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(dpms)PtII hydroxo ethylene complex (2.1) undergoes ligand substitution--

intramolecular hydroxo platination with 2-butyne in water to give PtII η1-ketonyl complex 

(2.2). This neutral complex is oxidized by O2 or H2O2 to give PtIV secondary alkyl complex 

(2.4). Oxidation by O2 was found to be pH dependent. Also described here is the 

preparation of PtIV oxetane (3.2) derived from non-cyclic non-strained olefin, cis-2-butene. 

The starting complex here is the (dpms)PtII chloro cis-2-butene (3.1) which undergoes 

chloride abstraction by Ag2O to give the hydroxo analog before getting oxidized by O2 to 

PtIV oxetane. 
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Chapter 1 

Oxidation of dpmsPtII alkyl complexes with dioxygen 

Discovering the most efficient pathways toward conversion of chemical feedstock 

from mineral oil to more valuable chemicals is an important task for chemists. It is 

important that these abundant low cost molecules are not just being burnt away but 

discovered full potential of functionalization through selective oxidation. 

It was Shilov’s group who reported decades ago that catalytic oxidation of alkanes 

by a platinum(IV) complex is possible. Combining alkanes, K2[PtCl4], and H2[PtCl6] in 

aqueous solution affords oxidized alkane products as shown in equation 1.1.1 

 

The proposed mechanism is shown in equation 1.2. According to the mechanism, 

alkane activation by the PtII species gives PtII alkyl complex. Oxidation by [PtCl6]2- then 

affords PtIV alkyl complex. The electrophilicity of the PtIV alkyl intermediate allows it to 

be attack by nucleophiles such as H2O or Cl- present in the system to give the 

corresponding alcohols or alkyl chloride and back the PtII catalyst.1 
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ROH + H+

(1.2)

 

 The Shilov’s system is attractive but impractical as the oxidant used here is too 

expensive.  An ideal oxidant should not only be highly abundant but be mild enough to 

only oxidize the alkylplatinum(II) intermediate and leave the other platinum(II) salts 

untouched.2 

 Dioxygen is the best candidate in this case.3 From the four-electron reduction of O2 to 

two water molecules with a reduction potential of +1.23 V in acidic solution (Fig. 1.1), it 

can be seen that dioxygen is actually a good oxidant. The inertness of this powerful 

oxidant toward substrates, however, came from the fact that the ground state configuration 

of O2 is a triplet and the slow spin conversion step is required to give the product with a 

singlet ground state configuration.4 

 

Figure 1.1. Standard Potentials between H2O and O2 
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 The general mechanism for the oxidation of a square-planar platinum complex can be 

describe as an electrophilic attack of the oxidizing agent on the filled dZ
2 orbital of the PtII 

complex (fig. 1.2a).3 The energy of the platinum complex HOMO can be raised by either 

having a strong σ-donor group such as an alkyl group attached (fig. 1.2b) or by having an 

axial ligand with a lone pair of electrons to destabilize the filled dZ
2 orbital (fig. 1.2c).3 

 

 

Figure 1.2. Interaction of PtII complexes with dioxygen 

 Bercaw and colleagues have demonstrated that dimethylplatinum(II) complexes can be 

oxidized with O2 under mild condition to give the platinum(IV) complexes (eq.1.3). The 

neutral platinum(II) complex here features two strong σ-donors methyl groups and two 

weaker nitrogen-based (tmeda, 2,2-bipyridyl, or 1-10-phenanthroline) σ-donors groups.5  
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 A platinum(IV) complex isolated in this case is the hydroperoxy-methoxy complex 

(tmeda)Pt(OOH)(OCH3)(CH3)2. The proposed mechanism for its formation is shown in 

equation (1.4).3 Initial interaction with dioxygen produced the superoxo-PtIII followed by a 

protonation step. The ratio of the intermediate HOO-Pt(IV)-OCH3 to the final products 

depends on the ratio of O2 and dimethylplatinum(II) complex where higher concentration 

of O2 gives higher ratio of the hydroperoxo complex.3  

 

 This hydroperoxo complex is itself an oxidant for oxidizing the remaining PtII 

complex to give two equivalent of the final product (eq. 1.5).3 

 

It is not always necessary to have two strong σ-donors to undergo oxidation with O2. 

Sarneski and colleagues have demonstrated that an in situ generated species, [(bipy)Pt(η2-

tach)]2+, is oxidized under air to [(bipy)Pt(η3-tach)(OH2)]2+ (eq. 1.6).6 In this example the 

tridentate fac-chelating ligand 1,3,5-triaminocyclohexane (tach) is responsible for 

facilitating oxidation and stabilizing the platinum(IV) that forms.6 
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In achieving oxidative functionalization of mono-hydrocarbyl platinum(II) complexes 

which are the product of activation of hydrocarbons by platinum(II) species, it is necessary 

to use such ligand that will not only facilitate oxidation by dioxygen but will also allow 

further release of the functionalized product by reductive elimination reactions.7 Recently, 

a hemilabile fac-coordinating ligand, di(2-pyridyl)methanesulfonate (dpms) was developed 

by Vedernikov (fig. 1.3). This ligand has the ability of changing the coordination mode 

from dicoordinate (η2) with square plannar PtII center to tricoordinate (η3) with octahedral 

PtIV centre.8 

 

Figure 1.3. dpms ligand and its coordination modes. 

Members from our group have demonstrated the versatility of the dpms ligand. 

Varities of (dpms)PtII complexes undergo oxidation readily with O2 at room temperature to 

give the corresponding PtIV complexes. For example, monomethyl complex 
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(dpms)PtIIMe(H2O) is oxidized under O2 to give (dpms)PtIVMe(OH)2 which eliminates 

methanol upon heating in acidic solutions. (eq.1.7).9 PtII ethylene hydroxo complex, 

(dpms)PtII(CH2CH2)(OH), also undergoes oxidation under mild condition with O2 to give 

the hydroxoethyl PtIV species, (dpms)PtIV(CH2CH2OH)(OH)2 (eq.1.8).10 Reductive 

elimination of this specie affords ethylene glycol and ethylene oxide. In the case of 

(dpms)PtII with strained cyclic olefins, the oxidation gave the PtIV oxetane complexes 

which reductively eliminate the corresponding epoxides (eq.1.9).11 

 

No oxidation occurs under the same condition using dipyridylmethane (two pyridyl 

fragments bridged by a CH2 group) as the ligand for the monomethyl PtII complex.12 This 

confirms that the sulfonate group does help facilitate aerobic oxidation. On the other hand, 
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dpms-complexes without any strong donor group like [(dpms)Pt(OH2)2]+BF4- do not react 

with dioxygen.13 

It was also observed that adding a small amount of base (NaOH) helps promote 

oxidation with O2.
10

 For example, zwitterionic species such as (dpms)PtII(CH2CH2)(OH) 

isn’t reactive toward oxygen in contrast to the anionic species, 

[(dpms)PtII(CH2CH2OH)(OH)]-, resulting from the attack of OH- at the coordinated 

ethylene. Not surprising if one considers higher in energy HOMO of the more electron rich 

complexes making them more reactive. The overall rate of oxidation, however, slows 

down as the amount of base increases. From these facts, general mechanism of oxidation 

of the (dpms)PtII type was proposed (Scheme 1.1).10  

Scheme 1.1 

 

Oxidation is initiated by converting neutral species to more reactive anionic species 

by base. Followed by reversible attack of the dioxygen at the PtII center to give the PtIII-

superoxo intermediate, similar to what proposed by Bercaw. Next step is the slow proton-

coupled electron transfer producing the PtIV-hydroperoxo complex. As also observed by 
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Bercaw, one mole PtIV-hydroperoxo specie can oxidize another PtII specie to give two mole 

of the final product.10 

    Here we describe the new chemistry of hydrocarbyl dpms-platinum(II) complexes  

and their oxidation with dioxygen. Transformation of 2-butyne are described in chapter 2. 

Oxidation of the resulting complex with oxygen or hydrogen peroxide is also 

demonstrated. We also describe the preparation of a platinum(IV) oxetane complex derived 

from an acyclic olefin, cis-2-butene, in chapter 3. Also described are preliminary results of 

reductive elimination of the platinum(IV) oxetane to form cis-2,3-dimethyloxirane. 
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Chapter 2 

As mentioned in chapter 1, the formation of platina(II)oxetanes from coordinated 

cyclic olefin to (dpms)PtII(OH) complexes has already been established by our group (eq. 

1.9). Here we want to know what happens to the alkynes coordinated to (dpms)PtII center. 

Will it produce metalla-oxetenes or something else (eq. 2.1)? We use here the symmetrical 

species, 2-butyne, to study the reactivity of alkynes. 

 

The metal-alkyne bond can generally be described by Dewar-Chatt-Duncanson model 

(Fig 2.1).14 A σ-type donation is from alkyne π-electrons to the metal dσ orbital. Electron 

rich metal specie also provide significant amount of electron density to the LUMO of an 

alkyne via π-back donation. An alkyne is different from an alkene in that it can act as 4-

electron donor. The available orthogonal π-bond of alkyne can provide another two 

electrons to an empty dπ orbital of the metal in the π-fashioned donation. In the complex 

where σ-donation is dominant, an effective positive charge is left on the alkyne making it 

susceptible for nucleophillic attack.15, 16 
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Metal empty d orbital alkyne electrons Metal d electrons alkyne * orbitals

Metal empty d orbital alkyne electrons  

Figure 2.1. The coordination model of alkynes to metal center. 

Alkynes coordinated to an electrophilic metal usually undergo hydration in water to 

give ketones. A classic example is the mercury(II)-catalyzed hydration of alkynes which 

has been known for decades (eq 2.2).17 

 

Hydration of alkynes coordinated to a metal center proceeds through enol-keto 

tautomers at the metal-carbon bond.18 Both metal-keto and metal-enol form have been 

isolated. Ogo and collegues have demonstrated that an Ir-aqua complex 

[IrIIICp*(bpy)(OH2)]2+ under acidic condition catalyzes the transformation of tetrolic acid 

ethyl ester to ethyl acetoacetate (scheme 2.1). By adjusting the conditions they were also 

able to isolate both the keto and enol intermediate. From the crystal structure of the enol 

intermediate obtained, Ogo proposed the initial formation of π-complex by the syn addition 
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of the H2O ligand to the triple bond (1). Subsequent tautomeric transformation affords the 

keto-intermediate (3) which releases the organic product upon protonolysis of M-C bond 

(4).18 

Scheme 2.1 

 

There are only few examples of Pt-mediated functionalization of alkynes. 

Matsumoto has shown an example of activation of alkynes with a PtIII dinuclear complex 

(eq. 2.3).19,20,21 The complex reacts with alkynes in water to give ketonyl-PtIII complexes. 

The intermediate with a π-coordinated alkyne could not be observed. The authors proposed 

that coordination of the alkyne triple bond to the N2O2-coordinated PtIII occurs initially, 

followed by the attack of water.21 
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The resulting ketonyl-PtIII complex reacts with various nucleophiles such as 

amines, halides and hydroxides at the alkyl-Platinum(III) position to give various 

functionalized ketones (eq. 2.4).20, 21 

 

 

Results and Disscusion 

Reactions of dpmsPtII with 2-Butyne 

We attempted initially to attach dpms to the 2-butyne Zeise’s salt analog [K(18-

Crown-6)][PtCl3(2-butyne)], prepared according to a published procedure.22 However, the 

butyne complex decomposed in water (cloudy black solution with complex NMR spectra) 

which is the usual solvent used in our dpms substitution reaction (eq. 2.5).  



13 
 

 

Olefin substitution by 2-butyne occurs readily with (dpms)PtII hydroxo ethylene 

complex 2.1 prepared according to the literature.10 The reaction takes less than an hour to 

complete with an excess of 2-butyne in water to give PtII alkyl η1-ketonyl complexes 2.2 

(eq.2.6). When the reaction was conducted in H2O, the 1H NMR spectrum of the reaction 

mixture with H2O peak suppression shows a doublet (3H, 0.97 ppm), a singlet (3H, 2.22 

ppm), and a quartet (1H, 3.96 ppm, J195PtH = 110 Hz) (fig. 2.2). A duplicated set of similar 

peaks also appears with smaller ratio (2.5:1), suggesting the presence of two isomeric 

products. When the reaction was set up in D2O the doublet at 0.97 ppm appears as a singlet 

and the quartet at 3.96 ppm no longer showed up. It was presumed that intramolecular 

hydration occurs where solvent is the source of a proton and the resulting product is the 

keto form of the tautomerized PtIIenol complex (Scheme 2.2).   
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Figure 2.2. 1H NMR spectrum of a reaction mixture containing complex 2.2. The ligand’s 
hydrogens are not shown. 

Complex 2.2 was also characterized by 13C NMR and ESI-MS.  13C NMR showed the 

carbonyl carbon at 222.6 ppm, the methyl ketone carbon at 29.5 ppm. ESI-MS of the 

product’s solution showed a peak at m/z 516.1 corresponding to 2.2*H+ 

The formation of 2.2 can be explained this way: 2-butyne substitutes ethylene 

readily as it’s a better ligand.14 An intramolecular nucleophillic attack at the coordinated 

triple bond follows as shown in Scheme 2.2. The mechanism is similar to the 
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intermolecular hydration of alkyne proposed by the Ogo group using IrIII aqua complex in 

water (scheme 2.1).18 

 

Oxidation of 2.2 with H2O2 

Oxidation of 2.2 with 1 equivalent of hydrogen peroxide occurs readily at room 

temperature (eq. 2.7). The starting material 2.2 is consumed within an hour which gave rise 

to two isomeric intermediates assigned as 2.3. The methyl groups of the intermediates 

show up as doublets at 0.56 and 0.59 ppm (3H) and two singlets at 2.13 and 2.15 ppm (3H) 

(fig. 2.3). It is noteworthy that the solution at this point turns basic (by pH paper). These 

peaks disappear over time while a doublet with distinct platinum satellites rises (-0.12 

ppm, 3H, J195PtH = 50.0Hz) along with a singlet (2.29 ppm, 3H) assign as 2.4 (fig. 2.4). The 

Pt-CH resonance appears as a quartet at 5.18 ppm (1H, J195PtH = 114Hz). 13C NMR of 2.4 

shows the carbonyl carbon resonance at 215.1 ppm.  
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Figure 2.3. 1H NMR spectrum of 2.2 after treatment with H2O2 for one hour. Only the 
methyl group hydrogens are shown and labeled. 



17 
 

 

Figure 2.4. 1H NMR spectrum of 2.2 after treatment with H2O2 for twenty hours.  The 

dpms ligand hydrogens are not shown. 

 

Oxidation of 2.2 with O2 

Oxidation of complex 2.2 with O2 was found to be pH dependent. Best condition is 

a slightly acidic solution, with the pH ~ 6-6.5 (table 2.1). Oxidation was complete in three 

days at 1 atm of O2. The fact that oxidation is slow compared to oxidation of other 

(dpms)PtII monoalkyl hydroxo complexes suggests that complex 2.2 isn’t very electron 
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rich. This is because the alkyl group in the complex 2.2 bears an electron-withdrawing β-

oxo group (scheme 1.1). 

Table 2.1. Oxidation of 2.2 to 2.4 by Oxygen at different pH 

pH NMR %yield (20 hrs) 
4.23 4.3 
5.97 29.1 (82.6)a 
6.48 30.3 
7.01 20.1 
7.54 12.5 
8.10 5.3 
9.58 1.7 

                                                 a. after three days, %yield 

Conclusion 

Here we showed that (dpms)PtII alkyne undergoes a usual for alkynes hydration 

reaction in water. The η1-ketonyl complex that forms is able to react with dioxygen to give 

PtIV secondary alkyl complex. Reductive elimination has yet to be studied on this complex. 

Considering the alkyl complex (dpms)PtIVMe(OH)2 which eliminates methanol upon 

heating it in acidic solutions (eq. 1.7), complex 2.4 should have similar reactivity and 

eliminate 3-hydroxy-2-butanone under similar condition. What also should be done next is 

to study the reactions with different alkynes to establish the reaction substrate scope and its 

selectivity. 
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Experimental Procedures 

Synthesis of Complex 2.2 

To (dpms)PtII(CH2CH2)OH (217.1 mg) in 10 ml degassed H2O was added 2-butyne (200 

µl) and the mixture was stirred for one hour under open air (do not stopper the flask). 

Initial yellow solution turns brownish with some brownish-black precipitate. Through a 

micro-glass syringe, 10 µl of 1,4-dioxane was then added as an internal standard. Solvent 

suppression NMR with internal standard shows quantitative yield of two isomers of 2.2. 

The solution is then centrifuged for 20 minutes at 10000 rpm. A yellow-brownish solution 

was then carefully separated from the precipitate using a plastic syringe connected to a 

small needle. The pH of the resulting solution is around 4.2, measured by a pH meter. The 

solution was adjusted to final volume of 10 ml before dividing to samples of equal volume 

(1 ml each). According to 1H NMR, each of this solution contains 0.0047 mmol of 

complex 2.2. These solutions were immediately used in subsequent oxidation by H2O2 and 

O2 at different pH. 

1H NMR (50% D2O v/v), major isomer, δ: 0.97 (d, J=6.5 Hz, 3H), 2.22 (s, 3H), 3.96 (q, 

J195PtH =110Hz, J=6.3 Hz, 1H), 6.05 (s 1H), 7.43 (t, J=6.5 Hz, 1H), 7.62 (t, J=6.5, 1H), 

7.81 (d, J=7.6 Hz 1H), 7.90 (d, J=7.7 Hz 1H), 8.12 (m, 2H), 8.70 (d, J=5.9 Hz, 2H). Minor 

isomer, δ: 0.92 (d, J=6.53 Hz, 3H), 2.15 (s, 3H), 3.84 (q, J=6.2 Hz, 1H), the pyridyls 

signals overlap with the major isomer. 13C NMR (50% D2O v/v, with dioxane), Major 

isomer, δ: 15.8, 29.5, 30.2, 76.3, 126.4, 127.1, 129.1, 130.4, 140.4, 140.8, 149.2, 150.5, 
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153.0, 155.2, 222.6. Minor isomer, peaks are too ambiguous to tell. ESI-MS: m/z = 516.09 

(calculated for H+ = 516.0557). 

Oxidation of Complex 2.2 by H2O2. 

A solution containing 0.0047 mmol of complex 2.2 in 1 ml H2O from the previous step 

(Synthesis of Complex 2.2) was use immediately. The solution was added one equivalent 

of H2O2 (5 µl) and stirred for 20 hours. NMR yield calculated using the internal standard is 

75.5% based on 2.2 

1H NMR (50% D2O v/v), δ: -0.12 (d, J195PtH =50.0Hz J=6.7 Hz, 3H), 2.29 (s, 3H), 5.18 (q, 

J195PtH =114Hz, J=7.0 Hz, 1H), 6.60 (s 1H), 7.92 (m, 2H), 8.11 (d, J=7.5,1H), 8.15 (d, 

J=7.8 Hz 1H), 8.39 (m, 2H), 8.70 (d, J=5.8 Hz, 1H), 8.85 (d, J=5.8 Hz, 1H). 13C NMR 

(50% D2O v/v, with dioxane), δ: 17.0, 32.5, 40.6, 73.8, 128.4, 128.9, 129.8, 130.1, 144.2, 

144.4, 148.8, 149.4, 149.7, 150.8, 215.1. 

Oxidation of Complex 2.2 by O2 at different pH. 

Solutions containing 0.0047 mmol of complex 2.2 in 1 ml H2O from the previous step 

(Synthesis of Complex 2.2) was use immediately.  Each of the sample (0.0047 mmol/ml) 

was adjusted to different pH according to Table 1 with 0.1 N NaOH. The pH was 

measured using a pH meter. Each reaction vial, equipped with a stir bar was then filled 

with O2 and stirred vigorously for 20 hours before an NMR spectrum. The reaction mixture 

with the optimum pH (5.97) was filled with O2 again and stirred till completion (70 hrs). 

The final product gave identical 1H NMR spectrum compared to the product from the 

oxidation of 2.2 with H2O2. 
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Chapter 3 

Metalla-oxetanes are the products that are usually proposed in the oxidation of 

olefins.23 For example, Sharpless proposed that epoxides form in a reaction of CrO2Cl2 and 

olefins are via metallaoxetane intermediates (eq. 3.1).24 

 

Examples of isolated metallaoxetanes and corresponding reductive elimination to form 

epoxides are rare. Only recently that a metallaoxetane derived from norbornene has been 

isolated. Cinellu reported that gold(III) oxo-complexes react with norbornene to give 

aura(III)oxetane which can form an epoxide and mixture of aldehydes and alcohol as the 

organic products (eq. 3.2).25 
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Epoxides with electron withdrawing groups such as tetracyanoethylene oxide 

oxidatively add to the Pt(0) center to give PtII oxetanes. The proposed mechanism is an 

initial attack of Pt(0) center at the electrophillic carbon to produce a non-cyclic 

intermediate which upon cyclization gives the PtII oxetane (eq. 3.3).26 

 

Our group have also recently demonstrated that PtIV oxetanes of cyclic strained 

alkenes such as cis-cyclooctene and norbornene can be prepared by ligand substitution 

reaction followed by oxidation with O2.  Olefin substitution occurs readily with the 

(dpms)PtII (η2-CH2CH2)OH 2.1 to give the corresponding olefins hydroxo PtII complexes 

(eq. 3.4).11 

 

In the presence of a base, intramolecular nucleophillic attack at the sp2 carbon is 

driven forward leading to anionic species, capable of reacting with dioxygen. Here again a 

large amount of base can interfere with the proton transfer step as mentioned in chapter 

one (eq. 3.5).10 
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Here we set our goal in preparing a PtIV oxetane from a non-cyclic olefin. We use the 

symmetrical cis-2-butene for this study. 

Results and Disscission 

Ligand substitution between the complex (dpms)PtII (η2-CH2CH2)OH 2.1 with cis-

2-butene did not occur. Not so surprising since ethylene is a better ligand than cis-2-

butene. Julia Khusnutdinova has reported before in her dissertation that the allyl complex 

(dpms)Pt(η3-C3H5) can be prepared from PtII chloro propylene complex by substitution of 

the chloride ligand with the hydroxo group by adding 1 equivalent of NaOH. However, 

using the same procedure with (dpms)PtII chloro cis-2-butene complex 3.1 cause mainly 

decomposition due to loss of 2-butene.27 

To selectively abstract chloride ligand from 3.1 we used Ag2O. We initially studied 

the reaction with excess Ag2O under O2 or argon (eq.3.6). When complex 3.1 was stirred 

with 10 equivalent of Ag2O in H2O under air or argon for 24 hrs, a new pair of doublets 
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appears at 0.52 and 1.14 ppm. An ESI-MS spectroscopy shows a peak at m/z 534.16 

corresponding to the complex tentatively assigned as 3.2*H+. Since the same oxidized 

product is obtain under the presence or absence of O2, our initial assumption is that Ag2O is 

responsible for oxidixing the PtII to PtIVspecies. 

PtN
N

Cl
O-

 excess Ag2O, H2O
air or argon PtN

N
O

O

OH

CH3
CH3

H
H

3.1 3.2

(3.6)
(A)

(B)

(C)(D)

 

The complex could be extracted from the dried sample in a purer form by CH2Cl2. 

It was characterized by 1H, 13C NMR, NOE and ESI-MS as PtIV oxetane 3.2. Yield is about 

25% for this new complex by 1H NMR. Note that loss of 2-butene, although not evident by 

1H NMR, could be detected by its odor from the reaction flask during the reaction. Proton 

NMR of an isolated sample also shows a multiplet of one hydrogen at 3.25 ppm for the Pt-

CH with J195PtH = 74.7 Hz, and another multiplet of the OCH group hydrogen at 4.91 ppm 

(fig. 3.1).  

When one equivalent of Ag2O under argon was used we expected the hydroxy 

analog of 3.1. The resonances of two methyl group of coordinated 2-butene in 3.1 appears 

as a doublet at 1.83 ppm. After the reaction ceased, this resonance is about 33% compare 

to the product which gives rise to two doublets (1.28 ppm, 3H, JHH = 5.9 Hz, 1.90 ppm, 

3H, JHH = 5.4 Hz), one for each methyl group. This new product is either the corresponding 

PtII hydroxo olefin or the neutral PtII oxetane complex. No oxidized complex 3.2, was 
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detected. Adding 0.25 equivalent of NaOH to the solution (Ag compounds removed) and 

stirring under oxygen affords 3.2. 

 

Figure 3.1. 1H NMR spectrum of 3.2 
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Preliminary result on reductive elimination of 3.2 

It is known that (dpms)PtIVoxetanes derived from cyclic olefins eliminate corresponding 

epoxides upon heating in dmso (eq.1.9). When 3.2 was heated in dmso at ~78°C, 1H NMR 

shows complete disappearance of peaks that belongs to 3.2 in 2 hours. Instead a new 

doublet and a doublet of quartets appeared at 1.17 and 2.67 ppm respectively (fig. 3.2). 

According to the previously reported data for cis and trans-2,3-dimethyl oxiranes,28 the 

product obtained is the cis-isomer. The trans isomer should give rise to a quartet for the 

oxirane hydrogens instead of an octet like shape due to virtually no coupling between these 

oxirane hydrogens.28 The NMR yield for cis-2,3-dimethyl oxiranes is about 42% by 

interrgration against the solvent. 

 
Figure 3.2. Resonances corresponding to cis-2,3-dimethyl oxiranes formed after heating 
3.2 for 2 hours in dmso-d6 
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Conclusion 

We have found the pathway towards PtIV oxetane derived from an a cyclic non-

strained olefin by preparing 3.2. It is yet to be establish which isomer of 3.2 predominates. 

Ag2O, when used is excess, oxidizes PtII to PtIV complex. Although, ring strain isn’t part of 

the driving force here in forming the PtIV oxetane, complex 3.2 was stable enough to be 

isolated.  

Experimental Procedures 

Synthesis of 3.2, with excess Ag2O 

A NMR scale reaction can be set up by mixing 3.1, 10.2 mg, with 21.6 mg Ag2O (10 eqv.) 

and 1 ml D2O. The mixture was stirred vigorously for 24 hours under air. Through a 

micro-syringe, 1µl of 1,4-dioxane was then added to the solution as an internal standard. 

The soluion was then centrifuged and carefully seperated from excess Ag2O before taking 

1H NMR. Yield by 1H NMR is about 22% by intergrating any of the methyl group peaks 

against the internal standard. When stirred under argon for 24 hours, yield by 1H NMR is 

about 16%. For large scale set up, moderate purity of 3.2 could be obtained by the 

following work-up procedure: centrifuge the reaction mixture to separate dark brown 

solution from excess Ag2O. Solvent was then evaporated under vacuum to give shiny black 

solid. CH2Cl2 was then used to extract out 3.2 (10ml X 3), giving pale yellow solution after 

filtering through celite. CH2Cl2 was then evaporated to obtain 3.2 as a yellow solid. 

Isolated yield has not been dertermined. 
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Synthesis of 3.2, with 1 equivalent Ag2O, and O2 

452.6 mg of 3.1 was stirred with 0.1027 g Ag2O and 15 ml H2O under argon for 24 hours. 

The mixture was then centrifuged to obtain pale yellow solution. 0.25 eqv. NaOH (212.5 µl 

of 0.1N NaOH solution) was added dropwise while stirring under air. A balloon filled with 

oxygen was then attached to the flask and continue to stir for another 4 hrs. Solvent was 

then evaporate under vacuum and CH2Cl2 was then used to extract 3.2 (10ml X 3) before 

filtering through celite to give pale yellow solution. This procedure has not been optimized 

yet. Isolated yield of 3.2 is 8.4% based on 3.1. 

1H NMR (D2O, 22⁰C), δ: 0.52 (d, J= 6.54 Hz, 3H), 1.14 (d, J= 6.18 Hz, 3H), 3.25 (m, 

J195PtH = 74.7 Hz, 1H), 4.91 (m, 1H), 6.61 (s 1H), 7.79 (t, J= 6.85 Hz, 1H), 7.86 (t, J= 7.09 

Hz, 1H), 8.02 (dd, J= 9.69, 7.92 Hz, 2H), 8.24 (m, 2H), 8.63 (d, J= 5.46 Hz 1H), 8.79 (d, 

J= 4.83 Hz 1H). 13C NMR (D2O, 22⁰C, with dioxane), δ: 17.5, 21.3, 25.9, 71.7, 91.6, 

128.1, 128.4, 128.7, 129.5, 142.9, 144.0, 148.3, 148.9, 151.2. ESI-MS: m/z = 534.16 

(calculate for 3.2*H+= 534.06623). 

Selective 1D-difference NOE experiment (D2O) for 3.2 

In 1D-difference NOE experiment, NOE was observed 

between Hb and one of the pyridine ortho hydrogen of the 

dpms ligand, He. Irradiation of a resonance at 3.25 ppm 

showed positive NOE of a doublet at 8.63 ppm (2.1%). The 

mixing time was 0.4s and delay time was 4s.  

Pt O
N
N

H
O

OH

S
O O

He Hb H

CH3
CH3

2.1%
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Reductive Elimination of cis-2,3-dimethyl oxiranes from 3.2 

About 20 mg of 3.2 was added dmso-d6 (1ml) in a dried glovebox filled with argon 

atmosphere. The yellow solution was added to a J.Young NMR tube and tightly sealed 

with a screw cap. The solution was heated at ~78°C for 2 hours. The solution turns brown 

with formation of pale brown precipitate. The NMR tube was then shaken and, to avoid 

observing broad spectrums, precipitate was let settled down in the NMR tube for one hour 

before taking 1H NMR. 

Initial 1H NMR (DMSO, 22⁰C) δ: 0.45 (d, J= 6.39 Hz, 3H), 1.01 (d, J= 5.92 Hz, 3H), 1.95 

(s, 1H) 2.82 (m, J195PtH = 80.4 Hz, 1H), 4.59 (m, 1H), 6.71 (s 1H), 7.75 (t, 1H), 7.80 (t, 1H) 

8.00 (d, 2H), 8.21 (q, 2H), 8.61 (d, J= 5.04 Hz 1H), 8.78 (d, J= 4.94 Hz 1H). 

Final 1H NMR (DMSO, 22⁰C) δ: 1.18 (vd, J= 4.79 Hz, 6H) 2.67 (m, 2H). The aromatic 

region was too ambiguous to characterize. 
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