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In behavioral and social sciences, model selection and parameter estimation are 

treated as two separate steps of data analysis. The second step, parameter estimation, 

is generally conducted on the assumption that the model selected in step one is a 

correct model, and thus it is performed using the same data set that was used in step 

one. This two-step process ignores the effects of model uncertainty on parameter 

estimation, and thus may ultimately lead to misleading or invalid inferences.  

The problems arising from the use of the two-step process have been well 

investigated in the context of regression. In the case of latent growth modeling 

(LGM), however, there have been no such published studies. This present study was 

thus designed to investigate the possible problems arising from the use of this two-

step process in LGM. The goals of this study were: (1) To examine the subsequent 

impact of preliminary model selection using information criteria on LGM parameter 



  

estimates; (2) To assess the data splitting method as a possible way to mitigate the 

effects of model uncertainty. 

Two Monte Carlo simulation studies were conducted to achieve these goals. 

Study 1 was conducted using the same data set for both model selection and 

parameter estimation,, to investigate the possible impact of preliminary model 

selection in terms of model selection accuracy, relative parameter biases, and 

coverage rate. Study 2 was conducted using different split-data sets for both model 

selection and parameter estimation, to assess the data splitting method as a possible 

way to mitigate the effects of model uncertainty.  

The major finding of this study was that inference based on AIC or BIC model 

selection leads to additional bias in, and overestimates the sampling variability of, the 

parameter estimates. The results of simulation studies showed that the post-model-

selection parameter estimator has larger relative parameter biases, larger relative 

variance biases, and smaller coverage rate of confidence interval, than those of the 

true-model-selection estimator. These post-model-selection problems due to model 

uncertainty, unfortunately, still existed when the data splitting method was applied.
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Chapter 1: Introduction 

1.1 Problems of Model Selection 

One of the main tasks of applied statisticians and data analysts is to construct 

and evaluate a statistical model that describes and summarizes the behavior of an 

object of study. In the model-building process, researchers begin by representing the 

observations in terms of random variables, then fitting a model to the data, and finally 

providing an estimate of the parameters. If the data-model fit is good, this statistical 

model is commonly seen as a convenient conceptual representation of the observed 

phenomenon and as an abstract mechanism generating the observed data.  

In behavioral and social sciences, however, it may not be possible to specify the 

true model from the analysis of an observed finite data set because the true 

mechanism, which generated the collected data, might be very complex and difficult 

to recognize. It is increasingly common, therefore, for several candidate models to be 

considered and to be fitted to a collected data set at the same time. As such, data 

mining processes and model selection techniques are useful, and might be 

unavoidable, in deciding on an appropriate model to fit and explain the data.  

Once a model has been selected, by whatever model selection criteria are 

deemed reasonable, estimations and inferences are made about model parameters 

using the same data set under the assumption that the selected model is the true model. 

In other words, although model selection, and parameter estimation and inference are 

treated as two separate stages of data analysis, they are typically performed using the 

same data set.  
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Unfortunately, this two-step practice results in at least three problems: 

(1) The use of the same data set for both model selection and parameter estimation 

ignores model uncertainty, that is, that the selected model might be wrong (Chatfield, 

1995). 

(2) Because the estimation procedure depends upon the outcome of model selection, 

the properties of preliminary model estimators (e.g., the shape of the distribution) and 

related statistics (e.g., the estimates of mean squared prediction error and the value 

of 2R ) might be different from those had the model been known a priori (Breiman, 

1988; Hurvich & Tsai, 1990; Pötscher, 1991; Rencher & Pun, 1980). Consequently, 

bias may exist. For example, Bancroft (1944) derived a mathematical formula to 

show the bias of regression coefficient estimators that resulted from preliminary 

model selection. 

(3) Because the use of a model selection procedure affects the asymptotic distribution 

of parameter estimators and related statistics, the validity of the subsequent inference 

procedures may be severely affected (Miller, 1984; Zhang, 1992).  

To summarize, because a true model is seldom known in the behavioral and 

social sciences, data-driven model selection procedures are commonly used. When 

fitting a model to data, the choice of the model, and the subsequent parameter 

estimation and inference procedures, are often based on the same data set. As a result, 

problems emerge which may ultimately lead to misleading and invalid inferences.  

1.2 Purpose of Research 

 The two-step process is used in many types of analysis, including regression 

and structural equation modeling (SEM). In the particular case of latent growth 
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modeling (LGM), a specific type of SEM which will be addressed in this study, the 

two-step process is typically carried out as follows. (1) First, one evaluates a growth 

model in which growth parameters are treated as latent variables, and repeated 

measures are treated as multiple indicators of the latent variables in order to capture 

the trends of changes. Several plausible candidate models might be considered and 

fitted to a collected data set (e.g., linear growth models with and without covariance 

between intercept factor and slope factor, and quadratic growth models with and 

without relations among residuals over time). If models are nested, models are then 

compared by using differences in chi-square statistics under the assumption of 

multivariate normality. If models are not nested, then model fit indices are used. In 

this first step, the evaluation of data-model fit for competing models is of primary 

interest. Based on the data-model fit evaluations, a single appropriate model is 

selected. (2) The second step then is conducted by using the same data set to estimate 

and test the specific parameters (e.g., means of growth factors) within the selected 

model, and to make inferences. 

 This two-step process in LGM is similar to that used in regression and might be 

expected to be subject to similar problems. The problems arising from the use of the 

two-step process have been well investigated in the case of regression. In fact, the 

discussion in part 1.1 above (problems of model selection), was based almost entirely 

on literature regarding regression. In the case of LGM, however, many applied 

researchers use popular computer software to run series of computer trials and they 

then choose the best fitting model that result from these series of computer trials. 

They may not recognize that the two-step process is being used in these 
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software..Therefore, they may not consider investigating the possible problems 

inherent in model selection. So, there have been no such published studies regarding 

the impact of preliminary model selection in LGM. 

Although the two-step process in LGM might be vulnerable to the same criticism 

as that in regression, LGM is different from regression in terms of model selection in 

an important way. In regression, the candidate models usually contain different 

variables (i.e., predictors), whereas in LGM the candidate models usually contain 

identical variables, but with different arrangements among those variables (e.g., the 

candidate quadratic growth models might contain different covariances among latent 

growth factors). This difference between regression and LGM is significant enough 

so we cannot blindly apply what has been found in regression to LGM. This study is 

thus designed to investigate the possible problems arising from the use of the two-

step process in LGM. The study has two goals: 

(1) To examine the impact of preliminary model selection using information criteria 

on latent growth model parameter estimates, and  

(2) To assess the data splitting method as a possible way to mitigate the effects of 

model uncertainty.  

These goals were accomplished through two Monte Carlo simulation studies.  

Chapter 2 of this dissertation reviews the current literature regarding the basic 

idea of model selection, including model selection methods, problems of model 

selection, and the possible ways to overcome or at least mitigate the potential effects 

of model selection. In addition, the literature of model fit and model selection in SEM, 

specifically in the context of LGM, are also examined.   
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Chapter 3 explicates the research design. The first section of Chapter 3 describes 

the Monte Carlo simulation study, including the populations from which the data are 

drawn, the manipulated factors, and the data generation procedures. The second 

section of Chapter 3 presents outcome measures and data analysis.  

Chapter 4 presents the summary of the simulation results. The current 

investigation includes two Monte Carlo simulation studies. Results are looked at from 

three aspects: (1) model selection accuracy, (2) relative parameter biases, and (3) 

coverage rate.   

Chapter 5 includes the discussion of the findings, the limitation of this study, and 

possible future research directions.  
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Chapter 2: Literature Review 
 

The Number of Cases Without Negative Estimates of Variance When Fitting the 

Data to the Linear Model.This chapter will explore the basic idea of model selection, 

the problems existing in model selection, and spossible ways to overcome or mitigate 

these problems. In addition, the literature on model fit and model selection in SEM, 

specifically in the context of LGM, will be examined. 

2.1 Model Selection 

Truth in social sciences is usually complicated. In some cases, researchers try to 

model the phenomenon of interest in order to make an appropriate decision or 

prediction. The model building process generally consists of three main components: 

model specification, model fitting, and model selection. It is usually an iterative 

process. Take SEM as an example. During model specification, a researcher’s 

hypotheses are expressed as structural equation models in the form of diagrams or 

series of equations. A model’s variables and the directionalities of presumed relations 

among observed or latent variables are specified. Once a model is specified, 

researchers use computer programs to evaluate model fit and estimate the model 

parameters. If the researcher’s initial model does not fit the data very well, it might be 

necessary to respecify the model with different relations among variables, or possibly 

different variables. During this iterative process, several candidate models might be 

considered. These candidate models might have nested or non-nested relations with 

each other, depending on the researcher’s specifications. In the end, the best single 

model, assuming adequate fit, is selected.  
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Obviously, it may not be possible to find a model representing exact truth or full 

reality from the analysis of a finite amount of data. There is some uncertainty about 

how to decide on the appropriate specifications. Therefore, in practice, preliminary 

tests have been used as an aid in choosing an appropriate specification/model. In most 

situations, a researcher is forced to ask which model has the best fit for a given set of 

data, and usually has to settle for inferences based on a good approximating model. 

Thus, the critical issue is, “What is the best model to use?” The problem of choosing 

from among a limited range of alternative models using only the available data is 

known as the model selection problem (Burnham & Anderson, 2002).  

2.1.1 Model Selection Methods 

Various procedures can be used to select appropriate models. Null hypothesis 

testing has been viewed as a popular basis for model selection. In the particular 

context of regression, sequential testing has often been used, either forward or 

backward methods (Burnham & Anderson, 2002).  

The second approach to model selection is the use of likelihood ratio. A 

likelihood ratio approach can be used to determine goodness of fit and leads to a chi-

square test on the assumption of multivariate normality (Bollen, 1989). In cases 

where data violate the normality assumption, a robust model chi-square test statistic is 

used instead (Satorra & Bentler, 1994), and thus relevant chi-square difference tests 

have to be adjusted, as described by Satorra and Bentler (2001). These testing-based 

methods are employed when models are nested. The definition of “nested models”, 

however, is slightly different in regression versus in SEM. In regression the candidate 

models usually contain different variables (i.e., predictors), whereas in SEM the 
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candidate models may contain identical variables, but with different arrangements 

among those variables. In regression, Model I is nested within Model II if Model I’s 

set of variables is a subset of the variables for Model II. In SEM, Model I is nested 

within Model II if Model I’s set of parameters to be estimated is a subset of the 

parameters to be estimated for Model II.  

Yet, another approach to model selection is the use of Information Criterion (IC) 

measures, such as the Akaike Information Criterion (AIC; Akaike, 1978) and the 

Bayesian Information Criterion (BIC; Schwarz, 1978), which may be used whether 

models are nested or non-nested. In their general form, information criterion indices 

are based on the log likelihood (Log L) of a fitted model, where each IC measure 

applies a different correction for the number of model parameters and/or sample size 

in order to balance goodness of fit and complexity. More complex models usually fit 

data better, but the additional parameters may not represent anything useful. The 

concept of parsimony is employed in these methods of model selection. That is, if 

many models fit data equally well, the simplest model is preferred.   

The IC measures considered in this study are two most commonly used, AIC and 

BIC. The AIC is defined as  

AIC= -2 log L + 2t, 

where L is the maximum likelihood for the model and t is the number of free model 

parameters. The BIC is defined as  

BIC = -2 log L + t log (n), 

where n is sample size.  
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Cross-validation has also been suggested as a model evaluation method (Cudeck 

& Browne, 2003; Shao, 1993). In this method, the data are divided into two partitions. 

The first partition is used for model fitting and the second is used for model 

validation. Then a new partition is selected, and this whole process is repeated many 

(e.g., hundreds of) times. Some criterion, such as minimum squared prediction error, 

is then chosen as an index for model selection. The disadvantage of cross-validation 

is that the data need to be split into two or more parts. This can be a serious problem 

when the sample size is small.  

2.1.2 Problems of Model Selection 

In the context of regression, much has been written concerning the impact of 

preliminary model selection when a data-dependent model selection procedure has 

been used (Hurvich & Tsai, 1990; Leeb, 2005; Miller, 1990; Rencher & Pun, 1980). 

In such situations, data are used both to select a parsimonious model and to estimate 

the model parameters and their precision. Possible problems of this data-driven model 

selection practice in regression are: (1) ignorance of the model selection uncertainty; 

(2) the properties of preliminary model estimators and related statistics might be 

different from those when the model is known a priori; (3) the validity of the 

inference procedures may be affected. Each of these problems will be elaborated 

upon below. 

First, the use of the same data set for both model selection and inference prompts 

a concern for model selection uncertainty in that the best selected model might be 

wrong (Chatfield, 1995). According to Draper (1995) and Hodges (1987), there are 

typically three main sources of uncertainty in the process of model building: (a) 
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uncertainty about the structure of the model; (b) uncertainty about estimates of the 

model parameters, assuming that the structure of the model is known; (c) unexplained 

random variation in observed variables, even when the structure of the model and the 

values of the model parameters are known. Uncertainty about model structure might 

result from different sources, such as model misspecification (e.g., omitting a variable 

or constraining a parameter by mistake) or choosing from among alternative models 

of quite different structures. Draper and Hodges also noted that ignoring the effects of 

uncertainty about model structure results in estimated sampling variances and 

covariances that are too low, and thus the achieved confidence interval coverage will 

be below the minimal value. Chatfield (1995) pointed out “Statisticians must stop 

pretending that model uncertainty does not exist and begin to find ways of coping 

with it” (p. 422). 

Second, because the estimation procedure depends upon the outcome of model 

selection, the properties of preliminary model estimators and related statistics might 

be different from those when the model is known a priori. For example, in the case of 

regression Hurvich and Tsai (1990) concluded that the conditional coverage rates are 

much smaller than the nominal coverage rates, assuming the model was known in 

advance. Rencher and Pun (1980) demonstrated that a model selected by the best 

subset regression method tends to have an inflated value of 2R . Pötscher (1991) 

investigated the asymptotic properties of preliminary model estimators and derived 

the asymptotic distribution of parameter estimators and related statistics. His research 

showed that although the mean of the asymptotic distribution of parameter estimators 

is unaffected by model selection, the variance will increase due to the model selection 
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uncertainty and the shape of the distribution may change. Bancroft (1944) was 

concerned with the bias of a regression coefficient which resulted from pretests for 

model selection. Consequently, he derived a mathematical formula to investigate the 

bias of a regression coefficient estimator when the model had not been determined a 

priori. Miller (1990) provided a technical discussion of model selection bias in the 

context of linear regression. He warned that p-values from subset selection software 

were lacking foundation, and large biases in regression coefficients were often caused 

by data-based model selection. Breiman (1988) also showed that models selected by 

the various data-driven methods can produce strongly biased estimates of mean 

squared prediction error.  

Third, because the use of a model selection procedure affects the asymptotic 

distribution of parameter estimators and related statistics, the validity of the 

subsequent inference procedures may be severely affected. Miller (1984) showed that, 

if one starts with a model selected from the data, then regression estimators may be 

biased and standard hypothesis tests may not be valid. Also, Zhang (1992) 

investigated the impact of model selection on statistical inferences in linear regression. 

His results showed that although variable selection did not have much impact on the 

inferences for the error variance, the sizes of the nominal confidence sets tend to be 

inflated if they are derived based on the selected model. Leeb and Pötscher (2005) 

commented, “naïve use of inference procedures that do not take into account the 

model selection step can be highly misleading” (p. 22). 
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2.1.3 Ways to Overcome or Mitigate the Problems of Model Selection 

In this section, three primary methods for overcoming or at least mitigating the 

non-trivial biases which result from data-dependent specification searches are 

described: computational methods, Bayesian model averaging approach (BMA), and 

data splitting.  

Computational Methods  

A variety of computational methods have been examined including resampling, 

bootstrapping, and jackknifing (e.g., Faraway, 1992; Hjorth, 1994). Faraway (1992) 

wrote a program to simulate the data-analytic actions in a regression analysis. He 

investigated model selection bias and tested bootstrapping, jackknifing, and sample-

splitting for mitigating the problem. Faraway’s simulation results suggested that 

bootstrapping and jackknifing can provide more realistic, although not perfect, 

estimates of the error and thus can reduce the bias resulting from preliminary model 

selection. The sample-splitting estimator has less bias but at the expense of additional 

variance. Breiman (1992) suggested that bootstrapping can give nearly unbiased 

estimates of the mean square prediction error in regression models selected by using 

data-driven selection procedures.  

Although research to date has shown bootstrapping to be an appealing 

alternative for reducing the bias due to model uncertainty, three issues clearly remain 

to be addressed. First, in bootstrapping the original parent data set may not represent 

the population. In this case, if a data set from Model I happens to have characteristics 

which suggest Model II, then the bootstrap samples are also likely to favor Model II 

rather than the true Model I (Chatfield, 1995). Second, an inappropriate choice of the 
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resampling algorithm in bootstrapping may lead to problematic results. For example, 

Freeman, Navidi, and Peters (1988) indicated that resampling which is conditional on 

the fitted model must be avoided; otherwise, bootstrap samples will not reflect the 

true extent of model uncertainty. Faraway (1992) also showed that a resampling 

algorithm, which was conditional on the model, seriously underestimated the variance 

of the quantities of interest. Third, while bootstrapping is asymptotically consistent, it 

does not provide general finite-sample guarantees. Freeman et al. (1988) found that 

the bootstrap method worked reasonably well for adjusting the bias due to variable 

selection in regression, when the ratio of observations to predictor variables was large. 

The method, however, began to break down when this ratio was small. Nevitt and 

Hancock (2001) stated that using the bootstrap method was unwise when sample size 

was less then or equal to 100 because the standard error bias and variability were 

highly inflated.  

Bootstrapping is not considered in the current study for two reasons. First, one of 

the sample sizes used in this study will be n=100 in order to control the level of Type 

II error and power for choosing a correct model. The failure of bootstrapping with 

relatively small sample sizes (Ichikawa & Konishi, 1995; Nevitt & Hancock, 2001) 

suggests that bootstrapping may not be an appropriate method in this study. Second, 

bootstrapping may be conservative in its control over Type I error in model rejections 

at the expense of the power to reject a misspecified model (Nevitt & Hancock, 2001). 

In this study the likelihood to choose a correct model will be controlled in order to 

make possible the situations of overfitting and underfitting, thus allowing the effects 

of preliminary model selection in the two situations to be examined. Therefore, if a 
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simulated parent data set from the true model happens by chance to have 

characteristics which suggest a misspecified model, then the bootstrap samples are 

also likely to tend to fit the wrong model rather than the true model. 

Bayesian Model Averaging  

Bayesian model averaging (BMA) is an alternative method designed to help 

account for the inherent uncertainty in model selection (Draper, 1995; Hoeting, 

Madigan, Raftery, & Volinsky, 1999; Raftery, 1996). Instead of choosing a single 

best model, BMA takes into account model uncertainty by averaging over a variety of 

plausible competing models. In conducting BMA, the appropriate prior probabilities 

of the models, and the prior distributions of the parameters given a model, are 

specified. The data are then used to calculate posterior probabilities for the different 

models. Afterwards, the posterior model probability for each competing model is 

considered a weight, and then an average of the model-specific point estimates for a 

parameter is calculated. The Bayesian point estimate of a parameter is its posterior 

mean calculated by employing each posterior model probability as a weight.  

Although BMA avoids the need to select a single best model and instead helps 

account for the model uncertainty in the model selection process by mixing several 

models, there are difficulties in applying BMA. For example, the number of plausible 

competing models could be very large. In such cases, an arbitrary cut-off point may 

be used to reduce the number of models by discarding those with low posterior 

probability (Chatfield, 1995). Another difficulty associated with BMA is setting up an 

appropriate prior probability for each of the various competing models (Hjort & 

Claeskens, 2003). Moreover, because BMA does not lead to a single best model but 
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instead averages over a range of entertained models, the description and the 

interpretation of the estimates across different models turn out to be difficult. Extra 

caution should be exercised when interpreting a parameter over a set of plausible 

models (Chatfield, 1995). Finally, competing models associated with BMA are 

assumed to have common parameters; this is not the case, however, in many SEM 

model comparisons. In LGM in particular, plausible candidate models usually contain 

the same variables but may vary in how the variables are connected by the parameters. 

Therefore, BMA is not considered in the current study. 

Data Splitting 

In addition to computational methods and BMA, another possible solution to the 

conditionality problem of using the same data set for both model identification and 

inference is to conduct model selection, and parameter estimation and inference, on 

separate sets of the data. Tukey (1980) stated, “Often, confirmation requires a new 

unexplored set of data” (p. 821). As for how to obtain these new data, however, 

different researchers have different opinions. Some researchers suggest that model 

validation needs to be carried out on a completely new set of data. For example, 

Anscombe (1967) stated that “the only real validation of a statistical analysis, or of 

any statistical inquiry, is confirmation by independent observation” (p. 6). It is not 

always possible, however, to collect more data. Some experiments or data collection 

processes are so costly that it is necessary to derive as much information out of the 

existing data as possible. Other researchers, for instance Hurvich and Tsai (1992), 

suggested that data splitting provides a possible substitute for a true replicate sample 

in model validation. With data splitting, one problem is deciding how to split the 
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sample (Picard & Cook, 1984). Another problem is that fitting a model to just part of 

the data will result in a loss of efficiency.  

What is clear is that using more than one data set, whenever possible, is a wise 

way to cope with model uncertainty. Miller (1984) and Hurvich and Tsai (1992) 

recommended data splitting as a possible way to reduce the bias resulting from 

preliminary model selection. Therefore, in the current study the data splitting 

technique is employed. The simulated data will be randomly separated into two parts. 

The first part will be used to choose an appropriate model. The second part will then 

be used to estimate the parameters and make inferences from the chosen model. 

2.2 Approach for Assessing Individual Changes 

Understanding how some aspect of an individual changes over time has long 

been an area of research interest in the social and behavioral sciences, including 

education (e.g., Bryk & Raudenbush, 1987; Goldstein, 2003), psychology (e.g., 

Meredith & Tisak, 1990; Willett & Sayer, 1994), and sociology (e.g., Duncan & 

Duncan, 1996; Patterson, 1993). Such research requires multiple measurements from 

the same individuals, taken at different times. Different methods can then be used to 

analyze the longitudinal data, helping researchers assess the within-individual 

changes, and explaining how the changes may differ across individuals (e.g., Collins 

& Sayer, 2001; Hancock & Lawrence, 2006). 

Traditionally, there are several methods to characterize these changes over time. 

These include repeated-measures ANOVA, multivariate analysis of variance 

(MANOVA), univariate analysis of covariance (ANCOVA), multivariate analysis of 

covariance (MANCOVA), and auto-regressive and cross-lagged multiple regression 
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techniques. These methods, however, either require stringent data assumptions, (e.g., 

the assumptions of sphericity in the repeated-measures ANOVA), or can only detect 

changes at the group level but not at the individual level.  

Recently, growth curve modeling (GCM) has been developed to help overcome 

some of these limitations in the traditional approaches. GCM allows one to study a 

wide range of parameters of change, including linear and nonlinear effects 

(MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 1997; Mehta & West, 2000; Muthén 

& Curran, 1997). It simultaneously focuses on their variances, covariances, and mean 

values over time, providing a more complete picture of changes at both the group 

level and the individual level (Rogosa & Willett, 1985).  

GCM may be carried out either within the framework of multilevel linear 

modeling (MLM), or within the framework of SEM. MLM is a statistical technique 

that addresses clustered data (i.e., observations are nested within individuals). In 

MLM, a multilevel mixed (i.e., with fixed and random effects) regression model is 

used to study change. The level-1 submodel is specified to capture the trends of the 

within-individual changes; the level-2 submodel is used to capture the inter-individual 

differences in growth parameters (Goldstein, 2003; Raudenbush & Bryk, 2002; 

Singer & Willett, 2003).  

SEM, on the other hand, is a statistical technique for testing and estimating 

hypothesized causal relationships among observed and latent variables (Hoyle, 1995). 

In SEM, the growth parameters are treated as latent variables. Repeated measures are 

treated as multiple indicators of the latent variables in order to capture the trends of 

changes (Meredith & Tisak, 1990; Willett & Sayer, 1994).  
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Under SEM, modeling changes may take one of several names, such as latent 

growth modeling (LGM), latent growth curve analysis, or latent trajectory models. 

Numerous reviews of LGM for modeling change have been published in recent years 

(Bollen & Curran, 2006; Duncan, Duncan, & Strycker, 2006; Hancock & Lawrence, 

2006).  

A latent growth model can be represented in matrix notation in terms of a data 

model, a covariance structure, and a mean structure. The data model is as follows: 

y = τ  + Λη  +ε , 

where y represents the vector of observation; τ  represents the vector of intercept; Λ  

represents the factor loadings; η  represents the latent growth variable; ε  represents 

the error term.  

 From the data model, one can derive a covariance structure (∑ ) and a mean 

structure (μ ). The covariance structure is: 

 

Σ = Λ Φ Λ′  + εΘ , 

where Σ  represents the population variances and covariances of the observed 

variables; Λ  represents the factor loading; Φ  represents the factor variances and 

covariances; εΘ  represents the error variances and covariances. The mean structure is: 

 

μ  = τ  + Λ α , 

whereμ  represents the population means of observed variables; τ  is the vector of 

intercepts; Λ  is factor loadings; α  is the latent variable means. In LGM, the 

parameters of interest are contained in the matrices Λ , Φ , and εΘ , and the vector α . 
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Figure 1 shows a complete path diagram for a typical linear LGM for five equally 

spaced time points.  

 

Figure 1. Linear Latent Growth Model  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This linear latent growth model contains the following elements:  

(1) Two latent growth factors: Initial Status (IS)/Intercept and Linear Growth (LG)/ 

Slope. IS ( 1η ) represents the intercept of an individual’s growth trajectory and 
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conveys the individual’s true status at the initial measured time point. LG ( 2η ) 

represents the slope of an individual’s growth trajectory and provides the individual’s 

true rate of change per unit time.  

 (2) A pseudovariable, which assumes a constant value of 1 for all observations. The 

inclusion of a pseudovariable in the latent growth model allows for factor means to be 

estimated. 

(3) Five outcome variables. Y1-Y5 represent five continuous outcomes measured at 

equally spaced time points. 

(4) Five error terms. 1ε - 5ε  represent the degree of deviation between the observed 

outcome and the expected outcome from the latent growth model.  

(5) Loadings and parameters to be estimated. The parameters and loadings are 

presented in the matrices Λ , Φ , the vector α , and the matrix εΘ . The details are 

described below. 
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Elements of Λ represent the loadings. The first column is fixed to 1, reflecting 

the fact that each individual’s intercept remains constant over the repeated measures; 

the second column reflects the hypothesis of linear growth with equal time intervals. 

Elements of Φ  represent the variances and covariances of these aspects of 

change. In the case of linear LGM shown in Figure 1, the Φ  matrix contains the 

intercept variance ( 11φ ), the slope variance ( 22φ ), and the covariance of intercepts and 

slopes ( 21φ ). The intercept variance ( 11φ ) displays how much diversity exists initially 

for the ability of interest. The slope variance ( 22φ ) conveys the diversity in growth 

rates across individuals. The covariance of intercepts and slopes ( 21φ ) shows to what 

extent the rate of growth is related to the initial status of the ability. 

Elements of the vectorα  represent the mean of intercept ( 1α ) and the mean of 

slope ( 2α ). In contrast to the covariance structure, the mean structure contains 

information about change at the aggregate level. The mean of intercept ( 1α ) captures 

the average initial status and the mean of slope ( 2α ) represents the average growth 

rate across different times.  
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Elements of εΘ represent variances and covariances of error terms, indicating 

the portion of the variance in the data not associated with the hypothesized latent 

curve. 

As mentioned previously, growth may be modeled within either an MLM or 

LGM paradigm, each of which has advantages and disadvantages. MLM is better at 

incorporating levels of clustered data (Wu, West, & Taylor, 2009). MLM also handles 

more easily the case where people are measured at different time points (Mehta & 

West, 2000). LGM, on the other hand, has two advantages in modeling changes. First, 

in LGM, error variances and covariances may be estimated freely or specified to 

conform to a predetermined pattern, whereas in MLM error variances are constrained 

to remain equal over time. Second, LGM is able to model a latent outcome variable 

with multiple indicators at each time point (Hancock, Kuo, & Lawrence, 2001) and to 

include other measured or latent variables that can serve as correlates, predictors, or 

outcomes of the latent growth parameter (Meredith & Tisak, 1990; Muthén & Curran, 

1997).  

MLM and LGM approaches provide the same analsis results when modeling 

linear growth with homoscedastic residuals (Hox, 2000), whereas the empirical 

results of LGM and MLM may not necessarily be the same because more flexibility 

exists in LGM. In this study, the LGM approach will be used because LGM offers 

more flexibility in testing a nonlinear growth hypothesis and LGM has flexibility in 

the specification of the variances and covariances of the repeated measurements. By 

implementing LGM in this study, both linear and nonlinear growth models will be 
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easily set up to examine how the information criteria measures perform to distinguish 

the two models in the context of model misspecification. 

2.3 Model Fit in SEM 

The principal considerations in SEM are evaluating model fit and estimating 

individual model parameters. The overall evaluation of the fit of a model in SEM is 

obviously important; concern over individual model parameters is pointless if a 

hypothesized model is not consistent with the data.  

A common approach in SEM is to test the underlying structure of hypothesized 

models and to report some index of the goodness of fit of those models to the data. 

Goodness of fit is the empirical correspondence between a model’s predictions and 

observed data. The concept of evaluating model fit in SEM can be described as 

follows: suppose the formal representation of the model is Σ = Σ (θ ), where θ  

represents the parameters of the model, which are traditionally specified as freely 

estimated and/or fixed to specific values. The fitting process involves finding a set of 

parameter estimates θ̂  which minimize F, the maximum likelihood discrepancy 

function.  

F= [ln | Σ̂ | + tr (S 1ˆ −Σ ) – ln |S| - p] + )ˆ('ˆ)ˆ( 1 μmΣμm −′− − , 

where S is the observed covariance matrix, Σ̂  is the model implied covariance matrix 

based on optimum parameter estimates, p is the number of indicator variables, m is 

the vector of observed sample means of the indicator variables, and μ̂  is the model-

implied mean vector. [ln | Σ̂ | + tr (S 1ˆ −Σ ) – ln |S| - p] is the fit associated with the 



 

 24 
 

covariance structure portion of the model and )ˆ(ˆ)ˆ( 1 μmμm −Σ′′− − is the fit associated 

with the mean structure portion of the model. 

The estimates θ̂  minimizing F yield an implied covariance matrix ( Σ̂ ) as 

similar as possible to the observed covariance matrix (S) of measured variables, and 

an implied mean vector ( μ̂ ) as similar as possible to the observed sample means 

vector (m) of the indicator variables. To the degree that Σ̂ resembles S, the minimized 

F will tend to be small, reflecting good fit. The situation when Σ̂ = S, μ̂=m, and F = 

0 denotes perfect fit. If the match between the model’s predictions and observed data 

is deemed adequate (by reaching or exceeding some benchmark) the model is said to 

show good fit (Preacher, 2006). 

Specifically, the evaluation of goodness of fit for a latent growth model is 

generally carried out by assessing various global fit indices including (1) the chi-

square statistic, (2) information criteria (e.g., AIC and BIC), and (3) data-model fit 

indices such as the root mean squared error of approximation (RMSEA; Browne & 

Cudeck, 1993), Nonnormed Fit Index (NNFI; Tucker & Lewis, 1973), and 

comparative fit index (CFI; Bentler, 1990). Generally, a good fit is indicated by the 

values of RMSEA less than 0.05 or NNFI and CFI greater than 0.95.   

In the process of evaluating model fit in LGM, there are generally two main 

specification issues that need to be addressed (Kline, 2004). First, how many growth 

parameters need to be included in the model? That is, assuming there is change over 

time, is a latent linear growth factor sufficient to model change? Or is it necessary to 

also include a nonlinear factor? The second specification issue is related to the error 

variances and covariances. For example, are the errors independent over time? If not, 
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what is the pattern of correlation between the errors of the repeated measures variable? 

Consequently, by taking into account the various combinations of possible growth 

factors and errors, several possible models may be considered at the same time. When 

a fit index is used to evaluate different plausible models, the index becomes a model 

selection criterion because the objective is to select the model that is optimal, given 

the data. 

2.4 Model Selection in SEM 

In SEM, it is common that in the model-building process several plausible 

candidate models might be considered and fitted to a single data set to see whether 

the fit can be improved. Fit indices are used to evaluate the plausible models, and 

then a single appropriate model is selected. Based on the selected model, parameter 

estimation and testing are conducted using the same data set.  

It is obvious that model selection plays an important role in SEM. The literature 

regarding model selection in SEM, however, mostly focuses on evaluating model 

selection criteria/model fit indices themselves. For example, Coffman and Millsap 

(2006) showed that the global fit indices (e.g., the chi-square statistic, RMSEA, and 

CFI) which are generally used to evaluate the overall fit of a structural equation 

model can be misleading within the context of LGM. Therefore, they examined the 

usefulness of assessing individual fit in latent growth models and concluded that the 

evaluation of model fit at the level of the individual in LGM is an important addition 

to the assessment of the overall model. As another example, Wu et al. (2009) 

discussed the issues that arise in the evaluation of fit of latent curve growth modeling 

from the perspectives of both the SEM and MLM frameworks. First, they showed 
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how the four sources of misfit in latent growth models - two related to the mean 

structure and two related to the covariance structure - can be reflected in fit indices 

from the SEM and MLM frameworks. Second, they stated that the availability and 

interpretation of measures of model fit depend on the type of longitudinal data (i.e., 

balanced on time with complete data, balanced on time with data missing at random, 

and unbalanced on time) being analyzed. 

In addition, in SEM, some studies have examined whether an index reliably 

identifies the true model and consistently identifies a specific model across 

replications. For instance, Whittaker and Stapleton (2006) assessed the performance 

of eight cross-validation indices in terms of true model selection rate as well as 

consistency of model selection under different conditions including sample size, 

factor loading, model misspecification, and nonnormality. They suggested that the 

performance of the cross-validation indices tended to improve as factor loading and 

sample size increased but performed less well as nonnormality increased.  

In SEM, the literature regarding model selection has mostly focused on 

evaluating the model selection criteria/model fit indices themselves. The effect of 

model selection, however, has not been widely investigated. This study, therefore, is 

designed to evaluate the performance of the information criteria used for model 

selection in LGM (a particular case of SEM) and to examine the impact of 

preliminary model selection on latent growth model parameter estimates. Also, data 

splitting is to be assessed as a possible way to mitigate the effects of model 

uncertainty. The details of methodology are elaborated in the following Chapter 3.   
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Chapter 3: Methodology 

The research design is explicated in this chapter. The first section of this chapter 

describes the Monte Carlo simulation study, including the population from which the 

data will be drawn, the manipulated factors, the data generation procedures, and the 

data splitting procedure. The second section presents the outcome measures and data 

analysis.  

3.1 Monte Carlo Simulation Study 

To achieve the goals of this study, a series of Monte Carlo simulations are 

conducted in which many samples are drawn from populations with known values for 

the parameter estimates. This approach has the benefit of having a known growth 

pattern and known population values as a baseline for evaluating the ability to select a 

true model. Also, it takes into account the effects of sampling variability on parameter 

estimates and provides information on whether parameter estimates can be recovered.  

3.1.1 Specifications in the Monte Carlo Study 

In the Monte Carlo study, two kinds of variables need to be specified: the Monte 

Carlo variables and the population variables. The Monte Carlo variables include 

sample size and the number of replications. The population variables, which 

determine the generation of the sample data, include the number of latent factors in a 

model, the mean of the factors, the variance and covariance of the factors and errors, 

and the loadings. Among those variables, the number of replications, the number of 

latent factors in a model, the mean of the factors, the variance of intercept, the 

variance of slope, the covariance of the factors and errors, and the loadings are 
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constant. Data-generating model, sample size, the variance of the quadratic factor, 

error variance, and model selection criteria are manipulated. The specifications are 

presented in Table 1 and explicated in 3.1.1.1 and 3.1.1.2. 

 

 

Table 1. Specifications in the Monte Carlo Study 
 

Data-Generating Model * Linear LGM Quadratic LGM 

Parameters   

Mean intercept ( 1α ) 10 10 

Mean linear slope ( 2α ) 25 25 

Mean quadratic slope ( 3α ) N/A -0.1 

Mean error  0 0 

Intercept variance ( 11φ ) 10 10 

Linear slope variance ( 22φ ) 2 2 

Quadratic slope variance* ( 33φ ) N/A 0.01, 0.05, and 0.1 

Error variance * ( εθ ) 2.5, 5, and 10 2.5, 5, and 10 

Intercept/linear slope covariance ( 21φ ) -1.34164 -1.34164 

Intercept/ quadratic slope covariance ( 31φ ) 0 0 

Linear/ quadratic slope covariance ( 23φ ) 0 0 

Loadings of intercept [ 1,1,1,1,1] [ 1,1,1,1,1] 

Loadings of linear slope [ 0,1,2,3,4] [ 0,1,2,3,4] 

Loadings of quadratic slope N/A [0,1,4,9,16] 

Sample size * 100,200, 500, and 700 100,200, 500, and 700 

Replications  1000 1000 

* Manipulated factors in the Monte Carlo simulation study 
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3.1.1.1 Constant Factors 

Means of Growth Factors  

Data are generated by using the following population values for the latent 

growth factors with the assumption that variables are multivariate normally 

distributed. There are two latent factors in the linear growth model and three in the 

quadratic growth model. For both the linear and the quadratic growth models, the 

mean of the intercept factor ( 1α ) is 10 and the mean of the linear slope factor ( 2α ) is 

25. The mean of the quadratic slope factor ( 3α ) is set at -0.1. Matrix representations 

for the means of growth factors in the linear and quadratic models used in this study 

are as follows: 
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In mathematics, the difference between a straight line and a quadratic curve 

depends only on the magnitude of the quadratic variable coefficient. The greater the 

magnitude of the quadratic variable coefficient, the greater the discrepancy between a 

straight line and a quadratic curve. The pilot study showed that the magnitudes of the 

mean of the intercept factor and the mean of the slope factors did not significantly 

influence the probability of misspecifying between linear and quadratic models. 

When the magnitude of the mean of the quadratic slope factor increased, however, the 
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probability of misspecifying between linear and quadratic growth models decreased, 

because the difference between the two models was more obvious. More specifically, 

the pilot study indicated that when the quadratic factor mean was of greater 

magnitude (e.g., -0.2, -0.3, -0.5, -1), the power to choose a correct model was greater 

than 0.99. In those cases, the effects of preliminary model selection could not be 

examined because a correct model was almost always chosen.  Therefore, in this 

study relatively large values (10 and 25) for the means of the intercept and slope 

factors were chosen to contrast with the small quadratic factor mean (-0.1). The small 

magnitude of the mean of the quadratic slope factor makes the data generated by the 

quadratic growth model not dramatically different from those generated by the linear 

growth model and thus creates the possibility of model misspecification, allowing for 

examination of the effects of preliminary model selection on parameter estimates. 

Also, the negative value of the mean of the quadratic slope factor makes the quadratic 

growth trajectory reflect the general pattern of learning curves that display negative 

acceleration of changing rate, i.e., quick progress in learning during the initial stages 

followed by gradually slower improvement over time. Figure 2 shows that the 

trajectories of the linear model and the quadratic model are similar to each other.  
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Figure 2. Linear and Quadratic Growth Trajectories 
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Variance/Covariance of Growth Factors  

The variance of the intercept factor is 10 and the variance of the slope growth 

factor is 2, reflecting a commonly seen variance ratio of 5:1 (Muthén & Muthén, 

2002). The covariance between the intercept and slope growth factors is -1.34164, 

reflecting a moderate correlation of -0.3. This parameter value is based on Hancock 

and Lawrence’s (2006) study. The negative intercept-slope covariance indicates that 

the object of interest at the initial time point will have a systematic negative 

relationship with the rate of change over time. This implies that individuals with 

lower initial status on the ability of interest tend to grow more whereas those with 
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higher initial status on the ability of interest tend to grow less. This correlates with the 

general pattern of individual learning processes, first speeding up and then slowing 

down as the practically achievable level of improvement or the upper limit of 

measurements (e.g., a test ceiling) is reached. 

Loadings  

The loadings [1, 1, 1, 1, 1] are set for the intercept factor and [0, 1, 2, 3, 4] for 

the linear slope factor in both the linear and quadratic growth models. The loadings 

for the quadratic factor are [0, 1, 4, 9, 16] in the quadratic growth model. Matrix 

representations for the loadings in the linear model and the quadratic model used in 

this study are as follows: 
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3.1.1.2 Manipulated Factors 

Five factors will be manipulated in this study. They are the data-generating 

model, sample size, variance of quadratic factor, variance of error, and model 

selection criteria. The purpose of manipulating these factors is to control the level of 
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type II error and power for choosing a correct model. In this current study, the 

likelihood of choosing a correct model is controlled in order to make possible the 

situations of overfitting and underfitting. For example, manipulating the magnitude of 

quadratic factor variance makes it possible to select a quadratic growth model even 

when data are generated from a linear growth model and vice versa. Consequently, 

the effects of preliminary model selection in underfitting and overfitting situations 

can be examined. A pilot study was conducted to choose parameter values that would 

manipulate how often the wrong model was selected. The range of parameter values 

to be used for a certain manipulated factor was decided by fixing the level of power 

and keeping the values of all other manipulated factors the same. The details of the 

pilot study will be described in the following sections discussing each of the 

manipulated factors. 

Data-Generating Model 

The first manipulated factor is the type of data-generating model. A linear 

growth model and a non-linear growth model are considered in this study. The linear 

growth model includes two latent growth factors: Initial Status (IS)/Intercept and 

Linear Growth (LG)/Slope, and assumes the trajectories examined are simple linear 

functions of time. The non-linear model includes these same two latent growth factors 

plus a third latent growth factor, Quadratic Growth (QG), which captures a quadratic 

trend over time. Figure 1, in section 2.2, illustrates the linear growth model used in 

this study with five repeated measures and with covariance and mean structure 

parameters. Figure 3 illustrates the non-linear growth model, in this case a quadratic 

model, which assumes that growth is governed by two factors, linear and quadratic.  
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Figure 3. Quadratic Latent Growth Model  
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to occur, and to what extent model misspecification influences parameter estimation 

in overfitting and underfitting circumstances. 

Sample Size 

The second manipulated factor is the sample size. Four sample sizes are used: 

100, 200, 500, and 700. These are numbers of observations typically seen in practice. 

The results of pilot analyses, shown in Figure 4, suggested that sample size ranged 

from 15 to 351 for power fixed at the values of 0.2, 0.5, and 0.8 as variance of the 

quadratic factor ranged from 0.01 to 0.1 and with error variance fixed at 5. The pilot 

study also showed, as illustrated in Figure 5, that sample size ranged from 14 to 699 

for power fixed at the values of 0.2, 0.5, and 0.8 as error variance ranged from 1.3 to 

10 and with variance of the quadratic factor fixed at 0.01. In this current study, 

however, sample size less than 100 is not used in order to ensure sufficient 

observations for data splitting. 
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Figure 4. Sample Size by Power and Variance of the Quadratic Factor  
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Figure 5. Sample Size by Power and Error Variance  
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Variance of the Quadratic Factor  

The third manipulated factor is variance of the quadratic factor ( 33φ ). Three 

values are used: 0.01, 0.05, and 0.10. Pilot analysis suggested that the larger the 

variance of the quadratic factor, the higher the power to choose the quadratic model 

when it is true. Figure 6 presents the possible values for variance of the quadratic 

factor with sample size 100 and an error variance of 5.  

 

Figure 6. Values for Variance of the Quadratic Factor by Power 
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The variance of the quadratic factor ranged from 0.01 to 0.095 for fixed power at 

the values of 0.3, 0.5, and 0.8 with sample size of 100 and an error variance of 5. Our 

pilot study also showed that with sample size larger than 100 the power is generally 

greater than 0.8 when variance of the quadratic factor is 0.01 to 0.095. Thus, 

conditions with variance of quadratic factor significantly greater than 0.095 are 

deemed not to create sufficient model misspecification for this current study to 
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examine the effects of model uncertainty on parameter estimates and therefore are not 

analyzed further.  The factor variance/covariance matrices for the two models, then, 

are: 
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Error Variance 

The fourth manipulated factor is the error variance. Three values are used: 2.5, 5, 

and 10. Pilot analysis suggested that the smaller the error variance, the greater the 

power to choose the quadratic model when it is true. The error variance cannot, 

however, be set to zero; otherwise, the variance and covariance matrix will be 

singular. Figure 7 presents the values of the error variance with sample size 100 and 

with the variance of the quadratic factor 0.01 at different levels of power.  

The error variance ranged from 10 to 1.3 with power 0.2 to 0.8 respectively, with 

sample size 100 and the variance of the quadratic factor of 0.01. Our pilot study also 

showed that with sample size larger than 100 or variance of the quadratic factor 

greater than 0.01 power values are consistently higher than 0.9 when the error 
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variance is 2.9. As such, only the range of 2.5 to 10 for the error variance is 

considered in this current study in order to create sufficient model misspecification.  

 

Figure 7. Values of the Error Variance by Power 
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The error variance is varied from 2.5 to 5 to 10, reflecting 0.8, 0.67, and 0.5 

growth curve reliability ( 2R values) at the initial time point for both the linear and 

quadratic growth models. The growth curve reliability ( 2R values) is defined as the 

proportion of total variance at a certain time point explained by the growth curve 

factors (Muthén & Muthén, 2002). In the present study, the 2R  value is computed by 

using the following formula, 

 

)222/()222()( 324232422
tsqtiqtistqtstisqtiqtistqtstit xxxxxxxxxxYR θφφφφφφφφφφφφ +++++++++++=
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where iφ  is the intercept variance, tx  is the time score at time t, sφ is the linear slope 

variance, qφ is the quadratic slope variance, isφ is the intercept/linear slope covariance, 

iqφ is the intercept/quadratic slope covariance (set at zero in this study), sqφ is the 

linear/quadratic slope covariance (set at zero in this study), and tθ is the error variance 

for the outcome at time t. Here the tx time scores are chosen as 0, 1, 2, 3, and 4. 

Muthén and Muthén (2002) reported that the 2R  value of the outcome variable 

ranged from 0.5 to 0.74.  The 2R  value of the outcome variables in the current study 

ranges from 0.5 to 0.96 as presented in Table 2.   

 

Table 2. Growth Curve Reliability ( 2R ) at Each Time Point 
 
Model Error 

Variance 

Quadratic Slop 

Variance 

Outcome Variable 

   Y1 Y2 Y3 Y4 Y5 

Linear EV=2.5  0.80 0.79 0.83 0.89 0.93 
 EV=5  0.67 0.65 0.72 0.80 0.86 
 EV=10  0.50 0.48 0.56 0.67 0.76 
Quadratic  EV=2.5 QV=0.01 0.80 0.79 0.84 0.89 0.93 
  QV=0.05 0.80 0.79 0.84 0.91 0.95 
  QV=0.10 0.80 0.79 0.85 0.92 0.96 
 EV=5 QV=0.01 0.67 0.65 0.72 0.81 0.87 
  QV=0.05 0.67 0.65 0.73 0.83 0.90 
  QV=0.10 0.67 0.65 0.74 0.85 0.92 
 EV=10 QV=0.01 0.50 0.48 0.56 0.67 0.77 
  QV=0.05 0.50 0.48 0.57 0.71 0.82 
  QV=0.10 0.50 0.48 0.59 0.74 0.85 

 

Although the error variances are manipulated, the specific error variances set in 

a model are equal over time. Also, the error covariances are fixed to zero to represent 
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the hypothesis that errors are uncorrelated over time. In other words, homoscedastic 

and independent error variance is assumed. The error variance/covariance matrices 

for the two models are as follows:  
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Model Selection Criteria 

The two model selection criteria considered in this study are AIC and BIC. For 

each cell of this study, these two measures are used to select a model with better 

goodness of fit. Based on the log likelihood of a fitted model, both AIC and BIC take 

into account the statistical goodness of fit. Each criterion, however, applies a different 

penalty. AIC penalizes the number of parameters to be estimated whereas BIC 

penalizes both the number of parameters and sample size. With different penalty 

terms, AIC and BIC might choose different models. In this study, the performance of 

both AIC and BIC will be evaluated. 
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In summary, by manipulating the five factors noted in Section 3.1.1.2 above, the 

level of Type II error for selecting a wrong model and the power for choosing a 

correct model were controlled. In this way, model misspecifications (i.e., overfitting 

and underfitting) were made possible. The values of manipulated factors were chosen 

based on the results of pilot analyses, using sample sizes commonly seen in practice. 

Manipulating these factors resulted in a total of 96 different conditions, as shown in 

Table 3.  

 

Table 3. Factor Manipulation 
 

Factors Condition 
Specification 

No. of 
Conditions 

No. of 
Conditions 

Data-generating model Linear and 
quadratic growth 

models 

Linear growth 
model 

Quadratic 
growth model 

Model selection criteria AIC and BIC 2 2 
Sample size 100, 200, 500, 700 4 4 
Error variance 2.5, 5, 10 3 3 
Variance of quadratic factor 0.01, 0.05, 0.1 -- 3 
Total  24 72 
 

In the case of underfitting, data generated by a quadratic growth model were 

fitted to a linear model, and the power to choose a correct model (the quadratic model 

in this case) by AIC was evaluated. Table 4 shows the results. The power ranges from 

0.203 to 0.999 under the different conditions created by factor manipulation.  

Calculation of the power of the tests that compare the quadratic growth model 

(i.e., the full model) and the linear growth model (i.e., the reduced and the null model) 

in the case of underfitting is based on a method suggested by Saris and Satorra (1993) 

and Hancock (2006). As an example, in Table 4, with a sample size of 100, error 
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variance of 2.5, and variance of quadratic growth factor of 0.01, the power to choose 

a quadratic growth model when it is true is 0.537. This result is obtained by the 

procedure described below. 

 

Table 4. Power to Choose Quadratic Model by AIC in the Case of Underfitting 
 
Sample Size Error Variance Variance of Quadratic Factor 
  QV=0.01 QV=0.05 QV=0.10 
N=100 EV= 2.5 0.537 0.749 0.959 
 EV= 5 0.322 0.460 0.733 
 EV= 10 0.203 0.265 0.426 
N=200 EV= 2.5 0.833 0.966 0.999 
 EV= 5 0.550 0.750 0.960 
 EV= 10 0.326 0.448 0.708 
N=500 EV= 2.5 0.997 0.999 0.999 
 EV= 5 0.916 0.989 0.999 
 EV= 10 0.651 0.827 0.981 
N=700 EV= 2.5 0.999 0.999 0.999 
 EV= 5 0.978 0.999 0.999 
 EV= 10 0.796 0.933 0.998 
 
 
 

First, the quadratic growth model with population values described above was 

set as the true model and the model-implied covariance matrix for this specification 

was calculated. Second, the model-implied covariance matrix generated by the 

quadratic growth model was fitted into the linear growth model. The linear growth 

model yielded a model fit function value F, which was 0.05458 in this run. The 

estimated noncentrality parameter corresponding to the test of the reduced model was 

(N-1) * F, which was 5.40342 in this run. Third, the likelihood of choosing the 

quadratic growth model (which is the true model) was calculated. Using the value of 

the estimated noncentrality parameter (5.40342) and the tables for the noncentral 2χ , 

and taking into account that the number of degrees of freedom for the comparison of 
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the quadratic and the linear models ( diffdf  = Ldf  - Qdf ) is 4, and that the critical value 

is 8, the power of the model test would be 0.537. This result suggested that in this 

specific case of underfitting (i.e., when the quadratic growth model is the true model 

to generate the data but the data are fit into the linear growth model), there would be a 

53.7 % chance of choosing the quadratic growth model and a 46.3 % chance of 

choosing the linear growth model by using AIC.      

3.1.2 Monte Carlo Simulation Procedures 

The current investigation includes two Monte Carlo simulation studies. Study 1 

presents a simulation study designed to evaluate the impact of preliminary model 

selection on latent growth model parameter estimates when the choice of the model 

and the subsequent parameter estimation procedures are based on the same data set. 

Study 1 also explores the relative behavior of AIC and BIC on specific sets of data. 

Study 2 presents a simulation study to assess the method of data splitting to mitigate 

the effects of model uncertainty. The procedures of Monte Carlo simulation used in 

the two studies are described as follows.  
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Study 1. Conduct Model Selection and Parameter Estimation on the Same Data Set 

The procedure for study 1 is displayed in Figure 8 and described below. 

 

Figure 8. Procedure for Study 1 
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Step 1: Setting Conditions for Simulation 

 
(1) Selecting a true model. First a linear growth model and then a quadratic growth 

model is considered as a true model in this study.  

(2) Setting parameter values for that true model. The parameters are the elements of 

the means and the variance/covariance matrices. The values of the parameters used in 

this study are shown in Table 1.  

(3) Setting sample size. With the consideration of power to retain the null model, 100, 

200, 500, and 700 are implemented for linear and quadratic models. 

 For illustration purposes, Figure 9 presents the plots for the data generated 

under different manipulated conditions when sample size is fixed to 100.  

Step 2: Running the Simulation 

The simulation is run according to the specifications described above, with 1,000 

replications. The details are described as follows: 

(1) An R program is used to generate data for 48 different conditions. Table 5 

summarizes the conditions of factor manipulation and data generation.  

 

Table 5. Conditions of Data Generation 
 

Factors Condition 
Specification 

No. of 
Conditions 

No. of 
Conditions 

  Linear growth 
model 

Quadratic 
growth model 

Sample size 100,200,500, 700 4 4 
Error variance 2.5, 5, 10 3 3 
Variance of quadratic factor 0.01, 0.05, 0.1 -- 3 
Total  12 36 
 



 

 47 
 

(2) Both linear and quadratic models are applied to fit the entire sample. Structural 

parameter estimates and relevant fit indices are gathered for further data analysis. 

Start values for modeling simulated data are established using the parameter values 

set in the true model. Model estimations are calculated in all cases by maximum 

likelihood under the assumption of normality. The EQS program is used to analyze 

the data.  

(3) The process is repeated 1,000 times per cell. The number of replications is set to 

be 1,000 to ensure sufficient reliability in the summary information. The maximum 

number of iterations to convergence for each model fitting and parameter estimating 

is set to 500. Any replication that fails to converge is discarded and replaced with 

another yielding a convergent result. 
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Figure 9. Plots of Each Condition 
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Study 2. Conduct Model Selection and Parameter Estimation on Different Data Sets 

Hurvich and Tsai (1992) stated that data splitting provides a possible substitute 

for a true replicate sample in model validation and thus suggested a possible remedy 

based on data splitting to solve the problem resulting from the use of the same data 

set for both structural identification and inference. Therefore, in the current study the 

data splitting technique is employed as a possible way to mitigate the effects of model 

uncertainty. The procedure for study 2 is displayed in Figure 10 and described below. 

 

Figure 10. Procedure for Study 2 
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Step1. Splitting Data by 50% vs. 50% 

Each original data set generated from Study 1 is randomly separated into two parts by 

50% vs. 50 % data splitting.  

Step 2. Running Simulation 

(1) The first part of the original data set is used to fit the linear and quadratic models. 

Relevant fit indices are determined and an appropriate model is selected based on 

model fit evaluation. The second part of the original data set is then used to estimate 

the parameters based on the model selected. 

(2) The process is repeated 1,000 times per cell. The maximum number of iterations 

to convergence for each model fitting and parameter estimating is set to 500. Any 

replication that fails to converge during the run for model selection or the run for 

parameter estimation is discarded and replaced with another replication yielding a 

convergent result.  

3.2 Outcome Measures and Data Analysis 

Several outcome measures are gathered in the process of simulation for further 

data analysis. They are the relevant fit indices (i.e., AIC and BIC) and the structural 

parameter estimates for mean intercept, mean linear slope, mean quadratic slope, 

intercept variance, linear slope variance, quadratic variance, error variance, and 

covariance of the intercept and linear slopes. 

The current study then examines the consequences of preliminary model 

selection by using these outcome measures. The data will be analyzed from different 

aspects including (1) model selection accuracy, (2) relative parameter biases, and (3) 

coverage rate.    
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3.2.1 Model Selection Accuracy 

In this study, AIC and BIC are used to select a model from two plausible models; 

the lower value of a given information criterion indicates the better fitting model. 

Because each criterion applies different penalties, it is possible that each IC may point 

toward a different model as the better model. Therefore, this study examines whether 

AIC or BIC reliably identifies the true model and consistently identifies a specific 

model across replications under different conditions including sample size, 

underfitting, and overfitting. The performance of AIC and BIC is measured by the 

success rate of selecting correct models in the iterative process of model selection. 

3.2.2 Relative Parameter Biases  

Parameter biases are examined to assess the impact of preliminary model 

selection on latent growth model parameter estimates. Generally, in simulation 

studies, it is expected that the estimated parameter values are close to the population 

parameters. If the estimated parameter values significantly deviate from the 

population parameter values, the deviation might result from the preliminary model 

selection.  

Relative parameter bias is calculated by using the following formula, 

 

Relative parameter bias = (θ̂  -θ ) /θ , 

where θ̂  is the parameter estimate average over the replications of the Monte Carlo 

study, and θ  is the population value. Relative parameter bias will be examined for the 

following parameters: mean intercept, mean linear slope, mean quadratic slope, 
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intercept variance, linear slope variance, quadratic slope variance, error variance, and 

covariance of intercept and linear slope. 

3.2.3 Coverage Rate 

The effect of the preliminary model selection on the coverage rate of confidence 

intervals for the growth model parameters will be examined. It is the goal in 

simulation studies that the analysis models are able to accurately recover the 

population parameters because the data are generated from the previously set true 

model. Usually, a coverage rate (i.e., the number of replications whose confidence 

intervals contain the true population parameter) is used to evaluate the ability of the 

analysis model to recover the population parameters. In the present study, coverage 

rates are calculated for each of the estimated parameters in the model.  

 For the interval coverage, both the unconditional and the conditional coverage 

probability will be examined. Unconditional coverage is defined as the coverage of 

confidence intervals without model selection. Conditional coverage is contingent 

upon selecting a correct model. To determine the coverage probability, the proportion 

of the confidence intervals that cover the “true” parameter is computed for each of the 

design conditions. 
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Chapter 4: Results 

This chapter presents the summaries of the results from the simulation studies. 

The current investigation includes two Monte Carlo simulation studies. Study 1 

conducts both model selection and parameter estimation using the same data set. 

Study 2 conducts both model selection and parameter estimation using different split-

data sets. The simulation results for study 1 are presented in section 4.1 and for study 

2 in section 4.2. Results in each section are looked at from three aspects: (1) model 

selection accuracy, (2) relative parameter biases, and (3) coverage rate.   

4.1 Study 1: Conducting Model Selection and Parameter Estimation Using Same Data 

Set 

4.1.1 Model Selection Accuracy 

In this study, the performances of AIC and BIC are examined to see whether 

they reliably identify the true model and consistently identify a specific model across 

replications under different conditions including sample size, underfitting, and 

overfitting. The performances of AIC and BIC are evaluated from the aspects of 

model selection accuracy and model selection consistency by examining model 

recovery rate (i.e., the success rate of selecting correct models in the iterative process 

of model selection).  

Table 6 displays the model recovery rates of AIC and BIC under each condition. 

For example, in case 1, for the 1,000 replications with data generated by the linear 

model, with sample size 100, and an error variance of 2.5, the AIC index correctly 

selected the linear model 949 times, the BIC index 998 times.  
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Table 6. Model Recovery Rate in Each Condition 
 
 True 

Model 
Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

AIC BIC 

Case1 L N=100 EV=2.5 -- 0.949 0.998 
Case2 L  EV=5 -- 0.928 0.999 
Case3 L  EV=10 -- 0.920 1.000 
Case4 L N=200 EV=2.5 -- 0.922 1.000 
Case5 L  EV=5 -- 0.915 1.000 
Case6 L  EV=10 -- 0.930 1.000 
Case7 L N=500 EV=2.5 -- 0.934 1.000 
Case8 L  EV=5 -- 0.930 1.000 
Case9 L  EV=10 -- 0.925 1.000 
Case10 L N=700 EV=2.5 -- 0.945 1.000 
Case11 L  EV=5 -- 0.920 0.999 
Case12 L  EV=10 -- 0.936 1.000 
Case13 Q N=100 EV=2.5 QV=0.01 0.490 0.057 
Case14 Q   QV=0.05 0.746 0.180 
Case15 Q   QV=0.10 0.958 0.599 
Case16 Q N=100 EV=5 QV=0.01 0.276 0.018 
Case17 Q   QV=0.05 0.460 0.047 
Case18 Q   QV=0.10 0.725 0.174 
Case19 Q N=100 EV=10 QV=0.01 0.182 0.003 
Case20 Q   QV=0.05 0.240 0.014 
Case21 Q   QV=0.10 0.437 0.028 
Case22 Q N=200 EV=2.5 QV=0.01 0.810 0.170 
Case23 Q   QV=0.05 0.973 0.469 
Case24 Q   QV=0.10 0.999 0.930 
Case25 Q N=200 EV=5 QV=0.01 0.524 0.036 
Case26 Q   QV=0.05 0.731 0.105 
Case27 Q   QV=0.10 0.967 0.468 
Case28 Q N=200 EV=10 QV=0.01 0.328 0.002 
Case29 Q   QV=0.05 0.431 0.014 
Case30 Q   QV=0.10 0.679 0.088 
Case31 Q N=500 EV=2.5 QV=0.01 0.999 0.697 
Case32 Q   QV=0.05 1.000 0.959 
Case33 Q   QV=0.10 1.000 1.000 
Case34 Q N=500 EV=5 QV=0.01 0.894 0.180 
Case35 Q   QV=0.05 0.991 0.527 
Case36 Q   QV=0.10 1.000 0.957 
Case37 Q N=500 EV=10 QV=0.01 0.643 0.030 
Case38 Q   QV=0.05 0.829 0.070 
Case39 Q   QV=0.10 0.975 0.403 
Case40 Q N=700 EV=2.5 QV=0.01 1.000 0.907 
Case41 Q   QV=0.05 1.000 0.998 
Case42 Q   QV=0.10 1.000 1.000 
Case43 Q N=700 EV=5 QV=0.01 0.982 0.340 
Case44 Q   QV=0.05 0.999 0.749 
Case45 Q   QV=0.10 1.000 0.998 
Case46 Q N=700 EV=10 QV=0.01 0.757 0.036 
Case47 Q   QV=0.05 0.920 0.159 
Case48 Q   QV=0.10 0.995 0.684 
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Overfitting 

When the true model is the linear model (i.e., cases 1-12), three findings are 

noted.  First, the model recovery rate of AIC ranges between 0.915 and 0.949 and the 

model recovery rate of BIC ranges between 0.998 and 1. This suggests that AIC and 

BIC reliably identify the true model. This also suggests that both AIC and BIC 

perform consistently in selecting the linear model and do not favor overfitting in all 

conditions. Second, Table 6 shows that the model recovery rate of BIC is always 

larger than that of AIC across all conditions when the true model is the linear model. 

This indicates that BIC consistently performs better than AIC when the true model is 

the linear model. Third, both AIC and BIC appear to perform consistently in selecting 

the linear model in more than 90% of the replications under all 12 conditions when 

the true model is the linear model. BIC, however, tends to be more consistent than 

AIC, selecting the linear model in more than 99% of the replications under all 12 

conditions. 

Figure 9 illustrates how the model selection rates of AIC and BIC change across 

different conditions, when the true model is the linear model. For example, the model 

recovery rate of AIC is always greater than 0.915 and the model recovery rate of BIC 

is always greater than 0.998 under different sample size and error variance conditions. 

This suggests that the roles of sample size and error variance in model selection 

accuracy and consistency are not substantial when the true model is the linear model. 
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Figure 9. Change of Model Recovery Rate of AIC and BIC under Different 

Conditions When the True Model Is the Linear Model 
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Underfitting 

When the true model is the quadratic model (i.e., cases 13-48), the findings are 

as follows. First, AIC outperforms BIC in identifying the true model. As shown in 

Table 6, the model recovery rates of AIC (ranging from 0.182 to 0.999) are almost 

always much higher than those of BIC (ranging from 0.003 to 0.998) across different 
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conditions. Second, in 28 of the 36 cases, AIC selects the quadratic model in more 

than 50 % of the replications, and in the remaining 8 cases (i.e., cases 13, 16, 17, 19, 

20, 21, 28, and 29), it selects the linear model. The BIC, however, selects the 

quadratic model in more than 50 % of the replications in only 13 cases (i.e., cases 15, 

24, 31, 32, 33, 35, 36, 40, 41, 42, 44, 45, and 48) and the linear model in the 

remaining 23 cases. This demonstrates that BIC has a preference for selection of the 

simpler model (i.e., underfitting), which is consistent with previous research. Third, 

BIC tends to be more consistent than AIC in selecting a model (true or misspecified). 

BIC demonstrates consistency in selecting a specific model (true or misspecified) in 

more than 80% of the replications in 28 out of the total 36 conditions. AIC, however, 

demonstrates such consistency in only 22 out of the 36 conditions.  

Figures 10 and 11 illustrate how the model selection rates of AIC and BIC 

change across different conditions, when the quadratic model is the true model. When 

sample size is 100, the model recovery rates range from 0.182 to 0.958 for AIC and 

from 0.014 to 0.599 for BIC. When sample size becomes larger, the model recovery 

rates for AIC and BIC increase substantially; from 0.757 to 1.0 for AIC and from 

0.159 to 0.998 for BIC. The model recovery rates of AIC and BIC also go up as the 

quadratic variance increases from 0.01 to 0.1. It appears that AIC and BIC are better 

able to identify the true model as sample size and variance of quadratic factor 

increase, but less able as error variance increases. 

Additionally, underfitting tends to decrease as sample size and quadratic 

variance increase, but tends to increase when error variance increases. Underfitting is 

more severe for BIC than for AIC under all conditions. 
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 Figure 10. Change of Model Recovery Rate of AIC under Different Conditions 

When the True Model is the Quadratic Model 
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Figure 11. Change of Model Recovery Rate of BIC under Different Conditions When 

the True Model is the Quadratic Model 

BIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 500 700

Sample Size

M
o
d
el

 R
ec

o
v
er

y
 R

at
e

EV=2.5,
QV=0.01

EV=2.5,
QV=0.05

EV=2.5,
QV=0.10

 

BIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 500 700

Sample Size

M
o
d
el

 R
ec

o
v
er

y
 R

at
e

EV=5,
QV=0.01

EV=5,
QV=0.05

EV=5,
QV=0.10

 

BIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 500 700

Sample Size

M
o
d
el

 R
ec

o
v
er

y
 R

at
e

EV=10,
QV=0.01

EV=10,
QV=0.05

EV=10,
QV=0.10

 



 

 61 
 

Comparing the Empirical Model Recovery Rate of AIC and the Power 

Because the power for choosing a correct model was controlled in advance (as 

shown in Table 4 in section 3.1.1.2) in order to evaluate the impact of model selection 

on parameter estimates, I also checked whether the empirical model recovery rate is 

close to the theoretically controlled power. Table 7 provides a comparison of the 

empirical model recovery rate and the controlled power, when the true model is the 

quadratic model and the model selection index is AIC. The table shows that the 

empirical model recovery rate is quite close to the previously controlled power. The 

differences between the empirical recovery rate and the power range only from -0.047 

to 0.007. 

 
 
Table 7. Comparison between the Empirical Model Recovery Rate of AIC and the 
Power to Choose Quadratic Model by AIC When the Quadratic Model is the True 
Model 
 

Sample 
Size 

Error 
Variance 

Empirical Recovery Rate / Power (Difference) 

  QV=0.01 QV=0.05 QV=0.10 
N=100 EV= 2.5 0.490 / 0.537 (-0.047) 0.746 / 0.749 (-0.003) 0.958 / 0.959 (-0.001) 
 EV= 5 0.276 / 0.322 (-0.046) 0.460 / 0.460 ( 0.000) 0.725 / 0.733 (-0.008) 
 EV= 10 0.182 / 0.203 (-0.021) 0.240 / 0.265 (-0.025) 0.437 / 0.426 ( 0.011) 
N=200 EV= 2.5 0.810 / 0.833 (-0.023) 0.973 / 0.966 ( 0.007) 0.999 / 0.999 ( 0.000) 
 EV= 5 0.524 / 0.550 (-0.026) 0.731 / 0.750 (-0.019) 0.967 / 0.960 ( 0.007) 
 EV= 10 0.328 / 0.326 ( 0.002) 0.431 / 0.448 (-0.017) 0.679 / 0.708 (-0.029) 
N=500 EV= 2.5 0.999 / 0.997 ( 0.002) 1.000 / 0.999 ( 0.001) 1.000 / 0.999 ( 0.001) 
 EV= 5 0.894 / 0.916 (-0.022) 0.991 / 0.989 ( 0.002) 1.000 / 0.999 ( 0.001) 
 EV= 10 0.643 / 0.651 (-0.008) 0.829 / 0.827 ( 0.002) 0.975 / 0.981 (-0.006) 
N=700 EV= 2.5 1.000 / 0.999 ( 0.001) 1.000 / 0.999 ( 0.001) 1.000 / 0.999 ( 0.001) 
 EV= 5 0.982 / 0.978 ( 0.004) 0.999 / 0.999 ( 0.000) 1.000 / 0.999 ( 0.001) 
 EV= 10 0.757 / 0.796 (-0.039) 0.920 / 0.933 (-0.013) 0.995 / 0.998 (-0.003) 
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4.1.2. Biases 

In this section, the parameter biases and variance biases of the true-model-

selection estimates, the AIC-model-selection estimates, and the BIC-model-selection 

estimates were examined in order to evaluate the impact of preliminary model 

selection on latent growth model parameter estimates. Relative bias was used as an 

indicator. Relative bias is the ratio of the bias to the population value (bias in this case 

is calculated as the parameter estimate averaged over the replications of the Monte 

Carlo study minus the population value). Parameter recovery is seen as adequate 

when the absolute relative bias rates are less than 0.1; it is seen as mediocre when the 

absolute relative bias rates range from 0.1 to 0.5; it is seen as poor when the absolute 

relative bias rates are greater than 0.5. 

4.1.2.1 True-model-selection estimates 

Relative Parameter Bias 

  Because model selection impact in this study is evaluated by using the true-

model-selection estimates as the baseline, it is important to check the quality of these 

estimates. The quality of the true-model-selection estimates is looked at from two 

aspects: relative parameter bias (accuracy) and relative variance bias (variability). 

Relative parameter bias is calculated using the following formula, 

Relative parameter bias = (θ̂  -θ ) /θ , 

 

where θ̂  is the parameter estimate average over the replications of the Monte Carlo 

study, and θ  is the population value. Relative variance bias is calculated using a 
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similar equation but in this case the population variance is subtracted from the 

average of the squared standard errors for each parameter estimate, and this 

difference is divided by the population variance. In this study, since the number of 

replications (1,000) is large, the variance of each parameter estimate over the 

replications is considered to be the population variance. 

  Relative parameter bias and relative variance bias are examined for the 

following parameters: mean intercept ( 1α ), mean slope ( 2α ), mean quadratic factor 

( 3α ), intercept variance ( 11φ ), slope variance ( 22φ ), quadratic variance ( 33φ ), and 

covariance of intercept and slope ( 21φ ).  

Table 8 presents the relative parameter bias for each condition. For the common 

parameters in both the linear and quadratic models (i.e., 1α , 2α , 11φ , 22φ , and 21φ ), the 

relative bias rates range from -0.03 to 0.01 for the linear model and from -0.02 to 0.65 

for the quadratic model. This suggests that parameters for the linear model are 

estimated better than those for the quadratic model.  

For parameters 1α , 2α , and 3α , the relative bias rate ranges from -0.028 to 

0.040. This indicates that those parameters are recovered satisfactorily for the 

conditions simulated in this study. Recovery for 11φ  appears adequate, with the 

relative parameter bias ranging from 0.013 to 0.088. Recovery for 22φ  and 21φ  is poor 

to adequate, with the relative parameter bias ranging from -0.026 to 0.650. Recovery 

for 33φ , however, is poor, ranging from -0.021 to 7.047. When the sample size and the 

parameter value for 33φ  are larger, the relative parameter bias for the estimate of 33φ  is 

smaller. For example, when sample size increases from 100 to 700 and parameter 
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value for 33φ  increases from 0.01 to 0.1, the relative parameter bias for 33φ  decreases 

markedly, from 7.047 to -0.004.  

Relative Variance Bias 

Table 9 presents the relative variance bias for each condition. In general, the 

relative variance bias for the linear model is smaller than that for the quadratic model. 

For the common parameters in both the linear and quadratic models (i.e., 1α , 2α , 11φ , 

22φ , and 21φ ), the relative variance bias rates range from -0.107 to 0.095 for the linear 

model and from -0.125 to 0.285 for the quadratic model. This suggests that 

parameters for the linear model are recovered better than those for the quadratic 

model. 

For parameters 1α , 2α , and 3α , the relative bias rate ranges from -0.125 to 

0.111. This indicates that those parameters are recovered satisfactorily for the 

conditions simulated in this study. Recovery for parameters 11φ  and 22φ  appears 

adequate, with the relative parameter bias ranging from -0.097 to 0.285. Recovery 

for 33φ , however, is poor, ranging from -0.111 to 10.283. When sample size and 

parameter value for 33φ  are larger, the relative variance bias for the estimate of 33φ  is 

smaller. For example, when sample size increases from 100 to 700 and parameter 

value for quadratic variance increases from 0.01 to 0.1, the relative bias for quadratic 

variance decreases substantially, from 10.283 to 0.069. Recovery for 21φ  is adequate, 

with the relative parameter bias ranging from -0.107 to 0.145. 
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Table 8. Relative Parameter Bias for True-Model-Selection Estimates 

 
Case  True 

Model 
Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- -0.003 -0.015 -0.012 -- -0.001  0.000  -- 
2 L  EV=5 -- -0.004 -0.025 -0.012 -- -0.001  0.000  -- 
3 L  EV=10 -- -0.009 -0.031 -0.017 -- 0.001  0.000  -- 
4 L N=200 EV=2.5 -- -0.003 -0.002 0.001 -- -0.001  0.000  -- 
5 L  EV=5 -- 0.001 -0.003 0.003 -- 0.001  0.000  -- 
6 L  EV=10 -- -0.010 -0.026 -0.012 -- 0.000  0.000  -- 
7 L N=500 EV=2.5 -- -0.002 -0.008 -0.004 -- 0.000  0.000  -- 
8 L  EV=5 -- 0.005 0.001 -0.003 -- -0.001  0.000  -- 
9 L  EV=10 -- -0.002 -0.010 -0.004 -- 0.001  0.000  -- 
10 L N=700 EV=2.5 -- -0.002 -0.004 -0.004 -- 0.000  0.000  -- 
11 L  EV=5 -- -0.003 -0.007 -0.003 -- 0.000  0.000  -- 
12 L  EV=10 -- 0.003 0.006 0.000 -- 0.000  0.000  -- 
13 Q N=100 EV=2.5 QV=0.01 0.025 0.168 0.120 1.696 0.000  0.000  -0.010 
14 Q   QV=0.05 -0.013 0.049 0.044 0.118 0.001  0.000  -0.018 
15 Q   QV=0.10 0.002 0.031 0.024 0.012 0.000  0.001  0.040 
16 Q N=100 EV=5 QV=0.01 0.033 0.256 0.272 3.456 0.001  0.000  0.018 
17 Q   QV=0.05 0.031 0.187 0.158 0.424 -0.001  0.001  0.038 
18 Q   QV=0.10 -0.002 0.029 0.044 0.091 0.004  -0.001  -0.028 
19 Q N=100 EV=10 QV=0.01 0.088 0.650 0.593 7.047 -0.001  0.001  0.028 
20 Q   QV=0.05 0.071 0.540 0.450 1.058 -0.001  0.000  0.033 
21 Q   QV=0.10 0.068 0.408 0.373 0.480 0.001  0.000  -0.017 
22 Q N=200 EV=2.5 QV=0.01 0.015 0.110 0.094 1.263 0.000  0.000  0.004 
23 Q   QV=0.05 0.001 0.025 0.025 0.017 0.001  0.000  0.013 
24 Q   QV=0.10 -0.003 -0.017 0.000 -0.021 -0.001  0.000  0.000 
25 Q N=200 EV=5 QV=0.01 0.021 0.185 0.169 2.309 -0.001  0.000  0.000 
26 Q   QV=0.05 0.000 0.063 0.070 0.187 0.001  0.000  0.001 
27 Q   QV=0.10 0.004 0.051 0.045 0.091 -0.001  0.000  0.003 
28 Q N=200 EV=10 QV=0.01 0.052 0.436 0.370 4.505 0.000  0.000  0.019 
29 Q   QV=0.05 0.034 0.302 0.279 0.663 -0.001  0.000  0.014 
30 Q   QV=0.10 0.057 0.405 0.285 0.280 0.002  0.000  0.025 
31 Q N=500 EV=2.5 QV=0.01 0.010 0.063 0.057 0.734 0.000  0.000  0.006 
32 Q   QV=0.05 -0.006 -0.012 -0.008 -0.016 0.000  0.000  0.011 
33 Q   QV=0.10 -0.003 0.000 -0.001 0.003 0.000  0.000  0.002 
34 Q N=500 EV=5 QV=0.01 0.022 0.142 0.110 1.321 0.001  0.000  -0.003 
35 Q   QV=0.05 0.001 0.016 0.027 0.072 0.000  0.000  0.016 
36 Q   QV=0.10 0.011 0.055 0.022 0.012 0.000  0.000  -0.010 
37 Q N=500 EV=10 QV=0.01 0.034 0.224 0.201 2.869 -0.002  0.000  0.016 
38 Q   QV=0.05 0.009 0.074 0.096 0.322 0.000  0.000  -0.006 
39 Q   QV=0.10 0.000 -0.006 0.015 0.023 0.000  0.000  -0.002 
40 Q N=700 EV=2.5 QV=0.01 0.007 0.053 0.044 0.514 0.000  0.000  0.003 
41 Q   QV=0.05 0.002 0.007 -0.001 0.002 0.000  0.000  -0.009 
42 Q   QV=0.10 -0.001 -0.016 -0.013 -0.004 0.000  0.000  -0.008 
43 Q N=700 EV=5 QV=0.01 0.011 0.093 0.082 1.165 0.000  0.000  0.005 
44 Q   QV=0.05 0.003 0.008 0.009 0.045 0.000  0.000  -0.010 
45 Q   QV=0.10 0.002 -0.013 -0.012 -0.008 -0.001  0.000  0.011 
46 Q N=700 EV=10 QV=0.01 0.028 0.207 0.189 2.285 0.000  0.000  -0.025 
47 Q   QV=0.05 0.010 0.079 0.075 0.170 0.000  0.000  -0.003 
48 Q   QV=0.10 0.005 0.027 0.035 0.044 -0.001  0.000  0.004 
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 Table 9. Relative Variance Bias for True-Model-Selection Estimates 

 
Case  True 

Model 
Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- -0.079 -0.107 -0.073 -- -0.072  0.002  -- 
2 L  EV=5 -- -0.007 -0.067 0.062 -- 0.079  -0.001  -- 
3 L  EV=10 -- 0.002 0.006 -0.022 -- -0.018  0.008  -- 
4 L N=200 EV=2.5 -- 0.007 0.026 -0.012 -- -0.027  -0.012  -- 
5 L  EV=5 -- 0.076 0.015 -0.072 -- -0.028  0.050  -- 
6 L  EV=10 -- -0.025 0.005 -0.056 -- -0.045  -0.025  -- 
7 L N=500 EV=2.5 -- -0.059 -0.057 0.017 -- -0.085  0.016  -- 
8 L  EV=5 -- -0.023 0.095 0.021 -- -0.005  -0.006  -- 
9 L  EV=10 -- -0.002 -0.027 -0.030 -- -0.074  0.038  -- 
10 L N=700 EV=2.5 -- -0.034 0.014 0.042 -- 0.002  0.000  -- 
11 L  EV=5 -- 0.038 -0.004 0.043 -- -0.010  -0.046  -- 
12 L  EV=10 -- 0.077 0.023 -0.038 -- -0.077  -0.027  -- 
13 Q N=100 EV=2.5 QV=0.01 0.109 0.081 0.107 10.283 -0.021  0.001  0.043 
14 Q   QV=0.05 0.059 -0.011 0.054 2.246 -0.125  -0.103  -0.038 
15 Q   QV=0.10 -0.058 -0.037 0.023 0.444 0.058  -0.034  -0.004 
16 Q N=100 EV=5 QV=0.01 0.028 0.030 0.147 1.653 -0.055  -0.066  0.022 
17 Q   QV=0.05 0.021 -0.019 0.115 0.855 -0.012  -0.006  -0.040 
18 Q   QV=0.10 0.031 -0.001 0.081 0.342 -0.024  -0.011  0.055 
19 Q N=100 EV=10 QV=0.01 -0.009 0.055 0.226 0.583 -0.002  0.075  0.026 
20 Q   QV=0.05 0.061 0.100 0.285 0.542 -0.081  0.026  0.086 
21 Q   QV=0.10 0.055 0.100 0.230 0.333 -0.043  0.027  0.059 
22 Q N=200 EV=2.5 QV=0.01 0.057 0.076 0.131 6.861 0.017  0.014  0.079 
23 Q   QV=0.05 -0.054 0.033 0.085 1.125 0.004  0.014  0.009 
24 Q   QV=0.10 -0.020 0.017 0.066 0.210 0.042  0.005  0.030 
25 Q N=200 EV=5 QV=0.01 -0.031 -0.046 0.113 1.447 0.037  0.007  0.016 
26 Q   QV=0.05 -0.023 0.034 0.054 0.431 -0.037  0.012  -0.019 
27 Q   QV=0.10 0.035 0.015 -0.031 0.150 -0.015  0.100  0.070 
28 Q N=200 EV=10 QV=0.01 0.051 0.079 0.155 0.548 -0.026  -0.053  -0.052 
29 Q   QV=0.05 -0.015 0.040 0.131 0.329 -0.004  0.029  -0.003 
30 Q   QV=0.10 0.045 0.033 0.100 0.162 0.000  -0.003  -0.042 
31 Q N=500 EV=2.5 QV=0.01 0.000 0.076 0.055 4.561 -0.020  -0.013  0.027 
32 Q   QV=0.05 0.095 0.009 0.048 0.326 0.111  -0.032  -0.042 
33 Q   QV=0.10 0.079 0.001 -0.013 0.000 0.027  -0.021  0.057 
34 Q N=500 EV=5 QV=0.01 -0.077 0.067 0.172 1.281 0.075  -0.040  -0.039 
35 Q   QV=0.05 -0.007 0.018 0.100 0.308 0.092  -0.034  0.000 
36 Q   QV=0.10 0.011 0.046 0.108 0.067 0.057  0.019  -0.032 
37 Q N=500 EV=10 QV=0.01 0.080 0.098 0.189 0.455 0.066  -0.028  -0.039 
38 Q   QV=0.05 0.076 0.108 0.167 0.210 0.004  0.055  0.085 
39 Q   QV=0.10 0.066 0.094 0.126 0.163 0.075  0.101  0.045 
40 Q N=700 EV=2.5 QV=0.01 0.060 0.145 0.175 4.267 -0.016  0.092  0.000 
41 Q   QV=0.05 0.024 0.032 -0.013 0.114 -0.049  -0.063  -0.029 
42 Q   QV=0.10 0.030 -0.022 -0.027 -0.073 -0.019  0.043  0.000 
43 Q N=700 EV=5 QV=0.01 -0.017 -0.027 0.044 0.908 0.015  0.009  0.039 
44 Q   QV=0.05 0.049 0.042 0.022 0.158 -0.092  -0.055  0.018 
45 Q   QV=0.10 -0.075 -0.040 -0.097 -0.111 -0.071  0.061  0.000 
46 Q N=700 EV=10 QV=0.01 0.015 0.036 0.137 0.469 0.055  0.011  0.020 
47 Q   QV=0.05 0.076 0.056 0.084 0.194 -0.049  0.009  0.058 
48 Q   QV=0.10 0.085 0.092 0.087 0.069 -0.042  0.000  0.000 
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In summary, the quality of true-model-selection estimates for the linear model is 

slightly better than that for the quadratic model. Recovery for 1α , 2α , 3α , and 11φ  is 

adequate for all 48 conditions. Recovery for 33φ , however, is poor, especially when 

sample size is small and the parameter value for 33φ  is small. As expected, for all 

parameters, relative bias goes down as the sample size increases from 100 to 700. 

This pattern reflects the principle that the maximum likelihood estimate is biased 

when sample size is finite, but converges to the parameter value as sample size goes 

to infinity.  

 

4.1.2.2 AIC-model-selection estimates 

Relative Parameter Bias 

Table 10 presents the relative parameter bias for AIC-model-selection estimates. 

In general, the parameter estimates for the linear model are better than those for the 

quadratic model. This is similar to the result of the true-model-selection estimates in 

section 4.1.2.1. For the parameters common to both the linear and quadratic models 

(i.e., 1α , 2α , 11φ , 22φ , and 21φ ), the relative bias rates range from -0.032 to 0.006 for 

the linear model, and from 

-0.023 to 1.332 for the quadratic model.  

 Mean parameters 1α  and 2α  are recovered satisfactorily, with the relative 

parameter bias rate ranging only from -0.023 to 0.014. Recovery for mean parameter 

3α  appears adequate when sample size is large (700), with the relative parameter bias 

ranging from 



 

 68 
 

-0.009 to 0.099. But when sample size is small (100), recovery becomes adequate to 

poor, with the relative parameter bias ranging from 0.065 to 0.913. 

Recovery for variance parameter 11φ  also appears adequate, with the relative 

parameter bias ranging from -0.01 to 0.183. Recovery for parameters 22φ , 21φ , and 33φ  

is poor to adequate, with the relative parameter bias ranging from -0.032 to 13.108. 

When sample size and parameter value for 33φ  are larger, the relative parameter bias 

for the estimate of 33φ  is smaller. For example, when sample size increases from 100 

to 700 and parameter value for 33φ  increases from 0.01 to 0.1, the relative parameter 

bias for 33φ  decreases markedly, from 13.018 to -0.004.  
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Table 10. Relative Parameter Bias for AIC-Model-Selection Estimates 

 
Case  True 

Model 
Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- -0.003 -0.013 -0.011 -- -0.002  0.000 -- 
2 L  EV=5 -- -0.006 -0.032 -0.012 -- 0.000  0.000 -- 
3 L  EV=10 -- -0.008 -0.023 -0.015 -- 0.002  0.000 -- 
4 L N=200 EV=2.5 -- -0.006 -0.008 0.000 -- -0.001  0.000 -- 
5 L  EV=5 -- 0.001 -0.003 0.003 -- 0.001  0.000 -- 
6 L  EV=10 -- -0.011 -0.032 -0.014 -- 0.000  0.000 -- 
7 L N=500 EV=2.5 -- -0.003 -0.006 -0.003 -- 0.000  0.000 -- 
8 L  EV=5 -- 0.006 0.004 -0.002 -- -0.001  0.000 -- 
9 L  EV=10 -- -0.001 -0.007 -0.003 -- 0.001  0.000 -- 

10 L N=700 EV=2.5 -- -0.002 -0.004 -0.003 -- 0.000  0.000 -- 
11 L  EV=5 -- -0.003 -0.006 -0.004 -- 0.000  0.000 -- 
12 L  EV=10 -- 0.002 0.003 -0.001 -- 0.000  0.000 -- 
13 Q N=100 EV=2.5 QV=0.01 0.035 0.183 0.124 2.324  -0.006  0.004 0.290 
14 Q   QV=0.05 -0.010 0.056 0.017 0.239  -0.002  0.001 0.110 
15 Q   QV=0.10 0.004 0.028 0.019 0.037  -0.001  0.001 0.065 
16 Q N=100 EV=5 QV=0.01 0.031 0.286 0.316 5.274  -0.012  0.010 0.625 
17 Q   QV=0.05 0.024 0.103 0.097 0.882  -0.008  0.006 0.428 
18 Q   QV=0.10 0.001 0.033 0.002 0.268  0.001  0.001 0.129 
19 Q N=100 EV=10 QV=0.01 0.183 1.332 1.089 13.018  -0.023  0.014 0.913 
20 Q   QV=0.05 0.116 0.773 0.443 2.276  -0.016  0.011 0.706 
21 Q   QV=0.10 0.071 0.351 0.227 0.966  -0.006  0.005 0.314 
22 Q N=200 EV=2.5 QV=0.01 0.013 0.098 0.086 1.382  -0.002  0.002 0.095 
23 Q   QV=0.05 0.001 0.027 0.022 0.032  0.001  0.000 0.027 
24 Q   QV=0.10 -0.003 -0.017 0.000 -0.020  -0.001  0.000 0.001 
25 Q N=200 EV=5 QV=0.01 0.034 0.263 0.211 3.170  -0.006  0.004 0.264 
26 Q   QV=0.05 0.002 0.053 0.040 0.355  -0.002  0.002 0.150 
27 Q   QV=0.10 0.006 0.050 0.038 0.114  -0.001  0.000 0.020 
28 Q N=200 EV=10 QV=0.01 0.092 0.707 0.541 7.004  -0.012  0.009 0.567 
29 Q   QV=0.05 0.049 0.364 0.226 1.180  -0.008  0.006 0.393 
30 Q   QV=0.10 0.063 0.398 0.220 0.505  -0.001  0.003 0.207 
31 Q N=500 EV=2.5 QV=0.01 0.010 0.063 0.057 0.736  0.000  0.000 0.007 
32 Q   QV=0.05 -0.006 -0.012 -0.008 -0.016  0.000  0.000 0.011 
33 Q   QV=0.10 -0.003 0.000 -0.001 0.003  0.000  0.000 0.002 
34 Q N=500 EV=5 QV=0.01 0.024 0.146 0.107 1.419  0.000  0.001 0.050 
35 Q   QV=0.05 0.000 0.014 0.025 0.079  0.000  0.000 0.020 
36 Q   QV=0.10 0.011 0.055 0.022 0.012  0.000  0.000 -0.010 
37 Q N=500 EV=10 QV=0.01 0.040 0.278 0.238 3.604  -0.005  0.004 0.214 
38 Q   QV=0.05 0.010 0.079 0.086 0.444  -0.001  0.001 0.070 
39 Q   QV=0.10 0.000 -0.012 0.003 0.032  0.000  0.000 0.011 
40 Q N=700 EV=2.5 QV=0.01 0.007 0.053 0.044 0.514  0.000  0.000 0.003 
41 Q   QV=0.05 0.002 0.007 -0.001 0.002  0.000  0.000 -0.009 
42 Q   QV=0.10 -0.001 -0.016 -0.013 -0.004  0.000  0.000 -0.008 
43 Q N=700 EV=5 QV=0.01 0.011 0.093 0.083 1.193  0.000  0.000 0.015 
44 Q   QV=0.05 0.003 0.007 0.009 0.046  0.000  0.000 -0.010 
45 Q   QV=0.10 0.002 -0.013 -0.012 -0.008  -0.001  0.000 0.011 
46 Q N=700 EV=10 QV=0.01 0.035 0.234 0.202 2.580  -0.002  0.002 0.099 
47 Q   QV=0.05 0.007 0.069 0.062 0.212  -0.001  0.000 0.036 
48 Q   QV=0.10 0.005 0.025 0.033 0.046  -0.001  0.000 0.006 
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Relative Variance Bias 

Table 11 presents the relative variance bias for AIC-model-selection estimates. 

In general, the relative variance bias for the linear model is smaller than that for the 

quadratic model. This result is similar to the result of the true-model-selection 

estimates in section 4.1.2.1. For parameters 1α , 2α , 11φ , 22φ , and 21φ , the relative 

variance bias rates range from 

-0.105 to 0.097 for the linear model, and from -0.125 to 0.390 for the quadratic model.  

For parameters 1α , 2α , and 3α , the relative variance bias rates range from -0.125 

to 0.111. This indicates that the variability of the estimates for 1α , 2α , and 3α  are 

estimated quite adequately. Recovery for 11φ  also appears adequate, with the relative 

variance bias ranging from -0.078 to 0.116. Recovery for 22φ  is mediocre to adequate, 

with the relative variance bias ranging from -0.097 to 0.390. Recovery for 33φ , 

however, is poor, ranging from -0.111 to 9.449. When sample size and parameter 

value for 33φ  are larger, the relative variance bias for the estimate of 33φ  is smaller. 

For example, when sample size increases from 100 to 700 and parameter value for 

quadratic variance increases from 0.01 to 0.1, the relative variance bias for 33φ  

decreases substantially, from 9.449 to 0.069. The relative variance bias for 21φ  ranges 

from -0.105 to 0.145, indicating the variability is estimated adequately.  
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Table 11. Relative Variance Bias for AIC-Model-Selection Estimates 

 
Case  True 

Model 
Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- -0.078 -0.105 -0.071 -- -0.071  0.003 -- 
2 L  EV=5 -- -0.009 -0.068 0.062 -- 0.078  0.000 -- 
3 L  EV=10 -- 0.004 0.010 -0.020 -- -0.017  0.009 -- 
4 L N=200 EV=2.5 -- 0.002 0.022 -0.013 -- -0.029  -0.013 -- 
5 L  EV=5 -- 0.076 0.014 -0.073 -- -0.028  0.049 -- 
6 L  EV=10 -- -0.025 0.003 -0.058 -- -0.045  -0.026 -- 
7 L N=500 EV=2.5 -- -0.060 -0.057 0.018 -- -0.086  0.016 -- 
8 L  EV=5 -- -0.022 0.097 0.022 -- -0.004  -0.006 -- 
9 L  EV=10 -- 0.000 -0.025 -0.028 -- -0.073  0.040 -- 
10 L N=700 EV=2.5 -- -0.034 0.014 0.044 -- 0.002  0.000 -- 
11 L  EV=5 -- 0.037 -0.004 0.042 -- -0.010  -0.046 -- 
12 L  EV=10 -- 0.076 0.022 -0.039 -- -0.078  -0.027 -- 
13 Q N=100 EV=2.5 QV=0.01 0.116 0.083 0.125 9.449  -0.019  -0.014 0.038 
14 Q   QV=0.05 0.058 -0.022 0.040 2.038  -0.125  -0.122 -0.033 
15 Q   QV=0.10 -0.059 -0.043 0.014 0.429  0.058  -0.039 -0.004 
16 Q N=100 EV=5 QV=0.01 0.018 0.029 0.195 1.650  -0.068  -0.080 0.025 
17 Q   QV=0.05 0.010 -0.042 0.111 0.898  -0.018  -0.033 -0.026 
18 Q   QV=0.10 0.025 -0.027 0.046 0.349  -0.023  -0.033 0.060 
19 Q N=100 EV=10 QV=0.01 0.007 0.098 0.390 0.876  0.002  0.083 0.027 
20 Q   QV=0.05 0.036 0.039 0.213 0.610  -0.076  -0.013 0.085 
21 Q   QV=0.10 -0.001 -0.001 0.100 0.362  -0.044  -0.015 0.059 
22 Q N=200 EV=2.5 QV=0.01 0.053 0.070 0.127 6.747  0.015  0.008 0.067 
23 Q   QV=0.05 -0.053 0.033 0.086 1.098  0.004  0.012 0.009 
24 Q   QV=0.10 -0.020 0.017 0.066 0.210  0.042  0.005 0.030 
25 Q N=200 EV=5 QV=0.01 -0.020 -0.031 0.149 1.456  0.039  0.003 0.011 
26 Q   QV=0.05 -0.019 0.033 0.062 0.449  -0.035  -0.002 -0.019 
27 Q   QV=0.10 0.036 0.014 -0.030 0.154  -0.015  0.097 0.074 
28 Q N=200 EV=10 QV=0.01 0.069 0.108 0.230 0.717  -0.025  -0.055 -0.049 
29 Q   QV=0.05 -0.020 0.021 0.119 0.438  0.001  0.010 0.000 
30 Q   QV=0.10 0.029 0.004 0.070 0.210  0.001  -0.021 -0.040 
31 Q N=500 EV=2.5 QV=0.01 0.000 0.076 0.055 4.561  -0.020  -0.013 0.027 
32 Q   QV=0.05 0.095 0.009 0.048 0.326  0.111  -0.032 -0.042 
33 Q   QV=0.10 0.079 0.001 -0.013 0.000  0.027  -0.021 0.057 
34 Q N=500 EV=5 QV=0.01 -0.074 0.071 0.180 1.281  0.077  -0.041 -0.039 
35 Q   QV=0.05 -0.007 0.018 0.102 0.314  0.092  -0.035 0.000 
36 Q   QV=0.10 0.011 0.046 0.108 0.067  0.057  0.019 -0.032 
37 Q N=500 EV=10 QV=0.01 0.092 0.117 0.242 0.571  0.066  -0.029 -0.039 
38 Q   QV=0.05 0.081 0.115 0.187 0.255  0.005  0.052 0.085 
39 Q   QV=0.10 0.065 0.093 0.125 0.166  0.075  0.100 0.045 
40 Q N=700 EV=2.5 QV=0.01 0.060 0.145 0.175 4.267  -0.016  0.092 0.000 
41 Q   QV=0.05 0.024 0.032 -0.013 0.114  -0.049  -0.063 -0.029 
42 Q   QV=0.10 0.030 -0.022 -0.027 -0.073  -0.019  0.043 0.000 
43 Q N=700 EV=5 QV=0.01 -0.016 -0.024 0.050 0.908  0.014  0.009 0.039 
44 Q   QV=0.05 0.049 0.041 0.022 0.158  -0.092  -0.055 0.018 
45 Q   QV=0.10 -0.075 -0.040 -0.097 -0.111  -0.071  0.061 0.000 
46 Q N=700 EV=10 QV=0.01 0.019 0.042 0.151 0.505  0.057  0.010 0.020 
47 Q   QV=0.05 0.076 0.056 0.085 0.199  -0.049  0.008 0.058 
48 Q   QV=0.10 0.085 0.092 0.086 0.069  -0.042  0.000 0.000 
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 4.1.2.3 BIC-model-selection estimates 

Relative Parameter Bias 

Table 12 presents the relative parameter bias for BIC-model-selection estimates. 

In general, the parameter estimates for the linear model are better than those for the 

quadratic model. This is similar to the results of the true-model-selection estimates in 

section 4.1.2.1 and the AIC-model-selection estimates in section 4.1.2.2. For the 

parameters common to both the linear and quadratic models (i.e., 1α , 2α , 11φ , 22φ , 

and 21φ ), the relative bias rates range from -0.031 to 0.006 for the linear model, and 

from -0.575 to 23.790 for the quadratic model.  

Similar to the results for the true-model-selection estimates and the AIC-model-

selection estimates, mean parameters 1α  and 2α  are recovered satisfactorily, with the 

relative parameter bias rates ranging only from -0.075 to 0.035. Recovery for mean 

parameter 3α , however, appears worse than that under true-model-selection or AIC-

model-selection. When sample size is large (700), the relative parameter bias for 3α  

ranges from -0.008 to 0.590 (vice -0.009 to 0.099 under AIC-model-selection, and -

0.009 to 0.005 under true-model-selection). When sample size is small (100), the 

relative parameter bias recovery is even worse, with the relative parameter bias 

ranging from 0.460 to 2.382 (vice 0.065 to 0.913 under AIC-model-selection, and -

0.028 to 0.040 under true-model-selection). 

Recovery for variance parameter 11φ  appears mediocre to adequate, with the 

relative parameter bias ranging from -0.019 to 0.419. Recovery for parameters 21φ , 

22φ ,  and 33φ  is poor to adequate, with the relative parameter bias ranging from -0.008 
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to 23.790. When sample size and parameter value for 33φ  are larger, the relative 

parameter bias for the estimate of 33φ  is smaller. For example, when sample size 

increases from 100 to 700 and parameter value for 33φ  increases from 0.01 to 0.1, the 

relative parameter bias for 33φ  decreases markedly, from 23.790 to -0.004.  
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Table 12. Relative Parameter Bias for BIC-Model-Selection Estimates 

 
Case  True 

Model 
Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- -0.003 -0.015 -0.012 -- -0.001  0.000  -- 
2 L  EV=5 -- -0.004 -0.025 -0.011 -- -0.001  0.000  -- 
3 L  EV=10 -- -0.009 -0.031 -0.017 -- 0.001  0.000  -- 
4 L N=200 EV=2.5 -- -0.003 -0.002 0.001 -- -0.001  0.000  -- 
5 L  EV=5 -- 0.001 -0.003 0.003 -- 0.001  0.000  -- 
6 L  EV=10 -- -0.010 -0.026 -0.012 -- 0.000  0.000  -- 
7 L N=500 EV=2.5 -- -0.002 -0.008 -0.004 -- 0.000  0.000  -- 
8 L  EV=5 -- 0.005 0.001 -0.003 -- -0.001  0.000  -- 
9 L  EV=10 -- -0.002 -0.010 -0.004 -- 0.001  0.000  -- 

10 L N=700 EV=2.5 -- -0.002 -0.004 -0.004 -- 0.000  0.000  -- 
11 L  EV=5 -- -0.003 -0.007 -0.004 -- 0.000  0.000  -- 
12 L  EV=10 -- 0.003 0.006 0.000 -- 0.000  0.000  -- 
13 Q N=100 EV=2.5 QV=0.01 0.039 0.145 0.145 2.398 -0.010  0.011  0.733 
14 Q   QV=0.05 -0.005 -0.048 -0.052 0.619 -0.004  0.006  0.460 
15 Q   QV=0.10 0.004 -0.004 -0.025 0.186 -0.001  0.002  0.200 
16 Q N=100 EV=5 QV=0.01 -0.015 -0.575 -0.152 5.791 -0.029  0.022  1.252 
17 Q   QV=0.05 0.069 0.310 0.045 1.059 -0.007  0.013  1.069 
18 Q   QV=0.10 0.002 -0.006 -0.089 0.763 -0.004  0.006  0.456 
19 Q N=100 EV=10 QV=0.01 0.117 1.821 1.753 23.790 -0.075  0.035  2.382 
20 Q   QV=0.05 0.116 1.350 0.590 4.463 -0.031  0.021  1.308 
21 Q   QV=0.10 0.031 -0.168 -0.202 1.769 -0.021  0.012  0.700 
22 Q N=200 EV=2.5 QV=0.01 0.019 0.086 0.081 1.969 -0.009  0.006  0.390 
23 Q   QV=0.05 0.007 0.042 0.003 0.259 -0.002  0.002  0.206 
24 Q   QV=0.10 -0.003 -0.023 -0.006 0.011 -0.001  0.000  0.023 
25 Q N=200 EV=5 QV=0.01 0.026 0.223 0.185 2.736 -0.021  0.016  0.897 
26 Q   QV=0.05 0.008 0.026 -0.026 0.980 -0.006  0.008  0.504 
27 Q   QV=0.10 0.005 0.028 -0.039 0.339 -0.003  0.002  0.177 
28 Q N=200 EV=10 QV=0.01 0.419 2.348 1.159 9.470 -0.034  0.029  1.711 
29 Q   QV=0.05 0.162 1.257 0.638 3.181 -0.014  0.017  1.171 
30 Q   QV=0.10 0.105 0.526 0.232 1.313 -0.010  0.009  0.661 
31 Q N=500 EV=2.5 QV=0.01 0.012 0.071 0.057 0.934 -0.001  0.002  0.100 
32 Q   QV=0.05 -0.005 -0.014 -0.013 -0.002 0.000  0.000  0.025 
33 Q   QV=0.10 -0.003 0.000 -0.001 0.003 0.000  0.000  0.002 
34 Q N=500 EV=5 QV=0.01 0.029 0.160 0.088 1.804 -0.005  0.006  0.373 
35 Q   QV=0.05 -0.003 -0.030 -0.025 0.231 -0.003  0.003  0.179 
36 Q   QV=0.10 0.012 0.058 0.018 0.032 0.000  0.000  0.005 
37 Q N=500 EV=10 QV=0.01 0.077 0.403 0.380 5.863 -0.012  0.013  0.836 
38 Q   QV=0.05 -0.019 -0.105 -0.074 1.068 -0.013  0.008  0.517 
39 Q   QV=0.10 0.003 -0.076 -0.093 0.270 -0.003  0.002  0.184 
40 Q N=700 EV=2.5 QV=0.01 0.007 0.052 0.041 0.544 0.000  0.000  0.030 
41 Q   QV=0.05 0.002 0.007 -0.002 0.003 0.000  0.000  -0.008 
42 Q   QV=0.10 -0.001 -0.016 -0.013 -0.004 0.000  0.000  -0.008 
43 Q N=700 EV=5 QV=0.01 0.010 0.067 0.068 1.551 -0.005  0.004  0.236 
44 Q   QV=0.05 0.001 -0.021 -0.022 0.113 -0.002  0.001  0.062 
45 Q   QV=0.10 0.002 -0.014 -0.013 -0.008 -0.001  0.000  0.013 
46 Q N=700 EV=10 QV=0.01 0.011 0.170 0.165 3.145 -0.012  0.010  0.590 
47 Q   QV=0.05 0.006 0.002 -0.024 0.728 -0.009  0.005  0.345 
48 Q   QV=0.10 0.002 -0.020 -0.023 0.158 -0.003  0.001  0.106 
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Relative Variance Bias 

Table 13 presents the relative variance bias for BIC-model-selection estimates. 

In general, the relative variance bias for the linear model is smaller than that for the 

quadratic model. This result is similar to the result of the true-model-selection 

estimates and that of the AIC-model-selection estimates. For parameters 1α , 2α , 11φ , 

22φ , and 21φ , the relative variance bias rates range from -0.107 to 0.095 for the linear 

model, and from -0.276 to 0.880 for the quadratic model.  

For mean parameters 1α , 2α , and 3α , the relative variance bias rates range from 

-0.165 to 0.122. This indicates that the variation of the estimates for parameters 1α , 

2α , and 3α  are estimated quite adequately. This result is similar to that for the true-

model-selection estimates and that for the AIC-model-selection estimates.  

Recovery for 11φ  appears mediocre, with the relative variance bias ranging from 

-0.165 to 0.359. Recovery for 22φ  is poor to mediocre, with the relative variance bias 

ranging from -0.276 to 0.880. Recovery for 33φ  is poor, ranging from -0.111 to 11.157. 

When sample size and parameter value for 33φ  are larger, the relative variance bias 

for the estimate of 33φ  is smaller. For example, when sample size increases from 100 

to 700 and parameter value for quadratic variance increases from 0.01 to 0.1, the 

relative variance bias for 33φ  decreases substantially, from 11.157 to -0.073. The 

relative variance bias for 21φ  ranges from -0.271 to 0.511, indicating the recovery is 

mediocre.   
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Table 13. Relative Variance Bias for BIC-Model-Selection Estimates 
 
Case  True 

Model 
Sample 
Size 

Error 
Variance

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- -0.079 -0.107 -0.073 -- -0.071  0.002 -- 
2 L  EV=5 -- -0.007 -0.067 0.062 -- 0.079  0.000 -- 
3 L  EV=10 -- 0.002 0.006 -0.022 -- -0.018  0.008 -- 
4 L N=200 EV=2.5 -- 0.007 0.026 -0.012 -- -0.027  -0.012 -- 
5 L  EV=5 -- 0.076 0.015 -0.072 -- -0.028  0.050 -- 
6 L  EV=10 -- -0.025 0.005 -0.056 -- -0.045  -0.025 -- 
7 L N=500 EV=2.5 -- -0.059 -0.057 0.017 -- -0.085  0.016 -- 
8 L  EV=5 -- -0.023 0.095 0.021 -- -0.005  -0.006 -- 
9 L  EV=10 -- -0.002 -0.027 -0.030 -- -0.074  0.038 -- 

10 L N=700 EV=2.5 -- -0.034 0.014 0.042 -- 0.002  0.000 -- 
11 L  EV=5 -- 0.038 -0.004 0.043 -- -0.010  -0.046 -- 
12 L  EV=10 -- 0.077 0.023 -0.038 -- -0.077  -0.027 -- 
13 Q N=100 EV=2.5 QV=0.01 0.105 0.058 0.107 11.157  -0.031  -0.043 -0.016 
14 Q   QV=0.05 0.049 -0.075 -0.027 1.326  -0.122  -0.164 -0.017 
15 Q   QV=0.10 -0.070 -0.085 -0.047 0.320  0.056  -0.073 0.014 
16 Q N=100 EV=5 QV=0.01 -0.039 -0.124 -0.004 1.595  -0.063  -0.165 -0.016 
17 Q   QV=0.05 0.002 -0.082 0.024 0.780  -0.017  -0.095 -0.063 
18 Q   QV=0.10 -0.005 -0.099 -0.054 0.242  -0.029  -0.093 0.085 
19 Q N=100 EV=10 QV=0.01 0.036 0.213 0.580 1.009  -0.071  0.115 0.098 
20 Q   QV=0.05 -0.043 -0.017 0.230 0.712  -0.112  -0.048 0.122 
21 Q   QV=0.10 -0.165 -0.271 -0.276 0.095  -0.055  -0.106 0.066 
22 Q N=200 EV=2.5 QV=0.01 0.056 0.064 0.151 5.747  0.013  -0.019 0.045 
23 Q   QV=0.05 -0.045 0.039 0.105 0.755  0.002  -0.019 0.009 
24 Q   QV=0.10 -0.021 0.013 0.063 0.198  0.042  0.000 0.030 
25 Q N=200 EV=5 QV=0.01 -0.038 -0.064 0.062 1.330  0.024  -0.017 -0.022 
26 Q   QV=0.05 -0.033 -0.020 -0.015 0.375  -0.033  -0.042 -0.019 
27 Q   QV=0.10 0.019 -0.027 -0.077 0.154  -0.017  0.061 0.084 
28 Q N=200 EV=10 QV=0.01 0.359 0.511 0.880 1.791  0.023  -0.055 -0.010 
29 Q   QV=0.05 -0.031 -0.033 -0.001 0.544  -0.007  -0.029 -0.008 
30 Q   QV=0.10 -0.010 -0.072 -0.032 0.240  0.006  -0.059 -0.021 
31 Q N=500 EV=2.5 QV=0.01 0.005 0.084 0.072 4.317  -0.020  -0.017 0.027 
32 Q   QV=0.05 0.097 0.009 0.049 0.315  0.112  -0.034 -0.042 
33 Q   QV=0.10 0.079 0.001 -0.013 0.000  0.027  -0.021 0.057 
34 Q N=500 EV=5 QV=0.01 -0.074 0.059 0.153 1.258  0.080  -0.048 -0.039 
35 Q   QV=0.05 -0.008 0.010 0.097 0.324  0.092  -0.049 0.000 
36 Q   QV=0.10 0.012 0.046 0.108 0.067  0.058  0.016 -0.021 
37 Q N=500 EV=10 QV=0.01 0.140 0.170 0.350 0.765  0.080  -0.027 -0.039 
38 Q   QV=0.05 0.043 0.059 0.150 0.383  -0.004  0.020 0.092 
39 Q   QV=0.10 0.040 0.043 0.066 0.193  0.078  0.076 0.045 
40 Q N=700 EV=2.5 QV=0.01 0.059 0.141 0.171 4.267  -0.016  0.089 0.000 
41 Q   QV=0.05 0.024 0.032 -0.013 0.114  -0.049  -0.063 -0.029 
42 Q   QV=0.10 0.030 -0.022 -0.027 -0.073  -0.019  0.043 0.000 
43 Q N=700 EV=5 QV=0.01 -0.011 -0.016 0.075 0.921  0.012  0.000 0.039 
44 Q   QV=0.05 0.049 0.039 0.022 0.171  -0.091  -0.062 0.018 
45 Q   QV=0.10 -0.075 -0.040 -0.097 -0.111  -0.071  0.061 0.000 
46 Q N=700 EV=10 QV=0.01 -0.016 0.001 0.098 0.464  0.039  -0.001 0.020 
47 Q   QV=0.05 0.064 0.030 0.072 0.290  -0.049  -0.014 0.058 
48 Q   QV=0.10 0.078 0.078 0.075 0.089  -0.041  -0.010 0.000 
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 As indicated above in section 4.1.2.2, the examination of AIC model selection 

estimates shows that recovery for parameters 1α , 2α , and 11φ  is satisfactory for all 

conditions. Recovery for parameters 3α , 21φ , 22φ , and 33φ , however, is mediocre to 

poor when sample size is small, although recovery is adequate when sample size is 

large. As indicated in section 2.1.2.3, the examination of the BIC-model-selection 

estimates shows that recovery for parameters 1α  and 2α  is satisfactory for all 

conditions. Recovery for parameters 3α , 11φ , 21φ , 22φ , and 33φ  is adequate when 

sample size is large, but is mediocre to poor when sample size is small. Generally, it 

is expected that the parameter estimates are close to the population parameter values. 

If the estimated parameter values are markedly different from the population 

parameter values, the difference might result from the preliminary model selection. 

Considering the true-model-selection bias to be the baseline, the deviations of AIC- 

and BIC-model-selection estimates from the population parameter values were further 

investigated in order to assess the possible impact of the preliminary model selection. 

In order to assess the impact of model selection, the differences of the relative 

biases of the true-model-selection estimates, the AIC-model-selection estimates, and 

the BIC-model-selection estimates were calculated. When the absolute value of the 

difference is greater than 0.1, it is evidence that the preliminary model selection had 

impact on parameter estimates. Table 14 summarizes the results. Detailed results for 

each condition are presented in Appendix A, Table A1 though A6.   
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Table 14. Differences of Relative Bias between True-Model-Selection, AIC-Model-
Selection, and BIC-Model-Selection Estimates 
 

   
11φ  21φ  22φ  33φ  1α  2α  3α  

Difference of Relative Parameter Bias 

 AIC-True Mean 0.0049 0.0266 0.0065 0.4613 0.0024 0.0018 0.1573

  Abs>0.1 1/48 3/48 3/48 18/36 0/48 0/48 15/36

 BIC-True Mean 0.0129 0.0657 0.0086 1.2306 -0.0073 0.0056 0.4924

  Abs>0.1 2/48 11/48 14/48 27/36 0/48 0/48 26/36

 BIC-AIC Mean 0.0080 0.0391 0.0020 0.7675 -0.0049 0.0039 0.3351

  Abs>0.1 2/48 11/48 9/48 26/36 0/48 0/48 26/36

Difference of Relative Variance Bias 

 AIC-True Mean -0.0010 0.0979 0.0265 0.1665 0.0065 -0.0012 0.1116

  Abs>0.1 3/48 14/48 9/48 27/36 2/48 3/48 13/36

 BIC-True Mean 0.0070 0.1370 0.0285 0.9894 0.0016 0.0026 0.4840

  Abs>0.1 6/48 14/48 16/48 30/36 2/48 3/48 26/36

 BIC-True Mean 0.0082 0.1403 0.0255 0.9948 0.0015 0.0079 0.4835

  Abs>0.1 6/48 15/48 15/48 30/36 3/48 4/48 26/36

     

AIC-Pre = difference between the AIC-model-selection estimates and the true-model-selection 
estimates. 
BIC-Pre = difference between the BIC-model-selection estimates and the true-model-selection 
estimates. 
BIC-AIC = difference between the BIC-model-selection estimates and the AIC-model-selection 
estimates. 
Abs> 0.1 = the number of cases in which the absolute value of the difference is greater than 0.1.  
 
 

One can see from this table that, in terms of relative parameter bias, model 

selection by AIC or BIC has a strong impact on parameter estimates for parameters 

33φ  and 3α . The mean of the differences of relative parameter bias for parameter 33φ  

is 0.4613 for AIC-True, 1.2306 for BIC-True, and 0.7675 for BIC-AIC. The mean of 

the differences of relative parameter bias for parameter 3α  is 0.1573 for AIC-True, 

0.4924 for BIC-True, and 0.3351 for BIC-AIC. This indicates that in terms of 

accuracy, the quality of the true-model-selection estimators is better than that of the 

AIC-model-selection estimators and that of the BIC-model-selection estimators.  
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Additionally, for parameter 33φ , the absolute value of the difference is greater 

than 0.1 in 18 cases for AIC-True, which is 50% of the total 36 cases when the 

quadratic model is the true model; in 27 cases for BIC-True, which is 75% of the total 

36 cases; and in 26 cases for BIC-AIC, which is 72% of the total 36 cases. For 

parameter 3α , the absolute value of the difference is greater than 0.1.in 15 cases for 

AIC-True, which is 42% of the total 36 cases when the quadratic model is the true 

model; in 26 cases for BIC-True, which is 72% of the total 36 cases; and in 26 cases 

for BIC-AIC, which is 72% of the total 36 cases.  

One can also see that, in terms of relative variance bias, model selection by AIC 

or BIC has obvious impact on parameter estimates for parameters 21φ , 33φ  and 3α . 

This is most obvious in the case of parameter 33φ . The mean difference of relative 

variance bias for parameter 33φ  is especially large (0.9894) for BIC-True. Also, the 

absolute value of the difference is greater than 0.1 in 30 cases for AIC-True, which is 

83% of the total 36 cases when the quadratic model is the true model.  
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4.1.3 Coverage Rate 

The effect of preliminary model selection on coverage rate (i.e., the number of 

replications whose 95% confidence intervals contain the true population parameter) is 

evaluated in this section. Two coverage rates, unconditional and conditional, were 

calculated for parameters 1α , 2α , 3α , 11φ , 22φ , 33φ , and 21φ  for a total of 48 cases. 

Unconditional coverage rates were calculated without model selection, and 

conditional coverage rates were calculated with model selection by AIC and BIC. A 

coverage rate was considered adequate if it was between 0.925 and 0.975. Tables 15, 

16, and 17 show the descriptive statistics for the true-model-selection, the AIC-

model-selection, and the BIC-model-selection coverage rates, respectively. (Detailed 

coverage rates for all 48 cases in each condition are presented in Appendix A, Tables 

A7, A8, and A9.) The unconditional and conditional coverage rates were then 

compared to each other to assess the impact of model selection, as shown in Table 18. 

True-Model-Selection Coverage 

The true-model-selection coverage rate is calculated to evaluate the ability of the 

analysis model to recover the population parameters. This unconditional coverage 

rate is used as the baseline, to which the AIC- and BIC-model-selection coverage 

rates are later compared. In general, the unconditional coverage rate is closer to the 

nominal level of 0.950 when the linear model is the true model than it is when the 

quadratic model is the true model. When the linear model is the true model, the 

coverage rates for the parameters are all between 0.925 and 0.975. When the 

quadratic model is the true model, however, the coverage rates are outside 0.925 and 
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0.975 for 15 cases for parameter 22φ  and 11 cases for parameter 33φ . Table 15 shows 

the descriptive statistics for this true-model-selection coverage rate. 

One can see from this table that coverage for parameters 11φ , 1α , 2α , and 3α  is 

adequate, with no coverage rates falling outside 0.925 and 0.975. In fact, the mean 

coverage rate for those parameters is close to the nominal level of 0.95. Coverage for 

parameters 22φ  and 33φ , however, is not adequate, with coverage rates falling outside 

0.925 and 0.975 in 15 cases for 22φ and 11 cases for 33φ . 

AIC-Model-Selection Coverage 

The AIC-model-selection coverage rate was also calculated, in order to evaluate 

the ability of the analysis model to recover the population parameters, conditional on 

selecting a correct model by AIC. As with the true-model-selection coverage rate, the 

AIC-model-selection coverage rate is closer to the nominal level when the linear 

model is the true model than  when the quadratic model is the true model. When the 

linear model is the true model, the AIC-model-selection coverage rates are all 

between 0.925 and 0.975. When the quadratic model is the true model, however, there 

are several cases in which coverage rates fall outside 0.925 and 0.975, for all 

parameters except 1α . Table 16 shows the descriptive statistics for this conditional 

coverage rate. 

One can see from Table 16 that conditional coverage for parameter 1α  remains 

adequate, with no cases in which coverage rates fall outside 0.925 and 0.975. 

Conditional coverage for parameters 11φ , 2α , and 3α , however, is mediocre. And, 

conditional coverage for variance parameters 21φ , 22φ and 33φ , is poor, with 15 ,19, 
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and 22 cases respectively in which the conditional rates fall outside 0.925 and 0.975. 

Also, the mean conditional rates for these parameters are distant from the nominal 

level of 0.95. 

 

BIC-Model-Selection Coverage 

As was seen with the true-model-selection coverage rate and the AIC-model-

selection coverage rate, the BIC-model-selection coverage rate is closer to the 

nominal level when the linear model is the true model than when the quadratic model 

is the true model. When the linear model is the true model, the coverage rates for the 

parameters are all between 0.925 and 0.975. When the quadratic model is the true 

model, however, there are several cases in which coverage rates fall outside 0.925 and 

0.975 for each parameter. 

One can see from Table 17 that the number of cases in which coverage rates fall 

outside 0.925 and 0.975 ranges from 10 to 27. Also, most of the mean conditional rates 

are distant from the nominal level of 0.95. This indicates that the BIC-model-

selection coverage is not adequate. Note that a 0% coverage rate occurs for parameters 

2α  and 3α , and a 100% coverage rate for parameters 11φ , 22φ , and 21φ . These are 

markedly abnormal and may result from the low success rate of selecting a correct 

model by BIC in some cases (e.g., case 28 in Table 6, which has sample size = 200, 

error variance = 10, quadratic variance = 0.01, and a very small success rate of 0.002). 

Because BIC does not perform effectively in such cases, these conditional coverage 

rates might be invalid. 
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Tables15, 16, and 17 demonstrate that there are substantial differences in the 

numbers of cases in which coverage rate falls outside 0.925 and 0.975 for true model 

selection, AIC model selection , and BIC model selection. The numbers for AIC 

model selection and BIC model selection are always greater than that for true model 

selection. This suggests that model selection has a significant impact on coverage rate.   
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Table 15. Descriptive Statistics for True-Model-Selection Coverage Rate 

 
 Minimum Maximum Mean Cases in which coverage 

rate falls outside 
 0.925 and 0.975 

Total Cases 

11φ  .926 .965 .946 0 48 

21φ  .906 .974 .942 5 48 

22φ  .760 .957 .921 15 48 

33φ  .695 .977 .937 11 36 

1α  .932 .963 .948 0 48 

2α  .934 .967 .948 0 46 

3α  .933 .963 .950 0 36 

 

Table 16. Descriptive Statistics for AIC-Model-Selection Coverage Rate 
 

 Minimum Maximum Mean Cases in which coverage 
rate falls outside 
 0.925 and 0.975 

Total Cases 

11φ  .863 .965 .939 7 48 

21φ  .841 .974 .930 15 48 

22φ  .645 .956 .903 19 48 

33φ  .723 .976 .927 12 36 

1α  .925 .965 .947 0 48 

2α  .866 .974 .944 6 48 

3α  .883 .976 .944 9 36 

 

Table 17. Descriptive statistics for BIC-Model-Selection Coverage Rate 
 

 Minimum Maximum Mean Cases in which coverage 
rate falls outside 
 0.925 and 0.975 

Total Cases 

11φ  .786 1.000 .931 13 48 

21φ  .714 1.000 .913 22 48 

22φ  .464 1.000 .883 27 48 

33φ  .667 1.000 .904 15 36 

1α  .667 1.000 .935 10 48 

2α  .000 .968 .843 19 46 

3α  .000 .971 .771 18 36 
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To assess the impact of model selection even further, the differences between the 

true-model-selection, the AIC-model-selection, and the BIC-model-selection 

coverage rates were examined. Also, the partial correlations of the differences of the 

coverage rates with respect to sample size, error variance, and quadratic variance, 

respectively, were calculated. Table 18 summarizes the results.  

One can see from Table 18 that model selection by AIC has an impact on the 

coverage rate for parameter 22φ . The absolute value of the difference for parameter 

22φ  is greater than 0.25 in 11 cases for AIC-True, which is 23% of the total 48 cases. 

The mean of the differences of coverage rates for parameter 22φ  is -0.018 for AIC-

True. This indicates that, on average, conditional coverage rates of AIC model 

selection are smaller than unconditional coverage rates. This difference correlates 

positively with sample size when controlling error variance and quadratic variance, 

with a strong correlation of 0.737 at a significance level of 0.05. This difference 

correlates negatively with error variance when controlling sample size and quadratic 

variance, with a strong correlation of -0.667 at a significance level of 0.05.  

Compared to AIC model selection, BIC model selection appears to have a 

greater impact on coverage rates. For example, the mean of the differences of 

coverage rates is -0.028 for 21φ , -0.037 for 22φ , and -0.032 for 33φ . This indicates that, 

on average, conditional coverage rates of BIC model selection are smaller than 

unconditional coverage rates. These means of differences are all positively correlated 

with sample size. Also, the absolute value of the difference is greater than 0.25 in 18 

out of the 48 cases for 21φ , in 22 out of the 48 cases for 22φ , and in 22 out of the 36 

cases for 33φ .  



 

 86 
 

Table 18. Differences between True-Model-Selection, AIC-Model-Selection, and 

BIC-Model-Selection Coverage Rates 

 
  

11φ  21φ  22φ  33φ  1α  2α  3α  
    

AIC-True Abs>0.025/ total cases 6/48 8/48 11/48 8/36 0/48 6/48 7/36
 Mean -0.007 -0.011 -0.018 -0.009 -0.000 -0.004 -0.006

 Partial correlation with 
sample size 

0.635
**

0.748
**

0.737
**

0.463
**

0.323 
* 

0.557 
** 

0.578
**

 Partial correlation with 
error variance 

-0.663
**

-0.665
**

-0.667
**

-0.103 -0.153 
 

-0.348 
** 

-0.395
**

 Partial correlation with 
quadratic variance 

0.411*
*

0.511*
*

0.151 0.506*
*

0.039 
 

0.145 
 

0.188

     
BIC-True Abs>0.025/ total cases 11/48 18/48 22/48 17/36 7/48 19/48 19/36

 Mean -0.015 -0.028 -0.037 -0.032 -0.012 -0.104 -0.179

 Partial correlation with 
sample size 

0.251 0.371
** 

0.294
*

0.491
**

0.206 
 

0.519 
** 

0.554*
*

 Partial correlation with 
error variance 

-0.381
**

-0.247 -0.330
*

-0.077 -0.187 
 

-0.652 
** 

-0.618
**

 Partial correlation with 
quadratic variance 

-0.121 0.009 -0.237 0.269 0.270 
 

0.646 
** 

0.690
**

    
BIC-AIC Abs>0.025/ total cases 10/48 19/48 16/48 17/36 9/48 19/48 20/36

 Mean -0.007 -0.017 -0.019 -0.017 -0.012 -0.100 -0.129

 Partial correlation with 
sample size 

0.047 0.134 0.037 0.434
**

0.167 
 

0.471 
** 

0.521
**

 Partial correlation with 
error variance 

-0.174 -0.049 -0.128 -0.054 -0.167 
 

-0.642 
** 

-0.609
**

 Partial correlation with 
quadratic variance 

-0.221 -0.121 -0.277 0.111 0.261 
 

0.649 
** 

0.695
**

     
AIC-True = difference between the AIC-model-selection coverage rate and the true-model-selection coverage rate 
BIC-True = difference between the BIC-model-selection coverage rate and the true-model-selection coverage rate 
BIC-AIC = difference between the BIC-model-selection coverage rate and the AIC-model-selection coverage rate 
Abs>0.025 = the number of cases in which the absolute value of the difference coverage rate is greater than 0.025  
* indicates a significant level of 0.10;  ** indicates a significant level of 0.05. 

 

 In summary, compared to the true-model-selection coverage rate, the AIC- 

and BIC-model-selection coverage rates have more cases in which the coverage rates 

substantially deviate from the nominal rate of 0.95. In addition, the means of the 

differences between the unconditional rate and the conditional rates are all negative. 

This indicates that the conditional rates tend to be underestimated. Moreover, 

differences between the unconditional coverage rate and the conditional coverage 



 

 87 
 

rates are substantial for parameters 21φ , 22φ , and 33φ . These differences are positively 

correlated with sample size and negatively correlated with error variance. This 

suggests that sample size and error variance play important roles to determine the 

coverage rates after the correct model is selected.   
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4.2. Study2: Conducting Model Selection and Parameter Estimation Using Split-Data 

Sets 

In study 2, each original data set generated from Study 1 is randomly separated 

into two parts by 50% vs. 50% data splitting in order to assess data splitting method 

as a possible way to mitigate the effects of model uncertainty. The first part is used to 

select an appropriate model based on model fit evaluation. The second part is then 

used to estimate the parameters based on the model selected.  

4.2.1 Model Selection Accuracy 

Table 19 displays the model recovery rates of AIC and BIC using split-data sets 

under each condition. When the true model is the linear model (i.e., cases 1-12), four 

findings are noted.  First, the model recovery rate of AIC ranges between 0.921 and 

0.947 and the model recovery rate of BIC ranges between 0.997 and 1. This suggests 

that AIC and BIC reliably identify the true model. This also suggests that both AIC 

and BIC perform consistently in selecting the linear model and do not favor 

overfitting in all conditions. Second, Table 19 also shows that the model recovery rate 

of BIC is always larger than that of AIC across all conditions when the true model is 

the linear model. This indicates that BIC consistently performs better than AIC when 

the true model is the linear model. Third, both AIC and BIC appear to perform 

consistently in selecting the linear model in more than 90% of the replications under 

all 12 conditions when the true model is the linear model. BIC, however, tends to be 

more consistent than AIC, selecting the linear model in more than 99% of the 

replications under all 12 conditions. Fourth, both AIC and BIC model recovery rates 
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correlate positively with sample size when controlling error variance and quadratic 

variance, with a strong partial correlation of 0.922 for AIC and 0.680 for BIC at a 

significance level of 0.05. They also correlate positively with quadratic variance, with 

a strong partial correlation of 0.798 for AIC and 0.653 for BIC. They correlate 

negatively, however, with error variance, with a strong partial correlation of -0.859 

for AIC, and -0.706 for BIC. These results are similar to those shown in Table 6 in 

section 4.1.1 when the original data sets were used. 
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Table 19. Model Recovery Rate in Each Condition Using the Split-Data Sets 

 
 True 

Model 
Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

AIC BIC 

Case1 L N=50 EV=2.5 -- 0.938  0.997  
Case2 L  EV=5 -- 0.921  0.997  
Case3 L  EV=10 -- 0.926  0.999  
Case4 L N=100 EV=2.5 -- 0.934  0.999  
Case5 L  EV=5 -- 0.926  1.000  
Case6 L  EV=10 -- 0.931  0.999  
Case7 L N=250 EV=2.5 -- 0.927  1.000  
Case8 L  EV=5 -- 0.934  1.000  
Case9 L  EV=10 -- 0.933  1.000  
Case10 L N=350 EV=2.5 -- 0.939  1.000  
Case11 L  EV=5 -- 0.947  0.999  
Case12 L  EV=10 -- 0.935  1.000  
Case13 Q N=50 EV=2.5 QV=0.01 0.269  0.028  
Case14 Q   QV=0.05 0.446  0.087  
Case15 Q   QV=0.10 0.720  0.250  
Case16 Q N=50 EV=5 QV=0.01 0.160  0.011  
Case17 Q   QV=0.05 0.268  0.024  
Case18 Q   QV=0.10 0.423  0.082  
Case19 Q N=50 EV=10 QV=0.01 0.138  0.004  
Case20 Q   QV=0.05 0.143  0.009  
Case21 Q   QV=0.10 0.241  0.022  
Case22 Q N=100 EV=2.5 QV=0.01 0.494  0.053  
Case23 Q   QV=0.05 0.700  0.160  
Case24 Q   QV=0.10 0.955  0.562  
Case25 Q N=100 EV=5 QV=0.01 0.330  0.024  
Case26 Q   QV=0.05 0.432  0.039  
Case27 Q   QV=0.10 0.711  0.184  
Case28 Q N=100 EV=10 QV=0.01 0.184  0.004  
Case29 Q   QV=0.05 0.226  0.008  
Case30 Q   QV=0.10 0.406  0.035  
Case31 Q N=250 EV=2.5 QV=0.01 0.908  0.261  
Case32 Q   QV=0.05 0.987  0.629  
Case33 Q   QV=0.10 1.000  0.980  
Case34 Q N=250 EV=5 QV=0.01 0.610  0.050  
Case35 Q   QV=0.05 0.843  0.161  
Case36 Q   QV=0.10 0.983  0.598  
Case37 Q N=250 EV=10 QV=0.01 0.375  0.012  
Case38 Q   QV=0.05 0.514  0.024  
Case39 Q   QV=0.10 0.790  0.126  
Case40 Q N=350 EV=2.5 QV=0.01 0.974  0.421  
Case41 Q   QV=0.05 1.000  0.839  
Case42 Q   QV=0.10 1.000  1.000  
Case43 Q N=350 EV=5 QV=0.01 0.773  0.093  
Case44 Q   QV=0.05 0.941  0.286  
Case45 Q   QV=0.10 0.998  0.814  
Case46 Q N=350 EV=10 QV=0.01 0.440  0.009  
Case47 Q   QV=0.05 0.671  0.040  
Case48 Q   QV=0.10 0.895  0.221  
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4.2.2 Relative Parameter Biases 

After the first part of the split-data sets was used for model fitting, the second 

part was used to estimate the parameters based on the model selected. The relative 

parameter biases were calculated. Also, the differences were calculated between the 

true-model-selection, the AIC-model-selection using original data sets, the AIC-

model-selection using split-data sets, the BIC-model-selection using original data sets, 

and the BIC-model-selection using split-data sets. 

4.2.2.1 AIC-model-selection estimates 

Relative Parameter Bias 

Table 20 presents the relative parameter bias for AIC-model-selection estimates 

using the split-data sets. In general, the parameter estimates for the linear model are 

better than those for the quadratic model. For the parameters common to both the 

linear and quadratic models (i.e., 1α , 2α , 11φ , 22φ , and 21φ ), the relative bias rates range 

from 0 to -0.05 for the linear model, and from -0.040 to 11.158 for the quadratic 

model. 

Mean parameters 1α  and 2α  are recovered satisfactorily, with the relative 

parameter bias rate ranging only from -0.001 to 0.005. Recovery for mean parameter 

3α  appears adequate when sample size is large (350), with the relative parameter bias 

ranging from -0.032 to 0.016. But when sample size is small (50), recovery becomes 

adequate to mediocre, with the relative parameter bias ranging from -0.042 to 0.177.
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Recovery for variance parameter 11φ  also appears adequate, with the relative 

parameter bias ranging from -0.022 to 0.127. Recovery for parameters 22φ , 21φ , and 

33φ  is poor to adequate, with the relative parameter biases ranging from -0.050 to 

11.158. When sample size and parameter value for 33φ  are larger, the relative 

parameter bias for the estimate of 33φ  is smaller. For example, when sample size 

increases from 50 to 350 and parameter value for 33φ  increases from 0.01 to 0.1, the 

relative parameter bias for 33φ  decreases markedly, from 11.158 to 0.007.  

Relative Variance Bias 

Table 21 presents the relative variance biases for AIC-model-selection estimates 

using the split-data sets. In general, the relative variance bias for both the linear 

model and quadratic model is large. For all parameters, the relative variance bias is 

greater than 0.672. This indicates that recovery for all parameters is poor when using 

the split-data sets. 
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Table 20. Relative Parameter Bias for AIC-Model-Selection Estimates Using the 

Split-Data Sets 

 
Case  True 

Model 
Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=50 EV=2.5 -- -0.012 -0.041 -0.016 -- 0.000  0.000  -- 
2 L  EV=5 -- -0.005 -0.013 -0.001 -- -0.002  0.000  -- 
3 L  EV=10 -- -0.022 -0.024 -0.019 -- 0.001  0.000  -- 
4 L N=100 EV=2.5 -- 0.001 0.006 -0.004 -- -0.002  0.000  -- 
5 L  EV=5 -- 0.012 0.006 0.000 -- 0.001  0.000  -- 
6 L  EV=10 -- -0.021 -0.050 -0.023 -- -0.002  0.000  -- 
7 L N=250 EV=2.5 -- 0.005 0.003 -0.004 -- 0.000  0.000  -- 
8 L  EV=5 -- 0.002 0.005 -0.001 -- -0.001  0.000  -- 
9 L  EV=10 -- 0.004 0.001 -0.006 -- 0.001  0.000  -- 

10 L N=350 EV=2.5 -- -0.001 0.001 -0.001 -- 0.000  0.000  -- 
11 L  EV=5 -- -0.005 -0.007 -0.006 -- 0.001  0.000  -- 
12 L  EV=10 -- -0.002 -0.005 0.002 -- 0.001  0.000  -- 
13 Q N=50 EV=2.5 QV=0.01 0.045 0.249 0.197 2.147 0.003  -0.001  -0.014 
14 Q   QV=0.05 -0.007 0.133 0.138 0.224 0.002  0.000  -0.028 
15 Q   QV=0.10 -0.002 -0.008 0.001 -0.034 -0.001  0.001  0.038 
16 Q N=50 EV=5 QV=0.01 0.065 0.398 0.409 4.329 -0.005  0.002  -0.027 
17 Q   QV=0.05 0.067 0.418 0.308 0.572 -0.004  0.002  0.177 
18 Q   QV=0.10 0.021 0.252 0.203 0.210 0.005  -0.001  -0.042 
19 Q N=50 EV=10 QV=0.01 0.127 1.063 0.976 11.158 0.003  -0.001  -0.009 
20 Q   QV=0.05 0.106 1.030 0.729 1.592 0.002  0.000  0.002 
21 Q   QV=0.10 0.103 0.669 0.585 0.586 -0.001  0.001  -0.009 
22 Q N=100 EV=2.5 QV=0.01 0.023 0.132 0.102 1.708 0.000  0.000  0.026 
23 Q   QV=0.05 0.020 0.092 0.054 0.052 -0.002  0.001  0.024 
24 Q   QV=0.10 -0.006 0.000 0.013 -0.040 -0.003  0.000  0.012 
25 Q N=100 EV=5 QV=0.01 0.030 0.320 0.276 3.317 0.001  0.000  -0.044 
26 Q   QV=0.05 0.010 0.245 0.251 0.540 -0.001  0.001  0.061 
27 Q   QV=0.10 0.014 0.106 0.080 0.148 -0.002  0.000  0.002 
28 Q N=100 EV=10 QV=0.01 0.086 0.785 0.608 6.575 0.000  0.001  0.057 
29 Q   QV=0.05 0.074 0.697 0.521 1.083 -0.004  0.001  0.040 
30 Q   QV=0.10 0.068 0.567 0.450 0.528 0.000  0.002  0.125 
31 Q N=250 EV=2.5 QV=0.01 0.020 0.138 0.105 1.277 0.001  0.000  -0.001 
32 Q   QV=0.05 -0.006 -0.013 0.002 0.023 -0.001  0.000  0.020 
33 Q   QV=0.10 -0.013 -0.038 -0.021 -0.016 0.000  0.000  -0.004 
34 Q N=250 EV=5 QV=0.01 0.025 0.182 0.162 1.968 0.000  0.000  0.024 
35 Q   QV=0.05 0.003 0.023 0.041 0.149 -0.001  0.000  0.008 
36 Q   QV=0.10 0.013 0.075 0.048 0.045 0.000  0.000  -0.020 
37 Q N=250 EV=10 QV=0.01 0.031 0.304 0.347 4.137 -0.002  0.001  0.023 
38 Q   QV=0.05 0.033 0.263 0.225 0.546 0.002  -0.001  -0.044 
39 Q   QV=0.10 0.015 0.128 0.121 0.133 0.000  0.000  -0.002 
40 Q N=350 EV=2.5 QV=0.01 0.013 0.102 0.072 0.839 0.000  0.000  -0.004 
41 Q   QV=0.05 0.000 0.005 -0.004 0.014 0.000  0.000  0.002 
42 Q   QV=0.10 -0.004 -0.017 -0.019 -0.008 0.000  0.000  -0.005 
43 Q N=350 EV=5 QV=0.01 0.012 0.127 0.128 1.672 0.000  0.000  -0.010 
44 Q   QV=0.05 0.010 0.038 0.048 0.132 0.000  0.000  -0.005 
45 Q   QV=0.10 0.002 -0.015 -0.010 0.007 0.000  0.000  0.016 
46 Q N=350 EV=10 QV=0.01 0.042 0.279 0.279 3.386 0.000  0.000  -0.032 
47 Q   QV=0.05 0.018 0.183 0.176 0.413 0.000  0.000  -0.008 
48 Q   QV=0.10 0.013 0.074 0.090 0.143 0.000  0.000  -0.014 
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Table 21. Relative Variance Bias for AIC-Model-Selection Estimates Using the Split-

Data Sets 

Case  True 
Model 

Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=50 EV=2.5 -- 0.862 0.793 0.888 -- 0.855  1.008  -- 
2 L  EV=5 -- 1.026 0.908 1.198 -- 1.166  1.022  -- 
3 L  EV=10 -- 1.020 1.038 0.999 -- 0.959  1.024  -- 
4 L N=100 EV=2.5 -- 1.053 1.072 0.985 -- 0.960  0.973  -- 
5 L  EV=5 -- 1.206 1.048 0.860 -- 0.962  1.095  -- 
6 L  EV=10 -- 0.949 0.995 0.880 -- 0.903  0.939  -- 
7 L N=250 EV=2.5 -- 0.911 0.904 1.044 -- 0.842  1.034  -- 
8 L  EV=5 -- 0.951 1.190 1.050 -- 0.986  0.988  -- 
9 L  EV=10 -- 1.017 0.957 0.945 -- 0.860  1.076  -- 

10 L N=350 EV=2.5 -- 0.942 1.040 1.104 -- 1.007  1.006  -- 
11 L  EV=5 -- 1.075 0.991 1.085 -- 0.978  0.909  -- 
12 L  EV=10 -- 1.151 1.046 0.936 -- 0.842  0.948  -- 
13 Q N=50 EV=2.5 QV=0.01 1.198 0.975 0.961 27.480 0.989  1.027  1.082 
14 Q   QV=0.05 1.053 0.806 0.833 6.587  0.753  0.829  0.954 
15 Q   QV=0.10 0.799 0.673 0.672 2.558  1.121  0.924  0.975 
16 Q N=50 EV=5 QV=0.01 0.980 0.867 1.038 4.266  0.927  0.918  1.090 
17 Q   QV=0.05 0.979 0.802 0.963 2.639  0.994  1.004  0.930 
18 Q   QV=0.10 0.941 0.783 0.837 1.451  0.956  1.011  1.143 
19 Q N=50 EV=10 QV=0.01 0.945 1.033 1.401 2.217  1.010  1.200  1.101 
20 Q   QV=0.05 1.010 1.025 1.253 1.797  0.834  1.077  1.195 
21 Q   QV=0.10 0.988 0.992 1.128 1.203  0.928  1.083  1.125 
22 Q N=100 EV=2.5 QV=0.01 1.102 1.060 1.111 15.671 1.046  1.016  1.157 
23 Q   QV=0.05 0.888 0.950 0.971 3.625  1.032  1.026  1.009 
24 Q   QV=0.10 0.900 0.888 0.897 1.664  1.077  1.015  1.052 
25 Q N=100 EV=5 QV=0.01 0.936 0.895 1.186 3.884  1.075  1.037  1.049 
26 Q   QV=0.05 0.898 0.968 0.962 1.776  0.913  1.053  0.981 
27 Q   QV=0.10 0.995 0.863 0.683 1.071  0.973  1.190  1.144 
28 Q N=100 EV=10 QV=0.01 1.031 1.079 1.197 2.008  0.922  0.901  0.923 
29 Q   QV=0.05 0.900 0.963 1.049 1.437  0.992  1.085  1.026 
30 Q   QV=0.10 1.048 1.004 1.095 1.194  1.000  1.018  0.944 
31 Q N=250 EV=2.5 QV=0.01 1.001 1.119 1.035 10.927 0.964  0.977  1.054 
32 Q   QV=0.05 1.162 0.944 0.968 2.135  1.222  0.939  0.917 
33 Q   QV=0.10 1.126 0.950 0.897 1.040  1.044  0.956  1.094 
34 Q N=250 EV=5 QV=0.01 0.833 1.092 1.233 3.517  1.153  0.936  0.935 
35 Q   QV=0.05 0.947 0.947 1.040 1.519  1.184  0.927  0.988 
36 Q   QV=0.10 0.992 1.020 1.087 1.032  1.113  1.038  0.947 
37 Q N=250 EV=10 QV=0.01 1.132 1.152 1.319 1.877  1.118  0.964  0.934 
38 Q   QV=0.05 1.115 1.128 1.151 1.210  1.019  1.129  1.183 
39 Q   QV=0.10 1.076 1.079 1.043 1.072  1.159  1.224  1.109 
40 Q N=350 EV=2.5 QV=0.01 1.111 1.242 1.244 10.600 0.970  1.185  1.000 
41 Q   QV=0.05 1.027 1.008 0.883 1.586  0.899  0.873  0.912 
42 Q   QV=0.10 1.053 0.939 0.915 0.875  0.961  1.083  1.000 
43 Q N=350 EV=5 QV=0.01 0.954 0.916 1.015 2.803  1.026  1.028  1.078 
44 Q   QV=0.05 1.054 0.987 0.873 1.191  0.816  0.891  1.053 
45 Q   QV=0.10 0.821 0.851 0.700 0.700  0.859  1.122  1.015 
46 Q N=350 EV=10 QV=0.01 1.005 1.018 1.158 1.776  1.114  1.027  1.049 
47 Q   QV=0.05 1.089 1.011 0.992 1.167  0.897  1.023  1.115 
48 Q   QV=0.10 1.089 1.046 0.958 0.933  0.917  1.001  1.009 

 



 

 95 
 

4.2.2.2 BIC-model-selection estimates 

Relative Parameter Bias 

Table 22 presents the relative parameter biases for BIC-model-selection 

estimates using the split-data sets. In general, the parameter estimates for the linear 

model are better than those for the quadratic model. This is similar to the results of 

AIC-model-selection estimates. For the parameters common to both the linear and 

quadratic models (i.e., 1α , 2α , 11φ , 22φ , and 21φ ), the relative bias rates range from -

0.002 to 0.008 for the linear model, and from 

-1.512 to 8.005 for the quadratic model.  

 Similar to the results of AIC-model-selection estimates, mean parameters 1α  and 

2α  are recovered satisfactorily, with the relative parameter bias rates ranging only 

from -0.025 to 0.059. Recovery for mean parameter 3α , however, appears worse than 

that under AIC model selection. When sample size is large (350), the relative 

parameter bias for 3α  ranges from 

-0.06 to 0.003. When sample size is small (100), the relative parameter bias recovery 

is even worse, with the relative parameter bias ranging from -1.512 to 0.121. 

Recovery for variance parameter 11φ  appears mediocre to adequate, with the relative 

parameter bias ranging from 

-0.041 to 0.436. Recovery for parameters 21φ , 22φ ,  and 33φ  is poor to adequate, with 

the relative parameter biases ranging from -0.024 to 8.005. When sample size and 

parameter value for 33φ  are larger, the relative parameter bias for the estimate of 33φ  is 

smaller. For example, when sample size increases from 50 to 350 and parameter 
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value for 33φ  increases from 0.01 to 0.1, the relative parameter bias for 33φ  decreases 

markedly, from 4.953 to 0.  

Relative Variance Bias 

Table 23 presents the relative variance bias for BIC-model-selection estimates 

using the split-data sets. In general, the relative variance bias for both the linear 

model and quadratic model is large. For all parameters, the relative variance bias is 

greater than 0.507. This indicates that recovery for all parameters is poor when using 

the split-data sets. 
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Table 22. Relative Parameter Bias for BIC-Model-Selection Estimates Using the 

Split-Data Sets 

 
Case  True 

Model 
Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

 
    

11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=50 EV=2.5 -- -0.009 -0.037 -0.017 -- 0.000  0.000  -- 
2 L  EV=5 -- -0.003 -0.017 -0.004 -- -0.002  0.000  -- 
3 L  EV=10 -- -0.026 -0.030 -0.019 -- 0.001  0.000  -- 
4 L N=100 EV=2.5 -- -0.001 0.001 -0.002 -- -0.001  0.000  -- 
5 L  EV=5 -- 0.008 0.002 0.000 -- 0.001  0.000  -- 
6 L  EV=10 -- -0.021 -0.054 -0.022 -- -0.001  0.000  -- 
7 L N=250 EV=2.5 -- 0.004 0.003 -0.001 -- 0.000  0.000  -- 
8 L  EV=5 -- 0.002 0.002 -0.002 -- -0.001  0.000  -- 
9 L  EV=10 -- 0.002 -0.001 -0.004 -- 0.001  0.000  -- 
10 L N=350 EV=2.5 -- 0.000 0.000 -0.001 -- -0.001  0.000  -- 
11 L  EV=5 -- -0.006 -0.006 -0.005 -- 0.001  0.000  -- 
12 L  EV=10 -- -0.001 -0.004 0.002 -- 0.001  0.000  -- 
13 Q N=50 EV=2.5 QV=0.01 0.033 0.001 -0.002 1.256 0.003  0.002  0.124 
14 Q   QV=0.05 -0.041 0.037 0.091 0.113 -0.007  0.002  -0.031 
15 Q   QV=0.10 -0.018 -0.005 -0.005 -0.033 0.000  0.001  -0.009 
16 Q N=50 EV=5 QV=0.01 0.093 0.039 0.229 2.911 -0.025  0.009  0.269 
17 Q   QV=0.05 0.058 0.829 0.657 0.954 0.004  0.003  0.264 
18 Q   QV=0.10 0.051 0.285 0.218 0.242 0.011  -0.003  -0.036 
19 Q N=50 EV=10 QV=0.01 0.436 2.172 1.045 4.953 0.059  -0.026  -1.512 
20 Q   QV=0.05 0.296 2.525 1.622 2.755 0.016  0.004  0.121 
21 Q   QV=0.100 0.128 0.579 0.612 0.605 -0.023  0.000  -0.246 
22 Q N=100 EV=2.5 QV=0.01 0.030 0.017 0.028 1.808 0.007  -0.003  -0.040 
23 Q   QV=0.05 0.012 0.079 0.075 0.021 -0.002  0.001  0.002 
24 Q   QV=0.10 -0.005 -0.017 0.002 -0.053 -0.002  0.000  0.015 
25 Q N=100 EV=5 QV=0.01 0.008 0.213 0.259 3.236 -0.007  0.001  0.068 
26 Q   QV=0.05 0.032 0.405 0.364 0.613 -0.005  0.001  0.010 
27 Q   QV=0.10 0.019 0.208 0.126 0.094 -0.002  0.001  0.047 
28 Q N=100 EV=10 QV=0.01 0.132 1.021 1.249 8.005 0.008  -0.013  -0.945 
29 Q   QV=0.05 0.181 1.416 1.057 2.267 0.012  0.001  0.086 
30 Q   QV=0.10 0.160 0.944 0.373 0.515 0.008  -0.001  -0.033 
31 Q N=250 EV=2.5 QV=0.01 0.028 0.191 0.129 1.357 0.000  0.001  0.021 
32 Q   QV=0.05 -0.005 -0.011 0.002 0.044 0.000  0.000  0.027 
33 Q   QV=0.10 -0.013 -0.043 -0.024 -0.018 0.000  0.000  -0.003 
34 Q N=250 EV=5 QV=0.01 -0.020 -0.014 0.093 1.278 0.005  0.000  -0.049 
35 Q   QV=0.05 -0.009 0.004 0.059 0.153 -0.001  0.000  0.023 
36 Q   QV=0.10 0.010 0.063 0.052 0.056 0.000  0.000  -0.017 
37 Q N=250 EV=10 QV=0.01 0.131 0.752 0.444 6.397 -0.002  0.001  0.058 
38 Q   QV=0.05 -0.035 -0.030 0.164 0.637 0.003  -0.004  -0.211 
39 Q   QV=0.10 0.010 0.086 0.122 0.160 0.000  -0.001  -0.018 
40 Q N=350 EV=2.5 QV=0.01 0.019 0.100 0.066 0.797 -0.001  0.000  -0.006 
41 Q   QV=0.05 0.004 0.006 -0.007 0.009 -0.001  0.000  0.001 
42 Q   QV=0.10 -0.004 -0.017 -0.019 -0.008 0.000  0.000  -0.005 
43 Q N=350 EV=5 QV=0.01 0.011 0.116 0.124 1.652 -0.002  0.000  -0.023 
44 Q   QV=0.05 0.024 0.082 0.062 0.165 0.000  0.000  -0.002 
45 Q   QV=0.10 0.004 -0.007 -0.012 0.000 0.000  0.000  0.003 
46 Q N=350 EV=10 QV=0.01 0.074 0.452 0.482 2.706 -0.006  0.002  -0.006 
47 Q   QV=0.05 -0.014 -0.093 0.014 0.313 0.000  -0.002  -0.060 
48 Q   QV=0.10 0.003 -0.012 0.054 0.122 -0.002  0.000  0.003 
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Table 23. Relative Variance Bias for BIC-Model-Selection Estimates Using the Split-

Data Sets 

 
Case  True 

Model 
Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

 
    

11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=50 EV=2.5 -- 0.874 0.797 0.882 -- 0.861  1.006  -- 
2 L  EV=5 -- 1.029 0.904 1.187 -- 1.167  1.018  -- 
3 L  EV=10 -- 1.007 1.029 0.995 -- 0.952  1.022  -- 
4 L N=100 EV=2.5 -- 1.045 1.070 0.992 -- 0.956  0.977  -- 
5 L  EV=5 -- 1.194 1.042 0.861 -- 0.956  1.095  -- 
6 L  EV=10 -- 0.951 0.997 0.884 -- 0.904  0.941  -- 
7 L N=250 EV=2.5 -- 0.907 0.905 1.052 -- 0.840  1.038  -- 
8 L  EV=5 -- 0.952 1.189 1.047 -- 0.986  0.986  -- 
9 L  EV=10 -- 1.012 0.955 0.948 -- 0.858  1.078  -- 
10 L N=350 EV=2.5 -- 0.945 1.041 1.103 -- 1.009  1.006  -- 
11 L  EV=5 -- 1.072 0.990 1.086 -- 0.977  0.909  -- 
12 L  EV=10 -- 1.152 1.046 0.933 -- 0.842  0.948  -- 
13 Q N=50 EV=2.5 QV=0.01 1.199 0.779 0.507 28.764 1.019  0.956  1.136 
14 Q   QV=0.05 0.957 0.701 0.746 6.538 0.733  0.851  0.962 
15 Q   QV=0.10 0.769 0.645 0.626 2.553 1.106  0.935  0.979 
16 Q N=50 EV=5 QV=0.01 1.088 0.884 1.174 3.289 1.011  0.860  0.997 
17 Q   QV=0.05 0.826 0.732 0.927 2.814 0.946  1.125  0.963 
18 Q   QV=0.10 1.028 0.825 0.802 1.496 0.985  0.998  1.143 
19 Q N=50 EV=10 QV=0.01 1.078 0.908 0.585 1.006 1.126  0.982  0.779 
20 Q   QV=0.05 1.044 1.243 1.979 2.144 0.812  1.033  0.999 
21 Q   QV=0.10 0.916 0.851 0.849 0.966 1.000  1.126  1.136 
22 Q N=100 EV=2.5 QV=0.01 1.093 0.945 0.935 16.684 1.059  0.937  1.124 
23 Q   QV=0.05 0.880 0.961 0.994 3.630 1.026  1.060  1.009 
24 Q   QV=0.10 0.900 0.888 0.905 1.672 1.082  1.018  1.052 
25 Q N=100 EV=5 QV=0.01 0.911 0.854 1.135 3.981 1.045  1.000  0.951 
26 Q   QV=0.05 0.852 0.924 0.932 1.689 0.885  1.039  0.981 
27 Q   QV=0.10 0.989 0.867 0.684 1.040 0.963  1.199  1.112 
28 Q N=100 EV=10 QV=0.01 1.154 1.467 2.098 3.592 0.759  0.895  0.959 
29 Q   QV=0.05 1.001 1.230 1.537 2.111 0.922  1.103  1.160 
30 Q   QV=0.10 1.159 1.091 1.177 1.430 1.059  0.964  0.946 
31 Q N=250 EV=2.5 QV=0.01 1.016 1.131 1.027 11.415 0.973  0.991  1.054 
32 Q   QV=0.05 1.169 0.959 0.990 2.067 1.222  0.939  0.917 
33 Q   QV=0.10 1.125 0.949 0.897 1.040 1.044  0.955  1.094 
34 Q N=250 EV=5 QV=0.01 0.729 0.970 1.100 3.494 1.113  0.938  0.935 
35 Q   QV=0.05 0.927 0.931 1.021 1.470 1.163  0.924  0.976 
36 Q   QV=0.10 0.988 1.025 1.098 1.039 1.105  1.036  0.947 
37 Q N=250 EV=10 QV=0.01 1.316 1.366 1.627 2.422 1.161  0.931  0.947 
38 Q   QV=0.05 0.991 0.950 0.854 0.848 0.989  1.139  1.190 
39 Q   QV=0.10 0.999 0.987 0.924 0.952 1.134  1.199  1.096 
40 Q N=350 EV=2.5 QV=0.01 1.129 1.246 1.232 10.867 0.982  1.188  1.000 
41 Q   QV=0.05 1.037 1.012 0.883 1.600 0.906  0.873  0.912 
42 Q   QV=0.10 1.053 0.939 0.915 0.875 0.961  1.083  1.000 
43 Q N=350 EV=5 QV=0.01 0.933 0.902 1.009 2.829 1.012  1.015  1.078 
44 Q   QV=0.05 1.084 1.010 0.891 1.204 0.826  0.887  1.053 
45 Q   QV=0.10 0.824 0.853 0.700 0.700 0.863  1.125  1.015 
46 Q N=350 EV=10 QV=0.01 0.991 0.937 0.843 0.984 1.175  1.119  1.108 
47 Q   QV=0.05 1.006 0.902 0.905 1.238 0.870  0.976  1.087 
48 Q   QV=0.10 1.073 1.027 0.945 0.947 0.912  0.995  1.009 
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To further assess whether data splitting mitigate the problems arising from 

model selection, I examined the differences between the true-model-selection, the 

AIC-model-selection using original data sets, the AIC-model-selection using split-

data sets, the BIC-model-selection using original data sets, and the BIC-model-

selection using split-data sets. Table 24 summarizes the results.  

One can see from this table that, in terms of relative parameter bias, data 

splitting has an impact on parameter estimates for parameters 21φ  and 22φ . The number 

of cases in which the absolute value of the relative parameter bias difference is 

greater than 0.1 is larger in SAIC-True than in AIC-True for parameters 21φ , 22φ , and 

33φ , but is smaller for parameter 3α . Therefore, in terms of relative parameter bias, no 

general conclusion could be made regarding whether data splitting mitigates the 

problem arising from model selection by AIC or by BIC. 

Note that, in terms of relative variance bias, data splitting has a substantial 

impact on parameter estimates for all parameters. In fact, the numbers of cases in 

which the absolute value of the difference relative parameter bias is greater than 0.1 is 

markedly larger in SAIC-True than in AIC-True for all parameters. This suggests that 

data-splitting may greatly increase the variability in estimates without the reward of 

eliminating parameter bias. The comparison of SBIC-True and BIC-True leads to the 

same conclusion.  
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Table 24. Differences of Relative Parameter Bias between True-Model-Selection, 
AIC-Model-Selection, and BIC-Model-Selection Estimates 
 
   

11φ  21φ  22φ  33φ  1α  2α  3α  

Difference of Relative Parameter Bias 
 AIC-True Mean 0.0049 0.0266 0.0065 0.4613 -0.0024 0.0018 0.1573
  Abs>0.1/ total cases 1/48 3/48 3/48 18/36 0/48 0/48 15/36
 BIC-True Mean 0.0129 0.0657 0.0086 1.2306 -0.0073 0.0056 0.4924
  Abs>0.1/ total cases 2/48 11/48 14/48 27/36 0/48 0/48 26/36
 SAIC-True Mean 0.0089 0.0857 0.0695 0.3402 -0.0002 0.0001 0.0036
  Abs>0.1/ total cases 0/48 14/48 15/48 23/36 0/48 0/48 1/36
 SBIC-True Mean 0.0243 0.1558 0.1135 0.2677 0.0009 -0.0005 -0.0472
  Abs>0.1/ total cases 4/48 18/48 12/48 22/36 0/48 0/48 7/36
     
Difference of Relative Variance Bias 
 AIC-True Mean -0.0010 0.0979 0.0265 0.1665 0.0065 -0.0012 0.1116
  Abs>0.1/ total cases 3/48 14/48 9/48 27/36 2/48 3/48 13/36
 BIC-True Mean 0.0070 0.1370 0.0285 0.9894 0.0016 0.0026 0.4840
  Abs>0.1/ total cases 6/48 14/48 16/48 30/36 2/48 3/48 26/36
 SAIC-True Mean 0.9887 0.9526 0.9458 1.8036 0.9942 1.0128 0.7668
  Abs>0.1/ total cases 48/48 48/48 48/48 36/36 48/48 48/48 36/36
 SBIC-True Mean 0.9893 0.9483 0.9396 1.8641 0.9934 1.0057 0.7570
  Abs>0.1/ total cases 48/48 48/48 48/48 36/36 48/48 48/48 36/36
      
AIC-True = difference between the AIC-model-selection coverage rate using original data sets and the true-model-

selection    coverage rate 
BIC-True = difference between the BIC-model-selection coverage rate using original data sets and the true-model-

selection coverage rate 
SAIC-True = difference between the AIC-model-selection coverage rate using split- data sets and the true-model-

selection coverage rate 
SBIC-True = difference between the BIC-model-selection coverage rate using split- data sets and the true-model-

selection coverage rate 
Abs > 0.1 = the number of cases in which the absolute value of the difference is greater than 0.1.  
 
 
 

4.2.3 Coverage Rate 

Table 25 shows the descriptive statistics for AIC-model-selection coverage rate 

using the 50% split-data sets. One can see from Table 25 that conditional coverage 

for parameter 1α  remains adequate, with only one case in which coverage rates fall 

outside 0.925 and 0.975. Conditional coverage for parameters 11φ , 2α , and 3α , 

however, is mediocre. Conditional coverage for variance parameters 21φ , 22φ and 33φ , 

is poor, with 15 ,25, and 8 cases respectively in which the conditional rates fall 

outside 0.925 and 0.975. 
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Comparing Table 16 in section 4.1.3 and Table 25, one can see that there are 

marked differences in the numbers of cases in which coverage rate falls outside 0.925 

and 0.975 for the AIC-model-selection coverage rates using original data sets and 

using 50% split-data sets. In general, the number is bigger when using original data 

sets than when using split-data sets for all parameters except 22φ . This suggests that 

data splitting might mitigate the impact of model selection on coverage rate when 

AIC is used for model selection. 

Table 26 shows the descriptive statistics for the BIC-model-selection coverage 

rate using the 50% split-data sets. One can see from Table 26 that the number of cases 

in which coverage rates fall outside 0.925 and 0.975 ranges from 12 to 28. This 

indicates that the BIC-model-selection coverage is not adequate.  

Comparing Table 17 in section 4.1.3 and Table 26, one can see that there are 

differences in the numbers of cases in which coverage rate falls outside 0.925 and 

0.975 for the BIC-model-selection coverage rates using original data sets and using 

50% split-data sets. In general, the number is smaller when using original data sets 

than when using split-data sets for all parameters except 2α  and 3α . This suggests that 

data splitting might worsen the impact of model selection on coverage rate when BIC 

is used for model selection. 

To further assess whether data splitting mitigates the problem arising from 

model selection, I examined the differences between the true-model-selection, the 

AIC-model-selection using original data sets, the AIC-model-selection using split-

data sets, the BIC-model-selection using original data sets, and the BIC-model-

selection using split-data sets. Table 27 summarizes the results.  
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Table 25. Descriptive Statistics for AIC-Model-Selection Coverage Rate Using 50% 

Split-Data Sets 

 
 Minimum Maximum Mean Cases in which coverage 

rate falls outside 
 0.925 and 0.975 

Total Cases 

11φ  .900 .964 .94085 5 48 

21φ  .863 .961 .93065 15 48 

22φ  .693 .953 .89988 25 48 

33φ  .790 .986 .95081 8 36 

1α  .924 .972 .94848 1 48 

2α  .919 .971 .94608 3 46 

3α  .919 .971 .94764 2 36 

 

Table 26. Descriptive Statistics for BIC-Model-Selection Coverage Rate Using 50% 

Split-Data Sets 

 
 Minimum Maximum Mean Cases in which coverage 

rate falls outside 
 0.925 and 0.975 

Total Cases 

11φ  .727 1.000 .93767 16 48 

21φ  .667 1.000 .92235 24 48 

22φ  .636 1.000 .90138 28 48 

33φ  .746 1.000 .95317 18 36 

1α  .750 1.000 .94877 12 48 

2α  .750 1.000 .93827 17 46 

3α  .750 1.000 .94047 13 36 

 

Comparing AIC-True and SAIC-True, one can see that the number of cases in 

which the absolute value of the coverage rate difference is greater than 0.025 is 

smaller in SAIC-True than in AIC-True for parameters 11φ , 21φ , 2α , and 3α ,  but is 

for parameters 22φ , and 1α . Therefore, no general conclusion could be made regarding 

whether data splitting mitigates the problem arising from model selection by AIC. 
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Also, comparing BIC-True and SBIC-True, one can see that the number of cases 

in which the absolute value of the coverage rate difference is greater than 0.025 is 

smaller in SBIC-True than in BIC-True for parameters 33φ , 2α , and 3α , but is larger 

for parameters 11φ , 21φ , and 1α . Therefore, no general conclusion could be made 

regarding whether data splitting mitigates the problem arising from model selection 

by BIC. 

 

Table 27. Differences of Model Selection Coverage Rates 
 

  
11φ  21φ  22φ  33φ  1α  2α  3α  

    
AIC-True Abs>0.025/ total cases 6/48 8/48 11/48 8/36 0/48 6/48 7/36

 Mean -0.007 -0.011 -0.018 -0.009 -0.000 -0.004 -0.006
    

SAIC-True Abs>0.025/ total cases 3/48 7/48 15/48 8/36 1/48 2/48 2/36
 Mean -0.005 -0.011 -0.021 0.013 0.000 -0.002 -0.003
    

SAIC-AIC Abs>0.025/ total cases 4/48 5/48 14/48 14/36 2/48 6/48 11/36
 Mean 0.001 0.000 -0.003 0.022 0.000 0.001 0.002
    

BIC-True Abs>0.025/ total cases 11/48 18/48 22/48 17/36 7/48 19/48 19/36
 Mean -0.015 -0.028 -0.037 -0.032 -0.012 -0.104 -0.179
    

SBIC-True Abs>0.025/ total cases 17/48 19/48 22/48 14/36 11/48 17/48 14/36
 Mean -0.009 -0.019 -0.020 0.016 0.000 -0.010 -0.010
    

SBIC-BIC Abs>0.025/ total cases 14/48 20/48 19/48 23/36 12/48 20/48 19/36
 Mean 0.006 0.009 0.017 0.048 0.013 0.094 0.168
    

AIC-True =  difference between the AIC-model-selection coverage rate using original data sets and the true-
model-selection coverage rate 
BIC-True =  difference between the BIC-model-selection coverage rate using original data sets and the true-
model-selection coverage rate 
SAIC-True = difference between the AIC-model-selection coverage rate using split- data sets and the true-model-
selection coverage rate 
SBIC-True = difference between the BIC-model-selection coverage rate using split- data sets and the true-model-
selection coverage rate 
SAIC-AIC= difference between the AIC-model-selection coverage rate using split- data sets and the AIC-model-
selection coverage rate using original data sets 
ABIC-BIC= difference between the BIC-model-selection coverage rate using split- data sets and the BIC-model-
selection coverage rate using original data sets 
Abs>0.025 = the number of cases in which the absolute value of the difference coverage rate is greater than 0.025  
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Chapter 5 Discussion and Conclusion 

In behavioral and social sciences, model selection and parameter estimation are 

treated as two separate steps of data analysis. The second step, parameter estimation, 

is generally conducted on the assumption that the model selected in step one is a 

correct model, and thus it is performed using the same data set that was used in step 

one. This two-step process ignores the effects of model uncertainty on parameter 

estimation and statistical inference, and thus may ultimately lead to misleading or 

invalid inferences. The problems arising from the use of this two-step process have 

been well investigated in the context of regression. In the case of latent growth 

modeling (LGM), however, there have been no such published studies. This present 

study was thus designed to investigate the possible problems arising from the use of 

this two-step process in LGM. The goals of this study were:  

(1) To examine the subsequent impact of preliminary model selection using 

information criteria on LGM parameter estimates;  

(2) To assess the data splitting method as a possible way to mitigate the effects of 

model uncertainty. 

To achieve these goals, I conducted two Monte Carlo simulation studies. Study 1 

conducted both model selection and parameter estimation using the same data set, to 

investigate the possible impact of preliminary model selection in terms of model 

selection accuracy, relative parameter biases, and coverage rate. Study 2 conducted 

model selection and parameter estimation using different split-data sets, in order to 

assess the data splitting method as a possible way to mitigate the effects of model 

uncertainty.  
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5.1 Summary of Major Findings and Discussion 

Model Selection Accuracy 

The performances of AIC and BIC were evaluated from the aspects of model 

selection accuracy and model selection consistency by examining model recovery rate 

under different conditions (e.g., different sample sizes, underfitting vs overfitting). 

The following observations were made: 

First, when the linear model is the true model, both AIC and BIC accurately and 

consistently identify the true model, although BIC appears to be somewhat more 

consistent than AIC. Second, when the quadratic model is the true model, AIC 

appears to be more accurate than BIC, which tends, in these cases, to select the 

simpler, linear model (i.e., underfitting). BIC, however,,appears to be more consistent 

than AIC in selecting a model (true or misspecified). This agrees with previous 

research (Hurvich & Tsai, 1990; Kang & Cohen, 2007; Zhang, 2008). Third, both 

AIC and BIC model selection are more accurate with larger sample sizes, and smaller 

quadratic variances.  

The above findings provide evidence that model uncertainty (i.e., that the 

selected model might be wrong) does exist. Use of the two-step process in LGM 

ignores the effects of this uncertainty on parameter estimation and statistical inference 

and may therefore ultimately result in misleading and invalid inferences.  

Relative Parameter Biases 

The impact of model selection on post-model-selection point estimators was 

evaluated from the aspects of accuracy and variability by examining relative 
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parameter bias and relative variance bias, respectively. The following observations 

were made: 

First, the recovery for parameters is better when the linear model is the true 

model than when the quadratic model is the true model. Recovery for parameters 1α  

and 2α  is satisfactory for all conditions. Recovery for parameters 3α , 11φ , 21φ , 22φ , 

and 33φ  is adequate when sample size is large, but is mediocre to poor when sample 

size is small. Second, comparison of the relative biases of the true-model-selection 

estimates, the AIC model selection estimates, and the BIC model selection estimates 

shows that model selection has an impact on parameter point estimates. In fact, both 

the AIC and BIC model selections substantially compromise the accuracy of post-

model-selection estimators and lead to additional bias in the estimates for parameters 

3α  and 33φ . Also, both the AIC and BIC model selections overestimate the sampling 

variability of the estimates for parameters 3α , 21φ , and 33φ . 

The above findings suggest that the use of the two-step process in LGM ignores 

the effects of model uncertainty on parameter estimation. Therefore, inference based 

on AIC or BIC model selection leads to additional bias in, and overestimates the 

sampling variability of, the parameter estimates. Even when the magnitude of the 

mean of the quadratic slope factor was intentionally set small in this study to make 

the data generated by the quadratic growth model not dramatically different from 

those generated by the linear growth model, simulation results still showed that the 

post-model-selection parameter estimator had larger relative parameter biases and 

larger relative variance biases. This provides strong evidence that model selection has 

a non-ignorable impact on LGM parameter estimates. Bias becomes substantially 
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smaller when sample size becomes larger. Conditions with larger sample sizes are 

deemed to have greater power to choose the right model; thus the problem of model 

selection creating additional bias in the parameter estimates is mitigated when sample 

size is large. 

Coverage Rate 

The impact of model selection on post-model-selection interval estimators was 

evaluated by examining unconditional and conditional coverage rates. The following 

observations were made: 

First, both the unconditional and the conditional coverage rates were closer to 

the nominal level of 0.950 when the linear model was the true model than when the 

quadratic model was the true model. Second, compared to the true-model-selection 

coverage rate, the AIC and BIC model selection coverage rates had more cases in 

which the coverage rates deviated substantially from the nominal rate of 0.95. Also, 

conditional coverage rates of the AIC and BIC model selections were, on average, 

smaller than unconditional coverage rates. This difference correlated positively with 

sample size, but negatively with error variance. These results indicate that the 

conditional rates tend to be underestimated and sample size and error variance play 

important roles in determining the conditional coverage rates. Third, extreme BIC 

conditional coverage rates (0% for parameters 2α  and 3α , and 100% for parameters 

11φ , 22φ , and 21φ ) occur in some cases, e.g., when sample size = 100 or 200, error 

variance = 10, quadratic variance = 0.01, and when the model selection success rate is 

very small. Because BIC does not perform effectively in such cases, these conditional 

coverage rates might be invalid. 
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Assessment of Data Splitting  

Hurvich and Tsai (1992) stated that data splitting provides a possible substitute 

for a true replicate sample in model validation and thus suggested a possible remedy 

based on data splitting to solve the problem resulting from the use of the same data 

set for both structural identification and inference. Therefore, in the current study the 

data splitting technique was assessed as a possible way to mitigate the effects of 

model uncertainty.  

Unfortunately, however, according to the simulation results, the post-model-

selection problems due to model uncertainty still existed when the data splitting 

method was applied. It seems that fitting a model to just part of the data results in a 

loss of efficiency. Data splitting may greatly increase the variability in estimates 

without the reward of eliminating bias.  

In summary, the above findings provide evidence that model uncertainty exists 

and that ignoring the effects of model uncertainty compromises the quality of both the 

post-model-selection point estimators and interval estimators. This result is consistent 

with previous research in the context of regression (Breiman, 1988; Hurvich & Tsai, 

1990; Pötscher, 1991; Rencher & Pun, 1980). In the simulation portion of this current 

study, even when the data generated by the quadratic growth model are very similar 

to the data generated by the linear growth model, the post-model-selection parameter 

estimator still has larger relative parameter biases, larger relative variance biases, and 

smaller coverage rates for a 95% confidence interval than those of the true-model-

selection estimator. This provides strong evidence that model selection has a non-



 

 109 
 

ignorable impact on LGM parameter point and interval estimates. This impact is not 

mitigated even after the data splitting method was applied.  

Reasons for the problems arising from model selection might be: (1) because the 

estimation procedure depends upon the outcome of model selection, the properties of 

the post-model-selection estimators and related statistics (e.g., the estimates of mean 

squared error) might be different from those when the model is known a priori. 

Consequently, bias may exist; (2) because the use of a model selection procedure 

affects the asymptotic distribution of parameter estimators and related statistics, the 

validity of the subsequent inference procedures may be severely affected (Miller, 

1984; Zhang, 1992).  

5.2 Limitations and Suggestions for Future Research 

There are limitations inherent in any research, and this study is no exception. As 

can be seen from the results of this study, inconsistencies and inaccuracies were 

shown in AIC and BIC model selection in at least some of the simulated conditions. 

AIC appeared to function better under certain conditions in the simulation study. 

Deciding whether a linear or a quadratic growth model is more appropriate for a 

particular data set, however, is difficult at best, because the true model is not known 

for real-world data. Therefore, it is important to note that this current study was 

intended to examine model selection from a statistical perspective. In practice, when 

selecting a model, it is also important to consider nonstatistical perspectives. 

Ideally, the results discussed in this study should have been based on 1,000 

replications with proper parameter estimates. Unfortunately, this was not the case. 

Negative estimates of variances (i.e., Heywood Cases) occurred in a great number of 
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replications for all 48 cases, when fitting the data to the quadratic model. This 

problem was encountered more frequently (on average, in 50% of the replications) 

with the smaller sample sizes and the smaller quadratic growth factor variances. This 

problem, however, was substantially less severe when fitting the data to the linear 

model. In fact, it occurred only in the cases with sample size of 100. Table 28 shows 

the number of cases without negative estimates of variance when fitting the data to 

the quadratic model. Table 29 shows the number of cases without negative estimates 

of variance when fitting the data to the linear model. Those numbers are the same 

even when conducting the parameter estimates with different computer software, 

EQS or Mplus.  

There are three possible reasons for these Heywood cases. First, nonconvergence 

(Kolenikov & Bollen, 2008); in our study, however, all the replications converged in 

less than 20 iterations. Second, structurally misspecified models (Dillon, Kumar & 

Mulani, 1987; Bollen, 1989); this would not be the cause of the problem in the 

current study, however, because the true model is set in advance. Third, sampling 

fluctuations (Anderson & Gerbing, 1984); this seems to be the most likely cause of 

the Heywood cases in our study. I gave the quadratic growth factor variance a 

population value of 0.01, which is small. With small sample size, random draws may 

end up with a negative variance simply due to chance.  



 

 111 
 

Table 28. The Number of Cases Without Negative Estimates of Variance When 

Fitting the Data to the Quadratic Model. 

 
Case  True 

Model 
Sample 
Size 

Error 
Variance

Quadratic 
Variance Total S1 S2 S3 S4 

1 L N=100 EV=2.5 -- 400 183 311 250 279 
2 L  EV=5 -- 415 206 389 307 307 
3 L  EV=10 -- 459 237 425 356 348 
4 L N=200 EV=2.5 -- 490 266 471 395 391 
5 L  EV=5 -- 493 315 469 419 419 
6 L  EV=10 -- 480 358 455 442 455 
7 L N=500 EV=2.5 -- 497 388 488 482 485 
8 L  EV=5 -- 507 488 489 495 503 
9 L  EV=10 -- 492 447 481 471 476 
10 L N=700 EV=2.5 -- 484 442 498 471 474 
11 L  EV=5 -- 485 485 482 489 488 
12 L  EV=10 -- 485 476 493 479 493 

13 Q N=100 EV=2.5 QV=0.01 428 160 368 335 273 
14 Q   QV=0.05 603 222 495 380 393 
15 Q   QV=0.1 672 268 606 483 434 
16 Q N=100 EV=5 QV=0.01 459 211 394 341 331 
17 Q   QV=0.05 562 221 477 378 377 
18 Q   QV=0.1 599 245 520 387 425 
19 Q N=100 EV=10 QV=0.01 468 235 416 343 349 
20 Q   QV=0.05 504 229 472 370 372 
21 Q   QV=0.1 537 213 470 381 368 
22 Q N=200 EV=2.5 QV=0.01 561 321 499 470 445 
23 Q   QV=0.05 762 387 710 586 591 
24 Q   QV=0.1 900 436 832 713 704 
25 Q N=200 EV=5 QV=0.01 520 336 501 441 422 
26 Q   QV=0.05 663 357 623 531 557 
27 Q   QV=0.1 801 417 730 646 609 
28 Q N=200 EV=10 QV=0.01 502 339 484 456 460 
29 Q   QV=0.05 599 365 577 523 501 
30 Q   QV=0.1 676 391 646 564 562 
31 Q N=500 EV=2.5 QV=0.01 636 488 611 578 572 
32 Q   QV=0.05 934 669 911 838 823 
33 Q   QV=0.1 989 781 966 911 904 
34 Q N=500 EV=5 QV=0.01 577 485 573 543 534 
35 Q   QV=0.05 836 618 780 749 737 
36 Q   QV=0.1 958 685 924 862 876 
37 Q N=500 EV=10 QV=0.01 548 498 532 515 532 
38 Q   QV=0.05 697 546 660 621 611 
39 Q   QV=0.1 819 563 775 700 717 
40 Q N=700 EV=2.5 QV=0.01 653 509 631 616 597 
41 Q   QV=0.05 968 731 939 886 888 
42 Q   QV=0.1 997 851 988 965 960 
43 Q N=700 EV=5 QV=0.01 598 523 569 562 566 
44 Q   QV=0.05 881 672 836 792 769 
45 Q   QV=0.1 968 770 947 900 888 
46 Q N=700 EV=10 QV=0.01 555 499 539 547 511 
47 Q   QV=0.05 741 564 694 662 659 
48 Q   QV=0.1 873 671 833 764 764 
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Table 29. The Number of Cases Without Negative Estimates of Variance When 

Fitting the Data to the Linear Model. 

Case  True 
Model 

Sample 
Size 

Error 
Variance

Quadratic 
Variance Total S1 S2 S3 S4 

1 L N=100 EV=2.5 -- 999 883 993 968 977 
2 L  EV=5 -- 1000 926 1000 992 992 
3 L  EV=10 -- 1000 953 1000 994 997 
4 L N=200 EV=2.5 -- 1000 972 1000 1000 1000 
5 L  EV=5 -- 1000 992 1000 999 1000 
6 L  EV=10 -- 1000 998 1000 1000 1000 
7 L N=500 EV=2.5 -- 1000 1000 1000 1000 1000 
8 L  EV=5 -- 1000 1000 1000 1000 1000 
9 L  EV=10 -- 1000 1000 1000 1000 1000 
10 L N=700 EV=2.5 -- 1000 1000 1000 1000 1000 
11 L  EV=5 -- 1000 1000 1000 1000 1000 
12 L  EV=10 -- 1000 1000 1000 1000 1000 

13 Q N=100 EV=2.5 QV=0.01 1000 882 999 988 987 
14 Q   QV=0.05 1000 921 1000 992 988 
15 Q   QV=0.1 999 874 993 970 970 
16 Q N=100 EV=5 QV=0.01 999 925 998 996 988 
17 Q   QV=0.05 1000 938 999 996 992 
18 Q   QV=0.1 1000 943 1000 994 996 
19 Q N=100 EV=10 QV=0.01 1000 937 1000 996 996 
20 Q   QV=0.05 1000 949 1000 996 997 
21 Q   QV=0.1 1000 966 1000 998 998 
22 Q N=200 EV=2.5 QV=0.01 1000 987 1000 1000 1000 
23 Q   QV=0.05 1000 991 1000 999 1000 
24 Q   QV=0.1 1000 967 1000 999 997 
25 Q N=200 EV=5 QV=0.01 1000 995 1000 1000 1000 
26 Q   QV=0.05 1000 997 1000 1000 1000 
27 Q   QV=0.1 1000 992 1000 1000 1000 
28 Q N=200 EV=10 QV=0.01 1000 995 1000 1000 1000 
29 Q   QV=0.05 1000 997 1000 1000 1000 
30 Q   QV=0.1 1000 999 1000 1000 1000 
31 Q N=500 EV=2.5 QV=0.01 1000 1000 1000 1000 1000 
32 Q   QV=0.05 1000 1000 1000 1000 1000 
33 Q   QV=0.1 1000 1000 1000 1000 1000 
34 Q N=500 EV=5 QV=0.01 1000 1000 1000 1000 1000 
35 Q   QV=0.05 1000 1000 1000 1000 1000 
36 Q   QV=0.1 1000 1000 1000 1000 1000 
37 Q N=500 EV=10 QV=0.01 1000 1000 1000 1000 1000 
38 Q   QV=0.05 1000 1000 1000 1000 1000 
39 Q   QV=0.1 1000 1000 1000 1000 1000 
40 Q N=700 EV=2.5 QV=0.01 1000 1000 1000 1000 1000 
41 Q   QV=0.05 1000 1000 1000 1000 1000 
42 Q   QV=0.1 1000 1000 1000 1000 1000 
43 Q N=700 EV=5 QV=0.01 1000 1000 1000 1000 1000 
44 Q   QV=0.05 1000 1000 1000 1000 1000 
45 Q   QV=0.1 1000 1000 1000 1000 1000 
46 Q N=700 EV=10 QV=0.01 1000 1000 1000 1000 1000 
47 Q   QV=0.05 1000 1000 1000 1000 1000 
48 Q   QV=0.1 1000 1000 1000 1000 1000 
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According to Kolenikov and Bollen (2008), one possible way to avoid Heywood 

cases is to restrict the range of estimates to be [0, +∞ ]. Therefore, I constrained the 

negative estimates of variance whenever they occurred to the lower boundary in order 

to keep the estimates in the interior of parameter space. The constrained estimates for 

the total 1,000 replications were used for two reasons. First, to retain the randomness 

of sampling. Second, to avoid larger biases in the parameter estimates. The results 

show that using only the replications without any Heywood cases end up with larger 

biases in the parameter estimates. However, if the estimates are at the boundary (e.g., 

the quadratic growth factor variance is equal to zero), the estimates and statistical 

tests might behave in unusual ways (Andrews, 2001). As shown in Table 7 in section 

4.1.1, the empirical model recovery rate is close to the theoretical power level. 

Therefore, model recovery seems not to be influenced by the Heywood cases in this 

study. 

It would be interesting to further examine the possible impact of Heywood cases 

in model selection. Thus, future research studies may want to compare the 

constrained and unconstrained estimates to see whether the power in detecting 

structural misspecification is affected. In addition, our results showed that the 

problems arising from the two-step process are not substantially mitigated by the data 

splitting method. Future research might assess whether bootstrapping or Bayesian 

model averaging is a better alternative to mitigate the problems of model selection in 

LGM. In our study, only the linear and quadratic latent growth models were 

investigated. It would be worthwhile to evaluate the possible impact on more 

complicated models in SEM (e.g., mixture latent growth model).     
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Appendices 

Table A1. Difference between the AIC-Model-Selection and the True-Model- 
Selection Relative Parameter Bias (AIC-True) 
 

 

Case  True 
Model 

Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- 0.000 0.002 0.001 -- -0.001  0.000  -- 
2 L  EV=5 -- -0.002 -0.007 0.000 -- 0.001  0.000  -- 
3 L  EV=10 -- 0.001 0.008 0.002 -- 0.001  0.000  -- 
4 L N=200 EV=2.5 -- -0.003 -0.006 -0.001 -- 0.000  0.000  -- 
5 L  EV=5 -- 0.000 0.000 0.000 -- 0.000  0.000  -- 
6 L  EV=10 -- -0.001 -0.006 -0.002 -- 0.000  0.000  -- 
7 L N=500 EV=2.5 -- -0.001 0.002 0.001 -- 0.000  0.000  -- 
8 L  EV=5 -- 0.001 0.003 0.001 -- 0.000  0.000  -- 
9 L  EV=10 -- 0.001 0.003 0.001 -- 0.000  0.000  -- 
10 L N=700 EV=2.5 -- 0.000 0.000 0.001 -- 0.000  0.000  -- 
11 L  EV=5 -- 0.000 0.001 -0.001 -- 0.000  0.000  -- 
12 L  EV=10 -- -0.001 -0.003 -0.001 -- 0.000  0.000  -- 
13 Q N=100 EV=2.5 QV=0.01 0.010 0.015 0.004 0.628 -0.006  0.004  0.300 
14 Q   QV=0.05 0.003 0.007 -0.027 0.121 -0.003  0.001  0.128 
15 Q   QV=0.10 0.002 -0.003 -0.005 0.025 -0.001  0.000  0.025 
16 Q N=100 EV=5 QV=0.01 -0.002 0.030 0.044 1.818 -0.013  0.010  0.607 
17 Q   QV=0.05 -0.007 -0.084 -0.061 0.458 -0.007  0.005  0.390 
18 Q   QV=0.10 0.003 0.004 -0.042 0.177 -0.003  0.002  0.157 
19 Q N=100 EV=10 QV=0.01 0.095 0.682 0.496 5.971 -0.022  0.013  0.885 
20 Q   QV=0.05 0.045 0.233 -0.007 1.218 -0.015  0.011  0.673 
21 Q   QV=0.10 0.003 -0.057 -0.146 0.486 -0.007  0.005  0.331 
22 Q N=200 EV=2.5 QV=0.01 -0.002 -0.012 -0.008 0.119 -0.002  0.002  0.091 
23 Q   QV=0.05 0.000 0.002 -0.003 0.015 0.000  0.000  0.014 
24 Q   QV=0.10 0.000 0.000 0.000 0.001 0.000  0.000  0.001 
25 Q N=200 EV=5 QV=0.01 0.013 0.078 0.042 0.861 -0.005  0.004  0.264 
26 Q   QV=0.05 0.002 -0.010 -0.030 0.168 -0.003  0.002  0.149 
27 Q   QV=0.10 0.002 -0.001 -0.007 0.023 0.000  0.000  0.017 
28 Q N=200 EV=10 QV=0.01 0.040 0.271 0.171 2.499 -0.012  0.009  0.548 
29 Q   QV=0.05 0.015 0.062 -0.053 0.517 -0.007  0.006  0.379 
30 Q   QV=0.10 0.006 -0.007 -0.065 0.225 -0.003  0.003  0.182 
31 Q N=500 EV=2.5 QV=0.01 0.000 0.000 0.000 0.002 0.000  0.000  0.001 
32 Q   QV=0.05 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
33 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
34 Q N=500 EV=5 QV=0.01 0.002 0.004 -0.003 0.098 -0.001  0.001  0.053 
35 Q   QV=0.05 -0.001 -0.002 -0.002 0.007 0.000  0.000  0.004 
36 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
37 Q N=500 EV=10 QV=0.01 0.006 0.054 0.037 0.735 -0.003  0.004  0.198 
38 Q   QV=0.05 0.001 0.005 -0.010 0.122 -0.001  0.001  0.076 
39 Q   QV=0.10 0.000 -0.006 -0.012 0.009 0.000  0.000  0.013 
40 Q N=700 EV=2.5 QV=0.01 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
41 Q   QV=0.05 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
42 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
43 Q N=700 EV=5 QV=0.01 0.000 0.000 0.001 0.028 0.000  0.000  0.010 
44 Q   QV=0.05 0.000 -0.001 0.000 0.001 0.000  0.000  0.000 
45 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
46 Q N=700 EV=10 QV=0.01 0.007 0.027 0.013 0.295 -0.002  0.002  0.124 
47 Q   QV=0.05 -0.003 -0.010 -0.013 0.042 -0.001  0.000  0.039 
48 Q   QV=0.10 0.000 -0.002 -0.002 0.002 0.000  0.000  0.002 
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Table A2. Difference between the BIC-Model-Selection and the True-Model-
Selection Relative Parameter Bias (BIC-True) 
 

Case  True 
Model 

Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- 0.000 0.000 0.000 -- 0.000  0.000  -- 
2 L  EV=5 -- 0.000 0.000 0.001 -- 0.000  0.000  -- 
3 L  EV=10 -- 0.000 0.000 0.000 -- 0.000  0.000  -- 
4 L N=200 EV=2.5 -- 0.000 0.000 0.000 -- 0.000  0.000  -- 
5 L  EV=5 -- 0.000 0.000 0.000 -- 0.000  0.000  -- 
6 L  EV=10 -- 0.000 0.000 0.000 -- 0.000  0.000  -- 
7 L N=500 EV=2.5 -- 0.000 0.000 0.000 -- 0.000  0.000  -- 
8 L  EV=5 -- 0.000 0.000 0.000 -- 0.000  0.000  -- 
9 L  EV=10 -- 0.000 0.000 0.000 -- 0.000  0.000  -- 

10 L N=700 EV=2.5 -- 0.000 0.000 0.000 -- 0.000  0.000  -- 
11 L  EV=5 -- 0.000 0.000 -0.001 -- 0.000  0.000  -- 
12 L  EV=10 -- 0.000 0.000 0.000 -- 0.000  0.000  -- 
13 Q N=100 EV=2.5 QV=0.01 0.014 -0.023 0.025 0.702 -0.010  0.011  0.743 
14 Q   QV=0.05 0.008 -0.097 -0.096 0.501 -0.005  0.006  0.478 
15 Q   QV=0.10 0.002 -0.035 -0.049 0.174 -0.001  0.001  0.160 
16 Q N=100 EV=5 QV=0.01 -0.048 -0.831 -0.424 2.335 -0.030  0.022  1.234 
17 Q   QV=0.05 0.038 0.123 -0.113 0.635 -0.006  0.012  1.031 
18 Q   QV=0.10 0.004 -0.035 -0.133 0.672 -0.008  0.007  0.484 
19 Q N=100 EV=10 QV=0.01 0.029 1.171 1.160 16.743 -0.074  0.034  2.354 
20 Q   QV=0.05 0.045 0.810 0.140 3.405 -0.030  0.021  1.275 
21 Q   QV=0.10 -0.037 -0.576 -0.575 1.289 -0.022  0.012  0.717 
22 Q N=200 EV=2.5 QV=0.01 0.004 -0.024 -0.013 0.706 -0.009  0.006  0.386 
23 Q   QV=0.05 0.006 0.017 -0.022 0.242 -0.003  0.002  0.193 
24 Q   QV=0.10 0.000 -0.006 -0.006 0.032 0.000  0.000  0.023 
25 Q N=200 EV=5 QV=0.01 0.005 0.038 0.016 0.427 -0.020  0.016  0.897 
26 Q   QV=0.05 0.008 -0.037 -0.096 0.793 -0.007  0.008  0.503 
27 Q   QV=0.10 0.001 -0.023 -0.084 0.248 -0.002  0.002  0.174 
28 Q N=200 EV=10 QV=0.01 0.367 1.912 0.789 4.965 -0.034  0.029  1.692 
29 Q   QV=0.05 0.128 0.955 0.359 2.518 -0.013  0.017  1.157 
30 Q   QV=0.10 0.048 0.121 -0.053 1.033 -0.012  0.009  0.636 
31 Q N=500 EV=2.5 QV=0.01 0.002 0.008 0.000 0.200 -0.001  0.002  0.094 
32 Q   QV=0.05 0.001 -0.002 -0.005 0.014 0.000  0.000  0.014 
33 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
34 Q N=500 EV=5 QV=0.01 0.007 0.018 -0.022 0.483 -0.006  0.006  0.376 
35 Q   QV=0.05 -0.004 -0.046 -0.052 0.159 -0.003  0.003  0.163 
36 Q   QV=0.10 0.001 0.003 -0.004 0.020 0.000  0.000  0.015 
37 Q N=500 EV=10 QV=0.01 0.043 0.179 0.179 2.994 -0.010  0.013  0.820 
38 Q   QV=0.05 -0.028 -0.179 -0.170 0.746 -0.013  0.008  0.523 
39 Q   QV=0.10 0.003 -0.070 -0.108 0.247 -0.003  0.002  0.186 
40 Q N=700 EV=2.5 QV=0.01 0.000 -0.001 -0.003 0.030 0.000  0.000  0.027 
41 Q   QV=0.05 0.000 0.000 -0.001 0.001 0.000  0.000  0.001 
42 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
43 Q N=700 EV=5 QV=0.01 -0.001 -0.026 -0.014 0.386 -0.005  0.004  0.231 
44 Q   QV=0.05 -0.002 -0.029 -0.031 0.068 -0.002  0.001  0.072 
45 Q   QV=0.10 0.000 -0.001 -0.001 0.000 0.000  0.000  0.002 
46 Q N=700 EV=10 QV=0.01 -0.017 -0.037 -0.024 0.860 -0.012  0.010  0.615 
47 Q   QV=0.05 -0.004 -0.077 -0.099 0.558 -0.009  0.005  0.348 
48 Q   QV=0.10 -0.003 -0.047 -0.058 0.114 -0.002  0.001  0.102 
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Table A3. Difference between the BIC-Model-Selection and the AIC-Model-
Selection Relative Parameter Bias (BIC-AIC) 
 

 
 

Case  True 
Model 

Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- 0.000 -0.002 -0.001 -- 0.001  0.000  -- 
2 L  EV=5 -- 0.002 0.007 0.001 -- -0.001  0.000  -- 
3 L  EV=10 -- -0.001 -0.008 -0.002 -- -0.001  0.000  -- 
4 L N=200 EV=2.5 -- 0.003 0.006 0.001 -- 0.000  0.000  -- 
5 L  EV=5 -- 0.000 0.000 0.000 -- 0.000  0.000  -- 
6 L  EV=10 -- 0.001 0.006 0.002 -- 0.000  0.000  -- 
7 L N=500 EV=2.5 -- 0.001 -0.002 -0.001 -- 0.000  0.000  -- 
8 L  EV=5 -- -0.001 -0.003 -0.001 -- 0.000  0.000  -- 
9 L  EV=10 -- -0.001 -0.003 -0.001 -- 0.000  0.000  -- 

10 L N=700 EV=2.5 -- 0.000 0.000 -0.001 -- 0.000  0.000  -- 
11 L  EV=5 -- 0.000 -0.001 0.000 -- 0.000  0.000  -- 
12 L  EV=10 -- 0.001 0.003 0.001 -- 0.000  0.000  -- 
13 Q N=100 EV=2.5 QV=0.01 0.004 -0.038 0.021 0.074 -0.004  0.007  0.443 
14 Q   QV=0.05 0.005 -0.104 -0.069 0.380 -0.002  0.005  0.350 
15 Q   QV=0.10 0.000 -0.032 -0.044 0.149 0.000  0.001  0.135 
16 Q N=100 EV=5 QV=0.01 -0.046 -0.861 -0.468 0.517 -0.017  0.012  0.627 
17 Q   QV=0.05 0.045 0.207 -0.052 0.177 0.001  0.007  0.641 
18 Q   QV=0.10 0.001 -0.039 -0.091 0.495 -0.005  0.005  0.327 
19 Q N=100 EV=10 QV=0.01 -0.066 0.489 0.664 10.772 -0.052  0.021  1.469 
20 Q   QV=0.05 0.000 0.577 0.147 2.187 -0.015  0.010  0.602 
21 Q   QV=0.10 -0.040 -0.519 -0.429 0.803 -0.015  0.007  0.386 
22 Q N=200 EV=2.5 QV=0.01 0.006 -0.012 -0.005 0.587 -0.007  0.004  0.295 
23 Q   QV=0.05 0.006 0.015 -0.019 0.227 -0.003  0.002  0.179 
24 Q   QV=0.10 0.000 -0.006 -0.006 0.031 0.000  0.000  0.022 
25 Q N=200 EV=5 QV=0.01 -0.008 -0.040 -0.026 -0.434 -0.015  0.012  0.633 
26 Q   QV=0.05 0.006 -0.027 -0.066 0.625 -0.004  0.006  0.354 
27 Q   QV=0.10 -0.001 -0.022 -0.077 0.225 -0.002  0.002  0.157 
28 Q N=200 EV=10 QV=0.01 0.327 1.641 0.618 2.466 -0.022  0.020  1.144 
29 Q   QV=0.05 0.113 0.893 0.412 2.001 -0.006  0.011  0.778 
30 Q   QV=0.10 0.042 0.128 0.012 0.808 -0.009  0.006  0.454 
31 Q N=500 EV=2.5 QV=0.01 0.002 0.008 0.000 0.198 -0.001  0.002  0.093 
32 Q   QV=0.05 0.001 -0.002 -0.005 0.014 0.000  0.000  0.014 
33 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
34 Q N=500 EV=5 QV=0.01 0.005 0.014 -0.019 0.385 -0.005  0.005  0.323 
35 Q   QV=0.05 -0.003 -0.044 -0.050 0.152 -0.003  0.003  0.159 
36 Q   QV=0.10 0.001 0.003 -0.004 0.020 0.000  0.000  0.015 
37 Q N=500 EV=10 QV=0.01 0.037 0.125 0.142 2.259 -0.007  0.009  0.622 
38 Q   QV=0.05 -0.029 -0.184 -0.160 0.624 -0.012  0.007  0.447 
39 Q   QV=0.10 0.003 -0.064 -0.096 0.238 -0.003  0.002  0.173 
40 Q N=700 EV=2.5 QV=0.01 0.000 -0.001 -0.003 0.030 0.000  0.000  0.027 
41 Q   QV=0.05 0.000 0.000 -0.001 0.001 0.000  0.000  0.001 
42 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
43 Q N=700 EV=5 QV=0.01 -0.001 -0.026 -0.015 0.358 -0.005  0.004  0.221 
44 Q   QV=0.05 -0.002 -0.028 -0.031 0.067 -0.002  0.001  0.072 
45 Q   QV=0.10 0.000 -0.001 -0.001 0.000 0.000  0.000  0.002 
46 Q N=700 EV=10 QV=0.01 -0.024 -0.064 -0.037 0.565 -0.010  0.008  0.491 
47 Q   QV=0.05 -0.001 -0.067 -0.086 0.516 -0.008  0.005  0.309 
48 Q   QV=0.10 -0.003 -0.045 -0.056 0.112 -0.002  0.001  0.100 
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Table A4. Difference between the AIC-Model-Selection and the True-Model-
Selection Relative Variance Bias (AIC-True) 
 

 

Case  True 
Model 

Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- 0.001 0.002 0.002 -- 0.001  0.001  -- 
2 L  EV=5 -- -0.002 -0.001 0.000 -- -0.001  0.001  -- 
3 L  EV=10 -- 0.002 0.004 0.002 -- 0.001  0.001  -- 
4 L N=200 EV=2.5 -- -0.005 -0.004 -0.001 -- -0.002  -0.001  -- 
5 L  EV=5 -- 0.000 -0.001 -0.001 -- 0.000  -0.001  -- 
6 L  EV=10 -- 0.000 -0.002 -0.002 -- 0.000  -0.001  -- 
7 L N=500 EV=2.5 -- -0.001 0.000 0.001 -- -0.001  0.000  -- 
8 L  EV=5 -- 0.001 0.002 0.001 -- 0.001  0.000  -- 
9 L  EV=10 -- 0.002 0.002 0.002 -- 0.001  0.002  -- 

10 L N=700 EV=2.5 -- 0.000 0.000 0.002 -- 0.000  0.000  -- 
11 L  EV=5 -- -0.001 0.000 -0.001 -- 0.000  0.000  -- 
12 L  EV=10 -- -0.001 -0.001 -0.001 -- -0.001  0.000  -- 
13 Q N=100 EV=2.5 QV=0.01 0.007 0.002 0.018 -0.835 0.002  -0.015  -0.006 
14 Q   QV=0.05 -0.001 -0.011 -0.014 -0.208 0.000  -0.019  0.005 
15 Q   QV=0.10 -0.001 -0.006 -0.009 -0.015 0.000  -0.005  0.000 
16 Q N=100 EV=5 QV=0.01 -0.010 -0.001 0.048 -0.003 -0.013  -0.014  0.003 
17 Q   QV=0.05 -0.011 -0.023 -0.004 0.043 -0.006  -0.027  0.014 
18 Q   QV=0.10 -0.006 -0.027 -0.035 0.007 0.001  -0.022  0.005 
19 Q N=100 EV=10 QV=0.01 0.016 0.043 0.164 0.293 0.004  0.008  0.001 
20 Q   QV=0.05 -0.025 -0.061 -0.072 0.068 0.005  -0.039  -0.001 
21 Q   QV=0.10 -0.056 -0.101 -0.130 0.029 -0.001  -0.042  0.000 
22 Q N=200 EV=2.5 QV=0.01 -0.005 -0.006 -0.004 -0.114 -0.002  -0.006  -0.012 
23 Q   QV=0.05 0.001 0.001 0.001 -0.027 0.000  -0.002  0.000 
24 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
25 Q N=200 EV=5 QV=0.01 0.011 0.015 0.036 0.009 0.002  -0.004  -0.005 
26 Q   QV=0.05 0.004 -0.001 0.008 0.018 0.002  -0.015  0.000 
27 Q   QV=0.10 0.001 -0.001 0.001 0.005 0.000  -0.003  0.004 
28 Q N=200 EV=10 QV=0.01 0.018 0.029 0.075 0.169 0.001  -0.002  0.003 
29 Q   QV=0.05 -0.005 -0.019 -0.012 0.109 0.005  -0.019  0.003 
30 Q   QV=0.10 -0.016 -0.030 -0.030 0.048 0.001  -0.018  0.002 
31 Q N=500 EV=2.5 QV=0.01 0.000 0.000 0.000 0.000 0.000  -0.001  0.000 
32 Q   QV=0.05 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
33 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
34 Q N=500 EV=5 QV=0.01 0.003 0.004 0.008 0.000 0.002  -0.001  0.000 
35 Q   QV=0.05 0.000 0.000 0.002 0.006 0.000  -0.001  0.000 
36 Q   QV=0.10 0.000 -0.001 0.000 0.000 0.000  0.000  0.000 
37 Q N=500 EV=10 QV=0.01 0.012 0.019 0.053 0.116 0.001  -0.001  0.001 
38 Q   QV=0.05 0.005 0.007 0.020 0.045 0.001  -0.003  0.001 
39 Q   QV=0.10 -0.001 -0.002 -0.001 0.003 0.000  -0.001  0.000 
40 Q N=700 EV=2.5 QV=0.01 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
41 Q   QV=0.05 0.000 0.000 0.000 0.000 0.001  0.000  0.000 
42 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
43 Q N=700 EV=5 QV=0.01 0.001 0.003 0.006 0.000 -0.001  0.000  0.000 
44 Q   QV=0.05 0.000 -0.001 0.000 0.000 0.000  0.000  0.001 
45 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
46 Q N=700 EV=10 QV=0.01 0.005 0.006 0.014 0.036 0.002  -0.001  0.000 
47 Q   QV=0.05 0.000 0.000 0.001 0.005 0.000  -0.001  0.000 
48 Q   QV=0.10 0.000 0.000 -0.001 0.000 0.000  0.000  0.000 
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Table A5. Difference between the BIC-Model-Selection and the True-Model-
Selection Relative Variance Bias (BIC-True) 
 

Case  True 
Model 

Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- 0.000 0.000 0.000  0.001  0.000   
2 L  EV=5 -- 0.000 0.000 0.000  0.000  0.001   
3 L  EV=10 -- 0.000 0.000 0.000  0.000  0.000   
4 L N=200 EV=2.5 -- 0.001 0.000 0.000  0.000  0.000   
5 L  EV=5 -- 0.000 0.000 0.000  0.000  0.000   
6 L  EV=10 -- 0.000 0.001 0.000  0.000  0.000   
7 L N=500 EV=2.5 -- 0.000 0.000 0.000  0.000  0.000   
8 L  EV=5 -- 0.000 0.000 0.000  0.000  0.000   
9 L  EV=10 -- 0.000 0.000 -0.001  0.000  0.000   

10 L N=700 EV=2.5 -- 0.000 0.000 0.000  0.000  0.000   
11 L  EV=5 -- 0.000 0.000 0.000  0.000  0.000   
12 L  EV=10 -- 0.000 0.000 0.000  0.000  0.000   
13 Q N=100 EV=2.5 QV=0.01 -0.004 -0.024 0.000 0.874 -0.010  -0.044  -0.060 
14 Q   QV=0.05 -0.010 -0.064 -0.081 -0.920 0.003  -0.061  0.021 
15 Q   QV=0.10 -0.012 -0.048 -0.070 -0.124 -0.002  -0.039  0.018 
16 Q N=100 EV=5 QV=0.01 -0.067 -0.154 -0.151 -0.058 -0.008  -0.099  -0.038 
17 Q   QV=0.05 -0.019 -0.063 -0.091 -0.075 -0.005  -0.089  -0.023 
18 Q   QV=0.10 -0.036 -0.099 -0.135 -0.100 -0.005  -0.082  0.030 
19 Q N=100 EV=10 QV=0.01 0.045 0.158 0.354 0.426 -0.069  0.040  0.072 
20 Q   QV=0.05 -0.104 -0.117 -0.055 0.170 -0.031  -0.074  0.036 
21 Q   QV=0.10 -0.220 -0.371 -0.506 -0.238 -0.012  -0.133  0.007 
22 Q N=200 EV=2.5 QV=0.01 -0.002 -0.012 0.020 -1.114 -0.004  -0.033  -0.034 
23 Q   QV=0.05 0.009 0.007 0.020 -0.370 -0.002  -0.033  0.000 
24 Q   QV=0.10 -0.001 -0.004 -0.003 -0.012 0.000  -0.005  0.000 
25 Q N=200 EV=5 QV=0.01 -0.007 -0.018 -0.051 -0.117 -0.013  -0.024  -0.038 
26 Q   QV=0.05 -0.010 -0.054 -0.070 -0.056 0.004  -0.055  0.000 
27 Q   QV=0.10 -0.016 -0.042 -0.046 0.005 -0.002  -0.039  0.014 
28 Q N=200 EV=10 QV=0.01 0.308 0.432 0.725 1.243 0.049  -0.002  0.042 
29 Q   QV=0.05 -0.016 -0.073 -0.132 0.215 -0.003  -0.058  -0.005 
30 Q   QV=0.10 -0.055 -0.106 -0.132 0.078 0.006  -0.056  0.021 
31 Q N=500 EV=2.5 QV=0.01 0.005 0.008 0.017 -0.244 0.000  -0.005  0.000 
32 Q   QV=0.05 0.002 0.000 0.001 -0.011 0.001  -0.002  0.000 
33 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
34 Q N=500 EV=5 QV=0.01 0.003 -0.008 -0.019 -0.023 0.005  -0.008  0.000 
35 Q   QV=0.05 -0.001 -0.008 -0.003 0.016 0.000  -0.015  0.000 
36 Q   QV=0.10 0.001 -0.001 0.000 0.000 0.001  -0.003  0.011 
37 Q N=500 EV=10 QV=0.01 0.060 0.072 0.161 0.310 0.015  0.001  0.001 
38 Q   QV=0.05 -0.033 -0.049 -0.017 0.173 -0.008  -0.035  0.008 
39 Q   QV=0.10 -0.026 -0.052 -0.060 0.030 0.003  -0.025  0.000 
40 Q N=700 EV=2.5 QV=0.01 -0.001 -0.004 -0.004 0.000 0.000  -0.003  0.000 
41 Q   QV=0.05 0.000 0.000 0.000 0.000 0.001  0.000  0.000 
42 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
43 Q N=700 EV=5 QV=0.01 0.006 0.011 0.031 0.013 -0.003  -0.009  0.000 
44 Q   QV=0.05 0.000 -0.003 0.000 0.013 0.001  -0.007  0.001 
45 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
46 Q N=700 EV=10 QV=0.01 -0.031 -0.035 -0.039 -0.005 -0.017  -0.012  0.000 
47 Q   QV=0.05 -0.012 -0.026 -0.012 0.096 0.000  -0.023  0.000 
48 Q   QV=0.10 -0.007 -0.014 -0.012 0.020 0.001  -0.010  0.000 
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Table A6. Difference between the BIC-Model-Selection and the AIC-Model-
Selection Relative Variance Bias (BIC-AIC) 
 

Case  True 
Model 

Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- -0.001 -0.002 -0.002 -- 0.000  -0.001  -- 
2 L  EV=5 -- 0.002 0.001 0.000 -- 0.001  0.000  -- 
3 L  EV=10 -- -0.002 -0.004 -0.002 -- -0.001  -0.001  -- 
4 L N=200 EV=2.5 -- 0.005 0.004 0.001 -- 0.002  0.001  -- 
5 L  EV=5 -- 0.000 0.001 0.001 -- 0.000  0.001  -- 
6 L  EV=10 -- 0.000 0.002 0.002 -- 0.000  0.001  -- 
7 L N=500 EV=2.5 -- 0.001 0.000 -0.001 -- 0.001  0.000  -- 
8 L  EV=5 -- -0.001 -0.002 -0.001 -- -0.001  0.000  -- 
9 L  EV=10 -- -0.002 -0.002 -0.002 -- -0.001  -0.002  -- 

10 L N=700 EV=2.5 -- 0.000 0.000 -0.002 -- 0.000  0.000  -- 
11 L  EV=5 -- 0.001 0.000 0.001 -- 0.000  0.000  -- 
12 L  EV=10 -- 0.001 0.001 0.001 -- 0.001  0.000  -- 
13 Q N=100 EV=2.5 QV=0.01 -0.011 -0.025 -0.018 1.708 -0.012  -0.029  -0.054 
14 Q   QV=0.05 -0.009 -0.053 -0.067 -0.712 0.003  -0.042  0.016 
15 Q   QV=0.10 -0.011 -0.042 -0.061 -0.109 -0.002  -0.034  0.018 
16 Q N=100 EV=5 QV=0.01 -0.057 -0.153 -0.199 -0.055 0.005  -0.085  -0.041 
17 Q   QV=0.05 -0.008 -0.040 -0.087 -0.118 0.001  -0.062  -0.037 
18 Q   QV=0.10 -0.030 -0.072 -0.100 -0.107 -0.006  -0.060  0.025 
19 Q N=100 EV=10 QV=0.01 0.029 0.115 0.190 0.133 -0.073  0.032  0.071 
20 Q   QV=0.05 -0.079 -0.056 0.017 0.102 -0.036  -0.035  0.037 
21 Q   QV=0.10 -0.164 -0.270 -0.376 -0.267 -0.011  -0.091  0.007 
22 Q N=200 EV=2.5 QV=0.01 0.003 -0.006 0.024 -1.000 -0.002  -0.027  -0.022 
23 Q   QV=0.05 0.008 0.006 0.019 -0.343 -0.002  -0.031  0.000 
24 Q   QV=0.10 -0.001 -0.004 -0.003 -0.012 0.000  -0.005  0.000 
25 Q N=200 EV=5 QV=0.01 -0.018 -0.033 -0.087 -0.126 -0.015  -0.020  -0.033 
26 Q   QV=0.05 -0.014 -0.053 -0.077 -0.074 0.002  -0.040  0.000 
27 Q   QV=0.10 -0.017 -0.041 -0.047 0.000 -0.002  -0.036  0.010 
28 Q N=200 EV=10 QV=0.01 0.290 0.403 0.650 1.074 0.048  0.000  0.039 
29 Q   QV=0.05 -0.011 -0.054 -0.120 0.106 -0.008  -0.039  -0.008 
30 Q   QV=0.10 -0.039 -0.076 -0.102 0.030 0.005  -0.038  0.019 
31 Q N=500 EV=2.5 QV=0.01 0.005 0.008 0.017 -0.244 0.000  -0.004  0.000 
32 Q   QV=0.05 0.002 0.000 0.001 -0.011 0.001  -0.002  0.000 
33 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
34 Q N=500 EV=5 QV=0.01 0.000 -0.012 -0.027 -0.023 0.003  -0.007  0.000 
35 Q   QV=0.05 -0.001 -0.008 -0.005 0.010 0.000  -0.014  0.000 
36 Q   QV=0.10 0.001 0.000 0.000 0.000 0.001  -0.003  0.011 
37 Q N=500 EV=10 QV=0.01 0.048 0.053 0.108 0.194 0.014  0.002  0.000 
38 Q   QV=0.05 -0.038 -0.056 -0.037 0.128 -0.009  -0.032  0.007 
39 Q   QV=0.10 -0.025 -0.050 -0.059 0.027 0.003  -0.024  0.000 
40 Q N=700 EV=2.5 QV=0.01 -0.001 -0.004 -0.004 0.000 0.000  -0.003  0.000 
41 Q   QV=0.05 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
42 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
43 Q N=700 EV=5 QV=0.01 0.005 0.008 0.025 0.013 -0.002  -0.009  0.000 
44 Q   QV=0.05 0.000 -0.002 0.000 0.013 0.001  -0.007  0.000 
45 Q   QV=0.10 0.000 0.000 0.000 0.000 0.000  0.000  0.000 
46 Q N=700 EV=10 QV=0.01 -0.035 -0.041 -0.053 -0.041 -0.018  -0.011  0.000 
47 Q   QV=0.05 -0.012 -0.026 -0.013 0.091 0.000  -0.022  0.000 
48 Q   QV=0.10 -0.007 -0.014 -0.011 0.020 0.001  -0.010  0.000 
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Table A7. True-Model-Selection Coverage Rate 
 

Case  True 
Model 

Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- 0.930 0.929 0.929  0.944  0.949   

2 L  EV=5 -- 0.948 0.931 0.945  0.956  0.956   

3 L  EV=10 -- 0.942 0.942 0.929  0.950  0.947   

4 L N=200 EV=2.5 -- 0.947 0.947 0.945  0.942  0.948   

5 L  EV=5 -- 0.960 0.952 0.944  0.947  0.950   

6 L  EV=10 -- 0.941 0.950 0.937  0.946  0.940   

7 L N=500 EV=2.5 -- 0.934 0.946 0.948  0.937  0.951   

8 L  EV=5 -- 0.951 0.956 0.955  0.948  0.952   

9 L  EV=10 -- 0.947 0.950 0.950  0.938  0.952   

10 L N=700 EV=2.5 -- 0.945 0.950 0.948  0.958  0.947   

11 L  EV=5 -- 0.945 0.955 0.955  0.939  0.952   

12 L  EV=10 -- 0.954 0.954 0.939  0.944  0.953   

13 Q N=100 EV=2.5 QV=0.01 0.958 0.947 0.938 0.954 0.953  0.949  0.953 
14 Q   QV=0.05 0.931 0.925 0.910 0.958 0.937  0.938  0.933 
15 Q   QV=0.10 0.926 0.906 0.893 0.948 0.958  0.938  0.950 
16 Q N=100 EV=5 QV=0.01 0.947 0.932 0.937 0.963 0.949  0.934  0.956 
17 Q   QV=0.05 0.947 0.925 0.880 0.962 0.949  0.944  0.937 
18 Q   QV=0.10 0.941 0.910 0.836 0.964 0.944  0.952  0.954 
19 Q N=100 EV=10 QV=0.01 0.933 0.924 0.860 0.967 0.942  0.966  0.961 
20 Q   QV=0.05 0.941 0.930 0.820 0.976 0.932  0.947  0.949 
21 Q   QV=0.10 0.943 0.926 0.760 0.855 0.937  0.947  0.946 
22 Q N=200 EV=2.5 QV=0.01 0.957 0.948 0.942 0.963 0.947  0.951  0.963 
23 Q   QV=0.05 0.942 0.955 0.934 0.968 0.949  0.947  0.952 
24 Q   QV=0.10 0.940 0.949 0.946 0.965 0.952  0.948  0.950 
25 Q N=200 EV=5 QV=0.01 0.941 0.940 0.947 0.969 0.950  0.947  0.935 
26 Q   QV=0.05 0.931 0.938 0.916 0.964 0.951  0.947  0.952 
27 Q   QV=0.10 0.951 0.917 0.881 0.963 0.953  0.963  0.954 
28 Q N=200 EV=10 QV=0.01 0.955 0.939 0.913 0.977 0.946  0.944  0.940 
29 Q   QV=0.05 0.945 0.936 0.886 0.977 0.943  0.956  0.947 
30 Q   QV=0.10 0.951 0.935 0.834 0.789 0.948  0.942  0.940 
31 Q N=500 EV=2.5 QV=0.01 0.952 0.959 0.938 0.973 0.955  0.939  0.955 
32 Q   QV=0.05 0.965 0.946 0.939 0.972 0.963  0.944  0.945 
33 Q   QV=0.10 0.956 0.945 0.953 0.954 0.962  0.947  0.955 
34 Q N=500 EV=5 QV=0.01 0.941 0.954 0.948 0.977 0.961  0.937  0.948 
35 Q   QV=0.05 0.949 0.948 0.937 0.976 0.961  0.943  0.955 
36 Q   QV=0.10 0.945 0.947 0.942 0.937 0.952  0.954  0.954 
37 Q N=500 EV=10 QV=0.01 0.951 0.951 0.957 0.974 0.953  0.952  0.953 
38 Q   QV=0.05 0.953 0.951 0.937 0.695 0.950  0.958  0.960 
39 Q   QV=0.10 0.943 0.924 0.893 0.858 0.960  0.967  0.956 
40 Q N=700 EV=2.5 QV=0.01 0.953 0.974 0.947 0.975 0.952  0.954  0.958 
41 Q   QV=0.05 0.953 0.953 0.945 0.973 0.945  0.940  0.950 
42 Q   QV=0.10 0.958 0.952 0.948 0.944 0.948  0.960  0.953 
43 Q N=700 EV=5 QV=0.01 0.949 0.939 0.941 0.968 0.953  0.957  0.956 
44 Q   QV=0.05 0.955 0.955 0.931 0.974 0.939  0.936  0.946 
45 Q   QV=0.10 0.944 0.945 0.924 0.932 0.937  0.959  0.951 
46 Q N=700 EV=10 QV=0.01 0.944 0.950 0.945 0.969 0.953  0.948  0.954 
47 Q   QV=0.05 0.957 0.949 0.925 0.729 0.941  0.940  0.952 
48 Q   QV=0.10 0.951 0.937 0.921 0.874 0.943  0.950  0.955 
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Table A8. AIC-Model-Selection Coverage Rate 
 

Case  True 
Model 

Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- 0.930 0.927 0.930 -- 0.945  0.952  -- 
2 L  EV=5 -- 0.945 0.930 0.944 -- 0.957  0.959  -- 
3 L  EV=10 -- 0.942 0.941 0.925 -- 0.951  0.950  -- 
4 L N=200 EV=2.5 -- 0.945 0.947 0.944 -- 0.941  0.947  -- 
5 L  EV=5 -- 0.958 0.951 0.943 -- 0.949  0.950  -- 
6 L  EV=10 -- 0.938 0.953 0.939 -- 0.944  0.939  -- 
7 L N=500 EV=2.5 -- 0.935 0.948 0.945 -- 0.940  0.953  -- 
8 L  EV=5 -- 0.952 0.954 0.956 -- 0.951  0.955  -- 
9 L  EV=10 -- 0.945 0.949 0.949 -- 0.935  0.951  -- 

10 L N=700 EV=2.5 -- 0.943 0.949 0.951 -- 0.959  0.949  -- 
11 L  EV=5 -- 0.946 0.957 0.955 -- 0.938  0.951  -- 
12 L  EV=10 -- 0.958 0.956 0.940 -- 0.943  0.956  -- 
13 Q N=100 EV=2.5 QV=0.01 0.955 0.922 0.912 0.914 0.941  0.941  0.945 
14 Q   QV=0.05 0.929 0.914 0.890 0.945 0.936  0.937  0.934 
15 Q   QV=0.10 0.927 0.904 0.888 0.946 0.956  0.939  0.951 
16 Q N=100 EV=5 QV=0.01 0.920 0.877 0.880 0.917 0.964  0.866  0.899 
17 Q   QV=0.05 0.930 0.887 0.807 0.924 0.950  0.922  0.909 
18 Q   QV=0.10 0.928 0.890 0.788 0.950 0.949  0.957  0.957 
19 Q N=100 EV=10 QV=0.01 0.863 0.841 0.775 0.874 0.934  0.901  0.901 
20 Q   QV=0.05 0.892 0.863 0.688 0.917 0.925  0.883  0.883 
21 Q   QV=0.10 0.913 0.886 0.645 0.876 0.929  0.911  0.915 
22 Q N=200 EV=2.5 QV=0.01 0.953 0.941 0.935 0.958 0.946  0.967  0.972 
23 Q   QV=0.05 0.941 0.956 0.933 0.967 0.949  0.948  0.957 
24 Q   QV=0.10 0.940 0.949 0.946 0.965 0.952  0.948  0.950 
25 Q N=200 EV=5 QV=0.01 0.926 0.910 0.918 0.947 0.947  0.945  0.924 
26 Q   QV=0.05 0.922 0.926 0.895 0.951 0.953  0.945  0.962 
27 Q   QV=0.10 0.951 0.916 0.877 0.962 0.951  0.962  0.953 
28 Q N=200 EV=10 QV=0.01 0.918 0.884 0.848 0.936 0.930  0.909  0.896 
29 Q   QV=0.05 0.912 0.893 0.812 0.956 0.928  0.937  0.921 
30 Q   QV=0.10 0.943 0.918 0.784 0.841 0.951  0.937  0.940 
31 Q N=500 EV=2.5 QV=0.01 0.952 0.959 0.938 0.973 0.955  0.939  0.956 
32 Q   QV=0.05 0.965 0.946 0.939 0.972 0.963  0.944  0.945 
33 Q   QV=0.10 0.956 0.945 0.953 0.954 0.962  0.947  0.955 
34 Q N=500 EV=5 QV=0.01 0.940 0.952 0.943 0.974 0.965  0.953  0.971 
35 Q   QV=0.05 0.949 0.948 0.936 0.976 0.961  0.945  0.959 
36 Q   QV=0.10 0.945 0.947 0.942 0.937 0.952  0.954  0.954 
37 Q N=500 EV=10 QV=0.01 0.944 0.930 0.936 0.963 0.955  0.960  0.952 
38 Q   QV=0.05 0.946 0.943 0.925 0.723 0.955  0.965  0.965 
39 Q   QV=0.10 0.944 0.922 0.891 0.861 0.960  0.969  0.959 
40 Q N=700 EV=2.5 QV=0.01 0.953 0.974 0.947 0.975 0.952  0.954  0.958 
41 Q   QV=0.05 0.953 0.953 0.945 0.973 0.945  0.940  0.950 
42 Q   QV=0.10 0.958 0.952 0.948 0.944 0.948  0.960  0.953 
43 Q N=700 EV=5 QV=0.01 0.948 0.938 0.940 0.967 0.953  0.964  0.970 
44 Q   QV=0.05 0.955 0.955 0.931 0.974 0.939  0.937  0.947 
45 Q   QV=0.10 0.944 0.945 0.924 0.932 0.937  0.959  0.951 
46 Q N=700 EV=10 QV=0.01 0.931 0.941 0.933 0.959 0.962  0.974  0.976 
47 Q   QV=0.05 0.953 0.945 0.918 0.730 0.945  0.947  0.961 
48 Q   QV=0.10 0.951 0.937 0.921 0.874 0.943  0.950  0.957 
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Table A9. BIC-Model-Selection Coverage Rate 
 

 

 

Case  True 
Model 

Sample 
Size 

Error 
Variance 

Quadratic 
Variance 

       

     
11φ  21φ  22φ  33φ  1α  2α  3α  

1 L N=100 EV=2.5 -- 0.931 0.929 0.929 -- 0.944  0.950  -- 
2 L  EV=5 -- 0.948 0.931 0.945 -- 0.956  0.956  -- 
3 L  EV=10 -- 0.942 0.942 0.929 -- 0.950  0.947  -- 
4 L N=200 EV=2.5 -- 0.947 0.947 0.945 -- 0.942  0.948  -- 
5 L  EV=5 -- 0.960 0.952 0.944 -- 0.947  0.950  -- 
6 L  EV=10 -- 0.941 0.950 0.937 -- 0.946  0.940  -- 
7 L N=500 EV=2.5 -- 0.934 0.946 0.948 -- 0.937  0.951  -- 
8 L  EV=5 -- 0.951 0.956 0.955 -- 0.948  0.952  -- 
9 L  EV=10 -- 0.947 0.950 0.950 -- 0.938  0.952  -- 

10 L N=700 EV=2.5 -- 0.945 0.950 0.948 -- 0.958  0.947  -- 
11 L  EV=5 -- 0.945 0.955 0.955 -- 0.939  0.952  -- 
12 L  EV=10 -- 0.954 0.954 0.939 -- 0.944  0.953  -- 
13 Q N=100 EV=2.5 QV=0.01 0.947 0.895 0.860 0.930 0.947  0.772  0.596 
14 Q   QV=0.05 0.917 0.878 0.839 0.856 0.917  0.900  0.817 
15 Q   QV=0.10 0.923 0.885 0.876 0.918 0.960  0.932  0.945 
16 Q N=100 EV=5 QV=0.01 0.889 0.778 0.889 0.944 0.944  0.500  0.333 
17 Q   QV=0.05 0.936 0.830 0.809 0.830 0.936  0.809  0.489 
18 Q   QV=0.10 0.920 0.902 0.753 0.862 0.931  0.891  0.925 
19 Q N=100 EV=10 QV=0.01 1.000 1.000 1.000 0.667 0.667  0.333  0.333 
20 Q   QV=0.05 0.786 0.786 0.714 0.786 0.929  0.714  0.643 
21 Q   QV=0.10 0.857 0.821 0.464 0.857 0.893  0.786  0.857 
22 Q N=200 EV=2.5 QV=0.01 0.935 0.871 0.900 0.929 0.918  0.906  0.876 
23 Q   QV=0.05 0.953 0.936 0.919 0.940 0.942  0.932  0.934 
24 Q   QV=0.10 0.938 0.946 0.943 0.963 0.954  0.951  0.951 
25 Q N=200 EV=5 QV=0.01 0.944 0.889 0.917 0.944 0.833  0.472  0.278 
26 Q   QV=0.05 0.886 0.867 0.810 0.829 0.895  0.800  0.838 
27 Q   QV=0.10 0.940 0.889 0.840 0.927 0.949  0.944  0.936 
28 Q N=200 EV=10 QV=0.01 1.000 1.000 1.000 1.000 1.000  0.000  0.000 
29 Q   QV=0.05 0.786 0.714 0.500 0.929 1.000  0.643  0.571 
30 Q   QV=0.10 0.875 0.818 0.625 0.818 0.943  0.807  0.795 
31 Q N=500 EV=2.5 QV=0.01 0.951 0.945 0.917 0.963 0.950  0.951  0.966 
32 Q   QV=0.05 0.966 0.945 0.940 0.971 0.964  0.948  0.953 
33 Q   QV=0.10 0.956 0.945 0.953 0.954 0.962  0.947  0.955 
34 Q N=500 EV=5 QV=0.01 0.928 0.917 0.900 0.944 0.972  0.844  0.883 
35 Q   QV=0.05 0.934 0.928 0.913 0.964 0.962  0.928  0.960 
36 Q   QV=0.10 0.946 0.946 0.941 0.938 0.950  0.956  0.961 
37 Q N=500 EV=10 QV=0.01 0.933 0.933 0.933 0.867 0.933  0.567  0.233 
38 Q   QV=0.05 0.914 0.900 0.900 0.800 0.914  0.829  0.729 
39 Q   QV=0.10 0.935 0.896 0.821 0.886 0.973  0.965  0.938 
40 Q N=700 EV=2.5 QV=0.01 0.954 0.975 0.942 0.972 0.955  0.968  0.971 
41 Q   QV=0.05 0.953 0.953 0.945 0.973 0.945  0.941  0.951 
42 Q   QV=0.10 0.958 0.952 0.948 0.944 0.948  0.960  0.953 
43 Q N=700 EV=5 QV=0.01 0.932 0.897 0.906 0.947 0.941  0.935  0.932 
44 Q   QV=0.05 0.949 0.948 0.923 0.967 0.937  0.940  0.956 
45 Q   QV=0.10 0.944 0.945 0.924 0.932 0.937  0.959  0.952 
46 Q N=700 EV=10 QV=0.01 0.917 0.944 0.917 0.944 0.889  0.556  0.556 
47 Q   QV=0.05 0.925 0.881 0.824 0.780 0.925  0.868  0.855 
48 Q   QV=0.10 0.944 0.917 0.901 0.889 0.943  0.955  0.956 
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