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Missing data is a pervasive problem in the analysis of many clinical trials.  In order 

for the analysis of a study to produce unbiased estimators, the missing data problem 

must be addressed.  First, the missing data pattern must be established; second, the 

missingness mechanism must be determined; and third, the most appropriate 

imputation method for imputing the missing values must be found.  The purpose of 

this paper is to explore the imputation methods best suited for the missing data from 

the Diet and Exercise for Elevated Risk Trial (DEER) in a secondary analysis of the 

data.  The missingness pattern in the data set is arbitrary and the missingness 

mechanism is MAR.  A simulation study suggests that the two best methods for 

imputation are subject-specific mean imputation and multiple imputation.  I conclude 

that mean imputation is the best method for handling missing data in the DEER data 

set. 
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Chapter 1: Introduction 

Missing data can create problems in statistical analyses for multiple reasons.  

A major problem is that many statistical procedures depend on complete-case 

methods of analysis (Allison, 2002; Rubin, 1987).  In other words, standard statistical 

programs require any case being analyzed have a value for every variable in the 

analysis.  Such programs eliminate from analysis any case that contains one or more 

missing value(s) for any variable of interest, continuing the analysis as though the 

remaining cases are the complete data set.  Inadvertent deletion of cases on the part of 

the analyst and/or statistical program can lead to two possibly serious problems: non-

response bias and reduced analytic power.  Both biased and inefficient (reduced 

analytic power) answers are unreliable (Schafer & Graham, 2002). 

 Non-response bias occurs when a subset of respondents who fail to answer a 

particular question, creating missing data, differ in important ways from the subset of 

respondents who provide the answer (Barnard & Meng, 1999).  Potential differences 

between the two subsets of respondents can cause a bias, or systematic pattern, that 

characterizes the missing data.  The analyst may never know the reason, or reasons, 

behind the non-response, but simple tests using dummy variables can be conducted to 

explore for potential differences between the groups. 

 Compromised analytic power is a function of the percentage of missing 

information (Allison, 2002; Heitjan, 1997).  Incomplete data on only one variable of 

interest can render a case completely useless in multivariate analysis. Thus a 

significant proportion of the original sample can be lost in analysis.  Such elimination 
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resulting in a smaller sample not only reduces the analytic power of the study, but it 

can also introduce systematic selection bias. 

 1.1. Types of Non-Response 

 There are two types of non-response that create missing data: item non-

response and unit non-response (Rubin, 1987).  Item non-response occurs when a 

respondent fails to answer a particular item or items in a survey.  Unit non-response 

occurs when a respondent fails to answer any items on a survey.  The distinction 

between item and unit non-response is important for determining approaches to 

handling missing data. 

1.2. Patterns of Non-Response 

 There are three patterns of non-response that are most easily understood in the 

following figure (Schafer & Graham, 2002).   

 X1 X2 … Xp Y  Y1 Y2 … Yp  Y1 Y2 … Yp 

1                        ?   

2                          

.                    ?     

.                        ? 

.                      ?    

.                      ? 

.                    ?    

.                 ?     

N                       ?   

                

 (a)      (b)     (c)    

Figure 1. Patterns of Non-Response 
(a) univariate non-response; (b) monotone non-response; (c) arbitrary non-response.  
Missing data represented by shaded squares. Adapted from Little & Rubin, 1989. 
 

Univariate non-response, Figure 1a, occurs when a single variable, Y, has missing 

values but all other variables are completely observed.  Y can also represent a subset 
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of variables that are entirely observed or entirely missing for each case.  Monotone 

non-response, Figure 1b, has items or groups of items Y1 through Yp that can be 

ordered so that if Yj is missing for a case, Yj+1 through Yp are also missing.  Finally, 

arbitrary non-response, Figure 1c, occurs when any variable(s) is missing for any 

case(s).  Arbitrary missingness creates complications in modeling, estimation, and 

imputation analyses (Rubin, 1987). 

 1.3. Describing Missing Data 

 Appropriately handling missing data requires that the missingness mechanism 

be identified.  Data can be missing in three ways: missing completely at random 

(MCAR), missing at random (MAR), or missing not at random (MNAR) (Schafer & 

Graham, 2002).  In order to describe the missingness mechanism using a generic 

notation, let Ycom represent the complete data set, Yobs represent the observed data set 

(the subset used in analysis), and Ymiss represent the missing cases data set (Rubin, 

1976).  Therefore,  

Ycom = (Yobs, Ymiss). 

Equation 1. Complete data set 

Responses are said to be MCAR when the distribution of missingness does not 

depend on Ymiss or Yobs, such that, 

P(R| Ycom) = P(R), 

Equation 2. MCAR 

where R represents missingness.  In other words, a participant’s nonresponse does not 

depend on his or her own values for the observed or missing variables.  MAR occurs 

when the distribution of missingness depends on Yobs , but not Ymiss, 

P(R| Ycom) = P(R| Yobs). 
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Equation 3. MAR 

In other words, a participant’s nonresponse may depend on his or her own values for 

the observed variables, but not the missing variables.  MAR is also called ignorable 

nonresponse.  When missingness depends on Ymiss as well as Yobs, 

P(R| Ycom) = P(R| Yobs, Ymiss) 

Equation 4. MNAR 

then the data is said to be MNAR  In other words, the probability of a participant 

missing values depends on the missing variables. MNAR represents nonignorable 

nonresponse.  The definitions of missing data, MCAR, MAR, and MNAR, only 

describe the relationships between data and missingness: they are not causal.   

 Given the three missingness mechanisms, the implications for analysis are 

different (Schafer & Graham, 2002).  Statistical methods for complete-case analysis 

(Ycom) are generally motivated by the assumption that the data are sampled from a 

population distribution P(Ycom; θ), where θ represents unknown parameters.  The 

distribution, P(Ycom; θ), can be interpreted in two ways: (1) as a  description of the 

probability of obtaining a particular data set among all possible data sets that could 

occur over a hypothetical number of samplings and data collections or (2) as the 

likelihood function for θ.  When a data set has missing data, simply basing all 

statistical analyses on P(Yobs; θ) and  thus discounting the missing data in the 

distribution of the observed is easily accomplished.  The resultant distribution is the 

definite integral:  

P(Yobs; θ) = ∫ P(Ycom; θ)d Ymiss. 

Equation 5. Missing data distribution 



 

 5 
 

However, construction of the P(Yobs; θ) distribution in this manner does not 

necessarily yield either a correct sampling distribution or likelihood function (Rubin 

1976).  For the observed sampling distribution to accurately represent the population, 

the missing data must be MCAR.  For the observed likelihood function to accurately 

represent the population, the missing data need only be MAR.  Based on Rubin’s two 

conditions, the weaker condition, that missing data need only be MAR, implies that 

statistical procedures based on likelihood functions are more functional than those 

based solely on repeated-sampling arguments.  Such procedures are better suited to 

handle real-world situations in which MCAR is usually violated and should, 

therefore, produce more representational and reliable results (Schafer & Graham, 

2002). 

 Equation 5 is also suited to models where the missing values are out of the 

scope of the universe of interest.  In other words, the missing data are not actually 

missing.  This usually occurs in questionnaire surveys (a person with no children 

leaves blank a question that asks, “How often do you see your children?”) and 

longitudinal studies (participants may die in studies whose outcomes do not include 

death, ie. cognitive function).  In these cases, the hypothetical missing data can be 

treated as MAR. 

 Equation 5 cannot be used to define a probability distribution with correct 

sampling distribution or likelihood function when data is MNAR.  In such cases, a 

joint probability distribution must be calculated that includes the explicit model for 

missingness, P(R| Ycom; ξ) where ξ stands for the unknown parameters of the 
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missingness distribution.  Thus, the joint probability distribution is the product of P(R| 

Ycom; ξ) and P(Ycom; θ) and the correct likelihood function is: 

P(Yobs, R; θ, ξ) = ∫ P(R| Ycom; ξ) P(Ycom; θ)d Ymiss. 

Equation 6. Likelihood Function 

In general, the missingess model is a nuisance because the real questions of interest 

are usually about the distribution of Ycom, not R.  However, Equation 6 can offer more 

and differing information about θ than Equation 5.  As a final note, it is impossible to 

differentiate between MNAR and MAR, only MCAR can be reliably detected 

(McKnight, et al., 2007).  Because of the inability to distinguish between MNAR and 

MAR, decisions regarding further analyses can only be based on sensible logic. 
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Chapter 2: Methods 

2.1. DEER 

 The Diet and Exercise for Elevated Risk Trial (DEER) was a year-long, 

randomized controlled trial conducted at the Stanford Medical School’s Center for 

Research in Disease Prevention (Stefanick, et al., 1998).  The trial began in 1992 with 

the recruitment of 197 men and 180 women into the final cohort.  The original 

objective of DEER was to analyze the effects of (1) low-fat diet, (2) exercise, or (3) 

low-fat diet plus exercise on lipoprotein levels in individuals at high risk for 

cardiovascular disease.  The three intervention groups were compared to a control 

group.  The original analysis stratified by gender because of the differing inclusion 

and exclusion criteria for men and women.   

This paper is a secondary data analysis of the DEER data set with respect to 

handling missing data in the ascertaining of the effects of diet, exercise, or diet plus 

exercise on the change of C-reactive protein (CRP) from baseline to follow-up.  The 

analysis will focus only on the female subject subset because the female subset has a 

higher percentage of missing data (~26% missing for women versus ~22% missing 

for men) and because there were no significant between and within group differences 

for the male subset. 

 Women were recruited from the Palo Alto, California area.  Inclusion criteria 

included: postmenopausal, 45-64 years of age, BMI ≤ 32 kg m-2, LDL 126-209 mg 

dL-1, HDL < 60 mg dL-1, blood pressure under 160/95 mmHg, fasting glucose below 

140 mg dL-1, triglycerides less than 500 mg dL-1, and a normal maximal exercise 

treadmill test.  Exclusion criteria included: history of a life-threatening disease (ie. 
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stroke, cancer, heart disease), heavy smokers (>9 cigarettes per day), heavy drinkers 

(>4 alcoholic drinks per day), inability to engage in moderate-intensity physical 

activity, or taking medications for blood pressure, heart problems, or to lower 

cholesterol. 

 A secondary data analysis of the DEER data set was conducted by Camhi 

(2008).    A component of Camhi’s research examined the relationship between 

intervention group (diet, exercise, diet plus exercise, control) and the change in CRP 

levels from baseline to follow-up.  All of the subjects with a baseline or follow-up 

CRP level greater than ten were removed from the analysis (n = 5), so the sample size 

for the Camhi analysis was n = 175.  A CRP level greater than ten indicates an acute 

infection, which is not relevant to the study and can bias the results.  Camhi used 

ANCOVA to determine the between and within group differences in Change in CRP 

(follow-up CRP minus baseline CRP) in a complete-case analysis (n = 130).  A total 

of 45 cases were deleted due to missing data (see Table 1 in Section 2.1.2 for the 

number of cases missing values for the variables of interest). 

 This paper also examines between and within group differences for Change in 

CRP from baseline to follow-up.  In a simulation study, the imputed values for 

Change in CRP are compared with the true values for Change in CRP.  The 

imputation methods are last observation carried forward, last observation carried 

backward, mean imputation, and multiple imputation. The imputation methods are 

described in Section 2.3.  The most accurate and least biased imputation methods will 

then be applied to the DEER data set.  The final comparison is between the complete 

case model of the DEER data set and the DEER data sets with imputed data. 
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  2.1.1. Variables of Interest 

 The analysis controlled for baseline CRP, cohort, baseline body fat 

percentage, change in body fat, cigarettes per day, alcoholic drinks per day, age, and 

hormone replacement therapy.  Change in body fat was included in the analysis in 

order to eliminate its effect on CRP.  All baseline measurements were taken prior to 

randomization.  All follow-up measurements were taken after one year intervention.  

The following variables are used in the analysis. 

CRP (baseline and follow-up):  measured from stored plasma samples using 

immunoturbidimetric assay on the Hitachi 917 analyzer (Roche Diagnostics – 

Indianapolis, IN) with reagents and calibrators from DiaSorin (Stillwater, MN); used 

to compute the dependent variable, Change in CRP. 

Intervention status:  participants were randomized using the Efron procedure into one 

of four categories. 

• Control: Participants were asked to make no changes to their current lifestyle 

practices over the intervention period. 

• Low-fat Diet: Participants were asked to meet the 1993 Step II dietary 

guidelines of the National Cholesterol Education Program (total fat < 30% of 

total calories, total saturated fat < 7% of total calories, dietary cholesterol < 

200 mg day-1).   

• Exercise: After an initial six week period of one hour aerobics instruction 

three times a week, participants were asked to perform 20 minutes at 60-85% 

maximum heart rate three times a week with increased duration over the study 
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period to 45-60 minutes.  If participants were already active, they were asked 

to increase the duration of their activity by 20 minutes. 

• Low-fat Diet plus Exercise: Participants received both the low-fat diet and 

exercise interventions (separately from the other two groups). 

Body fat skinfold (baseline and follow-up): measurements from the right triceps, 

suprailiac, and thigh were averaged. 

Cohort: recruitment cohort. 

Age: age at the time intervention began. 

Cigarettes per day: a self-report baseline measurement of the average number of 

cigarettes smoked per day. 

Alcoholic drinks per day: a self-report baseline measurement of the average number 

of alcoholic drinks consumed per day. 

Hormone replacement therapy: a binary, self-report baseline measurement of active 

hormone replacement therapy (Note: randomized women agreed not to change their 

use of hormone replacement therapy for the intervention period). 

  2.1.2. Missing Values 

As reported in Table 1, all but one of the variables used in the analysis have 

missing data.  The total number of observations removed from analysis due to 

missing data is 45, which results in approximately a 26 percent reduction in sample 

size (n = 130). 

Table 1. Missing data in DEER data set 

Variable Number of Missing 
Observations 

Baseline CRP 6 
Follow-up CRP 11 
Baseline Body Fat 4 
Follow-up Body Fat 16 
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Age 1 
Cigarettes/day 0 
Alcoholic Drinks/day 12 
HRT 15 
Total Removed 45 

 

2.2. Simulation 

The simulation study analyzes 1000 data sets of n = 175 (like the DEER data 

set) and 1000 data sets of n = 500.  Variable values are generated using parameter 

estimates (mean and standard deviation for baseline variables, regression coefficients 

for follow-up variables) of the variables of interest in the DEER data set.  In three 

separate analyses, data are removed so that the missingness mechanism is first 

MCAR, then MAR, and, finally, MNAR.   

Methods are compared not only across missingness mechanisms, but also 

percentage of missingness.  In the DEER data set, approximately ten percent of the 

values for baseline CRP and follow-up CRP are missing.  Imputation methods are 

compared when the data are missing at ten percent and 50 percent.  Table 2 shows 

how the data are removed from the data set so that the mechanisms are MAR and 

MNAR.  MAR missingness depended on baseline body fat and age values.   Baseline 

CRP values were removed if baseline body fat levels were less than a set value.  

Follow-up CRP values were removed if age was greater than a set value.  The values 

of baseline body fat and age were chosen so that the rate of missingness was ten or 50 

percent.  MNAR missingness depended on the value of CRP itself.  The value was 

chosen so that missingness would either be at a ten or 50 percent rate.  A random 

number generator was used to remove data so that the missingness mechanism was 
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MCAR.  The missingness mechanism for all of the other variables in the data set was 

MCAR. 

Table 2. Missingness Mechanisms 
  10% 50% 
 CRP1 CRP2 CRP1 CRP2 

MAR body fat < 22 age > 65 body fat < 30 age > 60  
MNAR CRP1 < 0. 25 CRP2 < 0.6 CRP1 < 0.7  CRP2 < 1.3 

 

Summary statistics, described in Section 2.4, of the variable Change in CRP 

after the four imputations, described in Section 2.3., are compared when the missing 

data are MCAR, MAR, and MNAR, the sample size is n = 175 and the rate of 

missingness is ten percent.  The summary statistics of the other simulations can be 

found in Appendix A.  All parameter estimates can be found in Appendix B.  

 2.3. Imputation Methods 

Different approaches to analysis with missing data have been proposed over 

the years.  Traditionally, cases with missing values were removed from the analysis in 

a deletion process.  Another method is single imputation in which missing data are 

imputed (replaced) by a simple estimate based on the entire data set.  The most recent 

trend in data analysis has been to conduct multiple imputation.  More complete 

descriptions of the methods used in this project, including an analysis of their 

strengths and weaknesses, follows. 

  2.3.1. Listwise Deletion 

 Also known as complete-case analysis, listwise deletion is among the oldest 

methods of adjusting for missing data.  This technique simply deletes all cases with 

missing value(s) from the analysis.  As such, it is the default method used by many 

statistical programs (Allison, 2002).  If the missing data are MCAR, listwise deletion 
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will yield unbiased parameter estimates, however, the standard errors may be larger 

because of the smaller sample size.  If the proportion of missing data is too large, then 

bias may be introduced into the parameter estimates and the results may be 

misleading.  When the missing data are MAR, listwise deletion will lead to biased 

parameter estimates (regression coefficients that are too large or too small).  

Additionally, the analytic power is reduced when a large portion of the data are 

removed from the analysis.  This method will only be used in the final analysis of the 

DEER data set; it will not be used for the simulation study. 

  2.3.2. Single Imputation: LOCF, LOCB, and Population Mean 

 Single imputation is the ascription of a value to a missing data cell based on a 

reasonable estimate of the absent data or the values of other variables (Little & Rubin, 

1989).  Three types of single imputation are used in this analysis: last observation 

carried forward, last observation carried backward, and mean imputation. 

The last observation carried forward (LOCF) method assigns the last known 

value of a variable to the missing follow-up value.  Thus, only follow-up values are 

imputed.  The LOCF method can produce underestimates of variances and 

covariances (Allison, 2002).  The last observation carried backward (LOCB) method 

assigns the next known value of a variable to the missing previous value.  Like 

LOCF, LOCB can produce underestimates of variances and covariances.  In this 

simulation and in the DEER data set, the values imputed using LOCF and LOCB are 

the subject mean since there are only baseline and follow-up values for CRP. 

 Population mean imputation substitutes the mean of the variable (column 

mean) for missing values.  A drawback of this method is that the uniqueness of the 
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subject is lost—the subject becomes “normal”.   Mean imputation also ignores non-

response bias and can lead to incorrect statistical inferences.  Another drawback to 

mean imputation techniques is that they do not consider the variability between 

imputations because only one value is imputed, in effect reducing the plausibility of 

the parameter estimates and error terms (Schafer, 1999).  Additionally, single 

imputation treats the missing values as if they are known when they are not (Rubin, 

1987).  However, mean imputation performs well when there is a missingness rate of 

30 percent or less (Shrive, Stuart, Quan, & Ghali, 2006). 

  2.3.3. Multiple Imputation 

Multiple imputation (MI), a relative newcomer to missing data analysis 

methods, was first introduced by Rubin in 1977.  The basic principles are quite 

simple: (1) impute the missing values in a data set using an appropriately selected 

model that includes random variation; (2) impute M times, producing M “complete” 

data sets (generally accepted number of imputations is 5); (3) conduct the analysis on 

each data set using complete-data methods; (4) create a single-point estimate by 

averaging the parameters estimates across the M samples; (5) calculate the standard 

errors using the following relation: 
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  Equation 7. MI standard error 

where bk is the estimated regression coefficient in sample k of the M samples, Sk its 

estimated standard error, and b  is the mean of bk.   

 Appropriate use of MI must meet several requirements (Rubin, 1996).  First, 

the data must be MAR.  Second, the model used to impute the data should match the 
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model that is being used in the complete-data analysis.  In other words, the imputation 

model must preserve the important associations among variables in the data set, 

including the dependent variable.  Finally, the algorithm that generates the imputed 

values needs to be “correct;” that is, the algorithm must accommodate the included 

variables and their associations.  Good imputation methods use all available 

information related to missing values (Rubin, 1987).   

 The benefits of MI are multifold (Allison, 2000).  The introduction of random 

error into the imputation method creates approximately unbiased parameter estimates.  

The repetition of the imputation makes reliable estimates of the standard error 

possible.  Finally, MI can be used on any type of data, for any type of analysis, 

without the use of specialized software.  For this analysis, PROC MI and PROC 

MIANALYZE from SAS version 9.1 were used.  Multiple imputation was done using 

the Monte Carlo Markov Chain (MCMC) method for arbitrary missingness.  The 

MCMC method generates pseudo-random draws via Markov chains from 

multidimensional probability distributions (Schafer, 1997).  Markov chains, 

originating in physics, are a series of random variables in which the distribution of 

each component depends only on the value of the previous one. 

 2.4. Comparison of Methods 

 Three summary measures are used to compare the performance of the four 

imputation methods.  Two are measures of accuracy and the third is a measure of 

bias. 

  2.4.1. Root-Mean-Square Error 

 The root-mean-square error (RMSE) is defined as: 
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∑ −= nyyRMSE /)ˆ( 2  

Equation 8. RMSE 

where ŷ  is the imputed value of the missing observation, y is the true value of the 

observation, and n is the number of observations in the data set.  The RMSE is an 

accuracy measure for how close the estimated values are to the true values.  The 

RMSE penalizes outliers because the difference term, imputed minus true, is squared 

(Engels & Diehr, 2003).  The closer to zero the RMSE is, the more accurate it is. 

  2.4.2. Mean Absolute Deviation 

 The mean absolute deviation (MAD) is defined as: 

∑ −= nyyMAD /ˆ  

Equation 9. MAD 

The MAD is another measure of how close predicted values are to observed values.  

Similar to the RMSE, the closer the MAD is to zero, the more accurate it is. 

  2.4.3. Bias 

 Bias is assessed by computing the mean deviation (MD): 

∑ −= nyyBias /)ˆ(  

Equation 10. Bias 

A MD of zero indicates that no bias exists.  A negative bias indicates that the method, 

on average, underestimates the true value.  Alternatively, a positive bias indicates that 

the method, on average, overestimates the true value.   

2.5. Analysis 

The simulation study compares the accuracy and bias of each imputation 

method for the variable Change in CRP when the missingness mechanism is MCAR, 
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MAR, and MNAR.  The missing values of baseline and follow-up CRP are imputed, 

and then Change in CRP is computed.  The analysis of 1000 data sets allows for the 

computation of confidence intervals.  Confidence intervals of 95 percent are 

computed for each of the summary statistics, for each imputation method.  The 

comparison of summary statistics across methods determines which imputation 

methods perform better.  All comparisons are made relative to each other, although 

the smaller the summary statistic (the closer to zero), the better the imputation method 

performs.
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Chapter 3: Results 

 3.1. Comparison of RMSE 

 When the missingness mechanism is MCAR and ten percent of the values for 

Change in CRP are missing, mean imputation was the least accurate.  LOCB was the 

most accurate imputation method, and multiple imputation and LOCF performed 

equally as well.  When the missingness mechanism is MAR and ten percent of the 

values for Change in CRP are missing, mean imputation again was the least accurate.  

LOCF and LOCB were the most accurate.  Multiple imputation also imputed 

relatively accurate estimates.  When the missingness mechanism is MNAR and ten 

percent of the values for Change in CRP are missing, mean imputation and multiple 

imputation perform the worst.  LOCF was the most accurate. 
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Figure 2. Comparison of RMSE for Change in CRP 
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 3.2. Comparison of MAD 

 When the missingness mechanism is MCAR and ten percent of the values for 

Change in CRP are missing, the least accurate method is mean imputation.  The most 

accurate method is LOCB, while multiple imputation and LOCF performed equally as 

well.  When the missingness mechanism is MAR and ten percent of the values for 

Change in CRP are missing, the least accurate method is mean imputation.  Multiple 

imputation, LOCF, and LOCB are all relatively accurate.  When the missingness 

mechanism is MNAR and ten percent of the values for Change in CRP are missing, 

the least accurate methods are mean imputation and multiple imputation.  LOCF was 

extremely accurate and LOCB was slightly less accurate. 
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Figure 3. Comparison of MAD for Change in CRP 
 

3.3. Comparison of Bias 
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When the missingness mechanism is MCAR and ten percent of the values for 

Change in CRP are missing, multiple imputation is the least biased imputation 

method, it slightly underestimates the true value.  Mean imputation is the most biased, 

also underestimating the true vale.  Both LOCF and LOCB overestimate the true 

value of Change in CRP, but are not as biased as mean imputation.  When the 

missingness mechanism is MAR and ten percent of the values for Change in CRP are 

missing, multiple imputation is the least biased imputation method, however the other 

three methods are also relatively unbiased.  When the missingness mechanism is 

MNAR and ten percent of the values for Change in CRP are missing, the least biased 

method is LOCF.  LOCB, mean imputation, and multiple imputation are all extremely 

biased.   
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Figure 4. Comparison of Bias for Change in CRP 
 
 3.4. DEER 
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  3.4.1. Missingness Pattern   

 The missingness pattern for the DEER data set is arbitrary (Table 2).  Each 

pattern describes the missing values and the number of subjects that fall into that 

particular pattern.  For example, subjects in Pattern 1 (n = 130) are the subjects 

without any missing data.  Subjects in Pattern 10 are missing values for follow-up 

CRP, follow-up body fat, and hormone replacement therapy (n = 3).  Since the 

missingness pattern is arbitrary (non-monotone), we expect that the best method for 

multiple imputation is the Markov chain Monte Carlo (MCMC), a Monte Carlo 

integration method using Markov chains (Zhang, 2003). 

Table 3.  Missingness Pattern 
Pattern Baseline 

CRP 

Follow-up 

CRP2 

Baseline 

Body Fat 

Follow-up 

Body Fat 

Age HRT Cig/Day Alc/Day Number of 

Subjects 

1 X X X X X X X X 130 

2 X X X X X X X . 7 

3 X X X X X . X X 8 

4 X X X . X X X X 8 

5 X X X . X X X . 1 

6 X X X . X . X X 2 

7 X X . X X X X X 2 

8 X X . X . X X X 1 

9 X . X X X X X X 5 

10 X . X . X . X X 3 

11 X . X . X . X . 2 

12 . X X X X X X X 2 

13 . X X X X X X . 2 

14 . X . X X X X X 1 

15 . . X X X X X X 1 

 

  3.4.2. Missingness Mechanism 

 In order to eliminate the missing data as MCAR, t-tests were conducted to 

compare the means of baseline variables for the group missing baseline CRP values 

with the group not missing baseline CRP values and to compare the group missing 

follow-up CRP values with the not missing follow-up CRP values.  If the missingness 
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mechanism is MCAR, then there should not be any significant differences between 

groups.  However, as can be seen in Table 3, there are significant differences between 

the group missing baseline CRP and not missing baseline CRP on three variables: 

BMI (P = .029), body fat (P = .009), and weight (P = .003).  There is a significant 

difference in mean age (P = .046) between the group missing follow-up CRP and not 

missing follow-up CRP. 

Table 4. Comparison of baseline variable means 

Variable Baseline 
Covariate 

Group with Missing 
Value  

Mean (Std. Dev.) 

Group without 
Missing Value  

Mean (Std. Dev.) 
t-Value P-Value 

Baseline 
CRP 

Age 55.15 (6.94) 56.46 (5.04) 0.609 0.543 

BMI 28.96 (1.02) *  26.11 (3.15) -2.207 0.029 

Body Fat 38.12 (3.31) § 32 (5.19) -2.619 0.009 

Weight 74.38 (2.73) § 69.21 (10.58) -3.75 0.003 

Cholesterol 252.83 (28.96) 240.43 (26.08) -1.141 0.256 

HDL 46.5 (4.04) 45.29 (7.19) -0.409 0.683 

LDL 174.67 (25.26) 164.05 (21.27) -1.193 0.234 

Follow-up 
CRP 

Age 53.45 (4.44) *  56.61 (5.09) 2.007 0.046 

BMI 26.42 (2.99) 26.2 (3.16) -0.227 0.82 

Body Fat 33.7 (5.68) 32.08 (5.21) -0.998 0.32 

Weight 70.36 (9.32) 69.32 (10.54) -0.321 0.75 

Cholesterol 229.36 (26.45) 241.64 (26.07) 1.51 0.133 

HDL 45.91 (8.81) 45.29 (6.99) -0.277 0.782 

LDL 161.36 (21.95) 164.63 (21.44) 0.489 0.626 

* Significant mean difference at P<0.05. 
§ Significant mean difference at P<0.01 
 
 Because there were significant differences between groups with missing data 

and groups without missing data, the missingness mechanism cannot be MCAR for 

the variables baseline and follow-up CRP.  There is no way to mathematically 

determine if the missing data are MAR or MNAR.  However, the missingness 

mechanism for this data set is most likely MAR because of what we know about why 

some of the data are missing.  In the original trial, three women were lost to follow-up 

(Stefanick, et al., 1998), so there are no follow-up data available for them.  We also 

know that when the plasma samples were later transported for analysis of CRP levels, 
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some samples were broken in transit (Camhi, 2008).  Both these reasons suggest that 

the missing data are MAR; they are not missing because of the value of CRP itself. 

3.4.3. Imputations 

 The simulation study identified three imputation methods whose imputed 

values of Change in CRP were the least biased and most accurate: LOCF, LOCB, and 

multiple imputation.  For the DEER data set, LOCF and LOCB will be used together 

to increase sample size.  The combination of these methods is known as subject mean 

imputation (as opposed to population mean imputation).  Multiple imputation will 

also be used to impute missing values in the DEER data set. 

The model for multiple imputation included all of the variables in the final 

analysis, as well as the other baseline covariates listed in Table 3.  The other baseline 

covariates were included because the intent of the original study was to reduce 

cholesterol in people at high risk for cardiovascular disease.  The imputation model 

incorporates the missingness mechanisms because of the inclusion of baseline 

covariates that are significantly different between missing and non-missing groups.  

Since the imputation model is more restrictive (has more assumptions) than the 

analysis model, the MI model leads to valid, more efficient estimates than the 

estimates from the observed data alone.   

  3.4.5. ANCOVA Results  

 There were slight differences between the three models.  Figure 5 displays the 

within-group parameter estimates and standard deviations and the significant 

between-group differences.  Parameter estimates for the between-group differences 

can be found in Appendix A.  In the complete case analysis (n = 130), there were 
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significant between-group differences between the control group and the diet plus 

exercise group (P = 0.04) and between the exercise group and the diet plus exercise 

group (P = 0.005).  The diet plus exercise group had a significant within-group 

change in CRP (P = 0.009).   

 The model after subject mean imputation (LOCF/LOCB) (n = 160) had the 

same results, although the between-group difference between the control group and 

the diet plus exercise group was significant at P = 0.002, the between-group 

difference between the exercise group and the diet plus exercise group was significant 

at P = 0.003, and the within-group significance for the diet plus exercise group was P 

= 0.003.  For the model after multiple imputation (n = 175), the between-group 

significance for control versus diet plus exercise was P = 0.007 and for exercise 

versus diet plus exercise the significance was 0.003.  There was no significant within-

group change for the diet plus exercise group.   

DEER: Comparison of Models
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Figure 5. DEER: Comparison of Models 
� Between-group significance (P < 0.01) 
� Between-group significance (P < 0.05) 
� Within-group significance (P < 0.01) 
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Chapter 4: Discussion 
 

Section 4.1. Simulation 

 In all cases, population mean imputation was the least accurate.  This may be 

because it eliminates the relationship between baseline and follow-up CRP by 

assigning the column mean to the missing values.  LOCF, LOCB, and multiple 

imputation retain the relationship between baseline and follow-up CRP.  Other studies 

have found that subject-specific imputations are more accurate than population 

imputations (Shrive, Stuart, Quan, & Ghali, 2006). 

 When the missingness mechanism is MNAR and ten percent of the values for 

Change in CRP are missing, multiple imputation and population mean imputation 

performed the worst.  Multiple imputation most likely performed the worst because 

the assumption of MAR was violated—the missing data could not be imputed based 

reliably on the values of other observed variables.  Mean imputation performed the 

worst because it imputed the column mean for the missing values when, in reality, all 

of the values that were removed were much smaller than the column mean. 

Section 4.2. DEER 

The results of the three analyses of the DEER data set raised some questions.  

There was not one method that performed best in the simulation study for MAR 

missing data—both subject mean imputation and multiple imputation performed well.  

Therefore, both methods were used to impute the data in the DEER data set.   

The larger standard errors for the estimates after multiple imputation reflect 

the missing data uncertainty as well as the ordinary sampling variation.  There are 
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three explanations for the loss of the significant within-group difference for the diet 

plus exercise group.  First, the significance could be lost due to the increased variance 

due to multiple imputation.  Second, the MAR assumption may not hold, in which 

case MI is not an appropriate method to use.  Because there are multiple variables in 

the DEER data set that have missing values, the missingness mechanism for each 

variable may not be the same.  In multiple imputation, every variable included in the 

final model must also be used in the imputation model, so variables other than 

baseline and follow-up CRP that were missing values also had values imputed.  The 

MAR assumption necessary for MI may not hold for these variables.  Finally, there 

could also be systematic differences between the observed data and the missing data, 

so there is not actually a significant within-group difference.  All three explanations 

are plausible and there is no way to know the truth. 

Although mean imputation can produce biased estimates, the results of the 

simulation study and the final analysis after the mean imputation suggest that it is a 

plausible method in this situation.  This may be because of the low percentage (26 

percent) of missing data.  Other studies have shown that mean imputation performs 

well when there is a missingness rate of 30 percent (Shrive, Stuart, Quan, & Ghali, 

2006). 

One limitation to the study is in regards to multiple imputation.  Currently, 

PROC MI in SAS is only able to include continuous variables in the MCMC model 

(Horton & Kleinman, 2007).  This means that the categorical variables used in the 

analysis could not be included in the imputation model.  The strength of the study is 

the comparison of imputation methods that compared subject-specific, population, 
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and multiple imputation methods.  Future work could include the use of indicator 

variables for the categorical variables that currently were not used in the multiple 

imputation using PROC MI in SAS.
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Chapter 5:  Conclusion 

The results of the analyses of the DEER data set may have raised more 

questions than were answered.  Although it is impossible to know the truth, the results 

of the simulation study suggested that mean imputation and multiple imputation were 

the two best methods to use to impute the missing data for the DEER data set.  While 

the two between-group differences remained significant, the within-group difference 

for diet plus exercise was not significant after multiple imputation.   

The results of simulation study highlight the importance of exploring multiple 

methods of imputation to impute values for missing data.  Although most of the 

literature suggests that multiple imputation is the best method for imputing missing 

values when missing data is MAR, the application of multiple imputation in a real 

data set with an arbitrary missingness pattern may not be appropriate.  All of the 

variables with missing data may not have the same missingness mechanism, in which 

case multiple imputation is not be appropriate to use. 

There are also problems with subject mean imputation.  It can produce biased 

estimates and, when the mean is imputed, reduce the true variability of the data 

because estimates are regressed to the mean.  However, in this situation it may be the 

most appropriate method because the percent of missing data is low. 

Although it is impossible to state with absolute certainty, I believe that the 

results of the analysis after subject mean imputation are more accurate than the results 

of the analysis after multiple imputation.  However, the most important conclusion is 

that handling missing data can be very complicated and it is important to compare 

multiple methods to find the best fit for the data set that is being analyzed. 
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Appendix A  

Table A.1. Between-group parameter estimates 

  
control 
vs. diet 

control 
vs. ex 

control 
vs. 
diet+ex 

diet vs. 
diet+ex 

ex vs. 
diet+ex 

  
β 

(std.dev.) 
β 

(std.dev.) 
β 

(std.dev.) 
β 

(std.dev.) 
β 

(std.dev.) 

Complete Case 
0.19 

 (0.31) 
-0.25 

 (0.31) 
0.67* 
(0.32) 

0.48 
 (0.31) 

-0.29* 
(0.31) 

Subject Mean 
0.48 

 (0.29) 
0.06 

 (0.28) 
0.97* 
(0.31) 

0.48  
(0.29) 

-0.9* 
(0.3) 

Multiple 
Imputation 

0.3 
 (0.29) 

-0.08 
 (0.29) 

0.82* 
 (0.3) 

0.53 
 (0.3) 

-0.9*  
(0.3) 

*P < 0.05
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Appendix B 
 

Simulation 1: n = 175, m = 10, 50 

RMSE: 
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Figure B.1. Comparison of RMSE for Change in CRP (n = 175, m = 10, 50) 
 

MAD: 
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Figure B.2. Comparison of MAD for Change in CRP (n = 175, m = 10, 50) 
 

Bias: 
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Figure B.3. Comparison of Bias for Change in CRP (n = 175, m = 10, 50) 
 

 

Simulation 2: n = 500, m = 10, 50 
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Figure B.4. Comparison of RMSE for Change in CRP (n = 500, m = 10, 50) 
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Figure B.5. Comparison of MAD for Change in CRP (n = 500, m = 10, 50) 
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Figure B.6. Comparison of Bias for Change in CRP (n = 500, m = 10, 50) 
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Appendix C 
 
Simulation 1: n = 175, m = 10, 50 

Table C.1. Between-group parameter estimates (n = 175, m = 10, 50) 

n=175     
control 
vs. diet 

control 
vs. ex 

control 
vs. 
diet+ex 

diet vs. 
diet+ex 

ex vs. 
diet+ex 

   β (std. dev.) β (std. dev.) β (std. dev.) β (std. dev.) β (std. dev.) 

Full     0.39 (0.32) 0.75 (0.43) -0.08 (0.15) 0.35 (0.12) -0.83 (0.33) 

10% 

MCAR 

LOCF 0.41 (0.13) 0.68* (0.19) -0.07§ (0.12) 0.27§ (0.09) -0.74§ (0.17) 

LOCB 0.41 (0.38) 0.75 (0.51) -0.07 (0.18) 0.34§ (0.15) -0.82 (0.39) 

Mean 0.35§ (0.07) 0.73§ (0.09) -0.05 (0.12) 0.38§ (0.09) -0.78§ (0.13) 

MI 0.11§ (0.13) 0.32§ (0.18) -0.16§ (0.1) 0.21§ (0.07) -0.47§ (0.16) 

MAR 

LOCF 0.38 (0.14) 0.73 (0.18) -0.08 (0.12) 0.35 (0.08) -0.81 (0.16) 

LOCB 0.37 (0.38) 0.71 (0.51) -0.09* (0.18) 0.34 (0.14) -0.82 (0.39) 

Mean 0.41 (0.08) 0.73§ (0.09) -0.06 (0.13) 0.33 (0.07) -0.9 (0.12) 

MI 0.09§ (0.12) 0.31§ (0.17)  -0.17§ (0.1) 0.23§ (0.07) -0.49§ (0.16) 

MNAR 

LOCF 0.36§ (0.13) 0.74§ (0.16) -0.15 (0.12) 0.38§ (0.07) -0.89§ (0.15) 

LOCB 0.36§ (0.32) 0.74§ (0.43) -0.21 (0.17) 0.38§ (0.13) -0.95§ (0.33) 

Mean 0.37§ (0.06) 0.73§ (0.07) -0.13 (0.11) 0.36* (0.06) -0.86§ (0.11) 

MI 0.08§ (0.13) 0.35§ (0.17) -0.27§ (0.1) 0.27§ (0.07) -0.62§ (0.16) 

50% 

MCAR 

LOCF 0.39 (0.21) 0.68 (0.27) -0.04 (0.14) 0.29 (0.13) -0.72 (0.22) 

LOCB 0.36§ (0.36) 0.72§ (0.47) -0.06 (0.18) 0.36 (0.14) -0.78§ (0.34) 

Mean 0.25§ (0.1) 0.52§ (0.11) -0.16§ (0.16) 0.27§ (0.11) -0.67§ (0.17) 

MI 0.07§ (0.09) 0.24§ (0.12) -0.08 (0.08) 0.17§ (0.06) -0.32§ (0.11) 

MAR 

LOCF 0.3§ (0.25) 0.62§ (0.31) -0.06§ (0.16) 0.32§ (0.14) -0.68§ (0.25) 

LOCB 0.03§ (0.4) 0.22§ (0.52) -0.16§ (0.18) 0.19§ (0.15) -0.38§ (0.39) 

Mean 0.39 (0.14) 0.73§ (0.14) 0.04 (0.19) 0.34§ (0.13) -0.69§ (0.18) 

MI 0.07§ (0.11) 0.24§ (0.14) -0.06§ (0.09) 0.16§ (0.07) -0.3§ (0.13) 

MNAR 

LOCF 0.29§  (0.16) 0.6§  (0.21) -0.3§  (0.13) 0.31§  (0.11) -0.9§  (0.19) 

LOCB 0.22§ (0.33) 0.82§ (0.44) -0.46§ (0.16) 0.6§ (0.14) -1.28§ (0.33) 

Mean 0.41 (0.08) 0.82§ (0.1) -0.11§ (0.12) 0.4§ (0.07) -0.93§ (0.11) 

MI -0.03§ (0.12) 0.22§ (0.16) -0.4§ (0.1) 0.25§ (0.08) -0.62§ (0.16) 

* P<0.05 
§ P < 0.01 
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Simulation 2: n = 500, m = 10, 50 

Table C.2. Between-group parameter estimates (n = 175, m = 10, 50) 

n=500     
control 
vs. diet 

control 
vs. ex 

control 
vs. 
diet+ex 

diet vs. 
diet+ex 

ex vs. 
diet+ex 

   β (std. dev.) β (std. dev.) β (std. dev.) β (std. dev.) β (std. dev.) 

Full     0.39 (0.19) 0.74 (0.25) -0.09 (0.09) 0.35 (0.07) -0.83 (0.19) 

10% 

MCAR 

LOCF 0.38 (0.09) 0.72§ (0.12) -0.07* (0.07) 0.35 (0.05) -0.8§ (0.1) 

LOCB 0.38 (0.16) 0.72§ (0.21) -0.08§ (0.09) 0.34§ (0.06) -0.8§ (0.17) 

Mean 0.36* (0.04) 0.69§ (0.05) -0.04§ (0.07) 0.31§ (0.04) -0.73§ (0.07) 

MI 0.14§ (0.08) 0.39§ (0.11) -0.14§ (0.06) 0.24§ (0.04) -0.53§ (0.1) 

MAR 

LOCF 0.38 (0.09) 0.73* (0.12) -0.08 (0.07) 0.35 (0.05) -0.81§ (0.1) 

LOCB 0.35§ (0.16) 0.69 (0.21) -0.09§ (0.09) 0.34§ (0.06) -0.78§ (0.17) 

Mean 0.39 (0.05) 0.73§ (0.05) -0.06 (0.07) 0.34§ (0.04) -0.79§ (0.07) 

MI 0.14§ (0.08) 0.4§ (0.11) -0.15§ (0.06) 0.25§ (0.04) -0.54§ (0.1) 

MNAR 

LOCF 0.36§ (0.08) 0.76§ (0.11) -0.16 (0.07) 0.38§ (0.04) -0.9§ (0.09) 

LOCB 0.34§ (0.14) 0.71§ (0.19) -0.22§ (0.08) 0.38§ (0.06) -0.93§ (0.15) 

Mean 0.36§ (0.03) 0.73§ (0.04) -0.13 (0.06) 0.36§ (0.03) -0.86§ (0.06) 

MI 0.12§ (0.08) 0.41§ (0.11) -0.26§ (0.06) 0.29§ (0.04) -0.66§ (0.1) 

50% 

MCAR 

LOCF 0.33§ (0.08) 0.65§ (0.1) -0.09 (0.07) 0.31§ (0.05) -0.74§ (0.09) 

LOCB 0.39§ (0.11) 0.74§ (0.15) -0.08 (0.08) 0.35§ (0.05) -0.82§ (0.12) 

Mean 0.35§ (0.04) 0.69§ (0.05) -0.09 (0.07) 0.34§ (0.04) -0.77§ (0.07) 

MI 0.17§ (0.07) 0.43§ (0.09) -0.13§ (0.06) 0.25§ (0.04) -0.56§ (0.09) 

MAR 

LOCF 0.32§ (0.12) 0.63§ (0.15) -0.06§ (0.09) 0.31§ (0.07) -0.68§ (0.12) 

LOCB 0.2§ (0.16) 0.44§ (0.21) -0.09§ (0.09) 0.24§ (0.07) -0.53§ (0.17) 

Mean 0.41§ (0.08) 0.69§ (0.08) 0.02§ (0.1) 0.28§ (0.07) -0.67§ (0.1) 

MI 0.1§ (0.06) 0.27§ (0.08) -0.05§ (0.05) 0.17§ (0.03) -0.32§ (0.07) 

MNAR 

LOCF 0.2§ (0.07) 0.61§ (0.11) -0.29§ (0.07) 0.31§ (0.05) -0.9§ (0.1) 

LOCB 0.23§ (0.11) 0.82§ (0.15) -0.46§ (0.07) 0.59§ (0.05) -1.27§ (0.13) 

Mean 0.42§ (0.04) 0.82§ (0.05) -0.11§ (0.07) 0.4§ (0.04) -0.93§ (0.06) 

MI -0.01§(0.06) 0.24§ (0.08) -0.4§ (0.05) 0.26§ (0.04) -0.64§ (0.08) 

* P<0.05 
§ P < 0.01 
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