner such that

they intersect with all of the jobs of the gadget. Hence, the flexible jobs cannot be

considered in the same track as any unit interval job in the gadget it is packed with.

Due to the greedy nature of GreedyTracking, the tracks selected would not con-

sider the flexible jobs in the beginning, and the interval jobs may also get split up

as in Figure 5.10, giving a total busy time of 4(1− ε)g + (2− o(ε))g = (6− o(ε))g,

hence it approaches a factor 3 asymptotically.





g 

 g 

1 

ϵ 

1 

 Repeated 
g times 


 2g flexible jobs, each of length 1 - ϵ/2  

Figure 5.9: Gadget for factor 3 for GreedyTracking

5.7.3 Preemptive Model

In this section, we remove the restriction, a job needs to be assigned to a single

machine. A job j needs to be assigned a total of pj time units within the interval

[rj, dj) and at most one machine may be working on it at any given time.
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2 – o(ϵ) 

   g interval jobs 

   2 flexible jobs 

Figure 5.10: Possible packing by GreedyTracking

Theorem 15. For unbounded g and preemptive jobs, there is an exact algorithm to

minimize busy time.

Proof. The algorithm is a simple greedy one. Let J1 be the set of jobs of earliest

deadline d1 and let the longest job jmax,1 in J1 have length `max,1. We open the

interval [d1 − `max,1, d1), and for every the job j ∈ J such that [rj, dj) ∩ [d1 −

`max,1, d1) 6= ∅, we schedule it up to d1 − rj in the interval [rj, d1). Then we shrink

the interval [d1−`max,1, d1) and adjust the windows and remaining processing lengths

of the jobs in J and then repeat till all jobs in J have been completely scheduled.

In the first iteration, without loss of generality, the optimal solution will also

open the interval [d1− `max,1, d1); jmax,1 has to be scheduled completely d1 and since

d1 is the earliest deadline, opening this length of interval as late as possible ensures

that we can schedule the maximum length of any job in the instance J with jmax,1.
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The correctness follows by induction on the remaining iterations.

As a consequence, one can approximate preemptive busy time scheduling for

bounded g. First, solve the instance under the assumption that g is unbounded;

denote by S∞ this (possibly infeasible) solution. The busy time of S∞ is OPT∞(J ),

and is a lower bound on the optimal solution for bounded g. The algorithm for

bounded g will commit to working on job j precisely in the time intervals where S∞

had scheduled it. Partition the busy time of S∞ into the set of interesting intervals

{I1, . . . , Ik}, where k = θ(n).

For every interesting interval Ii, assign the jobs scheduled in Ii to dn(Ii)
g
e ma-

chines in arbitrary order, filling the machines greedily such that there is at most one

machine with strictly less than g jobs.

For each Ii, at most one machine contains less than g jobs, which we charge

to OPT∞(J ) All other machines are at capacity, i.e., have exactly g jobs and hence

we charge them to `(J )
g

. This implies an approximation of 2.

Theorem 16. There is a preemptive algorithm whose busy time is at most twice

that of the optimal preemptive solution, for bounded g.

111



Chapter 6: Active Time

In this chapter, we consider the active time problem, which was introduced by

Chang et al. [7]. The notion of active time, similar to busy time, is motivated by the

total amount of time that a machine is actively working. The key difference between

busy time and active time is, as outlined in Chapter 1, while the busy time model

can open up an unbounded number of machines if necessary, the active time model

assumes access to a single machine. The input for both models is the same: a set

of jobs, each of which has an associated feasible time window, where it needs to be

scheduled; however, the machine capacity is limited with respect to the number of

simultaneous jobs that can be processed at any instant of time. An instance which

may be feasible in the busy time model (in fact, every instance is feasible in the

busy time model), may become infeasible in the active time model. For example,

consider an instance with g+ 1 unit jobs of window [0, 1), and the machine capacity

is g. This is a perfectly feasible instance in the busy time model, which will open up

2 machines of in the window [0, 1), but becomes infeasible in the active time model.
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6.1 Problem Definition

The input consists of a set of jobs J , where each job j has a release time rj,

a deadline dj, and a length pj. This means that pj units of job j must be scheduled

within time slots [rj, dj), which we sometimes refer to as the window of j. We

have access to a single machine, which is either active (‘on’) at any instant or not.

The machine can process only g jobs at any time instant. Since there is a single

machine, we simply refer to the time axis henceforth in place of the machine. We

consider time to be slotted, and hence the release times and deadlines of jobs are

integral. Consequently, the jobs are integral in length, and additionally, we allow

preemption at integer boundaries. In other words, we consider each job j of length

pj to be a chain of pj unit jobs, with identical windows [rj, dj) and the restriction

that in any time slot, at most one of these unit jobs can be scheduled. Hence,

in this model,
∑

j∈J pj is polynomial. Let us denote by T the length of the time

window, spanning the union of the windows of the entire job instance. In other

words, T = |
⋃
j∈J [rj, dj)|. We assume without loss of generality that the earliest

release time of any job j ∈ J is 0 and the latest deadline of any job in j ∈ J is T .

Sometimes for ease of notation, we will be using t to denote any slot [t−1, t). In this

notation, let T denote the set of time slots [1, . . . , T ]. Figure 6.1 shows a collection

of jobs and the corresponding optimal schedule minimizing the active time, when

machine capacity g = 3.
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Job Instance 

Optimal 
solution for 
g=3 

Time axis 

Figure 6.1: Here we show the optimal solution for the active time problem with

integral preemption, for an instance of 6 jobs and g = 3.

6.1.1 Hardness of the problem

When preemption is not allowed, it becomes strongly NP-hard (by a reduc-

tion from 3-PARTITION) to determine whether there exists a feasible solution for

non-unit length jobs, even for the special case when the windows of all the jobs are

identical [6]. The complexity of the model allowing preemption at integral bound-

aries has still not been resolved and is an open question.

6.2 Prior Work and Our Contributions

Chang et al. [7] consider the problem of unit length jobs under the slotted time

model (in other words, the release times and deadlines are integral), for which they
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present a fast linear time greedy algorithm. When the release times and deadlines

are allowed to be real numbers, they give an O(n7) dynamic program to solve it; this

result has since been improved to an O(n3)-time algorithm in the work of Koehler

and Khuller [41]. Chang et al. [7] also consider generalizations to the case where jobs

can be scheduled in a union of time intervals (in contrast to the usual single release

time and deadline). Under this generalization, once the capacity constraints exceeds

two, minimizing active time becomes NP-hard via a reduction from 3-EXACT-

COVER. However, for a capacity of two, they provide a polynomial-time solution

based on finding maximum degree-constrained subgraphs; this result extends to

non-unit length jobs that can be preempted only at integral time points. The active

time problem for non-unit length jobs with integral preemption was considered by

Chang [6], who showed that any minimal feasible solution is 5 approximate.

We show that in fact any minimal feasible solution for non-unit length jobs

with integral preemption, is at most 3 times the cost of an optimal solution and also

show that the factor 3 is tight. We then present a 2 approximation algorithm for

the problem via an LP rounding scheme and also show that the integrality gap of

the LP is 2.

6.3 3 approximation for active time scheduling of chains

First we define the following notation for ease of presenting the analysis.

Definition 9. A job j is said to be live at t if t ∈ [rj, dj)

Definition 10. A slot is active if at least one job is scheduled in it. It is inactive
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otherwise.

Definition 11. A slot is full if there are g jobs assigned to it. It is non-full other-

wise.

A feasible solution σ is specified by a set of active time slots A ⊆ T , and a

mapping or assignment of jobs to the time slots in A, such that at most g jobs are

scheduled in any slot in A, at most one unit of any job j is scheduled in any time

slot in A and every job j has been assigned to pj active slots within its window

[rj, dj). Once the set A of active slots has been determined, a feasible integral

assignment can be found via a max-flow computation. We talk about this in detail

in the following section in the context of the 2 approximation.

The cost of a feasible solution σ is the number of active slots in the solution,

denoted by |A|. Let Af denote the set of active slots which are full, and An denote

the set of active slots which are non-full. Therefore, |A| = |Af |+ |An|.

Definition 12. A minimal feasible solution is one in which no active slot can be

made inactive, and still feasibly satisfy the entire job set.

Given a feasible solution, one can easily find a minimal feasible solution.

Definition 13. A non-full-rigid job is one which is scheduled one unit in every

non-full slot where it is live.

Lemma 19. For any minimal feasible solution σ, there exists another solution σ′

of same cost, where every slot that is non-full, that is, has less than g jobs, has at

least one non-full-rigid job scheduled in it.
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Proof. This is a proof by construction. Consider any non-full slot in the minimal

feasible solution σ, which does not have any non-full-rigid job scheduled in it. Move

any job in that slot to any other (non-full, active) slot that it may be scheduled in,

and where it is not already scheduled. There must at least one such slot, otherwise

this would be a non-full-rigid job. Continue this process for as long as possible.

Note that in moving these jobs, we are not increasing the cost of the solution, as we

are only moving jobs to already active slots. If we can do this till there are no jobs

scheduled in this slot, then we would have found a smaller cost solution, violating

our assumption of minimal feasibility. Otherwise, there must be at least one job left

in that slot, which cannot be moved to any other active slots. This can only happen

if all the slots in the window of this job are either full, or inactive, or non-full where

already one unit of this job has been scheduled, thus making this a non-full rigid

job.

Continue this process till in all the non-full slots, there is at least one non-full-

rigid job scheduled.

Corollary 1. There exists a set of jobs J ∗ consisting of non-full-rigid jobs, such

that at least one of these jobs is scheduled in every non-full slot.

We say that such a set J ∗ covers all the non-full slots.

Lemma 20. There exists a set J ∗ of non-full-rigid jobs covering all the non-full

slots, such that no job window is completely contained within the window of another

job.

Proof. Let us consider a set J ∗ of non-full-rigid jobs which is covering all the non-
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full slots. Suppose it consists of a pair of non-full-rigid jobs j and j′, such that the

[rj, dj) ⊆ [rj′ , dj′). One unit of j′ must be scheduled in every non-full slot in the

window of j′. However, this also includes the non-full slots in the window of j, hence

we can discard j from J ∗ without any loss.

We repeat this with every pair of non-full-rigid jobs in J ∗, such that the

window of one is contained within the window of another, till there exists no such

pair.

Let us call such a set J ∗ of non-full-rigid jobs whose windows are not contained

within each other, and which covers all the non-full slots, as a minimal set J ∗.

Now, we prove that there exists a minimal set J ∗ such that at every time slot,

at most two of the jobs in the set J ∗ are live. We will be charging the cost of the

non-full slots to the set J ∗. The full slots can obviously be charged to the mass

bound, which is a lower bound on the optimal solution.

Lemma 21. There exists a minimal set J ∗ of non-full-rigid jobs such that at least

one of these jobs is scheduled in every non-full slot, and at every time slot, at most

two of the jobs in the set J ∗ are live.

Proof. Consider the first time slot t where 3 or more jobs of J ∗ are live. Let these

jobs be numbered according to their deadline (j1, j2, j3, . . . .j`, ` ≥ 3). By definition,

the deadline of all of these jobs must be ≥ t since they are all live at t. Moreover,

they are all non-full-rigid, being a part of J ∗, which means they are scheduled one

unit in every non-full active slot in their window. Since the set J ∗ is minimal,

no job window is contained within another, hence none of the jobs j2, . . . , j` have
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release time earlier than that of j1. Therefore, all non-full slots before the deadline

of j1 must be charging either j1 or some other job with an earlier release time.

Consequently, discarding any of the jobs j2, . . . , j` will not affect the charging of

these slots.

Let t′ be the first non-full active slot after the deadline of j1. t′ therefore needs

to charge one of j2, j3, . . . , j`. Note that if there exists no such t′, then all the jobs

j2, . . . , j` can be discarded from the minimal set J ∗ without any loss since no non-

full slot needs to charge them. Hence, let us assume that such a t′ exists. Among

the jobs j2, . . . , j`, all the jobs which have a deadline earlier than t′, can be discarded

from the minimal set J ∗, without any loss, since no non-full slot needs to charge

it. Hence, let us assume that all of these jobs j2, j3, . . . , j` are live at t′. However,

all of them being non-full-rigid, and t′ being non-full and active, all of them must

have one unit scheduled in t′. Therefore, if we discard all of the jobs j2, . . . , j`−1 and

keep j` alone, that would be enough since it can be charged all the non-full slots

between t′ and its deadline d`. Hence, after discarding these intermediate jobs from

the minimal set J ∗, there would be only two jobs j1 and j` left which overlap at t.

Repeat this for the next slot t′′ where 3 or more jobs of the minimal set J ∗

are live, till there are no such time slots left.

The cost of the non-full slots of the minimal feasible solution σ′ is |An| ≤∑
j∈J ∗ pj.

Theorem 17. The cost of any minimal feasible solution is at most 3 times that of

an optimal solution.
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Proof. It follows from Lemma 21 that J ∗ can be partitioned into two job sets

J1 and J2, such that the jobs in each set have windows disjoint from one another.

Therefore the sum of the processing times of the jobs in each such partition is a lower

bound on the cost of any optimal solution. Let us denote the cost of the optimal

solution as OPT . Hence, the cost of of the non-full slots is |An| ≤
∑

j∈J ∗ pj ≤∑
j∈J1 pj +

∑
j′∈J2 pj′ ≤ 2OPT . Furthermore, the full slots charge once to OPT ,

since they have a mass of g scheduled in them, which is a lower bound on OPT .

|Af | ≤
∑
j∈J pj

g
≤ OPT . Therefore, in total the cost of any minimal feasible solution

cost(σ) = cost(σ′) = |A| = |Af |+ |An| ≤ 3OPT . This proves the theorem.

The above bound is asymptotically tight as proved by the following example

of a minimal feasible solution.

There are 2 jobs each of length g, one has a window [0, 2g) and the other one

has a window [g, 3g). There are g− 2 rigid jobs, each of length g− 2, with windows:

[g + 1, 2g− 1). There are g− 2 unit jobs with window [g + 1, 2g) and another g− 2

unit jobs with window [g, 2g − 1). The optimal solution would have scheduled the

two longest jobs from [g, 2g), and one set of g − 2 unit jobs on time slot g, and

the other set of unit jobs on time slot 2g − 1. The total cost of the solution is g.

However, a minimal feasible solution may schedule the two sets of g − 2 unit jobs

in the window [g + 1, 2g − 1), with the rigid jobs of length g − 2. Now, the two

longest jobs cannot fit anywhere in the window [g+ 1, 2g− 1), since these slots have

become full slots. Hence, it has to pay the cost of the g length jobs additionally. So,

one feasible way to pack all the jobs would be to pack one of the longest jobs from
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[1, g+ 1) and the other one from [2g− 1, 3g− 1). The total cost would therefore be

3g − 2, which tends to 3 times the optimal solution as g →∞.

g-2 rigid jobs 
of length g-2 

g-2  flexible 
unit jobs 

1 job of  length g 

1 job of length g 

0 g g+1 2g-1 2g 3g 

g-2  flexible 
unit jobs 







Figure 6.2: Example of an instance where the minimal feasible solution is almost 3

times the optimal solution.

6.4 A 2 approximation algorithm based on LP rounding

Here we use LP-rounding to give a 2 approximation for the active time problem

on non-unit length jobs with preemption allowed at integral boundaries. In this

section onwards, we will be using t to denote any slot [t− 1, t) for ease of notation.

Let us first write an LP for the problem. Let yt denote the indicator variable for

every time slot t ∈ T . Let xt,j denote the indicator variable for unit job j ∈ J and

every t ∈ T . The LP is as follows:
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min
∑
t∈T

yt

s.t. xt,j ≤ yt ∀t ∈ T , j ∈ J∑
j∈J

xt,j ≤ gyt ∀t ∈ T

∑
t∈T

xt,j ≥ pj ∀j ∈ J

0 ≤ yt ≤ 1 ∀t ∈ T

xt,j ≥ 0 ∀t ∈ T , j ∈ J

xt,j = 0 ∀t /∈ [rj, . . . , dj]

We first solve the LP to optimality. Since any integral optimal solution is a feasible

LP solution, the optimal LP solution is a lower bound on the cost of any optimal

solution. Our goal is to round it to get a feasible integral solution within twice the

cost of the optimal LP solution. However, before we do the rounding, we pre-process

the optimal LP solution, to get a certain structure without increasing the cost of

the solution. We show that there exists a feasible fractional assignments of the jobs

to this pre-processed LP solution and outline the procedure to find one. Then we

round this solution to get a feasible integral solution.

In the rounding, our goal will be to find a set of slots to open integrally, such

that there exists a feasible fractional assignment for the jobs in the integrally open

slots. An integral assignment can be found at the end of the procedure, when we

have determined the integrally open slots, via a max-flow computation. We do not

try to integrally assign jobs at any intermediate steps. In the max-flow construction,
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: Open slots 

: Non-unit jobs 
Capacity g edges Unit capacity edges 

Edge capacities 
equal to job lengths 

Figure 6.3: Here we show the flow network construction for finding an integral,

feasible assignment of jobs in integrally open slots.

we create a node for each job and a node for each integrally open slot. We add edges

from the jobs to the integrally open time slots at which they are feasible. These

edges have unit capacity, since only one unit of a job can be done on any time slot.

We create a source node s, and add edges from s to the jobs, such that an edge

from s to j will have capacity pj. We also create a sink node t and edges from the

integrally open slots to t, each of capacity g. Since there exists a feasible fractional

assignment of the jobs in the slots, there exists a flow of
∑

j pj in the network.

Hence, any max-flow algorithm will find a flow of this value, and since all capacities

and sizes are integral, the flow will be integral, and hence we can get an integral,

feasible assignment of the jobs in the integrally open slots. See Figure 6.3 for an

example.

6.4.1 Pre-Processing

We sort the deadlines of the jobs to get the set of distinct deadlines in increas-

ing order and then process the LP solution sequentially according to these deadlines.
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Let the set of distinct deadlines be D = [d1, d2, . . . , d`]. We denote the set of jobs

with deadline di as Ji.

We define Y1 as the sum of the y values for all time slots ≤ d1, that is,

Y1 =
∑

t≤d1 yt. Then we modify the optimal LP solution as follows. We open

the slots [d1 − bY1c + 1, . . . , d1] integrally and the slot d1 − bY1c fractionally up to

Y1 − bY1c, and close all the earlier slots.

Similarly, for the ith deadline, define Yi =
∑

di−1<t≤di yt. We want to pre-

process the optimal solution to have the right-shifted structure, where for every

deadline di, bYic slots are open integrally backwards from di, in other words, the

slots [di−bYic+1, . . . , di] are fully open, and the slot di−bYic is open up to Yi−bYic.

By definition, the LP solution can be written as:
∑

t∈T yt =
∑

i∈[1,...,`] Yi.

For every job j ∈ J , let us define aj,1 =
∑

t≤d1 xt,j, where aj,1 the total

assignment any job j is getting from slots ≤ d1 in the optimal LP solution. Similarly,

for any deadline di, i > 1, we define aj,i =
∑

di−1<t≤di xt,j, where aj,i is the total

assignment any job j is getting from the slots [di−1 + 1, . . . , di].

The following lemma proves that there exists an optimal feasible LP solution

in the modified instance up to d1.

Lemma 22. There exists an assignment of the jobs in the modified LP solution up

to d1 such that every job j in J can be accommodated up to aj,1.

Proof. This is a proof by construction. Let t be the latest slot ≤ d1 for which yt > 0

in the optimal LP solution. Note that, without loss of generality, we can make

yd1 = yt and yt = 0, and move all the job assignments intact from t to d1. This is
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because, all jobs which are feasible at t are also feasible at d1 by definition of d1.

Now, let t′ be the latest slot ≤ d1 for which yt′ > 0. If yd1 + yt′ ≤ 1, we merge

yt′ with yd1 , in other words, set yd1 = yd1 + yt′ and transfer all the job assignments

from t′ to d1, without violating feasibility or increasing the cost. Otherwise, we set

yd1−1 = yd1 + yt′ − 1 and yd1 = 1. However, we need to maintain the constraint

xt,j ≤ yt to get a feasible LP solution. Suppose Jt′ is the set of jobs that were

originally assigned to the t′. Set δ = g · yd1−1 initially. As long as there exists some

job in j ∈ Jt′ , we assign j up to xd1−1,j = min (xt′,j, yd1−1, δ) to the slot d1 − 1, and

decrement both δ and xt′,j by xd1−1,j. If xt′,j becomes 0, then we remove that job

from Jt′ . Once δ goes to 0 on adding some job to slot d1 − 1, we assign all the

remaining jobs (portions) in Jt′ to d1, without violating feasibility, since 1) yd1 = 1,

2) we have assigned up to g · yd1−1 in d1 − 1, there is space in d1 up to g, and we

know yd1 + yt′ = 1 + yd1−1, hence there is enough space in d1 to accommodate the

remaining jobs. If δ is not 0, but Jt′ is not empty, then every job j ∈ Jt′ have

been assigned either up to xt′,j to d1 − 1, or up to yd1−1, and the remaining jobs

(portions) are assigned to d1. This is also feasible because of the following reasons.

The space available in d1 before merging with t′ was g · yd1 . Let the space occupied

by jobs with xt′,j ≤ yt′ be δ′ in d1 − 1. The jobs with xt′,j > yd1−1 must have all

been assigned up to yd1−1, since δ is still not 0. Therefore, the number of such

jobs is <
g·yd1−1−δ′

yd1−1
. These jobs could have been assigned to at most yt′ in t′ before

merging. Hence, the remaining portion of these jobs is <
g·yd1−1−δ′

yd1−1
· (yt′ − yd1−1).

The space available for accommodating them in d1 is (yt′ − yd1−1) · g. However,
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g·yd1−1−δ′

yd1−1
· (yt′ − yd1−1) ≤ (yt′ − yd1−1) · g, therefore, the remaining portions of the

jobs in Jt′ can be accommodated in d1, without violating LP feasibility. If δ does

not go to 0, while there are no jobs left in Jt′ , then we have feasibly assigned all the

jobs in yt′ , respecting all the constraints.

Now, we repeat the above procedure with the latest slot t′′ < d1 − 1, merging

yt′′ with yd1−1, if yd1−1 > 0, otherwise with yd1 . If there exists no such t′′ we stop.

At the end, we have a feasible LP solution where all jobs j ∈ J have been assigned

up to aj,1 in the right shifted structure.

Let us assume by induction hypothesis that the above holds for all deadlines

dk, where k ≤ i−1. The next lemma proves that the property holds for the deadline

di, assuming it holds for all earlier deadlines.

Lemma 23. There exists an assignment of the jobs in the modified LP solution up

to di (i ≥ 1) such that every job j in J can be accommodated up to
∑

1≤k≤i aj,i.

Proof. We prove this by induction. The base case is proved in Lemma 22. We

assume by induction hypothesis, that the claim holds for all iterations 1 ≤ k < i

and now do the same construction as in Lemma 22 for proving the claim for iteration

i. Now, we only consider slots di−1 + 1, . . . di, starting with the closest slot t to di

with yt > 0 and repeat the merging and reassignment procedure as described in

Lemma 22. Again the key observation is that any job j which is feasible at some

t ≤ di, is also feasible in all slots [t, t+ 1, . . . , di].

Theorem 18. There exists a feasible LP solution of the same cost as any optimal

LP solution, which possesses the right-shifted structure.
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Proof. As already noted, the LP solution can be written as the sum of the Yi values,

as
∑

t∈T yt =
∑

i∈[1,...,`] Yi. Therefore, the right shifted solution has the same cost as

the optimal solution. The theorem follows from the Lemmas 22 and 23 by induction.

We can use the construction process highlighted in the Lemmas 22 and 23 or

we can set the y values of all the slots as per the right-shifted structure, and solve

the following feasibility LP to get a feasible fractional assignment for all the jobs.

xt,j ≤ yt ∀t ∈ T , j ∈ J∑
j∈J

xt,j ≤ gyt ∀t ∈ T

∑
t∈T

xt,j ≥ pj ∀j ∈ J

xt,j ≥ 0 ∀t ∈ T , j ∈ J

xt,j = 0 ∀t /∈ [rj, . . . , dj]

Henceforth, we work with this feasible, right-shifted optimal LP solution. See

Figure 6.4 for an example of a right-shifted LP solution.

6.4.2 Overview of Rounding

We process the deadlines one after another in at most ` iterations, where we

process the di in iteration i. At the end of every iteration i, we have a set of integrally

open slots Oi. We maintain the invariant that at the end of the ith iteration, the

number of integrally open slots up to di is |Oi| ≤ 2
∑

j≤i Yj, and there exists a
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d1 d2 d3 

d1 d2 d3 

0.6 0.53 
0.62 

0.57 0.55 
0.3 

0.57 

1 

0.47 

1 0.93 

LP*: 

LP**: 

Figure 6.4: LP* is an optimal LP solution, and LP** is the rightshifted solution of

the same cost.

feasible fractional assignment of Ji in Oi. This gives us the 2 approximation by the

end of the `th iteration, when we have processed the last deadline.

We refer to a slot t with yt = 1 as “fully open”, that with 1 > yt ≥ 1
2

as “half-

open”, that with 0 < yt <
1
2

as “barely open” and that with yt = 0 as “closed”.

Obviously, fully open slots do not charge anything extra to the LP solution.

Half-open slots can be opened at a cost of at most 2, charging themselves. For

opening a barely open slot, we need to charge it to an fully open slot. We say that

a barely open slot is “dependent” on the fully open slot that it charges to. In this

case, the y value of the barely open slot is not charged at all. We will sometimes

allow two barely open slots on either side of a fully open slot to open up along with

a fully open slot, when the total sum of the y values of the barely open slot and the

fully open slot is ≥ 3
2
. We will refer to such slots as a “trio”. Note that here we do

charge the y value of the barely open slot.

We will additionally maintain the invariant that at every iteration, every barely

open slot that we have opened is either a dependent on a fully open slot, or is part
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of a trio, and every fully open slot has at most one dependent or it is part of at most

one trio. Half open slots charge themselves. This will ensure that we have charged

the LP solution at most twice.

Every time we open a barely open slot as a dependent, we make it a dependent

on the earliest fully open slot that does not have a dependent or is not part of a

trio. See Figure 6.5 for an example.

… 

dk di 

di (di -2) 

… 

dk di dk -1 

2

3
 if 1  ikk ddd yyy

(A) 

(B) 

(C) 

Figure 6.5: Here we show the three possible ways in which we charge a barely open

slot when max-flow cannot close it.

Sometimes, in the rounding process we close a barely open slot di− t, (t ≥ 0),

while processing deadline di. However, if jobs of later deadline were assigned by the

LP in this barely open slot, then we need to accommodate them. We make sure

that when we close a slot, we are not charging its y value at all. Hence we create a

proxy copy of the slot that we closed, and carry it over to the next iteration. The

y value of this proxy slot is set to be the y value of the slot we have just closed,
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without any double counting. The proxy also carries a pointer to the actual slot

that it is a proxy for. In any iteration i, when we have a proxy, we treat it as a

regular fractionally open slot (though there may be no actual slot at that point). If

this slot remains closed after the rounding, the proxy gets carried over to the next

iteration, whereas if it does get opened by the rounding, the actual slot which it

points to gets opened. However, now the cost of opening it will be accounted for by

the current solution. This is outline in details in Section 6.4.4.1. There can be at

most one proxy slot at any iteration.

6.4.3 Processing d1

Lemma 24. Y1 ≥ 1

Proof. This is obvious as otherwise the LP solution is not feasible: none of the

chains with deadline d1 or otherwise, could have been assigned one unit before the

first deadline.

Slots [d1 − bY1c + 1, . . . , d1] are fully open. In the following, we outline how

we deal with the slot d1 − bY1c.

Case 6. Y1 − bY1c ≥ 1
2
.

We open d1 − bY1c as half open and charge it to itself.

Case 7. Y1 − bY1c < 1
2
.

We first try to close d1−bY1c and find a feasible assignment of J1 in bY1c slots

fully opened, using max-flow. If successful, then we keep it closed, and move to the
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next deadline, after passing over a proxy slot with y value Y1 − bY1c to iteration

2. The proxy slot has the same job assignments as in the right-shifted solution LP

solution, except those in J1, which are removed from the proxy slot. If we do not

find a feasible assignment for J1 by closing d1− bY1c, we keep it barely opened and

make it dependent on d1 − bY1c+ 1. We are guaranteed to find a fully open slot on

which to make it dependent since Y1 > 1.

6.4.4 Processing deadline di, i > 1

Now, we proceed to the next deadline di.

6.4.4.1 Dealing with a proxy slot

While processing a deadline di, suppose there is a proxy of value yp carried

over from iteration (i− 1). Note that we are working with a right shifted solution.

and the slots [di−bYic+ 1, . . . , di] are fully open. Before we do any rounding in the

iteration i, we do the following.

Case 8. yp + Yi − bYic ≤ 1.

In this case, we merge the proxy with the slot di − bYic. Specifically, we add

yp to ydi−bYic, and transfer all the job assignments from the proxy slot to the slot

(di − bYic) without violating the LP solution feasibility. (This maintains all the LP

constraints). Now, we proceed with the rounding, treating di − bYic as a regular

fractional slot in the right shifted solution (in other words, consider Yi to be Yi+yp).

Note that the jobs originally assigned to the proxy must have deadlines ≥ di, since
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they were passed over from iteration i− 1. Hence, the pointer to the proxy can now

be safely changed to di − bYic. If this gets opened, then no proxy is carried over.

Otherwise, the new proxy carried over will be of value yp+Yi−bYic and the pointer

will be to di − bYic. If however, di−1 = di − bYic, then bYic = Yi, and in this case,

we consider an imaginary slot di−1 = di − bYic in between di−1 and di − bYic + 1,

to which we assign yp, consider Yi to be Yi + yp and process it for the time being

as a regular fractional slot. If this remains closed, we pass over a proxy of value yp

with the original pointer, otherwise, we open up the actual slot to which the proxy

points.

Case 9. yp + Yi − bYic > 1.

In this case, let yp
′ = yp + Yi − bYic − 1. We make di − bYic fully open and

create a new proxy with y value equal to yp
′. If di−1 < di − bYic − 1, we set y

of the slot di − bYic − 1 to yp
′, since all jobs in the proxy are feasible here, and

treat it as a regular fractional slot. In other words, assume Yi to be Yi + yp, and

process it. If this fractional slot gets opened, then we are fine, otherwise, this new

proxy of value yp
′ gets carried over to iteration i + 1, with the pointer changed to

di − bYic − 1. Otherwise, di−1 = di − bYic − 1; in this case, consider an imaginary

slot di−1 = di − bYic − 1 in between di−1 and di − bYic, to which we assign yp
′,

consider Yi to be Yi + yp and process it for the time being as a regular fractional

slot. If this imaginably slot remains closed, we pass over a proxy slot of value yp
′

with the original pointer, otherwise, we open up the actual slot to which the proxy

points. For the case yp + Yi − bYic > 1, since we create a new proxy yp
′, we need to
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specify how to change the assignments of the actual jobs, in order to create a new

LP feasible solution. The procedure is essentially the same as in Lemma 22. For

completeness, it is outlined below.

We can assign a mass up to gyp
′ in the new proxy slot. Let δ = g · yp′ initially.

As long as there exists some job in j ∈ Jp, we assign j up to a xp′,j = min (xp,j, yp
′, δ),

where xp,j was the original assignment of j to yp. We decrement both δ and xp,j

by xp′,j. If xp,j becomes 0, then we remove that job from Jp. Once δ goes to 0 on

adding some job to the proxy slot we assign all the remaining jobs (portions) in Jp

to di − bYic, without violating any feasibility. The slot di − bYic is now fully open,

hence constraint xt,j ≤ yt won’t be violated. Moreover, yp
′ being fully utilized, the

remaining mass to be accommodated must be ≤ (yp − yp′) · g, hence there is enough

space in di − bYic to accommodate the remaining jobs. If δ is not 0, but Jp is not

empty, then every job j ∈ Jp have been assigned either up to xp,j to the proxy slot, or

up to yp
′, and the remaining jobs (portions) are assigned to di−bYic. This is feasible

because of the following reasons. The space available in di− bYic − 1 originally was

gyp
′. Let the space occupied by jobs with xp,j ≤ yp

′ be δ′. The jobs with xp,j > yp
′

must have all been assigned up to yp
′, since δ is still not 0. Therefore, the number of

such jobs is < gyp′−δ′
yp′

. These jobs could have been assigned to at most yp in the proxy

slot originally. Hence, the remaining portion of these jobs is < gyp′−δ′
yp′

· (yp − yp′).

The space available for accommodating them in di − bYic is (yp − yp′) · g. However,

gyp′−δ′
yp′
· (yp − yp′) ≤ (yp − yp′) · g, therefore, the remaining portions of the jobs in Jp

can be accommodated in di−bYic, without violating LP feasibility. If δ does not go

to 0, while there are no jobs left in Jp, then we have feasibly assigned all the jobs
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in yp, respecting all the constraints.

Clearly by the above procedure, there can be at most one proxy in an iteration.

Note that when we pass over a proxy from an iteration i, all job assignments of jobs

in
⋃

1≤k≤i Jk are removed from the proxy (since they have already been accounted

for), without violating any feasibility.

6.4.4.2 Processing Yi

In the following discussion, we assume Yi already takes into account any proxy

from iteration i− 1 and the processing outlined above for a proxy slot has already

been done.

Case 10. 1 > Yi ≥ 1
2
.

We open di and charge it to itself as half-open.

Case 11. Yi > 1 and Yi − bYic ≥ 1
2
.

We open [di − bYic + 1, . . . , di] as fully open and di − bYic as half open and

charge it to itself.

Case 12. Yi > 1 and Yi − bYic < 1
2
.

We open [di−bYic+ 1, . . . , di] as fully open. di−bYic is barely open. We first

close di − bYic, and try to find a feasible assignment of all jobs in
⋃
j≤i Jj, using

max-flow. If successful, then we keep it closed and move on to the next deadline.

If di is not the last deadline, we pass over a proxy for di − bYic to iteration i + 1.

This proxy has the y value of Yi−bYic, and all the job assignments from (di−bYic)
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except those in Ji. Moreover, we have already adjusted for any proxy from iteration

i− 1, as outlined in the previous section.

Otherwise, we need to open di − bYic, and have to account for its cost. We

charge di−bYic as a dependent on the earliest fully open slot that has no dependents.

If all the fully open slots < di−bYic have dependents, we charge it to di−bYic+ 1,

which is fully open since Yi > 1.

Case 13. Yi <
1
2
.

We will first try to close di. Suppose the closest deadline open before di is dk.

Since di is barely open, all jobs in Ji must have release time ≤ dk, for a feasible LP

solution. We try to find a feasible assignment of all jobs in
⋃
j≤i Jj, using max-flow

in the open slots earlier than di that are already accounted for. If successful, then

we keep di closed and move on to the next deadline. If di is not the last deadline,

we create a proxy for di which we pass over to iteration (i + 1), assign it y value

of Yi, transfer all the job assignments from di to the proxy, except those of Ji . If

there was a proxy already in iteration i, carried over from the previous iteration,

then note that this new proxy value already adjusts for the previous proxy value as

per the rounding outlined in Section 6.4.4.1 and since all jobs in
⋃
j≤i Jj are already

accounted for, without loss of generality we change the pointer of the proxy to di.

Suppose closing di and finding a feasible assignment of jobs in
⋃
j≤i Jj was

not successful. Let the earliest open deadline before di be dk. If dk was barely

open, then flow would have certainly been successful, because all jobs feasible at di

must be feasible at dk, and both dk and di being barely open with all intermediate
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deadlines closed in a feasible LP solution, there is space to accommodate all the

jobs of
⋃
k≤x≤i Jx. Hence, dk must be half open or fully open. If half-open, we first

try to merge dk and di. If ydk + ydi ≤ 1, then flow would have found a feasible

assignment. Therefore, ydk + ydi > 1. In this case, we make dk fully open (now

barely open slots can be made dependent on it) and set the new Yi = ydk + ydi − 1.

The job assignments are altered to make the resultant solution LP feasible in the

same manner as outlined earlier for modifying assignments for proxy slot in Section

6.4.4.1. The new Yi, which is still barely open, is then processed similar to the

previous Yi until we have either closed di locally, or opened it as part of a trio or as

a dependent on a fully open slot. Once we have done either of that, we can move

to di+1.

The final possibility is that dk is fully open. We then try to charge di as a

dependent on the earliest fully open slot that has no dependents. If successful, we

move on to di+1. Otherwise, all of the fully open slots up to time slot dk have

dependents. We then try to charge di as a trio with the fully open dk and its

dependent. If we are successful, we move on to iteration (i+ 1).

We will next argue that we will always be able to charge a barely open slot di

that the rounding needs to open.

Lemma 25. If we need to open a barely open slot di in an iteration, then we will

always find a fully open slot to charge it as a dependent or as a trio.

In order to prove the above, let us first assume that it is not true, and we are

in the situation where we could not close di which is barely open, the closest open
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slot to di is fully open, and we could not charge di as a trio or as a dependent on

any of the fully open earlier slots. That necessarily means all the fully open slots

before di must have dependents.

The following lemma argues that in case all the fully open slots before di have

dependents, then the structure of the solution must be of the following form. There

must be a deadline dz, with the closest open slot < dz being dw (there may be no dw

if dz is the first fully open deadline), such that either 1) there are ≥ g+ 1 jobs in Jz

with release time later than dw; or, 2) the sum of the number of rigid (unit) jobs with

release time and dz and the length 2 jobs with release time ≥ dw is ≥ g + 1. Let us

call such a dz a stopping deadline. In other words, any integral solution would have

to open at least one slot in [dw + 1, . . . , dz − 1], along with dz, since there are g + 1

job units to be scheduled between dw + 1 and dz. Between stopping deadline dz and

di, the fully open slots will be a subset of the set of deadlines, and for each deadline

dx that is fully open, the slot dx − 1 is barely open and dependent on dx. (Note

that dx − 1 can be another deadline itself). Let us call this structure an alternating

structure.

Lemma 26. If the closest open slot to deadline di is fully open, and all the fully open

slots before di have dependents, then without loss of generality, there is a stopping

deadline dz and between dz and di, the structure of the solution must be alternating.

Proof. Let dk be the closest open slot to di, and dk is fully open. Given the structure

of the solution that we start out with and the rounding process, this must be a

deadline. All the fully open slots before di have dependents. Since no slot between
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dk and di are open, the dependent on dk has to be some earlier slot. Either it is a

barely open slot t such that dk−1 +1 ≤ t ≤ dk−1. Or it must be a proxy slot carried

over from an earlier deadline than dk. Only one barely open slot is opened in any

iteration by the rounding process. Therefore, if we open a proxy slot in an iteration,

then there can be no other local barely open slots open in this iteration. Any barely

open slot is dependent on the earliest fully open slot without a dependent. If Yk ≥ 2,

dk would not have got charged in iteration k, and hence would have no dependents

even at iteration i. Therefore, Yk < 2 and only dk is fully open in the slots after

dk−1.

If dk is not charged by a proxy slot, then necessarily dk − 1 is barely open.

However, even if dk is charged by a proxy slot, we show that any such proxy slot

can be considered to be a local barely open slot without any loss of generality. Let

us suppose that the dependent on dk is a proxy slot. In that case, the alternating

structure may not hold when we open the actual slot for the proxy. That means,

the actual slot must be occurring in at some t′, dj−1 ≤ t′ ≤ dj, where j < k. No

barely open or half open slots could have opened between j and k as otherwise it

would have accounted for the proxy slot. If there is a fully open slot between dj

(inclusive of dj) and dk then the proxy can charge this slot as it must have been

uncharged so far. Since the proxy is a dependent on dk, dk must be the first fully

open slot from iteration j onwards. Moreover, all the jobs in
⋃
x<k Jx do not need

the proxy value for a feasible assignment. Hence, we can change the pointer of the

proxy slot to dk− 1 without any loss of generality and consider dk− 1 as dependent

on dk. Note that dk − 1 may also be equal to dj. Therefore, even if dk is charged by
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proxy slot, we can convert it to a local barely open slot dk − 1.

Now, consider the rounding process in the iteration k. We must have first

tried to close dk − 1 and find a feasible assignment using max flow. Clearly that

must have failed. Also, no job in J with release time > dk−1 can be of length > 1,

because Yk < 2. Therefore, one reason can be that there are ≥ g + 1 unit jobs in

Jk with release time ≥ dk−1. In that case, dk is the stopping deadline, and we have

the alternating structure trivially.

If that is not the case, then that necessarily means the closest earlier open

slot, say dp,was half-open or fully open. The closest open slot cannot be barely

open in a feasible LP solution, otherwise max flow would have been able to find a

feasible assignment of the jobs in
⋃
p≤x≤k Jk even after closing the barely open slot

dk − 1. If half-open, then clearly, ydp + ydk−1 > 1, otherwise, an assignment could

be found by max-flow. However, in this case, the rounding would have made dp

fully open, and charged the new ydk−1 = ydp + ydk−1 − 1 as a dependent to it, if no

other fully open slots were available for charging. Therefore, the only possibility is

that dp is fully open, and has a dependent already. Then the same argument can be

be repeated for dp and dp − 1. We repeat this argument for next closest open slot

(which must be fully open with a dependent) till we come to a stopping deadline.

We are guaranteed to find a stopping deadline because, if we ultimately come d1,

then that must also have a dependent d1 − 1, (which means no jobs in J1 can be

of length > 1) and we know from our rounding rule for d1, that d1 − 1 is opened

only when max flow failed, which implies there are ≥ g + 1 unit jobs in J1. Hence,

without loss we can convert our LP solution to the alternating form between di and
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the stopping deadline dz.

Lemma 27. Suppose dz is the latest stopping deadline, in the alternating structure

going backwards from di. Then for every intermediate fully open deadline dx /∈ dz, di,

at least ≥ 2g + 1 job units in Ju ∪ Jx must have release time ≥ du, where du is the

latest open deadline before dx.

Proof. We shall prove this by induction. Let the closest open slot before dz be

dw. There are ≥ g + 1 job units in dz which need to be scheduled in slots [dw +

1, . . . , dz] due to release time constraints. This follows from the definition of a

stopping deadline. Let the next fully open deadline after dz in the alternating

structure be da (da > dz). Note that the total mass scheduled by the LP in [dz −

1, dz, da − 1, da] is ≤ 5g
2

, by the definition of the alternating structure. (The barely

open slots could not form trio with each other). We want to prove that there

are 2g + 1 job units in Jz ∪ Ja with release time ≥ dz. Let us assume there

are ≤ 2g units of jobs in Jz ∪ Ja with release time ≥ dz for contradiction. No

job in Ja can be ≥ 2 in length for a feasible LP solution since Ya < 2. Let nz

denote the rigid jobs in Jx (those releasing at dz), n
′
z denote the flexible jobs in Jz

which need to be assigned before dw (if there is any dw), na,2 denote the number

of length 2 jobs in Ja, na,1 denote the unit length jobs in Ja with release time da

and n′a,1 denote the unit length jobs in Ja with release time ≥ dz. We know that

nz + 2na,2 + na,1 + n′a,1 ≤ 2g by assumption, nz + n′z ≥ g + 1 by definition of dz,

and since dz is the latest stopping deadline, na,1 + na,2 ≤ g. Since max flow failed,
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the only possibility is that nz + na,2 ≥ g + 1. For LP feasibility, nz + n′z
2

+ na,2
2
≤ g.

However, nz + n′z + nz + na,2 > 2g. Hence we get a contradiction. Therefore, there

must be ≥ 2g + 1 job units Jz ∪ Ja with release time ≥ dz.

For ease of notation, without loss of generality, assume that the deadlines

are consecutive. Therefore, all the deadlines [dz, dz+1, . . . , dk] are fully open (here,

da = dz+1). Now, assume by induction hypothesis, that the claim is true for all

deadlines up to dk in the alternating structure, and the next fully open slot is dk+1.

For any deadline dp which is fully open in the alternating structure between dz and

dk+1, let us denote by np,1 the unit length rigid jobs in Jp, np,2 the length 2 jobs

of release time ≥ dp−1, and n′p,1 the unit length jobs of release time ≥ dp−1 in Jp.

By induction hypothesis, for any two adjacent open deadlines dp−1 and dp, where

p ≥ 2, in the alternating structure, there are ≥ 2g + 1 job units in Jp−1 ∪ Jp with

release time ≥ dp−1, i.e., n(p−1),1 + np,1 + n′p,1 + 2np,2 ≥ 2g + 1. As in the base case,

assume for contradiction, that there are ≤ 2g job units in Jk ∪ Jk+1 with release

time ≥ dk. Therefore, nk,1 + n(k+1),1 + n′(k+1),1 + 2n(k+1),2 ≤ 2g. Since the latest

stopping deadline dz < dk+1, it also holds that n(k+1),1 + n(k+1),2 ≤ g.

Claim 6. If there are ≤ 2g job units in Jk ∪Jk+1 with release time ≥ dk, and dk+1

is not a stopping deadline, as well as nk,1 + nk+1,2 ≤ g, then max-flow will find a

feasible assignment for all jobs in
⋃

1≤x≤k+1 Jx in the set of slots opened integrally

up to dk and including dk+1.

Proof. Suppose this is not true. We first assign all the jobs in Jk∪Jk+1 with release

times ≥ dk. Now we try to find a max-flow in the accounted for integrally open slots,
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with the capacities in dk and dk+1 adjusted after the above assignment. We define a

chain of jobs as follows: a chain of jobs j1, j2, . . . , jq denotes a set of jobs scheduled

by max-flow in full slots, such that j1 is feasible in a full slot that j2 is scheduled in,

j2 is feasible in another full slot j3 is scheduled in and so on, till jq−1 is feasible in

another full slot that jq is scheduled in and jq is feasible in a non-full slot.(A full slot

has g jobs assigned, and a non-full slot has < g jobs.) By our assumption therefore,

there exists at least one job j with rj ≤ dk − 1, such that one unit of j cannot be

scheduled anywhere, due to our assignment of the jobs in Jk+1 in dk. Without loss

of generality, this job has deadline dk and of course by definition, rj < dk (we have

already assigned rigid jobs with deadline dk).

Therefore, one unit of j must be scheduled in dk. In other words, in all the

(accounted for) integrally open slots in [rj, . . . dk−1], j must be already scheduled one

unit in all the non-full slots, and there is no possible chain in the full-slots. Let the

number of full slots in this window be cf . Therefore, the number of (accounted for)

integrally open slot given to max-flow in this window must be cf + pj − 1. However,

in a feasible LP solution, at most one unit of the job could have come from dk.

Hence, pj − 1 units must come from the remaining slots in [rj, . . . , dk − 1]. Since

there is no possible chain with the jobs in the full slots in this window, therefore,

LP must have also scheduled them in the full slots, and hence j could not get any

assignment from these slots in the LP as well. Therefore, in [rj, . . . , dk−1], the sum

of y values in the LP must be ≥ pj−1+cf . However, given the alternating structure,

it must be true that at most
pj−1+cf

2
+ 1 slots in [rj, . . . , dk − 1] can be fully open

and the rest are barely open, such that no two barely open slots could even form
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a trio. Hence, the sum of the y values in this window is <
pj−1+cf

2
+ 1 +

pj−1+cf
8

.

Hence, if pj−1+cf >
8
3
, then this is not possible. Since everything is integral, let us

consider pj− 1 + cf = 2. However, any two consecutive slots which are not closed in

the LP together has a y value < 1.5 in the barely open structure, which is less than

2. Hence, this case is also not possible. Finally, we consider pj − 1 + cf = 1, which

means the number of integrally open accounted slot within the window of this job

j is 1. That means, the release time of this job rj = dk− 1, since one unit has to be

scheduled in dk. However dk − 1 is originally barely open with y value < 0.5, hence

it is not possible that none of the jobs assigned in dk − 1 can be moved elsewhere,

for a feasible LP solution to exist. Therefore, no such job j exists, and max-flow

will find a feasible assignment if the conditions of the claim hold.

Proof of Lemma 27 continued:

From the above claim, for max-flow to fail, since nk,1 +nk+1,1 +2nk+1,2 +n′k+1,1 ≤ 2g

and dk+1 is not a stopping deadline, therefore it must be that nk,1 + nk+1,2 ≥ g + 1.

For LP feasibility, the
∑

z≤p≤k np,1 +
∑

z≤p≤k
n′p,1

2
+
∑

z≤p≤k
3n′p,2

2
+

n(k+1),2

2
≤ g(k −

z + 1). However, from the induction hypothesis, 2
∑

z≤p≤k np,1 +
∑

z≤p≤k n
′
p,1 +

2
∑

z≤p≤k n
′
p,2 +n(k+1),2 > 2g(k− z+ 1). Hence this case is also not possible. There-

fore, max-flow can fail only if there are ≥ 2g + 1 job units (including flexible, unit

length and non-unit length) jobs in Jk ∪ Jk+1 with release time ≥ dk.

Therefore, we have proved the claim by induction.

Proof of Lemma 25 continued:

When all the fully open slots before di have dependents, we try making di a trio
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with the closest fully open slot dk and its dependent (which must necessarily be

dk − 1 according to the above lemmas). If we can, then we move to di+1. Suppose

we cannot. Therefore, the total mass scheduled by the LP feasible solution in slots

di, dk and dk − 1 is < 3g
2

, whereas opening dk and dk − 1 would give a space of 2g.

However, we cannot close di since flow did not find a feasible assignment. Therefore,

there must be ≥ g + 1 jobs with release time dk in Ji ∪ Jk and these must be unit

length jobs for LP feasibility.

Similar to Lemma 27, we assume the deadlines are open in consecutive order.

The alternating structure consists of [dz, dz+1, . . . , di]. We assume the same notation

for the jobs as in Lemma 27. For dz, n
′
z + nz ≥ g + 1, where dz is the stopping

deadline, where n′z denotes the number of length 2 jobs plus the flexible unit length

jobs which must be scheduled before the closest earlier open deadline. For any

di > dp >, np,1 denotes the number of unit length rigid jobs with release time dp,

np,2 denotes the number of length 2 jobs with release time ≥ dp−1 and n′p,1 denotes

the number of flexible unit length jobs with deadline ≥ dp−1. By Lemma 27, for any

dz < dp < di, np−1 + np,1 + 2np,2 + n′p,1 ≥ 2g + 1. For di, we have argued above that

ni−1,1 + n′i,1 ≥ g + 1, since for di, ni,1 = ni,2 = 0 for LP feasibility.

Adding the above,
∑

z≤p≤i n
′
p,1 + 2

∑
z≤p≤i np,1 + 2

∑
z≤p≤i np,2 > 2(i− z)g.

However, for LP feasibility, jobs can be assigned to an extent < 1
2

in the barely

open slots. Hence,
∑

z≤p≤i
n′p,1

2
+
∑

z≤p≤i
3np,2

2
+
∑

z≤p≤i np,1 ≤ (i − z)g, which is a

contradiction. Therefore we will always be able to charge a barely open slot which

cannot be closed by max-flow assignment.

The proof of Lemma 25 follows from the above discussion.
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Theorem 19. There exists a polynomial time algorithm which gives a solution of

cost at most twice that of any optimal solution to the active time problem on non-unit

length jobs with integral preemption.

Proof. From the above discussion, it follows, that at the end of every iteration i,

we have a set of integrally open slots Oi, such that there is a LP feasible fractional

assignment of jobs in
⋃
x≤i Jx in Oi. Furthermore, |Oi| ≤ 2

∑
1≤k≤i Yk. We do this

till the last deadline d`. At the end, we are assured of an integral feasible assignment

on the set of opened slots via max-flow, while the number of open slots is at most

twice the optimal LP objective function value. Hence, we get a 2 approximation.

6.4.5 LP Integrality gap

We show here that the natural LP for this problem has an integrality gap of

2. Hence, a 2 approximation is the best possible using LP rounding. Consider, g

pairs of adjacent slots. In each pair, there are g+ 1 jobs which can only be assigned

to that pair of slots. An integral optimal solution will have cost 2g, where as LP

optimal solution, will open each such pair up to 1 and 1
g
, assign all the g+ 1 jobs up

to g
g+1

to the fully open slot, and up to 1
g+1

, to the barely open slot, thus maintaining

all the constraints. Therefore, optimal LP solution has cost g + 1 and g+1
2g
→ 2 as

g →∞.
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Chapter 7: The Percentile Problem

The previous chapters have dealt with problems of resource optimization for

data centers, that arise due to energy issues. However, energy usage is not the only

source of the huge operating costs of data centers. Massive amounts of data are

moved daily between data centers, for which data centers have to pay the Internet

Service Providers a huge amount of money. As outlined in Chapter 1, cost account-

ing for network bandwidth usage is performed either using the percentile rule or

the peak bandwidth usage rule. In this chapter, we formally define the percentile

problem, and also give an overview of the related work in this area and present our

results on this problem.

7.1 The Percentile Rule and Overview of Results

For network bandwidth cost, a widely used rule for charging is the 95th per-

centile rule. Over each billing cycle (say a day), the cycle is broken into “slots” (for

example one minute period of time) and the bandwidth usage per slot is sampled.

In other words, the billing is based on a vector x where xi is the volume of traffic

sent over the ith slot. In the peak bandwidth charging scheme, one is charged for

the maximum bandwidth utilization over any slot in one billing cycle. In the 95th
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percentile charging scheme, one is not charged on the maximum, but on the 95th

percentile of this vector for billing.

The performance requirements of data transfers typically include transmission

delay, as the data chunks have to be delivered within some time period. Often, such

delay requirements are not stringent. Our goal is to “adjust” the traffic, so that

no packet is delayed by more than its allowed delay and the required percentile is

minimized.

We can view data chunks as jobs, and links (or senders) as servers. Then, the

problem can be viewed as a scheduling problem aimed as reducing the 95th percentile

(or any other percentile) usage. The arrival time of jobs can be considered to be

their release time, and the allowed delays for jobs determine their deadlines.

Consider the following simple example: Suppose there is a server that serves

jobs of the same size. Jobs arrive at the server in each time slot. The server has a

capacity of serving up to 5 jobs in one slot. Over an accounting period of 5 time slots,

the number of jobs arriving at the server is [3, 3, 3, 3, 0]. Our goal is to minimize

the 80th percentile (second largest in this case) of the number of jobs served in one

time slot. If all jobs are served within the time slot in which they arrive, with no

delay, then the service sequence is also [3, 3, 3, 3, 0]. Note that according to the 80th

percentile rule, the billed output bandwidth usage is also 3. However by delaying

each job by at most one time slot, the server can instead choose the service sequence

[2, 4, 2, 2, 2], thus reducing the billed bandwidth usage to 2, since the slot with the

maximum load is not counted. Note that the trade-off here is that four jobs are

delayed. One is delayed from slot 1 to slot 2, one from slot 3 to slot 4, and two from
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slot 4 to slot 5.

The above example looks straightforward. However, in reality, packets can

have different delay requirements. For example, web traffic is more important with

stringent delivery requirements, but bulk file transfers could be less time sensitive,

and the same is true with transfer of video files or other large data sets. As a result,

we have different classes of traffic with different delay requirements. Furthermore,

the data may have dependencies among each other, requiring all the data of a single

type to be transmitted together. Furthermore, the links have a certain fixed capacity

which cannot be exceeded by the data transmission in any time slot.

In this work we study the relevant and realistic problem of multi-class traffic.

In this setting, packets can have different delay requirements, between 0 and D.

First we consider the offline problem, where where all packet arrivals are known in

advance and the 95th percentile of the bandwidth utilization needs to be minimized.

In most cases network traffic exhibits some pattern, and bulk data that can be

delayed is already known. Hence algorithms for the offline version of the problem

are quite relevant. We give an optimal polynomial algorithm for the case of multi-

class traffic.

We then consider the problem where data packets have dependencies among

them and certain groups need to be be transmitted together. While prior work

shows that this problem is weakly NP-hard, no algorithm was provided. We first

show strong NP-hardness when the delay D is large, even for the uniform delay

problem. Then we provide a fully polynomial time approximation scheme for the

case of D = 1.
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7.2 Related Work

While scheduling problems have been investigated for decades [61], metrics

considered in prior work have more to do with minimizing the maximum load, or

scheduling a given fraction of jobs, while minimizing maximum load [32]. Our model

represents a new class of problems, and is based on the charging mechanism in use.

The bounded delay buffer management problem, first introduced by Kesselman

et al. [38] is a somewhat similar problem that has been widely studied in literature.

This is an online problem, where jobs have weights and deadlines, and the goal is to

maximize the weight of jobs served within their deadline, where the processor can

only process one job at a time. Though the problem seems related to the problems

we consider in this work, it is not obvious that their techniques can be directly

applied to our problem.

A few papers do study the impact of the 95th percentile. For example, Dim-

itropoulos et al. [15] study the impact of time slot size through modeling and mea-

surement study. Further, this accounting property is leveraged to reduce the cost

of bulk data transfer by Laoutaris et al. [44]. Goldenberg et al. [27] design smart

routing algorithms for data streams on multiple ISP’s with the consideration of the

95th percentile model. In contrast, the main problems we consider are the follow-

ing: minimize the 95th percentile through job level scheduling, and exploit the 95th

percentile model.

In the broadcast scheduling literature, a related problem was studied by Charikar

and Khuller [9]. They studied the problem of minimizing the response time for a
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fixed fraction of the total requests, ignoring the response time of a few requests,

which is allowed to be large.

7.3 Problem Description

Consider a system with a single server, where time is slotted. Let N be the

total number of time slots in an accounting cycle. A certain number of jobs arrive

in time slot i. The jobs can be of unit size or variable size. Furthermore, each job is

allowed some delay. Some number of them are served by the end of that time slot.

Jobs that are served in the time slot in which they arrived incur no delay. Unserved

jobs are carried over for service in future time slots; each time a job is carried over,

it incurs an additional delay of one time slot.

The goal is to choose a service schedule, such that the 95th percentile of

maximum of the data transfer volume over all slots in the billing cycle is minimized.

The server has a capacity of C. Thus, at most C amount of jobs can be served at

any time slot. No job should be delayed by more than its allowed delay.

7.4 Prior Work and Our Contributions

A special case of this problem was first considered by Golubchik et al. [28]. In

that problem, all jobs have identical delay D. An optimal polynomial time algorithm

for the offline problem was presented. Here we generalize the above result, by

extending it to multi-class traffic, where jobs can have any delay between 0 and D.

We then generalize the problem even further by extending our analysis to consider
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non-unit sized jobs. For this problem, we show strong NP-hardness for the general

case, and give a fully polynomial time approximation scheme for the special case

where jobs can have delays in 0, 1.

We do not consider the online variant of this problem, as it was shown by Gol-

ubchik et al. [28] that there can be no deterministic online algorithm with bounded

competitive ratio for this problem, even for the special case where all jobs are allowed

unit delay.

7.5 Offline Problem: Minimizing Percentile Cost with varying Delays

We provide an optimal offline algorithm for the minimization of percentile cost

when the jobs are unit sized, but the delays can vary from 0 to D. Let us denote

the job arrival in time slot i as a vector A(i) of dimension D+1, where the element

Ad(i) denotes the jobs arrived in time slot i which can be delayed by d time slots,

d ∈ {0, . . . , D}.

According to the 95th percentile accounting rule, the number of jobs served

in the top 5% of the total time slots are not included in accounting. These time

slots can be viewed as “free” because the jobs served in these time slots do not

change the 95th percentile result. Let T = 5% × N be the number of “free” time

slots (we assume T is an integer). Assume that in “free” time slots, up to C jobs

can be served, whereas in the other N − T time slots, at most H(H ≤ C) jobs

can be served. In this way, H serves as the upper bound of the 95th percentile of

the number of jobs served in one time slot. Our algorithm works for any choice of
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percentile however. The goal is to find the smallest H, so that there is a schedule

to serve jobs, such that all but T slots serve at most H jobs. We guess H, and then

verify if our guess leads to a feasible solution. We can do a binary search to find the

smallest value of H.

The jobs left unfinished by time slot i consist of jobs that have been delayed

for {1, 2, ..., D} time slots. Intuitively, the service priority for these jobs should be

different, as should be the service priority for the jobs which have arrived in i with

different possible delays. In fact, the key observation is that there is no difference

in priority between a job that has arrived in i with allowed delay 0, and a job that

arrived earlier, exhausted all the delay allowed, and is still unserved. So, similar

to the arrival vector, we define an unserved vector U , where Ud(i) denotes the jobs

which can still be delayed by d more slots. In general, let U(i) = (U0(i), ..., UD(i))

be the vector of unfinished jobs at the end of time slot i. Note that for a feasible

solution, U0(i) = 0 for all i. Let us define Ũ(i) as the vector of unserved jobs coming

into the time slot i from i− 1. ŨD(i) = 0, since the maximum allowed delay for any

job is D, and the jobs in the vector Ũ(i) have all arrived in earlier time slots.

Let us define an augmented vector UA(i) = (A(i) + Ũ(i)). At a time slot i,

UA
d (i), (where d ∈ {0, . . . , D}) represents the total amount of pending jobs arrived

at i or earlier, which can be delayed for d more slots. Let S(i) = (S0(i), ..., SD(i))

be the service vector. The service vector S(i) represents the amount of work done

in time slot i. Specifically, Sd(i) represents the quantity of jobs UA
d (i) served in time

slot i, hence, 0 ≤ Sd(i) ≤ UA
d (i). For a solution to be feasible, S0(i) = UA

0 (i) for all

i. In this setting, a choice of H being feasible means that
∑D

d=0 Sd(i) ≤ H for an
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“accounted” slot and
∑D

d=0 Sd(i) ≤ C for a “free” slot.

One might ask if a given instance is at all feasible, i.e., if there exists any

value H ≤ C, for which all jobs can be served respecting their release times and

allowed delays. An easy way of testing feasibility of a given instance is via a max-

flow computation. The jobs are unit in length and each job has a maximum delay

constraint. Time is slotted, and the maximum number of packets sent in a single

time slot can be at most C. Hence, one can set up a flow network, and compute the

maximum flow to check if the instance is feasible.

We choose the service vector S(i) in a greedy manner. Specifically, jobs with

lower allowed delay will be served before those with longer allowed delay.

Let us define OPT (i, t), {i = 1, 2, 3, ..., n; t = 0, 1, 2, ..., T} as the minimum

number of total jobs left unfinished by the end of time slot i, using t “free” time

slots. We show how to compute OPT (i, t) in the following.

For every (i, t), we have associated vectors U(i, t) and S(i, t), where the

former is the vector of unserved jobs at the end of time slot i when t free slots have

been used, and the latter is the vector of served jobs in time slot i when t free slots

have been used. These vectors are stored along with the OPT (i, t) entry.

OPT (i, t) is chosen to be one of the following values OPT1(i, t) and OPT2(i, t),

depending on whether i is a free slot or an accounted slot. OPT1(i, t) denotes the

number (or cost) of pending jobs after time slot i if in slot i we serve up to C jobs

and we have used up t − 1 free slots before i. OPT2(i, t) denotes the number (or

cost) of pending jobs after time slot i if in slot i we serve up to H jobs and we have

used up t free slots before i. If in either case, jobs with allowed delay 0 at i cannot
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be fully served in i, the cost of pending jobs is set to ∞, which means the current

choice of H is infeasible.

If i is a free slot, then we can transmit up to C jobs. This is distributed among

the unserved jobs as follows. First, we define the augmented vector UA(i, t) =

A(i) + Ũ(i, t). Here, Ũ(i, t) is equal to the vector U(i − 1, t − 1) with all its

elements shifted down by one position, and ŨD(i, t) = 0.

Let k be the smallest index such that
∑k

j=0 U
A
j (i, t) ≤ C. If there exists no

such k, then the guess of H is infeasible. Set OPT1(i, t) =∞ in this case.

Let ÛA
k+1(i, t) = C −

∑k
j=0 U

A
j (i, t). Then

S(i, t) = (UA
0 (i, t), UA

1 (i, t), . . . , UA
k (i, t), ÛA

k+1(i, t), 0, . . . , 0). We define UC(i, t) to

be UA(i, t)− S(i, t). Note that UC
0 (i, t) = 0, because k is now well-defined.

In this case, the total number of unserved jobs after (i, t) is OPT1(i, t) =∑D
d=0 U

C
d (i, t).

If i is an accounted slot, then we can transmit up to H jobs. This is again

distributed among the unserved jobs as follows. First, we define the augmented

vector for this case as UA(i, t) = A(i)+Ũ(i, t). Here, Ũ(i, t) is equal to the vector

U(i − 1, t) with all its elements shifted down by one position and ŨD(i, t) = 0.

Let k be the smallest index such that
∑k

j=0 U
A
j (i, t) ≤ H.

If there exists no such k, that means UA
0 (i, t) > H, hence this value of H is

infeasible. In this case, set OPT2(i, t) =∞.

Otherwise, let ÛA
k+1(i, t) = H −

∑k
j=0 U

A
j (i, t). Then

S(i, t) = (UA
0 (i, t), UA

1 (i, t), . . . , UA
k (i, t), ÛA

k+1(i, t), 0, . . . , 0). Now, UH(i, t) is de-

fined to be UA(i, t)−S(i, t). Note that UH
0 (i, t) = 0, because k is now well-defined.
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In this case, the total number of unserved jobs after (i, t) is OPT2(i, t) =∑D
d=0 U

H
d (i, t).

OPT (i, t) is chosen to be the minimum of OPT1(i, t) and OPT2(i, t). The

corresponding vector UC(i, t) or UH(i, t) is retained as vector U(i, t).

Therefore, for every (i, t), OPT (i, t) =
∑D

d=0 Ud(i, t) by definition. Hence, we

can now define OPT (i, t) more compactly as follows.

OPT (1, 0) = max(
D∑
d=0

Ad(1)−H, 0)

OPT (1, 1) = max(
D∑
d=0

Ad(1)− C, 0)

OPT (i, t) = min



max(OPT (i− 1, t− 1) +
∑D

d=0 Ad(i)− C, 0)

if (U1(i− 1, t− 1) + A0(i)) ≤ C

max(OPT (i− 1, t) +
∑D

d=0Ad(i)−H, 0)

if (U1(i− 1, t) + A0(i)) ≤ H

∞

We guess the values of H by using binary search over the interval [1, . . . , C]

to find the minimum value of H for which OPT (N, T ) = 0. This takes time O(N ·

T ·D · log2C).

If OPT (N, T ) = 0 for a given H, then that value of H is certainly feasible, by

definition of our dynamic program and algorithm, since we do not violate any of the

required conditions. We claim that if a feasible solution exists for a given H(≤ C),

then for that H, OPT (N, T ) = 0. The following lemmas establish this claim. We
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refer to jobs with allowed delay 1 which remain unserved at the end of the current

time slot as “urgent” jobs. These are jobs that must be completed in the next time

slot by any feasible solution.

Lemma 28. For a given value of H for which a feasible solution exists, among all

such solutions, OPT (i, t) minimizes the number of urgent jobs at the end of any

time slot i, assuming that at most t of the time slots [1, . . . , i] can serve up to C jobs

and all other slots can serve at most H jobs.

Proof. We prove this by induction. The base cases, i = 1 and t = 0 and t = 1 are

true since we favor jobs with lower allowed delay, and serve higher delayed jobs only

if the lower delay jobs are exhausted and there is still unused serving capacity.

Suppose by induction hypothesis, the claim is true for all i < k and t ≤ i. We

now wish to prove this for i = k and all t ≤ k. Consider the optimal solution O

which minimizes the number of urgent jobs at the end of time slot k such that at

most t ≤ k time slots out of slots [1, . . . , k] are allowed to serve up to C, and all

others H.

Suppose in O in time slot k, the number of urgent jobs coming from slot

k − 1 and the current arrivals with delay 0, Ak(0) together sum up to more than

H. Therefore, O must make the slot i a free slot. Let us denote the total number

of urgent jobs in O coming from slot k − 1, (assuming at most t − 1 slots out

of [1, . . . , k − 1] in O were free), as UO1 (k − 1, t − 1). By induction hypothesis, is

UO1 (k−1, t−1) ≥ U1(k−1, t−1). The quantity Ak(0) is the same for all algorithms.

Since we prioritize the jobs with lower delay, the number of unserved jobs with delay
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1 that remains at the end of time slot k after serving C jobs in our dynamic program

is only ≤ that for O. Hence, the induction hypothesis is proved for this case.

On the other hand, if O in time slot k serves up to H jobs, the number of

urgent jobs coming from slot k − 1 and the current arrivals with delay 0, Ak(0)

together sum up to ≤ H. Let us denote the total number of urgent jobs coming

from slot k − 1 (assuming at most t slots out of [1, . . . , k − 1] in O were free) as

UO1 (k− 1, t). By induction hypothesis, is UO1 (k− 1, t) ≥ U1(k− 1, t). Since Ak(0) is

the same for all algorithms, and we prioritize the jobs with lower delay, the induction

hypothesis is proved for this case as well.

Lemma 29. For a given H for which a feasible solution exists, among all such

solutions, OPT (i, t) minimizes the number of unserved jobs in the first i slots,

assuming that at most t slots can have load up to C, and all the other slots are

required to have load at most H.

Proof. The proof is by induction on (i, t). Given the base cases defined in our

dynamic program, we assume that we have proven the claim for (i − 1, j) for all

j ≤ i− 1 and wish to prove it now for (i, t) for all t ≤ i. From Lemma 28, we know

that U1(i, t) is minimized by OPT for all i and t ≤ i.

Let us consider the optimal solution O(i, t) which minimizes the total number

of unserved jobs at the end of slot i using at most t free slots. Suppose in O, the

number of jobs arrived with delay 0 plus the number of urgent jobs from slot i− 1

exceeds H. Therefore, this must be a free slot (of capacity C) in O, since the number

of urgent jobs is greater than H. Let the unserved job vector from i − 1 using at
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most t− 1 free slots in O be denoted as UO1 (i− 1, t− 1). We know from Lemma 28

that U1(i− 1, t− 1) ≤ UO1 (i− 1, t− 1). The job arrivals A0(i) are the same for any

algorithm. Hence, we can also handle feasibly all these packets by using a capacity

C. We serve jobs till we have exhausted the capacity C, hence the total number of

unserved jobs passed on to i + 1 is ≤ that passed on by O. Hence the induction

hypothesis is proved for this case.

On the other hand, suppose O serves ≤ H jobs in time slot k. Therefore,

the number of urgent jobs in slot i in O is ≤ H. These jobs must include those

unserved with delay 1 at the end of time slot k − 1 in O, where at most t out of

slots [1 . . . k− 1] could serve up to C jobs. Let us denote this as UO1 (k− 1, t). From

Lemma 28, we know that U1(k− 1, t) ≤ UO1 (k− 1, t). The newly arrived jobs is the

same irrespective of the algorithm used. Hence, we can also handle feasibly all the

newly arrived packets of allowed delay 0 by using a capacity H. Furthermore, we

serve jobs till we have exhausted the capacity H, hence the total number of unserved

jobs passed on to i+1 is≤ that passed on byO. This proves the induction hypothesis

is proved for this case.

Theorem 20. There exists a polynomial algorithm which determines whether a

given instance of min-percentile problem with variable job delays is feasible, and if

so, finds an optimal feasible schedule minimizing the value of percentile cost.

The theorem follows from Lemma 28 and Lemma 29.
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7.6 Offline Problem: Minimizing Percentile Cost with Non-unit Sizes

In this section we consider the problem of minimizing percentile cost when the

jobs are not unit-size any more, but may require arbitrary units of processing.

7.6.1 Hardness of Approximation

We first prove that the offline problem of minimizing the percentile cost when

the input can have variable sizes is strongly NP hard, for large D, even when all

jobs are allowed uniform delay D.

Let us refer to this problem as MinPerc.

Theorem 21. MinPerc is strongly NP -hard.

Proof. We are given an instance of 3-Partition with 3n elements ai, such that∑3n
i=1 ai = nB. We want to know if there exist n partitions of the elements such

that each partition sums up to B. From this problem, we create an instance of

MinPerc such that a feasible schedule exists for percentile cost H = B if and only

if a valid 3 partition exists. We set D = n − 1 and C > B. Let us minimize the

x percentile for a total of N time slots in an accounting cycle. This means, we are

allowed to drop T = x% of N time slots. We create T jobs of size C, released at time

t = [1 . . . T ]. We create 3n jobs, all released at time T + 1, of sizes corresponding

to the elements ai in the instance of 3-Partition. A feasible schedule would send all

the jobs integrally, respecting their deadline constraints. Any feasible solution for

percentile cost H = B < C to this instance of MinPerc would have to schedule the
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first T jobs of size C each, in the time slots 1 to T and would have to drop these

time slots. The rest of the jobs released at T + 1 all need to be integrally scheduled

within the next D+1 time slots, and for percentile cost to be at most B, sum of the

job sizes scheduled in any time slot t ∈ [T + 1, . . . , T +D+ 1] should be at most B.

Since the total sum of job sizes is nB, and D+ 1 = n, each slot should serve exactly

B size of jobs. This schedule would also give a valid 3-partition. Conversely, if a

valid 3-partition exists, the partitions give a feasible schedule for B = H.

7.6.2 FPTAS for MinPerc for D = 1

In this section, we describe an FPTAS to MinPerc, where jobs can have

variable sizes, and the allowable delay for every job is 1.

Theorem 22. There exists a polynomial time algorithm that returns a feasible sched-

ule to the MinPerc problem with variable job sizes and uniform delay D = 1, such

that the minimum value of H it returns is ≤ OPT (1 + ε) for a fixed ε > 0, where

OPT is the optimal solution.

Our approach in determining a feasible value of H will involve guessing a value

of H. We perform binary search over [1 . . . C] in time O(log2C) since we assume

job sizes are integral. For each guessed value of H, we will try to find a feasible

schedule by a dynamic program. The lowest value of H for which a feasible schedule

is found will be returned by the algorithm. First, we limit the number of different

job sizes to be a function of C and ε. The minimum job size is 1 and the maximum

job size is C (otherwise the instance is not feasible). We round down the object
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sizes, such that a job with size s, which is (1 + ε)i < s ≤ (1 + ε)i+1, is rounded down

to (1 + ε)i. The total number of different job sizes now becomes O(log1+εC). Let

this modified instance be I ′. We also set the new capacity to be C ′ = C
1+ε

. Note

that feasibility of the instance is not affected by this, since any job which is > C ′ in

size, after rounding down, becomes at most C ′.

For each guess H, we then solve the following dynamic program. Let Perc(i, t)

denote the amount of work not completed after i time slots, out of which at most

t slots could have served up to C ′ and the remaining could have served at most H.

Let A(i) denote the set of jobs arriving at time slot t (which need to be completed

by t + 1) and A(i) denote their total size. We denote the set of jobs unserved in

time slot t as U(i) and their total size as U(i). U(i) ≤ A(i). The set of jobs served

in time slot t is denoted as S(i) and their total size as S(i). For a feasible solution,

if i is a free slot, then S(i) ≤ C ′, otherwise S(i) ≤ H.

We will set Perc(i, t) to be the minimum of two quantities Perc1(i, t) and

Perc2(i, t), where the former corresponds to i being a free slot and the latter corre-

spond to i being a paid slot. If the slot i is a free slot, the unserved amount of jobs

from the previous time slot to be served would be U(i−1, t−1). If U(i−1, t−1) > C ′,

set Perc1(t) = ∞. Otherwise, define cap(i, t) = C ′ − U(i − 1, t − 1). Now we

solve a knapsack problem, where the jobs in A(i) correspond to the items to be

packed in the knapsack, the profit of every job being equal to its size and the

capacity of the knapsack is cap(i, t). The knapsack FPTAS maximizes the profit

of items packed in the knapsack when the number of distinct profits is fixed. In

our case, since profits equal sizes, this will maximize the total size of jobs which

161



can be served in the time slot without violating the capacity cap(i, t). Let the

set of items (jobs) successfully packed in the knapsack by the knapsack FPTAS

be S′(i, t) with total size S ′(i, t). Therefore, the set of served jobs in this case is

S(i, t) = S′(i, t)∪U(i − 1, t − 1) and S(i, t) = S ′(i, t) +U(i−1, t−1) ≤ C ′. Set

Perc1(i, t) = U(i, t) = max(A(i, t)− S ′(i, t), 0) and U(i, t) = A(i, t) \ S(i, t).

If slot i is a paid slot, the set of unserved jobs to be served in i is U(i − 1, t).

If U(i − 1, t) > H, set Perc2(i, t) = ∞. Otherwise, set cap(i, t) = H − U(i − 1, t),

and pack the knapsack as in the previous case. Let the set of jobs packed in the

knapsack maximizing the space utilization be S′(i, t). The set of served jobs in this

case is S(i, t) = S′(i, t) ∪U(i − 1, t) and S(i, t) = S ′(i, t) + U(i− 1, t) ≤ H. Set

Perc2(i, t) = U(i, t) = max(A(i, t)− S ′(i, t), 0) and U(i, t) = A(i, t) \ S(i, t).

We set Perc(i, t) = min{Perc1(i, t), P erc2(i, t)} and store the corresponding

vectors S(i, t) and U(i, t).

The lowest value of H for which Perc(N, T ) = 0, is returned by the algorithm

and the corresponding service vectors in each step can be obtained by backtracking

in the main dynamic programming table (that is, noninclusive of the intermediate

knapsack dynamic programs for each slot). For the DP table, define U(0, t) = 0 for

all t.

Lemma 30. For the instance I ′, Perc(i, t) minimizes the total size of unserved jobs

after time slot i, such that at most t of the i time slots can serve up to a size of C ′

of jobs, and the remaining slots can served up to a size H.

Proof. We will prove this via induction. Let us consider the base cases Perc(1, 0)
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and Perc(1, 1). Since we use the knapsack dynamic program to compute the set

of jobs which maximize the capacity utilization (given a fixed number of sizes), the

base cases are true.

Suppose by induction hypothesis, the claim is true for all slots < i and for all

t ≤ i − 1. We wish to prove it for i and all t ≤ i. In the optimal solution which

minimizes the amount of unserved jobs in slot i with at most t free slots, if the

number of jobs at i which are pending from i − 1 is > H, then i must be a free

slot. We use an optimal solution for the sub-problem (i − 1, t − 1), hence if the

optimal solution passes on at most p size of unserved jobs, we also pass on at most

p. Therefore, if a feasible solution exists, that is, p ≤ C ′, we will also be able to serve

all the pending jobs. Further, we will pass on minimum size of unserved jobs, by

the optimality of the knapsack dynamic program for fixed number of profits (here:

sizes). Similarly, if the optimal solution serves at most H size of jobs in slot i, then

the number of pending jobs from previous slot in our case is at most that for the

optimal solution, since by induction hypothesis, we use an optimal solution for the

sub-problem (i− 1, t). Furthermore, we pass on the minimum size of unserved jobs,

by the optimality of knapsack dynamic program. Hence the induction hypothesis is

proved.

Since we have rounded down the object sizes, the optimal solution for I is

OPT ≥ H, where H is the minimum feasible value returned by Perc. On replacing

the true sizes of the jobs, the free slots increase in load size to at most (1+ε)C ′ = C.

The accounted slots increase in load size to at most (1 + ε)H ≤ (1 + ε)OPT . Hence
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we get a (1 + ε) feasible (not violating C) approximation to the optimal offline

solution in time O(N2 · T · log2C · log1+εC).
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Chapter 8: The Min-Max Problem

In this chapter we consider the online problem of peak bandwidth usage min-

imization for multi class traffic. Data chunks or jobs arrive at the sender or server,

with specified allowed delays. All jobs need to be served within their allowed delays.

Our goal is to minimize the maximum amount of job served (or data transferred)

in any time slot over the billing cycle. This problem can also be viewed as the

100 percentile problem. Interestingly, the min-max problem has connections to the

energy minimization problem, as outlined in Section 8.1.

8.1 Related Work

The min-max problem can be viewed as dual to the bounded delay buffer

management problem, first introduced by Kesselman et al. [38], that has since been

widely studied in literature, eg. [17, 36,37,46,47]. This is an online problem, where

jobs have weights and deadlines, and the goal is to maximize the weight of jobs served

within their deadline, where the processor can only process one job at a time. The

jobs that are not served before their deadlines are dropped. Both deterministic

and randomized variants have been studied in literature. In another variant of

this problem, finite capacity buffers were considered by Li [45]. In contrast, in
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our problem, all the packets have to be transmitted, and we wish to minimize

the maximum number of packets sent in a single time slot (for the 100 percentile

problem).

In the CPU scheduling literature, Yao, Demers and Shenker [75] provide an

optimal offline algorithm for minimizing the maximum energy consumed by a pro-

cessor when the power consumed is a convex function of the speed. Their algorithm

also minimizes the maximum speed of the processor at any point in time, subject

to the constraint that all jobs are completed by their deadline. The algorithm to

compute the offline optimum for the min-max problem is essentially the same algo-

rithm as theirs. Bansal, Kimbrel and Pruhs [2] gave an optimal algorithm for the

online version of the energy minimization problem. This algorithm is e-competitive

for the online problem of minimizing the maximum speed at any instant such that

all jobs are completed by their deadline. They also show that the lower bound of e

is tight for the problem of minimizing the maximum speed, when time is considered

to be continuous, and jobs may be allowed arbitrarily long delays.

8.2 Prior Work and Our Contributions

A special case of this problem was first considered by Golubchik et al. [28],

where all the jobs are allowed the same delay D. A lower bound of 1.53 was presented

for the competitive ration of any online deterministic algorithm for this problem,

and this bound was achieved when D →∞. An online algorithm, Equal Split, with

competitive ratio of 2 was also presented in this work. Here, we improve the lower
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bounds for several values of D from prior work, when all data can be delayed by D.

Significantly, we show new bounds for small D, which exceed the best bound known

earlier, that was achieved by allowing D to be arbitrarily large. Then we provide new

lower bounds for the problem of multi-class traffic, where delay D can be variable.

We show that a natural extension of the online algorithm Equal Split ( [28]) can

perform very badly when traffic can have variable delay. Finally, we give a tight

online algorithm for D ∈ {0, 1} and a 2-competitive algorithm for D ∈ {0, 1, 2}.

As in prior work [28], we consider the jobs to be arbitrarily splittable. Given

the large volumes of data that need to be transmitted per time slot, this is an

entirely reasonable assumption. In fact for low volumes of data, when packets need

to be considered integrally, it is easy to show better lower bounds. Consider the

case of D = 1. In the first time slot, the adversary sends two unit size packets. If

the algorithm sends both, the adversary stops, having forced a competitive ratio of

2. Otherwise, the algorithm sends over 1 packet to the next time slot, when the

adversary sends 4 unit size packets. Now, the algorithm will be forced to send at least

3 packets in 1 time slot for feasibility, whereas the optimum is 2, forcing a competitive

ratio of 1.5. Henceforth, we consider the work to be arbitrarily splittable. In the

following sections, we improve lower bounds for uniform D, as well as provide new

lower bounds for variable D, and furthermore, analyze online algorithms for variable

D. The lower bounds are for deterministic algorithms in an adversarial setting. For

notational ease, we consider time to be starting from 0 in the rest of the chapter.
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8.3 Lower Bounds for uniform delay D

In this section we improve the lower bounds for a single class of traffic, where

all data are allowed to be delayed by D. First we show an improved bound for

D = 1 for ease of exposition. We then generalize this to show improved lower bound

for D ∈ {1, 2, 3, 4}, which exceeds the best known lower bound for any D that was

achieved in prior work by D →∞.

8.3.1 Lower Bound for D = 1

In this section, we improve the lower bound of 18
13
≈ 1.3846 for D = 1 presented

in earlier work [28] to ≈ 1.3982. The upper bound for D = 1 is 1.5.

Theorem 23. For uniform delay D = 1, there exists a sequence for which the

competitive ratio of any online algorithm is at least 1.3982.

Proof. Suppose that the target competitive ratio of the adversary is α. The ad-

versary will generate some sequence of jobs. At every time slot t, OPT (t) denotes

the value of the offline optimal solution for the sequence from time 0 to t. If at

any time slot t, the online algorithm serves ≥ α · OPT (t) amount of job, then the

adversary stops generating any more jobs, since it has forced the competitive ratio

of α. Otherwise, it continues till time k + 3, where k is a very large integer. Now,

we describe the sequence generated by adversary.

Let x =
√

13−1
2

. The sequence generated by the adversary is

1, x, x2, . . . , xk, 3
2
xk, 3

2
xk, 3xk. The total amount of job arrived by time slot k + 3 is
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xk+1−1
x−1

+ 6xk. The total amount of jobs served by time k + 3 is < α
∑k+3

i=0 OPT (i).

Obviously OPT (0) = 1
2
.

Proposition 1. For the given choice of x, the following hold.

1. 1+x
3
> x

2
.

2. x2+x
3

= x2+x+1
4

.

3. xi+xi−1+...+xj

i−j+2
≥ xi+xi−1+...+xj+xj−1

i−j+3
, for i− j ≥ 2.

4.
5x
2

+1

4
< 5x

6

Lemma 31. The value of the optimal offline solution at any time slot t is given

below:

1. For 0 < t < k + 1, OPT (t) = xt+xt−1

3
.

2. OPT (k + 1) = 5xk

6
.

3. OPT (k + 2) = xk.

4. OPT (k + 3) = 3
2
xk.

Lemma 31 follows from Proposition 1.

Proof of Theorem 23 continued: We have mentioned already that the work

done by the online algorithm has to be ≤ αOPT (t) at any time slot t for the

competitive ratio to remain below α. However, for feasibility all the work that has

arrived needs to be done by their deadline. The total work that remains unserved
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at the start of time slot k + 4 is U(k + 4), given below.

U(k + 4) >
xk+1 − 1

x− 1
+ 6xk−

α

[
1

6
+

2

3

(
xk+1 − 1

x− 1

)
+

3

2

xk

3
+ xk +

3xk

2

]

We need, U(k+ 4) < α3
2
xk. Hence, xk+1−1

x−1
+ 6xk−α

[
1
6

+ 2
3

(
xk+1−1
x−1

+ 3xk
)

+ xk
]
<

α 3
2
xk. Dividing by xk, where k →∞, we get, α > 42x−36

31x−27
> 1.3982.

This completes the proof of Theorem 23.

8.3.2 Lower bound for 1 ≤ D ≤ 4

Here we generalize the above to hold for any D ∈ {1, 2, 3, 4}. The lower bound

achieved for D = 3 itself exceeds the best known earlier bound for any D from earlier

work, that was achieved by D →∞.

Theorem 24. For 1 ≤ D ≤ 4, there exists a sequence for which the competitive

ratio of any online algorithm is at least F (D) given below:

F (D) ≥ (8D2 + 10D + 3)x− (8D2 + 8D + 2)

(5D2 + 7.5D + 3)x− (5D2 + 6.5D + 2)

where x is the root of the equation: xD+1 + xD + . . .+ x = 2D + 1.

Proof. We choose x to be the root of the equation: xD+1+xD+. . .+x = 2D+1. The

sequence generated is as follows: 1, x, x2, . . . , xk, 2D+1
D+1

xk(D + 1 times), (2D + 1)xk.

The following inequalities are true for our choice of x.

1. For any p ≤ D, xp + xp−1 + . . . x ≤ D + p.

2. For any p > D, xp + xp−1 + . . . x ≥ p+D + 1.
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The first inequality is obvious as otherwise, xD+1 + xD + . . . + x > 2D + 1. The

second inequality follows from the choice of x and the fact that xi ≥ 1 for any i ≥ 0.

We now prove something stronger than the first inequality above.

Proposition 2. For our choice of x, for any 1 < p ≤ D + 1, xp + xp−1 + . . .+ x ≤

2p− 1.

Proof. It is obvious that the claim holds for p = D + 1. Let us now examine

the case of p < D + 1. Suppose for the sake of contradiction, that the claim

is not true. In other words, xp + xp−1 + . . . + x > 2p − 1. Since there are p

terms in this summation, on average each term is therefore > (2 − 1
p
). Therefore,

xp > (2 − 1
p
), or x > (2− 1

p
)
1/p

. Now let us consider the value of the polynomial:

xD+1 + xD + . . . xp+1 + xp + . . . + x. Each term xp+i for 1 ≤ i ≤ (D − p + 1) must

be greater than ≥ (2− 1
p
)
(1+ 1

p
)
. Now, for p ≥ 4, (2− 1

p
)
(1+ 1

p
) ≥ 2. For p = 3, if

x3 + x2 + x > 5, then x > 1.278, and xp+i > 1.2783 > 2. For p = 2, if x2 + x > 3,

then x > 1.302, and xp+i ≥ x3 > 2. Therefore the polynomial in all cases evaluates

to: > 2(D − p + 1) + 2p − 1, i.e., > 2D + 1 This is a contradiction, as according

to our choice of x, xD+1 + . . . + x = 2D + 1. This completes the proof for all

1 < p ≤ D + 1.

Proposition 3. For our choice of x, for any 1 ≤ p ≤ D + 1, the following holds:

xp + xp−1 + . . .+ x ≤ p · (2D+1
D+1

).

Proof. The function 2y+1
y+1

is an increasing function of y. Hence, p · 2D+1
D+1

≥ p · 2p−1
p

=

2p−1. From Proposition 2, we know that for 1 < p ≤ (D+ 1), xp+xp−1 + . . .+x ≤

2p− 1. Therefore, for 1 < p ≤ (D + 1), xp + xp−1 + . . .+ x ≤ p · (2D+1
D+1

).
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For p = 1, we claim x ≤ 2D+1
D+1

. Suppose this is not true for the sake of

contradiction, and x > 2D+1
D+1

. Since 2y+1
y+1

is an increasing function of y, and D ≥ 1,

x > 3
2
. However, from Proposition 2, we know that x2 + x ≤ 3, hence x ≤ 1.302.

This is a contradiction.

Proposition 4. For our choice of x, for 1 ≤ p < D

p ·
(

2D+1
D+1

)
xD−p + xD−p + xD−p−1 + . . .+ x < 2D.

The above proposition also implies, p2D+1
D+1

xD−p + xD−p + . . . xq < 2D − q for

any q ≥ 0.

Lemma 32. The optimal offline solution at time t, OPT (t) is as follows:

1. xt+xt−1+...+xt−D

2D+1
, for D ≤ t ≤ k.

2.
i· 2D+1
D+1

xk+xk+...xk−D+i

2D+1
, for t = k + i, 0 < i ≤ D.

3. xk at t = k +D + 1.

4. 2D+1
D+1

xk, for k +D + 1 < t ≤ k + 2D + 1

Proof. The optimal offline solution at any time t, is the highest density of work over

all times 0 to t as follows from the work of Yao et al. [75]. Hence the above lemma

follows from the inequalities presented earlier and Propositions 2, 3 and 4.

Proof of Theorem 24 continued: Continuing the analysis as before and using

Lemma 32, the largest competitive ratio that can be forced by the adversary is α
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given below.

α ≥
xk+1−1
x−1

+ 2(2D + 1)xk

D+1
2D+1

(x
k+1−1
x−1

) + 2D+1
D+1

xk
∑D+1
i=1 i

2D+1
+ (2D + 1)xk

≥
(2D + 1)

(
x
x−1

+ 2(2D + 1)
)

(D + 1) x
x−1

+ (D+2)(2D+1)
2

+ (2D + 1)2

=
(8D2 + 10D + 3)x− (8D2 + 8D + 2)

(5D2 + 7.5D + 3)x− (5D2 + 6.5D + 2)

This improves the lower bound known in prior work for any value of 1 ≤ D ≤ 4.

More importantly, the lower bound for D = 3, is already greater than the best known

prior lower bound of 1.53 for any D. The table below lists the new lower bounds.

Table 8.1: New Lower Bounds

D value New Lower Bound

1 1.3982

2 1.4958

3 1.5397

4 1.5646

8.4 Lower Bound for variable delay

In this section, we prove lower bounds on the minimum competitive ratio any

online algorithm can achieve in an adversarial setting for the case where different jobs

are allowed different amounts of delay. We first give specific lower bounds for small
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values of maximum delay Dmax for any packet, specifically, for Dmax ∈ [1, . . . , 7].

Then we give a general lower bound for any D.

8.4.1 Lower Bound for D ∈ {0, 1}

Theorem 25. For D ∈ {0, 1}, there exists a sequence for which the competitive

ratio of any online algorithm is at least 3
2
.

Proof. Let us assume for the sake of contradiction that there exists an online al-

gorithm with competitive ratio 3
2
(1 − ε). Let the adversary generate a sequence

from time slot 0 to k: 1, 2, 22, . . . , 2k, with every job having D = 1. At time slot

k + 1, it sends 2k, this time with D = 0. Since the algorithm has a competi-

tive ratio 3
2
(1 − ε), at every time slot i, the total work done by the algorithm is

≤ 3
2
(1 − ε)OPT (i) where OPT (i) is the value of the optimal offline solution for

the sequence from time slot 0 to i. It can be easily seen that at any time slot i,

OPT (i) = 2i−1. The total amount of work that has arrived since time slot k (inclu-

sive) is
∑k

i=0 2i = 2k+1− 1. Hence, the total work that remains unserved at the end

of time slot k is U(k + 1) ≥ 2k+1 − 1− 3
2
(1− ε)

∑k−1
j=0 2j = 2k+1 − 3

2
(1− ε)(2k − 1).

Therefore U(k + 1) ≥ 2k−1(1 + 3ε) + 3
2
(1− ε).

At time slot k + 1, A(k + 1) = 2k with delay D = 0. Hence, the optimum

solution at k + 1 = 2k. However, the algorithm needs to do total work S(k + 1) =

U(k + 1) + 2k. S(k + 1) ≥ 2k−1(1 + 3ε) + 3
2
(1− ε) + 2k. The competitive ratio is

S(k + 1)

OPT (k + 1)
≥ 1 + 3ε

2
+

3
2
(1− ε)

2k
+ 1 ≥ 3

2
(1 + ε)

This proves the theorem.
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8.4.2 Lower Bound for Dmax ∈ {2, 3, . . . , 7}.

Theorem 26. When the delay allowed can vary from {0, . . . , Dmax}, where 2 ≤

Dmax ≤ 7, there exists a sequence for which the competitive ratio of any online

algorithm is given below (where d = Dmax for notational ease)

α ≥
xd

x−1
+ dxd−1(

xd

x−1

)
·
(
d+1
2d+1

)
−
∑d
i=1 ix

i−1

2d+1
+
∑d

i=1

(
ixd−1+

∑d
j=i x

j−1

2d+1−i

)
where x = 1 + 1

d
.

Proof. The sequence generated by the adversary is as follows (provided the on-

line algorithm does ≤ α times the optimal offline solution at any time slot t):

1, x, x2, . . . , xk from time t = 0 to t = k. All of these jobs have maximum delay

allowed d. For every time slot t = k + i, where, 1 ≤ i ≤ d, the adversary sends a

jobs xk, with delay allowed d− i.

For the choice of x and d, the following facts are true.

1. For any 1 ≤ p < d+ 1, xp + xp−1 + . . . x ≤ d+ p.

2. xd+1 + xd + . . . x > 2d+ 1.

3. For i ∈ [1 . . . d], xd−i (d+ i+ 1)− 3d− 1 + i ≤ 0.

4. For i ∈ [1 . . . d], xd−i+1 (d+ i+ 1)− 3d− 2 + i ≥ 0.

The above facts can be easily verified numerically.

Lemma 33. The optimal offline solution at any time t is given below.

1. For d ≤ t ≤ k, OPT (t) = xt+xt−1+...xt−d

2d+1
.
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2. For t = k + i, where 1 ≤ i ≤ d,

OPT (t) = xk−d+i ·
(
ixd−i+

∑d−i
p=0 x

p

2d+1−i

)
.

Proof. The proof follows from the numerical facts stated earlier for our choice of x

and constraints on d. The first two facts imply OPT (t) for t ≤ k. For t > k, the

specifically, the following are true, as implied by the facts above, and these in turn

imply OPT (t) for t > k.

1. ixd−i+1+xd−i+1+...+x
2d+1−i ≥ ixd−i+1+xd−i+1+...+x+1

2d+2−i .

2. ixd−i+xd−i+...+x
2d−i ≤ ixd−i+xd−i+...+x+1

2d−i+1
.

Proof of Theorem 26 continued: The total work arrived by the start of time

t = (k + d) is W = xk+1−1
x−1

+ d · xk. For competitive ratio to remain ≤ α, any online

algorithm must serve ≤ α · OPT (t) at any time slot t. However, for feasibility, all

work needs to be served. Let the total work served by the end of time t = (k + d)

be S ≤
∑k+d

t=0 αOPT (t).

Therefore the competitive ratio that can be forced by the adversary is α ≥ W
S

:

α ≥
xd

x−1
+ dxd−1(

xd

x−1

)
·
(
d+1
2d+1

)
−
∑d
i=1 ix

i−1

2d+1
+
∑d

i=1

(
ixd−1+

∑d
j=i x

j−1

2d+1−i

)

The specific values for d ∈ {1, . . . , 7} are tabulated below.
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Table 8.2: Lower Bounds for Variable D ∈ {0, . . . , d}, 1 ≤ d ≤ 7

d value Lower Bound

1 1.5

2 1.7045

3 1.8113

4 1.8766

5 1.9206

6 1.9523

7 1.9761

8.4.3 Lower Bound for D ∈ {0, 1, . . . , d}.

Theorem 27. For D ∈ {0, 1, . . . d}, there exists a sequence for which the compet-

itive ratio of any online algorithm is at least 2
(

1− d2+1
d3+3d2+2d+2

)
. For large d, this

approaches 2.

Proof. Set x = d + 1. Let the sequence be a 1, x, x2, . . . , xk, all with D values

= d. This is followed by d more jobs of size xk, with their D values progressively

decreasing, specifically the job arriving at t = k + i, where 1 ≤ i ≤ d, has delay

d − i. The total work arrived till time t = k + d is W = xk+1−1

x−1
+ dxk. The total

work served by the online algorithm at any time t is < αOPT (t). From time 0 to

k, OPT (t) = xt

d+1
. From time k + 1 to k + d, OPT (k + j) = jxk

d+1
. hence the total
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work S served by the end of time k + d is

S ≤ α

(
xk+1 − 1

x− 1
· 1

d+ 1
+

d+1∑
i=2

i · xk

d+ 1

)

≤ α

d+ 1

(
xk+1 − 1

x− 1
+
d2 + 3d

2

)

Hence, it can be seen that the competitive ratio α can be enforced by the adversary

to be as large as

α >
W

S
≥ 2d3 + 4d2 + 4d+ 2

d3 + 3d2 + 2d+ 2
= 2

(
1− d2 + 1

d3 + 3d2 + 2d+ 2

)

For large d this approaches 2. Note however, N � d.

When time is not slotted such that the release times of jobs can be arbitrary,

as well as the delays allowed can be arbitrarily large, specifically d = N − 1, a lower

bound of e is implied by the work of Bansal, Kimbrel and Pruhs [2]. They also give

a tight e competitive algorithm for this problem.

8.5 Online Algorithms for variable D

In this section we describe and analyze online algorithms for multi-class traffic,

where the delay allowed for different data packets may be different. We first show

that the natural extension of the Equal Split algorithm suggested in prior work [28]

can perform very badly.
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8.5.1 Performance of Equal Split when D ∈ {0, 1, . . . , Dmax}.

We first describe the natural extension of the Equal Split algorithm for this

case. When D is uniform for all jobs, the algorithm simply splits every job equally

over its allowed duration D + 1. Let A(i) denote the job arrival at any time slot i.

At time slot t, the total work done by the algorithm is
∑t
i=t−D A(i)

D+1
. This achieves a

competitive ratio of 2D+1
D+1

for uniform D.

For variable D, an extension of the Equal Split algorithm would again split

every job over its allowed duration, except that this duration is now job dependent.

Let the job arrivals at time slot i be denoted by the vector A(i) where Ad(i) denotes

the jobs with allowed delay d, d ∈ {0, . . . , Dmax}. Each job Ad(i) would be split

equally over its duration d + 1 time slots. Therefore the total work done by the

algorithm at a time t is

ES(t) = A0(t) + A1(t)+A1(t−1)
2

+ . . .+
∑t
i=t−Dmax ADmax (i)

Dmax+1
.

Let us consider a job arrival sequence as follows: at time slot i, i ∈ {0, . . . , Dmax−

1}, a job of size 1 arrives with allowed delay Dmax−i. At time slot Dmax, A(Dmax) =

(1, 1, . . . , 1). In other words, Dmax + 1 jobs arrive at time Dmax, each of size 1 and

every job has a different delay in {0, . . . , Dmax}. Clearly, the optimal offline solution

is to finish every job that arrived before Dmax in its arrival slot, and then each of

the jobs that arrived in Dmax one by one in the intervals Dmax to 2Dmax. Hence the

value of the optimal offline solution is 1. However, in the time slot Dmax, Equal Split

would end up doing 1
Dmax+1

+ 1
Dmax

+ . . .+ 1
2

+ 1 + 1
2

+ . . .+ 1
Dmax+1

amount of work.

Therefore, the competitive ratio of Equal Split is:
∑Dmax

i=1
2

1+i
+ 1 = 2HDmax+1 − 1,
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where Hn denotes the nth Harmonic number. For Dmax = 1, the competitive ratio

of Equal Split is 2. For large Dmax, the competitive ratio of Equal Split approaches

2 ln (Dmax + 1)− 1.

8.5.2 Tight Online Algorithm for D ∈ {0, 1}

We have already shown that the competitive ratio of any online algorithm

in an adversarial setting must be at least 3
2
, when D ∈ {0, 1}. Here we give an

algorithm (Algorithm 7) with competitive ratio exactly 3
2
.

Algorithm 7 Algorithm for D ∈ {0, 1}.
1: At time slot t, let A(t) be the newly arrived job vector and p(t) is the pending

job.

2: Compute OPT ′(t) as max (A0(t), A0(t)+A1(t)
2

).

3: Set S(t) = p(t) +OPT ′(t).

4: Serve up to S(t) jobs with earliest deadline first.

Lemma 34. The solution returned by Algorithm 7 is feasible.

Proof. This is obvious, since at any time slot, we serve all of the pending jobs and

all jobs with delay D = 0.

Lemma 35. At any time slot t, the amount of pending job p(t) ≤ A0(t−1)+A1(t−1)
2

.

Proof. This follows since at time slot t−1, we serve at least A0(t−1)+A1(t−1)
2

of A0(t−

1) + A1(t− 1).

Theorem 28. Algorithm 7 is 3
2

competitive in an adversarial setting with respect to

any optimal offline solution for any sequence of job arrivals I.
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Proof. For a given sequence I, let OPT (t) be the optimal solution for the sequence

up to time t. It is obvious that OPT (t) is a non-decreasing function of t. We

will prove that for any time slot t, the amount of jobs that Algorithm 7 serves

S(t) ≤ 3
2
OPT (t). We know from Lemma 35 that p(t) ≤ A0(t−1)+A1(t−1)

2
. Therefore,

S(t) ≤ A0(t−1)+A1(t−1)
2

+OPT ′(t).

Case 1: OPT ′(t) = A0(t).

In this case, S(t) = A0(t−1)+A1(t−1)
2

+ A0(t).

Case 1.1: A0(t) < A0(t − 1) + A1(t − 1). In this case it can be seen that

A0(t−1)+A1(t−1)+A0(t)
2

> A0(t). Hence, OPT (t) ≥ A0(t−1)+A1(t−1)+A0(t)
2

. Therefore

S(t)
OPT (t)

≤ A0(t−1)+A1(t−1)+2A0(t)
A0(t−1)+A1(t−1)+A0(t)

.

S(t)

OPT (t)
≤ 1 +

1

1 + A0(t−1)+A1(t−1)
A0(t)

≤ 3

2

Case 1.2: A0(t) ≥ A0(t− 1) + A1(t− 1).

In this case it can be seen that A0(t−1)+A1(t−1)+A0(t)
2

≤ A0(t). Hence, OPT (t) ≥ A0(t).

S(t)

OPT (t)
≤

A0(t−1)+A1(t−1)
2

+ A0(t)

A0(t)
≤ 3

2

Case 2: OPT (t′) = A0(t)+A1(t)
2

.

Now, we know, OPT (t) ≥ A0(t−1)+A1(t−1)+A0(t)+A1(t)
3

. S(t) ≤ A0(t−1)+A1(t−1)
2

+A0(t)+A1(t)
2

.

S(t)

OPT (t)
≤

A0(t−1)+A1(t−1)+A0(t)+A1(t)
2

A0(t−1)+A1(t−1)+A0(t)+A1(t)
3

=
3

2
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Hence, we have proved that at for any sequence I, at any time slot t, the

amount of job served by Algorithm 7 is at most 3
2

of the optimum solution. This

proves the theorem.

8.5.3 Online Algorithm for D ∈ {0, 1, 2}

In this section, we give an online algorithm with competitive ratio 2 for D ∈

{0, 1, 2}. Equal Split on the other hand has a competitive ratio that is at least as

bad as 22
3

= 8
3
. The algorithm is given in Algorithm 8.

Algorithm 8 Algorithm for D ∈ {0, 1, 2}.
1: At time slot t, let A(t) be the newly arrived job vector.

2: Compute OPT (t) as the offline optimal solution for the arrivals up to time t.

3: Set S(t) = 2 ·OPT (t).

4: Serve up to S(t) jobs with earliest deadline first.

Theorem 29. Algorithm 8 achieves a competitive ratio of 2 with respect to any

optimal offline solution.

Proof. The competitive ratio of Algorithm 8 is at least 2 since it does twice of

the work the optimal offline solution does at any time slot. We will show that

the solution returned by Algorithm 8 is always feasible, in other words, all the

work gets completed before their allowed delay expires. At any time i, the op-

timal offline solution is OPT (i) ≥ A0(i−1)+A1(i−1)+A2(i−1)+A0(i)+A1(i)+A2(i)
4

. There-

fore, by the end of time slot t − 1, the total work completed by the algorithm is

2
∑t−1

i=0 OPT (i) ≥
(∑t−2

i−1

∑2
d=0 Ad(i)

)
+
(
A0(t−1)+A1(t−1)+A2(t−1)

2

)
. We need to com-
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plete
∑t−2

i−1

∑2
d=0 (Ad(i)) + (A0(t − 1) + A1(t − 1)) + A0(t) by time t. The optimal

solution at time t, OPT (t) ≥ A0(t−1)+A1(t−1)+A0(t)
2

. Therefore, by doing 2 · OPT (t)

we can finish all the work that needs to be completed by time slot t. Since this is

true for any time slot, we have proved that the competitive ratio of Algorithm 8 is

at most 2.

Note that this is strictly better than Equal Split as well as the e competitive

online algorithm for unslotted time slots that was given by Bansal et al. [2].
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Chapter 9: Conclusion

In this dissertation, we have studied problems inspired by the needs to re-

duce energy costs and network bandwidth billing costs in data centers. As already

outlined in Chapter 1, energy and network bandwidth are two resources which ac-

count for a major fraction of the huge operating costs of data centers. Reducing

energy consumption is an important problem as it will be directly beneficial to the

environment. Intelligent optimization practices which can reduce the consumption

of resources without violating the service level agreements of the data centers with

their clients, and at the same time, do not require a complete overhaul of the existing

systems, may help tremendously in reducing the costs.

In this dissertation we have tried doing the above, by modeling these problems

as resource allocation problems and providing optimization algorithms with provable

guarantees on these models. To recapitulate, the specific problems that we study

are the following: (1) optimizing the energy consumption due to cooling machines

and racks in data centers assuming a standard raised floor cooling technology, (2)

reducing the energy costs due to equipment powering of the servers or machines

by effective batching of jobs respecting job requirements and machine capacities,

and finally, (3) reducing the network bandwidth billing costs under the percentile
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model and the peak bandwidth model incurred by data centers due to the large

volume of data transmitted daily. Traditional models do not accurately capture

the essential complexities of these resource allocation problems arising from the

new technology and practices deployed in today’s world. Hence, studying them

required us to study new scheduling and packing problems that generalize classical

scheduling and packing problems. It is not obvious how to extend existing techniques

on classical problems trivially to these new problems.

In our work, we have shown how some of the models and problems we study

generalize classical problems. Our models capture effectively, with some degree of

abstraction, the observations of empirical and physical studies conducted in systems

and networking literature. For these new models, we have designed and analyzed

algorithms with worst case asymptotic performance guarantees. Some of the other

problems we consider have already been studied in the scheduling theory and al-

gorithms literature. For such problems, we have improved the existing results and

given new results on further generalizations of the problems.

Our results include design and analysis of offline algorithms, both approximate

and exact, and online algorithms along with new and improved lower bounds for the

problems we consider. We have used discrete optimization techniques like combina-

torial optimization, LP rounding and competitive analysis in our work. However, in

the dissertation, we have only studied deterministic algorithms and analyzed their

asymptotic worst case performance. Use of randomization may help in improving

the performance guarantees significantly. Furthermore, given the huge volume of

historical data available, one can derive reasonable stochastic assumptions on the
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data packets or the incoming job characteristics. Knowing the stochastic nature of

the input may help in designing customized algorithms with provably better per-

formance guarantees, either in expectation or with a high probability. In the near

future, we would like to extend this work in the above directions.

The models we study generalize the traditional models elegantly, and in a

manner which is more relevant to modern day resource allocation problems. These

models can perhaps be generalized even further to model the intricacies of the real

world problems. For example, one can consider assignment restrictions being speci-

fied as a part of the job characteristics in the thermal scheduling model. This would

generalize the Generalized Assignment Problem, in the presence of spatial cross-

interference. There can be several other generalizations of our models based on the

issues and limitations faced by real world systems. For example, sometimes the job

characteristics cannot be estimated completely before assigning them, or perhaps,

the spatial cross interference factor needs to take into account the actual distance

between two neighboring machines, instead of considering it to be unit.

It would be interesting to see if our techniques can extend smoothly to further

generalizations of our models, or if new techniques would be needed to solve them.

It is not clear if such generalizations would even be tractable, in other words, admit

any polynomial time approximation algorithms with constant approximation ratio.

Specifically, it would be interesting not only to provide upper bounds on these

generalizations, but also to analyze the lower bounds on the performance guarantees.

We have considered some natural optimization questions on the models we

study. However, one can ask several other optimization questions on these models.
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For example, even if we know that no deterministic online algorithm can achieve

bounded competitive ratio in the percentile model (as shown by Golubchik et al.

[28]), it would be interesting to study bicriteria optimization problems. A natural

bicriteria optimization can be defined on a partial version of the problem. Suppose

we need to send only a certain fraction of the data packets, say, 90% of the data.

Can we minimize the percentile cost compared to an optimal solution? In fact, both

the offline and online versions of this problem would be interesting. We may also

consider resource augmentation for achieving bounded competitive ratio for online

algorithms in the percentile model.

Studying any of these open questions would be interesting and practically

relevant. Moreover, in some cases we have shown gaps exist between the lower

bounds and the upper bounds that either we have provided, or that is known from

existing results in the literature. Closing these gaps would be very interesting as

well. We would like to study some of the open problems and close some gaps that

we have highlighted and we hope that the open questions raised by our work will

inspire even more interesting algorithmic work in the near future.
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