Identifying Reordering Transformations That Minimize Idle

Processor Time

Wayne Kelly and William Pugh
Department of Computer Science
University of Maryland, College Park, MD 20742
{wak,pugh}@cs.umd.edu

1 Introduction

The task of translating a sequential scientific program
into an program that can be run efficiently on a paral-
lel system involves making two key decisions. The first
is how to distribute the iterations across the available
processors. The second is the order in which the it-
erations should be executed. The primary goal when
making the first decision should be to minimize inter-
processor communication and to achieve good load-
balance. A primary goal when making the second de-
cision should be to minimize the idle time processors
spend waiting for messages for other processors. These
decisions cannot be made independently since an iter-
ation ordering that may be good for one distribution
of iterations to processors, may not be good for some
other distribution.

We believe that the second of these decisions hasn’t
been adequately addressed by previous work in this
area. We show that choosing a good ordering for the
iterations can be extremely importantly and that this
choice 18 heavy dependent on the way iterations are
distributed. We show that existing approaches to this
problem can produce results that are far from optimal.
We will also describe analysis techniques that allow us
to predict how good iteration orderings will be with
respect to particular distributions of iterations.

We assume a SPMD model, where physical proces-
sors synchronize with other processors only when they
need to communicate data. This synchronization can
be performed by messages or by synchronization such
as post and wait. Our compilation model is that it-
eration reordering transformations are applied to the
original program and then the resulting program is
transformed into SPMD code by specializing it so that
only the iterations belonging to a particular processor
are executed on it and the appropriate message han-
dling and/or synchronizations is performed for inter-
processor dependences.

The actual execution order of the iterations can

make an enormous difference in the performance of
the parallel program. Consider a stencil pattern com-
putation with dependences up and to the right. If
the array is decomposed into blocks of columns, and
the outer loop iterates over columns, horrible per-
formance will result: the second processor will not
be able to start execution until the first processor is
nearly completed. If the array is decomposed onto
columns in a cyclic fashion, and the outer loop it-
erations over rows, horrible performance will result:
a message/synchronization will occur between each
stencil element computation.

This issue has been addressed in Fortran-D [7] by
algorithms to identify “cross-processor loops” and a
strategy of moving cross-processor loops inward for
block distributions and outward for cyclic distribu-
tions. However, the definition of cross-processor loops
is not theoretically sound. It works well for the stencil
computations that typically arise in practice. But in
some linear algebra kernels; it 1dentifies all the loops
as cross-processor loops, and hence provides no guid-
ance. The strategy of how to move loops is a heuristic
that frequently works well, but is not justified and may
not be the only way to reorder loops so as to reduce
idle time.

Some recent work [11] has suggested that block-
cyclic distributions are important for obtaining good
performance on some programs. In order for a itera-
tion order to work well for a block-cyclic decomposi-
tion, it must (to a first approximation) also work well
for both a cyclic and for a block decomposition. Thus
the Fortran-D system offers no guidance in reordering
computation for a block-cyclic decomposition. Since
finding good execution orders for block-cyclic decom-
positions is more difficult, the more powerful and pre-
cise methods described in this paper are important.

A great deal of research has been done on deriv-
ing good layouts of data and/or computation [5, 1, 4].
In other systems such as Fortran-D and HPF [7, 6],
the data decompositions are specified by the user and

computation is decomposed according to an owner
computes rule.

In this paper, we assume that we have been given
a data and computation decomposition, and an or-
dering of the iterations of the program. We use this
information to predict whether or not processors will
idle waiting for synchronization from other processors.
For each statement, we specify an affine mapping (re-
ferred to as a space mapping) from that statement’s
iteration space to a virtual processor space. This vir-
tual processor space is then mapped to the physical
processor space in either a blocked, cyclic or blocked-
cyclic fashion. In this paper, we will only consider the
case of one dimensional virtual and physical proces-
sor spaces. Figure 1 contains an example of a space
mapping.

We specify an iteration re-ordering by specifying for
each statement, a one-to-one mapping (referred to as a
time mapping) from that statement’s original iteration
space to a new iteration space. The general form of a
time mapping is:

Sl . 1
Ty iy, iyl = [t]
where
e The izl,, ce ig" are the index variables of the loops

surrounding statement p.

e The t’;’s (called mapping components) are affine
functions of the index variables.

The time mappings dictate that if iteration ¢ of state-
ment p is mapped to the same physical processor as
iteration j of statement ¢ and T,(¢) is lexicographi-
cally less than T, (j) then iteration ¢ will be executed
earlier than iteration j. This formalism 1s capable of
representing any sequence of reordering transforma-
tions including (imperfectly nested) loop interchange,
loop distribution, loop fusion and statement reorder-
ing [9].

Time mappings are not responsible for ensuring
that data dependences between iterations on different
physical processors are respected. These dependences
must be enforced by inserting inter-processor synchro-
nization at appropriate places. This synchronization
can be implemented as either sends and receives if the
address space is distributed, or posts and waits if the
address space is shared. Time mappings must respect
all data dependences. If intraprocessor dependences
are violated by the time mappings, the wrong com-
putations will be performed. If interprocessor depen-
dences are violated by the time mappings, we cannot
verify that the program is deadlock free.

We do not directly address the issue of how to derive
a good reordering transformation that will minimize

Original Program:
0 ton
for j =0 tomn
a(i,j) += a(i,j-1) + a(i-1,3)

for i =

Space mapping:
S1 {1, 7] — [7] }(blocked)

Figure 1: Example program and space mapping

processor idle time, given a specific space mapping.
However, since our evaluation can examine a prefix
of the time mappings pronounce them as good, bad,
or still-to-be-determined, we can use the methods de-
scribed in [8] to derive a good reordering transforma-
tion.

Ideally, we would prefer a unified approach that
would consider time and space mappings simultane-
ously, and derived an optimal combination. How-
ever, our understanding of the interaction between
these two is inadequate for the loosely synchronized
SPMD model where computation and communication
can overlap. Once this interaction i1s better under-
stood (which we hope to advanced in this paper), we
may be able to derive an unified solution.

2 Examples

Consider first the trivial program and space mapping
shown in Figure 1. Table 1 shows the processor and
time at which each iteration will be executed assum-
ing: n = 3, m = b, each iteration takes 1 time unit
to execute and it takes 2 time units for a synchro-
nization message to pass between processors. Results
are shown for two different time mappings. Consider
the first of these time mappings. Tteration (0,2) is
mapped to processor 1, but it depends on iteration
(0,1) which is mapped to processor 0. Processor 0
doesn’t execute iteration (0, 1) until the 374 time step
so iteration (0, 2) can’t execute until time step 3 + la-
tency = 5. In the mean time processor 1 waits idlely.

These results clearly show that the amount of time
processors spend idle depends on the time mapping.
Both of these time mappings result, to varying de-
grees, in pipelined execution - once each processor
starts executing, it remains active until it has com-
pleted all of its iterations. In more complex examples,
this is not always the case - a processor might exe-
cute some of its iterations and then have to wait for
some other processor before it can execute more of its
iterations.

We have developed a simulator that allows us to

(LA =0.a7 (=T 3
Time|| ProcO | Procl | Proc2 ProcO | Procl | Proc2
T 00 @)
2| (1) (0.1)
5| o) (0.2)
i | () (0.3)
5|l 02) | @0 (1,0)
6 || 12 | (30) (11)
7|3 | @ (1,2)
s |l az) | @ 13) | (20
5 (22) | (40) (21)
10 (32) | (50) (2:2)
11 (23) | (a) (2,3)
12 (3) | () (3.0)
13 (4,2) (3,1)
14 (5,2) (3,2)
15 (4,3) (33) | (40)
16 (5,3) (4,1)
17 (4,2)
18 (4,3)
19 (5,0)
20 (5,1)
21 (5,2)
22 (5,3)

(n =5, m = 3, latency = 2)

Table 1: Simulation of different time mappings

quickly obtain results similar to those in Table 1 for
arbitrary programs. The most important piece of in-
formation in these results is the completion time (16
and 22 respectively for the examples shown in Table
1). Throughout this paper, we will give results of this
form from our simulator. To isolate the effects of pro-
cessor idling, we have ignored issues such as cache lines
and network contention.

Consider again the program in Figure 1, this time
with n = 255, m = 127 and 16 physical processors.
Table 2 shows the results for various time mappings,
methods of mapping virtual processors to physical
processors and latencies. From these examples we can
see that the method of mapping virtual processors to
physical processors must be taken into account when
deciding which time mapping to use. One could al-
ternatively conclude that the time mapping must be
taken into account when deciding how to map vir-
tual processors to physical processors. However, the
method of mapping virtual processors to physical pro-
cessors 18 often dictated by other factors such as load
balancing and minimizing communication. So, we pre-
fer to take the view that we are given a method for
mapping virtual processors to physical processors, and
try to find the time mapping that best fits the circum-
stances. The dependences and time mappings in this
example are symmetric, i.e. choosing a time map-
ping of { [i,7] — [i,J] } given a space mapping of
{ [i,7] — [4] } is analogous to choosing a time map-
ping of { [i,j] — [j,7] } given a space mapping of
{441 — 7 }. So, this example also shows demon-

Time mapping: { [i,j] — [, }

latency || block | cyclic(2) cyclic
1 2288 28732 30863
3 2318 57660 92333
10 2407 156883 305077
100 3757 1438393 | 3049627
Time mapping { [1,7] — [i,7]]
latency || block | cyclic(2) | cyclic |
1 30622 16510 2047
3 30893 16893 2093
10 30998 17653 2677
100 32348 29212 | 25628

(n = 255, m = 127, procs = 16)

Table 2: Different virtual to physical mappings

Program 1:

0 ton
for j =0 tomn
a(i,j) += a(i-1,j-1) + a(i-1,j)

for i =

Program 2:

0 ton
for j = i+0 to i+m
a(i,j) += a(i-1,j-1) + a(i-1,j)

for i =

Figure 2: Different shaped iteration spaces

strates that the space mapping must be taken into ac-
count when deciding which time mapping to use. We
can also see from this example, that the importance of
choosing a good time mapping, dramatically increases
as the latency increases (a latency of 100 time units
may in fact be optimistic for some distributed memory
machines).

Now consider the two programs given in Figure 2.
These programs have the same dependence pattern
but different shaped iteration spaces. Table 3 shows
simulation results for these two programs for two dif-
ferent time mappings. We see that neither time map-
ping is universally best, which demonstrates that the
shape of the iteration space is another factor that
needs to be considered when deciding which time map-
ping to use.

We have not yet explicitly demonstrated, but the
most important factor that needs to be taken into ac-
count when deciding which time mapping to use is
the dependence pattern. The dependences indicate
which iterations must execute before which other iter-

Space mapping:
S1: {1, 7] — [i] }(blocked)

Time Mapping Program 1 | Program 2
{[,]—[i} 2318 6158
{ [, —=li—J,4} 6158 2318

(n = 255, m = 127, proc = 16, latency = 3)

Table 3: Different shaped iteration spaces

for k =1 ton
a(k,k) = sqrt(a(k,k))
for i = k+1 to n
a(i,k) = a(i,k) / a(k,k)
for j = k+1 to i
a(i,j) = a(d,j) - a(i, k) *a(j,k)

Figure 3: Cholesky Decomposition

ations and hence which processors may have to wait
for which other processors. So, dependences not only
dictate which time mappings are legal, they also affect
which legal time mappings are good.

In the examples we have considered so far, the ef-
fects of each of the above mentioned factors can be
easily factored out and analyzed separately. In real
programs, these factors tend to combine together in
complex ways. Real programs are more difficult to an-
alyze than those we have seen so far because they usu-
ally contain multiple statements, each of which has its
own space mapping and iteration space. Dependences
can exist between different statements and can be non-
uniform. Table 4 contains simulation results for the
more realistic program shown in Figure 3. To simplify
the table, we report the performance as overheads
on top of the time required if the computations were
evenly divided and no dependences existed. The im-
balance overhead is the imbalance caused by physical
processors having uneven workloads assigned to them:;
it reflects the execution time without dependences but
with the work decomposition specified by the space
mapping. The overheads for specific time/space map-
pings give the additional overhead when dependences
are enforced. a d in the first column indicates that a
loop was distributed even though it did not need to
be distributed.

On first inspection, the good time mappings seem
to contain no discernable characteristics to distinguish
them from poor time mappings. In Section 4 we will
describe analysis techniques that allow us to predict
which of these time mappings are good.

Proc 0 Proc 1 Proc 2

Figure 4: Iteration space and dependences

3 Virtual to Physical Mapping

We will assume that virtual processor 0 is the low-
est numbered virtual processor used. We define the
function own as:

v € own(p) iff p = [v/B] mod P

where P is the number of physical processors and
B is a specified constant. This function defines the
mapping from virtual to physical processors. If v €
own(p), then virtual processor v is executed on physi-
cal processor p. B = 1 produces a cyclic distribution,
B = [(max virtual processor)/P] produces a blocked
distribution, and everything in between produces a
block-cyclic distribution. In many cases, we will not
actually know P or even B at compile time. Usually,
the functions we derive are not dependent on the pre-
cise values of these variables (although they do depend
considerably on whether B =1 or B > 1).

4 Analyzing Time Mappings

Consider again the program in Figure 1. Figure 4
shows the iteration space and dependences of this pro-
gram mapped onto 3 processors for the case of n = b,
m = 3. For the purposes of analyzing processor idle
time, we need only analyze dependences that cross
physical processor boundaries. Consider the depen-
dence from iteration (0, 1) to iteration (0,2). If we
use a time mapping of { [¢,j] — [i,j] } then in the
transformed program, iteration (0, 1) will be executed
in the 1% iteration of the outermost loop on proces-
sor 0 and iteration (0,2) will be executed in the 1%¢
iteration of the outermost loop on processor 1. So,
with respect to the outermost loop of the transformed
program, processor 1 will not have to wait for proces-
sor 0. If we use a time mapping of { [¢,j] — [j,4] }

first dimension distributed: space mapping cyclic cyclic(2)
S1[k] — [k] Salk,i] — [:] Sa[k,1,7] — [¢] imbalance 4% imbalance 7%
time mapping latency

Ti[K] — Tolk,i] — T [k,i,j] 1 32 64 1 32 64
KIJ | [£,0,0,0,0] [k, 1,i,0,0] 5. 1,0,1,5] 0% 2% 13% 0% 16% 59%
K1Jd | [k,0,0,0] [k,1,4,0] [k, ,2,]] 0% 1% 4% 0% 1% 3%
KJId | [k,0,0,0] [k,1,4,0] [k,2,7,1] 0% 1% 3% 0% 0% 2%
IKJ | [£,1,0,0,0] [0,k 0,0] [i,0,k,1,7] 0% 0% 0% | 96% 9T% 98%
UK | [£,1,0,0,0] [;,0,k 1,0] [5,0,4,0, k] 0% 0% 0% | 100% 101% 102%
JKI [k,1,0,0] [k,2,7,0] [5,0,k,1] 0% 2% 5% 0% 1% 2%
JIK [k,1,0,0] [k,2,7,0] [5,0,4, k] 0% 2% 5% 0% 1% 2%

second dimension distributed: space mapping cyclic cyclic(2)

Si[k] — [k] Sa[k,i] — [k] Salk,4,5] — [J] imbalance 0% imbalance 0%

time mapping latency

Ti[K] — Tolk,i] — Tslk, s, 4] — 1 32 64 1 32 64
KIJ | [£,0,0,0,0] [k, 1,i,0,0] 5. 1,0,1,5] 2% 6% 2% 6% % 2%
K1Jd | [k,0,0,0] [k,1,4,0] [k, 2,1, 7] 1% 4% 6% 6% 7% 8%
KJId | [k,0,0,0] [k,1,4,0] [k, 2,7,1] 1% 4% 6% 6% 7% 8%
IKJ | [£,1,0,0,0] [;,0,k,1,0] [5,0,4,0, k] 4% 63% 193% | 108% 173% 242%
K | [£,1,0,0,0] [0,k 0,0] [i,0,k,1,7] 10% 143% 285% | 10% 75% 143%
JKI | [k,1,0,0] [k, 2,1,0] [5,0,k,1 0% 0% 0% | 105% 106% 107%
JIK | [k,1,0,0] [k, 2,1,0] [5,0,4, k] 282% 284% 287% | 291% 292% 293%

Table 4: Cholesky Decomposition (n = 128, procs = 4)

then in the transformed program, iteration (0, 1) will
be executed in the 277 iteration of the outermost loop
on processor 0 and iteration (0,2) will be executed in
the 1%! iteration of the outermost loop on processor
1. So, processor 1 will have to wait for processor 0
to execute an entire iteration of its outermost loop.
This explains why { [i,j] — [i,4] } is a better time
mapping in this situation than { [¢,j] — [4,4] }. Some
waiting occurs even if we use the { [¢, j] — [7, j] } time
mapping. We saw that iterations (0,1) and (0,2) are
executed in the same iteration of the outermost loop
using this mapping, but iteration (0, 1) is executed in
the 279 iteration of the innermost loop, while iteration
(0,2) is executed in the 1°* iteration of the inner most
loop. So, processor 1 will have to wait for processor 0
to execute an iteration of its innermost loop. This is
not ideal, but it is the best we can do in this situation.

The dependences we are given are specified with
respect to the original global iteration space. To ana-
lyze processor idle time, we need to convert iterations
in this global space into local iterations (also referred
to as local time) on each processor. For example, if
we are using the { [¢,j] — [,j] } time mapping then
global iteration (0, 1) becomes local iteration (0, 1) on
processor 0 and global iteration (0, 2) becomes local it-
eration (0,0) on processor 1. Similarly, if we are using
the { [¢, 7] — [4,4] } time mapping then global iteration
(0, 1) becomes local iteration (1,0) on processor 0 and
global iteration (0, 2) becomes local iteration (0, 0) on
processor 1. The idea of local time is that iterations

on different processors will execute at the same “wall
clock time” (assuming there is no waiting) if and only
if the iterations have the same local time. What we
are actually interested in is the difference in the lo-
cal times of the iterations involved in inter-processor
dependences. This will give us the amount of time
one processor will have to wait for the other assuming
there have been no delays so far. For example, the
dependence from (0, 1) to (0,2) has a local difference
of (0,—1) and (—1,0) respectively, for the two time
mappings considered. We use the lexicographic order-
ing of these local differences to rank time mappings
(negative is bad, positive is good). We do this for all
inter-processor dependences and then combine the re-
sults (as explained in Section 5 to obtain an overall
assessment of the time mapping. The next section ex-
plains the general method we use to compute these
local differences.

4.1 Local time and differences

To convert from a point in the original global iteration
space to a point in a local iteration space, we first
convert to a point in the transformed global iteration
space by applying the appropriate time mapping. We
then convert this point to a point in a local iteration
space by considering; the shape of the iteration space,
the space mapping and the method of mapping virtual
processors to global processors. Figure 5 illustrates
the logical steps we perform to convert a dependence
in the original global iteration space, to a difference in

Qi

Original iteration space

T({J) Transformed global iteration space
“|~ ~Transformed Global Distance

~ >~ Local Difference

Figure 5: Global to local differences

local time.

We compute local times and local differences one
level at a time, starting at the first/outermost level.
That is, if our time mappings are of the form:

Ty [ig, .. i) = [t), ...

bl t;)l]

then we first compute the 1°! of components of lo-
cal times and differences using the 1** components (tzl)
of each statement p) of the time mappings, then we
compute the 27% components of the local times and
differences using the first 2 components (tzl, and tzz, of
each statement p) of the time mappings, and so on,
up to level n. The rest of this section describes how
to compute k** component of the local times and dif-
ferences.

4.2 Groups of statements

It is only meaningful to compute local difference up to
the common nesting level in the transformed program
of the two statements. At each level we partition the
statements into groups that indicate whether those
statements will be executed in the same loop at that
level. If all of the iterations of one statement are exe-
cuted before all of the iterations of another statement
at some level, then we assume that those statements
will be executed by different loops at that level and
hence will be in different groups; otherwise they are
in the same group. At each level, all dependences that
haven’t been carried by earlier levels will be between
statements within the same group. The rest of this
section describes how to compute local times and dif-
ferences for all dependences within a given group of
statements G'.

4.3 Local time for one level

We use the expression L(t, p) to represent the k** com-
ponent of local time for all iterations ¢ such that ¢ is an
iteration of some statement ¢, t’q“(i) =t and S,(i) = p.
We compute the set

K={t[]3pst.peGAiecl, ANt =1tE(i)A
Sp(i) =w /\tzl)(i) =ci A .. .t’;_l(i) =cp_1}

representing range of values that will be executed by
the level k loop for statements in G on virtual proces-
sor v (eq, ..
the values of outer level loop variables).

We compute local time by starting with the global
time and normalizing where necessary. If the lower
bounds on ¢ in K are independent of v then no nor-

., cp—1 are symbolic constants representing

malization is necessary and ¢ can be used as the local
time for all statements in G. If the lower bounds on ¢
in K do involve v then one of the following forms of
normalization will be required. If there are multiple
lower bounds on ¢ in K then we need to apply the fol-
lowing normalization techniques to derive a result for
each lower bound and use the most pessimistic result.

If the set K implies a constraint ¢t = av + [, then
each virtual processor executes a single iteration of
the loop and the set of local iterations may be non-
continuous. In this case we use:

L(t,p) = (ﬁ;ﬂ % mod B)

as the local time. Note that L’s result is a tuple,
which should be interpreted lexicographically. As it
turns out, L does not depend on p in this case.

If the set K contains more than one value, then,
except for border cases, the range of values executed

on each physical processor will be continuous. In this
case we use:

min cv

Lt,p)=1t—
(p) vEown(p)

as the local time, where ¢ is the coefficient of v in the
lower bound on ¢ in K.

4.4 Local differences for one level

Given a function for L(t,p), we can now compute local
differences. We first define the function:

E(d,p,p) = min L(t + d,p") — L(t, p)
€

which gives the minimum local difference between any
two 1terations executed on physical processors p and
p’ respectively, that are separated by a global distance
of d. We use this function to define:

F(d,s) = min{E(d, p,p’) |Fv s.t. v € own(p)A
v+ s €ouwn(p)Ap#£p'}

which gives the minimum local difference between any
two iterations executed on virtual processors s apart
and separated by a global distance of d.

Finally, this function is used to define:

M(p,q, D) =min{F(d,s) | 3L — j € DA
tg(J) — 15 (0) = A A Sy(5) = Sp (i) = s}

the minimum value of the k** component of the local
difference for all dependences in dependence relation
D (between statements p and ¢). Dependence Rela-
tions are the abstractions that we use to describe de-
pendences. They consist of a set of affine constraints
that describe exactly which iterations are dependent
on which other iterations. For example, the depen-
dences in Figure 4 would be represented by the de-
pendence relation:

{1 =1, ']
(i =iNj' =j+1A0<i<HA0Lj<3)V
(I =i+ 1N} =jA0<i<5AD<)<3)}

The function M(p,q, D) is applied to all dependence
relations D between statements in & that have inter-
processor dependences (i.e., 1 — j s.t. S,(4) # Sq(J)).
The results are then combined as explained in Section
5 to obtain an overall assessment of the time map-
ping. We now consider how to compute E(d,p,p)
and F'(d, s) in various settings.

4.4.1 Non-continuous loops

If K contains only a single value then

: t+d— t—
ity q aBPﬁJ - LYB?DJ ’

(# mod B) — (% mod B))
= (|z%5]|,1 - B+ (% -1mod B))

(a4

F(d,s)=

If P, B or d are not known exactly, then we assume
the worst case result of (0,1 — B).

4.4.2 Continuous loops

If K contains more than a single value then

E(d,p,p) = mtinL(t—l—d,p/) — L(t,p)
= d+ min cv— min cv
vEown(p) vEown(p’)
If ¢ is positive:
E(d,p,p) = d+c¢ min v— min v
(p p) (onwn(p) vEown(p’))

= d+c((Bp) — (Bp))
= d—cB(p/ —p)

If ¢ 1s negative:

E(d,p,p)) = d+c¢(max v— max v
(p p) (onwn(p) vEown(p’))
= d+c¢((Bp+B-1)— (B + B—1))
= d—cB(p —p)
F(d,s) = d—eBf(s) if e >0
= d+c¢Bf(-s) ,ife<0
where:

v s.t. v € own(p)A
v+ s €own(p’)Ap#p'}

f(s) = max{p’ —p |

If a pure block decomposition is used:

fls) = -1
= [l
For cyclic or block cyclic decompositions, we approx-

imate f(s) when s > BP — B because f(s) is very
sensitive to the exact values of B, P and s.

fls) =

if —B <s<1
,otherwise

P—1ifBP—B<s
[£]if0<s<BP-B
P+min(—1,[(B—=—145s)/B]),if s <0

4.5 Example revisited

We now apply these formal methods to the example
in Figure 1 with a time mapping of { [i, 7] — [i,J] }.
The transformed iteration space has two levels. We
first compute local differences at level 1:

G={ltand K={t]|0,v<t<v,5}

The lower bound on ¢ in K does depend on v so nor-
malization is required. Since K contains only a single
value we apply the non-continuous case:

o= (2] 12+ 1moaa)

=i+ 1A = A
0<i<HA0<j<3)

D ={[i,5] = [, 7l

M(1,1, D)

=min{(|2], -1+ (d—1mod?2)) |3i,j,i,j s.t.
=i+ 1A =FA0<i<5A0<j<3A

i —i=dAi —i=s)}

= (0’ _1)

We next compute local differences at level 2:

+.

G={l}tand K={t|0<t<3}

The lower bound on ¢ in K does not depend on v so
no normalization is required.

F(d,s)=d

D={i,j]—=[i"j] #=i+1Aj =jA

0<i<5A0<j<3)

M(1,1, D)

=min{d |3, st i’ =i+ 1A = jA
0<i<BAO<j<3Aj—j=dAi—i=s)

=0

~1,0)

Final result is local distance: (0,

5 Pipelining

If our analysis determines that processors will need
to wait for data being computed on other processors,
we need to consider how often such waiting occurs.
For example, for the program in Figure 1 and Table
1, each successive processor incurs one more synchro-
nization cost than the processor to its left. We de-
scribe this as pipelined computation. If our analysis
in Section 4 determines that we will not need to wait
on synchronization, 1t doesn’t matter whether or not
the computation is pipelined.

For stencil computations over a pure blocked decom-
position, there is a simple rule for analyzing pipelining.
If all interprocessor dependences are strictly increasing
in physical processor number, then the delay for the
entire program is (P — 1)d, where d is the maximum
delay for a single synchronization. If this situation oc-
curs only once interprocessor dependences carried by
outer loops have been removed, then the delay needs
to be multiplied by the number of iterations of those
outer loops.

This pipelining rule can rarely be applied to cyclic
or block-cyclic decompositions, since even if the de-
pendences are strictly increasing in virtual processor
number, they wrap around in physical processor num-
ber (and are not strictly increasing in physical proces-
sor number). However, pipelining does occur in cyclic
computations.

In stencil computations over cyclic decompositions
(which is probably an unrealistic case), another be-
havior is seen. If a physical processor executes its
virtual processors in order (e.g., processor p executes
all the iterations belonging to virtual processor p, then
the iterations belonging to virtual processor p+ P ...),
pipelining can occur in a way very similar to pipelin-
ing for block stencil computations. In order for this
to happen, the work done by each virtual processor
must be greater that Pd, where d is the synchroniza-
tion delay between virtual processors. If this is true,
then virtual processor p + P will be enabled by the
time physical processor p completes virtual processor
p’s work.

We have also been developing techniques to ana-
lyze pipelining-like behavior observed in some loop

orderings of linear algebra kernels such as Cholesky
decomposition and Gaussian elimination with a cyclic
or block-cyclic space mapping. However, at this point
our experience is too slight and our data points too
few to have sufficient confidence that these techniques
will accurately predict the behavior of programs we
haven’t studied yet. We are continuing to develop
these techniques and hope to present them soon.

6 Results

Table 5 contains the predictions made by our algo-
rithm for Cholesky decomposition. We consider dis-
tribution of both the first and second dimension, and
a cyclic and cyclic(2) folding function. The only case
where we need to apply an adjustment due to lower
bounds being dependent on v are in the IKJ and IJK
loop orderings with the second subscript distributed.
Since v is equal to j and ¢ > j, we have ¢ = 1 and
f(s) = P — 1 for an offset of —3. The adjustment for
non-continuous loops need to be applied in many of
the examples.

Our predictions are fairly accurate; the only serious
misprediction is that is that we predict that using a
a(:,cyclic) distribution and the JKI loop ordering
will be bad, when in fact it is quite good. The cases
where we make no prediction turn out to be good,
fair or bad. We have been able to predict all of these
cases more accurately using our methods for analyzing
pipelined behavior, mentioned in Section 5. Without
taking pipelining into account, all loops predicted to
be good are in fact good. Pipelining can only save
potentially bad performance; it cannot hurt a good
loop order.

7 Related Work

The only work to directly address this issue is the
work on cross-processor loops in Fortran D [7]. For-
tran D normally uses an owner computes rule and
user-supplied data decompositions. An algorithm is
given in [7] to identify “cross-processor loops”. Cross-
processor loops are informally defined as:

Sequential space-bound loops causing com-
putation wavefronts that cross processor
boundaries (i.e., sweeps over the distributed
dimensions).

For a block decomposition, cross-processor loops are
interchanged inward; for a cyclic decomposition cross-
processor loops are interchanged outward. While the
definition and strategy work for stencil computations,
it 1s not theoretically sound and the conditions it

First subscript distributed

Synchronizing dependence :

{[k, 2] — [k,4,1]

1 <k<i<i <n}

global transformed local transformed difference prediction
version | dependence difference | cyclic cyclic(2) cyclic cyclic(2)
K1 51,60 = =L L [0.051 | 00001 [0,00+-1,1] |7 bad
KIJd [k,1,7] — [k,?,z 2] [0,1] [0,1] [0,1] good good
KJId [k,1,4] — [k,2,1,7'] [0,1] [0,1] [0,1] good good
IKJ [i,0,k,0] — [0k 1,i] [1,0.01] | [04:0,01] [04-1,001] | ? bad
TJIK [+,0,k,1] — [/,0,4,0,k] [+,0,4+,-1] | [0+,0,+,-1] [0+,-1, 0,4,-1] | good bad
JKI [kv 27 Z] - [27 07 kv Zl] [] [+7'2] [] gOOd gOOd
JIK [kv 27 Z] - [2/7 ’ iv k] [] [+7'2] [] gOOd gOOd

Second subscript distributed
Synchronizing dependence: {[k,7] — [k,4,7]:1 <k <j<i<n}

global transformed local transformed difference prediction
version | dependence difference | cyclic cyclic(2) cyclic cyclic(2)
K1 1,60 = [F1,4,1,7]] 00,01 | [0,0,0,1] [0,0,0,1] 7 7
K1Jd [k717270] - [k727i717j] [] [071] [] gOOd gOOd
K4 | ftsio] — k2,1 [01] [01] [01] zood good
IKJ [i,0,k,0] — [1,0,k,1,7] [0,0,01] | [-3,0,0,1] [-3,0,0,1] bad bad
K [0k 1] = [.0,5,0,k] [0.04:1] | [3.004+:1] [3.00+1,1] | bad bad
JKI [k, 2,4] — [4,0, k] [+,-2] [04,-2] [04,-1,-2] bad bad
JIK [k, 2,4 — [/,0,4, K] [+,-2] [0+,-2] [04,1,2] bad bad

Table 5: Predictions made by our algorithm for Cholesky decomposition

checks are neither necessary nor sufficient for a loop
to be able to carry interprocessor dependences. The
proposed strategy for moving loops is just a heuris-
tic that works well on stencil computations; it 1sn’t
clear that it 1s valid for loops such as linear algebra
kernels, and it makes no predictions for block-cyclic
decompositions.

Figure 6 shows some of these problems. Loops iden-
tified by [7] are marked as do*. In the False Pos-
itives column, loops are marked as do-across even
though there are no interprocessor dependences. In
the False Negatives column, no loops are marked as
do-across even though there are interprocessor depen-
dences. These examples are designed to be demonstra-
tive rather than realistic. There may not be any real-
istic stencil computations that demonstrate the prob-
lems with the above definition. But for non-stencil
computations, there are some real codes on which the
problems are manifested. For Cholesky decomposition
(Figure 3) with the first dimension distributed, it iden-
tifies all 3 loops as being “cross-processor”, providing
no guidance.

In [5], the interaction between placement and
scheduling is discussed, and the point is made that the
two issues should be decided simultaneously, rather
than one after the other. We agree in theory, but
believe it is premature to integrate the two decisions
until a better understanding of their interactions is
achieved (which we hope to advance in this paper).

In Feautrier’s work [3], the schedule (i.e.,
mapping) is selected first. This schedule is selected [?],

the time

so as to minimize execution time on a PRAM with an
infinite number of processors. The resulting schedule
is equivalent to sequential loop nests containing paral-
lel loop nests. A global barrier/synchronization is as-
sumed between each iteration of the sequential loops.
Once the schedule is selected, a space mapping func-
tion from iterations to virtual processors is selected
[4] so as to minimize the total communication volume.
The space mapping is constrained so that any two it-
erations executed in parallel according to the schedule
must execute on different virtual processors. A folding
function (e.g., block or cyclic) is used to map virtual
to physical processors.

Feautrier’s approach works reasonably well assum-
ing that only barrier synchronization will be used and
that computation and communication can be over-
lapped. If a cyclic folding function is used, using finer
grained synchronization and a machine model in which
computation and communication can be overlapped
will not give any improvement. If a block folding func-
tion is used, some improvement may be seen, but his
results will generally not be optimal. In the case of the
rectangular stencil pattern in Figure 1, he will choose a
time mapping of i+j: a wavefront going from the lower
left corner to the upper right corner. Each processor
will start up B?/2 4 [after the processor to it’s left
(where B is the block size and [is the latency), leading
to an execution time of nB + (p — 1)(B?/2 + 1), com-
pared with a total execution time of nB+(p—1)(B+/{)
for the pipelined time mapping of {[4, j] — [, j]}.

False Positives False Negatives

Decomposition T(W)
real A(N,N), B(W,N)
Align A(i,:) with T(i)
Align B(i,:) with T(i)

Decomposition T(W)
real ACI)

Align A(j) with T(j)
Distribute T(block)

do* i =1 ton Distribute T(block)
do* j = i+l ton doi=1+ton
A(i) = A(D) + 1 do j=1ton
A(H) = A(H) - 1 A(i,j) = B(i+1,j-1)

B(i+1,j) = A(i,j)

Decomposition T(W)

real A(N,N), B(W,N)
Align A(i,:) with T(i)
Align B(i,:) with T(i+1)
Distribute T(block)

Decomposition T(W)
real ACI), B(NW)

Align A(i) with T(i)
Align B(i) with T(i+1)
Distribute T(block)

do* i =1 ton doi=1+ton
ALy = ... do j=1ton
B(i) = A(i+1) A(i,j) = BG,j-1)
B(i,j) = A(i,])
Figure 6: Errors made by the Fortran-D “cross-

processor” identification algorithm

8 Conclusion

We have shown that finding appropriate reordering
transformations can be quite important in minimizing
idle processor time. Previous work in the Fortran-D
system works well in practice on stencil computations,
although the algorithms can be spoofed into making
wrong choices. For linear algebra kernels, which typi-
cally involve imperfectly nested loops with triangular
loop bounds, the situation is much more complicated.
The Fortran-D strategies do fail in practice for cyclic
decompositions and give no help for block-cyclic de-
compositions. The techniques we describe here are
more accurate and consider subtler details, such as
skewed iteration spaces.

Other performance characteristics of the system,
such as local cache behavior, may dictate other con-
straints on a “good execution order” for the trans-
formed program. Thus, it is important to have a
method of evaluating a potential execution order that
can incorporate multiple performance criteria, for ex-
ample to generate a execution order that has good lo-
cal cache behavior and minimizes processor idle time.
The methods we have described here can be combined
with those in [8] to consider multiple performance cri-
teria.

In the final paper, we intend to report results from
analyzing additional programs and techniques for ana-
lyzing when cyclic computations will exhibit pipelined
behavior and validate our theories in either the SUIF
or the Fortran-D compiler.

10

References

[1] Saman P. Amarasinghe and Monica S. Lam. Com-
munication optimization and code generation for dis-
tributed memory machines. In ACM ’93 Conf. on
Programming Language Design and Implementation,
June 1993.

Paul Feautrier. Some efficient solutions to
the affine scheduling problem, Part II, Multidi-
mensional time. Int. J. of Parallel Program-
ming, 21(6), Dec 1992. Postscript available as
pub.ibp.fr:ibp/reports/masi.92/28.ps.Z.

Paul Feautrier. Compiling for massively parallel ar-
chitectures: A perspective. In 7th Workshop on Algo-
rithms and Parallel VLSI Architectures, Leuven, Au-
gust 1994. Elsevier. to appear.

Paul Feautrier. Toward automatic distribution. Par-
allel Processing Letters, (94), 1994. to appear.

J. Ferrante, G. R. Gao, S. Midkiff, and E. Schon-
berg. A critial survey of automatic data partitioning.
Technical report, IBM T.J. Watson Research Center,
October 1992.

High Performance Fortran Forum. High performance
fortran language specification, version 1.0. Techni-
cal Report CRPC-TR92225, Center for Research on
Parallel Computation, Rice University, 1992. Revised
May, 1993.

Seema Hiranandani, Ken Kennedy, and Chau-Wen
Tseng. Compiler optimizations for FORTRAN D on
MIMD distributed memory machines. In Supercom-
puting '91, November 1991.

Wayne Kelly and William Pugh. Determining sched-
ules based on performance estimation. Technical Re-
port CS-TR-3108, Dept. of Computer Science, Uni-
versity of Maryland, College Park, July 1993. to ap-
pear in Parallel Processing Letters (1994).

Wayne Kelly and William Pugh. A framework for uni-
fying reordering transformations. Technical Report
CS-TR-3193, Dept. of Computer Science, University
of Maryland, College Park, April 1993.

[10] Amy W. Lim and Monica S. Lam. Communication-
free parallelization via affine transformations. In Sev-
enth Annual Workshop on Languages and Compilers
for Parallel Computing, Cornell, New York, August

1994.

[11] John M. Crummy Semma Hiranandani, Ken Kennedy
and Ajay Sethi. Advanced compilation techniques for
fortran d. Technical Report CRPC-TR93338, Center

for Research on Parallel Computation, Rice Univers
ity, October 1993.

