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As we age, the structure of the brain deteriorates and cognitive functioning declines.  

The region of the brain that begins to age the fastest is the frontal lobe, in which the 

dorsal-lateral prefrontal cortex is involved in executive control functions such as 

planning, organizing, initiating behaviors, and working memory.  For some 

individuals, the brain declines more rapidly with age because of genetic factors.  

Apolipoprotein E (APOE) is a gene that assists in the transport of cholesterol and 

repair of the brain when it is damaged.  Presence of the ε4 allele impairs cholesterol 

transport and puts its carriers at risk for increased cognitive decline and possibly 

dementia of the Alzheimer’s type (DAT).  Physical activity can slow the aging 

process of the brain and delay the onset and severity of cognitive decline and DAT as 

it increases oxygenation and blood flow, neuronal growth and synaptogenesis, and it 



increases the expression of genes helpful to the functioning of the brain such as brain-

derived neurotrophic factor (BDNF).  Therefore, individuals at greater genetic risk for 

age-related cognitive decline (i.e., ε4 carriers) should receive increased benefit from 

physical activity.  Accordingly, this study examined the relationship between physical 

activity and executive control functioning, assessed by the Wisconsin Card Sort Test 

(WCST) in middle-aged APOE ε4 carriers and non-carriers.  High-active participants 

were predicted to perform better than their low-active counterparts, and this 

difference should be even greater among APOE ε4 carriers.  While most research 

studies on this topic have focused on general cognitive performance, the present study 

is specific in its focus on executive control functioning.  Sixty-seven cognitively 

normal middle-aged adults between the ages of 50 – 70 years were assessed on 

medical history, overall cognitive functioning, APOE genotype, level of physical 

activity, and executive control functioning (WCST).  Using hierarchical regression, 

seven WCST variables were regressed on age, genotype, physical activity, and the 

interaction between genotype and physical activity.  Analysis revealed that as level of 

physical activity increased, performance significantly improved on all seven WCST 

variables for APOE ε4 carriers, but not for non-carriers.  These results reveal that the 

benefits of physical activity to cognitive performance in this age group are specific to 

those who are genetically at-risk for cognitive decline. 
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Chapter 1: Introduction 
 
Benefits of Physical Activity on the Aging Brain and Genetically At-Risk Adults 

Overview 

With the increase in the number of individuals over the age of 65 in the 

United States, there will be an increase in the number of people who suffer from 

dementia.  By 2030, the older population is expected to account for approximately 20 

percent of the U.S. population, largely due to the Baby Boomers’ generation 

beginning to turn 65 in 2011(Federal Interagency Forum on Aging-Related Statistics, 

2004).  Currently, it is estimated that 4.5 million Americans are living with 

Alzheimer’s disease (Alzheimer’s Association, 2004a).  It is expected that there will 

be a 44 percent increase in this number by 2025 (Alzheimer’s Association, 2004b).  

These increasing numbers not only put a burden on the people who suffer from 

dementia, but also on those who care for these individuals.  Alzheimer’s disease is a 

disease that affects the forebrain, causing a decrease in cognitive functioning and 

memory loss.  Atrophy of the hippocampus, temporal lobe, parietal lobe, and frontal 

lobe occur (Braak and Braak, 1991; Maestú et al., 2003). This disease is defined by 

the amyloid plaques and neurofibrillary tangles that form in the brain (Roth, 1994).   

Some people are at greater risk genetically for developing dementia than 

others.  Apolipoprotein E or APOE, is a gene that results in the formation of 

lipoproteins that aid in the transport of cholesterol throughout the brain and assist 

with repairing the brain when damaged (Nathoo et al., 2003).  The ε4 allele of this 

gene, a polymorphic variation, has been found to put those who carry it at a higher 

risk for developing dementia (Podewils et al., 2005).  The ε4 allele results in a 
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deficiency that disrupts the transport of cholesterol and does not properly repair the 

brain.  It has been estimated that approximately 40% of the cases of late-onset AD 

patients carry this allele.  More generally, subclinical brain and cognitive dysfunction 

occur in carriers of this allele even though such individuals are classified as normal 

functioning (Reiman et al., 2001, 2004).    

Intellectual and physical activities during the middle ages of life have been 

examined to be protective and reduce the risk of Alzheimer’s disease in the elderly 

(Friedland et al., 2001).  In this regard, physical activity has been found to be a cost-

effective and natural way of delaying the onset of dementia, along with slowing the 

aging process of the brain.  In a five-year prospective study of older men and women, 

leisure activities were associated with reduced risk of dementia (Verghese et al., 

2003).     

Leisure activities involving physical activity may be particularly beneficial.  

Through increased oxygenation and blood flow to the brain, the number of capillaries 

and synapses in the brain are increased, creating a cognitive reserve that helps to 

preserve the health of the brain (Colcombe et al., 2004; Black et al., 1990; Swain et 

al., 2003).  Maintenance of neurotransmitters and neurotrophic factor synthesis also 

assist in maintaining cognitive functioning (Dustman et al., 1990; Cotman and 

Engesser-Cesar., 2002).  These neurobiological benefits of exercise, which have been 

most often observed in animals, likely slow the aging of the human brain by 

countering the presence of age-related decline and this effect should be most apparent 

in carriers of APOE ε4 due to accelerated age-related decline. 
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Aging Process of the Brain 

The brain declines with age resulting in decreased cognitive performance 

(Colcombe et al., 2003a; Lezak 1995).  Brain volume decreases and there is a loss of 

white matter, especially in the frontal lobe (Colcombe et al., 2003b; Van Petten et al., 

2004).  Thinning of the cerebral cortex becomes apparent by middle age, with 

significant reductions in the primary sensory, primary somatosensory, and motor 

cortices (Salat et al., 2004).  This process may be due to common diseases that occur 

with age such as hypertension and cardiovascular disease that result in less blood, 

oxygen, and glucose reaching the brain (Lezak 1995; Dywan 1992).    

In special cases such as dementia of the Alzheimer’s type (DAT), 

neurofibrillary tangles and amyloid plaques begin to form in the cerebral cortex 

(Roth, 1994).  Cognitive examinations have shown that non-demented elderly people 

perform significantly better than demented elderly people, with the most pronounced 

areas of cognitive decline being memory, attention, and abstract thinking (Williams et 

al., 2003).  These functions of the brain, along with other aspects of executive control 

functioning begin to decline with age, whether a person is demented or not. The use 

of positron emission tomography (PET) has revealed hypoactivation in a number of 

brain regions in healthy young adults and middle aged adults who are asymptomatic 

for cognitive impairment, especially in those who possess the apolipoprotein ε4 allele 

(Reiman et al., 2001, 2004).  This would imply that the brain is declining years before 

any behavioral symptoms occur, but detection of such subtle change on a behavioral 

level may be achieved if the appropriate mental challenge is employed (i.e. executive 

task).    
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Executive Control Functions 

The region of the brain that has been found to be responsible for executive 

control functioning is the frontal lobe, and more specifically, the prefrontal cortex 

(Royall et al., 2002).  Executive control functioning (ECF) involves cognitive 

processes such as planning, organizing, controlling, initiation, and monitoring 

behaviors related to goals (Royall et al., 2002).  Working memory and attentional 

shift are major processes involved with executive control functioning accordingly, the 

prefrontal cortex has more connections to other areas of the brain than any other brain 

region, making it that much more important in the planning and execution of thought 

processes.  The prefrontal cortex is composed of the dorsolateral region, orbital or 

medial region, and the anterior cingulate or mesiofrontal region.  Each of these areas 

receives information from other regions of the brain that are specific to those areas.  

These are the regions of the brain that exhibit dramatic decline in APOE ε4 carriers.   

Apolipoprotein E ε4

Apolipoprotein E (APOE) is involved with the transfer of lipids within the 

brain, maintaining the structural integrity of microtubules within neurons, and helping 

with neural transmission (Nathoo et al., 2003).  It has also been found to assist in 

repairing the brain after suffering traumatic brain injury.  Possession of the ε4 allele 

has been found to raise plasma cholesterol and low-density lipid (LDL) 

concentrations.  Individuals who are heterozygous for this allele are at an increased 

risk of developing Alzheimer’s disease, and those who are homozygous are at an even 

higher risk.  APOE ε4 has been linked to increased release of amyloid beta protein, 

which comes from amyloid precursor protein (APP).  This increased release of 
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amyloid beta protein and the improper transportation of lipids places carriers of this 

gene at risk for cognitive decline and AD (Nathoo et al.).  Brain injury in people 

possessing APOE ε4 results in increased release of amyloid beta protein, which leads 

to the decreased ability of the brain to protect itself from further damage and the 

inability to repair the damage that has already been done.  In this regard, Kutner et al. 

(2000) found that older football players who possessed the APOE ε4 gene had 

significantly lower cognitive tests scores than players who did not posses this gene, 

and younger players who possess the gene.  A study that examined severe head 

trauma found that those who possessed the gene had an increased likelihood for 

severe disability, vegetative state, or death, than those without the gene (Caulfield, 

1999).  In a sense, the head trauma that occurs in such combative sports may be 

analogous to an extreme rate of aging. 

The Influence of Physical Activity on the Aging Brain 

Being physically active is one factor that can help in maintaining cognitive 

functioning and the structural integrity of the brain (Colcombe et al., 2003b;

Colcombe et al., 2003b).  Exercise increases neurotrophic factor synthesis in the 

central nervous system with increased gene expression (Van Hoomissen, 2005).  

Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor 

family, is increased in the hippocampal region as a result of physical activity (Van 

Hoomissen, 2005; Cotman et al., 2002; Neeper et al., 1996).  BDNF enhances the 

function of different neurons, promotes neuronal activity and plasticity, and helps 

build more synaptic connections.   
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Cortical plasticity is the development of synaptic connections and new 

neurons that lead to a more adaptive and efficient brain (Colcombe et al., 2004).  

Cardiovascular activity has been shown to slow the aging process of the brain, 

increase cortical plasticity, and improve cognitive performance (Colcombe et al.).  

Colcombe et al. found that cognitive performance mediated by the prefrontal and 

parietal cortices was greater in highly fit and aerobically trained individuals than in 

low-fit and non-aerobic individuals.  Through a meta-analysis, Colcombe and Kramer 

(2003a) displayed that older adults who exercised performed better than controls on 

executive control tasks, controlled processing tasks, visuospatial tasks, and speed 

tasks.      

 As such, cardiovascular exercise reduces the loss of tissue in the brain as we 

age (Colcombe et al., 2003b).  This reduced loss of tissue helps to maintain cognitive 

performance.  Cardiovascular disease has been linked to poorer cognitive 

performance (Dywan et al., 1992), therefore it is important for people to keep their 

cardiovascular system healthy.  Prolonged exercise increases blood flow in the motor 

cortex region, and a consistent exercise regimen can promote angiogenesis in the 

cerebral cortex (Black et al., 1990, Swain et al., 2003).           

 Physical activity is protective of cognitive decline in carriers of the 

apolipoprotein E ε4 allele (Schuit et al., 2001).  In a group of elderly men, the risk of 

cognitive decline for active and inactive non-carriers was similar, but the risk of 

decline in inactive carriers was much greater when compared to active carriers 

(Schuit et al.).  Being physically active slowed down the cognitive decline that is 

associated with possessing APOE ε4. Another study by Podewils et al. (2005) 
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revealed that physical activity decreased the risk of dementia in active non-carriers, 

but did not have the same effect on active carriers.  The apparent contradiction of 

Schuit et al. and Podewils et al. are resolved by noting that Schuit et al. measured rate 

of cognitive decline and Podewils et al. measured risk of incident dementia.  Another 

finding from this study was that variety of activities seemed to be just as important as 

frequency, intensity, and duration of physical activity, in decreasing the risk of 

dementia.  Because of the rapid decline of the frontal lobe with aging, physical 

activity should prove to be extremely beneficial in slowing this process.  One way we 

can measure frontal lobe functioning is through the use of cognitive behavioral tests 

such as the Wisconsin Card Sorting Test.     

Wisconsin Card Sorting Test: A Test of Executive Control Functions 

 The Wisconsin Card Sorting Test (WCST) is recognized by many researchers 

as the best measure of executive control functioning (Hartman et al. 2001; Konishi, S. 

1999; Lezak 1995; Royall 2002).  It known for its sensitivity to frontal lobe 

dysfunction and lesions (Dywan et al. 1992; Hartman et al. 2001; Green 2000; 

Konishi et al. 1999; Royall et al. 2002).  Patients with frontal lobe lesions and brain 

injured patients have been found to perform worse on the WCST than control 

participants (Green 2000; Lezak 1995) 

 The WCST also challenges working memory and attentional set shifting 

(Green 2000; Hartman et al. 2001; Konishi et al. 1999; Lezak 1995).  Participants are 

asked to match cards based on three dimensions—color, number, and shape.  When 

the dimension that the participant is matching on changes, they have to remember 

what other two dimension they have to choose from, select the correct dimension, and 
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continue matching on the dimension until it changes again (Green 2000; Lezak 1995).  

People with frontal lobe dysfunction tend to forget what the three dimensions are, and 

are likely to continue with the same wrong response, or perseverative response.  A 

perseverative response is the repetition of a response that is no longer in effect.   

 As the brain declines with age, so does cognitive performance, in a manner 

that resembles the cognitive performance of patients with lesions and/or brain injury.  

The WCST is also sensitive to age differences in cognitive functioning (Green 2000; 

Lezak 1995), such that older adults display poorer performance than younger controls 

(Hartman et al. 2001).            

Statement of the Problem and Hypothesis 

 A classic study by Kramer et al. (2001) provides a foundation for the present 

study.  Their results revealed that increased exercise improved performance on tasks 

measuring executive control processes.  Therefore, high-active men and women in the 

current study should perform better on a test of executive control function, such as the 

Wisconsin Card Sorting Test, than low-active participants.  Furthermore, the strength 

of the relationship between physical activity and cognitive functioning should be 

greater in those who are at genetic risk of cognitive decline.  As such, the present 

study provides a replication and extension of the work reported by Kramer et al.  

Therefore, we predict that high-active participants will perform better than the low-

active participants on the WCST, and that the magnitude of difference will be greater 

in the carriers of APOE ε4. The specific hypothesis for this study is: 

The number of perseverative errors (absolute and percent) committed during 

the Wisconsin Card Sorting Test will be negatively related to the level of self-



9

reported physical activity (Yale Physical Activity Survey), and that the 

magnitude of this relation will be greater in APOE ε4 carriers than in non-

carriers.     

Limitations 

One of the limitations of this study is that it is a cross-sectional study, and 

cannot address causal influence of the various factors on mental performance.  

Furthermore, the study failed to assess the participants’ level of physical activity 

earlier in life as it was confined to a period comprised of the last five years just prior 

to testing.  In most cases the participants reported stable activity patterns during this 

period.  Only using a middle aged population does not allow us to examine how their 

cognitive performance will be once they become older adults.  Our purpose for 

studying middle aged adults is that they are old enough to display age-related effects 

of cognitive decline, but young enough to offset these problems with physical 

activity.  Richards et al. (2003) reported that physical activity and spare-time 

activities reported at the age 36 were significantly associated with the preservation of 

memory later in middle life. 
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Chapter 2: Review of Literature 

Introduction 

In this review of literature, we will first examine the aging process of the 

brain.  More specifically, how the frontal lobe – the fastest region to age – which is 

primarily responsible for executive control functions begins to decline.  We will then 

investigate how genetic factors put some people at a higher risk for cognitive decline 

than others.  Research on how physical activity effects the brain will be presented, 

along with studies debating the benefits of physical activity for people who are 

genetically at-risk for increased cognitive decline.  Finally, we will look at how 

executive control functioning is measured using a card sorting task that is considered 

to be the “gold standard” for testing executive control processes.      

Brief Anatomy of the Brain 

The anatomy of the brain is very complex.  Making up approximately 2% of 

the total body weight, the brain is either responsible for or plays a role in many 

functions including (but not limited to) memory, motor activity, emotions, thoughts, 

and more.  The brain is made up of three major subdivisions – the cerebral 

hemispheres, the cerebellum, and the brain stem.  Since this study is primarily 

concerned with the frontal lobe, which is located in the cerebral hemisphere, the latter 

two subdivisions will not be discussed.  The two highly convoluted cerebral 

hemispheres are made up of overlying gray matter and underlying white matter.  The 

convolutions are referred to as gyri, and the grooves that separate the convolutions are 

called sulci.  Together, these gyri and sulci separate the cerebrum into six regions 



11 
 

called lobes.  The six lobes are the frontal, temporal, parietal, occipital, insular, and 

limbic.         

Physical Activity 

For the purpose of this study it is important to define what is meant by 

physical activity.  Physical activity in this study includes deliberate exercise such as 

going to the gym or going outside for a run, as well as our activities of daily living 

such as gardening, doing laundry, or walk up steps to name a few.  A person can be 

extremely physically active, but not engage in deliberate exercise, and still gain 

positive benefits such as angiogenesis, synaptogenesis, neurotrophic effect, and an 

overall preservation of the brain.  Some physical activities may also involve problem 

solving or learning something new (i.e. rock climbing, construction work) which 

gives us the benefits of being cognitively engaged in a task. 

Aging Brain 

 As we age, our brains decrease in size due to reductions in gray and white 

matter (Van Petten et al., 2004).  This can be observed as early as our third decade of 

life and appears to start with the most anterior regions of the brain (Salat et al., 2004; 

Van Petten et al., 2004).  Salat and colleagues (2004) used magnetic resonance 

imaging (MRI) to scan participant brains for a measure of cortical thickness.  The 

study consisted of 106 participants from three age groups: younger (18-31), middle-

aged (41-57), and older participants (60-93).  All participants were asymptomatic for 

neurologic, psychiatric, or medical illness that could have a negative affect on their 

results.  Cortical thickness was measured by calculating the distance from the 
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gray/white matter boundary to the cortical surface.  This was done across the surface 

of the cortex to obtain global and regional measures of cortical thinning.  The results 

showed that age had a significant effect on thickness and volume.  That is, as age 

increased, thickness and volume decreased.  They found an approximate loss of 

~0.016mm of thickness per decade in the age range examined.  Regional measures 

revealed that significant thinning was apparent in the occipital lobe, pre/post central 

gyrus and central sulcus, and the inferior lateral prefrontal cortex.  The most 

statistically significant thinning was observed in the inferior prefrontal, precentral and 

supramarginal regions of the cortex, indicating that these are the regions that begin to 

deteriorate first with age.       

 Demented aging is different from normal aging.  While amyloid plaques and 

neurofibrillary tangles are present during both normal and demented aging, they 

become the hallmark for demented aging.  Roth (1994) reported that when senile 

plaques per microscopic field are on average at 15 or below, no clinical symptoms of 

dementia are present.  He considers this to be the threshold for dementia of the 

Alzheimer’s type (DAT).  Below this threshold neurofibrillary tangles are primarily 

found in the hippocampus and parahippocampal gyrus.  It is beyond this threshold of 

plaques and tangles that DAT becomes evident.          

 Head and colleagues (2004) used MRI to examine the corpus callosum (CC) 

and hippocampus (HC) regions of the brain in normal aging and demented aging.  

The study consisted of a younger participants ranging in age from approximately 19-

28, a nondemented older sample ranging from approximately 65-93 years in age, and 

a demented older sample ranging in age from about 69-87.The corpus callosum was 
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divided into five subregions from the most anterior region (CC1) to the posterior 

region (CC5).  Results revealed that all five subregions of the CC in younger adults 

were significantly larger than those in nondemented older adults.  No significant 

differences were found in these subregions between nondemented and demented older 

adults.  A significant group by brain region interaction was also observed between the 

younger sample and nondemented older sample when comparing regions CC1 and 

CC5.  The difference in CC1—the most rostral region—was greater than the 

difference in CC5—the most posterior region.  This gives us evidence that age-related 

deterioration starts in the most rostral regions of the brain.  Analysis of the 

hippocampal region revealed that demented adults had significantly smaller HC 

volumes than nondemented adults.  No significant differences were found between 

the HC regions of nondemented adults and younger adults.  These results display the 

regional effect dementia has on the brain.                 

Executive Control Functioning 

 The frontal lobe region of the brain has more connections to other areas of the 

brain than any other region (Royall et al., 2002).  More specifically the prefrontal 

cortex is responsible for planning, organizing, controlling, initiating, and monitoring 

behaviors (Royall et al., 2002).  These cognitive processes are part of what is known 

as executive control functions.  When more than one stimulus is present and allows 

for a variety of responses, higher-order cognitive processing is needed.  Executive 

control functioning solves these situations by providing goals and instructions, as well 

as restricting unwanted responses (Hall, Smith, Keele, 2001). 
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While brain volume and cognitive functioning begin to decline with age, the 

frontal lobe has been suggested to be the fastest region of the brain to begin declining 

as a result of aging (Hall, Smith, Keele, 2001).  As a result, we see a more significant 

decline in executive control functioning than in non-executive control functioning on 

measures of cognitive performance (Hall et al., 2001).  This is thought to be due to 

the reduction in gray matter volume in the frontal lobe region that Van Petten and 

colleagues (2004) witnessed, along with a reduction in blood flow to that region of 

the brain resulting in reduced cognitive processing speed (Hall et al., 2001). 

 To display the effects of age, as well as education, on executive functions in 

women, Plumet, Gil, and Gaonac’h (2005) tested 133 women ages 50 to 92 on a 

modified card sorting test (MCST) and a verbal fluency test.  The women were 

separated into three age groups – 50 to 59, 60 to 69, and 70 and above.  Each age 

group was split into two education categories – low education level (7-11 years of 

education) and high education level (12 years or greater).  The card sorting test was a 

modified version of the Wisconsin Card Sorting Test, but is still aimed at testing 

executive functioning and uses total trials and number of perseverative errors as 

measurements, along with number of distractive errors and number of sorting errors.  

The verbal fluency test was used as a second measure of executive functioning.  

Participants were required to name as many objects as possible from one category 

(i.e. modes of transportation) for one minute in the first trial, and in the following 

second trial they were required to alternate between two different categories (i.e. 

animals and vegetables). 
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Their results on the MCST revealed that with advancing age the participants 

needed more trials to complete the task, and committed a greater number of 

perseverative errors, distractive errors, and sorting errors.  When comparing ages in 

the low education level group, the group that was age 70 and over needed 

significantly more trials and produced significantly more sorting errors than the 50-59 

age group.  Significant differences in the number of perseverative errors was also 

found in this group.  In the high education level group, the older subgroup needed 

significantly more trials to complete the task than the 50-59 age group.  There was no 

significant difference in perseverative errors in this group.  Analysis comparing the 

two education levels revealed that the low education level group required 

significantly more trials and committed significantly more sorting errors than the high 

education group.  Only in the two oldest age groups did the low education group 

commit significantly more perseverative errors than the high education group.  As for 

distractive errors, participants in the 70 and over age group committed significantly 

more errors than the younger groups, and did not differ in regards to education level. 

 The results of the verbal fluency tests revealed a significant main effect of 

education on performance, with higher levels of education being associated with a 

greater total number of words produced and number of atypical words produced.  Age 

revealed a significant decrease on the number of atypical words produced, as well as 

a significant simple effect in the low education group on spontaneous switches and 

percentage of semantic associations.  There was also a significant main effect of age 

and education on spontaneous switches and percentage of semantic associations.  The 

researchers’ analysis of the relationship between the two executive control tasks 
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revealed an inverse relationship between perseverative and sorting errors on the 

MCST with total word fluency scores.           

Kramer et al. (2001) recruited 124 older adults ages 60 to 75, who had been 

sedentary for at least six-months prior to their study being conducted on the effects of 

improved aerobic fitness on cognition, especially on tasks measuring executive 

control functioning.  This was a six-month randomized exercise intervention in which 

participants were placed in either a toning group or a walking group.   

A cognitive battery was administered to all participants before and after the 

six-month intervention.  Nine of the tasks in this cognitive battery rely on executive 

control processes carried out in the frontal and prefrontal regions of the brain.  The 

other six tasks were non-executive processing tasks that have been found to rely less 

on the frontal lobe.  The researchers predicted that participants would improve more 

on the tasks involving executive control processes as a result of improved aerobic 

fitness than on the non-executive tasks.   

VO2 peak was used to assess aerobic capacity of all participants before and 

after the exercise intervention.  The aerobic exercise group engaged in a brisk 

walking program three times a week for six-months.  Intensity and duration were 

increased each session until the participants were walking for 40 minutes per session 

at a moderate level of intensity.  The stretching and toning group also met three times 

a week for six-months, but engaged in stretching and toning exercises for the whole 

body.  Each session lasted approximately 40 minutes, along with ten minutes of 

warm-up exercises and ten minutes of cool-down exercises. 
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The results revealed what the investigators initially hypothesized.  For the 

tasks that involved executive control processes, the aerobic group displayed 

improvements in performance, but the toning group did not.  The two groups did not 

differ on improvements on the non-executive tasks.  

Apolipoprotein E ε4

Along with the normal aging process, there are genetic factors that can 

increase the rate of cognitive decline.  A susceptibility gene located at position 

19q13.2 on chromosome 19 has been linked to the development of Alzheimer’s 

Disease (AD) (Wasco 2001).  This gene is known as apolipoprotein E (APOE).  The 

liver contains the largest amount of APOE mRNA in the body, and the brain has 

about one-third that amount (Saunders).  The primary responsibility of APOE is the 

transport of lipids in cerebrospinal fluids (Nathoo, Chetty, van Dellen, & Barnett 

2003; Saunders 2001).  It is also believed to play a role in maintaining the structure of 

and repairing neurons (Nathoo et al. 2003).  APOE is a polymorphic gene with three 

alleles (Wasco).  These three alleles are APOE ε2, APOE ε3, and APOE ε4.

Individuals possess two of these three alleles, leading to either a heterozygous 

phenotype (ε2/ε3, ε2/ε4, ε3/ε4) or a homozygous phenotype (ε2/ε2, ε3/ε3, ε4/ε4).  

APOE has been studied the most in Caucasian populations and it has been found that 

the ε3 allele is the most common isoform at 78%, followed by ε4 at 15%, and then ε2

at 7% (Nathoo et al 2003; Wasco).  The polymorphism of APOE is the result of two 

amino acids—cysteine and argenine—at positions 112 and 158 (Wasco).  APOE ε3

contains cysteine at position 112 and argenine at position 158.  APOE ε2 has cysteine 

at both positions, while APOE ε4 has argenine at both positions.  The presence of the 
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ε4 allele is what puts individuals at an increased risk for AD.  The role of APOE ε4

has not been made clear.  It is hypothesized that it does not bind well with 

cytoskeletal proteins and amyloid β protein (Nathoo, 2003), and does not block the 

formation of neurofibrillary tangles (Wasco).  Previous studies have observed a 

higher frequency of the ε4 allele in patients who have poor recovery from head 

trauma (Saunders).  These patients exhibited increased levels of amyloid β protein 

deposition, and were more likely to develop severe disability (Caulfield 1999; Nathoo 

et al. 2003; Saunders).  Individuals who are heterozygous for the ε4 allele are at a 

greater risk for AD than individuals who do not posses the allele, while individuals 

who are homozygous ε4 show the greatest risk for AD (Wasco).  APOE ε2 is 

hypothesized to have a protective effect against AD, due to the low frequency of the 

allele found in late-onset AD patients (Wasco). 

In a longitudinal study using positron emission tomography (PET) to examine 

brain activity in cognitively normal APOE ε4 heterozygotes compared with ε4

noncarriers, Reiman, Chen, Alexander, Brandy, and Frost (2001) found significant 

declines in cerebral metabolic rate for glucose (CMRgl) over a two year span in 

various brain regions.  Participants ranged in age from 50 to 63 years old, reported a 

family history of AD, and had a two year interval between test 1 and test 2.  The ε4

heterozygotes showed significant declines in the temporal cortex, posterior cingulated 

cortex, prefrontal cortex, basal forebrain, parahippocampal/lingual gyri, and 

thalamus.  The ε4 noncarriers showed significant declines in the posterior cingulate 

cortex, parietal cortex, anterior cingulated cortex, and the caudate nucleus.  Though 

both the ε4 heterozygotes and ε4 noncarriers had significant declines, the ε4
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heterozygotes declines were significantly greater, and their magnitude of difference 

was greater.    

Yaffe, Cauley, Sands, and Browner (1997) conducted a longitudinal study 

involving elderly women ages 65 years and older who were enrolled in a study on 

osteoporosis risk factors.  They examined APOE phenotype in relation to 

performance on a battery of cognitive tests at baseline and repeated the measures six 

years later.  Results revealed that ε4 carriers performed significantly worse than 

noncarriers on the follow-up tests, and homozygous carriers declined approximately 

twice as much as heterozygous carriers. 

Another study by Haan, Shemanski, Jagust, Manolio, and Kuller (1999) found 

that the APOE ε4 allele combined with subclinical cardiovascular disease placed 

elderly individuals ages 65 years and older at an increased risk for cognitive decline 

than those without the ε4 allele or subclinical cardiovascular disease.  Hsiung, 

Sadovnick, and Feldman (2004) observed that the ε4 allele significantly increased the 

risk of developing Alzheimer’s disease from cognitive impairment without dementia, 

as well as from normal cognitive functioning. 

Wisconsin Card Sorting Test 

 The Wisconsin Card Sorting Test (WCST) has been considered by some to be 

the “gold standard” for measuring executive control functioning (Royall et al. 2002).  

During the WCST, the left dorsolateral prefrontal cortex is activated the most out of 

the brain regions, along with activation from the right anterior prefrontal region, the 

mesiofrontal/anterior cingulated, and the orbitofrontal region (Royall et al.).  

Executive control functions primarily involved in the WCST include working 



20 
 

memory, attentional shift, and response inhibition (Konishi et al., 1999; Hartman et 

al., 2001; Royall et al., 2002). 

 Konishi et al (1999) used functional magnetic resonance imaging (fMRI) to 

examine what region of the brain is activated by the WCST and if that region is 

activated by both working memory and attentional set-shifting.  Seven subjects ages 

24-40 performed the original WCST, a modified WCST, and a working memory task.  

In the modified WCST, the working memory component was removed by informing 

the subjects of the new correct dimension that should be used.  The working memory 

task that was administered—the N-back Task with card stimuli—was used to 

replicate previous studies to show that working memory activates the inferior 

prefrontal region of the brain.  The fMRI results revealed that the working memory 

task and the original WCST both activated the inferior prefrontal cortex.  To examine 

the contribution of working memory to the WCST, the researchers quantified the 

overlap of the two tasks inferior prefrontal activation.  The ratio of overlap in the left 

and right inferior prefrontal areas was highly significant in all seven subjects.  The 

modified WCST revealed that the inferior prefrontal cortex still displayed activation 

with the working memory component removed, though the amount of activation was 

significantly smaller when compared to the original WCST.  From this, they 

concluded that working memory and attentional set-shifting are both involved in 

performing the WCST and that the WCST is sensitive to frontal lobe functioning, 

more specifically the inferior prefrontal cortex. 

 Dywan and colleagues (1992) examined different levels of cardiovascular 

health and performance on the WCST.  Their participants were 34 men and women 
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ages 55 to 77 years who were part of a larger ongoing study on cognitive functioning 

across the life span.  Based on a health questionnaire and interview, the participants 

were separated into three groups.  Eleven participants with no health problems and no 

medication formed group 1.  Ten participants who reported health problems and were 

taking medication, but whose problems do not compromise oxygen or blood flow to 

the brain made up group 2.  Group 3 consisted of thirteen participants with 

cardiovascular health issues such as hypertension, coronary heart disease, transient 

ischemic attacks, and the use of medication related to these problems.  Using a 

hierarchical multiple regression of age, vocabulary, health, and P300 latency on the 

percentage of perseverative errors on the WCST, the researchers found that health 

accounted for a significant 28% of the variance.  Group 3 committed a significantly 

higher percentage of perseverative errors than group 1 and group 2 on the WCST.  

Group 2 did commit more a few more errors than group 1, but the difference was not 

significant.  This shows us that health issues that decrease oxygenation and blood 

flow to the brain, such as hypertension and coronary heart disease, can lead to poorer 

performance on a task such as the WCST, a task that is sensitive to frontal lobe 

functioning.              

Benefits of Physical Activity 

 Brain function is enhanced and protected by the increased expression of 

various genes (Cotman & Engesser-Cesar, 2002; Van Hoomissen, 2005).  Exercise 

increases the expression of brain-derived neurotrophic factor (BDNF), a gene that 

assists in the functioning of glutamatergic neurons (Cotman & Engesser-Cesar, 2002; 

Van Hoomissen, 2005).  The increased expression of BDNF has been observed in 
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animal studies primarily in the hippocampal region of the brain along with the 

cerebral cortex (Neeper et al, 1996; Cotman & Engesser-Cesar, 2002; Van 

Hoomissen, 2005).  This is important because the hippocampus is highly involved 

with learning and memory processes.  It is also the region that declines the fastest 

with Alzheimer’s disease.       

 Neeper, Gomez-Pinilla, Choi, and Cotman (1996) examined the brains 

increase in BDNF and nerve growth factor (NGF) – another gene that has been found 

to support the function of neurons – in 39 Sprague-Dawley male rats after physical 

activity.  Exercise in the form of wheel running served as the mode of physical 

activity.  BDNF and NGF mRNA levels were observed after 0 (control group), 2, 4, 

and 7 nights of exercise. All rats were 3 to 4 months of age and received 3 days of 

training with the wheel, followed by 10 days without the wheel to reduce any 

physiological effects from the training.  They were then given 0, 2, 4, or 7 nights with 

access to the wheel before being sacrificed. 

 There was a significant increase in BDNF mRNA in the frontal cortex after 2 

nights with exercise, but then dropped back to control levels after 4 and 7 nights of 

exercise.  No significant increase was observed in the middle cortex, but a 30% 

increase above control levels was observed in the cerebellum after 4 nights of 

exercise.  The most significant increases in BDNF and NGF mRNA levels were 

observed in the hippocampus and the caudal cortex.  In the hippocampus, BDNF 

mRNA levels were significantly higher than controls after two nights with the 

running wheel and remained elevated through seven nights.  To be more specific 

within the hippocampus, Ammon’s horn areas CA1 and CA4 had the most significant 
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increases after seven nights, increasing 80% and 40% respectively, above control 

levels.   

NGF mRNA levels in the hippocampus after 2 nights of exercise were 30% 

above control levels, but declined after 4 and 7 nights.  More specifically, after 7 

nights, CA4 and the dentate gyrus areas of the hippocampus were significantly 20-

30% higher than controls.   

In measuring BDNF mRNA in the cerebral cortex, the caudal 1/3 showed a 

significant increase of 35% above control levels after 2, 4, and 7 nights with the 

running wheel.  Layers II-III and the retrosplenial cortex increased 90% after 7 

nights.  NGF mRNA levels were significantly increased after 2, 4, and 7 nights, with 

the 7-night time point being the highest.  Layer II-III had a 60% significant increase 

over control levels.  These results demonstrate that the expression of genes that are 

beneficial to the brain can be increased through higher amounts of physical activity.  

The increased expression of the genes is most noticeable in regions involving learning 

and memory.              

 In addition to the neurotrophic effect, physical activity also increases cortical 

plasticity through increases in blood flow and synaptic connections.  In animal studies 

involving rats, researchers have found that not only is physical activity beneficial to 

brain, but the type of physical activity might have a specific effect on the brain.  

Swain et al. (2003) found in three different experiments that prolonged exercise in the 

form of a running wheel 1) increases blood volume in the motor cortex, especially in 

the regions of the motor cortex associated with running, mainly the forelimbs, 2) 
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increases capillary reserve in response to elevated levels of CO2, and 3) induces a 

healthy amount angiogenesis within 30 days.   

Black, Isaacs, Anderson, Alcantara, and Greenough (1990) used rats to 

compare the effects of acrobatic training to those of physical exercise in the form of 

wheel running.  They found that the learning component of acrobatic training caused 

a significant increase in synapses per Purkinje cell compared to the exercise group 

and the inactive control group.  The exercise group had greater blood vessel density 

than the acrobatic group and significantly greater density than the inactive group.  

These results display the multiple benefits the brain stands to gain from not only 

increase physical activity, but also from different types of physical activity.         

Physical Activity and the Aging Brain 

The benefits that the brain receives from physical activity become more 

important in helping to maintain cognitive functioning as the brain ages.  In a meta-

analysis done by Colcombe and Kramer (2003a), they looked at the effects of fitness 

on cognitive functioning in older adults.  They found that older adults who exercised 

performed better than non-exercising controls on speed, spatial, controlled, and 

executive cognitive tasks, with the most significant difference being in the executive 

task category.  Among the three age groups studied—young-old (55-65), middle-old 

(66-70), and old-old (71+)—the middle-old group benefited significantly more than 

the young-old and the old-old groups.  The old-old group benefited significantly more 

than the young-old group.  All three groups were statistically significant from zero.  

The young-old group may not have benefited as much as the two older groups 

because their brains are still fairly young and have not declined as much.  The old-old 
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group may be at a point where their brains have declined to a point where exercise is 

beneficial but only to a degree.  The middle-old being statistically greater than the 

other two groups could be due to them being old enough to display the effects of 

aging—compared to the young-old—but young enough to offset those effects through 

exercise—compared to the old-old.   

Colcombe et al. (2004) examined the effects of cardiovascular fitness on 

cortical plasticity in the aging brain in two different studies.  The first study was a 

cross-sectional assessment of 41 high-functioning older adults.  Fitness assessments 

were conducted to put the participants in either a high-fit or low-fit group.  Estimates 

of maximal oxygen uptake (VO2) were obtained using participants height, weight, 

heart rate, and performance on the Rockport 1-mile walk test.  The researchers 

measured participants’ reaction time on a flanker task.  Their percent increase 

reaction time on incongruent stimuli was compared to that of their average reaction 

time on congruent stimuli.  While engaged in the task, participants’ brains were 

scanned using functional magnetic resonance imaging (fMRI).   

From the results, it was revealed that high-fit older adults performed better 

than low-fit older adults on the flanker task.  High-fit older adults displayed 18% 

interference on the incongruent stimuli compared to 26% interference by the low-fit 

older adults.  The fMRI results revealed that high-fit older adults had significantly 

higher levels of activation in the right middle frontal gyrus, superior frontal gyrus, 

and the superior parietal lobule.  The anterior cingulate cortex, a region linked to 

behavioral conflict, displayed significantly less activity in high-fit participants. 
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The second study was a longitudinal study conducted over six-months.  The 

study included 29 high-functioning older adults ages 58 to 77 years old.  One-week 

before the six-month intervention, all participants completed the same flanker task 

and fMRI scanning as in the first study.  The same task and fMRI scan were also 

administered one-week after the six-month intervention was completed.  For the six-

month exercise intervention, participants were randomly assigned to one of two 

groups—an aerobic exercise group or a stretching and toning control group.  These 

groups met for three times per week for 40 to 45 minutes over six-months and were 

led by trained exercise personnel.  The aerobic exercise group aimed to improve 

cardiorespiratory fitness by means of a walking activity the increased in intensity 

throughout the six-months.  The stretching and toning group was used as the control 

group.  They engaged in a total body exercise program including stretching, 

limbering, and toning. 

The results showed that the aerobic exercise group had a significant increase 

in VO2 compared to the stretching and toning control group after the six-month 

intervention.  On the flanker task from pre-intervention to post-intervention testing, 

the aerobic exercise group showed an 11% reduction on incongruent stimuli 

compared to only 2% by the control group.  Results from the fMRI revealed that the 

aerobic exercise group displayed significantly higher levels of activity in the middle 

frontal gyrus, superior frontal gyrus, and the superior parietal lobule, along with 

significantly decreased activity in the anterior cingulate cortex when compared with 

the control group after the six-month intervention.   
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The fMRI results from Study 1 and Study 2 revealed that both the high-fit 

group (Study 1) and the aerobic exercise group (Study 2 after the six-month 

intervention) displayed similar regional activity on the flanker task.  This leads the 

researchers to conclude that the cognitive benefits from increased cardiovascular 

exercise can become evident in approximately six-months.  It is hypothesized that 

these benefits are the result of increased blood flow and synaptic connections that 

come from the increase amount of cardiovascular activity.  It should also be noted 

that the frontal and parietal regions associated with the flanker task benefited the 

most. 

For individuals who are genetically at-risk for increased cognitive decline, 

such as those who are heterozygous or homozygous for APOE ε4, being physically 

active can be even more important.   Schuit et al. (2001) examined the role of APOE 

ε4 and its relationship to physical activity and cognitive decline.  This was a 

longitudinal study involving 347 men between the ages of 65-84 years old.  The study 

was conducted from 1990 to 1993.  The Mini Mental State Examination (MMSE) was 

used to test global cognitive functioning.  A reduction of more than three points on 

the MMSE over the three year period was considered cognitive decline.  Participants 

were either defined as carriers or noncarriers of the APOE ε4 allele.  A self-

administered questionnaire was used to assess physical activity in 1990.  Questions 

about deliberate exercise, hobbies, and odd jobs were included on the questionnaire.  

Participants were categorized into two groups based on their amount of physical 

activity.  The first group was a “maximal of 1 hour per day” (low active), and the 

second group was “more than one hour per day” (high active).  The results revealed 
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that the risk of cognitive decline from 1990 to 1993 between low active and high 

noncarriers—those without the APOE ε4 allele—was similar.  However, while the 

risk of cognitive decline for the high active carriers—those with at least one APOE ε4

allele present—came close to those of the noncarriers, the low active carriers risk was 

approximately four times the risk of the high active carriers.  From the results, we can 

see that while overall, the risk of cognitive decline is greater for low active 

participants than high active participants, the greatest magnitude of difference was 

between the high active and low active carriers.  This shows us that physical activity 

has an even greater impact on individuals who carry the APOE ε4 allele.   

Podewils and colleagues (2005) examined a similar relationship between 

physical activity and APOE genotype, but instead of studying cognitive decline, they 

looked at incident dementia.  The study took place from 1992 to 2000 and included 

5,888 men and women age 65 and older.  Physical activity was assessed by a 

questionnaire asking participants questions about frequency, duration, and the number 

of different of activities they engage in.  APOE genotype was defined by either being 

a carrier or noncarrier of the APOE ε4 allele.  A number of covariates were measured 

at baseline and over the time period of the study.  Some of the covariates were, but 

not limited to age, gender, education level, ethnicity, smoking, alcohol, 

cardiovascular health issues, social networks, height and weight, MRI scans, and 

cognitive status using the Modified version of the Mini-Mental State Examination 

(administered annually).  Dementia status and type were assessed and classified from 

1999 to 2000.  Of the many results obtained from this study, the results that we are 

concerned about for our current study are that those participants who developed 
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dementia were more likely to be carriers of the APOE ε4 allele, and there was an 

inverse relationship between leisure-time energy expenditure and dementia risk, as 

well as the number of physical activities and dementia risk.  More importantly for our 

study, the inverse relationship of energy expenditure and number of activities to 

dementia risk was only found in APOE ε4 noncarriers, not APOE ε4 carriers. 

It is important to note the difference between the Schuit et al. (2001) study 

and the Podewils et al. (2005) study.  Schuit and colleagues measured cognitive 

decline, while Podewils and colleagues measured incident dementia.  This is 

important to consider when comparing these two studies because a person may 

ultimately developed dementia, but their rate of cognitive decline leading up to 

dementia along with the severity of the dementia may be different in APOE ε4

carriers and noncarriers, as well as individuals with varying levels of physical 

activity.  Participating in a variety of activities may be just as effective as having 

higher energy expenditure because of the amount of learning and memory involved 

which possibly engages and enhances more neural networks.
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Chapter 3: Methods and Procedures 

Participants 

The participants in this study came from a larger ongoing study investigating 

physical activity, the aging brain, and genotype.  Volunteers were recruited from local 

running events, health clubs, campus faculty and staff, and newspaper ads.  

Participants consisted of 67 men and women, 50 to 70 years of age.  Level of 

education obtained was also recorded.  Participants were assessed on their level of 

physical activity and whether they are a carrier or non-carrier of APOE ε4.

Participants who carried the combination of APOE ε2/ε4 were excluded from the 

study.     

Screening of Participants 

 Participants signed a consent form (Appendix B) and were screened for any 

health problems using a medical history form (Appendix C).  Participants accepted 

for the study were asymptomatic for psychiatric disorders, psychotropic medication, 

and neurological disorders. 

Screening for Cognitive Impairments 

Participants were screened for cognitive impairments with the Cambridge 

Cognitive Examination (CAMCOG, Appendix D).  The CAMCOG is a subsection of 

the Cambridge Examination for Mental Disorders of the Elderly – Revised 

(CAMDEX-R) (Roth, Huppert, Mountjoy, & Tym; 1998).  The CAMDEX-R is a 

standardized, structured interview and examination used for the diagnosis of mental 

disorders in older adults.  The CAMDEX-R and the CAMCOG were both designed 
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with special emphasis on dementia.   The CAMCOG is used to assess older adults 

generally ages 65 and up on the following cognitive functions: orientation, language, 

memory, attention and calculation, praxis, abstract thinking, and perception (Roth et 

al., 1998).  The CAMCOG includes two other widely used tests, the Mini-Mental 

State Exam (MMSE) and the Abbreviated Mental Test, for purpose of comparison.  

Subjects who score in the range of 28 to 30 on the MMSE usually show a wide 

distribution on the CAMCOG.  The CAMCOG is scored on a range from 0 – 107, 

with the total coming from the combined scores of the subsections.  This widely used 

examination has proven useful in assisting with the differential diagnosis of dementia.  

Significant differences have been found on total CAMCOG scores as well as on each 

subscale (Williams et al., 2003).  In a study conducted by Huppert et al. (1996) using 

a population aged 75 years and older, the mean total CAMCOG score for non-

demented patients was 89.69, 77.95 for patients with minimal dementia, and 65.46 for 

patients with mild dementia.  A cut-point of 80/81 produced the highest levels of 

sensitivity and specificity of the CAMCOG in predicting dementia diagnosis.  For the 

current study we will be using a cut-point of 28 on the MMSE and 85 on the 

CAMCOG.  The cut-point of 85 will be used to adjust for the younger population that 

we will be using.    

Genetics Methods 

Enrolled subjects provided a blood sample to enable comprehensive 

genotyping.  Standard, sterile procedures were used to obtain a 10-ml blood sample 

from an antecubital vein for consented subjects, and genomic DNA was isolated from 

peripheral lymphocytes using standard techniques (PureGene DNA Isolation Kit, 
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Gentra, Inc.). Unique identification numbers were used for each DNA sample 

received, such that the identity of the subjects was not known during any portion of 

the project, including data analysis. This ID number was linked with all necessary, 

but similarly blinded, phenotype data.  

Genotyping was performed using restriction fragment length polymorphism 

(RFLP) techniques.  The APOE genomic sequence was amplified by PCR using 

standard techniques in a DNA thermal cycler using the following forward and reverse  

oligonucleotide primers: (APOE-OP-F: 5’ ACT GAC CCC GGT GGC GGA GGA 

GAC G3’& APOE-OP-R: 5’ TGT TCC ACC AGG GGC CCC AGG CGC TC 3’).  

Amplified product (15 µl), ~300 base pairs (bp) in length, of study participants was 

added separately both to 2 units of HAEII enzyme and to 7.5 units of AFLIII enzyme 

for digestion and incubated at 37 degrees for 24 hours.  Each digestion sample was 

loaded on to a 3% agarose gel containing ethidium bromide and electrophoresed.  

After electrophoresis the DNA fragments were visualized by ultraviolet illumination 

and fragment sizes were estimated by comparison to a 1 kb ladder run on the same 

gel.  Genotyping of subjects was based on the following fragment sizes: 2/2: HAEII: 

267 bp AFLIII: 231 pb  2/3: HAEII: 267, 232 bp AFLIII: 231 bp  2/4: HAEII: 267, 

232 bp AFLIII: 295, 231 bp  3/3: HAEII: 232 bp AFLIII: 231 bp  3/4: HAEII: 232 bp 

AFLIII: 295, 231 bp  4/4: HAEII: 232 bp AFLIII: 295 bp. Sequence-verified control 

samples were used with all genotyping assays. 

Assessment of Level of Physical Activity 

The Yale Physical Activity Survey (YPAS, Appendix E) was administered to 

study participants during their initial visit for the larger study on physical activity, the 
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aging brain, and genotype.  This survey assesses how physically activity a person is.  

Physical activity in this survey encompasses deliberate exercise as well as the 

physical activity people engage in on a daily basis such as climbing steps and doing 

housework.  Energy expenditure is recorded as kilocalories, summed, and averaged to 

calculate a weekly pattern of physical activity.  The three scoring dimensions 

included in the YPAS are total time, energy expenditure, and activity summary scores 

(Dipietro et al., 1993).  Total time is shown as the total number of hours per week for 

all activities combined.  Energy expenditure is calculated by multiplying the time for 

each activity by an intensity code (kcal · min-1) and then summing all the activities to 

create an index (kcal · wk-1).  The activity summary score or Yale index is calculated 

by multiplying the frequency score by the duration score, and then multiplying by a 

weighting score for each of the five activities.  These five activities are vigorous 

activity, leisurely walking, moving, standing, and sitting.    

Dipietro et al. (1993) report a positive correlation of r = .58 between the 

YPAS activity dimensions summary index and VO2max, and an inverse relationship of 

r = -.43 with percent body fat.  Repeatability coefficients ranged from .42 to .65 

between two administrations (two-weeks apart) of the YPAS for the eight summary 

indices (Dipietro et al.).  Shuler et al. (2001) found moderate to good short term 

repeatability of R = .70 to .82 for the three survey indices.  High-intensity exercise 

related activities were reported to have a higher repeatability than lower-intensity 

activities, possibly due to the recall of more structured exercise as compared to the 

recall of more random activities of daily living (Dipietro et al., Shuler et al.).      
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Executive Control Task 

The Wisconsin Card Sorting Test (WCST) is widely recognized as the best 

measure of executive control functioning (Hartman et al. 2001; Konishi, S. 1999; 

Lezak 1995; Royall 2002).  The Wisconsin Card Sorting Test was administered to 

participants using a Gateway PC and software provided by Psychological Assessment 

Resources, Inc.  Four stimulus cards appear across the top of the computer screen.  A 

response card appears at the bottom center of the screen.  Using four keys on the 

keyboard that correspond with the three matching principles—color, shape, and 

number—participants match the response card to the appropriate stimulus card based 

on one of the three matching principles.  If the participant matches the response card 

on the wrong principle, the word “wrong”’ will appear in the middle of the screen.  

The participant then receives another response card to try to match on the correct 

principle.  Once the correct principle is identified, they keep matching on the 

principle until the computer notifies them that they are “wrong”, indicating that the 

principle has changed.  The word “right” appears in the middle of the screen when the 

participant matches the card correctly. 

Scoring of the WCST is based on total errors, perseverative errors, and 

perseverative responses (refer to Appendix F for an example of scoring).  Participants 

must match ten consecutive cards correctly on one principle before the principle 

changes.  Participants receive a minimum of 64 cards and a maximum of 128 cards to 

complete the test.  Errors that count towards the total number of errors occur when 

participants do not match on the current principle.  Perseverative errors occur when a 

participant continues to match to a principle that is incorrect.  Perseverative responses 
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are the total number of perseverations, correct and incorrect.  The computer 

automatically scores the entire test once it is complete.  Machine scoring provides 

objectivity among the scores. 

Participants in the current study first received a coached practice trial with the 

test administrator’s assistance.  After the coached trial, they received the actual test 

trial in which they did not receive any assistance from the test administrator.         

Data Analysis 

 The statistical approach used for the current study was adapted from a 

previous study conducted by Bixby et al. (2007) examining the unique relationship 

between physical activity and cognitive functioning in older men and women.  The 

task that was used to examine executive function was regressed on age, education, IQ, 

physical activity (i.e, Yale index), and the interaction of age X physical activity.   

Therefore, the current study used hierarchical regression to examine the relationship 

between physical activity and mental performance on the WCST.  Each of the seven 

performance scores (i.e., trials administered, total errors, percent total errors, 

perseverative errors, percent perseverative errors, nonperseverative errors, and 

percent nonperseverative errors) were separately regressed on age, genotype (i.e., 

presence or absence of APOE ε4), physical activity (Yale index), and the interaction 

between genotype and physical activity.  In the event of such a significant interaction, 

cognitive performance was regressed on physical activity separately for ε4 carriers 

and non-carriers. 

All statistical analyses were done using SPSS version 14.0.  Mean and 

variability are reported for gender, age, education, overall CAMCOG score, MMSE 
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score, and Yale index.  In addition, differences between genotype groups were 

assessed with 2-tailed independent sample T-tests for the same variables mentioned 

above.  

In order to assess the logical structure of the data set, inter-correlations were 

computed between age, education, genotype, physical activity (i.e., Yale Index, Kcal 

expenditure, and Yale exercise), and each of the seven Wisconsin Card Sorting Test 

measures (i.e., trials administered, total errors, percent total errors, perseverative 

errors, percent perseverative errors, nonperseverative errors, and percent 

nonperseverative errors).
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Chapter 4: Results 

Descriptive Statistics 

 No differences were revealed between ε4 carriers and non-carriers in age, 

education, overall CAMCOG score, MMSE, or physical activity (see Table 1). 

Table 1 
 
Descriptive Statistics 

 Total Non-carriers ε4 Carriers F df Sig (2-tailed)
N 67 48 19 - - - 

Male/Female 36/31 22/26 14/5 11.499 65 0.04 
Age 60.0 (5.0) 60.10 (5.0) 59.74 (5.7) 0 65 0.795 

Education 17.37 (2.3) 17.21 (2.3) 17.53 (2.4) 0.04 65 0.614 
CAMCOG Overall 94.47 (4.1) 94.33 (4.0) 94.74 (4.6) 0.455 65 0.722 

MMSE 28.04 (1.2) 28.17 (1.0) 27.84 (1.4) 1.462 65 0.299 
Yale index 60.37 (23.5) 61.21 (24.3) 59.16 (22.0) 0.981 65 0.751 

Note. The mean and (standard deviation) reported for the entire group then separately 
for non-carriers and ε4 carriers. 

Correlation Analyses  

An initial correlation analyses was conducted on each of the Yale Physical 

Activity Survey measures with the seven Wisconsin Card Sorting Test variables.  The 

Yale index score was the only measure to yield a significant relationship with any of 

the WCST variables.  Therefore, the Yale index score was used as the assessment of 

physical activity in the data analysis. 

Correlation analysis was conducted on the seven WCST variables with age, 

education, genotype, and Yale index.  The correlation matrix is reported in Table 2 

(2-tailed probability).  

As expected, positive correlations were found between age and the following 

executive performance variables: percent total errors (r = .229, p = .056), 
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perseverative errors (r = .232, p = .053), and percent perseverative errors (r = .232, p 

= .054). 

As expected, negative relationships were observed between Yale index and 

the following variables: nonperseverative errors (r = -.254, p = .034), and percent 

nonperseverative errors (r = -.232, p = .054). 

Table 2 
 
Correlations between WCST variables & Age, Education, Genotype, Yale Index 

Trials 
Admin 

Total 
Errors 

%
Errors 

Perseverative 
Errors 

%
Perseverative 
Errors 

Nonperseverative 
Errors 

%
Nonperseverative 
Errors 

Age Pearson 
Correlation .188 .213 .229(*) .232(*) .232(*) .172 .166 

Sig. (2-
tailed) .119 .077 .056 .053 .054 .153 .170 

Ed. Pearson 
Correlation -.008 .011 .006 -.039 -.050 .042 .047 

Sig. (2-
tailed) .945 .925 .960 .752 .683 .731 .701 

Gene Pearson 
Correlation -.050 -.019 -.038 -.001 .009 -.029 -.069 

Sig. (2-
tailed) .688 .882 .762 .990 .939 .813 .580 

Yale 
index 

Pearson 
Correlation -.202 -.199 -.155 -.095 -.021 -.254(*) -.232(*) 

Sig. (2-
tailed) .094 .099 .199 .432 .861 .034 .054 

* Correlation is significant at the 0.05 level (2-tailed). 
 

In addition, correlation analyses were conducted on the four YPAS measures 

with the cognitive screening tools (i.e., CAMCOG and MMSE).  This was performed 

to examine global cognitive integrity.  The correlation matrix is reported in Table 3 

(2-tailed probability).   

 The results from this correlation analysis indicated positive relationships 

between the following: (1) Yale exercise and MMSE (r = .302, p = .011), (2) Yale 

index and MMSE (r = .353, p = .003), and (3) Yale vigor and MMSE (r = .281, p = 

.018). 
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Table 3 
 
Correlations for Physical Activity Variables & Cognitive Screening  

CAMCOG 
overall MMSE 

Yale kcal Pearson Correlation .034 -.009 
Sig. (2-tailed) .778 .941 

Yale exercise Pearson Correlation .177 .302(+) 
Sig. (2-tailed) .143 .011 

Yale index Pearson Correlation .208 .353(++) 
Sig. (2-tailed) .084 .003 

Yale vigor Pearson Correlation .198 .281(+) 
Sig. (2-tailed) .100 .018 

++  Correlation is significant at the 0.01 level (2-tailed). 
+ Correlation is significant at the 0.05 level (2-tailed). 

Hierarchical Regression Analyses 

Percent perseverative errors. 

 Regression analysis revealed that age was positively related to percent 

perseverative errors and accounted for approximately 8% of the variability.  No effect 

was revealed for genotype or physical activity alone.  The interaction between 

genotype and level of physical activity accounted for approximately 6% of the 

variability in cognitive performance (see Figure 1).  Follow-up analysis of the 

interaction was accomplished by regressing percent perseverative errors on age and 

physical activity for carriers, and non-carriers, separately. Carriers were characterized 

by a significant positive relationship between age and percent perseverative errors 

(Fchange(1,17) = 6.785, p = .018, β = .259, r2 = .285).  Regressions for the non-

carriers did not reveal any significant findings for any of the WCST variables.   

 Perseverative errors. 

 Regression analysis revealed that age was positively related to perseverative 

errors and accounted for approximately 11% of the variability.  No effect was 

revealed for genotype or physical activity alone.  The interaction between genotype 
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and level of physical activity accounted for approximately 10% of the variability in 

cognitive performance (see Figure 2).  Follow-up analysis revealed that carriers were 

characterized by a significant positive relationship between age and perseverative 

errors (Fchange(1,17) = 10.034, p = .006, β = .391, r2 = .371), and a significant 

negative relationship between Yale index and perseverative errors (Fchange(1,16) = 

4.353, p = .053, β = -.064, r2 = .134). 

 Percent nonperseverative errors. 

 Regression analysis revealed that age was positively related to percent 

nonperseverative errors and accounted for approximately 11% of the variability.  No 

effect was revealed for genotype or physical activity alone.  The interaction between 

genotype and level of physical activity for the percent nonperseverative errors was 

nonsignificant, but accounted for approximately 5% of the variability in cognitive 

performance (see Figure 3). 

Nonperseverative errors. 

 Regression analysis revealed that age was positively related to 

nonperseverative errors and accounted for approximately 14% of the variability.  No 

effect was revealed for genotype or physical activity alone.  The interaction between 

genotype and level of physical activity accounted for approximately 10% of the 

variability in cognitive performance (see Figure 4).  Follow-up analysis revealed that 

carriers were characterized by a significant positive relationship between age and 

nonperseverative errors (Fchange(1,17) = 10.411, p = .005, β = .531, r2 = .380) and a 

significant negative relationship between Yale index and nonperseverative errors 

(Fchange(1,16) = 4.785, p = .044, β = -.089, r2 = .143). 
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Percent total errors. 

 Regression analysis revealed that age was positively related to percent total 

errors and accounted for approximately 13% of the variability.  No effect was 

revealed for genotype or physical activity alone.  The interaction between genotype 

and level of physical activity accounted for approximately 8% of the variability in 

cognitive performance (see Figure 5).  Follow-up analysis revealed that carriers were 

characterized by a significant positive relationship between age and percent total 

errors (Fchange(1,17) = 9.897, p = .006, β = .646, r2 = .368). 

 Total errors. 

 Regression analysis revealed that age was positively related to total errors and 

accounted for approximately 15% of the variability.  No effect was revealed for 

genotype or physical activity alone.  The interaction between genotype and level of 

physical activity accounted for approximately 12% of the variability in cognitive 

performance (see Figure 6).  Follow-up analysis revealed that carriers were 

characterized by a significant positive relationship between age and total errors 

(Fchange(1,17) = 11.785, p = .003, β = .922, r2 = .409) and a significant negative 

relationship between Yale index and total errors (Fchange(1,16) = 5.522, p = .032, β

= -.153, r2 = .152). 

 Trials administered. 

 Regression analysis revealed that age was positively related to the number 

trials administered and accounted for approximately 14% of the variability.  No effect 

was revealed for genotype or physical activity alone.  The interaction between 

genotype and level of physical activity accounted for approximately 9% of the 
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variability in cognitive performance (see Figure 7).  Follow-up analysis revealed that 

carriers were characterized by a significant positive relationship between age and 

trials administered (Fchange(1,17) = 14.065, p = .002, β = 1.578, r2 = .453) and a 

significant negative relationship between Yale index and trials administered 

(Fchange(1,16) = 4.424, p = .052, β = -.220, r2 = .119).   

 Complete R2 change and F change results can be found in Table 4. 
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Table 4

Summary of Hierarchical Regression Analysis for WCST variables. (N = 67)
Age Gene Yale Index Gene X Index

F-
Change

R-
Square
Change

Standardized
Beta
Coefficient

F-
Change

R-
Square
Change

Standardized
Beta
Coefficient

F-
Change

R-
Square
Change

Standardized
Beta
Coefficient

F-
Change

R-
Square
Change

Standardized
Beta
Coefficient

Total
R2

Change

% Perseverative
Errors

4.972* 0.077 0.277 0.033 0.001 0.023 0.103 0.002 0.041 4.132* 0.062 -0.736 0.142

%
Nonperseverative
Errors

7.019** 0.105 0.324 0.106 0.002 -0.04 1.281 0.019 -0.141 3.702 0.053 -0.681 0.179

Perseverative
Errors

7.028** 0.105 0.324 0.07 0.001 0.033 0.004 0 -0.008 7.197** 0.1 -0.934 0.206

Nonperseverative
Errors

9.520** 0.137 0.37 0.054 0.001 0.028 1.909 0.027 -0.168 7.387** 0.096 -0.913 0.261

% Total Errors 9.026** 0.131 0.362 0.001 0 -0.003 0.225 0.003 -0.059 5.742* 0.079 -0.831 0.213
Total Errors 10.225** 0.146 0.382 0.076 0.001 0.033 0.685 0.01 -0.101 9.235** 0.118 -1.012 0.275
Trials
Administered

9.765** 0.14 0.374 0 0 0 0.764 0.011 -0.107 6.783* 0.09 -0.887 0.241

Notes: * p < .05
** p ≤ .01

Significant values bolded.
Amount of variance accounted for underlined.
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Figure 1. The vertical axis represents percentage perseverative errors, while the 
horizontal axis represents low to high levels of physical activity.  The red triangles 
and solid red line represent APOE ε4 carriers, and the blue circles and dotted blue 
line represent non-carriers. 
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Figure 2. The vertical axis represents number of perseverative errors, while the 
horizontal axis represents low to high levels of physical activity.  The red triangles 
and solid red line represent APOE ε4 carriers, and the blue circles and dotted blue 
line represent non-carriers. 
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Figure 3. The vertical axis represents percentage of nonperseverative errors, while 
the horizontal axis represents low to high levels of physical activity.  The red 
triangles and solid red line represent APOE ε4 carriers, and the blue circles and dotted 
blue line represent non-carriers. 
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Figure 4. The vertical axis represents number of nonperseverative errors, while the 
horizontal axis represents low to high levels of physical activity.  The red triangles 
and solid red line represent APOE ε4 carriers, and the blue circles and dotted blue 
line represent non-carriers. 
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Figure 5. The vertical axis represents percentage of total errors, while the horizontal 
axis represents low to high levels of physical activity.  The red triangles and solid red 
line represent APOE ε4 carriers, and the blue circles and dotted blue line represent 
non-carriers. 
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Figure 6. The vertical axis represents number of total errors, while the horizontal 
axis represents low to high levels of physical activity.  The red triangles and solid red 
line represent APOE ε4 carriers, and the blue circles and dotted blue line represent 
non-carriers. 
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Figure 7. The vertical axis represents number of trials administered, while the 
horizontal axis represents low to high levels of physical activity.  The red triangles 
and solid red line represent APOE ε4 carriers, and the blue circles and dotted blue 
line represent non-carriers.
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Chapter 5: Discussion 

Summary of Findings and Review of the Present Study 

 In the current study the relationship between physical activity and executive 

control functioning was examined in 67 adults aged 50 to 70, as modified by APOE 

ε4 status (carriers and non-carriers).  The Wisconsin Card Sorting Test was selected 

to measure executive control functioning due to its sensitivity to the integrity of 

frontal lobe function (Dywan et al. 1992; Hartman et al. 2001; Green 2000; Konishi et 

al. 1999; Royall et al. 2002).  It was predicted that APOE ε4 carriers would show the 

greatest benefit in executive control functioning from physical activity, because of the 

accelerated age-related neurocognitive decline associated with the ε4 allele.  That is, 

ε4 carriers have more cognitive deficit and, therefore, are more likely to show 

apparent benefit from physical activity than non-carriers. 

The percent and number of errors and trials administered increased as age 

increased on all seven of the WCST measures (i.e., percent perseverative errors, 

perseverative errors, percent nonperseverative errors, nonperseverative errors, percent 

total errors, total errors, and number of trials administered). This result is consistent 

with previous findings (Hartman et al. 2001; Green 2000; Lezak 1995).  Neither 

genotype nor physical activity, alone, was significantly related to WCST 

performance.  However, the interaction of these two variables did account for a 

significant degree of explained variance in executive performance. More specifically, 

and based on the hierarchical regression analyses, age accounted for approximately 

7% to 15% of the variance for the seven WCST measures, while the interaction of 

genotype and physical activity uniquely accounted for approximately 5% to 12% of 
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the variance for the seven measures.  Follow-up analyses that examined the 

relationship between cognitive performance and physical activity, separately for each 

genotype, revealed that as much as 32% of variance in cognition was accounted for 

by knowledge of physical activity in the ε4 carriers while only 4% was accounted for 

in the non-carriers. The interaction of genotype and physical activity revealed that 

both number and percentage of perseverative errors (as well as all other WCST non-

executive measures) decreased in the carriers as physical activity level increased.  No 

significant relationships between physical activity and cognitive performance were 

observed in the non-carriers although there were some similar directional trends as 

observed in the carriers.   

These results are consistent with the epidemiological findings of Schuit et al. 

(2001) who examined the rate of cognitive decline in high- and low-active carriers 

and non-carriers of APOE ε4 over a three-year period.  She and her colleagues found 

that the magnitude of cognitive decline was greatest in ε4 carriers, but it was 

remarkably attenuated by physical activity, while no such effect was noted in non-

carriers. It is important to note that Schuit et al. (2001) examined a global index of 

cognitive functioning (i.e., MMSE), while the current study specifically examined the 

relationship of physical activity with executive control functioning. As such, the 

attenuation of executive decline, as found in the present study, may largely account 

for the findings reported by Schuit et al.  

Physical activity was assessed in the current study using the Yale Physical 

Activity Survey.  The employment of the Yale index score in the series of regression 

analyses was empirically based. That is, the obtained correlations between the four 
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measures derived from the YPAS (i.e., (1) kilocalories, (2) exercise, (3) vigorous 

activity, and (4) index) and the seven WCST variables (as well as the cognitive 

screening tools) were highest for the index.  Since the Yale index score is relatively 

sensitive to intensity of physical activity, while this is not the case for the other 

variables, there may be a critical intensity-based threshold of physical activity for its 

benefits to be realized.  

As stated above, genotype and physical activity, when considered alone, were 

not related to cognitive performance. The interaction of these two variables was 

significant and displays the benefits that physical activity has on the WCST 

performance of the high-active APOE ε4 carriers.  The presence of the APOE ε4

allele leads to a build-up of amyloid plaques and neurofibrillary tangles in the brain 

that decreases blood flow and increases cortical atrophy (Saunders, 2001), while 

some investigators have reported hypometabolism or a decline in brain activity in ε4

carriers, particularly in brain regions that are affected by Alzheimer’s disease 

(Reiman et al., 2001).  Due to the increased age-related cognitive decline that the 

presence of the ε4 allele imposes, carriers stand to benefit more from physical activity 

than non-carriers who maintain relative integrity of neural structures and processes. 

The focus on frontally mediated executive function was based on the work of 

West (1996) who originated the frontal lobe hypothesis of normal aging.  This 

hypothesis states that the frontal lobe is the region of the brain that declines the fastest 

with age.  The prefrontal cortex, which is largely involved with executive control 

functioning, begins to lose its ability to inhibit unwanted responses and working 

memory begins to decline.  This decline in frontal lobe functioning may be 
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accelerated by the APOE ε4 allele because of the plaques and tangles that form in the 

brain as a result of the alleles presence (Nathoo et al., 2003, Wasco, 2001).  Along 

with a decrease in blood flow, the brain is unable to repair neurons and maintain 

structural integrity so ε4 carriers would be expected to show more benefit than non-

carriers. 

Importantly, the Wisconsin Card Sorting Test (WCST) has proven to be an 

effective tool for measuring executive control functioning (Dywan et al., 1992; 

Hartman et al., 2001; Konishi et al, 1999; Royall et al., 2002).  It is a test that is 

highly sensitive to age and education (Heaton et al., 1993; Plumet et al., 2005).  

Hierarchical regression, as used in the current study, revealed that age accounted for 

the largest percent of the variance on all seven of the WCST variables.  The 

population was a high functioning group in that the average number of years of 

education was approximately 17 years and there was no evidence of cognitive 

impairment.  As such, the detection of exercise-related benefits in such a group is 

remarkable as they provide a conservative test of the link between physical activity 

and cognitive function. 

In the present study, the non-carriers characterized by low levels of physical 

activity did not differ significantly from those characterized by high activity in terms 

of cognitive performance.  It is possible that low-active non-carriers may have been 

able to compensate due to their high level of education.  The use of behavioral 

analysis did not reveal any difference in cognitive performance between low-active 

and high-active non-carriers due to physical activity. Though not significant, the 

results were in favor of the high-active non-carriers, which is more than likely due to 
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the benefits from being more physically active. However, significant differences may 

be revealed at a different level of measurement. For example, neuroimaging, as 

compared to behavioral analyses as employed in the present study, may reveal that 

high-active non-carriers are more efficient in terms of the magnitude of cerebral 

cortical activation when completing the task, while low-active non-carriers may 

require more activation and, therefore, less efficient cerebral cortical processes.  This 

kind of benefit to the non-carriers would not be revealed at the behavioral level of 

analysis. 

With the use of structural neuroimaging, Colcombe et al. (2003b) were able to 

observe age-related decline in the frontal lobe.  However, their study also revealed 

that aerobic fitness helped to preserve tissue density in the same region of the brain.  

This effect is likely pronounced in APOE ε4 carriers, but has yet to be determined. 

Since the low-active non-carriers do not have the additional effect of APOE 

ε4 to go along with age-related decline, they may be able to compensate for their lack 

of benefits from physical activity with cognitive reserve developed from education.  

As mentioned above, neuroimaging could reveal if the task was more effortful for 

low-active relative to high-active non-carriers. 

Benefits of Physical Activity on the Brain 

The current study reinforces the results of previous research, which has 

revealed the positive effects that physical activity has on the brain.  The increase in 

blood flow and oxygen to the brain help to keep the brain healthy while the increase 

in synapses preserve the brains neural networks (Black et al., 1990).  The 

neurotrophic factor expression from physical activity improves the functioning of 
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neurotransmitters throughout the brain, helping to maintain cognitive functioning 

(Neeper et al, 1996; Cotman & Engesser-Cesar, 2002; Van Hoomissen, 2005).  In the 

process of normal aging in older adults, these cognitive benefits help to decrease the 

rate of cognitive decline, especially in the frontal lobe and prefrontal cortex, areas 

responsible for executive control functioning (Colcombe & Kramer, 2003).  With 

these regions of the brain being the fastest to decline with age, they benefit the most 

from physical activity (Hall et al., 2001).    These benefits are even more important 

for individuals who are heterozygous or homozygous for APOE ε4 because of the 

detrimental effect this gene can have on the overall health and functioning of the 

brain.  The enhanced expression of BDNF mRNA in the hippocampus and cerebral 

cortex directly benefit the regions of the brain that are most effected by APOE ε4

(Cotman & Engesser-Cesar, 2002; Neeper et al., 1996; Reiman et al., 2001).  

In addition, Dywan et al. (1992) reported that participants without any 

reported health problems or medications performed significantly better on the WCST 

(i.e., exhibited a lower percentage of perseverative errors) than participants with 

cardiovascular problems such as hypertension, coronary heart disease, transient 

ischemic attacks, or use of medications for these problems.  Because participation in 

physical activity is associated with cardiovascular health, the present findings in the 

e4 carriers may be explained by improved circulation and lowering of systemic blood 

pressure, which would also affect cerebrovascular integrity.  

Limitations and Future Studies 

The current investigation is a cross-sectional design, which does not allow one 

to examine the participants’ physical activity over the life-span.  While the 



54 
 

participants’ reports of physical activity was stable for the five years prior to the 

study, it does not tell us if cognitive performance in our middle-aged population is 

effected by low or high levels of physical activity during young adulthood and earlier.  

An intervention study would provide a more direct examination of the cause-effect 

relationship between physical activity and cognitive performance, while a 

longitudinal design would provide follow-up data on how the participants are 

progressing through older adulthood.  The use of neuroimaging would yield stronger 

evidence of the condition of the frontal lobe and hippocampus, and reveal the areas of 

the brain that are activated during the executive control task. Furthermore, such a 

measurement approach would reveal how effortful it is for the participant, and 

provide stronger evidence on the interaction between physical activity and the APOE 

ε4 genotype.   

Implications for Public Health 

These results are relevant to public health concerns pertaining to cognitive 

impairment and the development of dementia, more specifically Alzheimer’s Disease, 

in the older population (Alzheimer’s Association, 2004a; Alzheimer’s Association, 

2004b).  A longitudinal study conducted by Rovio et al. (2005) reported that 

participation in leisure-time physical activity at least twice a week during midlife 

decreased the risk of dementia.  Similar to the findings in the current study, their 

results were more pronounced in APOE ε4 carriers.  Physical activity provides us 

with a supplement or alternative to medication as a way of decreasing the rate of 

cognitive decline, and preventing or at least delaying the onset of dementia.
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Appendix E 
 

THE YALE PHYSICAL ACTIVITY SURVEY 
FOR OLDER ADULTS 

 
INTERVIEWER: PLEASE MARK TIME: _____:_____:_____  

HR      MIN     SEC 
 

INTERVIEWER: (Please hand the subject the list of activities while reading this 
statement.) Here is a list of common types of physical activities. Please tell me which of them 
you did during a typical week in the last month. Our interest is learning about the types of 
physical activities that are a part of your regular work and leisure routines.

For each activity you do, please tell me how much time (hours) you spent doing this activity 
during a typical week. (Hand subject card #1.) 

 
Intensity 

 Work Time                     Code*
(hrs/wk)            (kcal/min)   

Shopping (e.g., grocery, clothes)                                                         _____ 3.5 
 
Stair climbing while carrying a load                                                   _____ 8.5 
 
Laundry (time loading, unloading, hanging, folding only)                 _____ 3.0 
 
Light housework: tidying, dusting, sweeping, collecting                   _____ 3.0 

trash in home, polishing, indoor gardening, ironing. 
 
Heavy housework: vacuuming, mopping, scrubbing floors               _____ 4.5 

and walls, moving furniture, boxes, or garbage cans. 
 
Food preparation (10+ minutes in duration): chopping,                     _____ 2.5 

stirring, moving about to get food items, pans. 
 
Food service (10+ minutes in duration): setting table,                       _____ 2.5 
 carrying food, serving food. 
 
Dish washing (10+ minutes in duration): clearing table,                   _____ 2.5 

washing/drying dishes, putting dishes away. 
 
Light home repair: small appliance repair,                                         _____ 3.0 

light home maintenance/repair. 
 
Heavy home repair: painting, carpentry,                                            _____ 5.5 
washing/polishing car. 

 
Other: ___________________________________ 
 
* Taylor, et al. 1978 or McArdle et al. 1981  
# Determined by the specific activity 



75 
 

Appendix E (continued) 
 

Intensity 
 Time          Code *
Yardwork (hrs/wk) (Kcal/min) 
Gardening: planting, weeding, digging, hoeing ____ 4.5 
 
Lawn mowing (walking only) ____ 4.5 
 
Clearing walks!driveway: sweeping, shoveling, raking ____ 5.0 

Other: ______________________________________ ____               ___#
 

Caretaking

Older or disabled person (lifting, pushing wheelchair) ____ 5.5 
 
Childcare (lifting, carrying, pushing stroller) ____ 4.0 
 
Exercise

Brisk walking (10+ minutes in duration) ____ 6.0 
 
Pool exercises, stretching, yoga ____ 3.0 
 
Vigorous calisthenics, aerobics ____ 6.0 
 
Cycling, Exercycle ____ 6.0 
 
Swimming (laps only) ____ 6.0 
 
Other: ______________________________________                      ____              ____# 
 
Recreational Activities

Leisurely walking (10+ minutes in duration) ____ 3.5 
 
Needlework: knitting, sewing, needlepoint, etc. ____ 1.5 
 
Dancing (mod!fast): line, ballroom, tap, square, etc. ____ 5.5 
 
Bowling, bocci ____ 3.0 
 
Golf (walking to each hole only) ____ 5.0 
 
Racquet sports: tennis, racquet ball ____ 7.0 
 
Billiards ____ 2.5 
 
Other: ______________________________________                      ____               ____# 
INTERVIEWER: (Please read to subject.) I would now like to ask you about certain types of 
activities that you have done during the past month. I will ask you about how much vigorous 
activity, leisurely walking, sifting, standing, and some other things that you usually do. 
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Appendix E (continued) 
 
1.  About how many times during the month did you participate in vigorous

activities that lasted at least 10 minutes and cause large increases in breathing, 
heart rate, or leg fatigue or caused you to perspire? (Hand subject card #2) 

 Score: 0 = Not at all (go to Q3) 
 1 = 1-3 times per month 
 2 = 1-2 times per week 
 3 = 3-4 times per week 
 4 = 5+ times per week 
 7 = refused 
 8 = don’t know Frequency score =______________ 

2. About how long do you do this vigorous activity(ies) each time? (Hand subject 
card #3) 

 Score: 0 = Not applicable 
 1 = 10-30 minutes 
 2 = 3 1-60 minutes 
 3 = 60+ minutes 
 7 = refused 
 8 = don’t know Duration score = ______________ 

weight = 5
VIGOROUS ACTIVITY INDEX SCORE: 
 FREQ SCORE x DUR SCORE _____ x WEIGHT_______=________ 
(Responses of 7 or 8 are scored as missing.) 
 

3. Think about the walks you have taken during the past month. About how many 
times per month did you walk for at least 10 minutes or more without stopping 
which was not strenuous enough to cause large increases in breathing, heart rate, 
or leg fatigue or cause you to perspire? (Hand subject card #2) 

 Score: 0 = Not at all (go to Q5) 
 1 = 1-3 times per month 
 2 = 1-2 times per week 
 3 = 3-4 times per week 
 4 = 5+ times per week 
 7 = refused 
 8 = don’t know Frequency score =______________ 

4. When you did this walking, for how many minutes did you do it? (Hand subject 
card #3) 

 Score: 0 = Not applicable 
 1 = 10-30 minutes 
 2 = 3 1-60 minutes 
 3 = 60+ minutes 
 7 = refused 
 8 = don’t know Duration score =_______________ 

weight = 4
LEISURELY WALKING INDEX SCORE: 
 FREQ SCORE___ x DUR SCORE_______ x WEIGHT________=________ 
(Responses of 7 or 8 are scored as missing.) 
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Appendix E (continued) 
 
5. About how many hours a day do you spend moving around on your feet while 

doing things? Please report only the time that you are actually moving. (Hand 
subject card #4) 

 
Score: 0 = Not at all 
 1 = less than 1 hr per day 

 2 = 1 to less than 3 hrs per day 
 3 = 3 to less than 5 hrs per day 

4 = 5 to less than 7 hrs per day 
5 = 7+ hrs per day 

 7 = refused 
8 = don’t know Moving score = _______________ 

weight = 3 
MOVING INDEX SCORE: 
 FREQ SCORE __________ x DUR SCORE_______x 
WEIGHT________=________ 
(Responses of 7 or 8 are scored as missing.) 
 

6. Think about how much time you spend standing or moving around on your feet 
on an average day during the past month. About how many hours per day do you 
stand? (Hand subject card #4) 

 
Score: 0 = Not at all 

1 = less than 1 hr per day 
2 = ito less than 3 hrs per day 
3 = 3 to less than 5 hrs per day 
4 = 5 to less than 7 hrs per day 
5 = 7+ hrs per day 

 7 = refused 
8 = don’t know Standing score =_______________ 

weight = 2
STANDING INDEX SCORE: 
 FREQ SCORE _____________ x DUR SCORE_____
 xWEIGHT________=________ 

(Responses of 7 or 8 are scored as missing.) 
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Appendix E (continued) 
 

7. About how many hours did you spend sitting on an average day during the past 
month? (Hand subject card #5) 

 
Score: 0 = Not at all 

1 = less than 3 hours 
2 = 3 hrs to less than 6 hrs 
3 = 6 hrs to less than S hrs 

 4 = 8+ hrs 
 7 = refused 

8 = don’t know Sitting score = ____________ 
Weight = 1 

SITTING INDEX SCORE: 
 FREQ SCORE x DUR SCORE_____ x WEIGHT________=________ 
(Responses of 7 or 8 are scored as missing.) 
 

8. About how many flights of stairs do you climb up each day? (Let 10 steps =
flight.) 

 __________ 
 

9. Please compare the amount of physical activity that you do during other seasons 
of the year with the amount you just reported for a typical week in the past 
month. For example, in the summer, do you do more or less activity than what 
you reported doing in the past month? (INTERVIEWER: PLEASE CIRCLE 
THE APPROPRIATE SCORE FOR EACH SEASON.) 

 Lot Little  Little Lot 
 More More Same Less Less Don’t know
Spring 1.30 1.15 1.0 0.85 0.70 -- 
Summer 1.30 1.15 1.0 0.85 0.70 
Fall 1.30 1.15 1.0 0.85 0.70 -- 
Winter 1.30 1.15 1.0 0.85 0.70 -- 
 
SEASONAL ADJUSTMENT SCORE = SUM OVER ALL SEASONS! 4 ________ 
 

INTERVIEWER: PLEASE MARK TIME: _____:_____:_____ 
 HR     MIN   SEC 
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Appendix F 
 

Wisconsin Card Sorting Test  
 

Sample Scoring Sheet 
 

C = color 
F = form 
N = number 
O = other 
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Appendix F (continued) 
 

p = perseveration 
 
C = color 
F = form 
N = number 
O = other 
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Appendix F (continued) 
 

p = perseveration 
 
C = color 
F = form 
N = number 
O = other 
 



82 
 

References 
 
Alzheimer’s Association (2004a, April 5).  About Alzheimer’s disease statistics.  
Retrieved June 22, 2005, from 
http://www.alz.org/Resources/FactSheets/FSAlzheimerStats.pdf  
 
Alzheimer’s Association. (2004b, June 7).  Alzheimer’s disease growth: U.S. will see 
average 44 percent increase in Alzheimer’s disease by 2025.  Retrieved June 22, 
2005, from http://www.alz.org/Resources/FactSheets/FSADState_Growth.pdf 
 
Bixby, W. R., Spalding, T. W., Haufler, A. J., Deeny, S. P., Mahlow, P. T., 
Zimmerman, J. B., & Hatfield, B. D.  (2007).  The unique relation of physical activity 
to executive function in older men and women.  Medicine & Science in Sports & 
Exercise, Vol. 39, No. 8, pp.unknown. 
 
Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., & Greenough, W. T.  
(1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, 
in cerebellar cortex of adult rats.  Proceedings of the National Academy of Sciences,
Vol. 87, pp. 5568-5572. 
 
Braak, H. and Braak, E.  (1991).  Neuropathological stageing of Alzheimer-related 
changes.  Acta Neuropathology, 82, pp. 239-259. 
 
Caulfield, T. (1999). The law, adolescents, and the APOE epsilon 4 genotype: A view 
from Canada, Genet Test, 3(1), 107-113. 

Colcombe, S.J., Kramer, A.F., Erickson, K.I., Scalf, P., McAuley, E., Cohen, N.J., 
Webb, A., Jerome, G.J., Marquez, D.X., and Elavsky, S.  (2004). Cardiovascular 
fitness, cortical plasticity, and aging.  Proceedings of the National Academy of 
Sciences, Vol. 101, No. 9, pp. 3316-3321. 
 
Colcombe, S. & Kramer, A. F. (2003a). Fitness effects on the cognitive function of 
older adults: A meta-analytic study. Psychological Science, Vol. 14, No. 2, pp. 125-
130. 
 
Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., & 
Kramer, A. F.  (2003b). Aerobic fitness reduces brain tissue loss in aging humans.  
Journal of Gerontology, Vol. 58A, No. 2, pp. 176-180. 
 
Cotman C. W., & Engesser-Cesar, C.  (2002). Exercise enhances and protects brain 
function.  Exercise and Sport Sciences Reviews, Vol. 30, No. 2, pp. 75-79. 

Dipietro, L., Caspersen, C.J., Ostfeld, A. M., and Nadel, E. R.  (1993). A survey for 
assessing physical activity among older adults.  Med. Sci. Sports Exerc., Vol. 25, No. 
5, pp. 628-642. 



83 
 

Dustman, R. E., Emmerson, R. Y., Ruhling, R. O., Shearer, D. E., Steinhaus, L. A., 
Johnson, S. C., Bonekat, H. W., & Shigeoka, J. W.  (1990). Age and fitness effects on 
EEG, ERPs, visual sensitivity, and cognition. Neurobiology of Aging, Vol. 11, pp. 
193-200. 
 
Dywan, J., Segalowitz, S. J., & Unsal, A. (1992).  Speed of information processing, 
health, and cognitive performance in older adults.  Developmental Neuropsychology,
8(4), pp. 473-490. 

Federal Interagency Forum on Aging-Related Statistics. Older Americans 2004: Key 
Indicators of Well-Being. Federal Interagency Forum on Aging-Related Statistics. 
Washington, DC: US. Government Printing Office. November 2004. 
 
Friedland, R. P., Fritsch, T., Smyth, K. A., Koss, E., Lerner, A. J., Chen, C. H., Petot, 
G. J., and Debanne, S. M.  (2001). Patients with Azheimer’s disease have reduced 
activities in midlife compared with healthy control-group members.  Proceedings of 
the National Academy of Sciences, Vol. 98, pp. 3440-3445. 

Green, J. (2000) Neuropsychological Evaluation of the Older Adult: A Clinician’s 
Guidebook.  San Diego, CA, Academic Press. 
 
Haan, M.N., Shemanski, L., Jagust, W.J., Manolio, T.A., & Kuller, L.  (1999).  The 
role of APOE ε4 in modulating effects of other risk factors for cognitive decline in 
elderly persons.  Journal of the American Medical Association, Vol. 282, No. 1, pp. 
40-46. 
 
Hall, C. D., Smith, A.L., & Keele, S.W. (2001).  The impact of aerobic activity on 
cognitive function in older adults: A new synthesis based on the concept of executive 
control.  European Journal of Cognitive Psychology, 13(1/2), pp. 279-300. 
 
Hartman, M., Bolton, E., & Fehnel, S. E.  (2001)  Accounting for age differences on 
the Wisconsin Card Sorting Test: Decreased working memory, not inflexibility.  
Psychology and Aging; Vol. 16, No. 3, 385-399. 
 
Head, D., Snyder, A.Z., Girton, L.E., Morris, J.C., & Buckner, R.L.  (2004). Frontal-
Hippocampal Double Dissociation Between Normal Aging and Alzheimer’s Disease.  
Cerebral Cortex, pp. 1-8. 
 
Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., & Curtiss, G.  (1993).  
Wisconsin Card Sorting Test Manual: Revised and Expanded. Lutz, FL: 
Psychological Assessment Resources, Inc. 
 
Hsiung, G.R., Sadovnick, A.D., & Feldman, H.  (2004).  Apolipoprotein E ε4
genotype as a risk factor for cognitive decline and dementia: data from the Canadian 
Study of Health and Aging.  Canadian Medical Association Journal, 171(8), pp. 863-
867. 



84 
 

Huppert, F. A., Jorm, A. F., Brayne, C., Girling, D. M., Barkley, C., Beardsall, L., & 
Paykel, E. S.  (1996).  Psychometric properties of the CAMCOG and its efficacy in 
the diagnosis of dementia.  Aging, Neuropsychology, and Cognition, Vol. 3, No. 3, 
pp. 201-214. 
 
Konishi, S., Kawazu, M., Uchida, I., Kikyo, H., Asakura, I., & Miyashita, Y.  (1999) 
Contribution of working memory to transient activation in human inferior prefrontal 
cortex during performance of the Wisconsin Card Sorting Test.  Cerebral Cortex;
Oct/Nov 9:745-753. 
 
Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., 
Chason, J., Vakil, E., Bardell, L., Boileau, R. A., & Colcombe, A.  (1999).  Ageing, 
fitness, and neurocognitive function.  Nature; Vol. 400, pp. 418-419.  
 
Kramer, A. F., Hahn, S., McAuley, E., Cohen, N. J., Banich, M. T., Harrison, C., 
Chason, J., Boileau, R. A., Bardell, L., Colcombe, A., & Vakil, E.  (2001). Exercise, 
aging, and cognition: Healthy body, healthy mind?.  In W. A. Rogers & A. D. Fisk 
(Eds), Human Factors Interventions for the Health Care of Older Adults (pp. 91-
120). Lawrence Erlbaum Associates, Inc., Publishers, Mahwah, NJ. 

Kutner, K.C., Erlanger, D.M., Tsai, J., Jordan, B., Relkin, N.R. (2000) Lower 
cognitive performance of older football players possessing apolipoprotein E epsilon 
4. Neurosurgery, 47(3), pp. 651-657. 
 
Lezak, M. D.  (1995) Neuropsychological Assessment: Third Edition.  New York, 
NY, Oxford University Press. 
 
Maestú, F., Arrazola, J., Fernández, A., Simos, P. G., Amo, C., Gil-Gregorio, P., 
Fernandez, S., Papanicolaou, A., & Ortiz, T.  (2003). Do cognitive patterns of brain 
magnetic activity correlate with hippocampal atrophy in Alzheimer’s disease?  
Journal of Neurology, Neurosurgery, and Psychiatry; Vol. 74:208-212. 

Nathoo, N., Chetty, R., van Dellen, J. R., & Barnett, G. H. (2003). Genetic 
vulnerability following traumatic brain injury: the role of apolipoprotein E.  J. Clin. 
Pathol: Mol. Pathol; 132-136. 
 
Neeper, S. A., Gomez-Pinilla, F., Choi, J., & Cotman, C. W. (1996).  Physical activity 
increases mRNA for brain –derived neurotrophic factor and nerve growth factor in rat 
brain.  Brain Research; 726, pp. 49-56. 
 
Plumet, J., Gil, R., & Gaonac’h, D. (2005).  Neuropsychological assessment of 
executive functions in women: Effects of age and education.  Neuropsychology; Vol. 
19, No. 5, pp. 566-577.    
 



85 
 

Podewils, L. J., Guallar, E., Kuller, L. H., Fried, L. P., Lopez, O. L., Carlson, M., & 
Lyketsos, C. G. (2005). Physical activity, APOE genotype, and dementia risk: 
Findings form the Cardiovascular Health Cognition Study. American Journal of 
Epidemiology, Vol. 161, No. 7, pp. 639-651.  
 
Reiman, E.M., Chen, K., Alexander, G. E., Caselli, R. J., Bandy, D., Osborne, D., 
Saunders, A. M., & Hardy, J. (2004). Functional brain abnormalities in young adults 
at genetic risk for late-onset Alzheimer’s Dementia. Proceedings of the National 
Academy of Sciences, Vol. 101, No. 1. pp. 284-289. 
 
Reiman, E.M., Caselli, R.J., Chen, K., Alexander, G.E., Brandy, D., and Frost, J.  
(2001). Declining brain activity in cognitively normal apolipoprotein E ε4
heterozygotes: A foundation for using positron emission tomography to efficiently 
test treatments to prevent Alzheimer’s disease.  Proceedings of the National Academy 
of Sciences; March, Vol. 98, No. 6, pp. 3334-3339. 
 
Roth, M., Huppert, F.A., Mountjoy, C.Q., & Tym, E. (1998). CAMDEX – R.
Cambridge, UK, Cambridge University Press. 
 
Roth, M.  (1994). The relationship between dementia and normal aging of the brain.  
In F. A. Huppert, C. Brayne & D. W. O’Connor (Eds.), Dementia and Normal Aging 
(pp. 57-76).  Cambridge, UK, Cambridge University Press. 
 
Rovio, S., Kåreholt, I., Helkala, E., Viitanen, M., Winblad, B., Tuomilehto, J., 
Soininen, H., Nissinen, A., & Kivipelto, M.  (2005). Leisure-time physical activity at 
midlife and risk of dementia and Alzheimer’s disease.  Lancet Neurology; Vol. 4, pp. 
705-711. 
 
Royall, D. R., Lauterbach, E. C., Cummings, J. L., Reeve, A., Rummans, T. A., 
Kaufer, D. I., LaFrance, Jr., W. C., & Coffey, C. E.  (2002) Executive Control 
Function: A review of its promise and challenges for clinical research; Journal of 
Neuropsychiatry and Clinical Neurosciences; 14:377-405.  
 
Salat, D. H., Buckner, R. L., Snyder, A.Z., Greve, D. N., Desikan, R. S. R., Busa, E., 
Morris, J. C., Dale, A. M., & Fischl, B. (2004). Thinning of the cerebral cortex in 
aging. Cerebral Cortex, Vol. 14, No. 7, pp. 721-730. 
 
Saunders, A.M.  (2001).  Apolipoprotein E as a risk factor for Alzheimer’s disease.  
In D. Dawbarn & S. J. Allen (Eds.), Neurobiology of Alzheimer's Disease: 2nd 
Edition (pp.207-226).  Oxford University Press, USA. 
 
Schuit, A. J., Feskens, E. J. M., Launer, L. J., & Kromhout, D. (2001). Physical 
activity and cognitive decline, the role of the apoliporotein e4 allele. Med Sci. Sports 
Exerc, Vol. 33, No. 5, pp. 772-777.  
 



86 
 

Schuler, P.B. (2001) Accuracy and repeatability of the Yale Physical Activity Survey 
in assessing physical activity of older adults. Perceptual and Motor Skills. 93,
163-177. 
 
Swain, R. A., Harris, A. B., Wiener, E. C., Dutka, M. V., Morris, H. D., Theien, B. 
E., Konda, S., Engberg, K., Lauterbur, P. C., & Greenough, W. T.  (2003). Prolonged 
exercise induces angiogenesis and increases cerebral blood volume in primary motor 
cortex of the rat.  Neuroscience, Vol. 117, pp. 1037-1046. 
 
Van Hoomissen, J.D. (2005). The effects of exercise on gene expression in the central 
nervous system.  International Journal of Sport Psychology, 3(3), pp. 285-301 
 
Van Petten, C., Plante, E., Davidson, P. S. R., Kuo, T. Y., Bajuscak, L., & Glisky, E. 
L.  (2004). Memory and executive function in older adults: relationships with 
temporal and prefrontal gray matter volumes and white matter hyperintensities.  
Neuropsychologia, 42, pp. 1313-1335. 
 
Verghese, J., Lipton, R. B., Katz, M. J., Hall, C. B., Derby, C. A., Kuslansky, G., 
Ambrose, A. F., Sliwinski, M., & Buschke, H. (2003). Leisure activity and the risk of 
dementia in the elderly.  New England Journal of Medicine, Vol. 348, No. 25, pp. 
2508-2509. 
 
Wasco, W.  (2001).  Molecular genetics of Alzheimer’s disease.  In D. Dawbarn & S. 
J. Allen (Eds.), Neurobiology of Alzheimer's Disease: 2nd Edition (pp.55-74).  
Oxford University Press, USA.  
 
West, R. L. (1996).  An application of prefrontal cortex function theory to cognitive 
aging.  Psychological Bulletin, Vol. 120, No. 2,  pp. 272-292. 
 
Williams, J. G., Huppert, F. A., Matthews, F. E., Nickson, J. (2003). Peformance and 
normative values of a concise neuropsychological test (CAMCOG) in an elderly 
population sample. International Journal of Geriatric Psychiatry, Vol. 18, pp. 631-
644. 
 
Yaffe, K., Cauley,J., Sands, L., & Browner, W.  (1997).  Apolipoprotein E phenotype 
and cognitive decline in a prospective study of elderly community women.  Archives 
of Neurology, Vol. 54, pp. 1110-1114. 
 


