Discovering Frequent Structures using Summaries

Shayan Ghazizadeh Sudarshan Chawathe
Department of Computer Science Institute for Advanced Computer Studies
University of Maryland, College Park University of Maryland, College Park
shayan@s. und. edu chaw@s. und. edu

Abstract

We study the problem of finding frequent structures in semnistired data (represented as a directed labeled
graph). Frequent structures are graphs that are isomadxphitarge number of subgraphs in the data graph. Frequent
structures form building blocks for visual exploration ati@ka mining of semistructured data. We overcome the
inherent computational complexity of the problem by usirgummary data structure to prune the search space and
to provide interactive feedback. We present an experirhstudy of our methods operating on real datasets. The
implementation of our methods (which is freely availaberapable of operating on datasets that are two to three
orders of magnitude larger than those described in priokwor

1 Introduction

Technological factors such as the falling prices and irgingacapacities of storage media have made it practical for
organizations to store extremely large amounts of datarg&tkby their operations. Indeed, apart from secrecy and
legal protection, there is very little motivation for pemeantly deleting any data since the cost of storing it is often
negligible compared to its potential impact on decision mgland future operations. However, while storing data is
easy, making effective use of it is very difficult becauseah®unt of data is several orders of magnitude larger than
what a human expert can analyze. As aresult, there is a pgasséd fodata mining a term we use to denote the semi-
automatic extraction of interesting patterns from larg@ants of data. Although there has been considerable recent
work on data mining in both research and product communitiest of it has focused on relational or otherwise well
structured data (such as time series or high-dimensiota).dan the other hand, it is well recognized that a signitican
portion of the information vital to an enterprise is not wahuctured, but is either unstructured or semistructuvdal.

use the ternsemistructured datéo mean data whose structure is irregular, incomplete, gndmic. For example, a
collection of memos or legal documents has significant aireqde.g., sender’s name, subject, dates, outcomes, etc.)
however this structure is not as regular or reliable as thatd in traditional (well structured) databases. In thisgra

we address the problem of mining such semistructured data.

In many data mining tasks, an important (and frequently riws-consuming) task is the discovery and enumer-
ation offrequently occurring patternsvhich are informally sets of related data items that oceendiently enough to
be of potential interest for a detailed data analysis. Tleeipe interpretation of this term depends on the data model,
dataset, and application. Perhaps the best studied frarkéaradata mining uses association rules to describe inter-
esting relationships between sets of data items [AIS93hikframework, which is typically applied to market basket
data (from checkout registers, indicating items purch&sgether), the critical operation is determiningguent item-
sets which are defined as sets of items that are purchased togdtea enough to pass a given threshold (called
the support). For time series data, an analogous concemubsequence of the given series that occurs frequently.
This paper defines an analogous concept, cdtilient structure$or semistructured data (represented as a labeled
directed graph) and presents efficient methods for comgitaguent structures in large datasets.

Data mining is an iterative process in which a human expérteg the parameters of a data mining system based
on intermediate results presented by the mining systens uhieasonable to expect an expert to select the proper
values for mining parameters a priori because such sefteiuires a detailed knowledge of the data, which is what
the mining system is expected to enable. While frequent aganmgful feedback is important for any data mining
system, it is of particular importance when the data is seutgired because, in addition to the data-dependent
relationships being unknown a priori, even the schema iknotvn (and not fixed). Therefore, rapid and frequent

feedback to a human expert is a very important requiremerarfg system that is designed to mine semistructured
data. Prior work (discussed in Section 4) on mining such dfiéan falls short on this requirement.

The main idea behind our method, which is cal8uS(for Structure Extraction using Summaries), is the fol-
lowing three-phase process: In the first phaser(marizatiojy we preprocess the given dataset to produce a concise
summary. This summary is an abstraction of the underlyiaglydata and it indicates the types of relationships be-
tween nodes identified using their labels. Our summary is fimilar to data guides and other (approximate) typing
mechanisms for semistructured data [GW97, BDFS97, NUWGRBWI97]. As has been noted in such work (and
confirmed by our experiments in Section 3) such summariesyaieally dramatically smaller than the underlying
database. In the second phasandidate generatignour method interacts with a human expert to iterativebrele
for frequent structures and refine the support thresholdmpater. Since the search uses only the summary, which typ-
ically fits in main memory, it can be performed very rapidigtéractive response times) without any additional disk
accesses. Although the results in this phase are apprax{matipper set of final results), they are accurate enough to
permit uninteresting structures to be filtered out. (Wewhscthe nature of the approximation in Section 2.5.) When
the expert has filtered potential structures using the aqipiatte results of the search phase, an accurate count of
the number of occurrences of each potential structure idyzred by the third phasedgunting. As we shall see in
Section 3, this phase accounts for the majority of the tinemspn the mining process.

Users are often willing to sacrifice quality for a faster msge. For example, during the preliminary exploration of
a dataset, one might prefer to get a quick and approximaighinisito the data and base further exploration decisions
on this insight. In order to address this need, we introdacgmproximate version of our method, called L-SEuS. This
method only returns the topfrequent structures rather than all frequent structures.

The methods in this paper have three significant advantagerspoior work: First, they operate efficiently on
datasets that are two to three orders of magnitude largetthiose handled by prior work of which we are aware. Sec-
ond, even for large datasets, our methods provide appréeiraaults very quickly, enabling their use in an interaectiv
exploratory data analysis. Third, for applications anchaci®s that are interested in only the frequent structumess,
not necessarily their exact frequencies, the most expemrsiunting phase can be completely skipped, resulting in
great performance benefits.

In order to evaluate our ideas, we have implemented our rdétha data mining system for (semi)structured data
(also called SEuS). In addition to serving as a testbed foegperimental study (Section 3), the system is useful in its
own right as a tool for exploring (semi)structured data. \@eehfound it to discover intuitively meaningful structures
when applied to datasets from several domains. Our impletien of SEuS uses the Java 2 (J2SE) programming
environment and is freely available latt p: / / www. c¢s. und. edu/ pr oj ect s/ seus/ under the terms of the
GNU GPL license.

The rest of this paper is organized as follows: In Section define the structure discovery problem formally
and present our three-phase solution called SEuS. Se@i@n&.2, and 2.3 describe the summarization, candidate
generation, and counting phases. Section 2.4 presentppumamate method called L-SEuUS. In Section 2.5, we
discuss the quality of solutions produced by our completesgrproximate methods. Section 3 summarizes the results
of our detailed experimental study. Related work is disedss Section 4 and we conclude in Section 5.

2 Structure Discovery

SEuUS represents semistructured data as a labeled direafgd ¢n this representation, objects are mapped to vertice
and relations between these objects are modeled by edgesriu&ureis defined to be a connected graph that is
isomorphic to at least one subgraph of the database. Figilisttates the graph representation of a small XML
database. Any subgraph of the input database that is isdmiedipa structure is called @nstanceof that structure.
The number of instances of a structure is called the strelstsupport (We allow the instances to overlap.) For the
data graph in Figure 1, a structure and its three instaneeshamwn in Figure 2. We say a structur@ifrequentf it
has a support higher than a givikimesholdT'. Problem statement (frequent structure discovery): Given the graph
representation of a database and a threshpfihd the set off-frequent structures

A naive approach for finding frequent structures consisterafmerating all subgraphs, partitioning this set of
subgraphs into classes based on graph isomorphism, amdingta representative from the classes with cardinality
greater than the support threshold. Unfortunately, the remof subgraphs of a graph database is exponential in
the size of the graph. Further, the naive approach testspaachf these subgraphs for isomorphism in worst case.

author

conference

title

volume year title .
title year

Figure 1: Example input graph

book
child child child ’ child
title year
Structure Subgraph 1
child @ child child ’ child
Subgraph 2 Subgraph 3

Figure 2: A structure and its three instances

Although graph isomorphism is not known to be NP-hard (or)ifiH#®r96], it is a difficult problem and an approach
relying on an exponential number of isomorphism tests igkalyl to be practical for large databases.

Although we do not have a proof for the hardness of the fregstencture discovery problem, the closely related
problem of finding the support of the most frequéntertex structure is NP-hard. The hardness result follows b
reduction from the NP-hard problem of deciding whetherehetists a-vertex clique in a givem-vertex graptG.

For this purpose we construct a new gratconsisting of a copy o and a disjoint copy of(,:, the complete
graph om + 1 vertices. Clearly, the most frequéntvertex subgraph i/ is a clique oft vertices. IfG has nodk-sized
cliques, therk-sized cliques occur exactly= C,?“ timesinH. If G does have &-sized clique, theik-sized cliques
occur at least + 1 times. So, if we can count the support of the most freqéergrtex subgraph i/, we can decide
whetherG has ak-clique.

Given the above, practical systems must use some way to axaitiining all the possible subgraphs and must
calculate the support of structures without partitioning set of all possible subgraphs. Instead of enumeratirgg all
the subgraphs in the beginning, we can use a level-by-leyaresion of subgraphs similar to thketemset approach
adopted in Apriori [AS94] for market basket data. We startfrsubgraphs of size one (single vertex) and try to expand
them by adding more vertices and edges. A subgraph is nohdeplaanymore as soon as we can reason that its support

will fall under the threshold based alownward closure propertyA structure has a support higher than a threshold
if all of its subgraphs also have a support higher than thestiold. AGM [IWMO00] and FSG [KK01] are two recent
systems that adopt this strategy to find all structures wibport higher than a given thresholdJEDUE [CHOO]

is a greedy method that finds frequent structures in a gragtbdse using the minimum description length (MDL)
principle. This method is not complete in the sense that i n@ obtain all frequent structuresUBDUE also uses
the level-by-level expansion. However, instead of expagdill subgraphs at each iterationJEDUE only expands
the subgraphs belonging to the isomorphism class with thledsit score based on the MDL principle. To bound the
running time, $BDUE uses a beam search that is computationally constrainedn(&i@ details see Section 4.)

The results reported in [IWMO00, KKO1, CHO0O0], as well as oupesiments, suggest that these methods do not
scale to very large databases. For a graph with 9000 veftidgsh is much smaller than the datasets that interest us,
consisting of several million vertices), [KK01] reportaathtAGM needs about 8 days and FSG will take 600 seconds
for thresholds around 10%. AlthougluBDUE only takes 80 seconds to process the same dataset, ouregptsi
show that it does not scale easily to larger datasets. Fongbea it takes 8BDUE longer than 24 hours to mine a
50 megabyte dataset. (This experiment was run on a PC-cladisime using the serial implementation of SUBDUE.
For more details see Section 3.) The main factor hurtingoperdéince of these methods is the need to go through the
database to determine the support of each structure. Ajththe number of structures for which the support has to be
calculated has decreased significantly compared to the approach (due to the use of downward closure properties
or MDL heuristic), the calculation of the support of the renigg structures is still expensive. Further, all of these
systems operate in a batch mode: After providing the inptdaldese, a user has to wait for the structure discovery
process to terminate before any output is produced. Theneaintermediate (partial or approximate) results, making
exploratory data analysis difficult. This batch mode opgeratan cause major problems, especially when the user
does not have enough domain knowledge to guess proper Yalueing parameters (e.g., support threshold).

In order to operate efficiently, SEuS usdsta summariesnstead of the database itself. Summaries provide a
concise representation of a database at the expense of soomaey. This representation allows our system to ap-
proximate the support of a structure without scanning theltese. We also use the level-by-level expansion method
to discover frequent structures. SEuS has three major phake first phasesgmmarizatiohis responsible for cre-
ating the data summary and is described in Section 2.1. Isg¢hend phasec@andidate generation SEuS finds all
structures that have an estimated support above the giveshibld; it is described in Section 2.2. The second phase
reports such candidate structures to the user, and thisfeadback is useful for exploratory work. The exact support
of structures is determined in the third phaseunting, described in Section 2.3.

2.1 Summarization

We use a data summary to estimate the support of a structarettie number of subgraphs in the database that
are isomorphic to the structure). Our summary is similarpiritsto representative objects, graph schemas, and
DataGuides]NUWC97, BDFS97, GW97]. The summary is a graph with the felley characteristics. For each
distinct vertex label in the original grapl, the summary graph has an-labeled vertex. For each-labeled edge
(v1,v2) in the original graph there is am-labeled edgé€i,,) in S, wherel; andi, are the labels of; andwv.,
respectively. The summalry also associates a counter with each vertex (and edge) imdjche number of vertices
(respectively, edges) in the original graph that it repnése-or example, Figure 3 depicts the summary generated for
the input graph of Figure 1.

Since all vertices in the database with the same label mapawertex in the summary, the summary is typically
much smaller than the original graph. For example, the gadgtigure 1 has four vertices labelébok while the
summary has only one vertex representing these four verticethis simple example, the summary is only slightly
smaller than the original data. However, as noted in [GW&Ydny common datasets are characterized by a high
degree of structural replication, giving much greater spsavings. (For details, see Table 2 in the Appendix.) These
space savings come at the cost of reduced accuracy of rapatsa. In particular this summary tells us the labels
on possible edges to and from the vertices labelgger, although they may not all be incident on the same vertex
in the original graph. (For examplmurnal andconferencevertices never connect to the sapegpervertex, but the
summary does not contain this information.)

We can partly overcome this problem by creating a richer sargninstead of storing only the set of edges leaving
a vertex label and their frequencies, we can createuating lattice(similar to the one used in [NAM97]Y, (v) for
each vertex. For every distinct set of edges leavingwe create a node ifi(v) and store the frequency of this set

name 9 idref:2

journal conference

Figure 3: Summary graph

child; title
1 child; journal
child; con ference‘/ \ child; year
child; title cite; book
1 child; title
1

Figure 4: Counting Lattice fgqpapervertex

of outgoing edges. For example, consider the vertex lphpérin Figure 1. The counting lattice for this vertex is
depicted in Figure 4. In the input graph, there are threeusfit types opapervertices with respect to their outgoing
edges. One of thenpg, has a single outgoing edge labetdld leading to ditle vertex. Another instanceg, has two
outgoing edges ttitle andconferencevertices. Finallyp, has four outgoing edges. The lattice represents these three
types of vertices with labglaperseparately, while a simple summary does not distinguishédxt them. Each node in
lattice also stores the support of thapervertex type it represents. We call the original summalgval-0 summary

and the summary obtained by adding this lattice structueve-1 summary. Using the level-1 summary, we can
reason that there is mmpervertex in the database that connects to hotinnal andconferencevertices, which is not
possible using only level-0 summary. This process of emgthe summary by differentiating vertices based on the
labels of their outgoing edges can be carried further bygigia labels of vertices and edges that are reachable using
paths of lengths two or more. We refer to such summaridead-k summariesA level-k summary differentiates
vertices based on labels of edges and vertices on outgothg plengthk. However, building level-k summaries for

k > 2 is considerably more difficult than building level-0 anddéd summaries. Level-0 summaries are essentially
data guides, and level-1 summaries can be built with no md@itcost if the file containing the graph edges is sorted by
the identifiers of source vertices. For summaries of higéngls, additional passes of graph are required. Further, ou
experiments show that level-1 summaries are accurate érfouthe datasets we study (Section 3), so the additional
benefit of higher summary levels is unclear. In the rest & plaiper, we focus on level-0 and level-1 summaries.

We assume that the graph database is stored on disk as a seqgdi@uges, sorted in lexicographic order of the
source vertex. (Inputs in other formats, such as the onekfaséhe sample datasets in Section 3, are easily converted
to this format.) Building level-0 and level-1 summariesuggs only a single sequential scan of the edges file. We
build the summary incrementally in memory as we scan the g an edg€v,, v2, 1) we increment the counters
associated with the summary nodes representing the Igbatall, of v; andw,, respectively. Similarly, the counter
associated with the summary edgé€l,), s(l2), () is incremented, wherg;) denotes the summary node representing
labell;. (If the summary nodes or edges do not exist, they are cr@adatte the edges file is sorted in lexicographic
order of the source, we can be sure that we get all of the auggmiges of a vertex before encountering another source
vertex. Therefore, after processing all of the outgoingesdyf a vertex during level-0 summary construction, we add
an appropriate node to the corresponding lattice or inerdr@scounter of an existing lattice node.

Algorithm CandidateGeneratidinhreshold)
Input: The support threshold defining a frequent structure
Output: The set of all possible frequent structures

1. candidate—0:;

2. open—0;

3. for v € summaryand support¢) > threshold

4. do create a structure consisting of a single vertex
5. open—openuUs;

6. whileopen#

7. do S «any structure in open;

8. open<—open—S;

9. candidate—candidateJsS;

10. childrerk—expandsS);

11. for ¢ € children

12. doif support¢) > thresholdand ¢ ¢ candidate
13. then open<+—openUc;

14. return candidate;

Figure 5: Simplified Candidate Generation Algorithm

We use a level-0 summary, to estimate the support of a structuf@s follows: By construction, there is at most
one subgraph of (say,S’) that is isomorphic to the summary 8f If no such subgraph exists, then the estimated
(and actual) support & is 0. Otherwise, le€' be the set of counters 1 (i.e., C consists of counters on the nodes
and edges aof"’). The support of5 is estimated by the minimum value @. Given our construction of the summary,
this estimate is an upper bound on the true suppo#gt.ofVith a level-1 summary.;, we estimate the support of a
structureS as follows: For each vertexof S, let L(v) be the set of lattice nodes iy that represent a set of edges
that is a superset of the set of out-edges.dfet c(v) denote the sum of the counters for nodeg {m). The support of
S is estimated to benin,c s ¢(v). This estimate is also an upper bound on the true suppdtt Birther, it is a tighter
bound than that given by the corresponding level-0 sumntaryexample, consider a structure consisting paper
vertex with two out-edges, one tocanferencevertex and the other to jaurnal vertex. Using the level-0 summary
depicted in Figure 3, this structure’s support is estimatethe minimum of the counters on the 3-node subgraph of
the summary that is isomorphic to this structure’s summenwer left corner of the figure)min1,1,3,1,1 = 1.
However, from the data graph in Figure 1, it is clear that the support of this structure in 0. The level-1 summary
estimates this support accurately at the expense of molelkaEmping. Section 3 presents an experimental evaluation
of these estimates on real datasets.

2.2 Candidate Generation

A simplified version of our candidate generation algoritlmoutlined in Figure 5CandidateGeneration(xgturns
a list of candidate structures whose estimated suppartas higher. It maintains two lists of structurespenand
candidate In the open list we store structures that have not been psedeyet (and that will be checked later). The
algorithm begins by adding all structures that consist &f one vertex and pass the support threshold test to the open
list. The rest of the algorithm is a loop that repeats ungéréhare no more structures to consider (i.e., the open list is
empty.) In each iteration, we select a structu§ftom the open list and we use it to generate larger strust{oaled
S’s children) by calling theexpandsubroutine, described below (line 10). New child structuhat have an estimated
support of at least are added to the open list. The qualifying structures areraatated in the candidate result, which
is returned as the output when the algorithm terminates.

Given a structures, theexpandsubroutine produces the set of structures generated bpgddiingle edge t§
(termed the children of). In the following description of thexpandsS) subroutine, we usé&(v) to denote the set
of vertices inS that have the same label as vertex the data graph and(s) to denote the set of data vertices that
have the same label as a verteix S. For each vertex in S, we create the setddablésS, s) of edges leaving some
vertexinV (s). This set is easily determined from the data summary: ltestt of out-edges for the summary vertex
representing. (As we shall discuss in Section 3, this ability to generaigcsures using only the in-memory summary
instead of the disk resident database results in largegauirrunning time.) Each edge= (s,v,[) in addabl€s, s)

that is not already ii$ is a candidate for expandirtg If S(v) (the set of vertices with the same labek&sdestination
vertex) is empty, we add a new vertexwith the same label as and a new edgés, z,[) to S. Otherwise, for each
x € S(v) if (s,z,l) innotinS, a new structure is created froshande by adding the edgés, «, 1) (an edge between
vertices already ir$). If s does not have ahlabeled edge to any of the verticesSiiw), we also add a new structure
which is obtained front by adding a vertex' with the same label asand an edgés, «',1).

For example consider the graph in Figure 1. Let us assumenthatant to expand a structurs consisting

of a single vertexs labeledauthor. The setaddablés, s) is {authorcm>d book author'd—re>f book authorcm>d

name authorCh—'|>d pape} (all the edges that leave amthorlabeled vertex in database). Sin€éas only one vertex,

it can be expanded only by adding these four edges. Usingtheéige in the addable set, a new structure is obtained
from S by adding a nevibooklabeled vertex and connectiggo this new vertex by ahild edge. The other edges in
addabl€s, s) give rise to three other structures in this manner.

2.3 Support Counting

Once the user is satisfied with the structures discoveredeircandidate generation phase, she may be interested in
finalizing the frequent structure list and getting the exagiport of the structures. (Recall that the candidate geioer
phase provides only a quick, approximate support for eadletsire, based on the in-memory summary.) This task is
performed in the support counting phase, which we descebe. h

Let us define the size of a structure to be the number of nodkeduges it contains; we refer to a structure of size
k as ak-structure From the method used for generating candidates (Sect®ni2follows that for everyk-structure
S in the candidate list there exists a structfyeof sizek — 1 or k — 2 in the candidate list such tha}, is a subgraph
of S. We refer toS, as theparentof S in this context. Clearly, every instandeof S has a subgrapl that is an
instance ofS,. Further,I’ differs fromI only in having one fewer edge and, optionally, one feweresertWe use
these properties in the support counting process.

Determining the support of a 1-structure (single vertexjsists of simply counting the number of instances of a
like-labeled vertex in the database. During the countiregsphwe store not only the support of each structure (as it is
determined), but also a set of pointers to that structunstances on disk. To determine the support bfstructure
S for k > 1, we revisit the instances of its pare$y using the saved pointers. For each such instdnege check
whether there is a neighboring edge and, optionally, a noate when added td generates an instanééof S. If so,

I' is recorded as an instance ®f This operation of growing an instanéeof S, to an instancd’ of S is similar to

the expand operation used in the candidate generation;gih@sever, there are two difference. First, in the counting
phase we expand subgraphs of the database whereas in théatamgneration phase we expand abstract structures
without referring to the disk-resident data (using onlyshenmary). Second, in the counting phase we need to find an
edge or vertex in the database to be added to the instancsatisdies the constraints imposed by the expansion which
created the structure (e.g., the label of the edge). Whénethe candidate generation phase, we add any possible
edges and vertices to the structure.

A key operation in the above procedure is finding the edgewartites in the database that potentially satisfy the
expansion constraints for a given instance. Instead ofrsegithe database for this information (which would be very
inefficient), for each vertex, we create an auxiliary file adming the out-edges of the vertex. These files are singlar t
path indexes and access support relations used in objeseamidtructured databases [KM90; 98], and are created
using a single pass through the database before the coyntiérsg begins.

2.4 Quality-Speed Tradeoff

The SEuS method described above is significantly fasterdttear methods of which we are aware. (See Section 3.)
Further, for applications that are not concerned with tleeegupports of frequent structures (e.g., structured &irayy
data exploration), the counting phase can often be skipjsd]ting in interactive response times of a few seconds
(between the input of parameters and the output of resuttejvever, it presents only two options for the tradeoff
between running time and the accuracy of supports: stopgtittige search phase, in which case the estimate is an
upper bound on the true support of a structure, and runniegtiunting phase, in which case exact supports are
produced. In this section, we present a method, call&fEusS, that allows a user to tune the quality-speed tradeoff at
a finer granularity.

Unlike SEuS, L-SEuUS does not discover all frequent strestlinstead, it returns only thep-n structures: being
an input parameter). By top; we mean the structures that rank highest based on a scoring metric thatefine
below. We may be tempted to use support as the scoring metricjoing so would result in structures consisting
of a single node (1-structures) receiving the highest scgimce any k-structure with suppdarincludes a number
of 1-structures with supports no smaller thanFor example in the database of Figure 1, the most frequerdtare
would be the structure with a single vertex labelitlé, because it has a support of 7. While technically correct by
definition, it is very unlikely that such frequent structsi@e useful to an application because they convey vewy littl
information about the database. Therefore, we need a gcovatric that balances the support of a structure with its
size. (An analogous problem does not occur in SEuS becatsteiins all frequent structures, not just thaighest-
scoring ones.) For this purpose, we use the product of thesstipnd size of a structure (where size refers to the sum
of the number of vertices and number of edges in the strugtweerefer to this metric as the structuretsorebelow.

Another difference between SEuS and L-SEuS is the filteralgeme used in the candidate generation phase.
In SEuS, we have a global threshold and every structure igpaced with this threshold. This model suffers from
the usual problem with absolute thresholds: If the user tsviegy familiar with the dataset (a likely situation in
data exploration) then the system must be run with severdspd values of these thresholds before usable values
are found. Since L-SEuUS is an approximate method, in orderatke it more suitable for preliminary explorations,
we use docal comparison scheme in this method. In this model, a strugtufeequent if its score is higher than
the adjusted scoref all of its children regardless of the score of other sties. The adjusted scor(S) of a
structureS is simply its score times a parameter called streicture complexity measure (SCKI) < SCM < 1):
A(S) = supportS) x sizgS) x SCM. A structureS is considered frequent if scdig) > A(S’) for all structures
S’ of which it is the parent structure (i.e., for all structu#shat can be generated frofhby adding one edge and,
optionally, one vertex).

In our work with the L-SEuS system and the datasets desdiritf®eiction 3, we have found SCM to be a convenient
tuning parameter. If we use large values for SCM, then werfavare complex structures and if we use SCM values
near zero, the support becomes more important. An SCM vdloaeimposes no size constraints on the discovery
process. Itis implemented as a slider control in the L-SBEsEes and allows us to quickly pick a value that returns
structures that are both large and frequent enough. We & ¢cabichieve interactive response times (essential for the
slider control) because we return candidate structuresrgéad by the search phase, which is very fast, and do not
need to perform the counting phase.

These modifications only affect the candidate generatias@h (See Figure 5.) The termination condition on
line 6 changes to incorporate early termination when we ffi@wadn structures. Also, the candidate set is updated
(line 9) only if none of the children pass ti¥CM test scoréc) x SCM > scorés). On line 13, only the children
passing this test should be added to the open list. The staustlection on line 7 has to be changed as well. Since
this new method is greedy and will stop as soom &sructures are discovered, we should process the strgaititte
higher scores first. Therefore, instead of choosing anyrariistructure, we first process the structure with the é&sgh
score in the open list. In Section 3 we present experimeesailts studying the effects of these changes in semantics
on the running time and solution quality.

L-SEuS is similar to the @BDUE system in its functionality and solution strategy. Both hogls return the top-
frequent structures based on some ranking metrigBC8JE ranks structures using the compression ratio based on
the Minimum Description Length (MDL) principle. (A highecaring structure results in greater compression in a
database encoding that replaces each instance of theus&rwgth a node representing the structure, stored sepajate
L-SEuS ranks structures using the score metric describ@gedbize times support). L-SEuS’s score metric is closely
related to ®BDUE's compression ratio: It is simply the compression ratio whe ignore the space needed to store
the mapping between the nodes that replace each instanstratture and the structure itself. (L-SEuS can easily be
modified to use the exact compression ratio as the rankinganginally, neither L-SEuUS norlBDUE is complete;
that is, they are greedy methods that are not guaranteetlim tbe most frequent structures. (The SEuS method is
complete.)

25 Algorithm Analysis

The candidate generation process of SEuUS uses an estinugjedrsmeasurement. However, since this estimation
is always higher than the actual value, SEuS will not miss stnycture that might have a support higher than the
threshold. This overestimation, on the other hand, mighteaome structures with a support lower than the threshold

to be added to the candidate list. Although these structuiltbe removed from the frequent structure list during
the support count phase, the effort spent to count theiratippwasted. We present an experimental study of this
overestimation in Section 3.

On the other hand, our approximate method (L-SEuS) is natgxeed to produce optimal solutions. (A solution
is optimal if it consists of the: highest scoring structures.) We now discuss the threerfactmtributing to nonop-
timal solutions in L-SEuS: the overestimation of a struewsupport, the early termination condition, and the local
comparison model.

Since L-SEUS is a greedy method and only returns thefigtructures that it identifies as frequent, the order
in which structures are considered for expansion is impartéRecall that the order of structure expansion is not
important for correctness in SEuS because every structillrewentually be considered.) Structures are ordereddase
on their scores in the candidate generation phase of L-SEwsHucture’s score depends on its support which is
estimated using the summary. Although estimates are gig@io be no lower than the actual supports, the amount
of overestimation can vary across structures. For exara@gucture whose estimate is a very large overestimate may
cause a structure with higher score (but lower estimateg toumped off the candidate list.

As described in Section 2.4, L-SEuUS uses a local model fompewmimg structures. Using this local model based
on the SCM parameter has the benefits outline above; howeeanialso occasionally lead to some unintuitive
results. A structure can be excluded from consideratioglgblased on a comparison with its parent. If a structure’s
parent has a very high score compared to all other strugtilmes excluding the child without comparing it with the
rest of normal structure population might not be fair. As aample, suppose; ands, are two structures being
considered for expansion in different iterations of thedidate generation phase with SCM = 1. Further, suppose
supports;) = 1000, supportss) = 50, and sizés;) = size(ss) = 3. If structuress;; and s,; resulting from
expandings; ands, both have a support equal to 40 and &ize) = sizg(ss;) = 5 (one additional edge and vertex)
thenss; will be added to the open list whilg ; will not even be considered. This decision is made despédabt
that scoré€s;;) = scoréss;). This inconsistency occurs because we use a local compariedel rather than a global
one. This problem affects only the L-SEuS (and not SEuS) atkth

3 Experimental Evaluation

In order to evaluate the running time of our method and thdityua the solutions it produces, we have performed a
number of experiments. We have implemented SEuS and L-S&n§ the Java 2 (J2SE) programming environment.
For graph isomorphism tests, we have usedrthaty package[McKO02] to derive canonically labeled isomorphic
graphs. Since we have two levels of summaries, we appenddi teSa system’s name to show which level of
summary has been used with the method in a particular expatifa.g., SEuS-S0 is the SEuS method using summary
level-0). In the experiments described below, we have use@-&lass machine with a 900 MHz Intel Pentium 111
processor and one gigabyte of RAM, running the RedHat 7 ttildlision of GNU/Linux. Where possible, we have
compared our results with those fauBDUE version 4.3 (serial version), which is implemented in ther@pamming
language. Table 2 presents some characteristics of thetd8adsawe have used for our experiments, with references
to their sources.

Figure 6 compares the running time of SEuS, L-SEuS, avBD®E on the 13 datasets of Table 2. Running
times of SEuS and L-SEuS using both levels of summaries gietdd here. It is important to notice that SEuS
versions run for a longer time because they are looking flofredjuent structures, whereas L-SEuS amntBBUE
only return then most frequent structures (= 5 in these experiments.). The running times of SEuS and L-SEuS
increase monotonically as the size of datasets increades.irfegularities in the running time ofUBDUE are due
to the fact that, besides the size of a dataset, factors sutteaanumber of vertex and edge labels have a significant
effect on the performance oflUBDUE. Referring to Table 2, it is clear th&redit datasets have many more labels
than theDiabetesdatasets. Althougkredit-1andCredit-2 datasets are smaller than tB&abetesdatasets, it takes
SUBDUE longer to mine them because it tries to expand the subgraphb possible edges at each iteration. Then
SUBDUE decides which isomorphism class is better by consideriagithmber of subgraphs in them and the size of
the subgraphs. (INMBDUE the sets of isomorphic subgraphs are manipulated as bagbgfaphs.) When there is
a large number of different vertex or edge labels, therelvélh larger number of subgraphs to choose between and
since $JBDUE accesses the database for each subgraph, the running tireases considerably. The number of edge
or vertex labels affects SEUS and L-SEuS in a similar waysdae we do not access the main database to find the
support of a structure (we use the summary instead) this uddes not significantly affect our running time.

I
Subdue SEuS-SoE==m

Lo L-SEuS-SO mmmm - °0 _
L-SEuS-S1 s
g °7
c 6
(@]
o 4
)
2 —
Y 2 Y 2
cred¥® credd® mabeies mabe‘es
Small Datasets
50 25
o 607
2
S 40
(8]
[
N 20— I H I
0 .-IHH JlgH IIH II?U}
N N N
9ot Qxﬁed& g‘(\e“\'w’ca c,\:e&n C\i\ege
Medium Datasets
4000 i
é 3000
8 2000
]
’ “”’“JIH | ||
O —

1 — — —
y&ed‘lca1 y\edical y\edical V&edical

Large Datasets

Figure 6: Running time

SEuUS and L-SEuS have a phase of data summary generation SWBthHJE does not perform. In small datasets
this additional effort is comparable to the overall runntige. For example, while running dbiabetesdatasets,
L-SEuS-S0 takes longer thatuBDUE mainly because of the summary generation overhead. Latkisiisection we
show that as the dataset size grows this overhead becomiigilieg Also note that the running time of SEuS and
L-SEuS increases if we use level-1 summary instead of I@welimmary. This increase in running time is mainly due
to the overhead of creating a richer summary. Later, we wél that this additional effort will result in more accurate
results. We are comparing a Java implementation of (L-)Sitls the C implementation of SBDUE. While the
difference in efficiency of these programming environméntsot significant for large datasets, it is a factor for the
smaller ones.

As the datasets grow, the running time a§EBUE grows very quickly, while (L-)SEuS does not show such
a sharp increase. With our experimental setup, we were artabbbtain any results fromUBDUE for datasets
larger than 3 MB (after running for 24 hours). For this regdeigure 6 presents the running time of only SEuS
and L-SEuS methods for the large datasets. To best of ourlkdge, other complete structure discovery methods
cannot handle datasets with sizes comparable to those veeusad here. As mentioned earlier, the AGM and FSG
methods take respectively eight days and 600 seconds tegwtltaChemicaldataset, for which SEuS only needs 20
seconds[KKO01]. (Unfortunately, we were unable to obtamBSG system to perform a more detailed comparison.)
One should note that for very small thresholds, these msthdlil have a better performance because with those
thresholds a large number of structures will be frequentaméummary does not provide a significant pruning while
introducing the overhead of creating a summary.

10

Dataset Size | Average percentage Total
of overestimation | number

Level-0| Level-1| of cases
Credit-1 3899 1.38 0.00 55
Credit-2 3899 0.50 0.00 48
Diabetes-1 4556 5.78 0.00 58
Diabetes-2 8500 3.39 0.03 47
Vote 8811 1.62 0.00 50
Credit-3 12300 1.60 0.00 49
Chemical 18506 0.00 0.00 34
Credit-4 27800 0.30 0.00 48
Chess 189311 0.00 0.00 14
Medical-1 | 3999997 0.17 0.00 43
Medical-2 | 4999997 0.15 0.00 40
Medical-3 | 5999997 0.16 (0.00) 42
Medical-4 | 9529355 0.18 0.00 33

Table 1: Average overestimate of support of the structures

In the experiments studying running time, we have used a B@HM value of 0.9 for L-SEuS methods (which,
recall, return only the top-n structures). However, a samiitrategy of using a fixed threshold (absolute or relative
to database size) is impractical for the SEuS methods, wigitthin all frequent structures. We found that a support
threshold that returns a reasonable number of structuremnfo dataset results in far too many for another. Raising
the threshold to fix the problem with the second datasettesuho frequent structures for the first. (This experience
exemplifies the need for an interactive system which givesea tapid feedback to enable selection of parameters
based on the characteristics of a dataset.) For the SEuSdsethie used this interactive procedure to select threshold
values that result in roughly 50 frequent structures fohedataset. (These thresholds are mentioned in Table 3.) As
Figure 6 shows, for large datasets the L-SEuS methods dee faan the SEuS methods. However, SEuS methods take
at most twice as long as the approximate L-SEuS methods.r&$ist supports our suggested strategy for exploring
datasets of this magnitude: Use L-SEuS method (with or wittiee counting phase) for initial interactive exploragon
in order to select proper thresholds that can then be usédSkEitS to get accurate results.

Recall from Section 2.1 that we use an estimated supportiioctsres in the course of discovery and that this
estimation never underestimates the actual support. e Tghwve summarize the average overestimation on the test
datasets using level-0 and level-1 summaries. The zergesritr level-1 summary have an absolute zero average
overestimation percentage (excéfedical-3which is rounded to 0.0). As the number of structures for edathset
indicates, in these experiments our threshold values vedagvely high (resulting in roughly 50 structures). THere
most of the structures are small. (e.g.,@edit-4dataset, the maximum size of the discovered structureklis these
small structures, an overestimation of absolute zero somble. However, one should note that the overestimation
will increase as the structures grow larger. This tabledatdis that using a level-1 summary gives us sufficient acgura
while saving a lot of effort (compared with using levesummaries fok > 1 or to not using summaries).

Recall that L-SEuS and#BDUE are not complete methods. They return onlffequent structures, ranked by the
metrics described in Section 2.4. We performed a seriespdraxents to evaluate the quality of structures returned
by L-SEuS and BBDUE. The metric for structure quality is, in general, domain&iegent. However, for the purposes
of an objective evaluation in this paper, we usedbmpression gaimetric. The score metric described in Section 2.4
is an efficient approximation of the compression gain and seeitfor the quality metric here. More precisely,d€f)
ando(S) denote, respectively, the size and support of a struduteet (B;)?_, denote the tops structures based on
the scoring functiory(S) = ¢(S)o(S). Let (G;)~, denote the tops structures as produced by a method (L-SEuS
or SUBDUE). We use thecompression losef a method, defined a$°"" | f(B;) — Y., f(G:))/ >, f(B;), to
measure the loss in quality of the method (compared with gtenal solution). In order to get the optimal solution,
we run the complete SEuS method (with parameters set taratustructures) on these datasets and then rank the
structures based on their score. In Figure 7, we compareettteptage compression loss for L-SEuS ab&SUE.

We have plotted the compression loss for five most frequanttsires ¢ = 5). Combinations of methods and datasets
with no bar signifies zero compression loss. As this figurevshéor most of the dataset&JBDUE performs worse

11

Subdue

< 40 L-SEuS-SO

;)’ L-SEuS-S1

173}

o 30—

—

c

S 20—

7

O 10—

3

Q 0= o s - -3 T g9
(@) e ﬁe@ Dece PO deéxeﬁ“x 6“/ «(\96

e
CrT ety O\/ab

Datasets (Increasing size)

Figure 7: Compression Loss Comparison

Count —2
Search []
r\g Summarize 3
< 100 mEnEeieinisinEnleEnEE
(O]
E 80—
|_
u— —
5 60
[¢]
o 40—
©
T 20—
[¢]
]
(T) P)
S~ v v \,
o 5@ cieia‘cgne‘cew \Cé 3y ed C“i@f; £ 966 "\e&;z&ca

Datasets (Increasing size)

Figure 8: Time spent in algorithm phases

than L-SEuS and for thEhemicaldataset, BBDUE’s error percentage is very high. One might expect that LSEu
S1 should always have a better quality. If L-SEuS were noteady algorithm this assumption would be a correct.
However, since the method stops as soon atructures are found, there is no guarantee that a betteragstwill
produce results with higher scores.

As discussed in Section 1, the SEuS system provides realféedback to the user by quickly displaying the
frequent structures resulting from different choices & threshold (or SCM) parameter. This interactive feedback
is possible because the time spent in the candidate gesre(agarch) phase is very small. Figure 8 justifies this
claim. It depicts the percentage of time used by each of tteethhases in processing different datasets. As datasets
get larger, the fraction of running time spent on summagaime graph falls rapidly. Also the time spent in the
candidate generation phase is relatively small. Therefarestrategy of creating the summary once and running the
candidate generation phase multiple times with diffeneptit parameters (in order to determine suitable valuegéefo
proceeding to the expensive counting phase) is very effecti

It is important to note that the counting phase is performdg o find the exact support of the structures. This
step is necessary if the output of this system is to be usedpas for a more complex mining method or if the user
wishes to know the exact supports. On the other hand, if ssirntérested primarily in the structures themselves,
and not the exact supports, the counting phase can be catym&ipped. Skipping this phase does not affect the
actual structures produced as output; therefore the gudlihe structures remains the same while the running time
decreases substantially.

In the appendix, we present some additional experimergalte Table 4 summarizes the sensitivity of the running
time of SEuS to the support threshold parameter. (Note thatarst case, the size of the output grows to a size
exponential in the size of the input database as threshdlliered; thus it is unavoidable that all methods that
produce a complete output, such as SEuS, will experiencpid rie in running time with falling thresholds.) In
Figures 9-14, we summarize the effect of the SCM parametérerunning time of L-SEuS. As expected, running
time tends to rise as the threshold value increases; hoytheancrease is not very dramatic, supporting the suitgbil

12

of L-SEuS for preliminary exploratory data analysis.

4 Related Work

Much of the prior work on structure discovery is domain dejmn (e.g., [Win75, Lev84, Fis87, Leb87, GLF89,
CG92]) and a detailed comparison of these methods appef@si®4]. We consider only domain independent meth-
ods in this paper. The first such system,IBLdiscovers patterns in graphs by expanding and combirattgrps
discovered in previous iterations [YMI93]. To guide thersda CLP uses an estimate of the compression resulting
from an efficient representation of repetitions of a canidéructure. The estimate is based on a linear-time approx-
imation for graph isomorphism.UBDUE [CHOOQ] also performs structure discovery on graphs. It disesninimum
description length principle to guide its beam seardbBISUE uses an inexact graph matching algorithm during the
process to find similar structures.

SUBDUE discovers structures differently from @. First, I BDUE produces only single structures evaluated
using minimum description length, whereasiLlproduces a set of structures that collectively compressnibut
graph. CUP has the ability to grow structures using the merge opelmtween two previously found structures,
while SUBDUE only expands structures one edge at a time. Our system iBsitmiSJBDUE with respect to struc-
ture expansion. Second, G estimates the compression resulting from using a streidhut $BDUE performs an
expensive exact measurement of compression for each nevtst. This expensive task causes thBSUE system
to be very slow when operating on large databases, becausadb new concept discovered, the system goes through
the input graph and calculates the gain in compression ukiegiew structure. The issues of scaling tiéBBUE
system and implementing the method in a parallel enviroritmare been addressed in [€BI1], which presents three
approaches to distribute the original algorithm in a pata&hvironment.

AGM [IWMO0Q] is an Apriori-based algorithm for mining frequéstructures. The main idea is similar to that used
by the market basket analysis algorithm in [AS94]kat 1)-itemset is a candidate frequent itemset only if all of its
k-item subsets are frequent. In AGM, a graph of gize 1 is considered to be a candidate frequent structure only if
all its subgraphs of sizk are frequent. In AGM, only thenducedsubgraphs are considered to be candidate frequent
structures. (Given a grapHi, subgraptG, is called an induced subgraphlif(G,) C V(G), E(Gs) C E(G) and
Yu,v € V(Gy), (u,v) € E(Gs) & (u,v) € E(G).) This restriction reduces the size of the search spacelbot
means that interesting structures that are not inducedapbg cannot be detected by AGM. After producing the next
generation of candidate frequent structures, AGM courgsrquency of each candidate by scanning the database.
As in SUBDUE, this need for a database scan at each generation limitgdfabsity of this method. In contrast, our
method is not limited to induced subgraphs and does not beadiatabase at each generation.

FSG [KKO01] is another system that finds all connected suldtg#ipat appear frequently in a large graph database.
Similar to AGM, this system uses the level-by-level expansidopted in Apriori. The key features of FSG compared
to AGM are the following: (1) it uses a sparse graph repred&mt which minimizes storage and computation, (2)
there is no restriction on the structure’s topology (emfuice subgraph restriction) other than their connectigityl
(3) it incorporates a number of optimizations for candidg@eration and counting which makes it more scalable
(e.g., transaction ID lists for counting). However, thistgyn still scans the database in order to find the support of
next generation structures. The experimental results KO show that FSG is considerably faster than AGM. One
should note that AGM and FSG both operate on a transacti@dsé where each transaction is a graph, so that their
definition of a frequent structure’s support can be appledn SEuS we do not have this restriction, and SEuS can be
applied to both a transaction database and a large conrgeteld database. As mentioned in Section 3, for a common
Chemicaldataset, FSG needs 600 seconds, where SEuUS returned therfretjuctures in less than 20 seconds.

The problem of finding frequent structures is related to ttubjem of finding implicit structure (or approximate
typing) in semistructured databases. In [NAM97], the arghpwopose a method to infer an approximate classification
of objects into a hierarchical collection of types. This hoat uses a counting lattice (similar to our level-1 summary)
to summarize the graph database and then use a heuristiiofucalledjump to identify the candidate types. It
then builds a type hierarchy based on these candidates fand the typing rules. In [NAM98], the authors address
the same problem using the greatest fixpoint semantics ohdiomlatalog programs. First, they define a type for
each object in the database using a datalog program. Theyuse a technique similar te-clustering to merge
similar types, until there are types left. The merge is done based on a distance functiomedifietween the datalog
programs representing two types. These papers do not peedetailed performance analysis and it is not clear how
these methods would scale to large datasets such as thoseadnwe focus in this paper.

13

Furthermore, there are important differences between ithielgms of type inference and frequent structure dis-
covery. In type inference, the structures are typicallyitixah to rooted trees and each structure must have a depth of
one. Further, the frequency of a structure is not the onlyimesed in type inference. For instance, a type that occurs
infrequently may be important if its occurrences have a vegular structure. Despite these differences, it may be
interesting to investigate the possibility of adapting Ineets from one problem for the other.

5 Conclusion

In this paper, we motivated the need for data mining method#afge semistructured datasets (modeled as labeled
graphs with several million nodes and edges). We focusednomportant building block for such data mining
methods: the task of finding frequent structures, i.e. ctines that are isomorphic to a large number of subgraphs
of the input graph. We presented the SEuS method, which fredsiént structures efficiently by using a three-phase
approach: The first phase builds a structural summary, tte@nseuses this summary to generate candidate frequent
structures, and the third generates the frequency of eadattiste. We also presented a faster, approximate method, L-
SEuS, which returns approximate results suitable for rappdoratory analysis. We have implemented these methods
in the SEuS system for exploring semistructured data; optdmentation is freely available under GNU GPL terms.
We presented the results of a detailed experimental stutheafunning time of SEuS and L-SEuS and the quality of
the approximate solutions produced by L-SEuS.

Our methods have two main distinguishing features: Finst, th their use of a summary data structure, they can
operate on datasets that are two to three orders of magmégge than those used by prior work. Second, our methods
provide rapid early feedback (delay of a a few seconds) iffdha of candidate structures, thus permitting their use
in an interactive data exploration system. We have foursiripid feedback from the first two stages of our methods
to be invaluable in selecting a suitable value for suppadghold parameter. Further, in some applications (such as
our system for data exploration), the third (and most timastiming) phase of our methods can be skipped since we
are interested in only the qualitative characteristicgedfient structures, not their exact frequencies.

As ongoing work, we are exploring the application of our noelh to finding association rules and other corre-
lations in semistructured data. We are also applying ouhau to the problems of classification and clustering by
using frequent structures to build a predictive model.

Acknowledgments

We would like to thank the SBDUE team for providing us with the @DUE code and some of the datasets used in
the experiments. We would also like to thank the UCI repogitd machine learning, the University of York machine
learning group, National Library of Medicine, and Oxford ildgrsity Computing Laboratory for the datasets. The
complexity analysis of finding the support of the most fragjuestructure is due to Aravind Srinivasan.

References

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining assiations between sets of items in massive databases.
SIGMOD Record22(2):207-216, June 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for minasgociation rules. IRroc. of the 20th International
Conference Very Large Data Bas@ages 487-499. Morgan Kaufmann, 1994.

[BDFS97] P. Buneman, S. B. Davidson, M. F. Fernandez, andubiuS Adding structure to unstructured data. In
Proc. of the 6th International Conference on Database Thet®97.

[BM] C.L. Blake and C.J. Merz. UCI repository of machine leig databases.

[CG92] D. Conklin and J. Glasgow. Spatial analogy and sulpgiom. In Proc. of the Ninth International Con-
ference on Machine Learningages 111-116, 1992.

[CHOOQ] D. J. Cook and L. B. Holder. Graph-based data minit8J'A: Intelligent Systems & their applicatigns
15, 2000.

14

[CH*01]

[Con94]

[Fis87]

[For96]
[GLF89]

[GW97]

[IWMOO]

[KKO1]

[KM90]

[Leb87]

[Lev84]

[M+98]

[McKO02]
[Med01]
[NAMO7]

[NAMOS]

[INUWC97]

[Oxf97]

[Win75]

[YMI93]

[Yor]

D. J. Cook, L. B. Holder, et al. Approaches to parallelpgrdbased knowledge discoveryournal of
Parallel and Distributed Computing2001.

D. Conklin. Structured concept discovery: Theony anethods. Technical Report 94-366, Queen’s
University, 1994.

D. H. Fisher, Jr. Knowledge acquisition via incrarta conceptual clusteringMachine Learning
(2):139-172, 1987.

S. Fortin. The graph isomorphism problem. Techrfiegport 96-20, University of Alberta, 1996.

J. H. Gennari, P. Langley, and D. Fisher. Models ofémental concept formatioArtificial Intelligence
(40):11-61, 1989.

R. Goldman and J. Widom. Dataguides: Enabling quersnfilation and optimization in semistructured
databases. IRroc. of the Twenty-Third International Conference on \leayge Data Basegpages 436—
445, 1997.

A. Inokuchi, T. Washio, and H. Motoda. An apriori-bad algorithm for mining frequent substructures
from graph data. IrProc. of the 4th European Conference on Principles and Rraocdf Knowledge
Discovery in Databasepages 13-23, 2000.

M. Kuramochi and G. Karypis. Frequent subgraph disry. InProc. of the 1st IEEE Conference on
Data Mining, 2001.

A. Kemper and G. Moerkotte. Access supportin objextds. IrProc. of the ACM SIGMOD International
Conference on Management of Dapeages 364-374, 1990.

M. Lebowitz. Experiments with incremental concégrmation: Unimem.Machine Learning(2):103—
138, 1987.

R. Levinson. A self-organizing retrieval systenr fyraphs. InProc. of the National Conference on
Artificial Intelligence pages 203-206, 1984.

J. McHugh et al. Indexing semistructured data. Techmégzort, Stanford University, Computer Science
Department, 1998.

B. D. McKay. nauty user’s guide (version 1.5), 2002.
Medical citation databases, 2001.

S. Nestorov, S. Abiteboul, and R. Motwani. Infemgistructure in semistructured data. Prnoc. of the
Workshop on Management of Semistructured Da897.

S. Nestorov, S. Abiteboul, and R. Motwani. Extraagischema from semistructured dataPhoc. of the
ACM SIGMOD International Conference on Management of Dptges 295-306, 1998.

S. Nestorov, J. Ullman, J. Wiener, and S. ChawafRepresentative objects: Concise representations of
semistructured, hierarchial data. Pmoc. of the International Conference on Data Engineeyipgges
79-90, 1997.

The predictive toxicology evaluation challengeatsets, 1997.

P. H. Winston. Learning structural descriptionsrfr examples. IThe Psychology of Computer Vision
pages 157-209. 1975.

K. Yoshida, H. Motoda, and N. Indurkhya. Unifyingdening methods by colored digraphs. Rroc. of
the International Workshop on Algorithmic Learning Theorglume 744, pages 342-355, 1993.

University of York machine learning group.

15

Name Description Vertices Edges| Vertex | Edge Graph | Summary
labels | labels Size Size
Credit-1 | Credit card application db [BM] 1999 1900 59 20 3899 136
Credit-2 | Credit card application db [BM] 1999 1900 58 20 3899 134
Diabetes-1| Diabetes patient records [BM] 2412 2144 7 8 4556 39
Diabetes-2| Diabetes patient records [BM] 4500 4000 7 8 8500 38
\ote Congressional voting records [BM] 4539 4272 4 16 8811 52
Credit-3 | Credit card application db [BM] 6300 6000 59 20 12300 136
Chemical | Chemical compounds [Oxf97] 9189 9317 66 4 18506 338
Credit-4 | Credit card application db [BM] 14700 14000 59 20 27800 137
Chess | Chess relational domain [Yor] 76272| 113039 7 12 | 189311 88
Medical-1 | Medical publication citations [Med01] 1999999| 1999998 75 4 | 3999997 175
Medical-2 | Medical publication citations [Med01] 2499999| 2499998 75 4 | 4999997 174
Medical-3 | Medical publication citations [Med01] 2999999| 2999998 75 4 | 5999997 177
Medical-4 | Medical publication citations [Med01|] 4764678| 4764677 75 4 | 9529355 190
Table 2: Datasets used in experiments
Threshold (Percentage of graph size)

Dataset | Credit-1 | Credit-2 | Diabetes-1| Diabetes-2 Vote | Chemical| Chess

SEuS-S0 3.4 3.9 5.8 6.1 4.4 15 3.7

SEuS-S1 2.8 3.1 3.0 3.7 3.8 1.2 3.6

Dataset | Credit-3 | Credit-4 | Medical-1| Medical-2| Medical-3 Medical-4
SEuS-S0 3.5 3.9 25 2.5 25 2.7
SEuS-S1 2.9 3.1 1.0 1.0 1.0 15
Table 3: Thresholds used to generate roughly 50 frequerdtates
Appendix

Seconds

— L =2
C\:edlt D'la‘oete5

-1 -2
Diabetes

Datasets (Increasing size)

Figure 9: L-SEuUS-S0 running time sensitivity to SCM - smaltakets

16

Dataset

Thresholds (Percentage of graph size)

20 10 5 2 1 0.7 0.5
Credit-1 1029 1096 1104 26779 53016
Credit-2 1063 1079 1084 45520 54109
Diabetes-1| 1365 1405 2745 18517 57300
Diabetes-2| 2309 2330 5905 42222 100152
Vote 2234 2333 2700| 111512
Credit-3 3389 3405 3287 | 101768 186106
Chemical 3460 7416 9122 9221 31801 | 42099 | 94050
Credit-4 10410 10605 10914 | 291315| 431767
Chess 40274 40951 44735| 682426
Medical-1 | 613151| 858222| 1519327| 1973250(19463120
Medical-2 1044442| 1849024| 2462402| 23672410
Medical-3 1332238| 2405657| 2954496| 29269385
Medical-4 1975776| 3553597| 4735045| 47266950

Table 4: SEuUS running time sensitivity to threshold (in isdtonds)

Seconds

yote C\:ed‘lt;‘ﬁemicalc{edﬁ’/

cnes®

Datasets (Increasing size)

Figure 10: L-SEuS-SO0 running time sensitivity to SCM - mexidatasets

Figure 11: L-SEuS-SO0 running time sensitivity to SCM - ladggasets

Figure 12: L-SEuS-S1 running time sensitivity to SCM - sndaltasets

2500
2000
1500
1000

Seconds

Seconds

500—
04

el
Med T e

azcad”

2 —
&’Xedical

Vﬁedlcal/

Datasets (Increasing size)

04

Yy i -2 -\
T T eS
ctedl C\iedl oiabet 0id

Datasets (Increasing size)

17

Seconds

NI YN
yJote Cﬁedﬂ’c‘ge“‘lcalcfedlt Cbess

Datasets (Increasing size)

Figure 13: L-SEuUS-S1 running time sensitivity to SCM - mexdidatasets

2500+
2000+
1500
1000

500

Seconds

scal ™

ycad” ed

— ~4
scat BMed‘xcal

1
Mmed
Datasets (Increasing size)

wmed

Figure 14: L-SEuS-S1 running time sensitivity to SCM - ladggasets

oIS

Search ‘ Count H Shake | Scramble ‘

0.0 0.2 0.4 0.6 0.8 1.0

Current SCM: 0.9 | quit

Sub2 1=236 C-=11

Subl 1=303 C=9

glucose

Figure 15: A snapshot of the L-SEuUS after candidate gemeratiase

18

