
 
 
 
 

ABSTRACT 
 
Title of Document: MACHINE VISION TECHNOLOGY FOR 

FOOD QUALITY AND SAFETY 
INSPECTIONS 

  
 Fenghua Jin, Doctor of Philosophy, 2008 
  
Directed By: Professor Yang Tao, Fischell Department of 

Bioengineering  
 

 With increased expectations for food products of high quality and safety 

standards, the need for accurate, fast and objective determination of these 

characteristics in food products continues to grow. Machine vision as a non-

destructive technology, provides an automated and economic way to accomplish 

these requirements.  This research thus explored two applications of using machine 

vision techniques for food quality and safety inspections.  

 The first application is using a combined X-ray and laser range imaging 

system to detect bone and other physical contaminants inside poultry meat. For this 

project, our research focuses on how to calibrate the imaging system. A unique three-

step calibration method was developed and results showed that high accuracy has 

been achieved for the whole system calibration – a root mean square error of 0.20 mm, 

a standard deviation of 0.20 mm, and a maximum error of 0.48 mm. 

 The second application is separating walnuts’ shells and meat. A backlight 

imaging system was developed based on our finding that the backlit images of walnut 

shells and meat showed quite different texture patterns due to their different light 

  



transmittance properties. The texture patterns were characterized by several rotation 

invariant texture analysis methods. The uncorrelated and redundant features were 

further removed by a support vector machine (SVM) based recursive feature 

elimination method, with the SVM classifier trained concurrently for separations of 

walnuts’ shells and meat. The experimental results showed that the proposed 

approach was very effective and could achieve an overall 99.2% separation accuracy. 

This high separation accuracy and low instrument cost make the proposed imaging 

system a great benefit to the walnut processing industry.  
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Chapter 1: Overall Introduction 

 With increased expectations for food products of high quality and safety, the 

need for accurate, fast and objective determination of these characteristics in food 

products continues to grow. Machine vision as a non-destructive technology, provides 

an automated and economic way to accomplish these requirements.  This research 

explored two applications of using machine vision techniques for food quality and 

safety inspections. One is using a combined X-ray and laser range imaging system to 

detect physical contaminants inside poultry meat, and the other is using a backlight 

imaging system to separate black walnut shells and meat. The problems and 

rationales of these two projects will be introduced as follows, respectively.  

1.1 A Combined X-ray and Laser Range Imaging System to Detect Physical 

Contaminants in Poultry Meat  

The United States produces over 43 billion pounds of poultry meat annually, 

over 41% of which is boneless poultry meat (USDA, 2008). Physical contamination 

such as plastic, metal, glass and bone fragments, etc. is a major problem in food 

safety which could lead to serious injury if accidentally swallowed. Thus, the 

detection of bone fragments and other physical contaminations in deboned poultry 

meat has become increasingly important to ensure food quality and safety (Tao, et al., 

2000, 2001). In many poultry processing plants, the inspection of boneless meat is 

still performed manually (Figure 1.1). The accuracy of manual inspection depends on 

the sensitivity of workers’ fingers. To prevent microbial proliferation, meat must be 

chilled to a little above the frozen temperature.  Such coldness causes the workers’ 
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fingers to quickly become numb to the feel of a possible bone fragment.  As a result, 

cotton gloves are provided for the workers which consequently reduces the sensitivity 

of the fingers and thus decreases accuracy in bone detections. Additionally, cross-

contamination and high labor costs are also problems of manual inspection.  

 
Figure 1.1 Poultry processing line. Note the physical contaminants inside meat are 

inspected manually by the workers.  
 
 

X-ray imaging techniques, as noninvasive inspection methods, have been used 

for years to detect physical contamination in food products.  However, the traditional 

X-ray imaging detection technologies have significant difficulties in detecting 

contaminations because of variations in the poultry thickness. In order to address this 

problem, Tao and Ibarra (2000A) suggested adding a laser range imaging subsystem 

and combining the depth information from the laser range image with the X-ray 

image to achieve accurate physical contaminate detection. The X-ray line-scan 
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camera captures high resolution X-ray images in real-time and the three-dimension 

(3-D) laser imager provides an accurate thickness profile for each piece of poultry. In 

the combined system, the 3-D thickness information is used to cancel the thickness 

variation in the X-ray image, thus the process of physical contamination detection is 

significantly simplified (Chen, 2003; Jing, 2003).  

 Figure 1.2 is a schematic of the described combined system which contains 

four CCD (charge-coupled device) cameras and one X-ray line-scan camera.  When 

objects on the conveyor belt pass through the X-ray and laser beams, X-ray images 

are captured by the X-ray line-scan camera below the conveyor belt, while the laser 

light stripe images are recorded by the CCD cameras to get the 3-D profile of the 

object (based on a structured lighting method) (Chen, et al., 2000).  Proper calibration 

of the five cameras is, of course, required to achieve high accuracy of foreign material 

detection. A unique three-step geometric calibration method was developed in our 

research to address this problem.  
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Figure 1.2 A schematic plot of the combined X-ray and laser range imaging system. 
Four CCD cameras are placed on the both sides of laser beam plane to 
reduce the influence of possible occlusion caused by object curvature and 
ensure enough field cover range. Note that the X-ray and laser beam are 
aligned carefully to be coplanar, though they are not coplanar here for 
illustration purposes. 

 

1.2 A Backlight Imaging System for Walnut Shell and Meat Separation 

 The second machine vision application for food safety inspection in our 

research is using a backlight imaging system to separate walnut shell and meat. Black 

walnuts, frequently added to food from appetizers to desserts, are nutritious and 

flavorful with a long shelf life when refrigerated or frozen (Figure 1.3). Eastern black 

walnuts grow throughout the central and eastern United States. The annual yield of 

raw black walnuts in the U.S. is approximately 4 billion pounds (Jones, et al., 1998; 

Hatcher et al., 1998), however only about 20 million pounds are commercially 

processed (Hammons, 1998). Walnut farmers are not motivated to harvest their crop 
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because the raw nuts are sold at low prices to nut processors. Furthermore, nut 

processing capacity within the United States is limited.  

 (a) (b) 

Figure 1.3 (a) Photograph of raw black walnuts; (b) Cracked black walnuts showing 
(from top to bottom row): light meat, dark meat, inner shell surface and 
outer shell surface. 

 In walnut processing plants today, nuts are cracked and the majority of the 

shells are removed by air lathe. Any remaining shell fragments are removed by visual 

inspection to meet the required marketable quality. Manual inspection is very time 

consuming and labor intensive because the shell and meat fragments are very similar 

in size and color (Krishnan and Berlage, 1984). Therefore, an accurate automated 

inspection method is desirable to reduce labor and time while ensuring product 

quality. A backlight imaging system was developed in this research to differentiate 

black walnut shells from walnut meat since the backlit images show distinctive 

texture patterns. This study further explored efficient texture analysis and pattern 

recognition methods to achieve high accuracy for walnut shell and meat separation.  
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 This dissertation is organized into the following chapters. Chapter 2 details the 

overall objective of this dissertation research and Chapter 3 provides the literature 

review. Chapter 4 describes the detail calibration method of the combined X-ray and 

laser range imaging system. Chapter 5 describes the design of a backlight imaging 

system and algorithms to achieve high accuracy in separating walnut shells and meat. 

Chapter 6 follows with overall conclusions and Chapter 7 describes suggestions for 

future studies.  
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Chapter 2: Overall Objective 
 

 The major goal of this research was to explore the two machine vision 

applications in the food safety inspection area. For the first project, a combined X-ray 

and laser range imaging system is used to detect physical contaminants in poultry 

meat which includes several imaging devices, four CCD cameras and one X-ray line-

scan camera. Our goal was to develop an efficient system calibration method. For the 

second project, our goal was to develop a machine vision system to separate walnut 

shells from meat.  

Specifically, the aims of this research were to: 

(1) Develop a calibration method to calibrate CCD cameras and X-ray line-

scan camera used in the combined X-ray and laser range imaging system. 

Develop hardware and software to achieve automated or semi-automated 

system calibration so that the whole calibration procedures can be 

accomplished in a timely fashion.  

(2) Evaluate the precision of the calibration method.   

(3) Develop a backlight imaging system for walnut shell and meat separation.  

Explore texture analysis and pattern classification methods for the 

acquired backlit walnut images.  

(4) Evaluate the performance of the backlight imaging system.  
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Chapter 3: Review of Literature 

3.1 X-ray Imaging 

  X-rays are a type of electromagnetic radiation with wavelengths ranging from 

10-3nm to 10 nm, with photon energy ranging from 120 eV to 1.2 MeV (Selman, 

1994). The basic production of X-rays is by accelerating electrons with a high voltage 

and allowing them to collide with a metal target in an X-ray tube (Figure 3.1).  

 

Figure 3.1 Model of an typical X-ray tube which is composed of: a tube from which 
the air has been evacuated as completely as possible, a hot filament which 
liberates electrons (the filament is driven by a low voltage power supply 
and it also serves as the cathode when high voltage is correctly applied), a 
target which serves as the anode, and a high voltage applied across the 
cathode and anode, causing the electrons to rush at an extremely high 
speed through the tube from cathode to anode. 

 X-ray radiation is generally classified into two types: bremsstrahlung radiation 

and characteristic radiation. Bremsstrahlung radiation, also called braking radiation, is 

emitted when the electrons suddenly decelerate upon colliding with the metal target. 

The kinetic energy lost by each electron is radiated as an X-ray of equivalent energy. 
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Braking radiation is poly-energetic (nonuniform in energy) because the amount of 

braking or deceleration varies among electrons. If the accelerated electron contains 

enough energy, it is able to knock out an electron from the inner shell of the target 

metal atom. As a result, electrons from higher energy levels drop down to fill up the 

vacancy and X-ray photons are emitted whose energies are determined by the electron 

energy levels. These X-rays are called characteristic X-rays (Dowsett, et al., 2006). A 

typical X-ray spectrum contains both braking radiation and the characteristic radiation 

as shown in Figure 3.2 (Hamamatsu, 2008). Notice that the spectrum of braking 

radiation is continuous, while characteristic radiation forms line spectra. 

 

Figure 3.2 A typical X-ray spectrum (Hamamatsu, 2008). Note the characteristic X-
ray spectrum depends on the target material used. 

 

 One important property of X-rays is that they are invisible rays with high 

penetration ability. The penetrating nature of X-rays makes them ideal tools to study 

the internal structure of objects based on the interaction between the X-rays and the 
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matter. A typical X-ray imaging system is depicted in Figure 3.3, where X-rays are 

generated from the X-ray tube, attenuated by the target object, and then intercepted 

by an X-ray imager. The imager can be an X-ray film (Selman, 1994), a video camera 

coupled with an image intensifier (Molloi, et al., 1995), a linear digital X-ray detector 

array (Iacobaeus, et al., 2007), or a two dimensional (2-D) digital X-ray detector 

arrays (X-ray panel) (Zentai, et al., 2006; Szeles, et al., 2007).  

 

Figure 3.3 Typical setup of an X-ray imaging system 

 

 X-ray imaging is a well-established technology and has been widely used in 

many areas, including medical diagnosis, homeland security, material research, and 

industrial inspections (AS&E, 2008; Fahrig, et al., 2008; Roh, et al., 2003). In the 

field of food inspection, X-ray technology also provides an invaluable means to 

ensure food safety and to assess food quality. Shahin, et al. (2002a) developed an X-

ray imaging to detect apple surface bruises. Spatial and transform features comprise 
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the basis for apple bruise detection in the study, and a back propagated artificial 

neural network (ANN) classifier was found to be efficient for apple classification. 

The same imaging system was also revealed to be successful in detecting internal 

defects of sweet onions (Shahin, et al., 2002b). It has been shown that X-ray imaging 

can also be applied to detect infested pistachio nuts (Casasent, et al., 2001, 2003). The 

internal product detail that X-ray images provide allows the presence of worm 

damage and other defects to be determined non-destructively.   

 Significant research efforts have also been made on meat inspection using X-

ray. The difficulty of X-ray imaging in the meat inspection application is that the 

thickness of the poultry meat is not uniform, which makes it hard to differentiate 

physical contaminants and thicker meat portions. Various approaches have been used 

to address this thickness issue. One method is to immerse the meat in water so the 

thickness variation can be largely smoothed out. Although successful in thickness 

cancellation, the method is unlikely to be acceptable for on-line inspection 

applications due to the sanitation problem and the difficulties in implementing an 

efficient meat handling and rejection apparatus. Another thickness cancellation 

method adopted by the industry is to press the meat mechanically. A pump is used to 

press the meat into a pipe, compressing it into a rectangular block of uniform 

thickness before it is scanned by an X-ray imager. It was reported that the method 

worked particularly well for ground meat inspection (Hartman, 2001). However, for 

products such as poultry fillets, where the preservation of the natural shape is desired, 

this compression method seems unattractive due to inevitable meat damage. 

Furthermore, once the X-ray imaging system reports a contamination in the pipe, it is 
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often difficult for human inspectors to determine the exact location of the defect in 

the chunk of rejected meat (Graves and Batchelor, 2003).  

 Note that the above methods for thickness cancellation are based on X-ray 

imaging with a single energy X-ray. The dual energy X-ray imaging method can also 

help address the thickness variation problem (Graves and Batchelor, 2003). It is 

known that the attenuation coefficient of any material changes with X-ray energy, and 

the change is also different for different materials which make it possible to 

differentiate two materials based on the images acquired under two different X-ray 

energy settings (Taibi, et al., 2003; Lemacks, et al., 2002). Commercial inspection 

machines using dual X-ray energy methods are available for bone detection 

(Jamieson, 2002). The dual energy system can detect ossified bone fragments in 

chicken fillets, thighs and nuggets. However, soft bones are still not detectable by the 

X-rays (Graves and Batchelor, 2003). Limitations of this dual energy method come 

from the underlying physics. One is due to the difficulty to make a monochromatic X-

ray source. The common approach to achieve dual energies is by using X-ray filters. 

Although the two filtered X-ray are peaked at two different energy levels, both of 

them are still multi-chromatic which breaks the assumption of the dual-energy X-ray 

imaging model. In addition, in order to have high quality X-ray images, the high 

energy level has to be limited due to the fact that poultry meat usually isn’t very thick. 

Otherwise, the X-ray sensors are prone to be saturated by overexposure to the high 

energy X-ray photons. This implies that the difference between the high and low 

energies is small, which leads to insufficient contrast between the images taken at the 

two energies.  
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 In order to address the thickness variation problem, a more plausible method 

is to acquire the thickness information directly by using optical range imaging 

technologies. The resultant profile of the object can then be used to compensate for 

the thickness effects in the X-ray images. A brief review of the optical way of 3-D 

measurement is given in the next section.   

3.2 Optical Range Imaging Technologies 

 Optical range imaging refers to the technology of determining three-

dimensional information of an object surface via optical sensing. Range imaging 

systems collect large amount of 3-D coordinate data from visible object surface in a 

scene. These systems can be used in a wide variety of automation applications, such 

as object shape acquisition, inspection, robotic assembly, and medical diagnosis 

(Davies, 2005; Peters, 2006).  

 Optical range imaging methods can be categorized into passive and active 

approaches (Klette, et al., 1998). Passive methods require no interaction with the 3-D 

scene while active methods recover the object surface by intentionally projecting 

energy into the scene (e.g. project a structured lighting pattern, or produce variations 

of the illumination).   

 Typical passive approaches include static stereo analysis, dynamic stereo 

analysis, shape from shading, and shape from texture (Klette, et al., 1998).  

 Static stereo analysis infers the 3-D information of a scene from two or more 

images taken from different viewpoints (Klette, et al. 1998). The so-called standard 

stereo geometry is shown in Figure 3.4. A feature point ( P ) in the scene is viewed by 
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the two cameras at different positions, thus showing at different locations in the 

corresponding image plane (  and ). If both cameras are calibrated beforehand, 

the 3-D information of scene point 

1p 2p

P can be recovered by analyzing the disparity 

between image points  and . The main problem of static stereo analysis is 

locating matching points. One way of simplifying this task is to precede the matching 

algorithm by an edge detection algorithm, to reduce the number of points involved. 

This method is especially useful when there are only simple geometric objects in a 

scene. Another way of reducing the required computation is to use a hierarchical 

approach that first matches images at a very coarse resolution and then processes to 

matches at progressively finer resolution scales.  

1p 2p

 

Figure 3.4 Stereo vision using two cameras. 
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Unlike static stereo analysis where no object and camera movement occur 

during the time interval of image acquisition of two (or more) stereo images, dynamic 

stereo analysis assumes that images are taken from a continuously moving scene (or a 

moving camera) (Soatto, 2007).  The aim is to recover the 3-D geometry of the scene 

as well as its motion relative to the camera from a sequence of images. The 

movement of the scene object in three-dimensional space corresponds to a 2-D 

motion in a captured image sequence. Two steps are usually adopted in numerous 

dynamic stereo analysis methods: (1) compute observables in images (various 

observables can be used, such as points, lines, occluding contours, and optical flow), 

and (2) relate these observables to recover the 3-D information.   

 Shape from shading (SFS) methods exploit the changes in the image intensity 

(shading) to recover surface shape information. This is done by calculating the 

orientation of the scene surface corresponding to each point in the image. Because the 

intensity of a particular pixel in an image depends on the light source(s), surface 

reflectance properties of the object, and local surface orientation (expressed by a 

surface normal n), SFS methods try to extract information about surface normals in 

view solely on the basis of the image intensity.   SFS is one of the classic ill-posed 

problems of scene analysis (Klette, et al., 1998) as we can imagine there is not 

sufficient information contained in an arbitrary irradiance image to reconstruct the 

object surface unambiguously. Simplifying assumptions need to be made about 

illumination, surface reflectance properties, and surface smoothness, to make the SFS 

task solvable (Sonka, et al., 1999) and SFS can only be expected to work well by 

itself in highly controlled environments.  
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 Shape from texture methods (SFT) try to infer 3-D information of the scene 

using texture as a cue. Image plane variations in the texture properties such as density, 

size, and orientation are usually explored by SFT algorithms. For example, if an 

object surface is covered with circle patterns, quantifying the changes in the shape of 

texture elements (circles appearing as ellipses) enable us to determine surface 

orientation.  To recover the surface orientation, we must have accurate methods to 

delineate each primitive in the image plane.  For simple binary primitives such as 

circles and triangles, fairly accurate segmentation of individual image plane 

primitives for measurement is possible. However, for more complex gray-level 

textures corrupted by noise, it is usually difficult to accurately estimate the image 

plane features, which limits practical use of SFT methods (Davies, 2005).   

 All the above mentioned passive techniques do not rely on special scene 

illumination. Although passive approaches usually require little special-purpose 

hardware, they do not yield the highly dense and accurate range images that many 

applications require. Most of the shape recovery techniques in use today are active 

systems which illuminate the scene in an advantageous manner. The active methods 

can be divided into three broad categories: time of flight methods, interferometric 

methods, and structured lighting methods.  

 The time of flight (TOF) based 3-D measurement makes use of the time it 

takes for light to travel the distance from a light source, to an object surface, and 

reflect back onto the light receiver (Seta and O’ishi, 1990). There are three basic ways 

to accomplish TOF range imaging. The most straight forward type is the pulse-

modulated TOF measurement which simply turns on a light source and at the same 
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time start a stop watch. This stop watch is then read as soon as the detector senses an 

increase in intensity of the incoming light. The second type, continuous-wave 

modulated TOF, measures the phase difference between the continuous modulating 

signal and the modulation of the received light. The third type is pseudo-noise coded 

TOF. By modulating a light source with pseudo-noise, autocorrelation of the 

modulated signal achieves pulse compression for more accurate phase detection 

(Möller, 2005).  

 Interferometric methods rely on the fact that waves with a certain fixed 

wavelength can be used as a measuring stick based on wave interference. The 

interference light waves are usually generated by splitting one light beam into two 

components or using two different light sources with different wave length. One 

beam travels a known reference path while the other beam is sent to the object, 

reflected back, and also allowed to interfere with the reference beam. The two beams 

are then compared and the relative shift between these beams is measured in terms of 

wavelength. In general, interferometric measurement can achieve extremely high 

accuracy. However, if the light beams share the same wavelength, the measurements 

are only unique over a limited range of 2/λ (λ is the wavelength) and are periodic 

with period λ . Multiple-wavelength techniques can be used to stretch the 

unambiguity range of interferometers (Möller, 2005).  

 The structured lighting method is also widely used for 3-D reconstruction 

(Jalkio, et al., 1985; Dorsch, et al., 1994; Chen, et al., 2000). In a typical structured 

light system, a specially designed lighting pattern is projected on the object, and the 

deformed fringe pattern on the surface is recorded by a camera (Figure 3.5). If the 
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spatial relation of the light source and camera is calibrated beforehand, the 3-D 

information of the points in the fringe pattern can be reconstructed using triangulation. 

 The structured lighting approach is preferred in many applications over other 

ranging methods. They have the advantage of simplicity and compactness over the 

time-of-flight methods. Compared with interferometric techniques, they are better in 

the size and depth of the field of view. Generally speaking, structured lighting 

approaches usually have the following advantages: low cost, high 3-D resolution, 

convenient customization, and robustness against environment or object variation 

(Chen, et al., 2000). In this research, a structured lighting system containing a laser 

source and four high-speed cameras has been developed.  

 

Figure 3.5 Structured lighting based shape recovery by projecting single light stripe 
(Tao and Ibarra, 2000B)  
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3.3 Camera Calibration 

 A machine vision system usually contains more than one optics and electrical 

imaging devices to pursue better performance. Calibrating each imaging device is a 

crucial problem for further metric scene measurement. In our currently developed 

multi-modality imaging system (X-ray and laser range imaging), the major imaging 

components include four high speed CCD cameras and one X-ray line-scan camera.  

Calibration of these cameras is the first step towards quantitative image analysis for 

food quality inspection.  

 The goal of camera calibration is to determine the relationship between a 2-D 

image perceived by a camera (or images perceived by multiple cameras) and the 3-D 

information of the real object. Camera calibration can be divided into two phases: 

camera modeling and model parameter estimation. First, camera modeling deals with 

mathematical approximation of the physical and optical behavior of the camera using 

a set of parameters. The second phase of camera calibration deals with the use of 

direct or indirect methods to estimate the values of the parameters. Camera models 

usually consist of two sets of parameters: intrinsic and extrinsic (Figure 3.6). Intrinsic 

parameters, including camera focal length, principal point, skew factor, and lens 

distortions, models the internal geometry of a camera. They determine how to derive 

an image point position given the spatial position of the point with respect to the 

camera. Extrinsic parameters model the position and orientation of the camera with 

respect to the scene, or between different cameras.  
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Figure 3.6 Camera calibration. The purpose of camera calibration is to determine the 
relationship between a 2-D image perceived by a camera and the 3-D 
information of the real object.  Extrinsic parameters model the position 
and orientation of the camera with respect to the scene, or between 
different cameras. Intrinsic parameters determine how to derive an image 
point position given the spatial position of the point with respect to the 
camera.  

 Camera calibration can be classified into three types according to the 

calibration method used to estimate the parameters of the camera model: 

1. Direct Linear Transform techniques. The direct linear transform techniques 

use least square methods to obtain a transform matrix which relates 3-D points 

in the scene to their 2-D projections in the image plane (Abdel-Aziz and 

Karara, 1971; Hall, et al., 1982; Faugeras and Toscani, 1986). It has the 

advantage of model simplicity and rapid calculation since only linear 

equations have to be solved. However, due to the linear property of the 
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equation, lens distortion is not incorporated into the model which causes a 

rough accuracy of the system. Moreover, it is sometimes difficult to extract 

the parameters from the matrix since cameras are calibrated without explicitly 

computing their physical parameters (Salvi, et al., 2002).  

2. Non-linear optimization techniques. To account for any kind of lens 

imperfection into the camera model, the calibrating equations becomes non-

linear. In this case, the camera parameters are usually obtained through 

iteration with the constraint of minimizing some predefined function 

(McGlone, et al., 2004). A typical minimizing function can be the summation 

of the distance between the imaged points and the modeled projections 

obtained through iteration. Although almost any camera model can be 

calibrated using this iterative way, these methods require a good initial guess 

in order to guarantee convergence. 

3. Two-step techniques. To make use of the advantages of previously described 

methods, a two-step procedure, a closed-form solution followed by a 

nonlinear refinement, have been widely used for better calibration results 

(Tsai, 1987; Zhang, 2000). These techniques use a direct linear transform 

method to compute some of the parameters at first step. The calculated 

parameter values are then used as the initial values for the following iterative 

procedure. Two step techniques permit a rapid calibration by considerably 

reducing the number of iterations. Moreover, the convergence is nearly 

guaranteed due to the linear guess obtained using the direct linear transform 

method (Salvi, et al., 2002). 
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 There are two general ways to evaluate the accuracy of camera calibration. 

One is to analyze the discrepancy between the real position of the 3-D object point 

with respect to the 3-D position estimated from its 2-D projection based on the 

calculated model parameters. The other way is to compare the real position of a 2-D 

image point with the calculated projection of 3-D object point on the image plane.  

 A comparative study of the most commonly used camera calibration methods 

of the last few decades has been presented by Salvi, et al. (2002).  The major 

differences among the techniques covered are in the step concerning lens modeling. 

Camera models without considering lens distortion (Faugeras and Toscani, 1986), 

with only radial distortion (Tsai, 1987), and with radial distortion, decentering 

distortion and thin prism distortion (Weng, et al., 1992) are compared. Results show 

that the modeling of radial distortion is quite sufficient when high accuracy is 

required. The use of more complicated models does not improve the accuracy 

significantly because the complexity of the model ill effects the calibration. The 

results also show that the accuracy of non-linear calibration methods on the image 

plane is much better than linear methods. Thus, a two step nonlinear method is 

applied in our research to calibrate CCD cameras and only radial distortion is 

considered.  

 X-ray camera is different from normal optical imaging devices (e.g., CCD 

camera). The image intensity reflects the total absorption of X-ray in its path through 

the measured object. Common X-ray imagers used in the product inspection industry 

interpose the object to be viewed between a point X-ray source and a linear array of 

detectors. As the object moves perpendicularly to the fan beam of the X-ray, a 2-D 
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image consisting of several 1D projections is collected. The scanning geometry of the 

sensor can be defined by a combination of orthographic (in the motion direction) and 

perspective (in the orthogonal direction) transformations (Nobel et al. 1998). The 

linear pushbroom model can be used to analyze this imaging setup (Nobel, et al., 

1994; Gupta and Hartley, 1997).  

 In sections 3.1 to 3.3, we’ve reviewed the technologies used in the combined 

X-ray and laser 3D imaging system, which included the X-ray imaging, optical range 

imaging, and camera calibration methods. Next, we’ll review the techniques used in 

the backlight imaging system for automatic walnut shell and meat separation. 

Sections 3.4 to 3.6 will cover texture analysis, feature selection, and pattern 

recognition methods, respectively.  

3.4 Texture Analysis Methods 

 Our second machine vision application in food safety inspection is to develop 

a backlight imaging system for automatic walnut shell and meat separation. Our 

experiments showed that due to the difference in light transmittance of walnut shell 

and meat, the texture patterns of the acquired backlit images are quite different.  

Appropriate texture feature analysis methods are required for the differentiation 

between walnuts’ shells and their meat. Approaches of texture analysis are usually 

categorized into four types: structural, statistical, model-based, and signal processing 

methods.  

 Structural approaches (Haralick, 1979; Fu, 1982) assume that textures are 

composed of texture primitives and the texture is produced by the placement of these 
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primitives according to certain organization rules. The structure and the spatial 

organization of texture primitives are the key components of the resulting models.  

Texture primitives are building blocks of a texture, representing local spatial 

organization of spatially varying image signals. Examples of texture primitives 

include edges, shapes, and Voronio polygons (Tuceryan and Jain, 1990). The spatial 

organization of primitives can be random or dependent on each other within a defined 

neighborhood. To describe the texture, one must define the primitives and the 

organization rules. The advantage of the structural approach is that it provides a good 

symbolic description of the image. However, this feature is more useful for texture 

synthesis than texture analysis tasks. The symbolic descriptions can be ill defined for 

natural textures because of the variability of both primitives and organization rules.  

 In contrast to structural approaches, statistical methods do not attempt to 

model explicitly the hierarchical structure of the texture. Instead, they represent the 

texture indirectly by the statistical properties that govern the spatial distribution and 

relationships between the gray levels of an image. Many of these methods are based 

on Julesz’s (1975) finding that the texture discrimination power of the human visual 

system has a close relationship with the spatial statistics of the image gray levels. 

Commonly applied statistics can be categorized into first-order, second-order, and 

high-order according to the number of gray levels that are taken into account 

simultaneously during texture analysis. First-order statistics depend only on 

individual pixel values and not on the interaction or co-occurrence of neighboring 

pixel values. They can usually be computed from the histogram of the pixel gray 

values in the image. Typical examples include the mean, standard deviation, and 
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moments of the image histogram. Second-order statistics account for the spatial inter-

dependency or co-occurrence of two pixels at specific relative positions. The most 

popular second-order statistical features for texture analysis are derived form the so-

called gray-level co-occurrence matrix (Haralick, et al., 1973). Although the approach 

has been proposed for several decades, it remains among the most popular and most 

discriminative types of texture features and has been successfully used in various 

applications, such as iris detection (He, et al., 2007), satellite image analysis 

(Ünsanlan, 2007), and content based image retrieval (Tao, et al., 2007). Other second-

order statistical methods, such as autocorrelation function (Tuceryan and Jain, 1990), 

and local binary pattern operator (Ojala, et al., 2000, 2002), have also been widely 

used in texture analysis. Currently, statistics up to the second order are applied in 

most applications. Although, higher than second-order statistical features have also 

been investigated (Tsatsanis and Giannakis, 1992), the computational complexity 

increases exponentially with the order of statistics which limits their practical 

application. 

 Model based methods are based on the construction of an image model that 

can be used to both describe and synthesize texture. The model parameters estimated 

from an image capture the essential perceived qualities of texture. For example, the 

Autoregressive (AR) model is one of the stochastic models frequently used for the 

representation of texture characteristics. Let }},,2,1{},,,2,1{|),({ NjMijiI LL ∈∈  

be the gray value of a given texture image with a size of NM × . The 2-D AR model 

can be represented as  
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where S denotes the associated neighborhood, is a set of parameters of the AR 

model which characterizes the dependence of a pixel to its neighbors, and 
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error term. The assumption of this 2-D AR model is that in a texture image, the pixel 

gray level at location is related to the linear combination of gray values of 

its neighbors through a set of parameters . The values of these parameters can be 

estimated from the texture image and further be used as a feature vector to distinguish 

different texture types (Lee, et al., 2003; Joshi, et al., 2006).  Several other stochastic 

models, such as Gaussian Markov random fields (Deng and Clausi, 2004; Rellier, et 

al., 2004), moving average (MA) models (Chanyagorn and Eom, 2000), 

autoregressive moving average (ARMA) models (Zhong and Sclaroff, 2003) and 

fractal models (Petrou and Sevilla, 2006) have also been proposed for texture 

modeling, synthesis, segmentation, and classification. In practice, the computational 

complexity arising in the estimation of model parameters is the primary problem.  
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 Signal processing based methods try to compute texture features from filtered 

images by using signal processing techniques. Signal processing in the spatial domain 

is the most direct way to capture image texture properties. For example, simple edge 

detection masks, such as Robert, Sobel, and Laplacian operators (Gonzalez and 

Woods, 2002), can be applied to the image to perform image convolution, thus 

highlight edges. The edge density computed from the filtered image can be used to 

distinguish fine and coarse texture patterns since fine textures tend to have a higher 

density of edges per unit area than coarse textures.  Texture analysis can also be 
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analyzed in the image frequency domain by performing Fourier transform (Chan and 

Pang, 2000). The Fourier transform is an analysis of the global frequency content in 

the signal, however the resolution in spatial domain is totally lost. Many applications 

require the analysis to be also localized in the spatial domain. This is usually handled 

by making a compromise in  the resolutions between the spatial and frequency 

domains, which results in the widely used Gabor transform (Lee, 1996; Kumar and 

Pang, 2002) and the wavelet transform (Daubechies, 1992). The Gabor representation 

is optimal in minimizing the joint uncertainty in space and frequency. Each Gabor 

filter is characterized by an orientation or spatial frequency, which generates the 

Gabor convolution energy measure of an image. It is particularly efficient in detecting 

the frequency channels and orientations of texture pattern with high precision. Gabor 

filters have been successfully used in various applications, such as fabric defects 

detection (Kumar and Pang, 2002), face recognition (Zhou and Wei, 2006), and on-

road vehicle detection (Sun, et al., 2005). The 2-D wavelet transform performs a 

spatial-frequency analysis on an image by repeatedly decomposing the image in the 

lower frequency sub-bands (Starck, et al., 1998). The rationale behind this spatial-

frequency joint representation is to cut the image of interest into several parts using 

sets of scaleable modulated windows and then analyze the parts separately. Analyzing 

an image in this way gives us detailed information about the image under different 

scales. Typical applications of wavelet transform based texture analysis methods 

include content-based image retrieval (Kokare, et al., 2005), medical image 

classification (Khademi and Krishnan, 2007), and texture image segmentation 

(Charalampidi and Kasparis, 2002).   

 27 
 



 

 All texture analysis methods introduced above have their own application 

areas. In a typical texture classification application, texture features are first extracted 

by using texture analysis methods to characterize each data pattern. A machine 

learning algorithm uses these feature set to find a function (or classifier) that is 

generalized from the data so that the classifier is able to predict the classes for new 

instances. Usually, there is more than one texture analysis method that can be used in 

a specific application, thus the resulting feature vector will increase significantly 

depending on the number and the type of methods used. In theory, the more features 

extracted the greater possibility that each pattern can be correctly classified in the 

infinite data set limit. However, the data size is always limited in reality, and the 

classifier must be estimated on the basis of the limited amount of available data. In 

these cases, too many features can make the estimated classifier unreliable or even 

lose any practical use, which is the so-called curse of dimensionality (Bishop, 2006). 

Feature selection is one important means to attack this problem and a brief review of 

current feature selection methods is given in the following section.  

3.5 Feature Selection 

 Feature selection is a process that chooses an optimal subset of features 

according to a certain criterion (Liu and Motoda, 1998). The criterion specifies the 

details of measuring feature subsets, and the choice of which can be influenced by the 

purpose of feature selection.  For example, the criteria can be measured in terms of 

whether selected features help improve the classifier’s accuracy. Feature selection has 

many benefits, such as reducing the measurement and storage requirements in the 

next round of data collection by removing irrelevant and redundant features, 
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improving data quality, making machine learning algorithms work faster, defying the 

curse of dimensionality to ensure more reliable model generation, and facilitating data 

visualization and understanding (Guyon and Elisseeff, 2003).  

 Three general approaches of feature selection exist: filters, wrappers and 

embedded methods (Guyon, et al., 2006).  

 Filter methods (Almuallim and Dietterich, 1994; Kira and Rendell, 1992) 

filter out features on the basis of their relevance or discriminate power with regard to 

the targeted classes. The filtering process is independent of any machine learning 

algorithm and only the resulting best feature subset is used to train the machine 

learning algorithm [Figure 3.7(a)].  

 

Figure 3.7 Filter and wrapper feature selection procedures. (a) Filter approach; (b) 
Wrapper approach. Filter and wrapper methods differ mostly by the 
evaluation criterion. Filters use criterions do not involve any learning 
algorithm, while wrappers use the performance of a learning machine 
trained with a given feature subset. 

 Wrapper methods (John et al. 1994; Kohavi and John, 1997) wrap feature 

selection around a specific classifier and use the classifier’s accuracy to directly judge 
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the usefulness of a feature. In similarity to the filter model, a classifier is learned on 

the training data with the selected features [Figure 3.7(b)].  

 As we can see, filters and wrappers differ mostly by the evaluation criterion 

(highlighted red boxes in Figure 3.7). Filters use criteria that do not involve any 

learning algorithm, while wrappers use the performance of a learning machine trained 

with a given feature subset. Comparing with filters, wrapper methods may achieve 

better classification performance since their feature selection procedure already take 

the classifier’s performance into account. However, the filter approach is 

computationally less expensive since measuring relevance (or other criterion such as 

distance and information gain) is usually cheaper than measuring accuracy of a 

classifier (Liu and Motoda, 1998). 

 Embedded methods (Weston, et al., 2001, 2003; Guyon, et al., 2002; Bradley 

and Mangasarian, 1998; Rakotomamonjy 2003) differ from the two former feature 

selection methods in the way feature selection and learning interact. As mentioned 

before, filter methods do not incorporate learning, while wrapper methods use a 

learning machine to score feature subsets according to their predictive performance, 

without incorporating knowledge about the specific structure of the learning 

algorithm. Embedded methods, however, do not separate the learning from the feature 

selection and perform feature subset generation and evaluation in the process of 

training an algorithm (Figure 3.8). By treating the learning machine as a “black box”, 

wrappers can generally be combined with any kind of learning machines, while 

embedded methods are usually specific to given learning machines.  
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Figure 3.8 Embedded feature selection procedures. 

Every family of feature selection methods (filter, wrapper and embedded) has 

its own advantages and drawbacks. In general, filters are less computational 

expensive than wrappers and embedded methods. Wrappers and embedded methods, 

however, have higher capacity and are more powerful. Compared to wrappers, 

embedded methods are less universal and more complicated in structure, while they 

usually make better use of the available data and can reach a solution faster (Guyon, 

et al., 2002).  There are also theoretical arguments showing that filers are less prone 

to overfitting than wrappers and embedded methods. If only a small amount of data 

are available, filters usually perform better. Embedded methods and wrappers will 

eventually outperform filters as the number of training points increase (Guyon, et al., 

2006).  

 Removing redundant or irrelevant features results in an improved 

classification performance and the extent of which depends on the feature selection 
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methods and the pattern classification or pattern recognition algorithms used. In the 

next section, we will briefly review pattern recognition methods. 

3.6 Pattern Recognition 

 Pattern recognition is the study of how machines can observe the environment, 

learn to distinguish patterns of interest from their background, and make sound and 

reasonable decisions about the categories of the patters (Jain, et al., 2000). Automatic 

machine recognition, description and classification of patterns are important problems 

in a variety of engineering applications. The best known approaches for pattern 

recognition can be divided into four types: template matching, syntactic or structural 

matching, statistical classification, and neural networks (Jain, et al., 2000). 

 Template matching is one of the simplest approaches for pattern recognition. 

The matching is performed by comparing an unknown pattern to templates using a 

similarity measure, taking into account all allowable scale, pose (translation and 

rotation), and illumination changes, and possible object deformations.  Templates or 

prototypes can be user specified or learned from a training set and the type of which 

depends on the specific applications. It can be points, curves, a 2-D shape or even a 3-

D object. The basic way of template matching is to loop through all the pixels in the 

search image and compare them to the template. While the method is simple to 

implement, it has high computational demands. One approach to alleviate the 

problem is to filter the image in the frequency domain since the correlations between 

the template and the scene image can be computed through an implementation of the 

fast Fourier transform (FFT) algorithm (Bandeira, et al., 2007). Another method is to 

perform searching in a hierarchical way, where low-resolution versions of the 
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template are compared against low-resolution versions of the image, to find the 

location of a good match. This coarse-to-fine template matching usually requires 

much less computation compared to the full-resolution search. However, the typical 

coarse-to-fine template matching does not always find the global best match, thus the 

reduction in computation comes at the price of lower precision (Gharavi-Alkhansari, 

2001).  

 The syntactic approach takes the view that a pattern is composed of simpler 

subpatterns, which are themselves built from even simpler subpatterns (Basu, et al., 

2005). The simplest subpatterns are known as primitives and a complex pattern is 

represented in terms of the interrelationship between these primitives. A formal 

analogy between the structures of patterns and the syntax of a language is used to 

establish the foundation for syntactic pattern recognition. The patterns are viewed as 

sentences in a language, while the primitives are viewed as the alphabet of the 

language. The sentences are generated based on the grammar of a language. The 

primitive set is extracted from the training data and the grammar rules can also be 

inferred from the sample patterns. The idea that a large collection of complex patterns 

can be described by a small number of primitives and grammatical rules makes this 

approach intuitively appealing. Syntactic pattern recognition can be used in situations 

where the patterns have a definite structure which can be captured in terms of a set of 

rules. One example of this is the electrocardiogram (ECG) pattern recognition. ECG 

waveforms can be approximated with primitives such as peaks, straight line segments 

and parabolic segments. If normal and unhealthy ECG waveforms can be described as 

formal grammars, measured ECGs can be classified as healthy or unhealthy by first 
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describing them in term of the primitives and then trying to parse the descriptions 

according to the grammars (Trahanias and Skordalakis, 1990; Tümer, et al., 2003).   

 Statistical methods have been most intensively studied and used in practice. In 

statistical pattern recognition, a pattern is represented in terms of k features and is 

viewed as a point in a k-dimensional space. Given a set of training patterns from 

different classes, the objective is to establish decision boundaries in the feature space 

which separate patterns belonging to each class. The decision boundaries can be 

obtained either directly (geometric approach) or indirectly (probabilistic approach). 

The probabilistic approach requires firstly estimating class-conditional probability 

density functions and then constructing the discriminant functions which specify the 

decision boundaries (Devroye, et al., 1996). The class-conditional density can be 

estimated either parametrically or non-parametrically depending on whether the form 

of the class-conditional density function is known beforehand. If the form of the 

class-conditional density is known, but some of the parameters of the density are 

unknown, the density function can be estimated in a parametric way. Otherwise, 

nonparametric procedures can be used with arbitrary distributions and without the 

assumption on the forms of the underlying density function (Duda, et al., 2000). After 

the class-conditional density functions have been estimated, a number of well-known 

decision rules are available to define the decision boundary, such as the Bayes 

decision rule, the maximum likelihood rule and the Neyman-Pearson rule (Duda, et 

al., 2000). On the other hand, the geometric approach directly specifies a parametric 

form of the decision boundary (e.g., linear or quadratic) and then constructs the 

decision boundary by optimizing certain error criterion. A classical example of this 
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type is the Fisher linear discriminant, which projects high-dimensional data onto a 

line and performs classification in this one-dimensional space yielding the maximum 

ratio of between class scatter to within-class scatter (Duda, et al., 2000). Another 

example is the decision tree (Quinlan, 1993) which is trained by iterative selection of 

individual features that are most salient at each tree node. The decision boundaries 

generated are parallel to the feature axes since only one feature is used at each node. 

Support vector classifier (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000), one of 

the most popular classifier, can also be grouped into this type. The method consists of 

mapping the input vector into a higher dimensional space and constructing an optimal 

hyper-plane to achieve maximum separation between different classes in this space.  

 Artificial neural networks are elaborate computer models of neurons 

constructed by computational neurobiologists in order to simulate the functions of 

human brain. They can be viewed as massively parallel processing systems consisting 

of large quantities of simple processors (neurons) with many interconnections 

(weights between neurons). Neural networks have emerged as an important tool for 

classification, due to their ability to learn complex nonlinear input-output 

relationships, and the ability to adjust themselves to the data through training. The 

most commonly used family of neural networks for pattern classification include 

multilayer perceptron (MLP), radial basis function (RBF) network, and self-

organizing map (SOM) (Bishop, 1995; Kohonen, 2001).  Both MLP and RBF are 

feed-forward networks which are organized into layers and have unidirectional 

connections between the layers. SOM, on the contrary, contains only one layer of 

neurons (except the input nodes). During the network training procedure, weights 
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between neurons or even the network structure are updated so that a trained network 

can efficiently perform a specific classification task. Neural networks have gained 

increasing attention since they usually do not require much domain-specific 

knowledge and can be treated as a black box, enabling “automatic” mapping between 

inputs and outputs.  

 The above four pattern recognition approaches are not necessarily 

independent. Attempts have also been made to design hybrid systems involving 

multiple methods (Kuncheva, 2004).  A number of experimental studies have shown 

that the pattern recognition or classification accuracy can be improved by combining 

a set of classifiers. However, to train a set of classifiers may require more training 

data and more computation time. Also, the classifier combination results are not 

always better than those of the best individual classifier (Jain, et al., 2000).  
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Chapter 4:  Geometric Calibration of a Combined X-ray and Laser 

Range Imaging System 

 As mentioned in chapter 1, the detection of bone fragments and other physical 

hazards in deboned poultry meat has become increasingly important in food quality 

and safety. The poultry physical contamination detection problem solution depends 

largely on how well the thickness variation is neutralized. In this research, a thickness 

estimation method based on laser range imaging was adopted to measure the poultry 

profile in real-time, which leads to the possibility of thickness compensation.  

4.1 Principle of Thickness Compensation for Physical Contamination Detection 

 Figure 4.1 illustrates the conceptual procedure of thickness compensation for 

easy physical contamination detection. Figure 4.1(a) shows a piece of poultry meat 

with bone fragments inside. The associated X-ray image intensity profile is shown in 

Figure 4.1(b). Generally, the intensity of objects in an X-ray image reflects the X-ray 

absorption, which is determined by the physical characteristics of the material and its 

thickness. The intensity of the imagery  can be described using an exponential law 

(Dowsett, et al., 2006) as follows: 

XI

( )dII X μ−= exp0 ,                                                (4.1) 

where is the incident X-ray intensity, 0I μ is the X-ray attenuation coefficient of the 

material (assuming the material is homogenous), and d is the length of the X-ray 

pathway through the material.  
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 As we can see from equation (4.1), the thickness variation leads to grayscale 

variations in the X-ray image. In other words, for a homogenous object, if its X-ray 

image is darker in some location, it also means the object is thicker at that place.  

However, since the X-ray attenuation coefficients are different for meat tissue and 

bone fragments (or other physical contaminants), the X-ray image intensity of a piece 

of meat with uniform thickness but also embedded with bones will not be constant 

within the image. So due to the thickness variation of poultry meat, it is very difficult 

to detect the physical contaminations inside accurately by checking the X-ray image 

alone. To address this problem, Tao and Ibarra (2000A) suggested acquiring the 

thickness information of the inspected objects, and then compensating for the 

thickness effects in the X-ray images.  

 

Figure 4.1 Principle of thickness compensation for physical contamination detection. 
(a) a piece of poultry meat with bones inside; (b) profile of the X-ray 
image intensity; (c) pseudo X-ray imagine generated based on the 
thickness profile; (d) thickness compensated image (subtract the pseudo 
X-ray image from the X-ray image). Notice bone fragments can be easily 
detected after the thickness compensation 
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 The surface topography  is obtained using laser range imaging, and 

further mapped to a pseudo X-ray image [Figure 4.1(c)] under the 

assumption that the meat is homogenous. Because both X-ray and laser images are 

functions of the thickness, a mapping relationship exists between them. The 

transformation function can be determined by constructing a model between the 

X-ray image and laser image (Jing, 2003; Xin, 2003): 

),( yxD

),( yxI pX

XLf

( )( )yxDfyxI XLpX ,),( = .                                           (4.2) 

 Thus, the grayscale variation in the X-ray image due to uneven meat thickness 

can be compensated by subtracting the pseudo X-ray image from the acquired X-ray 

image: 

),(),(),( yxIyxIyxI pXXtc −= ,                                   (4.3) 

where is the resultant thickness compensated image [Figure 4.1(d)]. By 

combining the mapped pseudo X-ray image with the original X-ray image, the 

physical contaminants detection inside meat becomes much easier.    

),( yxItc

 The overall system performance depends on the accuracy of the information 

provided by the individual subsystems. Due to the unique synergism of X-ray 

imaging and laser range imaging in this research, special calibration methods were 

developed to ensure the combined systems work seamlessly.  Two types of cameras, 

four CCD cameras and one X-ray line-scan camera were utilized in our combined 

system. The calibration of each kind of camera and the method to synthesize the 

calibration results will be introduced in the following sections. 
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4.2 CCD Camera Calibration 

 The key idea for CCD camera calibration is to link the known coordinates of a 

set of 3-D points and their projections on the CCD camera and then to estimate 

camera parameters (camera focal length, lens distortion, etc.) based on that 

information. To perform a camera calibration, a camera model needs first to be 

established to serve as the foundation for the following calibration procedures. 

4.2.1 CCD Camera Model 

 The geometry of the widely used pinhole camera model is shown in Figure 4.2.  

In this camera model, an object point ),,( www ZYXM =  is transformed from the 

world coordinate system to the camera coordinate system, , in order to 

perform perspective projection. This transformation consists of a translation and a 

rotation, which can be formulated as  
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 where  is the 3-D rotation matrix, and  is the 3-D 

translation vector.   
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 Through perspective projection, the ideal (undistorted) image coordinate of 

the object point  is expressed as ),( uu yx
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where is the effective focal length.  f

 The above projection is a mapping from the Euclidean 3-D space to Euclidean 

2-D space. The center of the projection is called the camera center, also known as the 

optical center. The line from the camera center perpendicular to the image plane is 

called principal axis, and the point where the principal axis meets the image plane is 

called the principal point. 

 
Figure 4.2 Pinhole camera geometry, where C is the camera center and also the origin 

of the camera coordinate system, p is the principle point, M is a point in 
the space that has different coordinates in the world and camera coordinate 
systems, and m is the image of M in the image plane that is placed in front 
of the camera center. 

 The camera model (4.5) is based on an ideal optical system. However, 

common cameras often display somewhat distorted projection behavior. Two kinds of 

lens distortion, as shown in Figure 4.3, are usually modeled. One is radial distortion, 

which causes the actual image points to be displaced radially in the image plane. This 

type of distortion is mainly caused by flawed radial curvature of the lens elements. 
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The other is tangential distortion, which causes the displacement of image points 

perpendicular to a radius from the center of the field.  The tangential distortion is 

caused by the lens elements not being perfectly aligned in the lens itself (Heikkila, 

2000). Research shows that for most industrial machine vision applications, only 

radial distortion needs to be considered, and only one term is needed (Tsai, 1987).  In 

this case, the relationship between the distorted image coordinates , and the 

ideal image coordinates , can be represented as 

),( dd yx
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where 22
dd yxr += , is the first order lens radial distortion coefficient. 1k

 

Figure 4.3 Two types of camera lens distortion: radial distortion and tangential 
distortion. dt in the figure is caused by tangential distortion while dr is 
caused by radial distortion. 

 42 
 



 

 In practice, the image in the image plane will be further sampled by a frame 

grabber card and stored in an image memory buffer. Usually the origin of the image 

buffer coordinate system is located in the lower left corner (see Figure 4.4). Since the 

unit of the image buffer coordinates is the pixel, coefficients  and  are needed to 

change the distance units into pixels. Here,  and  are the center-to-center 

distances between adjacent CCD sensor elements in the row and column directions, 

respectively. The 2-D image buffer coordinates , can be obtained by 

xd yd

xd yd
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where  is the horizontal scaling factor, and  are the coordinates of the 

principal point in the image buffer coordinate system. In our application, the 

horizontal scaling factor  is set to one and the initial value of the principal point, 

, is assumed to be at the image buffer center.  

xs ),( 00 yx

xs

),( 00 yx

 

Figure 4.4 The relationship between the image coordinate system and the image 
buffer coordinate system, where  are the image coordinates of ),( uu yx
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point ,  are the corresponding image buffer coordinates, and 
 are the coordinates of the principle point in the image buffer 

coordinate system. 

m ),( ff yx
),( 00 yx

 
 From equations (4.4) to (4.7), the relationship between a point in 

the world coordinate system and its image  in the image buffer can be 

represented as 
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where 22
0

22
0 )()( yfxf dyydxxr −+−= . 

4.2.2 CCD Camera Calibration Using a Monoview Coplanar Set of Points 

 Physical camera parameters can be categorized as extrinsic parameters, which 

represent the 3-D position and orientation of the camera, and intrinsic parameters, 

which model the camera’s optical setting and characteristics. In the CCD camera 

model employed in this study, the intrinsic parameters include focal length , 

principal point , and radial distortion coefficient . The CCD pixel sizes,  

and , are available from the manufacturer. The extrinsic parameters include the 

rotation matrix 

f

),( 00 yx 1k xd

yd

R and the translation vector T . The objective of the camera 

calibration procedure is to determine optimal values for these parameters based on 

image observations of a known 3-D target.  
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 As mentioned in the introduction section, the laser range imaging subsystem 

works to capture the profile of scanned objects. Laser light in conjunction with a 

cylindrical lens is used to generate the laser light plane, which has been arranged to 

overlap with the X-ray beam plane when the machine is set up. The intersection of the 

laser beam with the object surface is visible as a light stripe in the image grabbed by 

the CCD camera. The thickness variation of the scanned object is registered by the 

shift in the stripe lines (Figure 4.5). Since all the stripes grabbed by the CCD camera 

are within the laser light plane, the CCD camera can be calibrated using monoview 

coplanar set of points according to Tsai’s method (1987). It is worth to mention that 

the monoview of the calibration points should be taken when these points are all 

sitting in the plane of the laser fan beam. This is achieved by synchronizing the X-ray 

and CCD camera image acquisition during system calibration and also by using a 

specially designed calibration model (Figure 4.7a), which will be introduced in detail 

in a later section.  
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Figure 4.5 Laser range imaging system setup. The thickness variation of the scanned 
object is registered by the shift of the stripe lines in the CCD camera 
image plane.  

Because the calibration points are on a common plane, the  

coordinate system is defined such that

),,( www ZYX

0=wZ . The CCD camera calibration method 

requires at least five accurately detected calibration points, whose corresponding 

geometric configurations are known. The seven processing steps of this method are 

explained below. 

(1) Compute the distorted image coordinates  from the image buffer 

coordinates . 

),( dd yx

),( ff yx

 First, an image of the calibration object is taken. The feature point 

coordinates  are extracted from the image. The horizontal and vertical 

distances between two sensor elements,  and , are obtained from the 

),( ff yx

xd yd
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manufacturer data sheet. For the CCD camera used in this research (Pulnix TM-

6740CL, California, USA),  and are both 7.4 μm. The corresponding image 

coordinates, , are calculated for all extracted calibration feature 

points  by 

xd yd

),( dd yx

),( ff yx
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(2) Calculate the five parameters ( )5
1

4
11

2
1

1
1 ,,,, rTrTTTrTrT yyxyyy

−−−−− for the 

transformation of image coordinates into world coordinates. 

 The projection of calibration points in the world coordinate 

system onto corresponding image points in image coordinates is characterized 

by the following linear equation [Appendix I of Tsai’s paper (1987)]: 

),,( www ZYX

),( dd yx

[ ] dwdwddwdwd xLYxXxyYyXy =⋅−−   ,                         (4.10) 

where  for [ T
yyxyyy rTrTTTrTrTL 5

1
4

11
2

1
1

1 −−−−−= ] 0≠yT . Here and are the 

components of the translation vector 

xT yT

T in x and axis directions, and , , , and 

 are elements of the rotation matrix

y 1r 2r 4r

5r R . With more than five calibration points, an 

over determined system of linear equations can be established and solved for L using 

the pseudo-inverse technique (Hartley and Zisserman, 2000).  

(3) Calculate  from L. yT

 From step (2), we already have all the elements of the vector . We now 

define a new matrix as 

L

C
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 If there is no whole row or column of C that vanishes (the value of matrix 

elements equal zero), the magnitude of is calculated by yT
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with . Otherwise, , where , are the 

elements in the row or column of C that do not vanish (Tsai, 1987). The sign of  

can then be determined by first projecting a point in the world coordinate system (the 

image coordinate of this point should be far away from the principal point) into the 

image plane and then comparing the projected with the original position.  
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(4) Compute the 3-D rotation matrix R and the x component of the translation  

 vector . xT

 Once is known, the rotation matrix elementsyT )5,4,2,1( =iri and the x 

component of the translation vector, , become easy to solve for: xT

)5,4,2,1( =′= iTrr yii ,                                                 (4.13) 
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 The still missing components , , , , and can be calculated based on 

the orthonormal property of the rotation matrix

3r 6r 7r 8r 9r

R : 
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1=R .                                                            (4.16) 

 (5) Calculate focal length and the z component of the translation vector, , 

ignoring the lens distortion. 

f zT

 By setting to zero in Equation 4.8(b), for each calibration point we can 

establish the following linear equation with and as unknowns: 
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where ywwc TrYrXrY +⋅++= 0654  and 0987 ⋅++= rYrXrw ww . Again, if more than two 

calibration points are used, this over determined set of equations can be solved using 

pseudo-inverse technique: 
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whereW andQ are calculated using N calibration points with 
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(6) Estimate the radial distortion , and refine the estimation for and .  1k f zT

 The utilization of a standard optimization technique allows more accurate 

calculations of the camera constant , the depth , and the distortion coefficient . 

These three parameters can be calculated by minimizing the following function:  

f zT 1k
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where is the undistorted projection of the point in camera 

coordinate calculated from equations (4.4) and (4.5), while

),( zui Tfm ),,( wiwiwi ZYX

)(~
1kmui is the undistorted 

camera coordinate for the image point , recovered by using equations (4.7) and 

(4.6). Basically we are projecting both the points in world coordinates and the points 

in image frame coordinates to image coordinates, to check for coordinate 

discrepancies.  Equation (4.19) is a nonlinear minimization problem, which is solved 

with the Levenberg-Marquardt algorithm (Gill and Murray, 1978; Ranganathan, 

2004). It requires an initial guess of and , which can be obtained from step (5). 

Zero is assumed as the initial value for the radial distortion coefficient . 

),( ii yx
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(7) Calculate optimal solutions for  001 ,,,,, yxkTRf .

 In this last step, all the parameters are further refined by minimizing the 

function 
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where all the unknown parameters are as defined in the previous 

sections. Again Levenberg-Marquardt algorithm is used to solve this nonlinear 

minimization problem. Initial guesses of these parameters are obtained from the 

results of steps (1) to (6). Better results can be achieved after this step, since all the 

camera parameters are taken into account for the optimization. 

),,,,,( 001 yxkTRf
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4.3 X-ray Line-Scan Camera Calibration 

 For the X-ray imaging subsystem, X-ray images were collected by a high-

resolution line-scan digital X-ray camera (Hamamatsu, C8750-10FC, Japan) featuring 

1280 pixels per line at 0.4 mm resolution.  

4.3.1 X-ray Line-Scan Camera Model  

 Geometrically, the X-ray line-scan camera can also be approximated by the 

pinhole camera model as shown in Figure 4.6. The distance between the X-ray source 

and the detector is considered the effective focal length, f ′ , of the X-ray camera; the 

image plane is where the detector is located; c′  is the X-ray focal spot, which is also 

the camera center and the origin of the camera coordinate system; is the principal 

point, which is the intersection of the principal axis and the image plane. The gray 

rectangle represents an object interposed between the X-ray source and the X-ray 

detector.  

p′
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Figure 4.6 Pinhole camera geometry for an X-ray camera. Here c is the X-ray focal 
spot which also is the camera center and the origin of the camera 
coordinate system; 

′

p′ is the principal point; f ′ is the effective focal length; 
M  is a point on the object surface, and m′  is its image in the image plane 
(detector); θ  is the angle between the conveyor belt and detector image 
plane. 

 To calibrate the X-ray camera, the 2-D pinhole model is used. As before in 

CCD camera calibration, four coordinate systems ⎯ world, camera, image, and 

image buffer ⎯ are needed to model the transformation between a feature point in the 

object and its image in the image buffer. We use homogenous coordinates for easy 

representation of geometrical transformations. Homogeneous coordinates form a 

basis for the projective geometry used extensively to project a 3-D scene onto a 2-D 

image plane. They also unify the treatment of common graphical transformations and 

operations. For a 3-D point ),,( ZYXP = , its corresponding homogeneous coordinate 

are the components of a vector augmented by adding 1 as the last element: 

.  Similar changes were made to represent a point in 1-D or 2-D space. 

By representing points in homogenous coordinates, inversions or combinations of 

)1,,,(ˆ ZYXP =
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linear transformations are simplified to inversion or multiplication of the 

corresponding matrices.  

 A special calibration object was made and shown in Figure 4.7. As shown in 

Figure 4.7(b), a set of fine steel pins are inserted at known geometrical positions.  The 

X-ray beam will cut across these steel pins and cast shadows in the image plane. The 

correspondence between steel pins and shadows is used to calibrate the X-ray camera. 

The details of this method will be discussed below.  

 

(a) 

(b) 

Figure 4.7  Photos of the calibration object: (a) side view; (b) top view with the steel 
pins inserted at known geometrical positions.  

 Without loss of generality, we assume the X-ray beam plane is on of the 

world coordinate system; thus the feature point 

0=Z

)0,,( ww YXM = is simplified 

as in 2-D space (X-ray beam plane). By using homogenous coordinate 

representation, M is further represented as

),( ww YXM =

)1,,( ww YXM = . The relationship between 

the coordinates of point M and its image projection m′ can be expressed as 
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with is an arbitrary scale factor. Here [ ] , called the 

extrinsic matrix, represents the rotation and translation that relate the world 

coordinate system to the camera coordinate system; 
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K is the camera 

intrinsic matrix;  is the effective focal length; and f ′ 0u′  is the principal point.  

 From equation (4.21), a linear mapping between the homogenous coordinates 

of a model point M and its image m′ can be achieved by a homography H :  
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4.3.2 Estimate Homography between the Calibration Model Plane and its Image 

 Let and)1,,( wiwii YXM = )1,'( ii um =′ , ni ...,,2,1= , be sets of model and image 

calibration points, respectively. Ideally, each point pair should satisfy equation (4.22). 

In practice, however, due to the noise in the extracted image points, equation (4.22) 

cannot be satisfied. Assume im′ is corrupted by Gaussian noise with mean zero and 

covariance matrix , then the maximum likelihood estimation of
im′∑ H can be obtained 

by minimizing the following function: 
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where im′~ is the estimated image coordinates computed from equation (4.22), 
im′∑ is 

the covariance matrix of , and is the number of feature point pairs. im′ n

 If feature points are extracted independently with the same procedure, we can 

simply assume a covariance matrix for all . In this case, minimizing 

equation (4.23) is simplified to be the following equation: 
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The minimization of equation (4.24) is conducted as follows.  

 Let us denote the elements of the 32× matrix H by , , …, . Then 

equation (4.22) can be rewritten as 

1h 2h 6h

[ ] 0' =− ξMuM ,                                                  (4.25) 

where .  [ ]Thhhhhh 654321=ξ

 If more than six point pairs are given, we have an over-determined matrix 

equation 

0=ξV                                                            (4.26) 

where .  
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The solution is well known to be the right singular vector of V associated with the 

smallest singular value.  

4.3.3 Extraction of Calibration Parameters from the Homography Matrix H   

 By using the homogeneous coordinates, the homography matrix H can be 

estimated from equation (4.26) only up to a scale factor, i.e., we can get the following 

equation: 
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whereλ is an arbitrary scale.  

 All the intrinsic and extrinsic parameters of the X-ray camera can be 

calculated from the preceding equation. The results are listed as follows: 
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4.3.4 Compensation of the X-ray Fan Beam Effect 

 As previously mentioned, the laser subsystem is used to capture the 3-D 

profile of the scanned objects. In practice, the 3-D thickness image is mapped to a 

pseudo X-ray image that will further be subtracted from the real grabbed X-ray image 

to remove the thickness influence in the X-ray image, thus highlighting the suspicious 

areas (Jing, 2003; Xin, 2003). 

 To get this pseudo X-ray image from the laser 3-D profile, for each point in 

the profile, we need to project it to the X-ray camera image plane and calculate its 

corresponding position and intensity in that image plane. For example in Fig. 4.8, for 

any point M at the object surface, we want to know its projection position, m , in the 

X-ray camera image plane, as well as the pixel intensity that corresponds to the X-ray 

attenuation. The position on the detector of the image of any point can be obtained 

from equation (4.22), so only its intensity needs to be determined. Assuming the 

incident X-ray intensity is uniformly distributed and the scanned object is 

homogenous, the X-ray attenuation is affected by the length of the X-ray path through 

the object (D in Figure 4.8).  

′
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Figure 4.8  X-ray fan beam effect. The X-ray absorption is determined by the distance 
it passes through the object. Notice that the coordinates of the X-ray focal 
spot are  in the world coordinate system. )0,,( yx tt −−

 As shown in Figure 4.8, the coordinates of the X-ray focal spot are 

 in the world coordinate system. For any surface point on the 

object, the line function of the X-ray passing through it can be determined by the 

coordinates of these two points (neglecting the z axis components): 

)0,,( yx tt −− )0,,( ww YX

)( w
xw

yw
w Xx

tX
tY

Yy −
+

+
=−                                             (4.33) 

 The coordinates for the point where the X-ray exits the object, , 

are determined by the intersection of the incident X-ray (equation 4.33) with the 

line . So the X-ray path corresponding to point  on the object surface 

can be calculated as 

)0,,( wowo YX

0=y )0,,( ww YX

22 )()( wowwow YYXXD −+−=                                        (4.34) 
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4.4 Direct Mapping from CCD Camera to X-ray Line-Scan Camera 

 The CCD camera and X-ray camera calibration methods have been introduced 

in detail in previous sections. After CCD camera calibration, every intrinsic and 

extrinsic parameter for the CCD camera is known. So for each pixel in the image 

frame of the CCD camera, it is easy to get the corresponding coordinates in the world 

coordinate system by solving equations (4.8a) and (4.8b). Also, since the 

homography H is known after X-ray camera calibration, it becomes straightforward to 

calculate the image coordinates (in the X-ray line-scan camera) for each point in the 

world coordinate system from equation (4.22). It is intuitive to combine the results of 

the two calibrations (Figure 4.9). So for each pixel in the CCD camera, we can 

directly calculate its coordinates in the X-ray line-scan camera image domain. From 

equation (4.34), the corresponding X-ray pathway can also be determined. It is 

worthy to mention that in a typical multi-modality imaging system, images acquired 

from different imaging modalities normally need to be registered together before any 

further image analysis. However, image registration is usually computationally 

expensive. For our dual-modality imaging system, the acquired laser range image can 

be directly mapped to the X-ray image domain after system calibration, without any 

complicated calculation. In addition, the X-ray fan beam effect can be compensated at 

the same time. This great time/computation saving is valuable especially for a real-

time application.  

 59 
 



 

 

Figure 4.9 Direct mapping from CCD camera to X-ray line-scan camera. The 
mapping from CCD camera to world coordinates can be realized after 
CCD camera calibration. The mapping from world coordinates to X-ray 
line-scan camera can be realized after X-ray camera calibration. The 
direction mapping from CCD camera to X-ray line-scan camera can be 
achieved by combining those two calibration results. 

4.5 Engineering Implementations for the Semi-automatic System Calibration 

 We have introduced the calibration method of the combined imaging system 

from a mathematical point of view in the previous sections. This section covers its 

engineering implementation. 

4.5.1 System Calibration Setup  

The system calibration setup is shown in Figure 4.10. Before we start the 

calibration, the calibration model needs to be placed on the conveyor with its surface 

parallel to the laser/X-ray beam plane. An encoder is mounted on the conveyor rotor 

shaft and connected to the imaging system. The encoder records the movement of the 

conveyor belt and sends out continuous electronic pulses to synchronize image 

acquisitions of the CCD cameras and the X-ray line-scan camera. Each pulse will 

trigger both the X-ray line-scan camera and the CCD cameras to acquire one image. 
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The image acquisition frequency of each camera is proportional to the speed of the 

conveyor. 

 

Figure 4.10 System calibration setup. The calibration model is placed on the conveyor 
with its surface parallel to the laser/X-ray beam plane.  

4.5.2 Calibration Image Selection 

The first step of the system calibration is to acquire the calibration images. As 

shown in Figure 4.10, the conveyor is setup to move from left to right. When the 

calibration model moves slowly with the conveyer belt, its front surface will be 

coplanar with the laser plane, and eventually so will its back surface. During this 

procedure, the X-ray line-scan camera captures an X-ray image of the calibration 

model, which can be used to calibrate the X-ray camera itself. At the same time, each 

CCD camera acquires a sequence of images, and the one captured when the model 
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surface is coplanar with the laser beam plane will be used to calibrate that camera 

(Figure 4.11). For example, only the image captured by the camera A1 (A2) when the 

calibration model front plane is coplanar with the laser beam plane can be used to 

calibrate camera A1 (A2). Similarly, only the image captured by the camera B1 (B2) 

when the calibration model back plane is coplanar with the laser plane can be used to 

calibrate camera B1 (B2). But how can we know when the calibration model surface 

will be coplanar with the laser light plane? This is achieved by referring to the X-ray 

image, since the image acquisition of the X-ray line-scan camera and the CCD 

cameras are synchronized. As shown in Figure 4.11, the locations of the front and 

back planes of the calibration model are first detected by using image processing 

algorithm and this location information is further used to select correct CCD camera 

calibration images. With this method, we can acquire the calibration images 

automatically by making the calibration model run through the laser beam only once, 

with minimum human interaction.  
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Figure 4.11 Automatic calibration image selection. The X-ray line-scan camera 
acquired X-ray image is used to calibrate itself. The CCD camera 
calibration image is selected by analyzing the X-ray image, since the 
image acquisitions for all the cameras are synchronized.  

4.5.3 Calibration Procedure Summary 

The complete calibration procedure is shown in Figure 4.12.  In step 1, the 

CCD camera calibration image is captured when the calibration model plane is 

coplanar with the laser beam. In step 2, the X-ray line-scan camera calibration image 

is recorded when the X-ray beam intersects the steel pins. Calibration feature points 

are then detected and used to calibrate the CCD and X-ray line-scan camera 

respectively. In step 3, the X-ray fan beam effect is compensated with the calibration 

results of step 1 and 2. Lookup tables are then generated to achieve direct mapping 

from CCD pixels to X-ray detector sensors and to improve the performance of the 

whole system. 

 63 
 



 

 

Figure 4.12 Flow chart of the calibration procedure. Step 1 is CCD camera calibration, 
step 2 is X-ray line-scan camera calibration, and step 3 is the direct 
mapping from CCD pixels to X-ray detector sensors.  

 Figure 4.13 shows the aforementioned two look-up tables (LUTs), one for 

image position mapping and the other for X-ray path-length (fan beam effect) 

compensation. For any pixel  in the camera CCD, its associated image position 

in the X-ray line-scan camera will be stored at in the LUT_POSITION, and the 

distance of the X-ray path through the object is available at in the LUT_PATH. 

The speed gain using the lookup table is significant, since retrieving the value from 

memory is much faster than executing an expensive computation.   

),( ji

),( ji

),( ji
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Figure 4.13 Look-up tables generated after the CCD and X-ray line-scan camera 
calibration. For any pixel (  in the camera CCD, its associated image 
position in the X-ray line-scan camera will be stored at ( in the 
LUT_POSITION, and the distance of the X-ray path trough the object is 
available at ( in the LUT_PATH. 

), ji
), ji

), ji

 To further illustrate the function of the two LUTs, the procedures of how to 

use them in real-time application are listed bellow: 

(1) Take a laser image with a CCD camera when an object passes through the 

laser beam. 

(2) Detect the laser stripe in the image from (1). 

(3) For each pixel on a laser line from (2), use the two lookup tables to get its 

corresponding position on the X-ray detector plane, and its associated X-

ray path-length.  Thus, a laser line on the CCD image plane will be 

mapped to a line on the detector plane. 

(4) Repeat steps (1-3) to generate a laser range image. Lines received from 
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each loop are collected sequentially to generate a laser 3D image with X-

ray fan beam effect compensated.  The laser range image can be further 

combined with the X-ray image to compensate the thickness variation of 

the scanned object.  

4.6 Results and Discussion 

 To evaluate the performance of the calibration procedure, experiments were 

conducted to determine system precision. 

4.6.1 CCD Camera Calibration Results 

 Coplanar feature points [see Figure 4.7(a)] are used to calibrate the CCD 

camera. The centroid method is used to get sub-pixel accuracy in feature point 

extraction (Valkenburg, et al., 1994).  From the camera calibration, the coordinates of 

the principal point is known; then the distance from each feature point to the principal 

point (the radius) can be easily calculated. Using equation (4.8), the feature points can 

be projected from the world coordinate system back to image buffer coordinates, 

yielding what are called estimated feature points here. The coordinate difference 

between the extracted and estimated feature points as a function of radius is plotted in 

Figure 4.14.  It is observed that the error is almost uniformly distributed across 

different radii, which means the lens distortion is well calibrated. 
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Figure 4.14 Error analysis of CCD camera calibration. The horizontal axis represents 
the distance to the camera principal point, and the vertical axis represents 
the distance between extracted and estimated feature points in the CCD 
camera image plane.  

 Table 4.1 shows the detailed error statistics. The root mean square (RMS) of 

the error is approximately 0.39 pixels. Since the CCD camera filed of view is about 

160 mm 120 mm and the active pixels of the CCD camera is 640× 480, the spatial 

resolution of our CCD camera is 0.25 mm/pixel. Therefore, RMS error is only 0.10 

mm, and its standard deviation (STD) is 0.05 mm – showing that high accuracy has 

been achieved after camera calibration. Even the maximum (MAX) error of 0.29 mm 

is small compared to the size of the foreign materials within the food.  

×

Table  4.1 Error statistics for CCD camera calibration. 

Unit MEAN RMS STD MAX 

Pixel 0.34 0.39 0.21 1.14 
mm 0.09 0.10 0.05 0.29 

 Figure 4.15 shows one image of the calibration model and its calibrated image 

based on the resultant calibration parameters. Notice that all the calibration points in 
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Figure 4.15(b) are aligned horizontally and vertically after calibration, which 

constitutes visual verification of the CCD camera calibration results.  

(a) (b) 

Figure 4.15 The original versus the calibrated calibration model image: (a) calibration 
model image obtained by CCD camera; (b) calibrated image of (a). 
Notice the alignment of calibration points within the two images. 

4.6.2  X-ray Line-Scan Camera Calibration Results 

 The X-ray camera calibration analysis is implemented on the image plane of 

the X-ray camera. Figure 4.16 shows the extracted and estimated feature point 

coordinates in the detector plane. All the asterisks are almost on the diagonal line, 

which means small discrepancy between the extracted and estimated feature points. 

This can be further verified with Figure 4.17, which shows that the feature coordinate 

errors are almost uniformly distributed across the full range of the X-ray line-scan 

camera, mostly within one pixel.   
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Figure 4.16 Extracted versus estimated feature point coordinates in the X-ray camera 
calibration. 

 

 

Figure 4.17 Error analysis of X-ray camera calibration. The horizontal axis represents 
the extracted feature point coordinates, while the vertical axis represents 
the distance between extracted and estimated feature points in the X-ray 
camera image plane.  
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 Table 4.2 shows the error statistics for the X-ray calibration results. The RMS 

error is 0.48 pixels. The spatial resolution of the X-ray detector sensor is 0.4 

mm/pixel, yielding an RMS for the X-ray camera of 0.19 mm, which is acceptable for 

food safety inspection. 

Table  4.2 Error statistics for the X-ray line-scan camera calibration. 

Unit MEAN RMS STD MAX 

Pixel 0.39 0.48 0.48 1.03 
mm 0.16 0.19 0.19 0.41 

4.6.3  Combined CCD Camera and X-ray Line-Scan Camera Calibration Results 

 For the combined CCD camera and X-ray camera calibration, each pixel of 

the CCD camera is mapped directly to an X-ray line-scan sensor based on the 

calibration results. By using equations (4.8a), (4.8b) and (4.22), for each feature point 

in the CCD image plane, we can estimate its corresponding position in the X-ray 

camera image plane, which is called the estimated feature point coordinates in Figure 

4.18. The coordinates of the estimate feature points are then compared with those of 

the extracted feature points from the X-ray image. If calibration procedure is well 

implemented, the difference between each coordinate pair should be very small. This 

is obviously shown in Figure 4.18 and 4.19.  
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Figure 4.18 Extracted versus estimated feature point coordinates in the detector image 
plane. 

 

 

Figure 4.19 Error analysis of combined CCD camera and X-ray camera calibration. 
The horizontal axis represents the extracted feature point coordinates, 
while the vertical axis represents the distance between extracted and 
estimated feature points in the X-ray camera image plane.  

 Table 4.3 shows the error statistics for the combined calibration results. The 

final calibration is very precise. It has RMS error as low as 0.2 mm and a standard 

deviation of 0.2 mm. Though the RMS error for this combined calibration is a little 
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higher than that of the X-ray camera calibration result, it still gives a very good 

calibration performance. Together with the 0.16-mm MEAN, 0.2-mm STD, and 0.48-

mm MAX, this calibration approach makes the whole combined X-ray and laser 

range imaging system accurate and robust. 

Table  4.3 Error statistics for combined CCD camera and X-ray line-scan camera 
calibration. 

Unit MEAN RMS STD MAX 

Pixel 0.41 0.51 0.50 1.19 
mm 0.16 0.20 0.20 0.48 

  

To better illustrate the calibration result and its application, Figure 20 shows 

images of a chicken (Gallus Gallus) sample. Figure 4.20(a) is the photo of a chicken 

breast. Figure 4.20(b) is the corresponding 3D laser image from the result of section 

4.5.3 steps 1-4. Figure 4.20(c) is the X-ray image. Notice that the 3D laser image and 

X-ray image are already perfectly aligned after the system calibration. This will make 

the further image combination and processing much easier, since no image 

registration is needed.  These two images from different modalities will be further 

processed to find possible contaminations within the chicken meat (Jing, 2003; Xin, 

2003).   
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Figure 4.20 Photo of a chicken breast sample; (b) 3D laser image of the sample; (c) 
X-ray image of the sample chicken breast with the foreign material 
highlighted. 
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4.7  Conclusions 

 We have demonstrated a three-step method to calibrate a combined X-ray and 

laser range imaging system based on pinhole camera models.  The CCD camera was 

calibrated using a coplanar set of points, giving a RMS error of 0.09 mm, a standard 

deviation of 0.05 mm, and a maximum error of 0.29 mm. The X-ray line-scan camera 

calibration was performed using a steel pin pattern (RMS error 0.19mm, standard 

deviation 0.19 mm, maximum error 0.41 mm).  The distortion caused by the X-ray 

fan beam effect was compensated after X-ray camera calibration.  Direct mapping 

from the CCD camera to the X-ray line-scan camera was achieved.  Two look-up 

tables, one for mapping image positions from CCD to X-ray camera and another for 

finding X-ray path lengths, are created to replace the run-time computation.  

Experiments show that the combined laser 3-D and X-ray imaging system can be well 

calibrated by our three-step calibration method (RMS error 0.20 mm, standard 

deviation 0.20 mm, and maximum error 0.48 mm).  
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Chapter 5:  Texture Analysis based Backlight Imaging System 
for Walnut Meat and Shell Separation 

 In the previous chapter, we introduced the combined X-ray and laser range 

imaging system for physical contamination detection, mainly focusing on the method 

of calibrating the whole system. In this chapter, we will introduce another machine 

vision food safety inspection system – a backlight imaging system for automatic 

walnut meat and shell separation.  

5.1 Introduction 

 The black walnut, Juglans nigra, grows throughout the central and eastern 

U.S. Unisexual flowers emerge on black walnut from mid-April to mid-June, 

appearing with the leaves on a separate inflorescence of the same tree. A globular 

fruit is produced which contains a corrugated nut in its yellowish-green husk. The nut 

is usually 40 to 60 mm in diameter and spherical shaped, containing an oil-rich, sweet, 

and edible seed. The seed (walnut meat) has a rich and distinctive flavor and is often 

used as an additive in value-added foods, such as ice cream, bakery items, and gift 

bags. The weight of a single nut varies from 15 to 24 gram and the meat weight is 

about 30%. There are over 15.4 million acres of black walnut trees with 

approximately 700 million black walnut trees in the United States (Jones, et al., 1998).  

An acre of mature black walnut trees (from 20 to 70 years old) produces about 1000 

to 1700 pounds of raw nuts annually (Hatcher, et al., 1998). However, of the 4 billion 

pounds of walnuts produced annually, only about 20 millions pounds of the raw nuts 

are commercially processed (Hammons, 1998).  With nut processors often paying 

only $0.12 per pound of hulled nuts (Hammons, 2007), growers were not motivated 
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to harvest the nuts, and the U.S. has insufficient nut processing capacity available. 

However, there is a great potential economic benefit if an efficient walnut processing 

method is available. Compared with the low price of the hulled nuts ($0.12/lb), the 

current market price of the black walnut meat is $12 and up per pound, depending on 

the quality and physical size of the meat .  

 In current walnut processing plants, black walnuts are cracked and most of the 

shells are removed by air lathe.  The remaining shell fragments are then removed by 

visual inspection to meet the required marketable quality.  This manual inspection is 

very time consuming and labor intensive because shell and meat fragments are similar 

in size and color (Krishnan and Berlage, 1984).  Therefore, an accurate automated 

inspection method is desirable to reduce labor and time, while ensuring product 

quality.  

 In the past decades, machine vision and non-vision based technologies have 

been applied to separate the walnut meat and shell. Kishnan and Berlage (1984) 

investigated the feasibility of using iron and magnetic fluid to remove shells from 

walnut meat. In their work, the walnuts were coated with either iron powder or 

magnetic fluid for comparison purposes. The coated nuts were cracked in a 

commercial nut cracker and then conditioned over a permanent magnetic drum 

separator. Although both of their methods are successful in removing shell fragments 

from nut meat, they could not be adopted by the industry immediately because both 

the iron powder and magnetic fluid are considered food additives and therefore 

require the approval of the Food and Drug Administration.  
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 A notable study was presented by Pearson and Young (2002), who tried to 

automatically sort almonds with embedded shells using laser transmittance imaging. 

Their research work was based on the fact that laser light could penetrate the almond 

kernel, but could not go through the almond shell.  A shell fragment blocks nearly all 

the light, forming a dark spot in the image which can be captured by a line-scan 

camera. The imaging setup is effective, while the laser transmittance image of almond 

kernels does not contain many unique texture patterns which makes the sorting 

relatively difficult.  

 In this study, we propose to use a backlight imaging method to differentiate 

black walnut shells and meat based on the observation that their backlit images 

showed quite distinctive texture patterns. The objectives include: (1) to build a 

backlight imaging system for image acquisition of walnut meat and shell; (2) to 

explore texture analysis and pattern classification methods based on the acquired 

backlit walnut images; and (3) to evaluate the performance of the backlight imaging 

system. So, this chapter is structured as follows.  Section 5.2 introduces the imaging 

system setup. Section 5.3 -5.4 describes the texture analysis and pattern classification 

methods. Finally, Section 5.5 demonstrates the performance of the system. 

5.2  Materials and Backlight Imaging System Setup 

 Intact current-year and one-year-old harvested black walnuts were provided 

by the USDA Agricultural Marketing Service. The walnuts were cracked and the 

walnut meat and shells were separated manually. Photos of various sample types are 

shown in Figure 5.1(a). These include light meat (light colored walnut meat), dark 

meat (dark colored walnut meat), and shells with either inner or outer surfaces facing 

 77 
 



 

the camera. Due to the shape, color and size variations of walnut shells and meat, it is 

difficult to separate them based on the traditional color imaging method. For example, 

a dark meat surface may look quite similar to a shell’s outer surface and some shells’ 

inner surfaces have similar patterns to meat. However, the difference between meat 

and shell surfaces is quite obvious with the backlight imaging system [shown in 

Figure 5.1(b)]. Texture analysis methods thus allow for easy separation of shell and 

meat with high classification accuracy.  

(a) (b) 

Figure 5.1 (a) Walnut samples showing (from top to bottom row): light meat, dark 
meat, inner shell surface and outer shell surface; (b) Typical backlit 
images of walnut samples showing (from top to bottom row): light meat, 
dark meat, inner shell surface and outer shell surface. 

 The experimental backlight imaging system is shown in Figure 5.2(a) and its 

schematic diagram is shown in Figure 5.2(b). Walnut samples were placed on 

transparent glass with a diffusion film underneath. The film diffused the light making 

the background of the backlit image bright. Below the film was a box that held a 
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fiber-optic annular ring laminator to illuminate the sample. A monochrome CCD 

camera was positioned above the transparent glass and pointed down toward the 

sample. The camera was connected to an imaging board with its field of view (FOV) 

adjusted to cover the entire glass window. A PC with imaging board installed inside 

controlled image acquisition and handled image analysis.  

 As shown in Figure 5.2(b), among the light rays emitted from the annular ring 

laminator, those rays that traveled directly to the camera were blocked by the light 

shielding plate. Only the rays between lines O-A and O-B in the figure penetrated the 

glass stage and escaped out of the lighting box. When a nut sample was placed on the 

stage, the light rays struck it and scattered. Part of the scattered light was then 

captured by the camera. By this means, the CCD camera did not capture direct light 

from the laminator, but captured only the scattered light from both the sample and the 

diffusion film. This backlight imaging system is the initial proof-of-principle setup 

for data collection. The design of the real-time similar principle imaging system will 

be proposed in section 5.5.4. 
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Figure 5.2 (a) Experimental backlight imaging system; (b) Schematic plot of the 
backlight imaging system.  

 The acquired backlit images of walnut fragments are shown in Figure 5.1(b). 

Due to the difference in light transmission, the backlit images showed distinct texture 

patterns. Walnut meat images were bright with striped texture, while shell images 

were much darker with less texture. In some cases, when a shell’s inner or broken 

surface faced the camera, the light color of the surface made it prone to the reflected 

light, which gave the image some intensity variation and texture patterns [see first 

image in the third row of Figure 5.1(b)]. Fortunately, these texture patterns were 

different from those of the walnut meat. Therefore, they could still be correctly 

separated by using proper texture operators and classification algorithms. 

The walnut classification procedure is shown in Figure 5.3. Walnut samples 

were randomly selected and the backlit image of each sample was captured by the 

imaging system (Figure 5.2). The foreground area of each image was segmented from 
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the background and different texture features were extracted (section 5.3). These 

texture features were then concatenated into one vector for each sample. All the 

features are further normalized (data pre-processing) and stratified random sampling 

(Witten and Frank, 2005) was performed to split the samples into a training set and a 

testing set (section 5.5). The support vector machine based recursive feature 

elimination (SVM-RFE) method was then used to select good feature subsets and 

obtain a trained SVM classifier. The performance of the classifier was further 

estimated using the testing data set.  

 

Figure 5.3  Flowchart of the walnut classification. 

5.3 Texture Analysis of Backlit Walnut Images  

 Texture plays an important role in the composition of natural images. Texture 

analysis and classification are essential in many areas, such as applications in 

biomedical image analysis, remote sensing, industrial surface inspection, etc. (Kumar 

and Pang, 2002; Zhong and Sclaroff, 2003; Sun, et al., 2005; Kokare, et al., 2005; 

Khademi and Krishnan, 2007).  Many existing texture analysis methods make the 

assumption, explicit or implicit, that texture images are acquired from the same 

viewpoint (i.e. the same spatial scale and orientation). However, in many real-world 
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applications, it is very difficult to ensure that the captured images have the same 

orientation and scaling. Therefore, texture analysis methods should be invariant to 

viewpoint changes.  In our research, all of the images were captured under the same 

experimental setup to assure the same scale.  However, the orientation of walnut 

samples was not controlled, which requires our texture descriptors to be rotationally 

invariant.  In this study, we evaluated five texture analysis methods: local binary 

pattern operator, circular Gabor filters, Wavelet transform, circular symmetrical gray-

scale co-occurrence matrix and image histogram based statistics. They were all 

modified, if necessary, to achieve a rotationally invariant property on the foreground 

area of the images. 

5.3.1 Local Binary Pattern Operator (LBP)  

 The LBP operator is an efficient gray scale and rotation invariant texture 

descriptor (Ojala, et al., 1996, 2000, 2002). In a 3x3 neighborhood (Figure 5.4a), the 

eight neighbors of a pixel were thresholded at the value of the center pixel (Figure 

5.4b). The eight binary numbers associated with the eight neighbors were then read 

sequentially in the counter clockwise direction to form an 8-bit number (Figure 5.4c). 

Although the resultant 8-bit number was invariant against any monotonic gray scale 

transformation by definition, it could vary due to image rotation. To achieve rotation 

invariance, an arbitrary number of circular bit-wise shifts were made until the 

resultant 8-bit number achieved its minimum (Figure 5.4c).  There could be 36 

different values, corresponding to 36 unique rotation invariant local binary patterns. 

However, the occurrence frequencies of the 36 different patterns varied greatly. Some 

of them were encountered rarely, making them statistically unstable. To quantify the 
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varying performance of individual patterns, the number of spatial transitions (bitwise 

 or  changes) in the patterns was counted and defined as the uniformity 

measure U (Ojala, et al., 2002). For example, patterns “00000000” and “11111111” 

had a U value of 0, while the pattern “00001111” in Figure 5.4c had a U value of 2 as 

there were exactly two transitions (  or ) in the pattern. Patterns that had U 

values less than or equal to 2 were designated uniform and each was assigned a 

unique LBP index. All other patterns were labeled non-uniform and collapsed into 

one value, 9 (Figure 5.4d), which made the number of total different patterns 10. By 

compressing the non-uniform patterns, the total number of LBP values decreased 

from 36 to 10. This mapping is based on the observation that non-uniform patterns 

are not dominative in deterministic textures (Ojala, et al., 2002).  

10→ 01→

10→ 01→

 For each image, a histogram of LBP values was calculated from the 

foreground pixels and further normalized. The value of each bin was collected to 

form the feature vector that described the local spatial patterns of the image:  

},,,{ 1021 histhisthistFeaVecLBP L= ,                         (5.1) 

where is the ith bin of the normalized histogram. )10,,2,1( L=ihisti
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Figure 5.4 Computation of LBP. (a) A 3x3 neighborhood of a pixel; (b) 
Neighborhood is thresholded at the value of the center pixel; (c) A 8-bit 
binary number is formed by reading sequentially the eight neighbors and 
further being circularly shifted until reaching its minimum; (d) The 8-bit 
binary patterns are further compressed to 10 LBP values based on the 
uniformity measure. 

 The rotation invariant LBP operator provides robust information about local 

spatial patterns, but by definition it discards detailed contrast (Ojala, et al., 2000). 

This immediately suggested that the contrast of local image textures should be 

incorporated as well. Under stable lighting conditions, the contrast could be measured 

with rotation invariant local variance: 
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igμ                       (5.2) 

 For each image, any foreground pixel (except pixels on the boundary) has a 

corresponding VAR output. All the output values were pooled together to obtain a 

histogram. The histogram was further normalized and mapped to a normalized 

cumulative histogram (NCH). m centiles [ =11 in our research (Jin, el al., 2008)] m
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were then calculated from the NCH by finding the cut values that divide NCH into 

desired  parts. These centiles were then used to characterize local texture 

contrast of the images:  

1+m

},,,{ 21_ mVARLBP centilecentilecentileFeaVec L=                  (5.3) 

5.3.2 Circularly Symmetric Gabor Filters  

 Multi-channel Gabor filters are recognized to be a very useful tool in texture 

analysis (Daugman, 1988; Bovik, et al., 1990; Kumar and Pang, 2002; Kamarainen, et 

al., 2006). The Gabor representation is optimal in minimizing the joint two-

dimensional uncertainty in space and frequency (Daugman, 1988). It is 

mathematically expressed as 

))(2exp(),(),( VyUxjyxgyxG +−′′= π ,                      (5.4) 

where defines the position of the filter in the Fourier domain with a center 

frequency of 

),( VU

22 VUF += and an orientation angle )/arctan( UV=θ . The term 

represents a Gaussian function rotated at an angle),( yxg ′′ φ , where  

)cossin,sincos(),( φφφφ yxyxyx +−+=′′                        (5.5) 

are the rotated coordinates. The general form of the Gaussian function is  
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whereλ defines the aspect ratio and σ  the scale factor.  
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 The above traditional Gabor function in a 2-D image domain can be 

considered as orientation and scale tunable edge, and line detectors as shown in 

Figure 5.5(a). It is very effective at orientation dependent texture analysis. However, 

in our case, texture orientation was less important. This is why the circular symmetric 

Gabor filters (Porter and Canagarajah, 1997) are more appropriate: 

))(2exp(),(),( 22 yxFjyxgyxh +−= π                           (5.7) 

where F is the center frequency and is same as equation (5.6) with),( yxg 1=λ . 

  The Gabor filters are not orthogonal to each other which means filtered 

images contain redundant information. The common strategy of filter design is to 

ensure that the half-peak magnitude support of the filter responses in the frequency 

spectrum touch each other, which requires  and F σ  to satisfy the following equation: 
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12
12

2
2ln2

B

B

F
π

σ    ,                                      (5.8) 

where B is the bandwidth of the Gabor filter (Jain and Farrokhnia, 1991). Since 

several experiments have shown that the frequency bandwidth of simple cells in the 

visual cortex is about one octave, we chose B =1, and four center frequency values, 

, are used: F 2 {1/4, 1/8, 1/16, 1/32}. Figure 5.5(b) shows the magnitude of these 

filters in the Fourier domain.   
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(a)  (b) 

 

Figure 5.5  Magnitude of traditional vs. circularly symmetric Gabor filters in the 
Fourier domain. (a) Magnitude of traditional Gabor filters in the Fourier 
domain with F= 2 { 1/4, 1/8, 1/16, 1/32 } , B=1 and 1=λ , and four 
orientations; (b) Magnitude of circularly symmetric Gabor filters in the 
Fourier domain with F= 2 { 1/4, 1/8, 1/16, 1/32 } , B=1 and 1=λ .  

 Given an image , its circular Gabor filtered image can be defined as the 

convolution: 

),( yxI

∑∑ −−= ∗

1 1

),(),(),( 1111
x y

yyxxhyxIyxG                         (5.9) 

where∗ indicates the complex conjugate. For the four center frequency values , four 

filtered image  i =1, 2, 3 and 4 were gained. The mean

F

),( yxGi iμ and the standard 

deviation iσ of the magnitude of each filtered image were used to characterize the 

different texture patterns (Manjunath and Ma, 1996): 
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iii yxG 2),( μσ  i =1,2,3,4       (5.10) 

A feature vector based on the circularly symmetric Gabor filters was then defined as 

},,,,,,,{ 44332211 σμσμσμσμ=GABORFeaVec                   (5.11) 

5.3.3 Wavelet Transform 

 The 2D wavelet transform performs a spatial-frequency analysis on an image 

by repeatedly decomposing the image at the lower frequency sub-bands (Starck, et al., 

1998; Kokare, et al., 2005; Khademi and Krishnan, 2007). The rationale behind this 

spatial-frequency joint representation is to cut the image of interest into several parts 

using sets of scaleable modulated windows and then analyze the parts separately. 

Analyzing an image in this way gives us detailed information about the image under 

different scales. A full wavelet image decomposition results in an array of wavelet 

coefficients which is of the same shape and size as the original image. Figure 5.6 

shows the result of a three-level wavelet decomposition. The channels indicated in the 

diagram are the outputs from the three stages of the sub-band filtering process and 

contains information of the original image at different spatial frequencies and 

orientations. The HH (LL) channel represents image information of both high (low) 

horizontal and vertical frequency, while the HL (LH) channel represents image 

information of high (low) horizontal and low (high) vertical frequency. If the image 

contains strong texture content at the frequency and orientation represented by a 

channel, the energy (defined as -norm) of the reconstructed image associated with 2l
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that channel will be large. Denote  as the reconstructed image from 

channel i, 

),(Im yxagei

{ }3,2,1|,,, 3 =∈ kLLHHLHHLi kkk , the corresponding energy is: 

∑∑=
x y

ii yxageE 2),(Im                                       (5.12)  

 

Figure 5.6  Three-level wavelet image decomposition. (a) Ten channels of three-level 
wavelet decomposition; (b) Four frequency bands (labeled by the shade 
pattern) to make the extracted texture features less sensitive to image 
rotation. 

 As shown in Figure 5.6(a), there are a total of 10 frequency/orientation 

channels for a three-level wavelet decomposition. The energy in these channels is not 

rotationally invariant. To eliminate rotation variance, HL, LH and HH channels of 

each decomposition level were combined (Figure 5.6b) to produce four frequency 

bands which are insensitive to image rotation. The normalized energy at each level 

was therefore used for texture classification. The wavelet energy based feature vector 

can be represented as  

 },,,{
3213 HHHLWAVELET PPPPFeaVec = ,                      (5.13) 
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5.3.4 Circularly Symmetric Gray Level Co-occurrence Matrix 

 The gray level co-occurrence matrix (GLCM) (Haralick, et al., 1973) is one of 

the most widely used texture analysis methods. It is a second-order spatial histogram 

that estimates the distribution of co-occurring image pixel values at a given offset. 

Let ),( θδ r denote a vector in the polar coordinate of the image, as shown in Figure 

5.7. For any such vector, we can compute the joint distribution of pairs of gray levels 

that occur at pairs of locations separated byδ .  

 

Figure 5.7 Displacement ),( θδ r  in the polar coordinate system; (b) neighborhood 
pixels for r=1 and r=2. 

 Note that the ),( θδ r parameterization makes the co-occurrence matrix 

sensitive to image rotation. Therefore, it should be modified to achieve rotation 

invariance. Mathematically, a circularly symmetric gray level co-occurrence matrix 

(CS-GLCM) C is defined over an mn × image I , parameterized by offset r , as: 
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where is the distance between a point pair located at and . 

The neighborhood of one pixel with d=1 and d=2 is shown in Figure 5.7(b). Basically, 

for each reference pixel in image I, the neighboring pixels at distance r were 

checked one by one. The pixel location within the given neighborhood was ignored 

and only its gray level was taken into account. By doing so, the co-occurrence matrix 

C is only a function of the neighborhood distance 

( ),(),,( tsqpDist ) ),( qp ),( ts

),( qp

r  without being affected by image 

rotation. The matrices were further normalized to approximate the joint distribution 

probability of gray level pairs separated by r. In our research, to make the co-

occurrence matrix less sparse and also to save the computation time, the 8-bit gray 

images were first rescaled into 16 gray levels. Two sets of rotationally invariant co-

occurrence matrix ,  with1C 2C 2,1=r  were then computed. Five statistical texture 

features, entropy, energy, contrast, homogeneity and correlation, were derived from 

each co-occurrence matrix (Petrou and Sevilla, 2006). The CS-GLCM based feature 

vector was the combination of all these properties which can be represented as 

 }2,1|,,,,{ ==− kCorHomConEngEntFeaVec kkkkkGLCMCS              (5.15)           

where  are the entropy, energy, contrast, homogeneity 

and correlation derived from normalized co-occurrence matrix (with 

kkkkk CorHomConEngEnt ,,,,

kr = ), 

respectively (see Appendix A for the definition).                
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5.3.5 Image Histogram Based Statistics  

 Apart from the above sets of features, image histogram and its associated 

statistical features were also used to describe the texture patterns. The purpose of an 

image histogram is to graphically summarize the distribution of pixel values. It is 

obtained by splitting the range of the gray scale into equal-sized bins and counting the 

number of pixels whose intensity fall into each of the bins. The count in each bin is 

further divided by the total number of pixels to get a normalized 

histogram , where),...,2,1(, NkNH k = N is the number of bins. In this study, we 

employed six statistics derived from the normalized histogram, including mean, 

variance, entropy, energy, skewness and kurtosis, to characterize the histogram 

distribution (see Appendix B for the definition).   

 The image histogram based statistical texture feature can then be represented 

as 

},,,,),,...,1({ NHNHNHNHNHNHkHIS KurSkeEntEngVarMeanNkNHFeaVec ==     (5.16) 

where are the mean, variance, energy, 

entropy, skewness and kurtosis of the normalized histogram respectively (Ott and 

Longnecker, 2001).  

NHNHNHNHNHNH KurSkeEntEngVarMean ,,,,

5.4 Feature Selection and Texture Classification  

 All the features introduced above can be combined together and fed to the 

learning algorithm for texture classification. However, not all these features are 

equally useful for the learning algorithm and a feature selection method can help in 

this case. Feature selection has many benefits, including facilitating data visualization 
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and understanding, reducing the measurement and storage requirements, decreasing 

training and utilization time, and defying the curse of dimensionality to improve 

prediction performance (Guyon and Elisseeff, 2003). As we mentioned in the chapter 

of literature review, three general approaches of feature selection exist: filters, 

wrappers and embedded methods (Guyon, et al., 2006). Filter methods (Almuallim 

and Dietterich, 1994; Kira and Rendell, 1992) select features on the basis of their 

relevance or discriminate power with regard to the targeted classes. Wrapper methods 

(John, et al, 1994; Kohavi and John, 1997) wrap feature selection around a specific 

prediction method, and the estimated accuracy of the prediction method is used to 

directly judge the usefulness of a feature. Embedded methods (Weston, et al., 2001, 

2003; Bradley and Mangasarian, 1998; Rakotomamonjy, 2003) differ from the two 

former feature selection methods in the way feature selection and classifier learning 

interact with each other. One example of this method is SVM-RFE (support vector 

machine based recursive feature elimination (Guyon, et al., 2002)). It was originally 

proposed for gene selection, where a linear version of Support Vector Machine (SVM) 

is used as the learning algorithm in a recursive procedure to select a subset of genes 

for cancer classification. In our research, a nonlinear version of SVM-RFE (with 

Gaussian kernel) is used for feature subset selection and texture pattern classification. 

In the following sections, we briefly review the SVM classification method and 

SVM-RFE feature selection method. 

5.4.1 Support Vector Machine 

 Support vector machines have been very popular in solving classification 

problems. The method consists of mapping the input vector into a high nX ℜ∈
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dimensional space H and constructing an optimal hyper-plane to achieve maximum 

separation between different classes in this space (Vapnik, 1998). The 

mapping is performed by using a kernel function which is 

defined as an inner product in

HXX ∈Φ )(a ),( ⋅⋅K

H : 

)()(),( jiji XXXXK Φ⋅Φ=                                (5.17) 

 The kernel plays an important role in SVMs. By using kernels, all necessary 

computations are performed directly in input space and the mapping function  does 

not need to be known explicitly. Commonly used kernels include linear kernel, 

polynomial kernel and Gaussian kernel. The Gaussian kernel is used in this research 

which is defined as  

Φ

)2/||||exp(),( 22 σjiji XXXXK −−= , 

whereσ is the spread width of the Gaussian kernel.  

 For a typical classification problem with the training data 

set , where},...,1|),{( lkyX kk = }1,1{ −+∈ky is the class label of , finding the 

discriminant function

kX

bXWXf +Φ⋅= )()( can be formulated into solving the 

following quadratic optimization problem (Burges, 1998): 
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subject to Ci ≤≤α0  and  )∑
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0α ,...,2,1( li = . The hyperplane decision function 

can then be expressed by using iα ’s (Burges, 1998): 
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 Since the Gaussian kernel used in this research is a nonlinear mapping 

function, the linear discriminant function constructed by the SVM in the feature space 

corresponds to a nonlinear function in the original input space.  

5.4.2 Support Vector Machine based Recursive Feature Elimination 

 SVM-RFE starts with full sets of features and nested subsets of features are 

selected in a backward sequential elimination manner (Guyon, et al., 2002). The 

features ranking criterion is the change in the objective function when one feature is 

removed. When the Gaussian kernel is used, the recursive feature elimination (RFE) 

procedure can be summarized as follows: 

(a) Start: Initialize the subset of surviving features ],...,2,1[ nS =  where n is 

the number of all the features and feature ranked list ][=R ; 

(b) Repeat following steps until the required number of features remains.  

(b.1) Train the non-linear SVM (using Gaussian kernel) with all the 

training data and features in ; S

(b.2) For each feature v in , compute the change in cost function caused 

by removing this input component. The resulting ranking coefficient is: 

S

[ ]∑∑
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where the notation (-v) means that the feature component v has been 

removed. 

(b.3) Remove the feature component which corresponds to the 

smallest  JΔ

(b.4) Update surviving features subset ][vSS −=  and feature ranked 

list ; ],[ RvR =

 The performance of SVM classifier is expected to be improved after the 

redundant or irrelevant features have been removed.  
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5.5  Experimental Results and Discussion  

 The USDA-supplied black walnut samples were cracked and a total of 851 

samples (430 walnut meat and 421 shells) were randomly selected and labeled 

accordingly (Table 5.1). Among the 430 meat samples, 213 were light meat and 217 

were dark meat. From the 421 shells, 212 of them were placed with their inner 

surface facing the camera and the remaining 209 samples were placed with their outer 

surfaces facing the camera. As we mentioned in section 5.2, the texture analysis will 

only be performed on the foreground area of each image and different texture features 

(equations 5.1, 5.3, 5.11, 5.13, 5.15 and 5.16) were extracted and concatenated into 

one vector for each sample. Since different features are in a different scale, they need 

to be standardized. This was done by subtracting the mean from each attribute, and 

then dividing over its standard deviation. As a result, each element of the feature 

vector has a mean of zero and a standard deviation of one. For all the samples, one-

third was reserved for testing and the other two-thirds for training. Stratified random 

sampling (Witten and Frank, 2005) was performed to guarantee that each sample 

class (meat/shell) was properly represented in both training and testing sets. The 

SVM-RFE method was then used to select the feature subsets and obtain a trained 

SVM classifier based on the training samples. This classifier was further tested on the 

testing data set for accuracy estimation.  
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Table  5.1 Training and test sample sets 

Samples Category # Training Samples # Test Samples Total 

Shell 281 140 421 
Meat 287 143 430 
Subtotal 568 283 851 

  Test error on the testing data set is usually used to assess the performance of a 

classifier. However, the number of testing samples is not unlimited and the test error 

may be biased due to a not optimized partition of training and testing sets. Thus, we 

partitioned the total samples into a training set or a testing set by stratified random 

sampling for 100 times. Each time we performed SVM-RFE on the training set and 

tested the performance of the trained SVM on the testing set. The mean and standard 

deviation of the performance measurements were computed on these 100 trials. Apart 

from test error, “shell accuracy” and “meat accuracy” were also calculated. “shell 

accuracy” is defined as the probability a true shell sample will be classified as shell 

while “meat accuracy” is the probability a true meat sample will be classified as meat. 

Using the Table 5.2, the definitions can be written as 

ca
aAccuracyShell
+

=                                    (5.21) 

db
dAccuracyMeat
+

=                                    (5.22) 

where a, b, c and d are defined in Table 5.2.  
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Table  5.2 Classification confusion matrix 

 Walnut Shell Walnut Meat 

Classified as Shell a b 
Classified as Meat c d 

5.5.1 Select Optimal Number of Features 

 The SVM-RFE is a feature ranking method which does not indicate the 

optimum number of features needed. In this research, we found the performance of 

the classifier was quite stable over a large range of selected feature numbers, as 

shown in Figure 5.8. The average classification accuracy was better than 99% with 

the used feature number varying from 5 to 34. This suggested that feature number 

was not critical for the final performance in our case. As long as the best 5 features 

were selected, the next 29 best features did not significantly interfere with the 

classifier performance. However, if more than 34 features were used, the 

classification accuracy started to decrease.  

 The mean and STD classification accuracy of the training samples were also 

plotted in Figure 5.8. It shows that the mean accuracy reached 100% when 6 features 

are selected and stay constant if more features were added. The different trend of the 

training and testing accuracy curves show the problem of curse of dimensionality 

(Bishop, 2006) that the performance of a classifier will degrade with the increase of 

the input feature space dimension. Although SVM classifier has an effective 

mechanism for alleviating the curse of dimensionality problem by margin 

maximization, it is still beneficial to perform feature selection first. In this research, 
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the top 6 ranked features were selected to achieve good balance between the 

classification accuracy and the input feature dimension. 
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Figure 5.8 Estimated classification accuracy in training and testing data set vs. 

number of selected features using SVM-RFE. The mean and STD value 
of the 100 trails are shown in the figure. To prevent overlap, only plus 
error bars (+1 STD) of training set and minus error bars (-1 STD) of 
testing set are displayed.   

5.5.2 SVM versus SVM-RFE 

 Table 5.3 compares the performances with using only the top 6 features and 

all of the 56 features. The average test accuracy was 96.17% using the full feature set, 

while it increased to 99.19% by using just 6 of the 56 features. In both cases, the 

mean specificities were both high (> 99%) while the sensitivity did show large 

differences. The average “shell accuracy” was 99.01% using the top 6 features, which 

dropped to 92.51% if all the features were used. This observation suggests that 

scientifically selecting a subset of features not only improves the efficiency of 

classification algorithms, but also improves the prediction accuracy.  
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Table  5.3 Performance (mean ± standard deviation) comparison of SVM classifier 

with and without RFE feature selection.  

Method # Features Accuracy (%) Shell Accuracy (%) Meat Accuracy (%)
SVM-RFE 6 99.19 ± 0.45 99.01± 0.86 99.37 0.58 ±
SVM 56 96.17 ± 0.98 92.51± 1.98 99.75 0.39 ±

5.5.3 The Performance using Each Texture Feature Category 

 To further check the performance of each texture feature category (LBP+VAR, 

Gabor, Wavelet, CS-GLCM and image histogram based statistics), we tested the 

SVM classification performance by using features only from one of the categories. 

The results in Table 5.4 suggest that LBP_VAR, Gabor and Wavelet worked better 

than CS-GLCM or histogram based feature sets. Gabor was the best with an average 

test error as low as 1.25%, while the histogram based features gave a 4.22% error.  

 The ranking of the features can also be illustrated based on SVM-RFE feature 

sorting results. The top 6 selected features’ categories were recorded every time for 

the 100 trials. The total occurring times of each feature category was counted and 

sorted in Table 5.5. Among the top 6 features, two of them were Gabor features (No. 

3 and 4), two belonged to LBP_VAR category (No. 1 and 6), one was wavelet feature 

(No. 2) and the one was CS-GLCM feature (No. 5). Gabor and Wavelet features 

ranked as the top 6 features more times compared to CS-GLCM. None of the 

histogram based features was ranked as top 6. This result matches the observation 

from Table 5.4. It is not surprising that histogram based features give a poorer 

classification result, since no spatial information of the image is taken into account. 

Some walnut meats are relatively thicker than average and the corresponding backlit 
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images are darker. The histograms of these images are quite similar to those of walnut 

shells, therefore making it difficult to separate them from shells. However, the 2-D 

texture of these dark meat images are still different from those of shell, which can be 

characterized by the more sophisticated texture analysis methods and be classified 

correctly. 

 In theory, complementary features can help ameliorate classification rate. This 

could be shown in the following two tests. Table 5.4 shows that the classification 

performance of CS-GLCM features was worse than LBP even though they both 

similarly describe texture patterns in a local neighborhood. The reason is that only 

second-order (account for pixel pairs) statistical features are extracted from CS-

GLCM. By simply adding the mean gray value of the image (account for single pixels) 

to the current CS-GLCM features, the average performance increased from 96.7% to 

98.7%. Another complementary feature example is LBP and VAR. An accuracy of 

98.1% and 98.4% can be achieved using only LBP or VAR respectively, but if 

combined, the accuracy increased to 98.5%. The two tests demonstrated that the 

classification performance can be improved by using complementary feature set. In 

reality, to find complementary features in a low dimension feature set is relatively 

easy. However, it is extremely difficult when large sets of features are involved. In 

this case, feature selection is necessary to find out the useful complementary feature 

subsets to reduce the feature dimensionality.  
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Table  5.4 Performances (mean ± standard deviation) of the SVM classifier using 

different feature category. 

Feature Category # 
Features

Test Error 
(%) 

Shell 
Accuracy (%) 

Meat 
Accuracy (%) 

LBP+VAR 21 1.47± 0.73 97.36± 1.40 99.73 0.38 ±
Gabor 8 1.25± 0.51 98.77± 0.5 98.73 0.97 ±
Wavelet 4 1.67± 0.7 98.21± 1.61 98.45 1.05 ±
CS-GLCM 10 3.28± 0.8 96.96± 1.54 96.49 1.32 ±
Histogram based Statistics 13 4.22± 0.6 96.1± 1.57 95.48 2.05 ±
 

Table  5.5 Top 6 feature ranking result of 100 runs of SVM-RFE 

Feature Rank Feature Category Comments 

1 LBP_VAR 
The No.1 ranked feature is the LBP histogram 
bin corresponding to the LBP pattern 
“00000111”. 

2 Wavelet 
The No.2 ranked feature is the image energy 
percentage corresponding to the wavelet channel 
LL3 

3 Gabor 
The No.3 ranked feature is the Mean value of the 
1st level (lowest frequency) Gabor filtered image 
magnitude.  

4 Gabor 
The No.4 ranked feature is the STD value of the 
1st level (lowest frequency) Gabor filtered image 
magnitude 

5 CS-GLCM 
The No.5 ranked feature is the Entropy of the 
circular co-occurrence matrix with radius equals 
1. 

6 LBP_VAR The No.5 ranked feature is the 10th centile value 
of the normalized cumulative VAR histogram. 

 

 

5.5.4 Practical Considerations 

 The backlight imaging system shown in Figure 5.2 is the initial proof-of-

principle setup for data collection. To design an automatic walnut meat and shell 
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separation machine, several factors need to be taken into account including material 

handling and system speed. 

 Currently, samples were kept static on the stage glass when backlit images 

were acquired. For an automated machine, the cracked walnut could be first separated 

one by one using a vibratory feeder then dropped onto a semi-transparent conveyor 

belt which should allow backlighting. One kind of the semi-transparent belts has been 

successfully used for automatic quality grading of mandarin segments as shown in 

Figure 5.9 (Blasco, et al., 2007). Figure 5.10 shows our proposed real-time 

backlighting imaging system using the semi-transparent conveyor. The light source is 

placed under the conveyor and a line-scan camera could be used to continuously 

capture the backlit images, which will be transferred to the computer. Real-time 

image texture analysis and pattern recognition will be performed at the computer. If 

shell fragments are detected, the computer can control the rejection device to remove 

them off the conveyer.  

 104 
 



 

 
Figure 5.9 Semi-transparent conveyor belt used for automatic quality grading of 

mandarin segments (photo provided by Dr. José Blasco, Valencian 
Institute for Agricultural Research, Spain.)  

 
 

 
Figure 5.10 Proposed real-time imaging system for automatic walnut shell and meat 

separation. The light source is placed under the conveyor and a line-scan 
camera is used to continuously capture the backlit walnut images. Real-
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time image texture analysis and pattern recognition is performed by the 
computer and any detected shell fragments can be further removed by the 
rejection device.  

To ensure industrial throughput, the conveyor would need to travel at a high 

speed, requiring both feature extraction and pattern classification be performed at 

high speed. Based on our experience, an image resolution of 0.2 mm/pixel is 

sufficient for walnuts inspection. This would allow for an image size of 100× 100 

pixels for an average size walnut fragment (20mm× 20mm). The computational cost 

is approximately 18 ms for feature calculation and 0.2 ms for the trained SVM 

classification (running on a PC with Pentium 4 1.8 GHz CPU and 768 MB RAM). 

Since the processing time for each walnut sample is less than 20 ms, the system 

should be able to separate more than 50 walnut fragments per second.  

   

5.6 Conclusion 

 In this study, we proposed a backlight imaging system for black walnut meat 

and shell separation based on the distinct texture patterns of their backlit images. 

Several rotation invariant feature analysis methods, consisting of circularly symmetric 

gray-level co-occurrence matrix, circular Gabor filters, wavelet transforms and image 

histogram based statistics, were implemented to fully characterize these texture 

patterns. SVM-RFE method was used to select a feature subset and to improve the 

SVM classification accuracy. The experimental results demonstrated that the 

proposed approach is very effective in walnut meat and shell separation, with an 

overall 99.2% separation accuracy being achieved, using only the 6 top ranked 

features.  
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Some practical implementation factors, such as material handling and system 

speed are also briefly discussed and a real-time backlighting imaging system for 

automatic walnut shell and meat separation was proposed. Since the proposed 

backlighting imaging system requires only a little equipment, the whole system can 

be built at a very low price. This low instrument cost and high classification rate 

make the proposed imaging system a great potential in walnut processing industry.  
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Chapter 6: Conclusions 

 This research explored two machine vision applications in food inspection for 

higher quality and safety. The first application of a combined X-ray and laser range 

imaging system, we focused on developing an efficient and precise system calibration 

method.  For the second application, we concentrated on building the effective 

imaging system to automatically separate walnut shells and meat. The details of 

system setup, texture image analysis, feature selection, and pattern classification have 

all been explained.  The overall objectives of this research described in Chapter 2 

have been achieved. The following conclusions were drawn from the research: 

(1) A unique three-step system calibration method for the combined X-ray and 

laser range imaging system has been developed. The calibration 

procedures can be performed in a semi-automatic way and can be finished 

in a timely fashion, requiring minimum knowledge for system calibration. 

(2) Results showed that high accuracy has been achieved for the whole system 

calibration – a root mean square error of 0.20mm, a standard deviation of 

0.20mm, and a maximum error of 0.48mm.  

(3) A backlight imaging system has been developed and built for walnut shells 

and meat separation based on the finding that backlit images of walnut 

shell and meat have distinct texture patterns due to their different light 

transmittance properties. Extensive texture analysis methods, feature 

selection and pattern classification algorithms have been explored to 

characterize and separate the unique texture patterns. 
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(4) Results showed that the proposed texture analysis based backlight imaging 

system can achieve an overall 99.2% separation accuracy. This high 

separation accuracy and low instrument cost make the proposed imaging 

system a great benefit to the walnut processing industry.  

 109 
 



 

Chapter 7: Suggestions for Further Study  
 
 The system calibration method we proposed in the first study is easy to 

implement with high accuracy. However, we should note that our calibration is based 

on the assumption that the X-ray and laser beam are coplanar. This assumption is 

justified via system mechanical design and careful alignment during system setup.  In 

the case of non-coplanarity of the X-ray and laser beam, it will lower the calibration 

precision. Future study can be conducted to identify a more comprehensive model to 

resolve this problem.   

 For the backlight imaging system for walnut shells and meat separation, future 

effort can be focused on developing a real-time system. During this procedure, some 

important factors, such as image motion blur and illumination intensity, need to be 

taken into account. When walnut fragments travel on the conveyor, the images 

captured will be blurred to an extent dependent on the conveyor speed. The 

illumination intensity can also affect the quality of the final acquired images. The 

effects of these factors can be fully analyzed in future research. We also need to 

mention that the size of all walnut samples used in this study is bigger than 

5mm 5mm. The texture analysis result may become unstable when smaller samples 

are involved. Future experiments can be performed on small walnut fragments to 

stabilize the texture analysis methods and provide an optimized uniform process for 

all nut sizes. 

×
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Appendices A 
 

The definitions of the 5 statistical features used to characterize the circular co-

occurrence matrixes are shown below.  

Entropy:                  (A.1) ∑∑
= =

−=
15

0

15

0
2 ),(log),(

i j
kkk jiCjiCEnt 2,1=k

where  is the ith row and jth column element of the normalized circular co-

occurrence matrix with radius k . Note the 8-bit gray images were first recalled into 

16 gray levels so the size of each circular co-occurrence matrix is 8 8. Entropy 

measures the randomness of the joint gray level distribution. The entropy is expected 

to be high if the joint gray-levels are randomly distributed. 
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Energy measures the number of repeated pairs. The energy is expected to be 

high if the occurrence of repeated pixel pairs is high.  

Contrast:                         (A.3) ∑∑
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15

0

15
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Contrast measures the local contrast of an image. The contrast is expected to 

be low if the gray levels of each pixel pair are similar. 

Homogeneity:       ∑∑
= = −+

=
15

0

15

0 1
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k
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jiCHom     2,1=k                (A.4) 
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Homogeneity measures the local homogeneity of a pixel pair. The 

homogeneity is expected to be large if the gray levels of each pixel pair are similar.  

Correlation:      ∑∑
= =

−−
=

15

0

15

0
2

),())((
i j

k
k

jiCjiCor
σ
μμ         (A.5) 2,1=k

whereμ andσ are the mean and standard deviation of the rescaled gray value in the 

image. It provides a correlation between the two pixels in the pixel pair. The 

correlation is expected to be high if the gray levels of the pixel pairs are highly 

correlated. 
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Appendices B 

The definitions of the 6 statistical features used to characterize image 

histogram patterns are shown below. 
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Kurtosis:             3)(
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where is the normalized image histogram and ),...,2,1(, NkNH k = N is the number of 

the histogram bins. 

  Mean and Varaince measure the mean and variance of the gray level of the 

quantized image; Entropymeasures the randomness of the gray value distribution; 

measures the occurrence of repeated gray level pixels; Skewness measures of 

symmetry of the normalized histogram; 

Energy

Kurtosis measures the peakedness or flatness 

of the histogram relative to a normal distribution.  
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