
Identifying Reordering Transformations That Minimize IdleProcessor TimeWayne Kelly and William PughDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742fwak,pughg@cs.umd.edu1 IntroductionThe task of translating a sequential scienti�c programinto an program that can be run e�ciently on a paral-lel system involves making two key decisions. The �rstis how to distribute the iterations across the availableprocessors. The second is the order in which the it-erations should be executed. The primary goal whenmaking the �rst decision should be to minimize inter-processor communication and to achieve good load-balance. A primary goal when making the second de-cision should be to minimize the idle time processorsspend waiting for messages for other processors. Thesedecisions cannot be made independently since an iter-ation ordering that may be good for one distributionof iterations to processors, may not be good for someother distribution.We believe that the second of these decisions hasn'tbeen adequately addressed by previous work in thisarea. We show that choosing a good ordering for theiterations can be extremely importantly and that thischoice is heavy dependent on the way iterations aredistributed. We show that existing approaches to thisproblem can produce results that are far from optimal.We will also describe analysis techniques that allow usto predict how good iteration orderings will be withrespect to particular distributions of iterations.We assume a SPMD model, where physical proces-sors synchronize with other processors only when theyneed to communicate data. This synchronization canbe performed by messages or by synchronization suchas post and wait. Our compilation model is that it-eration reordering transformations are applied to theoriginal program and then the resulting program istransformed into SPMD code by specializing it so thatonly the iterations belonging to a particular processorare executed on it and the appropriate message han-dling and/or synchronizations is performed for inter-processor dependences.The actual execution order of the iterations can

make an enormous di�erence in the performance ofthe parallel program. Consider a stencil pattern com-putation with dependences up and to the right. Ifthe array is decomposed into blocks of columns, andthe outer loop iterates over columns, horrible per-formance will result: the second processor will notbe able to start execution until the �rst processor isnearly completed. If the array is decomposed ontocolumns in a cyclic fashion, and the outer loop it-erations over rows, horrible performance will result:a message/synchronization will occur between eachstencil element computation.This issue has been addressed in Fortran-D [7] byalgorithms to identify \cross-processor loops" and astrategy of moving cross-processor loops inward forblock distributions and outward for cyclic distribu-tions. However, the de�nition of cross-processor loopsis not theoretically sound. It works well for the stencilcomputations that typically arise in practice. But insome linear algebra kernels, it identi�es all the loopsas cross-processor loops, and hence provides no guid-ance. The strategy of how to move loops is a heuristicthat frequently works well, but is not justi�ed and maynot be the only way to reorder loops so as to reduceidle time.Some recent work [11] has suggested that block-cyclic distributions are important for obtaining goodperformance on some programs. In order for a itera-tion order to work well for a block-cyclic decomposi-tion, it must (to a �rst approximation) also work wellfor both a cyclic and for a block decomposition. Thusthe Fortran-D system o�ers no guidance in reorderingcomputation for a block-cyclic decomposition. Since�nding good execution orders for block-cyclic decom-positions is more di�cult, the more powerful and pre-cise methods described in this paper are important.A great deal of research has been done on deriv-ing good layouts of data and/or computation [5, 1, 4].In other systems such as Fortran-D and HPF [7, 6],the data decompositions are speci�ed by the user and1

computation is decomposed according to an ownercomputes rule.In this paper, we assume that we have been givena data and computation decomposition, and an or-dering of the iterations of the program. We use thisinformation to predict whether or not processors willidle waiting for synchronization from other processors.For each statement, we specify an a�ne mapping (re-ferred to as a space mapping) from that statement'siteration space to a virtual processor space. This vir-tual processor space is then mapped to the physicalprocessor space in either a blocked, cyclic or blocked-cyclic fashion. In this paper, we will only consider thecase of one dimensional virtual and physical proces-sor spaces. Figure 1 contains an example of a spacemapping.We specify an iteration re-ordering by specifying foreach statement, a one-to-one mapping (referred to as atime mapping) from that statement's original iterationspace to a new iteration space. The general form of atime mapping is:Tp : [i1p; : : : ; idpp]! [t1p; : : : ; tnp]where� The i1p; : : : ; idpp are the index variables of the loopssurrounding statement p.� The tkp's (called mapping components) are a�nefunctions of the index variables.The time mappings dictate that if iteration i of state-ment p is mapped to the same physical processor asiteration j of statement q and Tp(i) is lexicographi-cally less than Tq(j) then iteration i will be executedearlier than iteration j. This formalism is capable ofrepresenting any sequence of reordering transforma-tions including (imperfectly nested) loop interchange,loop distribution, loop fusion and statement reorder-ing [9].Time mappings are not responsible for ensuringthat data dependences between iterations on di�erentphysical processors are respected. These dependencesmust be enforced by inserting inter-processor synchro-nization at appropriate places. This synchronizationcan be implemented as either sends and receives if theaddress space is distributed, or posts and waits if theaddress space is shared. Time mappings must respectall data dependences. If intraprocessor dependencesare violated by the time mappings, the wrong com-putations will be performed. If interprocessor depen-dences are violated by the time mappings, we cannotverify that the program is deadlock free.We do not directly address the issue of how to derivea good reordering transformation that will minimize

Original Program:for i = 0 to nfor j = 0 to ma(i,j) += a(i,j-1) + a(i-1,j)Space mapping:S1 : f [i; j]! [i] g(blocked)Figure 1: Example program and space mappingprocessor idle time, given a speci�c space mapping.However, since our evaluation can examine a pre�xof the time mappings pronounce them as good, bad,or still-to-be-determined, we can use the methods de-scribed in [8] to derive a good reordering transforma-tion.Ideally, we would prefer a uni�ed approach thatwould consider time and space mappings simultane-ously, and derived an optimal combination. How-ever, our understanding of the interaction betweenthese two is inadequate for the loosely synchronizedSPMD model where computation and communicationcan overlap. Once this interaction is better under-stood (which we hope to advanced in this paper), wemay be able to derive an uni�ed solution.2 ExamplesConsider �rst the trivial program and space mappingshown in Figure 1. Table 1 shows the processor andtime at which each iteration will be executed assum-ing: n = 3, m = 5, each iteration takes 1 time unitto execute and it takes 2 time units for a synchro-nization message to pass between processors. Resultsare shown for two di�erent time mappings. Considerthe �rst of these time mappings. Iteration (0; 2) ismapped to processor 1, but it depends on iteration(0; 1) which is mapped to processor 0. Processor 0doesn't execute iteration (0; 1) until the 3nd time stepso iteration (0; 2) can't execute until time step 3 + la-tency = 5. In the mean time processor 1 waits idlely.These results clearly show that the amount of timeprocessors spend idle depends on the time mapping.Both of these time mappings result, to varying de-grees, in pipelined execution - once each processorstarts executing, it remains active until it has com-pleted all of its iterations. In more complex examples,this is not always the case - a processor might exe-cute some of its iterations and then have to wait forsome other processor before it can execute more of itsiterations.We have developed a simulator that allows us to2

f [i; j]! [j; i] g f [i; j]! [i; j] gTime Proc0 Proc1 Proc2 Proc0 Proc1 Proc21 (0,0) (0,0)2 (1,0) (0,1)3 (0,1) (0,2)4 (1,1) (0,3)5 (0,2) (2,0) (1,0)6 (1,2) (3,0) (1,1)7 (0,3) (2,1) (1,2)8 (1,3) (3,1) (1,3) (2,0)9 (2,2) (4,0) (2,1)10 (3,2) (5,0) (2,2)11 (2,3) (4,1) (2,3)12 (3,3) (5,1) (3,0)13 (4,2) (3,1)14 (5,2) (3,2)15 (4,3) (3,3) (4,0)16 (5,3) (4,1)17 (4,2)18 (4,3)19 (5,0)20 (5,1)21 (5,2)22 (5,3)(n = 5, m = 3, latency = 2)Table 1: Simulation of di�erent time mappingsquickly obtain results similar to those in Table 1 forarbitrary programs. The most important piece of in-formation in these results is the completion time (16and 22 respectively for the examples shown in Table1). Throughout this paper, we will give results of thisform from our simulator. To isolate the e�ects of pro-cessor idling, we have ignored issues such as cache linesand network contention.Consider again the program in Figure 1, this timewith n = 255, m = 127 and 16 physical processors.Table 2 shows the results for various time mappings,methods of mapping virtual processors to physicalprocessors and latencies. From these examples we cansee that the method of mapping virtual processors tophysical processors must be taken into account whendeciding which time mapping to use. One could al-ternatively conclude that the time mapping must betaken into account when deciding how to map vir-tual processors to physical processors. However, themethod of mapping virtual processors to physical pro-cessors is often dictated by other factors such as loadbalancing and minimizing communication. So, we pre-fer to take the view that we are given a method formapping virtual processors to physical processors, andtry to �nd the time mapping that best �ts the circum-stances. The dependences and time mappings in thisexample are symmetric, i.e. choosing a time map-ping of f [i; j] ! [i; j] g given a space mapping off [i; j] ! [j] g is analogous to choosing a time map-ping of f [i; j] ! [j; i] g given a space mapping off [i; j] ! [i] g. So, this example also shows demon-

Time mapping: f [i; j]! [j; i] glatency block cyclic(2) cyclic1 2288 28732 308633 2318 57660 9233310 2407 156883 305077100 3757 1438393 3049627Time mapping: f [i; j]! [i; j] glatency block cyclic(2) cyclic1 30622 16510 20473 30893 16893 209310 30998 17653 2677100 32348 29212 25628(n = 255, m = 127, procs = 16)Table 2: Di�erent virtual to physical mappingsProgram 1:for i = 0 to nfor j = 0 to ma(i,j) += a(i-1,j-1) + a(i-1,j)Program 2:for i = 0 to nfor j = i+0 to i+ma(i,j) += a(i-1,j-1) + a(i-1,j)Figure 2: Di�erent shaped iteration spacesstrates that the space mapping must be taken into ac-count when deciding which time mapping to use. Wecan also see from this example, that the importance ofchoosing a good time mapping, dramatically increasesas the latency increases (a latency of 100 time unitsmay in fact be optimistic for some distributed memorymachines).Now consider the two programs given in Figure 2.These programs have the same dependence patternbut di�erent shaped iteration spaces. Table 3 showssimulation results for these two programs for two dif-ferent time mappings. We see that neither time map-ping is universally best, which demonstrates that theshape of the iteration space is another factor thatneeds to be considered when deciding which time map-ping to use.We have not yet explicitly demonstrated, but themost important factor that needs to be taken into ac-count when deciding which time mapping to use isthe dependence pattern. The dependences indicatewhich iterations must execute before which other iter-3

Space mapping:S1 : f [i; j]! [i] g(blocked)Time Mapping Program 1 Program 2f [i; j]! [j; i] g 2318 6158f [i; j]! [i� j; i] g 6158 2318(n = 255, m = 127, proc = 16, latency = 3)Table 3: Di�erent shaped iteration spacesfor k = 1 to na(k,k) = sqrt(a(k,k))for i = k+1 to na(i,k) = a(i,k) / a(k,k)for j = k+1 to ia(i,j) = a(i,j) - a(i,k)*a(j,k)Figure 3: Cholesky Decompositionations and hence which processors may have to waitfor which other processors. So, dependences not onlydictate which time mappings are legal, they also a�ectwhich legal time mappings are good.In the examples we have considered so far, the ef-fects of each of the above mentioned factors can beeasily factored out and analyzed separately. In realprograms, these factors tend to combine together incomplex ways. Real programs are more di�cult to an-alyze than those we have seen so far because they usu-ally contain multiple statements, each of which has itsown space mapping and iteration space. Dependencescan exist between di�erent statements and can be non-uniform. Table 4 contains simulation results for themore realistic program shown in Figure 3. To simplifythe table, we report the performance as overheadson top of the time required if the computations wereevenly divided and no dependences existed. The im-balance overhead is the imbalance caused by physicalprocessors having uneven workloads assigned to them;it re
ects the execution time without dependences butwith the work decomposition speci�ed by the spacemapping. The overheads for speci�c time/space map-pings give the additional overhead when dependencesare enforced. a d in the �rst column indicates that aloop was distributed even though it did not need tobe distributed.On �rst inspection, the good time mappings seemto contain no discernable characteristics to distinguishthem from poor time mappings. In Section 4 we willdescribe analysis techniques that allow us to predictwhich of these time mappings are good.

Proc 0 Proc 2Proc 1

i

j

3

2

1

0

0 1 2 3 4 5

. .Figure 4: Iteration space and dependences3 Virtual to Physical MappingWe will assume that virtual processor 0 is the low-est numbered virtual processor used. We de�ne thefunction own as:v 2 own(p) i� p = bv=Bc mod Pwhere P is the number of physical processors andB is a speci�ed constant. This function de�nes themapping from virtual to physical processors. If v 2own(p), then virtual processor v is executed on physi-cal processor p. B = 1 produces a cyclic distribution,B = d(max virtual processor)=P e produces a blockeddistribution, and everything in between produces ablock-cyclic distribution. In many cases, we will notactually know P or even B at compile time. Usually,the functions we derive are not dependent on the pre-cise values of these variables (although they do dependconsiderably on whether B = 1 or B > 1).4 Analyzing Time MappingsConsider again the program in Figure 1. Figure 4shows the iteration space and dependences of this pro-gram mapped onto 3 processors for the case of n = 5,m = 3. For the purposes of analyzing processor idletime, we need only analyze dependences that crossphysical processor boundaries. Consider the depen-dence from iteration (0; 1) to iteration (0; 2). If weuse a time mapping of f [i; j] ! [i; j] g then in thetransformed program, iteration (0; 1) will be executedin the 1st iteration of the outermost loop on proces-sor 0 and iteration (0; 2) will be executed in the 1stiteration of the outermost loop on processor 1. So,with respect to the outermost loop of the transformedprogram, processor 1 will not have to wait for proces-sor 0. If we use a time mapping of f [i; j] ! [j; i] g4

�rst dimension distributed: space mapping cyclic cyclic(2)S1 [k]! [k] S2[k; i]! [i] S3[k; i; j]! [i] imbalance 4% imbalance 7%time mapping latencyT1[k]! T2[k; i]! T3[k; i; j]! 1 32 64 1 32 64KIJ [k; 0;0; 0;0] [k; 1; i; 0;0] [k; 1; i; 1; j] 0% 4% 13% 0% 16% 59%KIJd [k; 0;0; 0] [k; 1; i; 0] [k; 2; i; j] 0% 1% 4% 0% 1% 3%KJId [k; 0;0; 0] [k; 1; i; 0] [k; 2; j; i] 0% 1% 3% 0% 0% 2%IKJ [k; 1;0; 0;0] [i; 0; k; 0;0] [i; 0; k; 1; j] 0% 0% 0% 96% 97% 98%IJK [k; 1;0; 0;0] [i; 0; k; 1;0] [i; 0; j; 0; k] 0% 0% 0% 100% 101% 102%JKI [k; 1;0; 0] [k; 2; i; 0] [j; 0; k; i] 0% 2% 5% 0% 1% 2%JIK [k; 1;0; 0] [k; 2; i; 0] [j; 0; i; k] 0% 2% 5% 0% 1% 2%second dimension distributed: space mapping cyclic cyclic(2)S1 [k]! [k] S2[k; i]! [k] S3[k; i; j]! [j] imbalance 0% imbalance 0%time mapping latencyT1[k]! T2[k; i]! T3[k; i; j]! 1 32 64 1 32 64KIJ [k; 0;0; 0;0] [k; 1; i; 0;0] [k; 1; i; 1; j] 4% 6% 8% 6% 7% 8%KIJd [k; 0;0; 0] [k; 1; i; 0] [k; 2; i; j] 1% 4% 6% 6% 7% 8%KJId [k; 0;0; 0] [k; 1; i; 0] [k; 2; j; i] 1% 4% 6% 6% 7% 8%IKJ [k; 1;0; 0;0] [i; 0; k; 1;0] [i; 0; j; 0; k] 4% 63% 193% 108% 173% 242%IJK [k; 1;0; 0;0] [i; 0; k; 0;0] [i; 0; k; 1; j] 10% 143% 285% 10% 75% 143%JKI [k; 1;0; 0] [k; 2; i; 0] [j; 0; k; i] 0% 0% 0% 105% 106% 107%JIK [k; 1;0; 0] [k; 2; i; 0] [j; 0; i; k] 282% 284% 287% 291% 292% 293%Table 4: Cholesky Decomposition (n = 128, procs = 4)then in the transformed program, iteration (0; 1) willbe executed in the 2nd iteration of the outermost loopon processor 0 and iteration (0; 2) will be executed inthe 1st iteration of the outermost loop on processor1. So, processor 1 will have to wait for processor 0to execute an entire iteration of its outermost loop.This explains why f [i; j] ! [i; j] g is a better timemapping in this situation than f [i; j]! [j; i] g. Somewaiting occurs even if we use the f [i; j]! [i; j] g timemapping. We saw that iterations (0; 1) and (0; 2) areexecuted in the same iteration of the outermost loopusing this mapping, but iteration (0; 1) is executed inthe 2nd iteration of the innermost loop, while iteration(0; 2) is executed in the 1st iteration of the inner mostloop. So, processor 1 will have to wait for processor 0to execute an iteration of its innermost loop. This isnot ideal, but it is the best we can do in this situation.The dependences we are given are speci�ed withrespect to the original global iteration space. To ana-lyze processor idle time, we need to convert iterationsin this global space into local iterations (also referredto as local time) on each processor. For example, ifwe are using the f [i; j] ! [i; j] g time mapping thenglobal iteration (0; 1) becomes local iteration (0; 1) onprocessor 0 and global iteration (0; 2) becomes local it-eration (0; 0) on processor 1. Similarly, if we are usingthe f [i; j]! [j; i] g timemapping then global iteration(0; 1) becomes local iteration (1; 0) on processor 0 andglobal iteration (0; 2) becomes local iteration (0; 0) onprocessor 1. The idea of local time is that iterations

on di�erent processors will execute at the same \wallclock time" (assuming there is no waiting) if and onlyif the iterations have the same local time. What weare actually interested in is the di�erence in the lo-cal times of the iterations involved in inter-processordependences. This will give us the amount of timeone processor will have to wait for the other assumingthere have been no delays so far. For example, thedependence from (0; 1) to (0; 2) has a local di�erenceof (0;�1) and (�1; 0) respectively, for the two timemappings considered. We use the lexicographic order-ing of these local di�erences to rank time mappings(negative is bad, positive is good). We do this for allinter-processor dependences and then combine the re-sults (as explained in Section 5 to obtain an overallassessment of the time mapping. The next section ex-plains the general method we use to compute theselocal di�erences.4.1 Local time and di�erencesTo convert from a point in the original global iterationspace to a point in a local iteration space, we �rstconvert to a point in the transformed global iterationspace by applying the appropriate time mapping. Wethen convert this point to a point in a local iterationspace by considering; the shape of the iteration space,the space mapping and the method of mapping virtualprocessors to global processors. Figure 5 illustratesthe logical steps we perform to convert a dependencein the original global iteration space, to a di�erence in5

Dpqji in

T (i) T (j)qp
Transformed Global Distance

p q

Local Difference

i j

Transformed global iteration space

L’(T (i)) L’(T (j)) Local iteration space

Original iteration space

Figure 5: Global to local di�erenceslocal time.We compute local times and local di�erences onelevel at a time, starting at the �rst/outermost level.That is, if our time mappings are of the form:Tp : [i1p; : : : ; idpp]! [t1p; : : : ; tnp]then we �rst compute the 1st of components of lo-cal times and di�erences using the 1st components (t1pof each statement p) of the time mappings, then wecompute the 2nd components of the local times anddi�erences using the �rst 2 components (t1p and t2p ofeach statement p) of the time mappings, and so on,up to level n. The rest of this section describes howto compute kth component of the local times and dif-ferences.4.2 Groups of statementsIt is only meaningful to compute local di�erence up tothe common nesting level in the transformed programof the two statements. At each level we partition thestatements into groups that indicate whether thosestatements will be executed in the same loop at thatlevel. If all of the iterations of one statement are exe-cuted before all of the iterations of another statementat some level, then we assume that those statementswill be executed by di�erent loops at that level andhence will be in di�erent groups; otherwise they arein the same group. At each level, all dependences thathaven't been carried by earlier levels will be betweenstatements within the same group. The rest of thissection describes how to compute local times and dif-ferences for all dependences within a given group ofstatements G.

4.3 Local time for one levelWe use the expression L(t; p) to represent the kth com-ponent of local time for all iterations i such that i is aniteration of some statement q, tkq (i) = t and Sq(i) = p.We compute the setK = f t j9i; p s:t: p 2 G ^ i 2 Ip ^ t = tkp(i)^Sp(i) = v ^ t1p(i) = c1 ^ : : : tk�1p (i) = ck�1grepresenting range of values that will be executed bythe level k loop for statements in G on virtual proces-sor v (c1; : : : ; ck�1 are symbolic constants representingthe values of outer level loop variables).We compute local time by starting with the globaltime and normalizing where necessary. If the lowerbounds on t in K are independent of v then no nor-malization is necessary and t can be used as the localtime for all statements in G. If the lower bounds on tin K do involve v then one of the following forms ofnormalization will be required. If there are multiplelower bounds on t in K then we need to apply the fol-lowing normalization techniques to derive a result foreach lower bound and use the most pessimistic result.If the set K implies a constraint t = �v + �, theneach virtual processor executes a single iteration ofthe loop and the set of local iterations may be non-continuous. In this case we use:L(t; p) = �� t � ��BP � ; t� �� mod B�as the local time. Note that L's result is a tuple,which should be interpreted lexicographically. As itturns out, L does not depend on p in this case.If the set K contains more than one value, then,except for border cases, the range of values executedon each physical processor will be continuous. In thiscase we use: L(t; p) = t� minv2own(p) cvas the local time, where c is the coe�cient of v in thelower bound on t in K.4.4 Local di�erences for one levelGiven a function for L(t; p), we can now compute localdi�erences. We �rst de�ne the function:E(d; p; p0) = mint2K L(t+ d; p0) � L(t; p)which gives the minimum local di�erence between anytwo iterations executed on physical processors p andp0 respectively, that are separated by a global distanceof d. We use this function to de�ne:F (d; s) = minfE(d; p; p0) j9v s:t: v 2 own(p)^v + s 2 own(p0) ^ p 6= p0g6

which gives the minimum local di�erence between anytwo iterations executed on virtual processors s apartand separated by a global distance of d.Finally, this function is used to de�ne:M (p; q;D) =minfF (d; s) j 9i! j 2 D^tkq (j) � tkp(i) = d ^ Sq(j) � Sp(i) = sgthe minimum value of the kth component of the localdi�erence for all dependences in dependence relationD (between statements p and q). Dependence Rela-tions are the abstractions that we use to describe de-pendences. They consist of a set of a�ne constraintsthat describe exactly which iterations are dependenton which other iterations. For example, the depen-dences in Figure 4 would be represented by the de-pendence relation:f[i; j]! [i0; j0]j(i0 = i ^ j0 = j + 1 ^ 0 � i � 5 ^ 0 � j � 3)_(i0 = i + 1 ^ j0 = j ^ 0 � i � 5 ^ 0 � j � 3)gThe function M (p; q;D) is applied to all dependencerelations D between statements in G that have inter-processor dependences (i.e., i! j s:t: Sp(i) 6= Sq(j)).The results are then combined as explained in Section5 to obtain an overall assessment of the time map-ping. We now consider how to compute E(d; p; p0)and F (d; s) in various settings.4.4.1 Non-continuous loopsIf K contains only a single value thenF (d; s) = mint �j t+d���BP k� j t���BP k ;(t+d��� mod B) � (t��� mod B)�= �� d�BP � ; 1�B + (d� � 1 mod B)�If P , B or d are not known exactly, then we assumethe worst case result of (0; 1�B).4.4.2 Continuous loopsIf K contains more than a single value thenE(d; p; p0) = mint L(t+ d; p0) � L(t; p)= d+ minv2own(p) cv � minv2own(p0) cvIf c is positive:E(d; p; p0) = d+ c(minv2own(p) v � minv2own(p0) v)= d+ c((Bp) � (Bp0))= d� cB(p0 � p)

If c is negative:E(d; p; p0) = d+ c(maxv2own(p) v � maxv2own(p0) v)= d+ c((Bp +B � 1)� (Bp0 +B � 1))= d� cB(p0 � p)F (d; s) = d� cBf(s) ,if c > 0= d+ cBf(�s) ,if c < 0where:f(s) = maxfp0 � p j 9v s:t: v 2 own(p)^v + s 2 own(p0) ^ p 6= p0gIf a pure block decomposition is used:f(s) = �1 ,if �B � s � 1= d sB e ,otherwiseFor cyclic or block cyclic decompositions, we approx-imate f(s) when s > BP � B because f(s) is verysensitive to the exact values of B, P and s.f(s) = P � 1,if BP � B < s= � sB � ,if 0 < s � BP �B= P +min(�1; b(B � 1 + s)=Bc),if s < 04.5 Example revisitedWe now apply these formal methods to the examplein Figure 1 with a time mapping of f [i; j] ! [i; j] g.The transformed iteration space has two levels. We�rst compute local di�erences at level 1:G = f 1 g and K = f t j 0; v � t � v; 5 gThe lower bound on t in K does depend on v so nor-malization is required. Since K contains only a singlevalue we apply the non-continuous case:F (d; s) = ��d6� ; 1� 2 + (d� 1 mod 2)�D = f[i; j]! [i0; j0]j i0 = i+ 1 ^ j0 = j^0 � i � 5 ^ 0 � j � 3gM (1; 1; D)= min���d6� ;�1 + (d� 1 mod 2)� j9i; j; i0; j0 s:t:i0 = i+ 1 ^ j0 = j ^ 0 � i � 5 ^ 0 � j � 3^i0 � i = d ^ i0 � i = sg= (0;�1)We next compute local di�erences at level 2:G = f 1 g and K = f t j 0 � t � 3 gThe lower bound on t in K does not depend on v sono normalization is required.F (d; s) = d7

D = f[i; j]! [i0; j0]j i0 = i+ 1 ^ j0 = j^0 � i � 5 ^ 0 � j � 3gM (1; 1; D)= minf d j 9i; j; i0; j0 s:t: i0 = i + 1^ j0 = j^0 � i � 5 ^ 0 � j � 3 ^ j0 � j = d^ i0 � i = sg= 0Final result is local distance: (0;�1; 0)5 PipeliningIf our analysis determines that processors will needto wait for data being computed on other processors,we need to consider how often such waiting occurs.For example, for the program in Figure 1 and Table1, each successive processor incurs one more synchro-nization cost than the processor to its left. We de-scribe this as pipelined computation. If our analysisin Section 4 determines that we will not need to waiton synchronization, it doesn't matter whether or notthe computation is pipelined.For stencil computations over a pure blocked decom-position, there is a simple rule for analyzing pipelining.If all interprocessor dependences are strictly increasingin physical processor number, then the delay for theentire program is (P � 1)d, where d is the maximumdelay for a single synchronization. If this situation oc-curs only once interprocessor dependences carried byouter loops have been removed, then the delay needsto be multiplied by the number of iterations of thoseouter loops.This pipelining rule can rarely be applied to cyclicor block-cyclic decompositions, since even if the de-pendences are strictly increasing in virtual processornumber, they wrap around in physical processor num-ber (and are not strictly increasing in physical proces-sor number). However, pipelining does occur in cycliccomputations.In stencil computations over cyclic decompositions(which is probably an unrealistic case), another be-havior is seen. If a physical processor executes itsvirtual processors in order (e.g., processor p executesall the iterations belonging to virtual processor p, thenthe iterations belonging to virtual processor p+P ...),pipelining can occur in a way very similar to pipelin-ing for block stencil computations. In order for thisto happen, the work done by each virtual processormust be greater that Pd, where d is the synchroniza-tion delay between virtual processors. If this is true,then virtual processor p + P will be enabled by thetime physical processor p completes virtual processorp's work.We have also been developing techniques to ana-lyze pipelining-like behavior observed in some loop

orderings of linear algebra kernels such as Choleskydecomposition and Gaussian elimination with a cyclicor block-cyclic space mapping. However, at this pointour experience is too slight and our data points toofew to have su�cient con�dence that these techniqueswill accurately predict the behavior of programs wehaven't studied yet. We are continuing to developthese techniques and hope to present them soon.6 ResultsTable 5 contains the predictions made by our algo-rithm for Cholesky decomposition. We consider dis-tribution of both the �rst and second dimension, anda cyclic and cyclic(2) folding function. The only casewhere we need to apply an adjustment due to lowerbounds being dependent on v are in the IKJ and IJKloop orderings with the second subscript distributed.Since v is equal to j and i � j, we have c = 1 andf(s) = P � 1 for an o�set of �3. The adjustment fornon-continuous loops need to be applied in many ofthe examples.Our predictions are fairly accurate; the only seriousmisprediction is that is that we predict that using aa(:,cyclic) distribution and the JKI loop orderingwill be bad, when in fact it is quite good. The caseswhere we make no prediction turn out to be good,fair or bad. We have been able to predict all of thesecases more accurately using our methods for analyzingpipelined behavior, mentioned in Section 5. Withouttaking pipelining into account, all loops predicted tobe good are in fact good. Pipelining can only savepotentially bad performance; it cannot hurt a goodloop order.7 Related WorkThe only work to directly address this issue is thework on cross-processor loops in Fortran D [7]. For-tran D normally uses an owner computes rule anduser-supplied data decompositions. An algorithm isgiven in [7] to identify \cross-processor loops". Cross-processor loops are informally de�ned as:Sequential space-bound loops causing com-putation wavefronts that cross processorboundaries (i.e., sweeps over the distributeddimensions).For a block decomposition, cross-processor loops areinterchanged inward; for a cyclic decomposition cross-processor loops are interchanged outward. While thede�nition and strategy work for stencil computations,it is not theoretically sound and the conditions it8

First subscript distributedSynchronizing dependence : f[k; i]! [k; i0; i] : 1 � k < i < i0 � ngglobal transformed local transformed di�erence predictionversion dependence di�erence cyclic cyclic(2) cyclic cyclic(2)KIJ [k; 1; i; 0]! [k; 1; i0; 1; i] [0,0,+,1] [0,0,0+,1] [0,0,0+,-1,1] ? badKIJd [k; 1; i]! [k;2; i0; i] [0,1] [0,1] [0,1] good goodKJId [k; 1; i]! [k;2; i; i0] [0,1] [0,1] [0,1] good goodIKJ [i;0; k; 0]! [i0; 0; k; 1; i] [+,0,0,1] [0+,0,0,1] [0+,-1,0,0,1] ? badIJK [i;0; k; 1]! [i0; 0; i; 0; k] [+,0,+,-1] [0+,0,+,-1] [0+,-1, 0,+,-1] good badJKI [k; 2; i]! [i;0; k; i0] [+,-2] [+,-2] [+,-2] good goodJIK [k; 2; i]! [i0;0; i; k] [+,-2] [+,-2] [+,-2] good goodSecond subscript distributedSynchronizing dependence: f[k; i]! [k; i; j] : 1 � k < j � i � ngglobal transformed local transformed di�erence predictionversion dependence di�erence cyclic cyclic(2) cyclic cyclic(2)KIJ [k; 1; i; 0]! [k; 1; i; 1; j] [0,0,0,1] [0,0,0,1] [0,0,0,1] ? ?KIJd [k; 1; i; 0]! [k; 2; i; 1; j] [0,1] [0,1] [0,1] good goodKJId [k; 1; i; 0]! [k; 2; j; 1; i] [0,1] [0,1] [0,1] good goodIKJ [i;0; k; 0]! [i;0; k; 1; j] [0,0,0,1] [-3,0,0,1] [-3,0,0,1] bad badIJK [i;0; k; 1]! [i;0; j; 0; k] [0,0,+,-1] [-3,0,0+,-1] [-3,0,0+,-1,-1] bad badJKI [k; 2; i]! [j;0; k; i] [+,-2] [0+,-2] [0+,-1,-2] bad badJIK [k; 2; i]! [j;0; i; k] [+,-2] [0+,-2] [0+,-1,2] bad badTable 5: Predictions made by our algorithm for Cholesky decompositionchecks are neither necessary nor su�cient for a loopto be able to carry interprocessor dependences. Theproposed strategy for moving loops is just a heuris-tic that works well on stencil computations; it isn'tclear that it is valid for loops such as linear algebrakernels, and it makes no predictions for block-cyclicdecompositions.Figure 6 shows some of these problems. Loops iden-ti�ed by [7] are marked as do*. In the False Pos-itives column, loops are marked as do-across eventhough there are no interprocessor dependences. Inthe False Negatives column, no loops are marked asdo-across even though there are interprocessor depen-dences. These examples are designed to be demonstra-tive rather than realistic. There may not be any real-istic stencil computations that demonstrate the prob-lems with the above de�nition. But for non-stencilcomputations, there are some real codes on which theproblems are manifested. For Cholesky decomposition(Figure 3) with the �rst dimension distributed, it iden-ti�es all 3 loops as being \cross-processor", providingno guidance.In [5], the interaction between placement andscheduling is discussed, and the point is made that thetwo issues should be decided simultaneously, ratherthan one after the other. We agree in theory, butbelieve it is premature to integrate the two decisionsuntil a better understanding of their interactions isachieved (which we hope to advance in this paper).In Feautrier's work [3], the schedule (i.e., the timemapping) is selected �rst. This schedule is selected [?],

so as to minimize execution time on a PRAM with anin�nite number of processors. The resulting scheduleis equivalent to sequential loop nests containing paral-lel loop nests. A global barrier/synchronization is as-sumed between each iteration of the sequential loops.Once the schedule is selected, a space mapping func-tion from iterations to virtual processors is selected[4] so as to minimize the total communication volume.The space mapping is constrained so that any two it-erations executed in parallel according to the schedulemust execute on di�erent virtual processors. A foldingfunction (e.g., block or cyclic) is used to map virtualto physical processors.Feautrier's approach works reasonably well assum-ing that only barrier synchronization will be used andthat computation and communication can be over-lapped. If a cyclic folding function is used, using �nergrained synchronization and a machinemodel in whichcomputation and communication can be overlappedwill not give any improvement. If a block folding func-tion is used, some improvement may be seen, but hisresults will generally not be optimal. In the case of therectangular stencil pattern in Figure 1, he will choose atimemapping of i+j: a wavefront going from the lowerleft corner to the upper right corner. Each processorwill start up B2=2 + l after the processor to it's left(where B is the block size and l is the latency), leadingto an execution time of nB + (p� 1)(B2=2 + l), com-pared with a total execution time of nB+(p�1)(B+l)for the pipelined time mapping of f[i; j]! [i; j]g.9

False Positives False NegativesDecomposition T(N)real A(N)Align A(j) with T(j)Distribute T(block)do* i = 1 to ndo* j = i+1 to nA(i) = A(i) + 1A(j) = A(j) - 1 Decomposition T(N)real A(N,N), B(N,N)Align A(i,:) with T(i)Align B(i,:) with T(i)Distribute T(block)do i = 1 to ndo j = 1 to nA(i,j) = B(i+1,j-1)B(i+1,j) = A(i,j)Decomposition T(N)real A(N), B(N)Align A(i) with T(i)Align B(i) with T(i+1)Distribute T(block)do* i = 1 to nA(i) = ...B(i) = A(i+1) Decomposition T(N)real A(N,N), B(N,N)Align A(i,:) with T(i)Align B(i,:) with T(i+1)Distribute T(block)do i = 1 to ndo j = 1 to nA(i,j) = B(i,j-1)B(i,j) = A(i,j)Figure 6: Errors made by the Fortran-D \cross-processor" identi�cation algorithm8 ConclusionWe have shown that �nding appropriate reorderingtransformations can be quite important in minimizingidle processor time. Previous work in the Fortran-Dsystem works well in practice on stencil computations,although the algorithms can be spoofed into makingwrong choices. For linear algebra kernels, which typi-cally involve imperfectly nested loops with triangularloop bounds, the situation is much more complicated.The Fortran-D strategies do fail in practice for cyclicdecompositions and give no help for block-cyclic de-compositions. The techniques we describe here aremore accurate and consider subtler details, such asskewed iteration spaces.Other performance characteristics of the system,such as local cache behavior, may dictate other con-straints on a \good execution order" for the trans-formed program. Thus, it is important to have amethod of evaluating a potential execution order thatcan incorporate multiple performance criteria, for ex-ample to generate a execution order that has good lo-cal cache behavior and minimizes processor idle time.The methods we have described here can be combinedwith those in [8] to consider multiple performance cri-teria.In the �nal paper, we intend to report results fromanalyzing additional programs and techniques for ana-lyzing when cyclic computations will exhibit pipelinedbehavior and validate our theories in either the SUIFor the Fortran-D compiler.

References[1] Saman P. Amarasinghe and Monica S. Lam. Com-munication optimization and code generation for dis-tributed memory machines. In ACM '93 Conf. onProgramming Language Design and Implementation,June 1993.[2] Paul Feautrier. Some e�cient solutions tothe a�ne scheduling problem, Part II, Multidi-mensional time. Int. J. of Parallel Program-ming, 21(6), Dec 1992. Postscript available aspub.ibp.fr:ibp/reports/masi.92/28.ps.Z.[3] Paul Feautrier. Compiling for massively parallel ar-chitectures: A perspective. In 7th Workshop on Algo-rithms and Parallel VLSI Architectures, Leuven, Au-gust 1994. Elsevier. to appear.[4] Paul Feautrier. Toward automatic distribution. Par-allel Processing Letters, (94), 1994. to appear.[5] J. Ferrante, G. R. Gao, S. Midki�, and E. Schon-berg. A critial survey of automatic data partitioning.Technical report, IBM T.J. Watson Research Center,October 1992.[6] High Performance Fortran Forum. High performancefortran language speci�cation, version 1.0. Techni-cal Report CRPC-TR92225, Center for Research onParallel Computation, Rice University, 1992. RevisedMay, 1993.[7] Seema Hiranandani, Ken Kennedy, and Chau-WenTseng. Compiler optimizations for FORTRAN D onMIMD distributed memory machines. In Supercom-puting '91, November 1991.[8] Wayne Kelly and William Pugh. Determining sched-ules based on performance estimation. Technical Re-port CS-TR-3108, Dept. of Computer Science, Uni-versity of Maryland, College Park, July 1993. to ap-pear in Parallel Processing Letters (1994).[9] Wayne Kelly and William Pugh. A framework for uni-fying reordering transformations. Technical ReportCS-TR-3193, Dept. of Computer Science, Universityof Maryland, College Park, April 1993.[10] Amy W. Lim and Monica S. Lam. Communication-free parallelization via a�ne transformations. In Sev-enth Annual Workshop on Languages and Compilersfor Parallel Computing, Cornell, New York, August1994.[11] John M. Crummy Semma Hiranandani, Ken Kennedyand Ajay Sethi. Advanced compilation techniques forfortran d. Technical Report CRPC-TR93338, Centerfor Research on Parallel Computation, Rice University, October 1993.10

