
ABSTRACT

Title of dissertation: LEARNING TO EFFICIENTLY RANK

Lidan Wang, Doctor of Philosophy, 2012

Dissertation directed by: Associate Professor Jimmy Lin (primary advisor)
Professor Douglas Oard (co-advisor)
Department of Computer Science
and College of Information Studies

Web search engines allow users to find information on almost any topic imagin-

able. To be successful, a search engine must return relevant information to the user

in a short amount of time. However, efficiency (speed) and effectiveness (relevance)

are competing forces that often counteract each other. It is often the case that

methods developed for improving effectiveness incur moderate-to-large computa-

tional costs, thus sustained effectiveness gains typically have to be counter-balanced

by buying more/faster hardware, implementing caching strategies if possible, or

spending additional effort in low-level optimizations.

This thesis describes the “Learning to Efficiently Rank” framework for build-

ing highly effective ranking models for Web-scale data, without sacrificing run-time

efficiency for returning results. It introduces new classes of ranking models that

have the capability of being simultaneously fast and effective, and discusses the is-

sue of how to optimize the models for speed and effectiveness. More specifically,

a series of concrete instantiations of the general “Learning to Efficiently Rank”

framework are illustrated in detail. First, given a desired tradeoff between effective-

ness/efficiency, efficient linear models, which have a mechanism to directly optimize

the tradeoff metric and achieve an optimal balance between effectiveness/efficiency,

are introduced. Second, temporally constrained models for returning the most effec-

tive ranked results possible under a time constraint are described. Third, a cascade

ranking model for efficient top-K retrieval over Web-scale documents is proposed,

where the ranking effectiveness and efficiency are simultaneously optimized. Finally,

a constrained cascade for returning results within time constraints by simultaneously

reducing document set size and unnecessary features is discussed in detail.

LEARNING TO EFFICIENTLY RANK

by

Lidan Wang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Associate Professor Jimmy Lin, Chair
Professor Douglas Oard, Co-chair
Assistant Professor Hal Daume III
Associate Professor Amol Deshpande
Professor Carol Espy-Wilson
Dr. Donald Metzler

c� Copyright by
Lidan Wang

2012

Dedication

To my parents.

ii

Acknowledgments

I have truly enjoyed my Ph.D. journey, and would like to thank a number of

people who have made this thesis possible.

First and foremost, I would like to thank my advisor, Jimmy Lin, for his

continuous help and support during my graduate career. I started working on this

thesis topic several years ago, and during that initial period, if it were without

Jimmy’s support and belief in me, this thesis would have been entirely impossible,

let alone see it to completion. But more importantly, Jimmy has played a pivotal

role in my development as a researcher. From the early stage of my dissertation

to the end, I have benefited tremendously from his insightful guidance and high

standard of conducting original research. I am equally grateful to his trust in me to

explore freely on my own when I found my own path.

I would like to thank Donald Metzler for his invaluable guidance and the

many stimulating conversations we had on various topics in this thesis. From my

collaborations with Don, I have learned how to think and ask the right research

questions, and how to become a better technical writer – two of the most important

qualities of a researcher. I feel very fortunate to have Don as a mentor.

Many thanks to Douglas Oard, who first introduced me to the field of infor-

mation retrieval. He has been an excellent teacher who has helped me with my ideas

with the breadth of his knowledge in this field.

I sincerely thank Hal Daume III for his advice and help during my job search

process, and for his service on my thesis committee. I would also like to thank

iii

Amol Deshpande for his guidance during my first year at Maryland, and Carol

Espy-Wilson for her time to serve on my thesis committee.

Thanks are also due to Samir Khuller for his support during my Ph.D. study,

and Paul N. Bennett, Kevyn Collins-Thompson, Susan Dumais, and Ryen White,

for their guidance during my internship at Microsoft Research.

At the risk of forgetting someone, I would also like to thank my colleagues

and friends in the CLIP lab and CS Department – Tamer Elsayed, Ferhan Ture,

J. Scott Olsson, Bhargav Kanagal, Prithviraj Sen, Nick Frangiadakis, Jian Li,

Zhongqiang Huang, Hossam Sharara, Walaa Moustafa, Grecia Lapizco-Encinas, De-

nis Filimonov, Galileo Namata, Mustafa Bilgic, Kristy Hollingshead Seitz, Hendra

Setiawan, Ke Zhai, and Yuening Hu, for their invaluable friendship and discussions

on many useful things.

Finally, I owe my deepest thanks to my parents - who have always stood by

me, and offered encouragement when I needed it most. I dedicate my thesis to them.

iv

Table of Contents

List of Figures viii

1 Introduction 1
1.1 Motivation . 1
1.2 Overview of learning to efficiently rank 3

1.2.1 Problem setup . 3
1.2.2 Constructing efficient and effective linear models 5

1.3 Contributions . 9
1.4 Outline of chapters . 11

2 Related Work and Background 12
2.1 Ranking models . 12
2.2 Query evaluation and caching strategies 16

2.2.1 Early exit strategies . 17
2.2.2 Caching . 19
2.2.3 Index pruning/query segmentation 20

2.3 Coarse-to-fine models . 20
2.4 Other work that goes beyond effectiveness 22

3 Efficient Linear Models 25
3.1 Background on Linear Feature-based Models 27

3.1.1 Linear feature-based models 28
3.1.2 SD and WSD models . 29

3.2 Basic setup . 33
3.3 Tradeoff metrics . 33

3.3.1 Measuring efficiency . 34
3.3.2 Measuring effectiveness . 37
3.3.3 Efficiency-effectiveness tradeoff metric 37

3.4 Efficient linear models . 40
3.4.1 Limitations of linear models and offline feature selection . . . 40
3.4.2 Efficient linear models . 42

3.5 Parameter estimation . 44
3.6 Experiment results . 46

3.6.1 Experiment setup . 46
3.6.2 Results . 48

3.6.2.1 Tradeoff between effectiveness and efficiency 48
3.6.2.2 Analysis of query latency distribution 52
3.6.2.3 Relationship to other retrieval models 54

v

4 Ranking under Temporal Constraints 57
4.1 Ranking with time constraints . 59

4.1.1 Linear ranking functions . 59
4.2 Constrained linear ranking functions 61

4.2.1 Prediction models . 62
4.2.1.1 Independent Prediction Model 63
4.2.1.2 Joint Prediction Model 66

4.2.2 Temporal constraint enforcement 70
4.2.3 Parameter estimation . 71

4.3 Experiments . 73
4.3.1 Effectiveness vs time constraints 74
4.3.2 Satisfying time constraints . 77
4.3.3 Expected effectiveness across constraints 80
4.3.4 Comparison with SD model 83

5 A Cascade Ranking Model for Efficient Ranked Retrieval 85
5.1 Cascade model . 91

5.1.1 Pruning functions . 94
5.2 Learning the cascade . 97

5.2.1 Cost estimation . 98
5.2.2 Tradeoff metric . 99
5.2.3 Learning . 100
5.2.4 Cascade Stage Construction 102
5.2.5 Analysis . 104

5.3 Experiments . 107
5.3.1 Experiment Setup . 108
5.3.2 Implementation Details . 109
5.3.3 Effectiveness vs. Efficiency . 110
5.3.4 Cascade Analysis . 113
5.3.5 Parameter Variations . 115

6 Constrained Ranking via Cascades 119
6.1 A Constrained Cascade Model . 120

6.1.1 Constrained cascade . 121
6.1.2 Learning constrained cascade models 125

6.2 Experiments . 130
6.2.1 Experimental setup . 130
6.2.2 Results . 131

6.2.2.1 Ranked effectiveness vs time constraints 131
6.2.2.2 Ensuring time requirements 134
6.2.2.3 Document pruning and pruning loss 136
6.2.2.4 Average effectiveness across time requirements 137

vi

7 Conclusion 140
7.1 Limitations . 140
7.2 Future work . 141

Bibliography 143

vii

List of Figures

1.1 Tradeoff between ranking model effectiveness and efficiency 2
1.2 Search quality vs Efficiency and Scalability. 3
1.3 Basic setup of learning to efficiently rank. 4

3.1 Ranking model effectiveness/efficiency tradeoff. 26
3.2 Efficiency function definitions. 34
3.3 Distribution of query execution time. 53

4.1 MAP versus time for Indep, Joint and QL models on title and de-
scription queries in the test sets of Wt10g, Gov2 and Clue. 75

4.2 The fraction of query evaluation times that satisfy the imposed time
constraint. 78

5.1 An example cascade. 90
5.2 NDCG20 as a function of time. 116

6.1 NDCG20 and P20 versus time requirements. 132
6.2 Bar chart showing the fraction of query evaluation times that satisfy

the imposed time constraint for Wt10g, Gov2, and Clue. 135
6.3 % documents pruned as a function of time constraints, and the cor-

responding pruning loss (insert). 136

viii

Chapter 1

Introduction

1.1 Motivation

Information retrieval (IR) is founded on constructing ranking (i.e., retrieval)

models for finding and ranking relevant information to user queries. IR models have

been the focus of much research over the past several decades, and advances in this

area have led to many practical systems that enable us to better analyze and search

for information. For example, Web search, one of the most important applications

of IR, is a daily activity for many people. Search personalization and information

filtering have become increasingly popular, particularly on eCommerce web sites.

Typically, from the end user’s point of view, two factors are important in

large-scale IR. First, the retrieved information should match the user’s information

needs to a high degree (i.e., relevance). Second, results should be returned to the

user in a timely manner (i.e., efficiency). However, effectiveness and efficiency are

inherently inter-connected and competing forces that often counteract each other.

As illustrated in Figure 1.1, the quest for effectiveness, which has been the central

focus in learning ranking models, can lead to very complex and slow ranking models,

completely impractical for large-scale datasets; while the converse is true for simple

ranking models. Despite the fundamental tradeoff between these two competing

measures, for much of the history of academic research on learning ranking models,

1

Figure 1.1: Tradeoff between ranking model effectiveness and efficiency.

explorations in effectiveness and efficiency have largely been disjoint. As shown

in Figure 1.2, on one side there are researchers who develop highly effective, yet

practically infeasible models en masse, by engineering sophisticated ranking features

and ranking models [1, 2, 3, 4, 5]. On the other side of the dichotomy are the

researchers who make existing models faster and more scalable, either by designing

fast and approximate query evaluation strategies [6, 7, 8] (which typically comes

at a cost of degraded effectiveness), or spending more system resources to counter-

balancing relevance gains (e.g., buying more hardware, implementing caching [9], or

spending additional effort in low-level optimizations).

Our work synthesizes these two equally important threads of research and

introduces a unified learning-based framework that accounts for tradeoffs between

effectiveness and efficiency, in the context of learning highly effective and highly

efficient ranking models for large-scale datasets. At a basic level, our framework

builds ranking models whose speed and accuracy can be explicitly controlled. In

2

Figure 1.2: Search quality vs Efficiency and Scalability.

contrast to previous approaches for creating efficient large-scale systems, which typ-

ically involve spending extra system resources for effectiveness gains, or creating

approximated answers which may have degraded effectiveness, we introduce new

classes of models and learning algorithms that can improve ranking effectiveness

without incurring extra costs. We achieve this by deriving both efficiency and effec-

tiveness from the ranking model itself. As a result, the new models are capable of

overcoming the tradeoff curse and reside in a more optimal region in the tradeoff

space with high effectiveness and high efficiency (Figure 1.1).

1.2 Overview of learning to efficiently rank

In this section, we discuss our problem setup and outline the proposed tech-

niques for constructing fast and effective ranking models.

1.2.1 Problem setup

The basic setup we consider is similar to the standard supervised learning to

rank. As shown in Figure 1.3, given a set of training data, which consists of training

3

queries, documents, and relevance labels, we would like to learn a ranking model

to optimize a given IR metric. A key difference with respect to effectiveness-based

learning is that our framework takes model run-time costs as an input (estimated by

a cost model), and use that information to help derive a cost-effective ranking model

during learning. Therefore, our setting is orthogonal to system-engineering aspects

of efficiency (caching, document partitioning, etc.) – their effects on query response

time are captured by the cost model, simply served as input to model learning.

Figure 1.3: Basic setup of learning to efficiently rank.

Our proposed framework can be more easily understood in the context of multi-

objective learning, where the goal is to devise machine-learned models that optimize

multiple objective metrics. For example, in the context of learning to rank, previous

studies have considered optimizing models for freshness and effectiveness [10], as

well as optimizing for a primary evaluation metric (e.g., NDCG) and a secondary

evaluation metric (e.g., user-click profiles) [11]. While many problems belong to

the general family of multi-objective learning, we note that each problem instance

requires their own solutions since their optimization objectives are different.

There are three broad challenges in learning to efficiently rank. First, previous

models are either effectiveness-centric or efficiency-centric. We need to design new

4

models that have the ability to be simultaneously fast and effective. Second, what

is the optimization metric for model learning? Effectiveness metrics have been well

studied. However, how to define the efficiency and tradeoff metrics is still an open

question. Finally, given the new class of models and optimization metrics, model

learning is an interesting problem – it requires two competing metrics to be jointly

optimized, unlike the previous effectiveness-based learning. We now give a brief

overview on how we tackle these issues in the context of linear ranking models.

1.2.2 Constructing efficient and effective linear models

A great number of retrieval models have been proposed over the years, from

the unigram language models [12, 13, 14] to the more complex models that use a

variety of ranking features [2, 15, 16, 17, 18]. In this work, we consider the class of

linear-feature based models, where the relevance score assigned to each document

can be expressed in terms of a linear combination of feature values computed from

each query-document pair. We associate an efficiency and an effectiveness dimension

with each model and query pair. The efficiency of the model can be measured in

terms of average query execution time, or the number of total documents over which

the retrieval model computes scores in order to answer a query, and effectiveness

of the model can be calculated in terms of standard retrieval metrics such as mean

average precision [19] or early-precision [19], which measure the model’s ability to

return relevant results early in the ranked list.

The main difference between various linear-feature based models is the type

5

of features they employ. Features used in simple models (such as unigram language

models [12, 13]) are cheap to compute at query-time, although the oversimplified

feature space may lead to sub-optimal effectiveness. Features used in complex mod-

els (such as term dependence models [15, 20]) are more effective in general, albeit

may be expensive to compute at query-time. As a result, simple models are better

in terms of efficiency, but (in general) worse in terms of effectiveness as compared to

complex models, and the opposite is true for complex models. In between these two

extremes lie other ranking functions that encode a variety of efficiency/effectiveness

tradeoffs. By learning an efficient retrieval model, we mean selecting an optimal

ranking model from the large array of ranking models to satisfy a given requirement

on relevance and speed from the user.

In this work, we use both term-based [12, 13] and term-proximity features [21,

15]. We assume the term-based features are freely available and term-proximity fea-

tures are unindexed (which requires query-time computations). This feature pool is

used to model differential query-time feature costs and allows us to explore the differ-

ent efficient ranking models that encode a spectrum of speed/effectiveness tradeoffs.

Broadly, we are interested in the following problems for building ranking mod-

els for Web-scale document collections:

1. Improve the average query execution time of user submitted queries while not

degrading their average effectiveness too much.

2. Produce high quality results within an efficiency (time) requirement specified

for each query. Since each query may have a different time requirement, the

6

ranking function for each query can be very different.

3. Return the best top-K documents for a query such that top-K ranked effec-

tiveness and retrieval efficiency are jointly optimized.

4. Return the best results under time constraints such that effectiveness and

retrieval efficiency are jointly optimized.

In the following chapters, we formally state these problems and describe our

approaches for solving them. For now, we note that the retrieval time is mainly

governed by the complexity of the ranking model, as well as the size of the docu-

ment collection. Our proposed solutions for the first two problems rely on reducing

the complexity of the ranking models in order for them to work efficiently (and

effectively) on the entire document collection. We propose to improve efficiency

by selectively pruning features in a query-dependent manner (i.e., removing query-

dependent features that do not contribute much to effectiveness but incur high

complexity). For the first problem, we propose a family of tradeoff metrics between

efficiency and effectiveness, and we introduce the notion of efficient linear models,

which augment the conventional linear feature-based models with a pruning thresh-

old defined over query-dependent features. Both the feature weights and pruning

threshold in the efficient linear model are learned to optimally balance retrieval ef-

fectiveness and efficiency according to a given tradeoff metric. We then empirically

evaluate our proposed models under various tradeoff scenarios, to demonstrate their

ability to adapt to these different tradeoffs. We also compare the proposed models

against several baseline models, including a state-of-the-art linear model, in terms

7

of retrieval effectiveness, efficiency, and their tradeoff.

For the second problem, we aim to construct the most effective ranking model

for each query such that the retrieval efficiency of the model meets the query’s effi-

ciency (time) requirement with high likelihood. This requires us to build a ranking

model at query-time for each query. For this problem, we first introduce the notion

of temporally constrained linear model, which is a linear model that is restricted

to returning results within a pre-specified time constraint. We then propose two

methods for constructing effective temporally constrained linear models for given

user queries and their associated time requirements. Both methods incur minimum

overhead for the online construction – O(|q|log|q|), where |q| denotes the query

length. This is trivial as compared to query execution time. We then empirically

evaluate the two temporally constrained ranking algorithms across a wide range of

efficiency requirements to demonstrate the resulting temporally constrained models

can achieve high effectiveness across time requirements and can return more effec-

tive results than several commonly studied ranking functions under the same time

constraint.

For the third problem, we consider top-K retrieval over web-scale document

collections, and are interested in returning the best top-K documents such that the

ranked effectiveness and retrieval efficiency are jointly optimized. We observe that

in Web search, users will only browse through a very small number of returned doc-

uments, e.g., K=20. Furthermore, the number of relevant documents for each query

is usually very small as compared to the Web collection size. In this case, applying

a complex yet effective ranking model on the entire collection may not be desirable

8

for efficiency reasons, since most documents evaluated are likely to be non-relevant

and/or outside of the top-K. This motivates a cascade model for top-K retrieval,

which uses a sequence of ranking models, ranging from low to high complexity, to

progressively filter and re-rank documents, with the goal of obtaining high top-K

ranked effectiveness at a much lower cost as compared to effectiveness-centric mod-

els. A large number of unlikely documents can be pruned early with simple/cheap

models, so that more complex ranking models can be used on a small number of

documents for improving top-K ranked effectiveness. We present the cascade model

structure and parameter space, then discuss the cascade model learning problem.

For the fourth problem, we synthesize ranking under temporal constraints and

cascade-based ranking functions. Given a time budget, a constrained version of the

cascade model is automatically constructed to return the best possible ranked list

within the specified time limit. The constrained cascade aims to simultaneously

optimize both the features used within the model and the document refinement

strategy. Thus, the constrained cascade can better utilize the available budget, via

the stage-wise document pruning mechanism of the cascade model, yielding a more

robust, more efficient, and more effective retrieval model.

1.3 Contributions

The following is a summary of our primary contributions:

1. Learning to efficiently rank. We propose the learning to efficiently rank

framework, which takes an efficiency-minded look at building effective rank-

9

ing models given a pre-specified requirement on efficiency/effectiveness. This

proposed framework represents a significant departure from the traditional

ranking models and “learning to rank”, since it jointly optimizes the effec-

tiveness and efficiency of a ranking model. The framework could be used in

real-world applications which require the ranking model to adapt to different

user efficiency/effectiveness requirements. It can also be used for query load

balancing due to its ability to control query execution times.

2. Efficient linear model. As an instance of “learning to efficiently rank”, we

propose a new class of ranking models called efficient linear models and a class

of tunable tradeoff metrics between retrieval efficiency/effectiveness. The new

class of models can be learned to optimize the desired tradeoff to achieve an

optimal balance between retrieval efficiency and effectiveness.

3. Temporally constrained ranking functions. As another instance of “learn-

ing to efficiently rank”, we propose novel methods based on probabilistic

graphical models to automatically infer optimal ranking functions that are

both highly effective and capable of satisfying efficiency requirements on a

per-query basis with high likelihood.

4. Cascade ranking functions. As another instance of “learning to efficiently

rank”, we discuss a novel cascade ranking model for top-K retrieval over web-

scale collections. In contrast to the previous two cases, the ranking model

progressively reduces the candidate document set size to a query with the goal

of obtaining high top-K ranked effectiveness at a much lower cost.

10

5. Constrained cascade ranking functions. As another instance, we propose

a constrained version of the cascade that returns results within time budgets

by simultaneously reducing document set size and unnecessary features.

1.4 Outline of chapters

The rest of the dissertation is organized as follows:

• Chapter 2 reviews related work and background.

• Chapter 3 presents our solution for learning an efficient model that optimizes

a given effectiveness/efficiency tradeoff. We propose optimization metrics as

well as a framework for constructing such functions.

• Chapter 4 describes our solution for temporally constrained ranking, which re-

turn the most effective results under a time budget for each query and satisfies

the actual time requirements (at query-time) with high likelihood.

• Chapter 5 presents a cascade ranking model for top-K retrieval. We first

discuss related work and put our work in context, then discuss the cascade

model, and state the cascade learning problem and solutions.

• Chapter 6 presents a constrained version of the cascade model for returning

results within time constraints.

• Chapter 7 concludes and points out future work directions.

11

Chapter 2

Related Work and Background

2.1 Ranking models

Ranking is a central problem in information retrieval, and it is widely-studied

in many different contexts such as in image retrieval [22], document retrieval [19],

and speech retrieval [23]. In this work, we focus on document retrieval. Given an

indexed document repository, when a user issues a free-text search query, the role of a

ranking model is to retrieve relevant documents for the given query and present them

in a ranked list format to the user, where the documents in the ranked list are ordered

by their estimated degrees of relevance to the query (most relevant at the top). While

there exist many classical models for performing this task, such as the vector space

model [24], Boolean model [25], and the unigram language model [12, 13], there

are several limitations that they face. Many of these models depend on manual

parameter tuning, which may not result in optimal parameter settings, especially

when there are many parameters. Additionally, most of these models only use simple

term-occurrence features, which count the occurrences of individual query terms in

each document. Although a lot of other useful ranking features exist, such as term

proximity features and page importance features, manually incorporating them into

the basic framework of these classical models is cumbersome, if not impossible.

Machine learning is an effective tool to automatically tune parameters and

12

combine many useful features in a principled way into the ranking model. “Learn-

ing to Rank” [2] is a recently emerged research area in information retrieval, which

uses machine learning methods to train ranking models for search effectiveness.

Broadly, three categories of learning to rank algorithms have been proposed: the

pointwise approach [26, 27], the pairwise approach [28, 29, 30], and the listwise

approach [31, 32, 33]. The pointwise approach assumes that each query-document

training pair has a numerical score, and the learning to rank problem is formulated as

a regression problem – predict the score of the document given the query-document

pair. Many existing ordinal regression and classification algorithms can be readily

applied to this pointwise approach. However, ranking is an ordering problem rather

than a classification/regression problem – we are more concerned with the relative

ordering of the documents rather than their absolute document scores. To handle

ground truths of pairwise preferences, the second category of algorithms (pairwise

approach) formulates ranking as a binary preference classification problem – a binary

classifier is learned to tell which document is better for any given pair of documents.

The loss function used by this approach is usually defined in terms of the average

number of preference inversions. To further handle the ground truth in terms of

partial/total orderings, the listwise approach aims to directly optimize the ranking

measures, averaged over training queries. However, it is well-known that commonly-

used ranking measures (mean average precision, precision-at-10, etc.) are not con-

tinuous functions with respect to a ranking model’s parameters, which makes them

difficult to work with from an optimization point of view. Thus, approximations or

bounds on evaluation measures are typically used for optimization purposes.

13

Another thread of learning to rank work has focused on linear feature-based

models [15, 20, 34, 35, 36, 37]. Linear feature-based models are a class of simple,

yet very effective ranking functions. Many widely used ranking models belong to

this family of ranking functions and they have demonstrated effectiveness over pub-

licly benchmarked retrieval tasks [38, 39]. A linear model scores each document in

response to a query via a weighted linear combination of query-document features,

and the document scores induce a total ordering of the documents. The main ad-

vantage of linear feature-based models is their ability to combine various kinds of

ranking features, such as unigram features [12], term proximity features [15], and

linguistic features [35], in a straightforward manner. The model parameters (i.e.,

feature weights) can be estimated through learning to rank methods [40, 33, 41].

An underlying assumption of all aforementioned methods is that the ranking

function for retrieval has been specified, and efficiency is improved by speeding up

query evaluation for the ranking function. However, an important fact about search

queries is that they are inherently ambiguous, and are quite different from other

query languages which are governed by strict syntax or semantics rules (e.g., SQL

queries). Due to this ambiguity, different ranking functions can be used for the same

user query, where the ranking functions can vary greatly both in terms of how they

interpret the user query (e.g., whether or not query terms are independent or follow

certain dependency structure), and in terms of their efficiency characteristics (e.g.,

ranking functions that employ complex features are generally slower, although can

be more effective, than simple ranking functions).

As a result, we observe that selecting an optimal ranking function for a user

14

query, from the space of all possible ranking functions, should depend on how well

the ranking function’s effectiveness and efficiency characteristics match with the re-

quirements of the user. For example, while most users may want their search results

immediately, others may not mind waiting a little extra time if it means their re-

sults would be better. This same idea can be applied to information needs. Certain

classes of simple queries are expected to be answered immediately. However, for

complex information needs, users may be willing to have additional latency for bet-

ter results. Hence, operating at a “one size fits all” point along the tradeoff curve

may not be optimal for all users and queries, rather, the ranking function should

be customized to meet user expectations in retrieval relevance and speed. In other

words, while learning to rank gives rise to highly effective ranking models, the mod-

els’ high complexity limit their practical applications to web-scale data. As a result,

these models are usually evaluated over a small set of “toy” data for effectiveness

alone [2]. In our work, the goal is to design practical and efficient ranking mod-

els that work well on web-scale data collections. For this purpose, we look at the

empirical performance over large datasets (speed and ranked effectiveness) of the

proposed ranking models to ascertain their practical value. “Learning to rank” (i.e.,

only optimizing effectiveness) is actually a special case of our proposed “learning to

efficiently rank” framework when the efficiency requirement is relaxed.

15

2.2 Query evaluation and caching strategies

The previous section discusses related work on how to learn a ranking model; in

this section, we discuss given a ranking model and a user query, how to evaluate the

query given the ranking model, i.e., query evaluation. Many optimization techniques

have been proposed for efficiently evaluating user queries. In this section, we touch

upon several of the most commonly-used techniques for query processing – early

exit strategies [6, 7, 8], caching [9], index pruning [42, 43, 44, 45, 46] and query

segmentation [47].

While the starting point of the work to be reviewed in this section (query

evaluation, caching, and index pruning/query segmentation) and learning to effi-

ciently rank is the same – obtaining faster query execution time, we want to point

out these techniques and our work are two complementary approaches for improving

efficiency in search. Query evaluation and caching are concerned with how to eval-

uate a user query given a ranking model, e.g., through query-processing techniques

such as early termination [6, 7, 8]. However, we learn ranking functions, under a

given query evaluation strategy and caching strategy. More specifically, the retrieval

efficiency of a candidate ranking function is estimated through a cost model. The

caching and query evaluation strategy will impact the estimated retrieval efficiency

of a given ranking function. In this work, we assume that the candidate ranking

functions under consideration will be run on a common retrieval system, i.e., the

same query evaluation/caching strategy will be used for the candidate ranking func-

tions, therefore, their retrieval efficiencies can be directly obtained from the cost

16

model specifically built for the given retrieval system. There are various ways for

a cost model to characterize the efficiency of a ranking function (used within a re-

trieval system), such as directly measuring it in terms of query execution time, or

using analytical estimators [48]. In our work, we use both techniques for measur-

ing efficiency (for both training and test queries). Finally, the estimated retrieval

efficiencies of ranking functions will be utilized by our learning to efficiently rank

framework for selecting a ranking function that jointly optimizes efficiency and ef-

fectiveness according to a given metric.

2.2.1 Early exit strategies

There are two flavors for query evaluation in IR systems: exact [49] and inexact

top-K retrievals [6, 7, 8]. Since free-text search queries are inherently ambiguous,

retrieving the exact top-K documents according to a ranking function may not

necessarily be the K best for the query, because the ranking function is only a

proxy for the user’s perceived relevance [19]. Thus, most practical query evaluation

algorithms belong to the category of inexact top-K retrievals, which is the focus

of our discussion here. Much research has been devoted to early exit strategies for

conventional IR ranking models (those that are not machine learned) [7, 45, 50]. The

main idea behind this thread of work is to only traverse a subset of the documents

in the postings lists associated with query terms to speed up query evaluation. The

classical approach is to only traverse through the postings lists associated with the

important query terms (as determined by their inverse document frequency values,

17

etc.), and to ignore postings lists for the remaining query terms [50]. Alternatively,

for the remaining query terms, their postings lists can be traversed except that the

documents not encountered earlier in the postings lists of high-impact query terms

are ignored [50].

Recent work on early exit strategies for machine learned ranking functions [6]

considers the problem of accelerating query evaluation for a fixed ranking function

through short-circuiting score computations in additive learning systems. More

specifically, a complex ranking function in the form of additive ensembles (e.g.,

boosted decision trees [51]) is learned during the training phase. At query time,

each document goes through the entire chain of scorers to retrieve a partial contri-

bution to its final score from each of the individual scores. Efficiency is important

if the number of scorers is high. Thus, short-circuiting techniques in the form of

terminating score computations for documents that are unlikely in the top-K ranked

list are proposed to speed up the scoring process [6]. In addition, Cambazoglu et

al. [6] focus on optimizing the query evaluation process given a particular additive

ensemble–and not about learning the ensemble. In contrast, we focus on learning

an end-to-end ranking system to optimize a desired efficiency/effectiveness tradeoff

metric. We formally introduce a novel boosting algorithm for learning a cascaded

system in Chapter 5.

It is interesting to note that although the main idea behind query evaluations

for both machine learned ranking functions and conventional ranking functions is

the same – compute top-K documents as fast as possible without sacrificing the

results quality, a noticeable difference is that for machine learned ranking functions,

18

score contributions generated by the complex scorers are not known before query-

time [6], whereas for conventional IR ranking models, such information is already

stored in the document index.

2.2.2 Caching

Another way to speed up query evaluation is through caching [9]. There are

two possible ways to implement caching – caching query results and caching query

term postings lists. For caching query results, as the search engine computes results

for a given query, it may decide to store the answers in memory for future queries [9].

For caching query term postings lists, the postings lists associated with a query

may be stored in memory for future use. Although returning an answer to a query

that already exists in cache is much more faster than computing results using the

cached postings lists, the previously unseen queries occur much more frequently than

previously unseen terms, which means that a higher miss rate for cached answers [9].

As a result, most work has focused on caching postings lists. The main challenge is

to determine what postings lists to cache for a certain amount of available memory.

A natural way to do this is to store the postings lists of frequently occurring query

terms, while trying to avoid query terms with long postings lists (because they will

take up more memory).

As mentioned earlier, the caching or query evaluation strategy will only impact

our cost model for estimating the retrieval efficiency of a given ranking function, and

we assume the candidate ranking functions will be run on a common retrieval system,

19

so the same query evaluation/caching strategy will be used for them.

2.2.3 Index pruning/query segmentation

Our problem is quite different from previous work in index pruning [42, 43, 44,

45, 46] and query segmentation [47]. The primary goal of index pruning is to create

a compact index offline and search over this index to gain better efficiency. In query

segmentation, a syntactic parser is used to identify noun phrases in a query, and

only the features defined over the noun phrases, rather than all features, are used to

retrieve documents. This technique can be especially beneficial for verbose queries

since there may be more imprecise terms or terms that do not contribute to the user’s

actual intent in such queries; using these terms will incur high computational cost

and they may not help retrieval effectiveness too much. While both index pruning

and query segmentation are designed for dealing with query latency, these methods

do not directly optimize the underlying efficiency and effectiveness metrics, e.g.,

optimizing index pruning or optimizing segmentation accuracy is not guaranteed to

optimize retrieval effectiveness and efficiency, and their tradeoff.

2.3 Coarse-to-fine models

The cascade model described in Chapter 5 is related to the general class of

coarse-to-fine models that have been used in real-time object detection and clas-

sification problems in computer vision and machine learning. For instance, in the

problem of real-time face detection in images [52], a sequence of binary classifiers

20

of increasing complexity are applied to progressively filters the object images, such

that the mostly unlikely images are rejected early by simple classifiers, and the more

promising object-like regions are given to the more complex classifiers for further

consideration. A key difference between their work and ours is that our problem is

a ranking problem, rather than a classification/detection problem. Thus, we are not

interested in getting high recall or precision as [52]. We are interested in the top-K

ranked effectiveness, which only depends on how the top-K documents are ranked.

This is in line with “learning to rank” for information retrieval [2, 53, 28, 54], where

the goal is to construct the best ordering of documents, rather than predicting cor-

rect document scores or labels. Several challenges will arise from optimizing the

cascade system with respect to the top-K ranked effectiveness, which we discuss

Chapter 5.

Another example of coarse-to-fine models is the structured prediction cas-

cade [55]. Structured prediction poses a tradeoff between the need for highly com-

plex models for better predictive power and the limited computational resources

for inference [55]. A structured prediction cascade was formulated to progressively

filter the space of possible outputs, and due to the filtering on the output space,

inference complexity can be significantly reduced. Given this, a key difference be-

tween structured prediction cascade and our work is that we learn the structure of

the cascade, i.e., what ranking models are used to construct the cascade, as well as

the parameters of these ranking models; whereas in [55], the structure is assumed

to be given, and the goal is to learn the model parameters only. Another difference

is ranking effectiveness is measured by top-K ranked effectiveness (e.g., normalized

21

discounted cumulative gain, etc.), which is a common measure used by web-search

applications.

2.4 Other work that goes beyond effectiveness

There have been several solutions proposed for dealing with the efficiency-

effectiveness tradeoff in various contexts. First, in the machine learning community,

it was shown that l1 regularization is useful for “encouraging” models to have only

a few non-zero parameters, thereby greatly decreasing the time necessary to pro-

cess test instances [56]. Thus, l1 regularized loss functions balance between model

effectiveness (e.g., mean squared error, classification accuracy, etc.) and efficiency

(number of non-zero parameters). However, quantifying efficiency in this way is

overly simple and not very flexible. Indeed, the efficiency of most ranking functions

can not be modeled simply as a function of the number of non-zero parameters,

since the costs associated with evaluating different features are unlikely to be uni-

form (e.g., unigram scoring vs. term proximity scoring). The efficiency of a system

ultimately depends on the specific implementation, architecture, etc. Therefore, l1

regularization is too simple to be effective for jointly optimizing the effectiveness

and efficiency of ranking functions.

In a similar direction, Collins-Thompson and Callan [57] investigated strategies

for robust query expansion by modeling expansion term selection and weighting

using convex programming. Their model included a variant of l1 regularization that

imposes a penalty for including common terms in the expanded query, since such

22

terms are likely to increase query execution time. This was the first effort that we

are aware of that modeled efficiency in a search engine-specific manner. However,

our work focuses on ad hoc retrieval, as opposed to query expansion. Furthermore,

the convex program is solved at query-time in [57]. The issue of the how such a

program can be solved efficiently at query-time was not discussed. In our work,

we also need to deal with the issue of constructing a ranking model at query-time

– for instance, for the problem of ranking under temporal constraints, we build a

query-specific ranking function to satisfy the given query’s time requirement, and

as we show (Chapter 4), our technique for model construction at query time incurs

minimal overhead – O(|Q|log|Q|), where |Q| denotes the query length.

Our work is also related to optimizing multiple effectiveness metrics [11, 10,

58]. Svore et al. [11] use a standard web relevance measure, NDCG, as the primary

optimization metric and a relevance derived from click-data is used as the secondary

metric; the performance of the primary measure is maintained constant while the

algorithm tries to improve the secondary measure. Dai et al. [10] develop a multi-

objective learning to rank algorithm for freshness and relevance by extending a state-

of-the-art divide and conquer ranking approach [59]. A difference between these

and our work is that we treat multiple measures, which are potentially competing,

as first-class metrics during optimization, unlike the “tiered” approach [11]. In

addition, instead of capturing just another facet of web search [11, 10], our efficiency

metrics evaluate the speed of the ranking model. Model robustness, as another

optimization objective, has recently been studied by [58]. However, our focus here

is on optimizing for model speed and effectiveness, rather than robustness.

23

Another line of related work is query-dependent models. This line of work re-

sulted in recent papers that consider query-specific loss functions [60], where queries

of different types (e.g., navigational, information) are optimized with different loss

functions. Geng et al. [61] proposed a k-Nearest Neighbor based method which trains

a query-dependent ranking function for each query based on its nearest neighbors

in the training set. Bian et al. [59] proposed a clustering-based divide-and-conquer

approach for building query-dependent ranking models. However, none of these

methods considers model efficiency nor robustness issues. Our proposed framework

generalizes and complements this thread of work by learning cost-sensitive (and

robust) query-dependent models.

24

Chapter 3

Efficient Linear Models

A lot of ranking models have been proposed over the years for retrieval ef-

fectiveness. They range from the very simple term occurrence-based vector space

model and language model to the more complex linear feature-based model that

can use a large number of ranking features. Many of the more recently proposed

models are situated in the context of “learning to rank” – given a collection and

a set of training queries and relevance judgement, machine learning techniques are

used to devise ranking models to optimize retrieval effectiveness over the training

data. This thread of work has focused entirely on effectiveness. As a result, there is

no well-established a way to balance effectiveness and efficiency in these models. As

shown in Figure 3.1, a tradeoff exists between effectiveness and efficiency amongst

these models – the most effective models are generally the most expensive ones (e.g.,

long query execution time), and it would be entirely impractical to directly apply

them to web-scale document collections, even if that means high quality results.

Furthermore, in reality, both user and query efficiency requirements are diverse, op-

timizing models for effectiveness alone ignores such diverse efficiency requirements

altogether.

In contrast to effectiveness-centric frameworks, we introduce “learning to effi-

ciently rank” in this and subsequent chapters, which considers the tradeoff between

25

Figure 3.1: Ranking model effectiveness/efficiency tradeoff.

retrieval effectiveness and efficiency in the context of developing highly effective

and efficient ranking models. Since linear feature-based models form the basis of

our proposed efficient models, what features used in these models will play a large

part in determining retrieval efficiency, because the query-document features may

need to be evaluated at query-time. Broadly, we propose three novel approaches

for improving efficiency. The starting point of the first two approaches (this and

the next chapters) rely on reducing the complexity of a linear feature-based ranking

function through query-dependent feature elimination/selection, so that when ap-

plied to ranking large-scale document collections, the query execution time can be

significantly reduced (i.e., by reducing the number of query-document features to be

evaluated at query-time). The third and fourth approaches (Chapters 5 and 6) rely

on using a novel cascade ranking model to identify the ranked results for each query

in a fast and effective manner, by progressively reducing and re-ranking a number of

candidate documents. In comparison to the first two approaches, they potentially

lead to both high efficiency (by reducing document set size) and high top-K ranked

effectiveness (by using highly complex and effective models towards the end of the

26

cascade). In this and the next chapter, we focus on the first two problems:

1. Devise a ranking model which optimally balances retrieval efficiency and ef-

fectiveness according to an optimization tradeoff metric (this chapter);

2. Devise the most effective ranking model for a given temporal constraint im-

posed for each query (Chapter 4).

The main difference between these scenarios is that in the first case we con-

sider selecting an optimal operating point in the space of effectiveness/efficiency

tradeoffs (Figure 3.1) according to an optimization metric that characterizes the de-

sired tradeoff, but there is no need to provide control on an individual query basis.

Whereas in the second case, we devise temporally constrained ranking models for

each query, where the models should satisfy query-specific time requirements.

An important observation is that efficiency is a query-time measure (since it

depends on the actual query), thus, our efficient ranking models need to be con-

structed at query-time (rather than offline) to account for various tradeoff scenarios

between efficiency/effectiveness. Therefore, the online construction of such ranking

models need to be sufficiently fast. As we will show, our proposed solutions incur

negligible overhead for constructing these ranking models.

3.1 Background on Linear Feature-based Models

In this section, we give an overview of linear feature-based models, since they

form the basis of our proposed efficient ranking models. The main difference between

27

different linear models is the types of features they employ and how the feature

weights are computed. We first describe the general form of linear feature-based

models, and then focus on two particular linear models — the sequential dependence

(SD) model [15] and the weighted sequential dependence model (WSD) [34].

3.1.1 Linear feature-based models

Under linear feature-based ranking models, the relevance score assigned to

each document is computed by a weighted linear combination of feature values

computed from the query-document pair. The features can be divided into two

broad classes: 1) query-dependent features (a.k.a. query-document features), such

as the number of occurrences of each query term in the document. These features

may need to be evaluated at query-time, which will contribute to query latency; and

2) document features, such as PageRank and spam score, which are only specific

to the document. Many widely used ranking models belong to the family of linear

feature-based ranking functions [15, 20, 34, 35, 36, 37], and they have demonstrated

effectiveness over several publicly benchmarked retrieval tasks [38, 39].

More specifically, a linear ranking function is characterized by a set of features

F = f1, . . . , fN and the corresponding model parameters Λ = λ1, . . . , λN . Each

feature fi is a function that maps a query-document pair (Q,D) to a real value1.

The relevance of document D with respect to query Q is computed as:

Score(Q,D) =
�

i

λifi(Q,D) (3.1)

1
Note if the feature is document feature, its value is independent of the query.

28

Hence, as mentioned earlier, each document is scored by a weighted linear combi-

nation of the feature values computed over the document and query. The scoring

function induces a total ordering on the document set for each query. One main

advantage of linear feature-based models is that they provide a way to utilize many

different kinds of features in a straightforward manner. Examples include term-

occurrence features [12, 13], term proximity features [15], and linguistic features [35],

amongst others. Many learning to rank approaches can be used for learning a lin-

ear ranking function (i.e., estimating w) such as SVM [40], SVMMAP [33], and

coordinate level ascent algorithms [41].

3.1.2 SD and WSD models

From the general formula (Eqn 3.1), different linear models can be instan-

tiated by specifying their corresponding feature sets and the associated weights.

Among the possible linear model instantiations, we restrict our attention to the se-

quential dependence model (SD) [15] and the weighted sequential dependence model

(WSD) [34], since they are related to our efficient sequential dependence models

(ESD) to be introduced later in this thesis. Both of SD and WSD models employ

a combination of term-based and term proximity-based ranking features to score

documents. The features used by SD and WSD models is listed in table 3.1. Specif-

ically, for features they use the number of occurrences of each query unigram in a

document, the number of occurrences of exact phrase ”qj qj+1”, where qj qj+1 denote

a query term bigram, and the number of occurrences of unordered window qj qj+1

29

fT,Dir(q,D) = log

�
tf(q,D)+ µ

|C|cf(q)

|D|+µ

�

fT,BM25(q,D) =
(k1+1)·tf(q,D)

K+tf(q,D)
log

�
N−df(q)+0.5

df(q)+0.5

�

fO,Dir,S(qj , qj+1, D) = log

�
tf(od(S,qj ,qj+1),D)+ µ

|C|cf(od(S,qj ,qj+1))

|D|+µ

�

fO,BM25,S(qj , qj+1, D) =
(k1+1)·tf(od(S,qj ,qj+1),D)

K+tf(od(S,qj ,qj+1),D)
log

�
N−df(od(S,qj ,qj+1))+0.5

df(od(S,qj ,qj+1))+0.5

�

fU,Dir,S�(qj , qj+1, D) = log

�
tf(uw(S�

,qj ,qj+1),D)+ µ
|C|cf(uw(S�

,qj ,qj+1))

|D|+µ

�

fU,BM25,S�(qj , qj+1, D) =
(k1+1)·tf(uw(S�

,qj ,qj+1),D)

K+tf(uw(S�,qj ,qj+1),D)
log

�
N−df(uw(S�

,qj ,qj+1))+0.5

df(uw(S�,qj ,qj+1))+0.5

�

Table 3.1: Features used in our linear ranking functions. Here, tfe,D is the number of

times concept e matches in document D, cfe,D is the number of times concept e matches

in the entire collection, |D| is the length of document D, |D|� is the average document

length in the collection, and |C| is the total length of the collection. N and N
�
are the

window sizes for ordered and unordered phrases, respectively, where N ∈ {1, 2, 4} and

N
� ∈ {2, 4, 8}. Finally, µ is a Dirichlet feature scoring function hyperparameter, k1 and b

are BM25 feature scoring function hyperparameters.

(window span = 8) in a document.

In the case of SD model, the weight on a particular feature fi depends on the

type of feature fi. For instance, most commonly, all term occurrence features used

by SD receive a weight of 0.82, and the term proximity features (e.g., exact phrase,

unordered window features) each receives a weight of 0.09; these weights reflect

best-practice settings and have been used in several previous work [15, 20, 34].

An advantage of the parameter tying between features of the same type is sim-

plicity in ranking model. A drawback is that it cannot differentiate between features

defined over “important” query concepts2 from features defined over less important

2
In this work, a query concept simply refers to a unigram qj or a bigram qj qj+1 in the query.

30

Concept-importance features Description

gt1(q) # times q occurs in the collection

gt2(q) # documents q occurs in the collection

gt3(q) # times q occurs in ClueWeb

gt4(q) # times q occurs in a Wikipedia title

gt5(q) 1 (constant feature)

gb1(qj, qj+1) # times bigram occurs in the collection

gb2(qj, qj+1) # documents bigram occurs in the collection

gb3(qj, qj+1) # times bigram occurs in ClueWeb

gb4(qj, qj+1) # times bigram occurs in a Wikipedia title

gb5(qj, qj+1) 1 (constant feature)

Table 3.2: Concept-importance features (a.k.a. meta-features) used in ranking.

31

query concepts, since they will be assigned the same weight in the ranking model if

they are in the same feature class. For instance, for the query “Shenandoah Valley

Tourist Attractions”, the query concepts “Shenandoah Valley” and “Valley Tourist”

clearly have different importance in the query, such that “Shenandoah Valley” may

have higher importance than “Valley Tourist”. However, the SD model treats them

as equally important (by assigning their term proximity features the same weight in

the ranking model). The weighted sequential dependence model (WSD) [34] was pro-

posed to improve the SD model by letting the feature weights (for query-dependent

features) depend on the query concepts, such that features are assigned weights in

accordance to the importance of the concepts that they are defined over. Formally,

let ei denote the query concept that feature fi is defined over, the weight λi of

feature fi takes a parametric form:

λi(ei) =
�

j

wj gj(ei)

where gj’s are the concept-importance features (a.k.a. meta-features) defined over

the query concept ei, and wj’s are the free parameters. Hence, λi depends on the

query via gj and wj. Essentially, the ranking function is now query-dependent due to

this parameterization. For the concept-importance features gj, both collection fea-

tures (collection frequency and document frequency), features from external sources

(English Wikipedia and ClueWeb09), and a constant feature are used. They are

summarized in Table 3.2. We note that separate sets of concept-importance fea-

tures are defined for query unigrams concepts and bigrams concepts in the WSD

32

model, and they are denoted by gt
j
and gb

j
, respectively.

3.2 Basic setup

As a quick review, the basic setup for “learning to efficiently rank” is similar to

the standard supervised “learning to rank” [2], where we would like to learn a ranking

model from a training dataset to optimize a performance metric. The difference is

in addition to using training queries and relevance judgements as inputs to learning,

we also employ a cost model that estimates total run-time costs of different models,

which helps us to derive cost-sensitive models during learning.

As always, the first step in learning any ranking model is to identify what

the model optimizes (i.e., optimization metric). In this chapter, we first introduce

a new class of optimization metrics for capturing the mean tradeoff between effec-

tiveness and efficiency, called “Mean Effectiveness-Efficiency Tradeoff” (Meet) in

Section 3.3. Then, we introduce a new class of ranking models (efficient linear mod-

els) built for directly optimizing this metric to achieve high quality retrieval results

in reasonable amount of time in Section 3.4. We then present our training procedure

in Section 3.5 and experiment results in Section 3.6.

3.3 Tradeoff metrics

In this section we introduce a class of tradeoff metrics between effectiveness

and efficiency that our proposed efficient linear models will optimize. This class of

metrics is tunable, which means they can adapt to different user requirements. We

33

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

Ranking time (ms)

E
ff
ic

ie
n
cy

Constant

Exponential decay

Step function

Step + exponential decay

Figure 3.2: Efficiency functions. Constant and exponential decay are self explanatory.

The step function and step + exponential function can model time preferences (threshold

t=300ms here); when exceeding the time requirement, the ranking model either gets zero

efficiency value or an exponentially lower efficiency value (resp.)

define a general class of efficiency functions and describe how different functions

yield different tradeoffs. We begin by describing how to measure the efficiency and

effectiveness of retrieval models.

3.3.1 Measuring efficiency

The efficiency of a search engine can be measured in many different ways,

such as query execution time and queries executed per second. We are primarily

interested in measuring how efficient a ranking function is at producing a ranked

list for a single query. Throughout the remainder of this proposal, we will assume

34

that our measure of interest is query execution time, although any other query-level

measure of efficiency could also be used.

Query execution times are unbounded in theory. This makes them difficult to

work with from an optimization point of view. Instead, we would like to map query

execution times into the range [0, 1]. We accomplish this by defining a function

σ(·) : R+ → [0, 1] that takes a query execution time, denoted by τ(Q) as input

and returns an efficiency metric in the range [0, 1], where 0 represents an inefficient

ranking function and 1 represents an efficient ranking function.

We now define four different efficiency metrics. Each metric differs by how

σ(·) is defined.

Constant. The most trivial efficiency metric is defined as σ(Q) = c, for c ∈ [0, 1].

This constant efficiency metric is always the same, regardless of the query execution

time. This is the default assumption made by previous learning to rank approaches,

which ignore efficiency altogether.

Exponential Decay. This loss function is defined as:

σ(Q) = exp(α · τ(Q))

where α < 0 is a parameter that controls how rapidly the efficiency metric decreases

as a function of query execution time. If a large (negative) decay rate (i.e., α) is

specified, then the metric will drop off very quickly, penalizing all but the fastest

query execution times.

Step Function. Often it is necessary to incorporate query execution time prefer-

ences into the efficiency metric. For instance, users may have a certain tolerance

35

level for query execution time, such that they would expect the time to be less than

a target t milliseconds for each query. A step function can naturally account for this

requirement, as follows:

σ(Q) = 1, if τ(Q) ≤ t

σ(Q) = 0, if τ(Q) > t

The step function metric is maximal (1) when query execution time is less than t

and minimal (0) otherwise.

Step + Exponential Decay. If query execution time exceeds the threshold t in

the step function efficiency metric, but only by a small amount, the metric assigned

will still be 0, which may be overly harsh. Instead, it may be more reasonable to

define a soft loss-like function, as follows:

σ(Q) = 1, if τ(Q) ≤ t

σ(Q) = exp(α · (τ(Q)− t)), if τ(Q) > t

where α < 0. The resulting function is a step function up until the threshold

t and an exponential decay after time t with parameter α.

Figure 3.2 summarizes the four efficiency metrics just described. Note that

there are many other ways to define σ(·) beyond those explored here. The best

functional form for a given task will depend on many factors, including dataset size,

hardware configuration, among others.

36

3.3.2 Measuring effectiveness

There has been a great deal of research into evaluating the effectiveness of in-

formation retrieval systems. Therefore, we simply make use of existing effectiveness

measures here. We define the effectiveness of a query Q as γ(Q).

As with the efficiency metrics, we are primarily interested in effectiveness mea-

sures with range [0, 1]. Most of the commonly-used effectiveness metrics satisfy this

property, including precision, recall, average precision, and NDCG. In this chapter

we will exclusively focus on average precision as the effectiveness metric of interest,

although any of the above metrics can be substituted in our framework without loss

of generality.

3.3.3 Efficiency-effectiveness tradeoff metric

Our goal is to automatically learn ranking models that achieve an optimal

middle ground between effectiveness and efficiency. However, before we can learn

such a well-balanced model, we must define a new metric that captures the tradeoff.

Our metric, which we call Efficiency-Effectiveness Tradeoff (eet), is defined

for a query Q as the weighted harmonic mean of efficiency σ(Q) and effectiveness

γ(Q):

eet(Q) =
(1 + β2) · (γ(Q) · σ(Q))

β2 · σ(Q) + γ(Q)

where β is a parameter that controls the relative importance between effectiveness

and efficiency. In this work, we set β = 1, which weighs both equally, but other

settings can be trivially applied in our approach as well.

37

Given a ranking model R, the value of eet is computed for each query. To

quantify the average tradeoff performance across N queries for a given ranking

function, we define the following metric:

Meet(R) =
1

N

�
eet(Q)

which is simply the mean eet value for the set of N queries.

It should now be clear that different choices of efficiency metrics will have a

direct influence on Meet. For instance, a sharply decaying exponential efficiency

metric represents a low tolerance for inefficient ranking models. Under such a func-

tion, the efficiency metric for a ranking function with high query execution time

will likely be extremely low, resulting in a small Meet value, even if the ranking

function is effective. On the other hand, if the efficiency function decays slowly or

is constant, a ranking function with high effectiveness will also likely have a large

Meet value.

Different combinations of efficiency metric and effectiveness metric will give

rise to different Meet instantiations. Therefore, Meet is not a single metric, but

a family of tradeoff metrics that depends on an efficiency component σ(Q), an

effectiveness component γ(Q), and a tradeoff factor β.

Discussions on tradeoff metrics:

The learning problem belongs to the family of multi-objective optimizations.

Although there are many ways to combine multiple metrics to derive a final objec-

tive, the final objective should satisfy two basic requirements: 1) it needs to capture

the tradeoffs between model speed and effectiveness, and provide a simple way to

38

control their relative importance in the final model; 2) the final objective must be

optimizable by the selected learning to rank algorithm. We note that the second

requirement is non-trivial, since it is a well-known fact that many classes of learning

algorithms can not optimize for an arbitrary objective metric [1]. Thus, we must

jointly select the appropriate learning algorithm with the final objective metric.

The line-search algorithm, employed for constructing efficient linear mod-

els, can actually optimize any arbitrary objective due to its non-analytical na-

ture [15], which makes selecting an objective function relatively simpler than other-

wise. Amongst the space of all choices for the final objective (e.g., linear functions,

divisions, multiplications, harmonic means, etc.), we use harmonic means since they

are widely accepted as a way for deriving a single metric from multiple competing

measures in the IR literature. Furthermore, they provide a simple and tunable way

for controlling the relative importance between model speed and effectiveness (via

the weighting parameter β).

In contrast to line-search algorithms, we introduce an analytical boosting-

based solution for constructing fast cascades in Chapter 5, which requires the final

objective metric to be linear. Detailed discussions on the linear objective and a

proof on why the objective works with the proposed boosting algorithm are given

in Chapter 5.

39

3.4 Efficient linear models

In this section, we introduce a new class of ranking models which have a mech-

anism for balancing between retrieval effectiveness and efficiency. Since efficiency is

inherently a query-time measure (e.g., efficiency cannot be measured by the set of

offline selected features, since it depends on the actual queries), we need to augment

the linear model with the ability to adapt to query-time efficiency. We achieve this

by query-dependent feature pruning (i.e., removing query-dependent features that

do not contribute much to effectiveness but incur high complexity). As an instance

of the efficient linear model, we focus on improving the efficiency of the (weighted)

sequential dependence model by selectively pruning features in a query-dependent

manner. We call the resulting model efficient sequential dependence model (ESD).

We note that both the feature weights and pruning threshold in the ESD model are

learned to optimize a given efficiency/effectiveness tradeoff metric.

3.4.1 Limitations of linear models and offline feature selection

Before going into the details of our models, we first point out the limitations of

the linear feature-based models and offline feature selection for balancing retrieval

effectiveness and efficiency.

Linear ranking models that use a large number of features, such as those in

learning to rank [2], can be highly effective. However, when applied to ranking

tasks over large-scale document collections, they can result in long query execution

times due to evaluating many query-dependent features at query-time. A natural

40

way to lower such high costs is to reduce the set of features used by these ranking

models. Feature selection for ranking [62] has recently been proposed in the IR

community, and it considers offline feature selection for ranking models. Although

such offline feature selection can help to reduce the overall query evaluation costs

(due to the reduction of feature set), it can not fully capture retrieval efficiency,

because efficiency is inherently a query-time measure and different queries can have

very different query evaluation times even if the same set of offline selected features

are used for them (and the query-document features may need to be evaluated at

query-time). An example for illustrating this claim is given in Table 3.3. There are

two ranking features, where the first feature is a term frequency (TF) feature, which

counts the occurrences of individual query term in each document, and the second

feature is a bigram feature, which counts the occurrences of each query bigram

in each document. When these same features are used for two different queries

“White House” and “White House Rose Garden”, we see that the query evaluation

costs can be vastly different. The costs for evaluating the first query involve two

term frequency feature evaluations, one for each query term, and one bigram feature

evaluation for the entire query; whereas evaluating the second (longer) query is more

costly, since it needs four term frequency evaluations, again one on each query term,

and three bigram feature evaluations on the three bigrams contained in the query.

Another limitation is that for a given set of features, the linear model’s pa-

rameter space (i.e., feature weights) can only be learned to account for retrieval

effectiveness, and there is no a mechanism for handling efficiency within the model

parameter space. To overcome both of these issues, in the next section we propose

41

Feature set Queries Evaluation Costs

{Term frequency, bigram}

White House
TF: 2 unigrams

Phrase: 1 bigram

White House Rose Garden
TF: 4 unigrams

Phrase: 3 bigrams

Table 3.3: Limitations of linear models: offline selected features cannot capture query-

time retrieval efficiency.

efficient linear models which utilize query-dependent feature pruning to improve

efficiency while being cognizant of retrieval effectiveness.

3.4.2 Efficient linear models

In this section, we describe a class of linear ranking functions that we will

subsequently use to optimize our proposed tradeoff metrics. This simple class of

ranking functions is used to show the benefits possible from optimizing Meet,

rather than effectiveness alone. The key idea is to perform query-dependent feature

pruning to improve efficiency, with minimal impact on effectiveness.

Recall we focus our attention on a class of linear feature-based ranking func-

tions that have the following form:

Score(Q,D) =
�

i

λifi(Q,D) (3.2)

where Q is a query, D is a document, fi(Q,D) is a feature function, and λi is the

weight assigned to feature i. Recall each weight λi also takes on a parametric form,

42

as follows:

λi(ei) =
�

j

wjgj(ei)

where ei is the query concept that fi is defined over, gj(ei) is a concept-

importance feature on ei, and wj is the weight assigned to the concept-importance

feature. Notice since the weights λ are now query dependent, they can adapt better

to different query scenarios via the feature functions gj. We will show shortly that

allowing λ to depend on Q provides an intuitive way to prune features.

We focus on a particular instance of a highly effective ranking function that

takes on this functional form – the WSD model [34]. The definitions for the ranking

features and the concept-importance features used by the WSD model are summa-

rized in Table 3.1 and Table 3.2, respectively, in the background section 3.1.

Models of this form provide a natural mechanism for eliminating features in

a query-dependent manner, thereby improving efficiency (due to the reduction of

the number of query-document features to be evaluated at query-time). We propose

to drop features according to the magnitude of λi(ei), the query-dependent weight

assigned to feature i. If λi(ei) is nearly zero, then feature i is unlikely to have a

significant impact on the final ranking. Therefore, it should be safe to drop feature

i from the ranking function, thereby increasing the efficiency of the model, with

minimal impact on effectiveness. This suggests the general strategy of pruning

features if |λi(ei)| ≤ �, where � is a pruning threshold.

However, in this work, we are dealing with a model that we have specific do-

main knowledge about, and therefore use a more suitable pruning strategy. Previous

43

work by Lease [20] demonstrated that unigrams have more positive impact on re-

trieval effectiveness than bigrams; hence, we only prune bigram features from the

WSD ranking function. Bigram features are pruned if they satisfy the following

condition:

λi(qj, qj+1)

λi(qj) + λi(qj+1)
≤ �

where qj qj+1 constitute a query bigram concept ei. This condition says that

if the ratio between the bigram feature weight and the sum of individual unigram

feature weights is less than �, then the bigram is eliminated. We call the resulting

model an efficient sequential dependence model (ESD). Preliminary experiments

found the general strategy of pruning according to |λi(ei)| ≤ � to be effective, but

found this ranking function-specific strategy to yield superior results. Therefore, it

is likely that different ranking functions will require different pruning strategies to

be maximally effective.

A main advantage of this simple query-dependent pruning technique is that

it is very fast, which is a desirable property given that we need to eliminate query-

dependent features and construct the actual ranking function at query time. As

our experimental results show, this technique also results in highly effective ranking

functions for a given tradeoff metric.

3.5 Parameter estimation

In this section we describe our method for automatically learning the pa-

rameters of our proposed model from training data. In addition to learning the

44

parameters w, we must also learn the concept pruning threshold �. Although there

are many learning to rank approaches for learning a linear ranking function (i.e.,

estimating w) such as SVM [40] and SVMMAP [33], our optimization problem is

complicated by the fact that we also have to learn the best �, which is directly tied to

the efficiency of the ranking function. Since the relationship between our metric and

� can not be modeled analytically in closed-form, we are forced to directly estimate

the parameters using a non-analytical optimization procedure.

We used a simple optimization procedure that directly optimizes Meet: a

coordinate-level ascent algorithm similar to the one that was originally proposed

in [41]. The algorithm iteratively optimizes the metric by performing a series of one-

dimensional line searches in theMeetmetric space. At each iteration, it searches for

an optimal value for each parameter while holding all other parameters fixed. This

iterative process continues until there is no further improvement in the objective

metric. Given that the Meet space is unlikely to be convex, there is no guarantee

that this greedy hill climbing approach will find a global optimum, but, as we will

show, it tends to reliably find good solutions for our particular problem. The final

solution to the optimization problem is a setting of the parameters w and a pruning

threshold � that is a local maximum for the Meet metric.

We use this algorithm due to its simplicity and the fact that our model has a

small number of parameters. Each function evaluation (i.e., Meet measurement)

in the optimization procedure requires measuring both efficiency and effectiveness

of the current parameter setting as applied to the training set. This can be costly

for large training sets and large feature sets. There are several other approaches

45

Wt10g Gov2 Clue

topics 451-550 701-850 1-50

docs 1,692,096 25,205,179 50,220,423

avg qlen (title) 2.50 2.96 1.88

avg qlen (desc.) 6.08 5.90 5.88

Table 3.4: Number of docs, topics, and average query lengths of test collections.

for directly optimizing non-smooth functions using similar types of hill-climbing

methods, such as simultaneous perturbation stochastic approximation [63], which

uses fewer function evaluations and could be used to speed up training.

3.6 Experiment results

This section presents our experimental results. We begin by describing our

experimental setup and then present a detailed evaluation of our proposed method

using publicly available TREC datasets.

3.6.1 Experiment setup

We implemented our learning to efficiently rank framework on top of Ivory, an

open-source web-scale information retrieval engine [64]. Experiments were run on

a SunFire X4100, with two Dual Core AMD Opteron Processor 285 at 2.6GHz and

16GB RAM (although all experiments used only a single thread).

46

Our experiment framework [64] currently does not employ caching. In real-

life search engines, many frequent user queries can be answered by a result cache

without the need for scoring. Our query set can be viewed as being sampled from

queries that cannot be answered by the result cache. This same assumption has also

been used in prior work on search engine efficiency [6].

To illustrate the benefits of our proposed work across a diverse set of document

collections, we used the three TREC web collections shown in Table 3.4. Wt10g

is a small web collection with 1.7 million documents, while Gov2 is a larger 25

million page crawl of the .gov domain. Finally, Clue is the first English segment

of ClueWeb09, a web crawl consisting of 50 million documents. We used the title

portions of TREC topics as queries for these collections. In each case, queries were

split sequentially into a training and test set of equal size; results are reported on

the test sets. In all cases we ran retrieval on a single index and score the top 1000

returned documents. We use Dirichlet-based subset of features in Table 3.1 for our

experiments.

We compare the ESD model with two baseline models. One is the bag-of-words

query likelihood model [12] (QL), with Dirichlet smoothing parameter µ = 1000.

The other is the less efficient, but more effective sequential dependence model [15]

(SD). The SD model is a special case of the WSD and ESD models. The best practice

implementation of the SD model uses the same features and functional form as the

WSD model, but sets wt

5 = 0.82, wb

5 = 0.09. All of the other parameters are set to

0, yielding query independent λi weights. The SD model does not prune features,

meaning that all features are evaluated for every query.

47

Effectiveness is measured in terms of mean average precision (MAP), although

as previously noted a variety of other effectiveness metrics can be substituted. As

for efficiency, we explored several different efficiency functions, and analyzed the

resulting impacts on the tradeoff between efficiency and effectiveness (detailed be-

low). When training our model, we directly optimize the Meet metric. A Wilcoxon

signed rank test with p < 0.05 was used to determine the statistical significance of

differences in the metrics.

3.6.2 Results

In this section we describe the performance of our model in terms of its ability

to optimally balance effectiveness and efficiency. We show the impact of different

efficiency functions on the learned models and also present an analysis of the dis-

tribution of query times, demonstrating reduced variance. Finally, we show that

with specific efficiency functions, our learned models converge to either baseline

query-likelihood or the weighted sequential dependence model, thus illustrating the

generality of our framework in subsuming ranking approaches that only take into

account effectiveness.

3.6.2.1 Tradeoff between effectiveness and efficiency

Table 3.5 presents results of two sets of experiments using the step + expo-

nential function, with what we subjectively characterize as “slow” decay and “fast”

48

“Slow” Decay Rate

Wt10g (t = 150ms,α = −0.05) Gov2 (t = 5s, α = −0.1) Clue (t = 7s, α = −0.01)

Time(s) MAP Meet Time(s) MAP Meet Time(s) MAP Meet

QL 0.168 21.51 21.75 1.97 31.94 31.96 4.09 20.75 20.55

SD 0.401 22.43* 22.12 7.09 33.57* 32.91 13.46 21.68 21.41

ESD 0.235 24.04*† 23.03*† 6.42 34.74*† 33.94*† 11.18 22.34* 22.14

“Fast” Decay Rate

Wt10g (t = 150ms,α = −0.45) Gov2 (t = 5s, α = −0.35) Clue (t = 7s, α = −0.1)

Time(s) MAP Meet Time(s) MAP Meet Time(s) MAP Meet

QL 0.168 21.51 21.03 1.97 31.94 31.87 4.09 20.75 20.53

SD 0.401 22.43* 19.63* 7.09 33.57* 31.77 13.46 21.68 21.26

ESD 0.215 23.42* 21.55*† 5.46 33.65* 32.58 8.55 21.24 21.08

Table 3.5: Comparison between models under step + exponential efficiency function

(slow decay on top, fast decay on bottom); parameters t (time threshold) and α (decay

rate) are shown in the column headings for each collection. Symbol * denotes significant

difference with QL; † denotes significant difference with SD. Percentage improvement

shown in parentheses: over QL for SD, and over QL/SD for ESD.

49

decay. The time threshold t (below which efficiency is one) was chosen to be roughly

halfway between the QL and SD running times for each collection. Due to the dif-

ferences in collection size, it is unlikely that a common decay rate (α) is appropriate

for all collections. Therefore, we manually selected a separate decay rate for each

collection. Both t and α are shown in the column headings of Table 3.5. The

fast decay function penalizes low efficiency ranking functions more heavily, thus a

highly-efficient ranking function with reasonable effectiveness is preferred over a less

efficient function with potentially better effectiveness. With the slow decay function,

effectiveness plays a greater role.

For both fast and slow decay, we compared our proposed model (ESD) with the

query likelihood model (QL) and the sequential dependence model (SD) in terms of

query evaluation time, MAP, and Meet. In both tables, percentage improvements

for MAP and Meet are shown in parentheses: over QL for SD, and over QL/SD for

ESD. Statistical significance is denoted by special symbols.

As expected, the mean query evaluation time for ESD is greater than that of

QL, but less than that of SD for both sets of experiments. Furthermore, the mean

query evaluation time for ESD is lower for the fast decay rate than for the slow

decay rate, which suggests that our efficiency loss function is behaving as expected.

In the learned models, ESD is 41.4%, 9.4%, and 16.9% faster than SD for the slow

decay rate on Wt10g, Gov2, and Clue, respectively; ESD is 46.4%, 23.0%, and 36.5%

faster than SD for the fast decay rate on the same three collections, respectively.

Once again, this makes sense, since the fast decay rate penalizes inefficient ranking

functions more heavily.

50

In terms of mean average precision, in five out of the six conditions, the ESD

model was significantly better than baseline QL. In the one condition in which this

was not the case (Clue with fast decay), SD was not significantly better than QL

either. While the ESD model is much more efficient than the SD model, it has

similar or better effectiveness than SD. We believe that this result demonstrates the

ability of our framework to select a more optimal operating point in the space of

effectiveness-efficiency tradeoffs than previous approaches.

In terms of Meet, in 3 of 6 cases ESD achieved statistically significantly higher

MEET than QL, and that in the other three cases the apparent differences were not

statistically significant. Interestingly, we note that SD has a lower Meet score than

default QL in two out of three collections when the fast decay rate is used. This

suggests that the default formulation of the sequential dependence model trades off

a bit too much efficiency for effectiveness, at least based on our metrics.

Lastly, note that setting the time target t in the efficiency function implies that

the ranking model will be penalized by an exponential decay in efficiency if its query

ranking time exceeds t. This is a soft penalization factor, which contrasts with the

more harsh step function where efficiency is assigned a zero value for time exceeding

t. An implication of using this soft efficiency loss function is that for a ranking

function with time > t, if it is highly effective for user queries, it may still have a

reasonable tradeoff value, because essentially, its high effectiveness compensates for

the loss in efficiency. This fact is also confirmed by results shown in Table 3.5, where

the average query time of ESD is consistently greater than the time threshold t.

51

3.6.2.2 Analysis of query latency distribution

Another benefit of our proposed framework is that learned models exhibit low

variance in query execution times. Figure 3.3 plots histograms of query execution

for QL, SD, and ESD on the Wt10g collection. The ESD model was trained using

the step + exponential (fast decay) efficiency function.

We can see that most queries with baseline QL are evaluated in a short amount

of time, with a small number of outliers. The sequential dependence model has a

heavier tail distribution with increased variance in query execution times: most

queries still finish relatively quickly, but a significant minority of the queries take

much longer to evaluate. Our ESD model reduces the number of long running

queries so that the histogram is less tail heavy, which greatly improves the observed

variance of query execution times. This improved behavior is due to the fact that

our model considers efficiency as well as effectiveness, hence penalizes long-running

queries, even if they are more effective. Note that although query likelihood has

the most desirable query execution profile, it comes at the cost of effectiveness.

Experiments in the previous section showed that ESD is at least as effective as SD,

but much more efficient. The distribution of query execution times further supports

this conclusion.

Why is reduced variance in query execution time important? For real-world

search engines, it is important to ensure that a user, on average, gets good results

quickly. However, it is equally important to ensure that no user waits too long,

since these represent potentially dissatisfied users who never come back. A basic

52

100 300 500 700 900 1100 1300 1500
0

10

20

30

40

Time(ms)

C
o

u
n

t
o

f
q

u
e

ri
e

s
in

 e
a

ch
 t

im
e

 b
in

(a)

100 300 500 700 900 1100 1300 1500
0

10

20

30

40

Time(ms)

C
o

u
n

t
o

f
q

u
e

ri
e

s
in

 e
a

ch
 t

im
e

 b
in

(b)

100 300 500 700 900 1100 1300 1500
0

10

20

30

40

Time(ms)

C
o
u
n
t
o
f
q
u
e
ri
e
s

in
 e

a
ch

 t
im

e
 b

in

(c)

Figure 3.3: Distribution of query execution time for Wt10g queries for (a) query likelihood

(QL); (b) sequential dependence model (SD); (c) efficient sequential dependence model

(ESD).

53

principle in human-computer interaction is that the user should never be surprised,

and that system behavior falls in line with user expectations. Reducing the variance

of query execution times helps us accomplish this goal.

Furthermore, from a systems engineering point of view, lower variance in query

execution time improves load balancing across multiple servers. In real-world sys-

tems, high query throughput is achieved by replicated services across which load is

distributed. If variance of query execution times is high, simple approaches (e.g.,

round-robin) can result in uneven loads (consider, for example, that in SD one query

can take an order of magnitude longer than another to execute). Therefore, the re-

duced variance exhibited by our learned models is a desirable property.

3.6.2.3 Relationship to other retrieval models

Finally, we demonstrate that previous ranking models that consider effective-

ness can be viewed as special cases in our proposed family of ranking functions that

account for both effectiveness and efficiency. More specifically, the flexible choices

for efficiency functions used in our general framework can capture a wide range of

tradeoff scenarios for different effectiveness/efficiency requirements. For instance, if

we care more about efficiency than effectiveness, then we can set the time threshold

in the efficiency function to be low, which forces us to learn a ranking function with

high efficiency. On the other hand, if the focus is to learn the most effective rank-

ing function possible (disregarding efficiency), then we can use a constant efficiency

54

Wt10g Gov2 Clue

Time MAP Meet Time MAP Meet Time MAP Meet

SD 0.401 22.43 22.44 7.09 33.57 33.27 13.46 21.68 21.42

ESD 0.425 24.11† 23.34† 7.13 34.35† 34.08† 13.87 22.43 22.26

(+7.5) (+4.0) (+2.3) (+2.4) (+3.5) (+3.9)

Table 3.6: Comparison of SD and ESD under constant efficiency (i.e., only effectiveness

is accounted for in the tradeoff metric).

value. We would expect that in the first case, the learned model would look very

similar to baseline query likelihood (efficient but not effective). Correspondingly, we

would expect that in the latter case, the learned model would look very similar to

the sequential dependence model (effective but not efficient). For particular choices

of the efficiency function, the learned models should converge to (i.e., acquire similar

parameter settings as) existing models that encode a specific effectiveness/efficiency

tradeoff.

Table 3.6 compares ESD to the SD model with a constant efficiency function.

Our model, when trained with constant efficiency values, is equivalent to the WSD

model [34]. The ESD model in this case significantly outperforms SD in MAP and

Meet scores; the differences are significant in two of the three collections.

Table 3.7 illustrates the relationship of ESD to QL under a step efficiency

function with low time targets (t = 100ms is used for Wt10g and t = 3s is used

55

Wt10g Gov2 Clue

Time MAP Meet Time MAP Meet Time MAP Meet

QL 0.168 21.51 13.37 1.97 31.94 25.82 4.08 20.75 16.02

ESD 0.145 21.50 13.50 1.93 31.63 25.39 3.68 20.70 16.02

(–) (+1.0) (−1.0) (−1.7) (−0.2) (–)

Table 3.7: Comparison of QL and ESD under step efficiency functions. A step function

with t = 3s is used for Clue and Gov2, and a step function with t = 100ms is used for

Wt10g.

for Clue and Gov2). Step efficiency functions heavily penalize long query execution

times, so the model essentially converges to simple bag of words. An interesting

observation is that while retaining similar effectiveness as the QL model, the ESD

model achieves a better time efficiency than QL due to its joint optimization of

effectiveness and efficiency (allowing the model to prune query bigrams that have

little impact on effectiveness, but nevertheless have an efficiency cost).

56

Chapter 4

Ranking under Temporal Constraints

In the previous chapter, we introduced the notion of efficient linear models,

which are capable of balancing between retrieval effectiveness and efficiency ac-

cording to a tradeoff metric. In this chapter, we introduce the notion of temporally

constrained ranked retrieval, which produces the best possible ranked list for a given

query under a time constraint. It is different from the previous chapter since now

the time constraint is imposed on a per-query basis and the goal is to construct

effective ranking models that can satisfy the imposed time constraints.

There are several practical motivations for ranking under temporal constraints.

First, users are diverse and have different tolerances to query execution times. Some

are impatient and want results as soon as possible, while others may be willing to

wait a bit longer if it means better results. Second, there may be a service level

agreement (SLA) specifying the expectations about the quality of service, such as

query execution time, which the system should conform to. Third, the ability to

impose constraint on query execution time will help the system to adapt to excessive

query volume. For example, when query load is high, we might tighten the temporal

constraints to maintain roughly the same query latency, at the cost of some reduction

in quality—this might be preferable to forcing users to wait longer for results.

Naturally, the quality of results improves as more computation time is allowed,

57

but critically, the ranking function should always produce some results given an ar-

bitrary time constraint. This property is desirable from a number of perspectives: to

cope with diverse users and information needs, as well as to better manage system

load and variance in query execution times. This idea is related to anytime algo-

rithms, which were introduced in the mid-1980s by Dean and Boddy [65, 66] in the

context of time-dependent planning. The primary difference, however, is that any-

time algorithms provide a solution at any arbitrary point, whereas our temporally

constrained ranking functions require the time constraint to be specified in advance

(and may not produce any result prior to this constraint).

More formally, we define a temporally constrained ranking function as one

that solves the following ranking task: given a user query q and a time constraint

T (q), the goal is to produce a top k ranking of documents from collection C that

maximizes a metric of interest such as mean average precision, NDCG, etc.

It is true that we can address the diverse users and information needs by devis-

ing multiple ranking algorithms that encode specific tradeoffs, and then dynamically

select the appropriate algorithm at query time. The obvious downside, however, is

duplicate development effort. Instead, it would be more desirable to have a single

ranking algorithm that comes with an adjustable “knob” to set the desired query

evaluation time.

In this chapter, we propose two temporally constrained ranking algorithms

based on a class of probabilistic prediction models that can naturally incorporate

efficiency constraints: one that makes independent feature selection decisions, and

the other that makes joint feature selection decisions. Experiments on three different

58

test collections show that both ranking algorithms are able to satisfy imposed time

constraints, although the joint model outperforms the independent model in being

able to deliver more effective results, especially under tight time constraints, due to

its ability to capture feature dependencies.

4.1 Ranking with time constraints

This section formalizes the problem of temporally constrained ranking, where

in addition to a query q, we specify a time constraint T (q) for the query. We

first provide a brief overview of the linear ranking functions and the feature set we

use, and introduce the concept of temporally constrained linear ranking functions.

We then present novel formulations based on probabilistic prediction models for

constructing temporally constrained functions. Finally, we discuss how to satisfy

the time requirement and estimate model parameters.

4.1.1 Linear ranking functions

As a quick recap from Section 3.1, a linear ranking function is characterized

by a set of features F = f1, . . . , fN and the corresponding model parameters Λ =

λ1, . . . , λN . Each feature fi is a function that maps a query-document pair (q, d) to

a real value.

We now describe the features fi and gj that we consider in this chapter. For the

query-dependent concept-importance features gj, we use the same set of features as

in the previous chapter (Table 3.2), including collection-based (collection frequency

59

and document frequency), features from external sources (English Wikipedia and a

large Web collection), and a constant feature. As for the ranking features fi, both

term-based features [12, 13] and term proximity features [21, 15] have been widely

used in such models, and have been shown to be especially successful when used in

combination [67]. We take a similar feature-oriented approach and use both term

features and term proximity features as part of our feature pool (Table 3.1). Among

them, we use two different unigram term features, each using a different feature

scoring function (BM25 or Dirichlet). We use a set of term proximity features defined

over bigrams within the query, where each is computed from a BM25 or Dirichlet

scoring function, for a specific window type (ordered/unordered) and window length.

These are similar to the features previously explored [67].

Note that as a result from this query-dependent weighting [34, 20], features

fi that are defined on the same unigram/bigram (i.e., query concept) in the query

will have the same feature weight value λi. This property will be used for devel-

oping efficient algorithms for creating temporally constrained ranking functions in

Section 4.2.1.

Finally, most of the computational cost associated with such ranking functions

comes from the cost incurred from evaluating the features fi. Unlike the features fi,

we assume that there is negligible cost associated with computing the features gj.

Typically, in an operational setting retrieval engines would have access to large-scale,

low-latency distributed caches for these types of global statistics.

60

4.2 Constrained linear ranking functions

In a temporally constrained setting, using all features in the linear ranking

function may exceed the time requirement, since the query-document features may

need to be evaluated at query-time. Instead, for each query, we need to alter the

efficiency characteristics of the ranking function by only using a subset of the features

to meet its time requirement. We call the resulting ranking function a temporally

constrained linear ranking function and it has the following general form:

Score(q, d) =
�

fi(q,·):Si=1

λifi(q, d)

s.t.
�

fi(q,·):Si=1

C(fi(q, ·)) ≤ T (q)

where C(fi(q, ·)) denotes the computational cost of evaluating feature fi for q over

the document collection, T (q) is the time requirement for query q, Si is a binary

value denoting whether fi(q, ·) is computed for q, and λi’s are the linear feature

weights, parameterized by concept-importance features described in the previous

section.

To instantiate a model, we must address the following: 1) how to best select

the subset of query dependent features to construct the corresponding temporally

constrained ranking function for each query q; 2) how to define the cost function

C(fi(q, ·)) for the linear features fi(q, ·) such that the response time of the resulting

ranking function will not exceed the time requirement; 3) how to determine the

free parameters (i.e., concept-importance feature weights wj) for the temporally

constrained ranking function. We described our proposed solution to these issues in

61

the following sections.

4.2.1 Prediction models

This section introduces two methods for creating temporally constrained rank-

ing functions. Both are based on a class of probabilistic prediction models that can

naturally impose time constraints on query execution times. The first method,

which we call “Indep”, makes independent decisions when selecting which features

fi should be evaluated. The second method, which we call “Joint”, goes an extra

step by accounting for query-level feature redundancy. We note that in contrast to

previously proposed feature selection methods for ranking [62, 67], our problem is

unique in that the feature selection is driven by the time constraint for each query,

not purely by effectiveness.

In both methods, the decision on what features to use largely depends on the

feature weights λi(q). Features with large weights are more likely to be selected

when facing a time constraint because they have a more significant impact on the

final ranking. In particular, in the “Indep” model, the likelihood of a feature fi(q, ·)

being selected is directly proportional to its query dependent feature weight λi(q).

In the “Joint” model, as we will show, the selection depends both on the feature

weight and the feature’s redundancy relationship with respect to other features.

62

4.2.1.1 Independent Prediction Model

The independent prediction model is based on a logistic regression model. It

aims to directly estimate the likelihood that a given feature fi should be included in

the ranking function or not. Using this model, the probability of selecting feature

fi (i.e., Si=1) is computed as:

P (Si|q) =
exp(λi(q))

1 + exp(λi(q))
=

exp
��

j wjgj(q, i)
�

1 + exp
��

j wjgj(q, i)
� (4.1)

where the gj are the concept-importance features used in our linear ranking function

and the wj are the corresponding model parameters. When defined in this way,

the likelihood of choosing feature i is monotonic with respect to λi(q), the query-

dependent weight from our linear ranking function. As mentioned earlier, this is

intuitively appealing, as it is desirable to choose features with large weights, since

they are more likely to have more of a positive impact on the ranking.

Under this independent model, the joint probability of selecting features is

simply the product of individual selection likelihoods. Given a time constraint T (q)

for query q, we need to infer the most likely selections over all features and construct

the corresponding constrained ranking function R(q), such that the time cost of R(q)

will be within T (q). While many existing methods are available for general inference

for prediction models [68], such methods are unconstrained. Instead, inference under

time constraint T (q) for a given query, can be easily shown to be equivalent to the

following optimization problem:

Ŝ = maxS

�

i

Siλi(q) (4.2)

63

s.t.
�

i

SiC(fi(q, ·)) ≤ T (q), Si ∈ {0, 1}

where Si is a binary variable indicating whether feature fi and its correspond-

ing feature weight λi will be used in the ranking function, C(fi(q, ·)) is the cost of

evaluating fi for q over the collection, and T (q) is the time constraint. The goal of

the optimization is to find an optimal set of features that maximizes the objective

and satisfies the time constraint T (q). Similar approaches for casting inference as

an optimization task have also been used in the NLP task of semantic role labeling

[69]. This formulation has the advantage that it enables us to impose arbitrary

linear constraints (such as temporal constraints) on the model outputs (i.e., the

temporally constrained ranking function).

Solving the stated optimization problem in Equation 4.2 is done at runtime, so

for each query, the complexity cannot be very high. Nonetheless, the Indep model

allows for an extremely efficient inference from which the temporally constrained

ranking function is constructed. Note that our query cost model excludes the in-

ference cost because, as we will show, the running time complexity for constructing

ranking functions is negligible for reasonably sized queries.

The process of inferring the temporal ranking function from the Indep model

is presented in Algorithm 1. It should be easy to see that for Indep prediction

model, its optimization problem corresponds to the classical knapsack problem. Here,

features are “items” that we are trying to fit into the knapsack. The value of each

corresponds to the feature weight λi(q), the cost corresponds to C(fi(q, ·)), which

is explained in detail in Section 4.2.2, and the knapsack capacity is T (q). We first

64

Algorithm 1: Independent Ranking

Input: Query time requirement T(q); ranking features fi(q, ·); concept-importance

features gj(q) and concept-importance features weights wj

Output: Temporal constrained ranking function R(q)

Compute feature weights: λi(q) =

�

j

wj gj(q);

Compute feature profit density: pi =
λi(q)
C(fi)

;

Queue F : features sorted in non-increasing order of profit density;

Initialize R(q) = {};

Initialize totalCost = 0;

while size(F) > 0 do

Remove fi from head of F ;

if totalCost + cost(fi) < T (q) then

add {fi, λi} to ranking function R(q);

totalCost = totalCost + cost(fi);

end

return R(q);

compute the profit density for each feature fi, which is defined by the ratio between

its value and cost (i.e., λi(q)
C(fi)

). We then add features according to this density (largest

first), until we can no longer add any more features without overshooting our time

constraint, or until when we run out of features to use.

Since the number of features is linear in |q|, the length of the query, the time

complexity for this process is O(|q| log |q|), which accounts for sorting and adding

features into the constrained ranking function. This is trivial compared to the time

taken for query evaluation.

65

4.2.1.2 Joint Prediction Model

The independent prediction model assumes that feature selection decisions are

made independently of each other. While this assumption is reasonable for small

feature sets, it may not hold as well for larger feature sets. Therefore, we would like

to model relationships between features and eliminate the computation of redundant

features that do not add very much to the ranking function in terms of relevance,

yet result in increased query execution times.

We define redundancy only for features defined over the same query concept

(i.e., unigram or bigram). The intuition is that under a time constraint, we would

like to use features that provide maximal coverage over all query concepts, rather

than repeatedly using features for the same query concept. Hence, for a pair of

features fi and fj that share a common query concept (i.e., λi(q) = λj(q)), the

redundancy is defined as follows:

r(fi, fj) =






1 if λi < α

0 otherwise

where α is a weight threshold. This definition says that fi and fj are redundant

if the feature weight does not exceed threshold α. This definition allows us to

impose redundancy penalty on features defined over less important query concepts,

as determined by the feature weight value.

We propose using an undirected probabilistic graphical model [70] to capture

the feature importance and redundancy relationship between features when making

the selection under time constraint. An undirected graphical model is a probabilistic

66

Algorithm 2: Joint Ranking

Input: Query time requirement T(q); ranking features fi(q, ·); concept-importance

features gj(q) and concept-importance features weights wj

Output: Temporal constrained ranking function R(q)

Compute feature weights: λi(q) =

�

j

wj gj(q);

Compute feature profit density: pi =
λi(q)
C(fi)

;

Queue F1: features sorted in non-increasing order of profit density;

Initialize queue F2={} ;

Initialize R(q) = {};

Initialize totalCost = 0;

For each concept e, let Ge = set of features defined on e;

Let λe denote the weight of features in Ge;

Let covered[e]=false for all e;

while size(F1) > 0 or size(F2) > 0 do

Remove fi that has max pi from head of F1 or F2;

if totalCost + cost(fi) < T (q) then

add {fi, λi} to ranking function R(q);

totalCost = totalCost + cost(fi);

Denote concept covered by fi by e�;

if (covered[e�] is false and λe� < α) then

λe� = λe� - β;

Ge� = Ge� \ fi; move Ge� from F1 to end of F2;

covered[e�] = true;

end

return R(q);

67

model defined over an undirected graph, which encodes the conditional independence

assumptions amongst random variables, corresponding to the nodes in the graph.

Here, we make use of the Ising models (a.k.a. Boltzmann machine) [71] to represent

individual features and their pairwise redundancy relationships. Under this model,

the joint probability over all feature decisions is:

P (S1, . . . , Sk) =
1

Z
exp




�

i




�

j

wjgj(q, i)Si +
�

i�∈N(i)

β · r(fi, fi�)SiSi�









(4.3)

where N(i) are the features that share an edge with feature i in the graph (i.e., fea-

tures in N(i) are defined over same query concept as fi), r(fi, fi�) is the redundancy

feature defined over the pair (fi, fi�) and β is the model parameter associated with

redundancy feature r. Si, wj and gj are as defined earlier.

It can be easily shown that the probability of selecting features f1, . . . , fk under

time constraint can be stated by the following optimization problem:

Ŝ = maxS

�

i

λi(q)Si +
�

i

�

i�∈N(i)

β · r(fi, fi�)SiSi�

s.t.
�

i

SiC(fi(q, ·)) ≤ T (q), Si ∈ {0, 1}

The goal of the optimization is to find a set of features that reach an optimal balance

between feature effectiveness and redundancy, while satisfying the time constraint

T (q). Note that when β = 0 this problem reduces to the independent case.

The optimization problem is an integer linear program [72], and several prac-

tical solutions exist. Most commonly, they iteratively make decisions based on a

score value for each feature (similar to the knapsack problem). However, they re-

quire continually re-sorting the features after a feature is added and the values of

68

its neighbor features are re-computed to account for redundancy. Our problem has

the nice properties that all features defined over the same query concept share a

common feature weight value, and their redundancy feature is binary valued. These

properties enable us to derive an efficient solution (Algorithm 2) for this optimiza-

tion problem, and as we will show, it has the same running time complexity as

Algorithm 1, but however, it significantly improves effectiveness over Indep model

as shown by our experiment results.

Similar to the independent case, we add features according to their profit den-

sities (largest first). When a feature fi is added, if its feature weight does not exceed

α, the selection likelihoods of its remaining neighboring features are recomputed to

account for feature redundancy penalty (if not already done). In this case, feature

ordering needs to be adjusted to account for new weights. But because features

defined on the same query concept share same weight value, there is no need to

sort them after they get same penalty β. To make sure they are properly placed

with respect to other features, we maintain two queues, F1 contains non-penalized

features as sorted originally, and F2 contains the penalized features, which are al-

ways sorted as explained earlier. This way, there is no need to repeatedly perform

re-ordering operations after new weights are computed. We select the feature with

the best profit density between F1 and F2 as the next feature for the temporally

constrained ranking function during each iteration.

The time complexity for this process is O(|q| log |q|), accounting for the initial

sorting of features and for creating the ranking function. In practice, this cost is

trivial for reasonably sized queries.

69

4.2.2 Temporal constraint enforcement

In this section, we describe how we define C(fi(q, ·)), the cost for evaluating

feature fi(q, ·) for q over the document collection. More specifically, we are interested

in characterizing the efficiency of a linear ranking function as a result of using a

particular subset of features. Efficiency can be interpreted in two ways: 1) in an

absolute sense, in terms of the total amount of time necessary to compute the ranked

list, or 2) in a relative sense, where given a baseline ranking model, we measure how

much more (or less) efficient our proposed method is compared to the baseline. We

adopt the second interpretation because it factors out differences in hardware.

Thus, we model the query execution time relative to some baseline ranking

function. This type of cost model requires us to capture the costs associated with

evaluating different features fi within the linear ranking function. The cost for a

linear ranking function R(q) is computed as the sum of its individual feature costs:

C(R(q)) =
N�

i=1

C(fi(q, ·))

We estimate C(fi(q, ·)) as the sum of document frequencies DF (t) of each term t

required to compute fi. That is,

C(fi(q, ·)) =
�

t∈fi
DF (t)

For features defined over unigrams, this sum has a single component; while for fea-

tures defined over bigrams, it has two components. Intuitively, this analytical model

captures the fact that evaluating more features and evaluating each feature over long

posting lists (i.e., large DF values) will both result in greater time complexity.

70

Given a baseline ranking function, say we want to construct an temporally

constrained ranking function R(q) such that the actual execution time of the model

must be within a multiple k of the baseline model’s query execution time Rb(q).

This can be expressed as the following constraint:

C(R(q)) ≤ k C(Rb(q))

where the cost is computed as described above. Our algorithm for constructing

R(q) enforces this constraint. As we show in the experiment section, this very

simple cost model works surprisingly well for ensuring the actual time T (R(q)) of

the model meets the actual time constraint imposed on the query:

T (R(q)) ≤ k T (Rb(q))

and k T (Rb(q)) is the time requirement for q, as a multiple of baseline time T (Rb(q)).

4.2.3 Parameter estimation

It should be clear that a new optimization metric must be defined here, because

commonly used effectiveness metrics (MAP, P20, etc.) do not directly account for

how the effectiveness of models vary across a range of time constraints.

To evaluate the performance of a temporally constrained ranking function, the

new metric must account for the expected effectiveness over different time budgets.

Stated more formally, the expected effectiveness Eq for a query q is defined as:

Eq =
�

t

eq(t)P (t)

71

where eq(t) denotes the effectiveness achieved by the constrained ranking function

associated with time constraint t, and P (t) represents the likelihood of t being as-

signed as the time constraint for the query. Any commonly used effectiveness metrics

(such as average precision, P20, etc.) can be used in the effectiveness measure eq(t)

at each single time point t. In our experiment section, we report results from using

average precision, and P20.

For simplicity, we assume all t values are equally likely (i.e., uniform distribu-

tion for P (t)). However, we can assign various other distributions (i.e., Gaussian,

exponential, etc.) to model more complex distributions for time constraints.

Taking the mean of E over a set of n queries gives us the mean expected

effectiveness:

ME =
1

n

�

q

Eq

which represents the overall performance of the ranking functions across different

time constraints and queries.

The set of free parameters we need to learn offline are the concept-importance

feature weights wj and the redundancy feature weight β and threshold α (for Joint

model only). The values of these parameters versus the objective metric ME are not

smooth and there are multiple local maxima, so the standard gradient-search based

methods can not be applied directly. In this work, we employ a simple line search

algorithm for optimizing the various model parameters by directly optimizing the

mean expected effectiveness ME on the training set. This approach has been used

by several earlier work for estimating parameters in ranking functions to directly to

72

optimize objective metrics [34, 15]. The algorithm iteratively optimizes the metric

by performing a series of one-dimensional line searches. At each iteration, it searches

for an optimal value for each parameter while holding all other parameters fixed.

This iterative process continues until the improvement in the objective metric drops

below a threshold. More details of this parameter estimation can be found in [72].

4.3 Experiments

We report experimental evaluation of our proposed temporally constrained

ranking models on three TREC web test collections: Wt10g, Gov2, and Clue (first

English segment of ClueWeb09). Details of these test collections are provided in

Table 3.4 in Chapter 3. The title and description portions of the corresponding

TREC topics were used as queries, split equally into a training and test set. All

parameter tuning was performed on the training set, and all of the results reported

are from applying the learned parameters to the test set.

Our experiments compare average precision (AP), precision at 20 (P20), and

mean expected effectiveness ME of various models, including a baseline query-

likelihood (QL) model, a baseline sequential dependence (SD) model [15], the Indep

model, and the Joint model. In addition, we constructed an upper-bound model,

called “All features”, which is a standard learning to rank model (i.e., optimized

for effectiveness only with no temporal constraints) learned over the entire feature

set. To remain consistent with our proposed models, the “All features” model is

constructed in the same manner as the temporally constrained models, except the

73

Wt10g Gov2 Clue

Title 0.18s 2.2s 4.2s

Description 0.48s 7.7s 20.5s

Table 4.1: Avg. query execution time of baseline QL for title and desc. queries of Wt10g,

Gov2, Clue.

temporal constraint is set to infinity. The Wilcoxon signed rank test with p < 0.05

was used to test for statistically significant differences between the methods.

We implemented our learning to efficiently rank framework on top of Ivory, a

newly-developed open-source web-scale information retrieval engine [64]. All exper-

iments were run on a SunFire X4100, with two Dual Core AMD Opteron Processor

285 at 2.6GHz and 16GB RAM (although all experiments used only a single thread).

Recall that we varied the time constraint for each query q be a multiple k of the

query execution time of baseline QL, denoted by k TQL(q). The average query ex-

ecution times of baseline QL for various data collections and queries are shown in

Table 4.1 for reference.

4.3.1 Effectiveness vs time constraints

Figure 4.1 compares the MAP of our proposed temporally constrained ranking

algorithms as a function of time constraints, from 1TQL(q) and 5TQL(q) in increments

of 0.5TQL(q) for each query. In each graph, the effectiveness of the baseline QL model

is plotted as the lower solid line, and the “All features” upper-bound is plotted as

the upper dotted line.

74

1 1.5 2 2.5 3 3.5 4 4.5 5

0.16

0.18

0.2

0.22

0.24

Time(xQL)

M
AP

Joint
Indep
QL
All features

1 1.5 2 2.5 3 3.5 4 4.5 50.17

0.18

0.19

0.2

0.21

0.22

0.23

Time(xQL)

M
AP

Joint
Indep
QL
All features

(i) Wt10g title (ii) Wt10g description

1 1.5 2 2.5 3 3.5 4 4.5 5
0.15

0.19

0.23

0.27

0.31

0.35

Time(xQL)

M
AP

Joint
Indep
QL
All features

1 2 3 4 50.24

0.26

0.28

0.3

0.32

0.34

Time(xQL)

M
AP

Joint
Indep
QL
All features

(iii) Gov2 title (iv) Gov2 description

1 1.5 2 2.5 3 3.5 4 4.5 50.1

0.14

0.18

0.22

0.25

Time(xQL)

M
AP

Joint
Indep
QL
All features

1 1.5 2 2.5 3 3.5 4 4.5 50.16

0.165

0.17

0.175

0.18

0.185

0.19

0.195

Time(xQL)

M
AP

Joint Indep QL All features

(v) Clue title (vi) Clue description

Figure 4.1: MAP versus time for Indep, Joint and QL models on title and description

queries in the test sets of Wt10g, Gov2 and Clue.

75

While in general both the Indep and Joint models produce more effective

results than the baseline QL when given more time, the Joint model consistently

achieves equal or higher MAP than the Indep model across all time constraints for

both title and description queries. It also approaches the upper bound more rapidly

as the time constraint is relaxed. This shows that the Joint model is superior to the

Indep model across a wide range of retrieval scenarios.

Another interesting aspect is that the effectiveness difference between the In-

dep and Joint models is largest under tight temporal constraints, while the two

models tend to perform similarly when the temporal constraint is relaxed. This can

be explained by the fact that eliminating redundant features is more critical under

strict temporal constraints—in such a case, using a diverse set of features is pre-

ferred. The effect of redundant features diminishes as the time constraint increases,

since there is sufficient time to evaluate more features (redundant or otherwise).

Feature redundancy also explains why the Indep model is different with respect

to Joint and QL for very strict temporal constraints: it repeatedly choose features

based on profit density alone. Thus, the time constraint will likely be violated before

(at least) one feature for each facet in the query can be selected. Note this is not a

problem with baseline QL, which only uses one feature for each term so there are

no redundant features. In other words, given a rich feature set, under a strict time

constraint, effectiveness is more critically dependent on selecting both high quality

and non-redundant features.

In general, MAP increases as the time constraint is loosened, for both the Joint

and Indep models. Once again, this makes sense since the models are able to benefit

76

from more features. However, we encounter a point of diminishing returns around

4 TQL, which suggests that using a very large number of features, as considered

by previous effectiveness-centric ranking models, may not be very desirable in our

formulation of temporally constrained ranking, at least on these datasets. In a

learning-to-rank scenario that only takes effectiveness into account (which might

roughly correspond to the right edges of our graph), we feel that the marginal

gains in effectiveness that comes with evaluating more features (thus taking more

time) trades off too much efficiency for a small effectiveness gain. This speaks to

the advantage of our temporally constrained ranking functions, which allows the

tradeoff between effectiveness and efficiency to be explicitly considered.

4.3.2 Satisfying time constraints

Recall that our constrained ranking functions use an analytical cost model

based on the sum of document frequencies, which are highly correlated to actual

query evaluation times. However, whether the time constraints are actually met on

the test data is an empirical question, since there are no theoretical guarantees. As

described in Section 4.2.1, the time for constructing ranking functions is negligible

compared to retrieval time for reasonably sized queries, thus it is not included in

the query evaluation times.

Figure 4.2 illustrates how well, in reality, the temporally constrained ranking

functions satisfy query-specific time constraints on the test data. Each set of bars

represents a particular time constraint, defined as before in terms of multiples of

77

(i) Wt10g title (ii) Wt10g description

(iii) Gov2 title (iv) Gov2 description

(iv) Clue title (v) Clue description

Figure 4.2: The fraction of query evaluation times that satisfy the imposed time constraint

for title and description queries of Wt10g, Gov2, and Clue datasets.

78

the baseline QL query evaluation time. The height of each bar shows the fraction

of queries that satisfy the required time constraint. For each time constraint t, the

temporally constrained ranking function is said to have satisfied the constraint if

the actual query execution time is less than or equal to t. We see that the “hit

rates” (i.e., meeting the specified time constraint) for both ranking algorithms are

well above 80% for almost all test collections, while most of the values are above

90%. This suggests our sum-of-dfs cost model, which is used by the algorithm to

guarantee the time constraints, works reasonably well in practice.

What is not shown on the graphs is that the same queries were missed across

multiple time constraints. For instance, the query “maps of United States” missed

all of the time constraints for the Clue collection. We found the queries that often

missed their targets usually contained many frequent terms and/or are longer than

average. This suggests that our analytical model underestimates the cost of these

’outlier’ queries. As part of future work, we would like to explore ways to improve

our analytical model to better handle such queries to minimize the number of queries

that miss the specified time constraint.

Finally, a query is classified as a “miss” if its response time is greater than the

required time t. However, if it only exceeds t by a very small amount, it may still

be tolerable in practice. For instance, by allowing the response time to exceed t by

a small amount (e.g., 5%), we observed that our models achieved 100% hit rates in

many cases.

79

4.3.3 Expected effectiveness across constraints

To investigate the average effectiveness of our proposed temporally constrained

ranking algorithms across different time points, we compared their mean expected ef-

fectiveness (according to MAP and P20) in Table 4.2 for title and description queries

across all three test collections. Results from the QL baseline are also reported. In

terms of averaged effectiveness computed using MAP, the Joint model consistently

and significantly outperforms both Indep and QL. Specifically, for title queries, the

Joint model attains over 7.5%, 6.8%, and 13.3% improvements over QL on Wt10g,

Gov2, and Clue, respectively. The Joint model achieves over 2.7%, 7.7%, and 13.1%

over Indep model on the same collections, respectively. Similar improvements are

observed under averaged effectiveness computed using P20. We also note that the

improvements of Joint over QL and Joint over Indep are statistically significant in

two out of three collections, under both of the effectiveness metrics. The Indep

model improves over QL in two out of three collections, under both effectiveness

metrics, although the improvements are not statistically significant for title queries.

For the description queries, both of the Indep and Joint models achieve sig-

nificant improvements over QL across all collections, while the Joint model also

outperforms the Indep model in all three collections. The improvements of the In-

dep model over QL in terms of average effectiveness using MAP are 10.7%, 7.0%,

and 1.5%, respectively on the three collections. In two of these three cases the

improvements of Indep over QL are statistically significant. Similar results are ob-

tained under averaged effectiveness computed from P20. Compared to title queries,

80

Title Queries

Wt10g Gov2 Clue

ME(MAP) ME(P20) T98 ME(MAP) ME(P20) T98 ME(MAP) ME(P20) T98

QL 21.51 32.40 – 31.94 50.93 – 20.74 37.25 –

Indep 22.54 32.77 4.5 31.67 50.37 4 20.78 35.01 –

Joint 23.14∗ 33.22 4.5 34.12∗
† 54.76∗

† 3 23.51† 40.54∗
† 2.5

Description Queries

Wt10g Gov2 Clue

ME(MAP) ME(P20) T98 ME(MAP) ME(P20) T98 ME(MAP) ME(P20) T98

QL 18.38 28.60 – 28.76 49.47 – 16.68 29.90 –

Indep 20.35∗ 31.18∗ – 30.76∗ 51.25 5 16.93 34.69 –

Joint 20.84∗
† 31.45∗ 4 32.05∗

† 52.82∗ 3 18.18 37.05 4

Table 4.2: Mean average effectiveness in terms of averaged MAP and averaged P20 from

times 1TQL to 5TQL for title and description queries in the test sets of Wt10g, Gov2, and

Clue. Bolded values denote best performance obtained for test queries in each data set.

The ∗ and † symbols represent statistically significant differences with respect to QL and

Indep, respectively. Percentage improvement shown in parentheses: over QL for Indep,

and over QL/Indep for Joint.

81

this demonstrates that selecting features according to query dependent weights un-

der time constraints (i.e., largest weights first), as employed by the Indep model,

is more beneficial for verbose queries than short title queries. This is in line with

previous findings [20, 34] for creating effective-centric ranking models (i.e., no time

constraint), where query dependent weighting was shown to be more useful for long

queries. The Joint model consistently outperform both QL and Indep by large mar-

gins for the description queries, and in most cases the differences are significant,

which confirms our earlier observation that by reducing feature redundancy and se-

lecting high quality features, the joint model can achieve high effectiveness across a

wide range of time constraints. Note that for description queries, the Joint model

outperforms the Indep model even on looser time constraints because there exists

more redundancy in longer queries.

In addition to effectiveness, we are also interested in measuring how quickly

each model converges to the effectiveness of the “All features” upper-bound. To

approximate this measure, we let Td denote the time (relative to TQL) taken by each

model to achieve d% of the upper-bound effectiveness, where d% is chosen to be 98%

in our experiments, where effectiveness is measured in MAP. In terms of T98, we see

that for both title and description queries the Joint model has quantitatively better

convergence rates than the Indep model across all collections. Furthermore, unlike

Indep model, Joint model is able to attain the 98% of upper-bound effectiveness

across all collections and query types. We note that the QL baseline is not able to

attain the specified effectiveness (i.e., 98% of upper-bound effectiveness), thus it is

not meaningful to compute T98 for it.

82

Title Queries Description Queries

Wt10g Gov2 Clue Wt10g Gov2 Clue

SD 22.44 33.57 21.68 19.78 29.84 18.36

Indep 23.66
∗ 35.12∗ 22.57 21.55 32.39∗ 17.67

Joint 23.66 35.25
∗

24.00 22.01† 33.36
∗

18.89

Table 4.3: MAP scores of SD, Indep and Joint at TSD for title queries (left) and description

queries (right) for Wt10g, Gov2, and Clue. The ∗ and † represents sig. difference with

respect to SD and Indep, respectively.

4.3.4 Comparison with SD model

How does our temporally constrained ranking models compare with a pre-

viously proposed effectiveness-centric model? The sequential dependence model

(SD) [15] is a widely-used term proximity retrieval model, which adheres to a rigid

efficiency-effectiveness tradeoff (i.e., it does not adapt to time constraints), and has

demonstrated good performance across various tasks [15, 20, 34]. For fairness of

comparison, we calibrate the time constraints of our temporally constrained mod-

els with respect to the SD model’s time TSD, where TSD is approximately equal

to 4TQL(q) for each query q. Table 4.3 reports the results on title and description

queries for the SD, Indep, and Joint models.

From these results, it is evident that both the Indep and Joint models signifi-

cantly outperform SD when under the same temporal constraint as the SD model.

83

For title queries, the gains in MAP range between 4.1% and 5.4% for Indep, and

range between 5.0% and 10.7% for the Joint model. Further, we observe that the

gains of Indep over SD are greater for description queries than title queries. For

example, the Indep model improves over SD by 11.27% and 11.7% for Wt10g and

Gov2, respectively, more so than that for title queries, with the only exception be-

ing the Clue collection description queries. However, the Joint model consistently

outperforms both the SD and Indep models in all conditions. These results not only

suggest our temporally constrained ranking functions can subsume the SD models,

as well as the QL baseline (as illustrated previously), as special tradeoff cases be-

tween effectiveness and efficiency, but our models can in fact return more effective

results than those commonly used retrieval models under the same time cost.

84

Chapter 5

A Cascade Ranking Model for Efficient Ranked Retrieval

As we saw in the previous chapters, there is often a tension between effective-

ness and efficiency when building information retrieval systems. To achieve greater

effectiveness (i.e., to deliver higher quality results), system designers are driven to-

wards complex ranking functions that may combine evidence from dozens, hundreds,

or even thousands of relevance signals, typically using sophisticated machine learning

techniques [2]. This frequently comes at a cost in efficiency (i.e., a slower system),

since complex ranking functions are computationally expensive, thus requiring more

resources to achieve the same level of service. On the other hand, efficiency can be

enhanced through a variety of approaches such as index pruning, feature pruning,

approximate query evaluation, and systems engineering. However, most of these

approaches degrade effectiveness, typically in ways that are difficult to control.

We have discussed how to build efficient ranking models according to a de-

sired tradeoff between efficiency and effectiveness, and how to satisfy the temporal

constraint imposed on each query. The central theme of both problems is to con-

trol the complexity of the ranking function by using a subset of query-dependent

features in the ranking function, thereby reducing query execution time. While

efficiency-minded feature selection is a natural way to make existing models faster,

such pruning may negatively affect retrieval effectiveness. For example, if there

85

are hundreds to thousands available query-dependent features, as we impose time

constraints on the ranking function, a large fraction of them may need to be elim-

inated from the ranking function in order to satisfy the speed requirement. This

problem is exacerbated for very large collections under tight efficiency constraints.

In this setting, only a small handful of cheap features can be used for ranking,

which can result in poor retrieval effectiveness. Furthermore, with feature prun-

ing, the retrieval engine still implements a single monolithic ranking function– and

thus it remains necessary to compute complex features for many documents (which

is especially problematic for large web collections). In addition, since the num-

ber of non-relevant documents is significantly larger than the number of relevant

documents in web-scale collections, applying a monolithic ranking model (even if

used with a fast query evaluation engine) may waste computations, because a large

number of the documents examined are non-relevant.

In this chapter, we ask the question – “is it possible to have both speed and

high effectiveness at the same time in a ranking model”? We consider the problem

of top-K retrieval over web-scale document collections, in which we are interested in

returning the best ranked list of K documents to the user such that top-K ranked

effectiveness and retrieval efficiency are jointly optimized. There are two observa-

tions for this problem: 1) in web-scale collections, the distribution of relevant and

non-relevant documents to a query is highly skewed, such that the number of non-

relevant documents is usually much larger than the number of relevant documents;

2) the size of the top-K ranked list is usually significantly smaller than the collection

size. For instance, in a practical setting, users will only browse through the top-10 or

86

top-20 returned documents. The naive approach – rank the entire document collec-

tion1 first and then return the top-K, as practiced by conventional ranking models,

clearly is quite inefficient since most of the documents evaluated and ranked are

outside of the top-K documents. Thus, rather than applying a complex monolithic

ranking function, we can perform a quick filtering to remove the most unlikely doc-

uments by using simple and less costly term-based ranking functions, and apply

more complex and effective ranking models on the most likely documents for the

query. This motivates a cascade ranking model for top-K retrieval over web-scale

document collections.

We present our proposed cascade models and formally state the problem of

learning a cascade to jointly optimize top-K ranked effectiveness and retrieval effi-

ciency. Unlike monolithic ranking models, the cascade uses a sequence of increas-

ingly complex ranking functions to progressively prune documents and refine the

rank order of non-pruned documents. Thus, the cascade model views retrieval as a

multi-stage progressive refinement problem, where each stage considers successively

richer and more complex ranking models, but over successively smaller candidate

document sets. The intuition is that although complex features are generally more

time-consuming to compute, additional overhead is offset by the fact that fewer

documents are examined. This type of ranking paradigm is well-suited for large

document collections, because the number of relevant documents is very small com-

pared to the collection size. Hence, the ability to quickly hone in on a small set

of candidate documents, via the cascade, can yield higher quality results and faster

1
To be more precise, it is the documents in the postings lists of the query terms.

87

query execution times. To achieve a desired efficiency-effectiveness tradeoff, we de-

scribe a novel boosting algorithm, a generalization of AdaRank [31], that jointly

learns the model structure (i.e., optimal sequence of ranking stages) and the set

of documents to prune at each stage. Experiments show that our cascade model

can simultaneously improve effectiveness and efficiency compared to non-cascade

feature-based models.

We note that commercial search engines employ a similar multi-stage ranking,

which, at the first stage, a basic ranker is applied to get the seed documents, and

at the subsequent stages, ranking models of increasing complexity are applied to

re-rank and filter these documents. This can be viewed as a baseline case for our

cascade model. While this basic architecture offers a way for obtaining speed by

progressively filtering documents, there are many unanswered questions/issues:

• To the best of our knowledge, the basic ranker and the more sophisticated

ranking models are independently selected in an ad hoc fashion. From an op-

timization point of view, given a ranked effectiveness/efficiency tradeoff metric

on the cascade, such disjoint selection and learning of first-stage and subse-

quent stage rankers may not lead to an optimal cascade system with respect

to the tradeoff metric. It is more desirable to learn the entire cascade as a

whole to directly optimize the tradeoff metric.

• Pruning is applied on the ranked documents from the basic ranker to prune

documents for the subsequent stage. Clearly, the pruning threshold is critical

to both effectiveness and efficiency of the overall system. Setting the thresh-

88

old too low or too high will result in significantly different tradeoff scenarios

between ranked effectiveness/efficiency. What is the criteria for selecting the

threshold? What should it optimize?

• Users are only interested in the top-K documents to a query. How will this

affect the choice of ranking models and pruning thresholds in the cascade?

Rather than treating multi-stage ranking as an ad hoc application of several

ranking models constructed disjointly and with manually selected pruning thresh-

olds, the proposed cascade is a more principled and integrated approach for top-K

retrieval over web-scale document collections. We propose to automatically learn

the ranking models used in the cascade and the pruning thresholds to directly opti-

mize an end-to-end efficiency/effectiveness tradeoff function for the entire cascade.

The output of the cascade is a top-K ranked results for each given query, where K

is assumed to be given to the system at the training stage.

In recent years, there has been a great deal of research devoted to improving

run-time efficiency of machine learned models in various domains, such as object

detection and segmentation [73], natural language parsing and translation [74, 75],

classification [76] and its applications [77, 78]. In general, there is a fundamental

tradeoff between run-time efficiency and effectiveness as models of increasing com-

plexity are considered. Domain-specific cascaded models have been built to alleviate

run-time computational costs while trying to ensure result accuracy in these differ-

ent disciplines. It is worth noting that unlike approximate inference algorithms in

machine learning [79, 80], cascaded methods typically involve exact inference in a

89

Figure 5.1: An example cascade. After an initial ranking function H0, each stage consists

of two sequential operations: Jt prunes the input ranked documents, then a local ranking

function Ht refines the rank order of the retained documents. The new ranked list is

passed to the next stage. The size of the shaded area denotes the size of the candidate

documents. Subscripts for each ranked list denotes the sequence of actions applied.

reduced input space, rather than approximate inference in full input space. Given

this previous work, it might be useful to answer the question – “why do we need

a cascade model for efficient ranked retrieval? Can we directly use the existing

cascade models and their learning methods for information retrieval?” Although

our approach belongs to the general class of coarse-to-fine grained models, it is of-

ten desirable to design domain-specific models – cascades used in other disciplines

may not have the optimal structure for ranked retrieval and the desired evaluation

metric for information retrieval (e.g., MAP, NDCG, etc). For example, cascades

used in classification [76, 77] often involve progressive filtering of inputs to reduce

classification error and improve run-time efficiency. In contrast, the pruning and

re-ranking employed by our cascade for each stage operation allows the model to

more effectively improve ranked effectiveness measure and run-time efficiency.

90

5.1 Cascade model

In web search, there are significantly more non-relevant documents than rele-

vant documents and most users only browse the top few results. Applying a mono-

lithic ranking model for each query, even if used in conjunction with fast query

evaluation techniques (e.g., [81, 49, 8]), may not be very efficient because a large

number of scored documents are likely to be non-relevant and/or will not appear

in the top k. Our proposed cascade model leverages these facts to achieve high top

k ranked effectiveness in a highly efficient manner by constructing ranking mod-

els from simple to complex, applying the simple ones first, and pruning documents

at each subsequent stage so that more complex (and better) ranking models are

computed over fewer documents.

The cascade model consists of an additive sequence of stages {S1...ST}, where

each stage St is associated with a pruning function Jt and a local ranking function

Ht. Each stage receives as input the set of ranked documents from the previous

stage and applies two sequential operations: first, the pruning function Jt is used

to remove a number of documents from the input set (thus reducing the amount

of effort involved in document scoring); then, the score contribution of the local

ranking function Ht is added to the candidate documents still under consideration

(to improve top k quality of the remaining documents). The results are forwarded

to the next cascade stage for further pruning and re-ranking.

By construction, the cascade is arranged so that the local ranking functions

increase in cost (and thus, complexity). Early stages take advantage of “cheap”

91

ranking models to rank documents; the pruning functions discard documents that

are unlikely to appear in the final top k. Thus, each successive stage is presented

with a smaller candidate set, which enables the cascade to exploit more complex and

costly ranking models—hence improving effectiveness—without sacrificing efficiency.

As an example, Figure 5.1 presents a cascade model. The input to the cascade

is a set of documents for a given query, and the final output is a ranked list of k

documents (where k is specified in advance). An initial ranking function H0 is ap-

plied to obtain an initial ranked list, R{H0}, which is then passed as input to the first

stage. At the first cascade stage, the pruning function J1 prunes documents in R{H0}

based on features of these documents (details in Section 5.1.1). The output from

the pruning operation, denoted by R{H0,J1}, is re-ranked by adding the contribution

of H1 to the document scores. This process repeats for the next cascade stage.

The overall score of a non-pruned document di at the end of a cascade model

with T stages has the following form:

fT (di) =
T�

t=1

αt ·Ht (5.1)

where αt denotes the importance of the local model Ht. Following previous work

in learning to rank, each Ht is a “weak ranker”. We postpone discussing the actual

ranking functions and our feature set until Section 5.2.

The iterative pruning and scoring mechanisms of the cascade provide a way to

explicitly control the tradeoff between retrieval efficiency and ranked effectiveness.

In terms of efficiency, the cascade aims to reduce the number of candidate documents

92

at each stage:

|R{·,Jt}| ≤ |R{·,Jt−1}| ≤ . . . |R{·,J1}| (5.2)

where each |R{·,Jt}| denotes the resulting size of the documents after pruning at stage

t, and the · abbreviates the previous sequence of pruning and re-ranking actions that

have been applied to the input ranked documents R. In terms of effectiveness, the

cascade aims to achieve the following:

E(R{·,Ht}) ≥ E(R{·,Ht−1}) ≥ . . . E(R{H0}) (5.3)

where E(R{·,Ht}) denotes the resulting top k effectiveness from applying Ht to refine

the overall scores of the non-pruned documents that have reached St.

We can trivially obtain the most desirable outcome for either Equation (5.2) or

Equation (5.3) at the expense of the other. If we set the pruning functions to never

discard any documents, then the final ranked effectiveness E(R{·,Ht}) will be as high

as possible since there will be no “loss” due to pruning. However, the cascade will

likely be inefficient. Alternatively, if we prune every document, the result will almost

certainly be fast, but ineffective. Thus, the objective is to design a well-balanced

cascade by jointly learning the local ranking and pruning functions, guided by a

tradeoff metric. We describe exactly such an algorithm in Section 5.2.

Before proceeding, a comment about the order in which pruning and re-ranking

is performed at each stage: the pruning function is applied on the ranked documents

produced from the previous stage, i.e., Jt reduces the size of the output documents

from stage t − 1. The reason behind this ordering is that while the local ranking

functionHt−1 used at the previous stage helps to refine the top k ranked effectiveness,

93

pruning its re-ranked documents has a direct impact on the efficiency of stages t, t+

1, . . . , T . If the pruning is aggressive, then fewer documents will reach t, t+1, . . . , T ,

thereby improving efficiency. Therefore, when learning the cascade, the pruning

function defined for output documents from t−1 should (ideally) be jointly selected

with the ranking functions at t, t + 1, . . . , T . For example, if Ht is complex, then

pruning documents from t − 1 must be aggressive to make it feasible to apply Ht;

on the other hand, if Ht is simple, then more documents from t − 1 may be kept

and scored. While it would be ideal to jointly consider the pruning function with

all subsequent ranking functions, this significantly complicates learning. Instead,

we only consider the pruning function for documents produced from t− 1 with the

current ranking model Ht at stage t. To instantiate a cascade, we need to define the

pruning functions, discussed next.

5.1.1 Pruning functions

At the input of each cascade stage t, we receive a set of ranked documents

R{·,Ht−1} passed from the previous stage, which are then filtered by the pruning

function Jt. Since we have complete rank and score information for these input

documents (up to stage t − 1), the pruning function Jt can utilize their global

rank and score. There are many ways to prune documents based on such global

information: both rank-based [6] and score-based pruning methods [6, 82] have been

proposed in the past. A key benefit of our model is that it is highly modular and

flexible—the cascade is not restricted to a single pruning technique, but different

94

Pruning Description

Rank-based RankCutoff(βt) : (1− βt) · |R{·,Ht−1}|

Score-based ScoreCutoff(βt) : βt · ScoreRanget−1 +MinSt−1

Score-distribution based MeanMax(βt) : βt ·MaxSt−1 + (1− βt) ·MeanSt−1

Table 5.1: Pruning functions used by our constrained cascade models. Here βt denotes

the pruning threshold, ScoreRanget−1 is defined to be the difference between the maximum

and minimum scores in input R{·,Ht−1}, MinSt−1 and MaxSt−1 are the minimum and mean

scores in R{·,Ht−1}, respectively.

stages can use different pruning functions Jt, which may be better suited to work

with its corresponding local model Ht. This allows us to simply treat the different

pruning methods as “pruning features”, which can be selected at each stage. Our

goal is not to develop novel pruning methods, but rather to use existing methods as

building blocks within our model.

In this section, we present three pruning methods (Jt) as shown in Table 5.1

that we have found to work well in our experiments. Each of these methods is

parameterized by a pruning threshold βt. The first two use document rank and

score information to prune, while the third also considers the score distribution.

Rank-based. This pruning method uses document rank to eliminate a desired

proportion of the input documents at each stage. The rank-based cutoff is defined

as follows:

RankCutoff(βt) : (1− βt) · |R{·,Ht−1}|

95

A document is pruned if it ranks below this cutoff value, where βt here is the pruning

parameter, and |R{·,Ht−1}| is the size of input documents at stage t. Large values of

βt lead to more aggressive pruning, i.e., βt = 1 means all documents are discarded.

Score-based. Document scores provide another signal for pruning. Document

scores for different queries are different, so enforcing a common score threshold is

unlikely to work well. Instead, the score threshold is defined relative to the score

range in each input document set:

ScoreCutoff(βt) : βt · ScoreRanget−1 +MinSt−1

Where ScoreRanget−1 is defined to be the difference between the maximum and

minimum scores in input R{·,Ht−1} and MinSt−1 is the minimum score in R{·,Ht−1}.

This is equivalent to normalizing each score into [0, 1] by using the maximum and

minimum scores in the candidate set. A document is pruned if it scores less than

this threshold, where βt is the pruning parameter. As before, a large value of βt

leads to more aggressive pruning.

Mean-Max threshold. Often it is useful to consider the document score distri-

bution for pruning. Several previous studies [83, 82] have considered the problem

of inferring the score distributions of relevant and non-relevant documents, which

are then used to help identify the best cutoff threshold for the top k documents

in the ranked list to optimize a given evaluation metric. However, these methods

only work for set-based measures such as F-measure and precision/recall, and do

not work for top k ranked effectiveness measures.

We instead adopt a variant of this approach, and use a mean-max threshold

96

function to capture characteristics of the score distribution, defined as a combination

of the mean and the max of the input document scores:

MeanMax(βt) : βt ·MaxSt−1 + (1− βt) ·MeanSt−1

WhereMaxSt−1 andMeanSt−1 are the maximum and mean scores in inputR{·,Ht−1},

respectively. A document is pruned if it scores less than this mean-max thresh-

old. Similar approaches for using a mean-max threshold to control runtime scor-

ing/prediction complexity have been used in the NLP task of structured predic-

tion [55]. This formulation has the advantage that the pruning function can be

better suited for each individual ranked list of documents.

5.2 Learning the cascade

We now turn to the problem of learning a well-balanced cascade that optimizes

a desired tradeoff between retrieval efficiency and ranked effectiveness. The entire

cascade is defined by {< Jt(βt), Ht, αt >}, for t = 1, . . . , T : Jt(βt) is the pruning

function and associated parameter (Section 5.1.1), and Ht is the local ranking model

(described below) with its associated weight αt.

Before we can learn a cascade, we must define how we measure top k ranked ef-

fectiveness and retrieval efficiency. For effectiveness, our primary measure is NDCG

at k, although other metrics defined over top k rankings can easily be used instead.

For retrieval efficiency, we use a cost model to estimate the execution cost of a given

cascade. Retrieval engine details, such as query evaluation and caching strategies,

are orthogonal to our general framework since their effects on query execution are

97

captured by our cost model and simply serve as input to our learning algorithm.

5.2.1 Cost estimation

The total cost of cascade S = {St}, t = 1, . . . , T for query qi, denoted by

C(S, qi), is the sum of individual stage costs:

C(S, qi) =
T�

t=1

C(St, qi) (5.4)

The cost of each stage is determined by the complexity of Ht and how many docu-

ments will be evaluated by Ht. We let Ut denote the unit cost of evaluating Ht over

each document. The total cost of Ht at stage St is given by:

C(St, qi) = Ut · |Ri{·,Jt}| (5.5)

where |Ri{·,Jt}| denotes the size of the non-pruned documents after applying Jt.

Intuitively, this cost model captures the fact that evaluating a more complex model

over a large number of documents will result in greater time complexity.

The exact value of Ut depends on the implementation details of the search

engine. Several previous studies have proposed strategies for estimating retrieval

costs [48, 49]. The most common approach is directly fitting Ut to the actual query

execution time of the ranking model [48]. We use this approach for estimating Ut,

where we run each Ht on the set of training queries, record its time, and set Ut to

be the total time taken divided by the number of documents evaluated by Ht. For

convenience, we normalize the unit costs so the cheapest feature has a cost of one.

98

Finally, the query execution costs are unbounded, which makes them diffi-

cult to work with when learning a model. Therefore, we need to map the costs

into the range [0, 1]. This is accomplished by using an exponential decay function

exp(−δ C(S, qi)) to transform the cost into the [0, 1] interval (δ = 0.01 in our ex-

periments). Other normalization techniques, such as computing the maximum cost

(e.g., cost of applying the most expensive feature to every document in the collec-

tion) and then using it as a normalization factor, are also possible. However, this

particular alternative may not differentiate costs very well since the cost distribution

is likely to be skewed.

5.2.2 Tradeoff metric

The cascade learning problem is a multi-objective optimization problem [84].

The final objective metric is obtained by linearly combining the multiple objectives,

which, in our case are the top k ranked effectiveness and the cost of the cascade

model S. For a given query qi, the tradeoff is defined as follows:

T(S, qi) = E(S, qi)− γ · C(S, qi)

where E(S, qi) represents ranked effectiveness, C(S, qi) is the computational cost

(Equation 5.4), and γ ∈ [0, 1] is a parameter that controls the relative importance

between effectiveness and efficiency. Note E(S, qi) and E(fT , qi) mean the same

thing, i.e., the effectiveness achieved by a cascade S with T stages (by Equation 5.1);

in cases where we wish to draw attention to the ranking of the cascade, we use fT

for convenience. From the tradeoff definition, it should be clear that as we add

99

more stages, the total cost will increase. Therefore, in order to improve the tradeoff

metric, the effectiveness gain from adding extra stages must counteract their costs.

5.2.3 Learning

We now turn to the problem of learning the best cascade model. The general

setup is that given a set of ranking features (described later in Section 5.2.4), prun-

ing functions (Section 5.1.1), and training queries with their associated relevance

judgments, we want to learn a cascade to optimize a given tradeoff metric, where

the cascade model is characterized by {< Jt(βt), Ht, αt >}, t = 1, . . . , T .

We propose a novel boosting algorithm, a generalization of AdaRank [31], that

jointly learns the cascade structure and parameters. AdaRank scores documents via

a linear sum of ranking models, where each model employs a single feature. It is

important to note that we can not simply use AdaRank to optimize our trade-

off metric because AdaRank assumes linearity of its optimization metric O, i.e.,

O(St−1+αtSt, qi) ≈ O(St−1, qi)+αtO(St, qi), where St−1 denotes the additive model

up to stage t − 1, St is a stage and αt is the local weight [31, 2]. Note that each

AdaRank stage consists of only Ht (a weak learner), since it does not perform doc-

ument pruning. The tradeoff metric T does not satisfy the assumption because αt

in our case is not defined over the entire stage St, since in addition to Ht, the stage

has a pruning function Jt for document reduction as well.

Our boosting algorithm for jointly optimizing top k ranked effectiveness and

retrieval efficiency in a unified framework is shown in Algorithm 3. The algorithm

100

Algorithm 3: Boosting algorithm for cascade learning

Initialize distribution P1(qi) = 1/N , where N is the number of queries and qi

denotes a query;

Initialize cascade model S = {};

for t = 1, . . . , T do

• Select a cascade stage St=< Jt(βt), Ht, · > over the training instances

weighted by Pt

• Set feature weight αt for Ht: αt =
1
2 ln

�
qi

Pt(qi)
1−γ·C(St,qi)

·(1+E(St,qi))
�

qi

Pt(qi)
1−γ·C(St,qi)

·(1−E(St,qi))
;

• Add full stage < Jt(βt), Ht, αt > to S;

• Update distribution Pt+1:

Pt+1(qi) =
exp(−E(S,qi))exp(γ·C(S,qi))�
qi

exp(−E(S,qi))exp(γ·C(S,qi))
;

end

return cascade model S

proceeds in rounds to sequentially learn a set of cascade stages to optimize over

weighted training instances. Each training instance (a query qi) has an associated

importance weight, denoted by Pt(qi). Initially, the weight distribution is set to

uniform, and is updated at the end of each iteration. At each iteration, the pa-

rameterized pruning function Jt(βt) and the weak ranker Ht are first constructed

based on the weighted training data. We describe this construction in more detail

in Section 5.2.4.

Once Jt(βt) and Ht are chosen, the algorithm selects the local weight αt > 0 for

101

the ranker Ht, where E(St, qi) and C(St, qi) in the formula denote the effectiveness

and cost, respectively, from evaluating Ht on the reduced set of documents (after

Jt). Intuitively, αt captures the effectiveness of Ht over weighted training instances.

Once αt is selected, we add the fully constructed stage to the current cascade

model. The weight distribution Pt+1 is then updated using the cost and effectiveness

from the overall cascade (as defined in the previous section). The weights on the

underperforming queries (i.e., queries that have poor ranked effectiveness, yet are

expensive to compute) are increased, so the subsequent iteration can focus more on

improving those hard queries. Note that H0, the first stage in the cascade, is not

associated with any pruning. Stage H0 simply scores and passes a set of top hits

R{H0} to the first cascade stage (in our experiments, |R{H0}| = 20, 000).

5.2.4 Cascade Stage Construction

In this paper, we use single features as weak rankers Ht, as in AdaRank [31].

Table 3.1 in Chapter 3 provides a summary of the features, which are similar to

those in previous work (e.g., [67]). We use two families of scoring functions, based

on the Dirichlet score from language modeling and BM25. Each family consists of a

unigram feature, a bigram proximity feature that takes term order into account (pa-

rameterized with a window N ∈ {1, 2, 4}), and a bigram feature score for unordered

terms (parameterized with a window N � ∈ {2, 4, 8}).

Typically, bigram features are computed over the entire query, which is prob-

lematic, as pointed out in Wang et al. [85, 86]. Consider the query “white house

102

rose garden”: intuitively, the bigram “white house” is more important than “house

rose”. Computing features for all bigrams would be wasteful, so we need a mech-

anism to capture the importance of different query bigrams. It is accomplished by

parameterizing bigram features with an “importance bin”. Each query bigram oc-

cupies a bin, sorted by concept importance as measured by the weighted sequential

dependence model [34]. Therefore, selecting the first bin amounts to selecting the

most important query bigram. The cross of the feature and the bin is available to

the learner to independently select from, thus allowing the cascade to selectively

add query bigrams. Note that unigram features are not binned.

We note that our cascade model and learning algorithm can work with other

ranking features beyond those defined here. Our approach can easily handle hundred

or even thousands of features, the scale at which commercial search engines operate.

The contribution of this work is not feature engineering, but rather the novel cascade

ranking model and learning algorithm.

Let St denote the pair < Jt(βt), Ht >, where Jt is a pruning function (Sec-

tion 5.1.1) and Ht is a weak ranker drawn from one of the features described above.

At each boosting iteration, we select a stage St according to the following formula:

St = maxSt ϕ
2
t
−

�
�

qi

Pt(qi)

1− γ · C(St, qi)

�2

where ϕt =
�

qi

Pt(qi)

1− γ · C(St, qi)
E(St, qi) (5.6)

where E(St, qi) and C(St, qi) are effectiveness and cost, respectively, from computing

103

Ht over the reduced set of documents (after pruning).2 The goal of this optimization

is to find the optimal combination of Jt(βt) and Ht that best balances cost and

effectiveness over the weighted training data. Several methods can be used for this

optimization, and in this work, we employ grid search [72] to find the set of Ht, Jt

and βt that maximizes the equation.

A formal analysis of the boosting algorithm and the proof are presented in

Section 5.2.5. For now, we note that when the tradeoff parameter γ = 0 (i.e.,

efficiency is ignored), the model simplifies to AdaRank. However, our algorithm

can produce both effective and efficient ranking models and can be viewed as a

generalization of AdaRank’s effectiveness-only approach.

5.2.5 Analysis

In this section, we show how our boosting algorithm can continuously improve

the tradeoff metric over the training data. We want to maximize the tradeoff metric

T over the training queries:

max
S

�

qi

T(S, qi) (5.7)

which is equivalent to:

min
S

�

qi

(1−T(S, qi)) (5.8)

2
Note that for the purposes of the above max computation, αt is irrelevant.

104

Because 1− x ≤ e−x for any real value x, we minimize an exponential upper-bound

of above expression:

min
S

�

qi

exp(−T(S, qi)) (5.9)

In our case, a linear combination of weak rankers is used to score the docu-

ments, with pruning performed at each stage. The optimization in Equation 5.9 is

the same as:

min
St

�

qi

exp(−T(St−1 ∪ St, qi)) (5.10)

where St−1 denotes the cascade up to stage t− 1. For determining a single stage St,

our boosting algorithm takes the approach of “forward stage-wise selection” [87],

i.e., successively adding each cascade stage to improve the overall tradeoff metric.

It can be proved that there exists a lower bound on the tradeoff metric over the

training data:

T ≥ 1−
T�

t=1

e−δ
t
min

����
�
�

qi

Pt(qi)

1− γ · C(St, qi)

�2
− ϕ2

t (5.11)

where ϕt is given in Equation 5.6, and let

δt
i
= E(ft−1 + αtHt, qi)− E(ft−1)− αE(Ht, qi)

where ft−1 denotes the linear combination of weak rankers up to t − 1 (applied

to the non-pruned documents only) and δt
min

= mini=1,...,N δt
i
, where N denotes

the number of queries. This means that the tradeoff metric can be continuously

improved as long as the following holds:

e−δ
t
min

����
�
�

qi

Pt(qi)

1− γ · C(St, qi)

�2
− ϕ2

t < 1 (5.12)

105

That is, this condition is satisfied as long as the gain in effectiveness from additional

stages is not outweighed by its cost.

Here we prove Equation 5.11. For notational clarity, let E(fT , qi) and E(HT , qi)

denote the effectiveness of cascade ST and a stage ST , respectively.

Proof. Let: ZT =
�

qi
exp(−E(fT , qi))exp(γC(ST , qi)), φT =

�
qi

PT (qi)
1−γC(ST ,qi)

+ϕT

2 .

Using definitions of PT (qi), ϕT , and αT in Section 5.2, we get eαT =
�

2φT
2(φT−ϕT) =

�
φT

(φT−ϕT) .

ZT =
�

qi

exp(−(E(fT , qi)− γC(ST , qi)))

=
�

qi

exp{−E(fT−1, qi)− αTE(HT , qi)− δT
i
+ γC(ST−1, qi) + γC(ST , qi)}

≤ e−δ
T
min

�

qi

exp(−E(fT−1, qi))exp(−αTE(HT , qi))

· exp(γC(ST−1, qi))exp(γC(ST , qi))

= e−δ
T
minZT−1

�

qi

PT (qi)exp(−αTE(HT , qi)) · exp(γC(ST , qi))

Since ex ≤ 1
1−x

for any real x we have:

ZT ≤ e−δ
T
minZT−1

�

qi

PT (qi)

1− γC(ST , qi)
exp(−αTE(HT , qi))

Since E(HT , qi) ∈ [−1, 1] we have:

ZT ≤ e−δ
T
minZT−1

�

qi

PT (qi)

1− γC(ST , qi)
{1 + E(HT , qi)

2
e−αT +

1− E(HT , qi)

2
eαT }

= e−δ
T
minZT−1

�
φT e

−αT + (φT − ϕT)e
αT

�

= Z1

T�

t=2

e−δ
t
min

�
4φt(φt − ϕt)

= N
�

qi

1

N
exp(−E(f1, qi))exp(γC(S1, qi)) ·

T�

t=2

e−δ
t
min

�
4φt(φt − ϕt)

≤ N e−δ
1
min

�

qi

exp(−E(f1, qi))exp(γC(S1, qi)) ·
T�

t=2

e−δ
t
min

�
4φt(φt − ϕt)

106

≤ N e−δ
1
min

�
4φ1(φ1 − ϕ1)

T�

t=2

e−δ
t
min

�
4φt(φt − ϕt)

= N
T�

t=1

e−δ
t
min

�
4φt(φt − ϕt)

Substitute in φt and ϕt:

≤ N
T�

t=1

e−δ
t
min

����
�
�

i

Pt(qi)

1− γC(St, qi)

�2
− ϕ2

t

So we have:

T =
1

N

�

qi

E(fT , qi)− γC(ST , qi)

≥ 1

N

�

qi

1− exp(1− (E(fT , qi)− γC(ST , qi)))

≥ 1−
T�

t=1

e−δ
t
min

����
�
�

i

Pt(qi)

1− γC(St, qi)

�2
− ϕ2

t

A special case is when γ = 0 (effectiveness-only), this bound is exactly the same

as AdaRank’s. However, non-zero γ values will induce cascades of various tradeoff

behaviors.

5.3 Experiments

This section presents experimental results: we first describe the experimental

setup and implementation details, and then present an evaluation using TREC data.

107

5.3.1 Experiment Setup

Our cascade model was evaluated on three TREC web test collections: Wt10g,

Gov2, and Clue (first English segment of ClueWeb09). Details for these collections

are provided in Table 3.4 in Chapter 3. The topic titles were used as queries, split

equally into a training and a test set. Model parameters were tuned on the training

set; reported results are from the test set.

We compare our cascade model against a set of strong baselines in terms

of top k ranked effectiveness and retrieval efficiency. Effectiveness is measured in

terms of NDCG20 and precision at 20 (P20), while retrieval efficiency is measured

in terms of average query execution time. Our cascade model is compared against

three others: AdaRank [31], which can be seen as a special case of the cascade

model (i.e., optimized for effectiveness only with no efficiency considerations); the

efficient linear model (Chapter 3), which is a previously best-known model that

jointly optimizes for both ranked effectiveness and efficiency by reducing the number

of features computed at query time (which we call “FeaturePrune”); and the basic

query-likelihood model (QL). For fairness of comparison, “FeaturePrune” re-imple-

ments the approach and training method (greedy line search) described in Chapter 3,

using the same feature set (Table 3.1) and objective function (i.e., a weighted linear

sum of speed and effectiveness) as our cascade model. As previously noted, since

Cambazoglu et al. [6] focuses on early-exit strategies given a particular additive

ensemble, it is difficult to meaningfully compare with our approach.

For training, we used NDCG20 as the effectiveness measure (E) in our tradeoff

108

metric T, with γ set to 0.1. Both the cascade structure and the cascade parameters

are automatically learned by directly optimizing the tradeoff metric over the training

set. All results are reported over the test set. The Wilcoxon signed rank test with

p < 0.05 was used to test for statistical significance.

Experiments were performed on a server running Red Hat Linux, with dual

Intel Xeon quad-core processors (E5620 2.4GHz), 64GB RAM, and six 2TB 7.2K

RPM SATA drives in RAID-6 configuration.

5.3.2 Implementation Details

All models were implemented in the Ivory open-source retrieval toolkit [64].

Baseline QL, AdaRank, and FeaturePrune work exactly as one might expect: by

traversing postings in an inverted index and performing document-at-a-time scoring

with max-score optimization [49]. The first stage of our cascade H0 also works in

the same way, using the weak learner that was selected by our boosting algorithm

(retaining the top 20,000 hits). However, the remaining stages in the cascade adopt

a different architecture. For stage H1 and subsequent stages, we construct a forward

index, which is essentially a list of pairs consisting of a document and a query term,

grouped by the document. This structure can be efficiently built on the fly as we

traverse postings in the initial cascade stage, by retaining the top documents as de-

termined by the pruning function used in the first cascade stage. The forward index

is small enough to be stored in memory and query evaluation for the subsequent

stages is performed by iterating over the forward index. The reported retrieval ef-

109

ficiency of our cascade model accounts for the overall time taken by the cascade to

return results, including the first stage. Other than this architectural difference, all

models share exactly the same code, which makes for a fair comparison. In all cases

we used a single monolithic inverted index (i.e., no document partitioning). Based

on the method described in Section 5.2.1, we computed UT to be 1 for unigram and

20 for bigram features. This empirically matches actual retrieval times well.

One final implementation detail: to speed up pruning, our cascade allows prun-

ing Jt to be performed “on-the-fly” within the computation of Ht, and so it incurs

no additional cost. To see this, we observe that all three pruning methods prune

input documents based on their rank order, i.e., a document with low score will

be pruned before a document with high score. Thus, we simply iterate over the

input documents in rank order, checking if each document di passes Jt, and if so,

Ht is evaluated; else, the pruning/scoring process at stage t terminates (because if

di does not pass pruning, any document ranked below it will not either). Note that

descriptive statistics such as minimum, maximum, mean, etc. can be computed at

the previous stage and passed to the pruning function. Coupling pruning Jt with

Ht makes pruning extremely efficient.

5.3.3 Effectiveness vs. Efficiency

Table 5.2 reports NDCG20, P20, and average query evaluation time for our

cascade model, QL, AdaRank, and the FeaturePrune method. For all three datasets,

percentage improvements for both NDCG20 and P20 are shown in parentheses: over

110

Wt10g Gov2 Clue

Time NDCG20 P20 Time NDCG20 P20 Time NDCG20 P20

QL 0.080 34.07 32.40 1.15 44.57 50.93 2.60 27.50 34.20

AdaRank 0.260 35.49 33.50 3.90 47.37* 53.60 6.55 30.94* 37.40

FeaturePrune 0.201 34.86 33.10 3.61 47.16 51.87 5.70 29.66 36.20

Cascade 0.175 35.60 33.80 2.00 47.44* 54.47* 4.28 30.60* 37.40

Table 5.2: Comparison of retrieval time and effectiveness between query likelihood (QL),

AdaRank, a feature-pruning method (FeaturePrune) and our cascade model. Effective-

ness/efficiency tradeoff parameter γ is set to 0.1. Symbol * denotes sig. difference over

QL. % improvement shown in parentheses: over QL for AdaRank, and over QL/AdaRank

for FeaturePrune and Cascade. Time is measured in seconds.

QL for AdaRank, and over QL/AdaRank for FeaturePrune and the cascade model.

Statistical significance is denoted by special symbols in the table.

In all datasets, the cascade model achieves similar (and many times slightly

better) effectiveness compared to AdaRank in both NDCG20 and P20, while being

much faster. For instance, the cascade is 32.7%, 48.7%, and 34.7% faster than

AdaRank on Wt10g, Gov2, and Clue, respectively. This means that our cascade

model can equal or beat an effectiveness-only boosting model, while also being much

faster. This illustrates that using a monolithic ranking function, as has been common

practice for ad hoc retrieval, trades a great deal of efficiency for effectiveness. Such

costly monolithic models are not more effective either since most of the documents

they score are not relevant anyway. This also highlights the advantage of the cascade:

by progressively reducing the size of candidate documents, it allows for the use of

111

more complex ranking functions for high effectiveness without sacrificing efficiency.

Furthermore, we observe that the efficiency improvement of the cascade over

AdaRank is greater for the two larger datasets (Gov2 and Clue) than Wt10g. This

makes sense: compared to smaller document collections, larger collections contain

more non-relevant documents. Thus, by filtering out these documents early in the

ranking process, the cascade drastically improves efficiency and avoids evaluating

documents that have little chance of appearing in the top k.

The cascade model also outperforms the feature pruning method in all evalu-

ation measures across all datasets. In terms of retrieval time, the cascade is 12.9%,

44.5%, and 24.9% faster than the feature prune method on Wt10g, Gov2, and Clue,

respectively. In terms of ranked effectiveness, the feature pruning method is slightly

worse than AdaRank, likely due to removing ranking features for efficiency consid-

erations. The FeaturePrune method follows from Chapter 3, discovering a better

tradeoff point by giving up a bit of effectiveness for a gain in efficiency, except it is

optimized with respect to the tradeoff metric defined in this chapter (i.e., a weighted

linear sum of speed and effectiveness). However, the cascade model can obtain the

best of both worlds: it can achieve better top k effectiveness and return results in a

shorter amount of time.

Finally, compared to QL, which only uses simple term-based features for rank-

ing and hence is very efficient, we observe that the cascade model is only slightly

slower, but achieves much better top k effectiveness. Our cascade model outperforms

QL by 4.5%, 6.4% and 11.3% in NDCG20 on Wt10g, Gov2, and Clue, respectively,

with the improvements on Gov2 and Clue statistically significant. Similar gains are

112

Wt10g Gov2 Clue

NDCG20 Filtered Filter NDCG20 Filtered Filter NDCG20 Filtered Filter

loss loss loss

Stage 0 34.07 — — 44.57 — — 27.60 — —

Stage 1 34.91 91.2%S 0.09% 46.34 95.1%M 0.15% 30.05 97.7%S 0.09%

Stage 2 35.23 0.0% 0.0% 46.53 50.0%R 1.6% 30.53 68.3%R 0.18%

Stage 3 35.60 20.2%R 0.04% 47.44 0.0% 0.0% 30.60 10.7%R 0.0%

Table 5.3: For each stage of the cascade models in Table 5.2, we compute NDCG20, %

documents filtered from the previous stage, and filter loss (% documents incorrectly pruned

out of all documents passed from the previous stage). Values in the “Filtered” column

are annotated with the pruning function that was learned: R for rank-based pruning, S for

score-based pruning, and M for the mean-max threshold.

also observed for P20.

5.3.4 Cascade Analysis

For the cascades learned in the previous section, we examine their behavior

on a stage-by-stage basis in terms of effectiveness and efficiency. A detailed analysis

is shown in Table 5.3: for each cascade stage, we present NDCG20 achieved up to

that stage and the percentage of documents filtered from the previous stage. The

values are annotated with the pruning function J learned by our boosting algorithm

at each stage. We also compute filter loss, defined as the percentage of documents

incorrectly filtered (i.e., relevant documents which are pruned) out of all documents

passed from the previous stage. For all three collections, a tradeoff parameter of

113

γ = 0.1 yields four stages. This is because the cost from adding additional stages

outweighs the marginal gain in effectiveness, even with document pruning.

We see from Table 5.3 that in most cases, each cascade stage processes a

substantially smaller set of documents than the previous stage, but always improves

ranked effectiveness. As an example, by Stage 1, the cascade reduces the document

set size by more than 90% in all three test collections, however, NDCG20 continues to

improve in subsequent stages, due to using high quality/expensive ranking features

over the small number of retained documents. For instance, our boosting algorithm

learns to use simple term-based features in the initial stage for all three datasets,

and uses term-proximity features (which are more costly) in subsequent stages to

further improve the model’s retrieval effectiveness. It is also interesting to see in

all three datasets, the first stage prunes much more aggressively than subsequent

stages. Because the input document set size is the largest at the first stage, the

efficiency of the cascade can be significantly improved by eliminating a large number

of documents early.

Also interesting is that in comparison to the NDCG20 achieved by FeaturePrune

in Table 5.2 (which optimizes the same tradeoff), the cascade quickly achieves com-

parable effectiveness, and then surpasses it in subsequent stages. For instance, in

comparison to Table 5.2, by stage 1, the cascade begins to surpass the final NDCG20

score achieved by FeaturePrune (Wt10g and Clue). By the final stage, the cascade

NDCG20 scores surpass that achieved by AdaRank (Wt10g and Gov2). This illus-

trates that document pruning performed by the cascade improves efficiency while

having minimal impact on effectiveness, compared to the monolithic ranking mod-

114

els. This is confirmed by the very low filter loss reported in the table (nearly zero

for all stages).

We also observe that at stage 2 for Wt10g and stage 3 for Gov2, the cas-

cade does not prune any input documents. This behavior can be explained by the

tradeoff metric—the effectiveness gain from applying the ranking feature on all in-

put documents outweighs its cost, and therefore the optimal pruning parameters at

these stages are zero (i.e., no pruning). However, interestingly, the learned cascade

for Clue, the largest collection, always prunes at all stages, and much more aggres-

sively (e.g., at 97.7%, 68.3% and 10.7%) than the same stages for the two smaller

collections. This is because web-scale collections contain a greater proportion of non-

relevant documents; to combat this, the model learns that more aggressive pruning

is necessary.

Finally, further analysis reveals that relevant documents that are filtered by

our cascade are not ranked in the top k documents by AdaRank either, i.e., these

documents have no chance of entering the top k even if an effectiveness-centric model

is used. The cascade model is able to obtain the best of both worlds: it can achieve

better top k effectiveness and return results in a shorter amount of time, compared

to both AdaRank and the feature-pruning approach.

5.3.5 Parameter Variations

Our final set of experiments explores the effects of varying γ, the tradeoff

parameter that balances effectiveness E and cost C in our objective function T.

115

0.16 0.17 0.18 0.19 0.2

0.34

0.345

0.35

0.355

0.36

Time (sec)

N
D

C
G

20

Cascade FeaturePrune Upperbound Lowerbound

(a) Dataset: Wt10g

2 2.5 3 3.5 40.45

0.46

0.47

0.48

Time(sec)

N
D

C
G

@
20

Cascade FeaturePrune Upperbound Lowerbound

(b) Dataset: Gov2

5 5.2 5.4 5.6 5.8 6 6.2 6.40.27

0.28

0.29

0.3

0.31

Time(sec)

N
D

C
G

@
20

Cascade FeaturePrune Upperbound Lowerbound

(c) Dataset: Clue

Figure 5.2: NDCG20 as a function of time, by varying γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
116

The setting of γ affects the cascade model and the feature pruning method, but not

AdaRank (since it does not take into account efficiency) or the QL baseline (since

no training is involved). Figure 5.2 shows NDCG20 of our cascade model and the

feature-pruning method as function of average query evaluation time for each of the

three collections, where each point represents a setting of γ, selected from the set

{0.1, 0.3, 0.5, 0.7, 0.9}. Different values of γ produce different effectiveness/efficiency

tradeoffs: a high value penalizes costly ranking functions, thus yielding faster models,

whereas a smaller value yields more effective models. In each graph, the effectiveness

lower bound, defined as the minimum effectiveness achieved under any condition,

is plotted as the lower solid line, and the effectiveness upper bound, defined as the

maximum effectiveness achieved, is plotted as the upper dotted line.

While in general effectiveness improves for both the cascade and the feature-

pruning method when given more time for ranking, the cascade model consistently

achieves equal or better NDCG20 across all conditions. It also approaches the upper

bound more rapidly as time increases. Although both the cascade model and the

feature-pruning method are able to realize different effectiveness/efficiency tradeoffs,

these results show that the cascade model is superior in being able to return higher

quality results much faster.

We also note that for Gov2 and Clue, the cascade tradeoff curve rises more

steeply than for Wt10g. This bolsters our argument that the cascade model works

particularly well for large collections. From the point of view of top k ranked effec-

tiveness and efficiency, applying ranking features on a small number of documents

is considerably more efficient but can also be more effective (by eliminating many

117

non-relevant documents from consideration).

118

Chapter 6

Constrained Ranking via Cascades

We addressed the problem of ranking under time constraints in Chapter 4. Our

proposed approach relies on reducing the number of ranking features evaluated in

order to satisfy a given temporal constraint. Although this approach has the ability

to meet time constraints, it focuses exclusively on feature selection and ignores the

impact of candidate document set size on efficiency (i.e., how many documents will

be scored by the ranking model).

In this chapter, we synthesize our ranking under temporal constraints work

with the cascade-based ranking functions. The basic idea behind the cascade model

is that many non-relevant documents are needlessly scored during retrieval. A

cascade of ranking models, constructed from low to high complexity, is used to

progressively filter and refine candidate documents to improve overall efficiency.

However, the cascade model in Chapter 5 is unconstrained, which means it cannot

return ranked results within a pre-specified amount of time. Therefore, we propose

a constrained cascade model for ranking under temporal constraints. Given a time

budget, a constrained version of the cascade model is automatically constructed to

return the best possible ranked list within the specified time limit. The constrained

cascade we propose in this chapter aims to simultaneously optimize both the features

used within the model and the document refinement strategy. Thus, the constrained

119

cascade can better utilize the available budget, via the stage-wise document pruning

mechanism of the cascade model, yielding a more robust, more efficient, and more

effective retrieval model than the original constrained ranking model [85].

6.1 A Constrained Cascade Model

Given the top-k syndrome of Web search (i.e., users are typically most sensitive

to the quality of the top k results and how long it took for the system to retrieve

them), and the fact that the number of relevant documents relevant to any given

query is typically very small, monolithic models are not efficient for large-scale

collections, since a large portion of the candidate documents are non-relevant and/or

will not appear in the top-k. Therefore, performing expensive computations over

such documents is costly, yet does not ultimately yield substantial relevance gains.

As a quick review, the cascade model in the unconstrained case [88] aims to

quickly/cheaply filter out most of the non-relevant documents by using inexpensive

ranking features, then applying complex/expensive features later onto a smaller set

of documents (which are likely to contain the most relevant documents). It is formed

by a sequence of additive ranking stages, where each stage consists of a pruning

function and a local ranker. The input to each stage is a set of ranked documents

that has been filtered and re-ranked by the previous stages. Given stage input, each

stage first uses the local pruning function to remove documents in input that have a

low chance of appearing in the top k results or being relevant. The resulting smaller

set of documents is given to local ranker for re-ranking. The output of each stage is

120

then passed to the next stage for further processing. Thus, we have a successively

reduced set of documents at each stage whose top k ranked effectiveness is iteratively

refined.

There are two main challenges in constructing constrained cascades that can

return the best possible ranked results (i.e., best top k) within the pre-specified time.

First and foremost, how should a constrained cascade be defined? We need to en-

force a time requirement and make sure the cascade can indeed satisfy it. Secondly,

learning the constrained cascade model is an important task, since most previous

learning to rank algorithms focus on optimizing a single metric (i.e., retrieval effec-

tiveness) and cannot be trivially extended to account for a time requirement. Our

proposed learning algorithm, which will be described in Section 6.1.2, jointly opti-

mizes the selection of local rankers and pruning functions to maximize effectiveness

without violating the time constraint imposed on the model’s query execution time.

We begin this section by describing the components of the constrained cascade.

6.1.1 Constrained cascade

In general, cascade models can encode different efficiency and effectiveness

characteristics. By increasing the number of cascade ranking stages with additional

high quality/expensive ranking models and reducing the amount of document prun-

ing, we obtain effectiveness-centric cascade models. By truncating the number of

stages and increasing document pruning aggressiveness, we obtain highly efficient

cascade models (which is particularly important for web search, as one may be will-

121

ing to sacrifice effectiveness for improved speed). Between these two extremes there

exists a wide range of cascades that exhibit different efficiency/effectiveness tradeoff

characteristics. Hence, the ability to impose a time constraint provides a simple way

for trading off speed and accuracy.

Given a query q with time requirementT, we say a cascadeW = {W1, . . . ,WN}

is a valid constrained cascade if its total query execution time does not exceed T.

More formally, it has the following form:

SN(di) =
N�

n=1

Fn(di, q)
N�

n=1

λn ·Mn(di, q) (6.1)

s.t.
N�

n=1

Cost(Wn(q)) ≤ T

Where the first equation denotes the final score assigned to a non-pruned

document di at the end of the cascade. As mentioned earlier, in this chapter we

use the weighted linear combination of local model scores as the final score of each

document, where λn denotes the local model importance, and Mn(di, q) denotes the

score assigned to di by local ranker Mn. Fn(di, q) is a binary value denoting the

outcome of the pruning function at stage n for di. Fn(di, q) is set to one if di passes

Fn, otherwise, it is zero. Thus, a document reaches the final stage without being

pruned if the product of all pruning functions Fn(di, q) is equal to one.

In addition, the temporal constraint T on the cascade must be satisfied by

making sure the the total execution cost of the cascade W , computed as the sum of

execution costs of each stage Wn, does not exceed T. Let Cost(Wn(q)) denote the

cost of a given stage Wn from evaluating the local model Mn on the reduced set of

122

documents returned from pruning function Fn. Cost(Wn(q)) is determined by the

complexity of Mn and how many documents will be scored by Mn. In this work, we

employ an analytical model for estimating the actual query execution cost at each

stage Wn. Let Hn denote the unit cost of evaluating Mn over each document. The

cost at stage Wn is given by:

Cost(Wn(q)) = Hn · |Rnf (q)| (6.2)

where |Rnf (q)| denotes the size of the non-pruned documents after applying Fn at

stage Wn. Thus, this cost model captures the fact that evaluating a complex model

Mn (i.e., large Hn) over a large number of documents will result in higher cost. The

value of unit retrieval cost Hn can be determined empirically [48, 49]. In this work,

we directly fit Hn to match the actual query execution time of the model Mn over a

set of training queries, by setting Hn to be the average time taken by the local ranker

Mn for evaluating each document that reaches stage Wn. In our experiments, we

will empirically evaluate how well the constrained cascade built with the analytical

cost model can actually satisfy T.

Following our previous work, we use single ranking features as local rankers

Mn [88]. While other local rankers, such as decision trees [51], can also be used,

they are more computationally expensive. In contrast, individual ranking features

are often easier to compute, and can be highly effective [31]. Table 3.1 in Chapter 3

presents the set of ranking features considered in this work. The feature set consists

of both term-based [12] and term-proximity features [15, 21]. Each term-based

feature is computed with a scoring function (either BM25 or Dirichlet). The term-

123

proximity features are defined over the bigrams in each query, and are computed with

a BM25 or Dirichlet scoring function, for a specific window type (ordered/unordered)

and window length. It should be clear that the term-proximity features are more

expensive to compute (due to matching multiple query terms in each document) than

the term-based features, although they can be highly effective [15, 21, 18]. Several

learning to rank tasks [31, 67] have also used similar types of features. We note the

constrained cascade can certainly incorporate other ranking features in addition to

those mentioned here – however, since our focus is on the constrained model rather

than the feature aspect, exploring the complete space of possible features is beyond

the scope of this chapter.

Recall that λn is the weight of each local ranker Mn, which denotes how much

contribution Mn has on the final score of each document. Intuitively, λn should

capture the effectiveness of the local model Mn, and it is important to compute

an accurate λn for each local model, since it has a direct impact on the overall

effectiveness of the model. In this chapter, we compute λn via the parameterization

method in Chapters 3 and 4, which assume each λn takes on a parametric form with

respect to a set of meta-features gj (Table 3.2).

Finally, Table 5.1 in the previous chapter summarizes the set of pruning func-

tions considered here. As a quick review, we employ this set of pruning functions

since they have been shown to be highly effective and have a very low chance of prun-

ing relevant documents that may appear in top k [88, 6]. Each pruning function is

parameterized by a pruning threshold βn. In the rank-based pruning, a proportion

of the input documents at each stage is pruned based on their position within the

124

ranked list. A document is pruned if its ranked position is below the cutoff value.

Similarly, in the score-based pruning, a document is pruned if its score is below the

score cutoff value, where the cutoff is computed based on the range of document

scores in the input set. Finally, the score-distribution based pruning considers the

score distribution of the input documents, captured by the mean and max of the

input scores. The cutoff is defined as a combination of the mean and the max of the

input document scores, and a document is pruned if it scores less than the cutoff.

This formulation has the advantage that the pruning function can be better suited

for each individual ranked list of documents. As noted before, all pruning functions

depend on pruning threshold βn (between 0 and 1). Large values of βn lead to more

aggressive pruning.

6.1.2 Learning constrained cascade models

In this section, we describe a new algorithm for learning constrained cascades,

such that the learned models return the best possible results within time T. Our

proposed algorithm is different from our previous work on ranking under temporal

constraints, which ignored the impact of the number of documents scored on effi-

ciency and was primarily focused on reducing the number of features evaluated [85].

Our algorithm for learning constrained cascades simultaneously optimizes the se-

lection of documents and ranking features at each stage of the cascade, which can

result in more efficient and effective models for constrained query execution.

The entire cascade model is represented by {Fn(βn),Mn, wj}, where Fn is the

125

pruning function parameterized by threshold βn at stage n, Mn is the local ranker,

and wj are the meta-parameters used by the cascade for computing importance

weights λn. In the learning algorithm, we use NDCG at k as the effectiveness mea-

sure, although other metrics defined over top k rankings can be substituted. For

retrieval efficiency, our main measure is query execution time (i.e., the amount of

time taken to return ranked results). Search engine implementation details (e.g.,

query evaluation techniques, caching, etc.) are orthogonal to our task, since their ef-

fects on query execution time can be captured by our cost model for query execution

time, which simply serves as an input to the learning algorithm.

When learning a constrained cascade, there are two competing measures:

1) Ranked effectiveness (γ): maximize the top k ranked effectiveness at the

cascade output.

2) Retrieval efficiency (σ): maximize the number of pruned documents at each

stage to improve efficiency and ensure the time constraint can be satisfied.

More formally, the learning objective is stated as a joint optimization over

model parameters {Fn(βn),Mn, λj}.

max
Fn(βn),Mn,wj

γ(q) s.t. σ(q) ≤ T (6.3)

Where γ and σ denote effectiveness and efficiency, respectively, q denotes a

query, and T denotes the time constraint.

Algorithm 4 presents our solution for this learning problem. The problem is

solved with a two-step procedure. First, given the set of ranking features Mn, we

learn the meta-feature weights wj (which are used to compute feature weights in

126

Algorithm 4: Learning a constrained cascade model

Input: Query execution time requirement T

Output: Temporally constrained cascade W

Initialize constrained cascade W = {};

Initialize totalCost = 0;

Learn meta-feature weights wj;

while totalCost ≤ T do

for Wn =< Mn, Fn, βn > do

Score(Wn) = γ(W ∪Wn)− γ(W);

Compute profit density p(Wn) =
Score(Wn)
Cost(Wn)

;

end

W ∗
n
= arg maxWn p(Wn);

W = W ∪W ∗
n
;

totalCost = totalCost+ Cost(W ∗
n
);

end

return constrained cascade W ;

the cascade ranking model) to maximize ranked effectiveness for several settings of

time constraints T. Note under each setting of time T, it is only permissible to

use a subset of ranking features. So the goal of this step is to identify weights wj

that can be effective for a wide range of time requirements. Standard learning to

rank algorithms can be used to learn wj. We employ a simple, yet highly effective

coordinate-ascent algorithm [72]. It iteratively optimizes the averaged effectiveness

over the time constraints by performing a series of one-dimensional line searches in

127

the meta-feature weight space. At each iteration, it searches for an optimal value

for wj while holding all other meta-feature weights fixed. This iterative process

continues until the improvement in the objective metric drops below a threshold.

In the second step, given the learned meta-feature weights wj, we learn the

remaining parameters of the constrained cascade (i.e., local model Mn, pruning

function and threshold Fn(βn) at each stage). This step takes an iterative selection

approach, which proceeds in rounds to sequentially learn a set of stages to optimize

ranked effectiveness before running out of time budget. It should be easy to see this

step corresponds to the classic knapsack problem. Here, pairs of Mn and Fn(βn)

are the “items” that we are trying to fit into the knapsack. The value of each item

is determined by how much improvement can be obtained for effectiveness if the

pair is added to the constrained cascade (which is given as the score of the pair),

and the cost of the pair Mn and Fn(βn) is simply the evaluation cost of applying

Mn over Rnf (i.e., the documents that passed pruning function Fn(βn)), as given

by Equation 6.2 (Section 6.1.1), and the knapsack capacity is T. Intuitively, we

want to jointly select the best ranking feature and the documents for evaluation to

effectively utilize the available time budget.

More specifically, we first compute profit density for each item Wn (a combi-

nation of Mn, Fn, and βn), which is defined by the ratio between its score and cost.

The profit density captures two competing factors: the effectiveness gain and the

cost from using a candidate stage. The candidate stage with the best profit density

is then added to the model. Intuitively, ranking models Mn that are effective over

a small set of documents (as determined by Fn(βn)) are more desirable in the con-

128

Wt10g Gov2 Clue

Query exec. time 0.17s 2.09s 4.10s

Table 6.1: Query execution time of baseline QL for title queries of Wt10g, Gov2, and

Clue.

strained setting (larger profit density value). The algorithm continues adding stages

according to this density (largest first), until it can no longer add any more features

without exceeding the time constraint.

Our algorithm can be viewed as a generalization of our previously proposed

temporally constrained ranking model [85], since the model proposed here is equiv-

alent to that model when no document pruning is used. As we discussed earlier,

document pruning is a key benefit of our proposed model, since it can be both highly

effective and efficient since the cascade will not waste time on a potentially large

number of non-relevant documents.

We note that our algorithm only requires a linear (in the size of |Mn|) number

of single parameter training steps each iteration (the number of choices for βn and

Fn are fixed). If we construct N stages before exhausting T, such that N << |Mn|,

then it is likely that our algorithm will be much more computationally efficient than

training a monolithic model with |Mn| features.

129

6.2 Experiments

In this section we report our experimental results. We start by describing our

experimental setup and then present a comprehensive evaluation of our proposed

method using publicly available datasets.

6.2.1 Experimental setup

We report our results using a diverse set of document collections. We use three

TREC web collections as shown in Table 3.4 in Chapter 3. Wt10g is a small web

collection with 1.7 million documents, Gov2 is a larger 25 million page crawl of the

.gov domain, and Clue is the first English segment of ClueWeb09, a recently-released

web crawl consisting of 50 million documents. The title portions of the TREC topics

are used as queries and are divided into a training and test set of equal size. All

parameter tuning was performed on the training set, and all of the results reported

are from applying the learned parameters to the test set.

We compare our proposed constrained cascade model against two other mod-

els: one is the standard query likelihood model [12] (QL), with Dirichlet smoothing

parameter µ = 1000; and the temporally constrained model in Chapter 4. Two

algorithms were proposed in Chapter 4 – the “Independent” and “Joint” feature

selection models. The “Joint” model accounts for feature correlations and redun-

dancies, which yielded substantially better results. Thus, to form a competitive

baseline, we use the “Joint” model to compare against our proposed approach. For

fairness of comparison, the “Joint” feature-based model uses the same feature set

130

and objective metric as the constrained cascade model. In addition, following our

previous work, the time requirement is defined as a multiple m of the average query

execution time of the baseline QL over training queries, denoted by m · Tql, where

the baseline QL query execution times are shown in Table 6.1 for reference [85]. We

note the reported retrieval efficiency of our constrained cascade model accounts for

the overall time taken by the cascade to return query results (e.g., accounts for time

taken by all stages for local model evaluation and pruning operation).

We also construct an effectiveness-centric model (“Full” model) which is op-

timized for effectiveness only, and use it as the effectiveness upper-bound for the

constrained models. It is constructed in the same manner as the constrained cas-

cade models, except the time constraint is set to “infinity” for learning this model

and document pruning is not performed. We use NDCG20 and precision at rank 20

(P20) as the primary effectiveness measures, although a variety of other effectiveness

metrics for top k can be substituted.

6.2.2 Results

We are now ready to describe the outcome of our experimental evaluation.

6.2.2.1 Ranked effectiveness vs time constraints

Figure 6.1 compares the NDCG20 and P20 of our proposed constrained cas-

cade and the Joint model for temporally constrained ranking as a function of time

constraints, from 1 · Tql to 1.5 · Tql in increments of 0.1 · Tql. The effectiveness of the

131

1 1.1 1.2 1.3 1.4 1.50.335

0.34

0.345

0.35

0.355

0.36

0.365

0.37

Time (x ql)

N
D

C
G

20

Constrained cascade Joint (feature) QL Full

1 1.1 1.2 1.3 1.4 1.50.44

0.45

0.46

0.47

0.48

0.49

Time (x ql)

N
D

C
G

20

Constrained cascade Joint (feature) QL Full

(i) Wt10g NDCG20 (ii) Gov2 NDCG20

1 1.1 1.2 1.3 1.4 1.50.27

0.275

0.28

0.285

0.29

0.295

0.3

0.305

0.31

Time (x ql)

N
D

C
G

20

Constrained cascade Joint (feature) QL Full

1 1.1 1.2 1.3 1.4 1.50.32

0.325

0.33

0.335

0.34

0.345

0.35

Time (x ql)

P2
0

Constrained cascade Joint (feature) QL Full

(iii) Clue NDCG20 (iv) Wt10g P20

1 1.1 1.2 1.3 1.4 1.50.5

0.51

0.52

0.53

0.54

0.55

0.56

Time (x ql)

P2
0

Constrained cascade Joint (feature) QL Full

1 1.1 1.2 1.3 1.4 1.50.34

0.345

0.35

0.355

0.36

0.365

0.37

Time (x ql)

P2
0

Constrained cascade Joint (feature) QL Full

(v) Gov2 P20 (vi) Clue P20

Figure 6.1: NDCG20 and P20 versus time requirements for the Constrained cascade and

“Joint” (feature-based) models for test queries in Wt10g, Gov2 and Clue.

132

baseline QL is plotted as the lower dotted line, and the “Full” model effectiveness

upper-bound is plotted as the upper dotted line. What is not shown in the figure

is that the time taken by the effectiveness-centric upper-bound (“Full” model) is

roughly 5 · Tql for each dataset. Thus, although the upper-bound is very effective,

it is highly inefficient.

Although both of the constrained cascade and Joint (feature-based) models can

produce more effective results than baseline QL when the time constraint is relaxed,

the constrained cascade model consistently outperforms (for both NDCG20 and

P20) than the Joint model across a wide range of time constraints for all datasets.

As compared to the final effectiveness achieved by the Joint model, the constrained

cascade can quickly obtain the same effectiveness, and then surpass it at subsequent

time points. For instance, in five out of six cases, by time constraint 1.1 · Tql, the

constraint cascade surpasses the final score of the feature-based method (Joint),

while the feature-based method takes a considerately longer amount of time to

achieve the same effectiveness (it is nearly 30% slower than the constrained cascade).

This illustrates that the constrained cascade is highly effective compared to the Joint

model when strict time constraints are imposed. This also shows the advantage

of the constrained cascade – by progressively reducing the number of candidate

documents, it facilitates the use of high quality ranking functions for effectiveness

gains while being able to simultaneously satisfy tight computational constraints.

We also observe the effectiveness difference between the constrained cascade

and Joint is largest for Gov2 and Clue (i.e., the two largest collections). This high-

lights that jointly selecting documents and local ranking features for temporally

133

constrained ranking, as considered by the constrained cascade model, is particu-

larly useful for large-scale document collections (in which a higher percentage of

documents may be non-relevant/noisy). Focusing on a small set of the most likely

relevant documents not only reduces computational cost, but can also lead to more

effective results by eliminating many noisy documents from consideration. This

also demonstrates monolithic ranking functions (i.e., the feature-based model) may

waste too much computation on documents that are unlikely to appear in the top

k. More critically, such wasteful computation can quickly exhaust the time budget

and thus limits the application of additional ranking features for effectiveness gain.

This last point is further illustrated by the feature-based method’s very slow rate of

improvement for effectiveness even as the time constraint is significantly relaxed.

Finally, as compared to the effectiveness upper-bound (“Full” model), the

constrained cascade approaches the upper-bound very rapidly as more time is given.

By time 1.4 · Tql, the constrained cascade achieves the NDCG of the “Full” model.

Similar results are also observed for P20. This shows that the constrained cascade

can equal an effectiveness-centric model, while simultaneously being able to satisfy

tight time constraints.

6.2.2.2 Ensuring time requirements

Our learning algorithm uses an analytical cost model to estimate the actual

query execution time of the constrained cascade to ensure it does not exceed the

time constraint. In this section, we investigate whether time constraints can actually

134

(i) Wt10g (ii) Gov2 (iii) Clue

Figure 6.2: Bar chart showing the fraction of query evaluation times that satisfy the

imposed time constraint for Wt10g, Gov2, and Clue.

be met in practice. Figure 6.2 illustrates how well the constrained cascade meets

the time constraints for each dataset. Results for the feature-based model (Joint)

are also reported. Each bar represents a time point, and the height of the bar (i.e.,

hits) denotes the fraction of queries that actually satisfy the time constraint (i.e.,

the time constraint is satisfied if the constrained model returns results within the

targeted time budget). This set of figures shows that both of the constrained cascade

and the feature-based models can satisfy the time constraints quite well — above

90% for almost all collections. This suggests our analytical cost model, as used

by the algorithm for estimating the actual query execution time of the cascade,

works reasonably well for ensuring time constraints are satisfied in practice. We

hypothesize that a slightly more complex analytical cost model would easily be able

to satisfy the time constraints even better.

135

(i) Wt10g (ii) Gov2 (iii) Clue

Figure 6.3: % documents pruned as a function of time constraints, and the corresponding

pruning loss (insert).

6.2.2.3 Document pruning and pruning loss

In this section, we examine the document pruning operation performed by the

constrained cascade and the resulting pruning loss – defined to be the percentage of

relevant documents incorrectly pruned out of all candidate documents considered by

the constrained cascade (where the candidate documents are produced by the initial

ranker R0). Recall the constrained cascade satisfies the time constraint by jointly

optimizing the selection of ranking feature and documents at each cascade stage.

Since the constrained cascade is flexible enough to use potentially different pruning

functions at different stages (i.e., the selection of the pruning function depends on its

combined performance with the local model), our focus is not on studying the details

of each pruning function, but rather on the combined performance of the learned

pruning functions for the entire model. Figure 6.3 presents the overall percentage

of documents pruned by the constrained cascade and the resulting pruning loss as a

function of time constraints. From this figure, we see that the number of documents

pruned is positively correlated with the time budget since more documents get

136

pruned as more stages of the model are added. The figure also shows that the amount

of pruning is well above 90% for all time constraints, which yields a significant

reduction in the computational cost associated with each local model.

While pruning helps to control the overall efficiency of the constrained cascade,

it is important to ensure it has very little, if any, impact on the effectiveness of the

model. As shown from the pruning loss figures (Figure 6.3 insert), pruning has a

very low chance of removing relevant documents from the candidate document set

(i.e., it is nearly zero for all time constraints across all datasets). Further analysis

reveals that relevant documents that are filtered by our constrained cascade are not

ranked in the top k documents by the “Full” (effectiveness-centric) model either, i.e.,

these documents have no chance of entering the top k even if an effectiveness-centric

model is used. Thus, pruning proves to be very useful, yielding better efficiency and

having minimal impact on effectiveness, which enables the constrained model to

simultaneously maximize top k effectiveness and ensure the time requirement.

6.2.2.4 Average effectiveness across time requirements

The previous section demonstrated our constrained cascade outperforms the

best previously known constrained model over different time constraints. In this

section we investigate the average effectiveness of the constrained models across the

time points (from times 1 · Tql to 1.5 · Tql). We compare the average effectiveness of

the constrained cascade and the Joint (feature-based) model in Table 6.2. Results

from QL are also included.

137

Wt10g Gov2 Clue

NDCG20avg P20avg NDCG20avg P20avg NDCG20avg P20avg

QL 34.06 32.40 44.57 50.93 27.50 34.20

Joint (feature) 35.46 33.46 45.68 51.66 27.91 34.30

(+4.1) (+3.3) (+2.5) (+1.4) (+1.5) (+0.3)

Constr. cascade 35.74∗ 33.78 47.00∗ 53.39∗
† 29.02 35.27∗

(+4.9/0.8) (+4.3/1.0) (+5.5/2.9) (+4.8/3.3) (+5.5/4.0) (+3.1/2.8)

Table 6.2: Average effectiveness in terms of averaged NDCG20 and averaged P20 from

times 1 ·Tql to 1.5 ·Tql for Wt10g, Gov2, and Clue. Bolded values denote best performance

obtained in each dataset. The ∗ and † symbols represent statistically significant differences

with respect to QL and Joint (feature-based) model, respectively. Percentage improvement

shown in parentheses: over QL for Joint, and over QL/Feature-based for Constrained

cascade.

138

In terms of average effectiveness computed using NDCG, the constrained cas-

cade consistently outperforms both feature-based model and QL. For instance, the

constrained cascade has 4.9%, 5.5%, and 5.5% improvement over baseline QL on

Wt10g, Gov2, and Clue, respectively. The constrained cascade achieves 0.8%, 2.9%

and 4.0% improvement over the Joint model on the same collections, respectively.

Similar results are also achieved under averaged P20. While the Joint model (feature-

based) can also outperform QL in terms of the averaged effectiveness, we note it is

not able to attain the same level of improvements as the constrained cascade, and

none of the improvements by the Joint model over QL is statistically significant,

whereas the constrained cascade outperforms QL with statistical significance in two

out of three collections, using both effectiveness metrics.

We further observe the constrained cascade achieves larger effectiveness gains

over QL and the feature-based model for Gov2 and Clue, two of the largest collec-

tions, as compared to the smaller Wt10g collection. For instance, in terms of the

average effectiveness computed using NDCG, the constrained cascade outperforms

QL by 5.5% for both Gov2 and Clue, as compared to 4.9% for Wt10g. Similarly,

constrained cascade improves over the feature-based model by 2.9% and 4.0% for

Gov2 and Clue, respectively, as compared to 0.8% for Wg10g. This confirms our

earlier observation that our constrained cascade is particularly beneficial for large-

scale corpora — under tight time budgets, discarding a large amount of non-essential

documents (as existed in these large collections) allows the model to fit in additional

ranking stages to improve effectiveness without hurting the time constraints.

139

Chapter 7

Conclusion

We have presented a principled and unified framework for learning ranking

functions that jointly optimizes both retrieval effectiveness and efficiency. This new

problem was motivated by the fact that although current learning to rank approaches

can learn highly effective ranking functions, the important issue of efficiency has

been ignored. For real-world search engines, both efficiency and effectiveness are

important factors.

We introduced new classes of ranking models (efficient linear models, tempo-

ral constrained models, cascade ranking functions, etc), optimization metrics, and

learning algorithms to construct fast and effective ranking models. We have shown

that they subsume commonly-used ranking models as special tradeoff cases that

encode fixed points in the effectiveness/efficiency solution space.

7.1 Limitations

The current limitations of this work include:

1. We have limited the feature pool to simple term-based and term-proximity

features, and the space of models to linear models. However, there can be

a large variety of different features (e.g., user-based), and different classes of

ranking models (e.g., boosted regression trees). While our general framework

140

can deal with any number of features as inputs, the learning algorithms focus

on linear models only.

2. We have only focused on two forms of tradeoff metrics (e.g., harmonic means

for efficient linear models, and linear combinations for cascades), and have

not shown how the learned models may change as a result of combining speed

and effectiveness differently (e.g., beyond harmonic means and linear combi-

nations). Thus, results reported are limited to our particular choices in the

tradeoff metric and can not be used to demonstrate the model performance

under different tradeoff metric definitions.

3. The line-search algorithm employed by efficient linear models can be costly

for large training sets and large feature sets due to its non-analytical nature.

As the number of training features increases, the training efficiency can be a

serious concern in our current experiment framework. One way to alleviate

this issue is that we can use other approaches for directly optimizing non-

smooth functions that use fewer function evaluations, such as simultaneous

perturbation stochastic approximation [63].

7.2 Future work

The learning to efficiently rank framework can lead to several promising future

work directions in devising practical search engine ranking models. They include:

1. It would be very interesting to extend our learning algorithms to work with

141

boosted regression trees [1], which have been shown to be one of the best

learning to rank models.

2. By enriching temporally constrained ranking models with user/query-specific

time budgets, we can assign larger time budgets for more commercially viable

queries, which will translate into better search results and more ad clicks for

these queries.

3. Many other search criteria exist in addition to speed and effectiveness (e.g.,

freshness, diversity, etc). We can apply the intuitions gained from learning to

efficiently rank, and utilize divide-and-conquer techniques to jointly optimize

the different metrics in a unified framework.

4. The class of probabilistic graphical models, which is used to construct tempo-

rally constrained ranking functions in Chapter 4, can be used to explore more

complex interactions between features and feature costs (e.g., shared feature

computations).

5. We have considered applying line-search and boosting algorithms to optimiz-

ing harmonic means and linear combinations of speed and effectiveness, re-

spectively. However, in a general setting, the space of all possible selections

of optimization metrics and learning algorithms can be quite large. Thus, it

would be very interesting to have an automatic way for selecting the best pair

of optimization metric/learning algorithm for learning to rank.

142

Bibliography

[1] Chris Burges. From ranknet to lambdarank to lambdamart: An overview. In
Microsoft Research Technical Report MSR-TR-2010-82, 2010.

[2] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval, 3(3), 2009.

[3] Paul N. Bennett, Filip Radlinski, Ryen W. White, and Emine Yilmaz. Inferring
and using location metadata to personalize web search. In Proc. 34th Intl. ACM
SIGIR Conf. on Research and Development in Information Retrieval, pages
135–144, 2011.

[4] Ryen W. White, Paul N. Bennett, and Susan T. Dumais. Predicting short-
term interests using activity-based search context. In Proc. 19th Intl. Conf. on
Information and Knowledge Management, pages 1009–1018, 2010.

[5] Kevyn Collins-Thompson, Paul N. Bennett, Ryen W. White, Sebastian de la
Chica, and David Sontag. Personalizing web search results by reading level.
In Proc. 20th Intl. Conf. on Information and Knowledge Management, pages
403–412, 2011.

[6] B. Cambazoglu, Hugo Zaragoza, Olivier Chapelle, Jiang Chen, Ciya Liao, Zhao-
hui Zheng, and Jon Degenhardt. Early exit optimizations for additive machine
learned ranking systems. In Proc. 3rd ACM Conf. on Web Search and Data
Mining, pages 411–420, 2010.

[7] Vo Anh, Owen de Kretser, and Alistair Moffat. Vector-space ranking with
effective early termination. In Proc. 24th Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval, pages 35–42, 2001.

[8] Trevor Strohman, Howard Turtle, and W. Bruce Croft. Optimization strategies
for complex queries. In Proc. 28th Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 219–225, 2005.

[9] Ricardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vanessa Murdock,
Vassilis Plachouras, and Fabrizio Silvestri. The impact of caching on search
engines. In Proc. 30th Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval, pages 183–190, 2007.

[10] Na Dai, Milad Shokouhi, and Brian D. Davison. Learning to rank for fresh-
ness and relevance. In Proc. 34th Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 95–104, 2011.

[11] Krysta M. Svore, Maksims N. Volkovs, and Christopher J.C. Burges. Learning
to rank with multiple objective functions. In Proc. 19th Intl. Conf. on World
Wide Web, pages 367–376, 2011.

143

[12] Jay M. Ponte and W. Bruce Croft. A language modeling approach to in-
formation retrieval. In Proc. 21st Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 275–281, 1998.

[13] Chengxiang Zhai and John Lafferty. A study of smoothing methods for language
models applied to ad hoc information retrieval. In Proc. 24th Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval, pages 334–342,
2001.

[14] Tao Tao, Xuanhui Wang, Qiaozhu Mei, and ChengXiang Zhai. Language model
information retrieval with document expansion. In Proc. of the 2006 Conference
of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 407–414, 2006.

[15] Donald Metzler and W. Bruce Croft. A Markov Random Field model for term
dependencies. In Proc. 28th Intl. ACM SIGIR Conf. on Research and Devel-
opment in Information Retrieval, pages 472–479, 2005.

[16] Michael Bendersky and W. Bruce Croft. Discovering key concepts in verbose
queries. In Proc. 31st Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval, pages 491–498, 2008.

[17] Jianfeng Gao, Haoliang Qi, Xinsong Xia, and Jian-Yun Nie. Linear discriminant
model for information retrieval. In Proc. 28th Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval, pages 290–297, 2005.

[18] Tao Tao and ChengXiang Zhai. An exploration of proximity measures in in-
formation retrieval. In Proc. 30th Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 295–302, 2007.

[19] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduc-
tion to Information Retrieval. Cambridge University Press, 2008.

[20] Matthew Lease. An improved Markov Random Field model for supporting
verbose queries. In Proc. 32nd Intl. ACM SIGIR Conf. on Research and De-
velopment in Information Retrieval, pages 476–483, 2009.

[21] Stefan Büttcher, Charles Clarke, and Brad Lushman. Term proximity scoring
for ad-hoc retrieval on very large text collections. In Proc. 29th Intl. ACM
SIGIR Conf. on Research and Development in Information Retrieval, pages
621–622, 2006.

[22] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Wang. Image retrieval: Ideas,
influences, and trends of the new age. ACM Computing Surveys, 40(2):1–60,
2008.

[23] Anni Coden, Eric Brown, and Savitha Srinivasan. Information Retrieval Tech-
niques for Speech Applications. Springer, 2002.

144

[24] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for
automatic indexing. Communications of the ACM, 18(11):613–620, 1975.

[25] F. Wilfrid Lancaster and Emily Gallup. Information Retrieval On-Line.
Melville Publishing Co., 1973.

[26] Amnon Shashua and Anat Levin. Ranking with large margin principle: Two
approaches. In Proc. 15th Proc. of Advances in Neural Information Processing
Systems, pages 937–944, 2002.

[27] Koby Crammer and Yoram Singer. Pranking with ranking. In Proc. 15th Proc.
of Advances in Neural Information Processing Systems, pages 641–647, 2002.

[28] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-
ton, and Greg Hullender. Learning to rank using gradient descent. In Proc.
22nd Proc. Intl. Conference on Machine Learning, pages 89–96, 2005.

[29] Ming feng Tsai, Tie-Yan Liu, Tao Qin, Hsin-Hsi Chen, and Wei-Ying Ma.
Frank: a ranking method with fidelity loss. In Proc. 30th Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval, pages 383–390,
2007.

[30] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. Magnitude-preserving
ranking algorithms. In Proc. 24th Proc. Intl. Conference on Machine Learning,
pages 169–176, 2007.

[31] Jun Xu and Hang Li. Adarank: a boosting algorithm for information retrieval.
In Proc. 30th Intl. ACM SIGIR Conf. on Research and Development in Infor-
mation Retrieval, pages 391–398, 2007.

[32] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to
rank: from pairwise approach to listwise approach. In Proc. 24th Proc. Intl.
Conference on Machine Learning, pages 129–136, 2007.

[33] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. A support
vector method for optimizing average precision. In Proc. 30th Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval, pages 271 – 278,
2007.

[34] Michael Bendersky, Donald Metzler, and W. Bruce Croft. Learning concept
importance using a weighted dependence model. In Proc. 3rd ACM Conf. on
Web Search and Data Mining, pages 31–40, 2010.

[35] Jianfeng Gao, Jian-Yun Nie, Guangyuan Wu, and Guihong Cao. Dependence
language model for information retrieval. In Proc. 27th Intl. ACM SIGIR Conf.
on Research and Development in Information Retrieval, pages 170–177, 2004.

145

[36] R. Nallapati. Discriminative models for information retrieval. In Proc. 27th Intl.
ACM SIGIR Conf. on Research and Development in Information Retrieval,
pages 64–71, 2004.

[37] Chris Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[38] James Allan, Javed Aslam, Ben Carterette, Virgil Pavlu, and Evangelos
Kanoulas. Million query track 2008 overview. In Proc. 17th Text REtrieval
Conference, 2008.

[39] Charles Clarke, F. Scholar, and Ian Soboroff. Overview of the TREC 2005
terabyte track. In Proc. 14th Text REtrieval Conference, 2005.

[40] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proc.
8th Intl. ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, pages
133–142, 2002.

[41] Donald Metzler and W. Bruce Croft. Linear feature-based models for informa-
tion retrieval. Information Retrieval, 10(3):257–274, 2007.

[42] David Carmel, Doron Cohen, Ronald Fagin, Eitan Farchi, Michael Herscovici,
Yoelle Maarek, and Aya Soffer. Static indexing pruning for information retrieval
systems. In Proc. 24th Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval, pages 43–50, 2001.

[43] Stefan Buttcher and Charles Clarke. Efficiency vs. effectiveness in terabyte-
scale information retrieval. In Proc. 13th Text REtrieval Conference, 2005.

[44] Stefan Buttcher, Charles Clarke, and Peter Yeung. Indexing pruning and result
reranking: Effects on ad-hoc retrieval and named page finding. In Proc. 15th
Text REtrieval Conference, 2006.

[45] Vo Ngoc Anh and Alistair Moffat. Pruned query evaluation using pre-computed
impacts. In Proc. 29th Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval, pages 372–379, 2006.

[46] Alexandros Ntoulas and Junghoo Cho. Pruning policies for two-tiered inverted
index with correctness guarantee. In Proc. 30th Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval, pages 191–198, 2007.

[47] Michael Bendersky, W. Bruce Croft, and David A. Smith. Two-stage query
segmentation for information retrieval. In Proc. 32nd Intl. ACM SIGIR Conf.
on Research and Development in Information Retrieval, 2009.

[48] Fidel Cacheda, Vassilis Plachouras, and Iadh Ounis. A case study of distributed
information retrieval architectures to index one terabytes of text. Information
Processing and Management, 41:1141–1161, 2004.

146

[49] Howard Turtle and James Flood. Query evaluation: strategies and optimiza-
tions. Information Processing and Management, 31(6):831–850, 1995.

[50] Alistair Moffat and Justin Zobel. Self-indexing inverted files for fast text re-
trieval. volume 14, pages 349–379, 1996.

[51] Zhaohui Zheng, Hongyuan Zha, Tong Zhang, Olivier Chapelle, Keke Chen,
and Gordon Sun. A general boosting method and its application to learning
ranking functions for web search. In Proc. 22nd Proc. of Advances in Neural
Information Processing Systems, pages 1697–1704, 2008.

[52] Paul Viola and Michael Jones. Robust real-time object detection. International
Journal of Computer Vision, 57(2):137–154, 2002.

[53] Chris Burges, Robert Ragno, and Quoc Viet Le. Learning to rank with nons-
mooth cost functions. In Proc. 19th Proc. of Advances in Neural Information
Processing Systems, pages 193–200, 2006.

[54] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. Softrank:
optimizing non-smooth rank metrics. In Proc. 1st ACM Conf. on Web Search
and Data Mining, pages 77–86, 2008.

[55] David Weiss and Ben Taskar. Structured prediction cascades. In Proc. 13th
Conference on Artificial Intelligence and Statistics, pages 916–923, 2010.

[56] Robert Tibshirani. Regression shrinkage and selection via the lasso. J. Roy.
Statist. Soc. Ser. B, 58(1):267–288, 1996.

[57] Kevyn Collins-Thompson and James Callan. Query expansion using random
walk models. In Proc. 14th Intl. Conf. on Information and Knowledge Man-
agement, pages 704–711, 2005.

[58] Lidan Wang, Paul N. Bennett, and Kevyn Collins-Thompson. Robust ranking
models via risk-sensitive optimization. In Proc. 35th Intl. ACM SIGIR Conf.
on Research and Development in Information Retrieval, pages 275–281, 2012.

[59] Jiang Bian, Xin Li, Fan Li, Zhaohui Zheng, and Hongyuan Zha. Ranking
specialization for web search: a divide-and-conquer approach by using topical
ranksvm. In Proc. 19th Intl. Conf. on World Wide Web, pages 131–140, 2010.

[60] Jiang Bian, Tie-Yan Liu, Tao Qin, and Hongyuan Zha. Ranking with query-
dependent loss for web search. In Proc. 3rd ACM Conf. on Web Search and
Data Mining, pages 141–150, 2010.

[61] Xiubo Geng, Tie-Yan Liu, Tao Qin, Andrew Arnold, Hang Li, and Heung-
Yeung Shum. Query dependent ranking using k-nearest neighbor. In Proc.
31st Intl. ACM SIGIR Conf. on Research and Development in Information
Retrieval, pages 115–122, 2009.

147

[62] Xiubo Geng, Tie-Yan Liu, Tao Qin, and Hang Li. Feature selection for rank-
ing. In Proc. 30th Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval, pages 407–414, 2007.

[63] Yisong Yue and Christopher Burges. On using simultaneous perturbation
stochastic approximation for IR measures, and the empirical optimality of lamb-
darank. In NIPS Machine Learning for Web Search Workshop, 2007.

[64] Jimmy Lin, Donald Metzler, Tamer Elsayed, and Lidan Wang. Of ivory and
smurfs: Loxodontan mapreduce experiments for web search. In Proc. 18th Text
REtrieval Conference, 2009.

[65] Thomas Dean and Mark Boddy. Time-dependent planning. In Proc. 17th Nat.
Conf. on Artificial Intelligence, pages 49–54, 1988.

[66] Shlomo Zilberstein. Using anytime algorithms in intelligent systems. AI Mag-
azine, 17(3):73–83, 1996.

[67] Donald Metzler. Automatic feature selection in the Markov Random Field
model for information retrieval. In Proc. 16th Intl. Conf. on Information and
Knowledge Management, pages 253–262, 2007.

[68] Michael Jordan. Graphical models. Statistical Science, 19(1):140–155, 2004.

[69] Dan Roth and Wen tau Yih. Integer linear programming inference for condi-
tional random fields. In Proc. 22nd Proc. Intl. Conference on Machine Learning,
pages 736–743, 2005.

[70] David Edwards. Introduction to Graphical Modeling. Springer, 2000.

[71] Michael Jordan, Zoubin Ghahramani, Tommi Jaakola, and Lawrence Saul. An
introduction to variational methods for graphical models. Machine Learning,
37(2):183–233, 1999.

[72] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer science
+ business media, 2006.

[73] Jonghwan Kim, Chung-Hee Lee, Young-Chul Lim, and Soon Kwon. Stereo
vision-based improving cascade classifier learning for vehicle detection. In ISVC
Proceedings of the 7th International Conference on Advances in Visual Com-
puting, pages 387–397, 2011.

[74] David Weiss, Benjamin Sapp, and Ben Taskar. Sidestepping intractable infer-
ence with structured ensemble cascades. In Proc. 24th Proc. of Advances in
Neural Information Processing Systems, 2010.

[75] Slav Petrov, Ari Haghighi, and Dan Klein. Coarse-to-fine syntactic machine
translation using language projections. In NIPS Coarse-to-Fine Learning and
Inference Workshop, 2010.

148

[76] Vikas Raykar, Balaji Krishnapuram, and Shipeng Wu. Designing efficient cas-
caded classifiers: tradeoff between accuracy and cost. In Proc. 16th Intl. ACM
SIGKDD Conf. on Knowledge Discovery and Data Mining, pages 853–860,
2010.

[77] Jay Pujara and Lise Getoor. Coarse-to-fine, cost-sensitive classification of email.
In NIPS Coarse-to-Fine Learning and Inference Workshop, 2010.

[78] Jay Pujara, Ben London, and Lise Getoor. Reducing label cost by combining
feature labels and crowdsourcing. In ICML Workshop on Combining Learning
Strategies to Reduce Label Cost, 2011.

[79] Ofer Meshi, David Sontag, Tommi Jaakkola, and Amir Globerson. Learning
efficiently with approximate inference via dual losses. In Proceedings of the 27th
International Conference on Machine Learning, pages 783–790, 2010.

[80] Alex Kulesza and Fernando Pereira. Structured learning with approximate
inference. In Proc. 22nd Proc. of Advances in Neural Information Processing
Systems, 2008.

[81] Eric Brown. Fast evaluation of structured queries for information retrieval. In
Proc. 18th Intl. ACM SIGIR Conf. on Research and Development in Informa-
tion Retrieval, pages 30–38, 1995.

[82] Avi Arampatzis, Jaap Kamps, and Stephen Robertson. Where to stop reading
a ranked list. In Proc. 32nd Intl. ACM SIGIR Conf. on Research and Develop-
ment in Information Retrieval, pages 524–531, 2009.

[83] Evangelos Kanoulas, Virgil Pavlu, Keshi Dai, and Javed Aslam. Modeling
the score distribution of relevant and non-relevant documents. In Proc. 2nd
Conference on Theory of Information Retrieval, pages 152–163, 2009.

[84] Ralph E. Steuer. Multiple Criteria Optimization: Theory, Computation, and
Application. John WIley and Sons, Inc., 1986.

[85] Lidan Wang, Donald Metzler, and Jimmy Lin. Ranking under temporal con-
straints. In Proc. 19th Intl. Conf. on Information and Knowledge Management,
pages 79–88, 2010.

[86] Lidan Wang, Jimmy Lin, and Donald Metzler. Learning to efficiently rank. In
Proc. 34th Intl. ACM SIGIR Conf. on Research and Development in Informa-
tion Retrieval, pages 138–145, 2010.

[87] Trevor Hastie, Roert Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning. Springer, 2009.

[88] Lidan Wang, Jimmy Lin, and Donald Metzler. A cascade ranking model for
efficient ranked retrieval. In Proc. 34th Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval, pages 275–281, 2011.

149

