
UMIACS-TR-93-132 December, 1992CS-TR-3191Going beyond Integer Programming with the Omega Testto Eliminate False Data DependencesWilliam Pugh David Wonnacottpugh@cs.umd.edu davew@cs.umd.eduInstitute for Advanced Computer StudiesDept. of Computer Science Dept. of Computer ScienceUniv. of Maryland, College Park, MD 20742AbstractArray data dependence analysis methods currently in use generate false dependencesthat can prevent useful program transformations. These false dependences arise becausethe questions asked are conservative approximations to the questions we really should beasking. Unfortunately, the questions we really should be asking go beyond integer pro-gramming and require decision procedures for a subclass of Presburger formulas. In thispaper, we describe how to extend the Omega test so that it can answer these queries andallow us to eliminate these false data dependences. We have implemented the techniquesdescribed here and believe they are suitable for use in production compilers.This work is supported by an NSF PYI grant CCR-9157384 and by a Packard Fellowship.This is a revised version of a paper that originally appeared at the ACM SIGPLAN PLDI'92conference

1 IntroductionRecent studies [HKK+93, CP91] suggest that array data dependence testing analysis methods currently inuse generate false dependences that can prevent useful program transformations. For the most part, thesefalse dependences are not generated by the conservative nature of algorithms such as Banerjee's inequalities[SLY89, KPK90, May92]. These false dependences arise because the questions we ask of dependence analysisalgorithms are conservative approximations to the questions we really should be asking (methods currentlyin use are unable to address the more complicated questions we should be asking).For example, there is a
ow dependence from an array access A(I) to an array access B(I 0) i�� A is executed with iteration vector I,� B is executed with iteration vector I0,� A(I) writes to the same location as is read by B(I 0),� A(I) is executed before B(I 0), and� there is no write to the location read by B(I0) between the execution of A(I) and B(I 0).However, most array data dependence algorithms ignore the last criterion (either explicitly or implicitly).While ignoring this criterion does not change the total order imposed by the dependences, it does cause
owdependences to become contaminated with output dependences (storage dependences). There are techniques(such as privatization, renaming, and array expansion) that can eliminate storage-related dependences.However, these methods cannot be applied if they appear to a�ect the
ow dependences of a program. Also,
ow dependences represent more than ordering constraints: they also represent the
ow of information. Inorder to make e�ective use of caches or distributed memories, a compiler must have accurate informationabout the
ow of information in a program.Similarly, many dependence testing algorithms do not handle assertions about relationships among non-induction variables or array references that appear in subscripts or loop bounds. To be useful, a system mustnot only be able to incorporate assertions about these relationships, but also be able to generate a usefuldialog with the user about which relationships hold.Unfortunately, the questions we really should be asking go beyond integer programming and requiredecision procedures for a larger subclass of Presburger formulas [KK67, Coo72]. Presburger formulas arethose that can be built by applying the �rst order logical connectives (:, ^, _,), 8 and 9) to equality andinequality constraints on sums of integer variables and integer constants. We can use these primitives tohandle multiplication by integer constants (e.g. we treat 3n � 2m as n + n + n � m +m) or subtraction(treating a�b = c as a = c+b). Presburger formulas are decidable, but the fastest known decision proceduresthat handle the full class take worst-case 222O(n) time [Coo72, Opp78].Our original work on the Omega test [Pug92] described e�cient ways to answer the usual questionsasked for dependence analysis. In this paper, we show how the Omega test can be extended so that it canbe used to answer questions in a subclass of Presburger arithmetic. We then show how to phrase, withinthat subclass, questions that allow us to obtain more precise information about data dependences: Section4 gives techniques to distinguish dependences that are merely artifacts of the re-use of memory from thosethat describe to the
ow of values within the program. In Section 5, we show how to produce informationabout the e�ects of the values of symbolic constants on dependences. We also describe experiences with animplementation of the methods described here that convince us that these techniques are suitable for use inproduction compilers.

for i := 0 to 10for j := i to 10 by 3A[i,j] := A[i-1,j+2]Figure 1: Code demonstrating disagreement about dependence distance de�nition2 Dependence Abstractions: Dependence Di�erences/Distances/DirectionsWe generally need to know more information about data dependence than just its existence. Things we needto know might include:� Is the dependence carried by a loop?{ If so, which one?� Does the dependence prevent loop interchange?{ If not, does loop interchange change which loop carries the dependence?One way to characterize a data dependence is by the di�erence between the values of the shared loopvariables. We call this the dependence di�erence. The term dependence distance is generally used by otherauthors to refer to the same thing, but the term dependence distance does not have a widely acceptedde�nition for unnormalized loops. The di�erent de�nitions and the issues behind them are discussed in[Pug93]. For example, depending on who you ask, you will be told that the dependence distance for code inFigure 1 is (1;�2); (1;�1); (1; �23), or you might even be told (incorrectly) that no dependence exists.Often, there will not be a single unique dependence di�erence for an array pair. In this case, we needto appropriately summarize the dependence di�erences. One way to do this is by summarizing the possiblesigns of the dependence di�erences. For example, the dependence di�erences f(�i;�j) j 0 � �j < �ig canbe summarized as f(+; 0+)g and the dependence di�erences f(�i;�j) j 0 � �i = �jg can be summarizedas f(0; 0); (+;+)g (summarizing the dependence di�erences for this example as f(0+; 0+)g would falselysuggest that the signs f(0;+); (+; 0)g were possible). A summary of the signs of the dependence di�erenceis closely related to direction vectors (although for the direction vector, the signs are normalized accordingto the sign of the step in each loop).The techniques in this paper are intented for dependence testing of sequential programs (to facilitateparallelization). Thus, we can ensure that a data dependence points forward in time by requiring that theoutermost nonzero dependence di�erence have the same sign as the step of the loop. This creates a minorproblem: since this constraint cannot be formulated as the conjunction of a set of linear constraints on thedependence di�erences, we can't create a single set of constraints that have solutions just for dependencedi�erences that point forward in time.The methods described in [Pug92] produce a summary of the possible dependence di�erences for adependence, not taking into account the requirement that dependences point forward in time. This summaryinformation is then �ltered so as to only describe dependences that point forward in time. This summaryinformation is in the form of an exact dependence di�erence (when constant), or the possible signs of thedependence di�erence (when not constant). The �ltering and summarization may split a dependence. Forexample, a dependence with dependence di�erences f(�i;�j) j 0 � �i = �jg would be summarized asdependence di�erences (0; 0) and (+;+). From this point onward, these would be considered two, distinctdata dependences between these two array references (this holds throughout this paper). These dependence2

for i := 0 to n doA[i] := := A[1] for i := 0 to n doA[i] := := A[n-i] for i := 0 to n doA[i] := := A[p]Figure 2: Di�erent
ow dependences with identical dependence di�erencesdi�erence summaries are used to constrain the dependence di�erences appropriately when creating linearconstraints describing these dependences.A consensus is starting to build that dependence di�erence/distance is not a completely adequate datadependence abstraction [Wol91a]. In particular, the
ow dependences in Figure 2 all have (0+), dependencedi�erences, yet completely di�erent techniques are needed to parallelize the loops. Also, dependence di�er-ence/distance is not su�cient to check for the legality of loop fusion or interchange of imperfectly nestedloops. Although some researchers have suggested more exact dependence abstractions that describe exactlywhich pairs of iterations are involved in a dependence [Pug91, Fea91, MAL92], we limit our discussion inthis paper to dependence di�erence abstractions.3 Extending the Omega testThe Omega test [Pug92] is an integer programming algorithm based on Fourier-Motzkin variable elimination.The basic operation supported by the Omega test is projection. Intuitively, the projection of a set ofconstraints is the shadow of a set of constraints. More formally, given a set of linear equalities and inequalitieson a set of variables V , projecting the constraints onto the variables bV (where bV � V) produces a set ofconstraints on variables bV that has the same integer solutions for bV as the original problem. For example,projecting f0 � a � 5; b < a � 5bg onto a gives f2 � a � 5g. We use the notation �x1;:::;xn(S) to representthe projection of the problem S onto the set of variables x1; : : : ; xn and the notation �:x(S) to representthe projection of the problem S onto all variables other than x.The Omega test determines if a set of constraints has integer solutions by using projection to eliminatevariables until the constraints involve a single variable, at which point is it easy to check for integer solutions.There are many other applications of projection. For example, if we de�ne a set of constraints for an arraypair that includes variables for the possible dependence di�erence in each common loop, we can project thatset of constraints onto the variables for the dependence di�erence. The projected system can be e�cientlyused to determine the dependence di�erences.Because the Omega test checks for integer solutions, not real solutions, it is sometimes unable to producea single set of constraints when computing �x(S). Instead, the Omega test is forced to produce a set ofproblems S0; S1; : : : ; Sp and a problem T such that Spi=0 Si = �x(S) � T . This is called splintering, andwe call S0 the Dark Shadow of �x(S) and call T the Real Shadow of �x(S) (the Real Shadow may includesolutions for x that only have real but not integer solutions for the variables that have been eliminated).In practice, projection rarely splinters and when it does, S0 contains almost all of the points of �x(S), Tdoesn't contain many more points than �x(S), and p is small. If we are checking to see if S has solutions, we�rst check if S0 6= ; or T = ;. Only if both tests fail are we required to examine S1; S2; : : : ; Sp. Also, whenchecking for integer solutions, we choose which variable to eliminate to avoid splintering when possible.3.1 How the Omega test worksFourier-Motzkin variable elimination [DE73] eliminates a variable from a linear programming problem. In-tuitively, Fourier-Motzkin variable elimination �nds the n� 1 dimensional shadow cast by an n dimensional3

object.Consider two constraints on z: a lower bound � � bz and an upper bound az � � (where a and b arepositive integers). We can combine these constraints to get a� � abz � b�. The shadow of this pair ofconstraints is a� � b�. Fourier-Motzkin variable elimination calculates the shadow of a set of constraintsby combining all constraints that do not involve the variable being eliminated with the result from eachcombination of a lower and upper bound on the variable being eliminated. The real shadow is a conservativeapproximation to the integer shadow of the set of constraints.In [Pug92], we extended Fourier-Motzkin variable elimination to be an integer programming method.Even if a� � b�, there may be no integer solution to z such that a� � abz � b�. However, if a� + (a �1)(b � 1) � b�, we know that an integer solution to z must exist. This is the dark shadow of this pair ofconstraints (described in [Pug92]). The dark shadow is a pessimistic approximation to the integer shadowof the set of constraints. Note that if a = 1 or b = 1, the dark shadow and the real shadow are identical,and therefore also identical to the integer shadow.There are cases when the real shadow contains integer points but the dark shadow does not. In this case,determining the existence of integer solutions to the original set of constraints requires the use of specialcase techniques, described in [Pug92], that are almost never needed in practice.3.2 Determining the validity of certain Presburger formulasAssume that p and q are propositions that can each be represented as a conjunction of linear equalities andinequalities. We can determine the truthfulness of the following predicates:Is p a tautology? Trivial to check when p is a conjunction.Is p satis�able? We can check this using techniques described in Section 3.1 and in [Pug92].Is p) q a tautology? This could not be e�ciently answered using the techniques described in [Pug92],but can be e�ciently answered in practice using techniques described in Section 3.3.The projection transformation o�ered by the Omega test allows us to handle embeded existential qual-i�ers: �:x(p) = (9x s:t: p). We can combine these abilities, as well as any standard transformation ofpredicate calculus, to determine the validity of certain Presburger formulas. We have not attempted toformally capture the subclass of Presburger formulas we can answer e�ciently. The following are examplesof some Presburger formulas we can answer e�ciently:8x;9y s:t: p: True i� �:y(p) is a tautology.8x; (9y s:t: p)) (9z s:t: q): True i� �:y(p)) �:z(q) is a tautology. We can easily determine this if �:z(q) doesnot splinter.8x;:p _ q _ :r: True i� p ^ r) q is a tautology.where p; q and r are conjunctions of linear equalities and inequalities3.3 Computing Gists and Checking when p) q is a tautologyIntuitively, we de�ne (gist p given q) as the new information contained in p, given that we already know q.More formally, (gist p given q) is a conjunction containing a minimal subset of the constraints of p such that((gist p given q) ^ q) = (p ^ q)). Note that (gist p given q) = True, q = (p ^ q), (q) p).If q is satis�able, we could compute gist p given q as follows:gist p given q =if p = True then return Trueelse let c be a constraint in p 4

if pc:c ^ q is satis�able,then return c ^ (gist pcTrue given (q ^ c))else return gist pcTrue given qwhere poldcnewc is p with the constraint oldc replaced by newc. If q is not satis�able, gist p given q = True.Unfortunately, this algorithm requires many satis�ability tests, each of which takes a non-trivial amountof time. We handle this problem by checking for a number of special cases (listed in order of increasingdi�culty to check):� For each equation e in p, we check to see if e is implied by any single constraint in p or q. If so, e isredundant and not in the gist.� We check to see if there is any variable that has an upper bound in p but not in q. If so, we know thatat least one of the upper bounds from p must be in the gist. A similar check is made for lower bounds.� If there does not exist some constraint e0 in p or q such that the inner product of the normals of e ande0 is positive, then e must be in the gist.� If an equation e in p is implied by any two other constraints in p and/or q, e is redundant and not inthe gist.Note: if an equation is determined to be redundant and not in the gist, that equation may not be usedto infer that other equations are redundant.These fast checks often completely determine a gist. When they do not, they usually greatly simplify theproblem before we utilize the naive algorithm.3.3.1 Checking implicationsAs noted earlier, we determine if q) p is a tautology by checking if (gist p given q) = True. When performingimplication tests using the above algorithms, we short-circuit the computation of the gist as soon as we aresure that the gist is not \True".3.3.2 Combining Projection and Gist computationIf is often the case that we need to compute problems of the form gist �:(y;z)(p ^ q) given �:z(q). Wecould perform this computation by performing the projections independently, and then computing the gists.However, there is a more e�cient solution.We can combine p and q into a single set of constraints, tagging the equations from p red and the equationsfrom q black. We then project away the variables y and z and eliminate any obviously redundant equationsas we go. During this projection, black equations are considered both black and red, while red equationsare just red. Thus, combining a red and black inequality produces a red inequality. When eliminating a redequality via substitution, we only perform the substitution for red equations. If any black equations involvethe variable being eliminated, we must also convert the equality into a pair of inequalities (e.g., convertx = 1 into 1 � x � 1). Once we have projected away y and z, we then compute the gist of the red equationswith respect to the black equations.3.4 Related WorkSeveral authors have explored methods for using integer programming methods to decide subclasses ofPresburger formulas [Ble75, Sho77, JM87]. The work of [Ble75, Sho77] cannot handle nested, alternatingquanti�ers. The work described in [JM87] can only handle constraints of the form v � v0 + c (for variablesv and v0 and constant c). These limitations prevent this use of these techniques for the types of dependenceanalysis problems we need to analyze. 5

4 Handling array killsWe say there is a \memory-based" dependence between two accesses (executions of reads or writes) of avariable if these accesses refer to the same storage location. Traditional array data dependence tests usethis de�nition of dependence. We say there is a \value-based" dependence if they refer to the same locationand if there are no writes to that memory location between the two accesses (i.e, the value that is in thatlocation after the �rst access reaches the second access). Traditional scalar data dependence tests use thisde�nition of dependence. If there is no value-based dependence between two accesses to a location but thereis a memory-based dependence, we say the dependence is \dead" (i.e., \killed" by the intervening write).We refer to value-based dependences as \live" dependences, as they are not dead.In this section, we give techniques for computing value-based dependences for arrays. Though mostresearch in this area has focused on value-based
ow dependences, our techniques can be applied to outputand anti dependences as well as
ow dependences.Note that the transitive closure of all dependences is una�ected by our choice of memory-based or value-based dependence testing. Any value-based dependence is also a memory-based dependence. Any memory-based dependence is equivalent to a chain of one or more value-based dependences. Either the dependenceis live, or there is a value-based dependence from the �rst access to the �rst of the intervening writes, value-based output dependences between consecutive intervening writes, and a value-based dependence from thelast of these writes to the second access.Program transformations that simply re-arrange the order of execution of array accesses must preserve thetransitive closure of the
ow, output, and anti dependences. Memory-based dependence tests are thereforesu�cient to check for the legality of such transformations.However, we need information about the value-based
ow dependences to test for the legality of storagedependence breaking transformations such as variable expansion, privatization, and renaming. Value-based
ow dependences represent the
ow of information in the program, and must be preserved by any transfor-mation that is to preserve the program semantics. On the other hand, output and anti dependences, anddead
ow dependences, occur because a memory location holds several di�erent values during the executionof the program. We can eliminate these dependences by mapping the di�erent values to distinct memorylocations using variable renaming, expansion, or privatization, as long as we preserve the
ow of informationin the program (i.e., the value-based
ow dependences).Our techniques also eliminate dead anti and output dependences, which has little semantic importancebut can be useful in interactive environments (to reduce the amount of useless information displayed to theuser).There are four kinds of analysis we perform:Killing A dependence from a read or write A to a read or write C is killed by a write B i� all array elementsaccessed by A are overwritten by B before C can access them.Covering A write A covers a read or write B i� A overwrites the elements of the array that will be accessedby B, before B accesses them. In this case, any dependence to B from an access that precedes A iskilled by A.Terminating A write B terminates a read or write A i� B overwrites all elements that were accessed in A.In this case, any dependences from A to a read or write after B is killed by B.Re�nement Given a dependence from a write A to a read or write B, it is possible that some executionsof A kill the dependences from earlier executions of A. Similarly, given a dependence from a read orwrite A to a write B, some executions of B may kill dependences to later executions of B. We say6

A;B; : : : Refers to a speci�c array reference in a programI; I 0; I00; : : : An iteration vector that represents a speci�c set of values of the loop variables fora loop nest.[A] The set of iteration vectors for which A is executedA(I) The iteration of reference A when the loop variables have the values speci�ed by IA(I) sub= B(I 0) The references A and B refer to the same array and the subscripts of A(I) andB(I 0) are equal.A(I)� B(I 0) A(I) is executed before B(I 0)Sym The set of symbolic constants (e.g., loop-invariant scalar variables)Figure 3: Notation used in this papera(n) := ...for L1 := n to n+10 doa(L1) := ...for L1 := n to n+20 do... := a(L1)Example 1: Killed
ow dep a(m) := ...for L1 := 1 to 100a(L1) := ...for L2 := 1 to n doa(L2) := ...a(L2-1) := ...for L2 := 2 to n-1 do... := a(L2)for L2 = 1 to n doa(L2+1) := ...Example 2: Covering and Killed dep for L1 := 1 to n dofor L2 := 2 to m doa(L2) := a(L2-1)Unre�ned
ow dependence: (0+,1)Re�ned
ow dependence: (0,1)Example 3: Re�nementthe dependence can be re�ned to a subset D of its dependence di�erences i� any dependence with adi�erence not in D is killed by a dependence with di�erence in D.The following subsections give the formulae we use to perform the above types of analysis. Our notation(adapted from [ZC91]) is shown in Figure 3.These formulae need to enforce the constraint that one access precedes another (e.g. A(I) � C(I00)).Since this may not be a convex set of constraints, we perform each test once per dependence di�erencesummary obtained using conventional data dependence analysis.4.1 Killing dependencesA dependence from a read or write A to a read or write C is killed by a write B i� all elements accessedby A are overwritten by B before C can access them. This is the case if:8 I; I00; Sym; I 2 [A]^ I00 2 [C]^A(I)� C(I 00) ^A(I) sub= C(I 00))9I0 s:t: I 0 2 [B] ^A(I)� B(I 0)� C(I 00) ^B(I 0) sub= C(I 00)7

In Example 1, the write to a(L1) kills the
ow from the write of a(n) to the read of a(L1):I 2 [A] ^ I 00 2 [C]^A(I)� C(I 00) ^A(I) sub= C(I 00) � I 001 = n9I 0 s:t: I 0 2 [B] ^A(I)� B(I 0)� C(I 00) ^B(I 0) sub= C(I 00) � n � I 001 � n+ 10I001 = n) n � I001 � n+ 10If the �rst write were to a(m), we would not be able to verify the kill:I 2 [A]^ I00 2 [C]^A(I)� C(I 00) ^A(I) sub= C(I00) � n � I001 � n+ 20 ^ I 001 = m9I 0 s:t: I 0 2 [B] ^A(I)� B(I 0)� C(I 00) ^B(I 0) sub= C(I00) � n � I001 � n+ 10n � I001 � n+ 20 ^ I 001 = m 6) n � I001 � n+ 10If m � n + 10 had been asserted by the user, we would be able to verify the kill.If there are multiple dependence di�erence summaries between A and C, we test each one independentlyto see if it can be killed. If there are multiple dependence summaries from A to B, or from B to C, weperform this test once for each combination of one A to B summary with one B to C summary. Our test willtherefore not detect cases in which a some dependence summary from A to C is not killed by a combinationof several A to B or several B to C summaries. We are working on generalizing our tests to handle this caseand kills by a comb (a group of writes B1, B2, ..., Bn, which together kill the dependence). See [PW93] formore details.4.2 Covering dependencesA write A covers a read or write B i� every location accessed by B is previously written to by A. In thiscase, we need not examine any dependences to B from any accesses that would precede the writes of A (sinceA would kill such a dependence).A covers B i�: 8 I0; Sym; I0 2 [B]) 9I s:t: I 2 [A]^A(I)� B(I 0) ^A(I) sub= B(I 0)In Example 2, the read of a(L2) is covered by the write to a(L2-1):I 0 2 [B] � 1 � I01 � 100^ 2 � I 02 � n� 19I s:t: I 2 [A] ^A(I)� B(I 0) ^A(I) sub= B(I 0) � 1 � I01 � 100^ 0 � I 02 � n� 11 � I01 � 100^ 2 � I 02 � n� 1) 1 � I 01 � 100^ 0 � I 02 � n� 1The level at which the dependence is carried determines which other array accesses must be killed bythe cover. In Example 2, the dependence from the write a(L2-1) to the read a(L2) is loop independent, soit must kill the dependence from the write a(L1) to the read. If the dependence from the cover had beencarried by the L1 loop, some writes to a(L1) could come after the covering writes. Note that traditionaldependence tests would not be able to determine that the dependence from a(L2-1) is loop independent.8

4.3 Terminating dependencesA write B terminates a read or write A i� every location accessed by A is subsequently overwritten by B. IfA terminates B, we need not examine any dependences from A to any accesses that would follow the writesof B.B terminates A i�:8 I; Sym; I 2 [A]) 9I0 s:t: I 0 2 [B] ^A(I)� B(I 0) ^A(I) sub= B(I 0)In Example 2, the read of a(L2) is terminated by the write to a(L2+1).4.4 Re�ning dependence di�erences/directionsIf all iterations of a read or write B that receive a dependence from a write A also receive a dependencefrom a more recent execution of A with dependence di�erence � D, we say the dependence can be re�nedat its source to D. Example 3 shows a loop with a
ow dependence that can be re�ned (at the source) from(0+,1) to (0,1). Due to space limitations, we are unable to discuss the equations used to analyze re�nement;they are given in [PW92].4.5 Quick tests for when to check for the aboveWe can often avoid performing the general tests described above by doing some quick tests. For example, forthe dependence from B to C to kill the dependence between A and C, there must be an output dependencebetween A and B, and it must be possible for the sum of the dependence di�erence from A to B and B toC to equal the dependence di�erence from A to C. Similarly, for there to be any possibility of re�ning thedependence from A to B, the write at the end we are re�ning must have a self-output dependence with anon-zero dependence di�erence in the loop level being re�ned.If there exists a loop l such that the dependence di�erence from A to B cannot be 0, the dependencefrom A to B cannot cover B in the �rst iteration of loop l, so we do not check for coverage. Note that Amight actually cover B if B is not executed the �rst time through l { we would fail to detect this cover, andbe forced to kill the covered dependencies with the A to B dependence later.Finally, if we are trying to kill a dependence from A to C with a covering dependence from B to C, andthe dependence from B is always closer than the dependence from A, then we know the dependence fromA to C is killed without having to perform the general test. If the dependence from B is closer than somesubset of the dependences di�erences from A, we can kill that subset of the dependence di�erences from A.4.6 Testing OrderWe order our investigation of dependences by the number of loops containing both accesses, examining pairswith the greatest shared loop depth �rst. As soon as we �nd a dependence, we test it to determine if it coversits destination or terminates its source, and if it does, we perform a special form of re�nement to determinewhich loop carries the dependence (i.e. we re�ne leading 0+ to 0 if possible). This ordering lets us avoiddoing dependence testing for some access pairs. We can skip the test for dependence between 2 accesses thatshare l or fewer loops if either access is both covered and terminated by dependences with di�erences of 0 inthe outer l + 1 loops, or if both accesses are covered by such dependences, or both are terminated by suchdependences.In Example 2, the read of a(L2) is covered at level 1 by the write to a(L2-1), and terminated at level1 by the write to a(L2+1). Our testing order ensures that we will �nd the cover and terminator before wetest for dependence between the read and the write to a(m). We can skip this test entirely, since any
owdependence from the write must be killed by the cover, and any antidependence to the write must be killedby the terminator. Note that since there are no loops enclosing Example 2, there can be no antidependence9

from the read to the write a(m), so simply knowing about the cover would be su�cient grounds to skip thedependence test.Once we have completed the basic dependence testing, cover and termination testing, we try to elimi-nate dependences with the quick kill tests described in 4.5. We apply the complete kill test only to thosedependences that could not be killed with the quick test, and �nally re�ne the remaining dependences.4.7 Related WorkIn analyzing false array
ow data dependences (caused by output dependences), there are two basic ap-proaches:� Extend the pair-wise methods typically used for array data dependence to recognize array kills [Bra88,Rib90, Fea91, MAL92, MAL93].� Extend scalar data
ow methods by recording which array sections are killed and/or de�ned [GS90,Ros90, Li92].Both approaches have merits. Our work is an example of the �rst approach, and we believe it correctsseveral limitations and
aws in earlier work on that approach.4.7.1 Extending pair-wise methodsBrandes [Bra88] describes methods factoring out transitive dependences to determine \direct" dependences,and his work is similar to our computations for re�nement, killing and covering. However, his methods donot apply if the dependence di�erences are coupled or the loop is non-rectangular.Ribas describes [Rib90] techniques to re�ne dependence distances. However, Ribas only discusses perfectlynested loops, and there are some problems with his Theorem 1:Given two references Mvx + m and Uv;ry + u, the re�ned dependence distance from x to y isconstant i� Mv = Uv;r.In our Example 5, we have Mv = Uv;r (using Ribas's terminology), but the dependence distance is notconstant. The error is that (6) in [Rib90] should include (y � �iv;r(y)) 2 Int(A; b) and (7) in [Rib90] shouldinclude (x + �iv;r(x)) 2 Int(A; b). Ribas's Theorem holds only for iterations not near the beginning or endof any loop.Ribas uses a slightly di�erent de�nition of \constant dependence distance" than we do. His de�nitionstates that a dependence fromA to B has constant distance d i� for all iteration vectors I 2 [A] and I0 2 [B],there is a
ow dependence from A(I) to B(I 0) i� I0 � I = d. The de�nition we use is that a dependencefrom A to B has constant distance d i� for all iteration vectors I 2 [A] and I 0 2 [B], a
ow dependencefrom A(I) to B(I 0) implies I0 � I = d. While Ribas's de�nition is useful in the context of deriving VLSIdesigns, our de�nition is more appropriate for standard compiler optimizations.Paul Feautrier has described a more detailed form of analysis for array references [Fea91]. His methods aredesigned to produce exact information: for each read of an array element, he determines the precise statementand iteration which wrote the value. His methods are much more expensive than ours (about 100� moreexpensive) and work only for programs with a special static control structure (de�ned in [Fea91]).Maydan, Amarasinghe, and Lam ([MAL92, MAL93]) provide an e�cient way of generating the informa-tion produced by Feautrier's technique under speci�c conditions. They also present evidence that and showthat these speci�c conditions are frequently satis�ed in real programs. Voevodin and Voevodin ([Voe92a],[Voe92b]) have also done work that is similar to Feautrier's.10

for L1 := x to n dofor L2 := 1 to m doA[L1,L2] := A[L1-x,y] + C[L1,L2];Example 4 for L1 := 1 to n doA[Q[L1]] := A[Q[L1+1]-1] + C[L1];Example 5for b := 1 to maxBfor i := B[b] to B[b+1]-1for j := B[b] to B[b+1]-1A[i,j] := ...Example 6 for i := 1 to n dofor j := 1 to n doA[i*j] := ...Example 7 for i := 1 to n dok := i*(i-1)/2+ifor j := i to n doa[k] := a[k] + bb[i,j]k := k+jExample 84.7.2 Extending scalar data-
ow methodsRosene [Ros90] extended standard scalar data
ow analysis techniques by using Data Access Descriptors[BK89] to keep track of an approximation of the set of array elements that are de�ned, modi�ed and/orkilled by each statement. Rosene only determines which levels carry a dependence, and doesn't calculatethe dependence di�erence. Thus, his approach would be unable to handle our Example 6. His use of DataAccess Descriptors means that his techniques are approximate in situations in which our methods are exact.It should be possible to modify his tests to use integer programming constraints to de�ne sets of arrayelements, but that would involve signi�cant work beyond that described in [Ros90] (the Omega test could beused to represent array regions, but the Omega test cannot directly form the union of two sets of constraints).Rosene's techniques have not been fully implemented.Thomas Gross and Peter Steenkiste describe [GS90] methods similar to that of Rosene. Gross andSteenkiste's work is not as thorough as that of Rosene's. However, they have implemented their approach,and obtained some experience with it.Zhiyuan Li [Li92] presents a technique for determining whether or not an array is privatizable. Histechnique, like Rosene's, is based on computing approximations of the sets of array elements de�ned andused in the body of a loop. He does not calculate a dependence di�erence, and thus would also be unable tohandle our Example 6.5 Symbolic dependence analysisA data dependence may only exist if certain variables take on particular values. In Example 4, there is a
ow dependence carried by the inner loop i�9L1; L2; L10; L20 s:t: x � L1 = L10 � n ^ 1 � L2 < L20 � m ^L1 = L10 � x ^ L2 = yUsing the techniques described in [Pug92] we can determine that this is equivalent to: x = 0 ^ 1 � y <m ^ 0 � n. We could then allow the user to add assertions that would disprove the dependence. Assertionscan easily be incorporated into the dependence tests.Unfortunately, this approach doesn't work so well in practice. For most dependences, the conditions thatare produced are very boring:� conditions that are false only when the loop that carries the dependence either executes only oneiteration or doesn't execute at all (for the example above, 0 � n is false only when the outer loop haszero iterations). 11

� conditions that can be inferred from other assertions in the program.We can use the methods described in section 3 to determine the interesting conditions under which adependence exist. More technically, let p be the conditions on the symbolic variables that must be true inorder for the dependence to be interesting. At a minimum, this would include:� anything that can be inferred from analysis of the program,� user assertions, and� the fact that the loop that carries the dependence has multiple iterations.Additional things could be included, such as the fact that both the source and destination of the dependenceexecute, or whatever could be inferred from the fact that all array references are in bounds. Let q be theconditions on the symbolic variables that must be true in order for the dependence to exist. We then computegist q given p as the interesting conditions that must be true in order for the dependence to exist.Almost all dependences in the linear algebra routines and the NAS CHOLSKY routine exist conditionally(since the loops have symbolic bounds, and don't execute under certain conditions). However, the onlydependences that can be deleted by adding interesting assertions are the loop independent output andanti-dependences from line 6 to line 7 which exist only when n � 2.We can guide the user's attempts to eliminate dependences symbolically by testing all dependences inadvance, to determine whether or not symbolic elimination is possible. We compute the conditions underwhich the dependence must exist - if this condition is not simply \True", we mark the dependence to showthe user that there are conditions under which the dependence can be eliminated.What about expressions other than scalar loop-invariant variables (such as i*j or P[i]) that appearin a subscript or loop bound? In this case, we add a di�erent symbolic variable for each appearance ofthe expression. If the expression is parameterized by a set of other symbolic variables, we also introduceadditional symbolic variables for those parameters. We can now use the methods described above to ask theuser queries about the relations between these symbolic variables.In Example 5, we �rst check for an output dependence, assuming nothing about Q. This leads toan output dependence with dependence di�erence summary of (+). We next take the set of constraintsfor determining if there is a dependence and constraints that enforce the dependence di�erence, and addvariables for the index array subscripts (s1 and s2) and the index array values (Qs1 and Qs2). We set-up pand q as: p = � 1 � i1 < j1 � ns = i1 ^ s0 = j1 �q = � Qs = Qs0 	We then determine that:(gist �s;s0;Qs;Qs0 ;n(p ^ q) given �s;s0;Qs;Qs0 ;n(p)) � Qs = Qs0This would prompt us to ask the user the following:Is it the case that for all a & b such that 1 <= a < b <= n, the following never happens?Q[a] = Q[b] 12

If the user answers yes, we rule out an output dependence and add 8a&b s:t: 1 � a < b � n;Q[a] 6= Q[b]as an assertion.Checking for a
ow dependence would produce the query:Is it the case that for all a & b such that 1 <= a < b-1 <= n, the following never happens?Q[a] = Q[b]-1Instead of answering such a question directly, the user may choose to tell us more speci�cally whatproperties the array has. For example, the user might tell us that the array is strictly increasing, or is apermutation array. This has the advantage of being more natural to the user, and possibly supplying moreinformation than a yes/no answer would.By applying these techniques, we can handle a wide range of situations. These techniques apply directlyto situations where array values appear in loop bounds (such as Example 6). We handle non-linear terms(such as i*j in Example 7) as an array indexed by all the non-constant variables. In other words, a termi*j would be treated as an array Q[i; j], with the actual term substituted whenever conducting a dialoguewith the user. By adding additional algorithms that perform non-linear induction variable recognition andrecognize summations and by knowning appropriate linear constraints on summations, these techniques allowus to handle Example 8 (from program s141 of [LCD91]), which could not be handled by any compiler testedby [LCD91].5.1 Related WorkMethods for incorporating assertions about invariant scalar variables into dependence analysis algorithmsand producing queries to ask the user have been part of the compiler folklore for some time (see [HP91] for arecent discussion). However, previous work has not addressed how to ask concise questions given that someinformation is already known.Kathryn McKinley [McK90] describes how to handle index arrays in dependence analysis. Her workenumerates many typical cases and discusses how each can be handled. It is not a general purpose methodand cannot handle cases such as array values in loop bounds or complicated subscripts of index arrays.Special purpose methods may prove useful from an e�ciency viewpoint for dealing with typical, commoncases. Our goal here is to describe as general a method as possible to fall back on.6 AvailabilityAn implementation of the Omega test is freely available for anonymous ftp from ftp.cs.umd.edu in thedirectory pub/omega. The directory contains a stand-alone implementation of the Omega test, papersdescribing the Omega test, and an implementation of Michael Wolfe's tiny tool [Wol91b] augmented touse the Omega test as described in this paper.7 ConclusionsWe have shown how the Omega test can be extended and utilized to answer a wide range of questions thatprevious analysis methods could not address. The primary questions we considered are� array kills,� handling assertions and generating a dialog about the values of scalar variables, and� handling assertions and generating a dialog about array values and non-linear expressions.13

While previous methods could handle special cases of the problems considered here, our work describes muchmore general methods.Previous approaches to these problems have not been widely implemented. By taking advantage of thepower of the Omega test, we have been able to add these advanced data dependence analysis capabilities withrelatively modest implementation investment. We hope that our approach will lead to a more widespreadincorporation of these capabilities in compilers and interactive analysis tools.8 AcknowledgementsThis work is supported by NSF grant CCR-9157384 and a Packard Fellowship. Thanks to Udayan Borkarand Wayne Kelly for their help in obtaining the experimental results and their comments on the paper.Also, special thanks to Michael Wolfe for making his tiny program freely available.References[BK89] Vasanth Balasundaram and Ken Kennedy. A technique for summarizing data access and its usein parallelism enhancing transformations. In ACM SIGPLAN'89 Conference on ProgrammingLanguage Design and Implementation, pages 41{53, 1989.[Ble75] W. W. Bledsoe. A new method for proving certain presburger formulas. In Advance Papers, 4thInt. Joint Conference on Artif. Intell., Tibilisi, Georgia, U.S.S.R, 1975.[Bra88] Thomas Brandes. The importance of direct dependences for automatic parallelism. In Proc of1988 International Conference on Supercomputing, pages 407{417, July 1988.[Coo72] D. C. Cooper. Theorem proving in arithmetic with multiplication. In B. Meltzer and D. Michie,editors, Machine Intelligence 7, pages 91{99. American Elsevier, New York, 1972.[CP91] D. Y. Cheng and D. M. Pase. An evaluation of automatic and interactive parallel programmingtools. In Supercomputing '91, pages 412{423, November 1991.[DE73] G.B. Dantzig and B.C. Eaves. Fourier-Motzkin elimination and its dual. Journal of CombinatorialTheory (A), 14:288{297, 1973.[Fea91] Paul Feautrier. Data
ow analysis of array and scalar references. International Journal of ParallelProgramming, 20(1), February 1991.[GS90] Thomas Gross and Peter Steenkiste. Structured data
ow analysis for arrays and its use in anoptimizing compiler. Software { Practice and Experience, 20:133{155, February 1990.[HKK+93] M. W. Hall, T. Karvey, K. Kennedy, N. McIntosh, K.S. McKinley, J. D. Oldham, M. Paleczny,and G. Roth. Experiences using the parascope editor: an interactive parallel programming tool.In Principles and Practice of Parallel Programming, April 1993.[HP91] M. Haghighat and C. Polychronopoulos. Symbolic dependence analysis for high-performanceparallelizing compilers. In Advances In Languages And Compilers for Parallel Processing, August1991.[JM87] Farnam Jahanian and Aloysius Ka-Lau Mok. A graph-theoretic approach for timing analysis andits implementation. IEEE Transactions on Computers, C-36(8):961{975, August 1987.[KK67] G. Kreisel and J. L. Krevine. Elements of Mathematical Logic. North-Holland Pub. Co., 1967.14

[KPK90] David Klappholz, Kleanthis Psarris, and Xiangyun Kong. On the perfect accuracy of an approx-imate subscript analysis test. In Proc. of the 1990 International Conference on Supercomputing,pages 201{212, November 1990.[LCD91] David Levine, David Callahan, and Jack Dongarra. A comparative study of automatic vectorizingcompilers. Technical Report MCS-P218-0391, Argonne National Laboratory, April 1991.[Li92] Zhiyuan Li. Array privatization for parallel execution of loops. In Proc. of the 1992 InternationalConference on Supercomputing, pages 313{322, July 1992.[MAL92] Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Data dependence and data-
owanalysis of arrays. In 5th Workshop on Languages and Compilers for Parallel Computing (YaleUniversity tech. report YALEU/DCS/RR-915), pages 283{292, August 1992.[MAL93] Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Array data-
ow analysis and itsuse in array privatization. In ACM '93 Conf. on Principles of Programming Languages, January1993.[May92] Dror Eliezer Maydan. Accurate Analysis of Array References. PhD thesis, Computer SystemsLaboratory, Stanford U., September 1992.[McK90] Kathryn S. McKinley. Dependence analysis of arrays subscripted by index arrays. TechnicalReport RICE COMP TR91-162, Dept. of Computer Science, Rice University, December 1990.[Opp78] D. Oppen. A 222pn upper bound on the complexity of presburger arithmetic. Journal of Computerand System Sciences, 16(3):323{332, July 1978.[Pug91] William Pugh. Uniform techniques for loop optimization. In 1991 International Conference onSupercomputing, pages 341{352, Cologne, Germany, June 1991.[Pug92] William Pugh. The Omega test: a fast and practical integer programming algorithm for depen-dence analysis. Communications of the ACM, 8:102{114, August 1992.[Pug93] William Pugh. De�nitions of dependence distance. Letters on Programming Languages andSystems, September 1993.[PW92] William Pugh and David Wonnacott. Eliminating false data dependences using the Omega test.In SIGPLAN Conference on Programming Language Design and Implementation, pages 140{151,San Francisco, California, June 1992.[PW93] WilliamPugh and David Wonnacott. Static analysis of upper and lower bounds on dependencesand parallelism. ACM Transactions on Programming Languages and Systems, 1993. acceptedfor publication.[Rib90] Hudson Ribas. Obtaining dependence vectors for nested-loop computations. In Proc of 1990International Conference on Parallel Processing, pages II{212 { II{219, August 1990.[Ros90] Carl Rosene. Incremental Dependence Analysis. PhD thesis, Dept. of Computer Science, RiceUniversity, March 1990.[Sho77] Robert E. Shostak. On the sup-inf method for proving presburger formulas. Journal of the ACM,24(4):529{543, October 1977. 15

[SLY89] Z. Shen, Z. Li, and P. Yew. An emperical student of array subscripts and data dependences. InProc of 1989 International Conference on Parallel Processing, August 1989.[Voe92a] Valentin V. Voevodin. Mathematical Foundations of Parallel Computing. World Scienti�c Pub-lishers, 1992. World Scienti�c Series in Computer Science, vol. 33.[Voe92b] Vladimir V. Voevodin. Theory and practice of parallelism detection in sequential programs.Programming and Computer Software (Programmirovaniye), 18(3), May 1992.[Wol91a] Michael Wolfe. Experiences with data dependence abstractions. In Proc. of the 1991 InternationalConference on Supercomputing, pages 321{329, June 1991.[Wol91b] Michael Wolfe. The tiny loop restructuring research tool. In Proc of 1991 International Confer-ence on Parallel Processing, pages II{46 { II{53, 1991.[ZC91] Hans Zima and Barbara Chapman. Supercompilers for Parallel and Vector Computers. ACMPress, 1991.

16

