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The term “common cause dependencies” encompasses the possible mechanisms that 

directly compromise components performances and ultimately cause degradation or 

failure of multiple components, referred to as common cause failure (CCF) events. 

The CCF events have been a major contributor to the risk posed by the nuclear power 

plants and considerable research efforts have been devoted to model the impacts of 

CCF based on historical observations and engineering judgment, referred to as CCF 

models. However, most current probabilistic risk assessment (PRA) studies are 

restricted to single reactor units and could not appropriately consider the common 

cause dependencies across reactor units. Recently, the common cause dependencies 

across reactor units have attracted a lot of attention, especially following the 2011 

Fukushima accident in Japan that involved multiple reactor unit damages and 

radioactive source term releases. To gain an accurate view of a site's risk profile, a 



  

site-based risk metric representing the entire site rather than single reactor unit should 

be considered and evaluated through a multi-unit PRA (MUPRA). However, the 

multi-unit risk is neither formally nor adequately addressed in either the regulatory or 

the commercial nuclear environments and there are still gaps in the PRA methods to 

model such multi-unit events. In particular, external events, especially seismic events, 

are expected to be very important in the assessment of risks related to multi-unit 

nuclear plant sites. 

 

The objective of this dissertation is to develop three inter-related approaches to 

address important issues in both external events and internal events in the MUPRA. 

1) Develop a general MUPRA framework to identify and characterize the multi-

unit events, and ultimately to assess the risk profile of multi-unit sites. 

2) Develop an improved approach to seismic MUPRA through identifying and 

addressing the issues in the current methods for seismic dependency 

modeling. The proposed approach can also be extended to address other 

external events involved in the MUPRA.  

3) Develop a novel CCF model for components undergoing age-related 

degradation by superimposing the maintenance impacts on the component 

degradation evolutions inferred from condition monitoring data. This 

approach advances the state-of-the-art CCF analysis in general and assists in 

the studies of internal events of the MUPRA. 
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Chapter 1: Introduction 

1.1. Background and Motivation 

Defense-in-Depth (DiD) involves introducing isolation, redundancy and diversity to 

address complexity and uncertainty in plant systems, structures and components 

(SSCs) and to enhance reliability and safety of the nuclear power plant. The ensuing 

assumption is that the redundant and diverse SSCs reduce the likelihood of failures 

and the isolated SSCs are fully independent. However, perfect isolation is not 

possible and various types of dependencies do exist between the components, because 

of common design features, operational practices, safety culture, economic 

considerations, and construction layout [1]. The possible dependencies may defeat 

perfect isolation, redundancy and diversity principles, and ultimately lead to a class of 

component failures called dependent failure. The influence of these dependencies 

could be either explicitly modeled in the fault tree logic or implicitly treated as the 

type of common cause dependencies leading to common cause failure (CCF) events. 

The common cause dependencies are usually characterized [2] by root causes (i.e., 

pre-operational-related, operational-maintenance-related and operational-

environment-related) and coupling factors (i.e., hardware-based, operation-based and 

environment-based), which impair the capacities of components to perform the design 

function and then ultimately lead to CCF events. 

 

The CCF events have been recognized as the significant contributors to the risk posed 

by the nuclear power plants. Typically, the impacts of CCF are parametrically 
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modeled.  The relevant CCF models [3] may be grouped into two major categories: 

shock models (e.g., binomial failure rate model) and non-shock models. The non-

shock models are mainly adopted in the PRA practices, including the β-Factor Model, 

the α-Factor Model and the Multiple Greek Letter Model [4]. In these models, the 

CCF events are characterized by some static CCF parameters that need to be 

quantified through statistical analysis based on historical observations and 

engineering judgment [5, 6]. However, these CCF models suffer from several major 

limitations summarized as follows: 

 The models are mainly built from generic operational experience and are usually 

not specific to the operating conditions of individual components. 

 The number of observed failure events, particularly in the nuclear power plants is 

limited, especially for the events involving failures of more than one identical or 

similar component. 

 There are difficulties to model asymmetrical components and to account for the 

dependencies among the components within multiple common cause component 

groups.  

 The implicit assumption of the present parametric CCF models is constant failure 

rate where the failures are treated as fully random without considering the effects 

of degradation. 

 

To address these limitations, there are three main approaches in the present literature 

to enhance these CCF models: 
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 Improve the quality and quantity of CCF database by compiling the CCF event 

data in a more consistent manner. For instance, the International Common-Cause 

Failure Data Exchange (ICDE) Project [7] has been established to obtain both 

qualitative and quantitative insights of CCF by properly integrating many national 

experiences. 

 Formulate a casual CCF model to account for the relationship of specific root 

causes and coupling factors on the CCF. Bayesian network is adopted as the main 

technique to establish the causal framework to probabilistically link all relevant 

sources. Examples include the Unified Partial Method and its extension referred 

to as the Zitrou’s Model [8], the Kelly-CCF Method [9], the Alpha-

Decomposition Method [10], and the General Dependency Model [11]. 

 Address some other limitations of the current CCF models, for instance, by 

treating the dependencies among the components across multiple common cause 

component groups [12, 13], improving the uncertainty treatment [14, 15], and 

developing the extension of current CCF models [16, 17]. 

 

It should be noted that most current PRA studies are restricted to single reactor units 

[18] and hence are referred to as single-unit PRA (SUPRA). The SUPRAs include 

scenarios exclusive to one reactor unit, implicitly assuming other units will be 

unaffected, and hence only consider the dependencies within the boundary of one 

reactor unit [19]. Note the dependencies across multiple reactor units could play 

critical roles in potential nuclear accidents with the possibility of core damage in 

multiple reactor cores and spent fuels. The risk significance of multi-unit events is 
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especially highlighted in the 2011 Fukushima accident in Japan. Furthermore, Schroer 

and Modarres [20] reviewed all the U.S. Licensee Event Reports (LERs) submitted to 

the U.S. NRC between 2000 and 2011, and confirmed the significance of multi-unit 

events because over 9% of the total LERs affected multiple units on a site [21]. 

Recent research and operational experiences [22, 23] have recognized that loss of 

offsite power (LOOP) and external events to be the dominant multi-unit initiating 

events. Among these, seismic events are the most likely event sequences that 

challenge multiple radiological sources. 

 

To gain an accurate view of a multi-unit site's risk profile, a site-based risk metric 

representing the entire site rather than single reactor unit should be considered and 

evaluated through a multi-unit PRA (MUPRA). However, the multi-unit risk is 

neither formally nor adequately addressed in either the regulatory or the commercial 

nuclear environments and there are still gaps in the PRA methods to model such 

multi-unit events. The primary objective of this dissertation is to address the 

important issues faced in the development of MUPRA. 

 

1.2. Research Objectives 

There are four research objectives established to investigate the important issues in 

both external events and internal events analyses in MUPRA.  

1) Conduct a holistic review of the state-of-the-art MUPRA research that 

facilitate the understanding of the status of MUPRA development, existing 

gaps and need for future research.  
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2) Develop a general MUPRA framework that addresses three main questions: 

(a) how to identify and understand all the possible dependencies across reactor 

units? (b) is it sufficient for the current CCF parametric methods to model the 

impacts of multi-unit events? (c) how to develop appropriate site-based risk 

metrics for multi-unit scenarios? 

 

3) As the most likely dominant multi-unit event with extremely limited 

observations, external events especially seismic events should be addressed 

specifically in the MUPRA development. The adequacy of the current 

methods for seismic dependency modeling should be reviewed, and new 

approach should be developed if needed.  

 

4) The number of CCF observations regarding internal events are not large 

enough especially for the events occurring in multiple units. Other data 

sources should be solicited, for instance, the sensor monitoring data that could 

be used to infer the component states. 

 

1.3. Methodologies 

The methodologies of this dissertation are documented in the form of five articles, 

among which, two articles have been published in leading journals, one has been 

presented and published in a peer-reviewed international conference, one has been 

accepted to be published in a peer-reviewed international conference, and one journal 

article has been prepared and is in review. Within these five articles, the four research 



 

 6 

 

objectives stated in Chapter 1.2 have been addressed. The methodologies are 

summarized in the following sections. 

 

1.3.1. Review the State-of-the-Art MUPRA 

The first objective was accomplished by a holistic review of state-of-the-art MUPRA 

of nuclear power plants. The detailed review is documented in Chapter 2 “A Review 

of Multi-Unit Nuclear Power Plant Probabilistic Risk Assessment Research”. The 

full-text has been accepted to be published in the Proceedings of the 2018 

International Conference on Nuclear Engineering (ICONE26).  The research contents 

are highlighted as follows: 

 Summarize the relevant activities to address and develop methodologies including 

workshops, proceedings, projects and case studies.  

 Review the different facets of MUPRA research including multi-unit event, 

MUPRA modeling and site-based risk metric. 

 Identify existing gaps and the need for future research. 

 

1.3.2. Develop a General MUPRA Framework 

The second objective was accomplished by examining the advances in the MUPRA 

and proposing a general MUPRA framework. The detailed methodology and results 

are documented in Chapter 3 “Advances in Multi-Unit Nuclear Power Plant 

Probabilistic Risk Assessment”. The full-text has been published in the Journal of 

Reliability Engineering & System Safety. The research contents are highlighted as 

follows: 
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 Propose a general MUPRA framework that relies on expanding multiple single-

unit PRAs by superimposing the impacts of multi-unit dependencies. 

 Build a systematic way to identify and understand the multi-unit events. 

 Develop quantitative approaches to characterize the multi-unit events and 

incorporate their impacts to the MUPRA model. 

 Offer the formal definitions of multi-unit site risk metrics based on the 

conventional single-unit risk metrics (e.g., CDF, LRF, LERF). 

 Demonstrate the proposed framework with a conceptual two-unit example. 

 

1.3.3. Develop an Approach to External-Event MUPRA 

The third objective was accomplished by developing an improved approach to 

seismic MUPRA, which addresses the limitation of the current seismic dependency 

modeling methods and achieves a balance between risk estimation accuracy and 

computational simplicity. The approach can also be extended to address other 

external events involved in the MUPRA. The proposed research consists of two parts.  

 

The first part was to review the adequacy and identify the issues in the current 

methods for seismic dependency modeling in the MUPRA. The detailed review and 

discussions are documented in Chapter 4 “Issues in Dependency Modeling in Multi-

Unit Seismic PRA”. The full-text has been presented and published in the 

Proceedings of the 2017 International Topical Meeting on Probabilistic Safety 

Assessment and Analysis (PSA 2017). Several issues were identified in the present 

methodologies for consideration of dependencies in seismic MUPRA:  
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 Identify and demonstrate the inappropriate equivalence hypothesis between the β-

factor and correlation coefficient. 

 Examine the Reed-McCann method through a comparison study which showed 

that the Reed-McCann method cannot properly characterize the contribution of 

dependencies.  

 

To address the issues identified in the first part, the second part developed an 

improved approach to external event probabilistic risk assessment for multi-unit sites. 

The detailed methodology and results are documented in Chapter 5 “An Improved 

Multi-Unit Nuclear Plant Seismic Probabilistic Risk Assessment Approach”. The full-

text has been published in the Journal of Reliability Engineering & System Safety. 

The research contents are highlighted as follows: 

 Develop a seismic MUPRA methodology that could properly consider the 

seismic-induced dependencies and the implementation based on the standard PRA 

software tools. The proposed approach is based on a hybrid scheme that achieves 

a balance between risk estimation accuracy and computational simplicity. 

 Applying the proposed approach to a three-component example, demonstrate the 

issues in the inappropriate uses of the geometric mean as the reference level for 

the ground motion in the current discretization-based scheme for seismic risk 

quantification.  

 Develop a case study for the seismic-induced multi-unit scenarios for a 

hypothetical two-unit nuclear plant site. 

 Conduct a feasibility analysis of three different multi-unit risk metrics. 
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1.3.4. Advance the Studies of Internal Events in the MUPRA 

Because of very limited historical CCF data between plant units, the fourth objective 

was accomplished through development of a novel CCF model for components 

undergoing age-related degradation by superimposing the impacts of maintenance on 

the component degradation evolutions inferred from condition monitoring data. This 

approach advances the state-of-the-art CCF analysis in general and relies on physics-

based models to develop internal CCF event likelihoods for the MUPRA. The 

detailed methodology, experimental study and results are documented in Chapter 6 “A 

Common Cause Failure Model for Components under Age-Related Degradation”. 

The full-text has been submitted to the Journal of Reliability Engineering & System 

Safety. The research contents are highlighted as follows: 

 Propose a novel CCF model for components under age-related degradation by 

exploiting recent advances in sensor-based data analytic algorithms. 

 Demonstrate the efficacy of the proposed approach using the diverse sensory data 

collected from a special-purpose experiment.  

 Develop simulation as well as sensitivity studies to evaluate the maintenance 

effects on CCF over lifetime services.  

 Demonstrate the applicability of the proposed approach to estimate the β-factor 

for CCF probability of specific components. 
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1.4. Organization of the Dissertation 

The dissertation is arranged into the following chapters. 

 Chapter 2 provides a literature review of the state-of-the-art MUPRA and a 

summary of the relevant activities to address and develop methodologies for 

MUPRA. 

 Chapter 3 examines the advances in the MUPRA and develops a general MUPRA 

framework to identify and characterize the multi-unit events, and ultimately to 

assess the risk profile of multi-unit sites.   

 Chapter 4 reviews the adequacy and identifies the issues in the current methods 

for seismic dependency modeling in the MUPRA. 

 Chapter 5 develops an improved approach to seismic MUPRA, which addresses 

the issues identified in Chapter 4 and achieves a balance between risk estimation 

accuracy and computational simplicity. 

 Chapter 6 proposes a CCF model for components under age-related degradation 

by superimposing the impacts of maintenance on the component degradation 

evolutions inferred from condition monitoring data. This approach advances the 

state-of-the-art CCF analysis in general and assists in the studies of internal events 

of MUPRA. 

 Chapter 7 presents a summary of conclusions, contributions and recommendations 

for future research. 
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Chapter 2:  A Review of Multi-Unit Nuclear Power Plant 

Probabilistic Risk Assessment Research
1
 

2.1. Abstract 

The events at the Fukushima nuclear power station drew attention to the need for 

consideration of risks from multiple nuclear reactor units co-located at a site. As a 

result, considerable international interests and research efforts have been dedicated to 

addressing the multi-unit risks over the past few years. This paper presents a review 

of the state-of-the-art multi-unit probabilistic risk assessment (MUPRA) of nuclear 

power plants. The concept of MUPRA is briefly presented and the relevant activities 

to address and develop methodologies are summarized including workshops, 

proceedings, projects and case studies. The paper presents different facets of MUPRA 

research, including multi-unit event, MUPRA modeling and site-based risk metric. 

The paper also identifies existing gaps and the need for future research. 

 

2.2. Introduction 

Defense-in-Depth involves introducing isolation, redundancy and diversity to address 

complexity and uncertainty in plant systems, structures and components (SSCs) and 

to enhance reliability and safety of the nuclear power plant. The ensuing assumption 

is that the redundant and diverse SSCs reduce the likelihood of failures and the 

isolated SSCs are fully independent. However, perfect isolation is not possible and 

                                                 
1
 The full-text of this chapter is to appear in the Proceedings of the 26th International Conference on 

Nuclear Engineering (ICONE), July 22-26, 2018, London, England. 
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various types of dependencies do exist between the components, because of common 

design features, operational practices, safety culture, economic considerations, and 

construction layout. The possible dependencies may defeat perfect isolation, 

redundancy and diversity principles, and ultimately lead to a class of component 

failures called dependent failures. 

 

The significance of dependent failures has been well recognized. The influence of 

these dependencies could be either explicitly modeled in the fault tree logic or 

implicitly treated as the type of common cause dependencies leading to common 

cause failure (CCF) events [3]. Considerable research efforts have been dedicated to 

accounting for the contributions of dependent failures to the risk posed on the nuclear 

power plants [24]. However, most probabilistic risk assessment (PRA) studies are 

restricted to single reactor units [18] and hence are referred to as single-unit PRA 

(SUPRA). The SUPRAs include scenarios exclusive to one reactor unit assuming 

other units will be unaffected, and hence only consider the dependencies within the 

boundary of one reactor unit [19]. Note that the effects of dependencies across 

multiple reactor units could play critical roles in potential nuclear accidents with the 

possibility of core damage in multiple reactor cores and spent fuels [25]. As such, the 

current single-unit risk metrics [26] cannot capture contributions from multi-unit 

accidents and are inadequate for providing accurate insights of the multi-unit site’s 

risk profile. 

 

 

The findings above are important and recognize the urgent need for a multi-unit PRA 

(MUPRA) to assess the risk profile of multi-unit sites and identify the critical 
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contributors to the entire site risk. However, there have been limited experiences in 

performing MUPRAs in either the regulatory or the commercial nuclear 

environments. The first study of MUPRA in the U.S. dates back to the Indian Point 

Station PRA performed in the early 1980's [27] that addressed the dual-unit releases 

due to seismic and high wind hazards. Another example of a MUPRA was the Level 

3 PRA for the Seabrook Station in New Hampshire, U.S., performed in the mid-

1980's [28]. Methods have also been recommended to address facets of a MUPRA 

analysis [29-34], yet no well-established integrated approach and understanding of 

the implications of MUPRA exist. More recently, considerable interests and research 

efforts have been presented by research groups in the U.S., Canada and other 

countries [35] to addressing the multi-unit risks, especially following the Fukushima 

accident of March 2011 in Japan that involved multiple reactor units and radioactive 

source terms [36-38]. In the international arena, a series of activities (i.e., workshops, 

proceedings, projects and case studies) have been conducted or planned: 

 IAEA sponsored a workshop [39] that discussed the issue of MUPRA in 2012. 

 NEA/CNSC organized a workshop [40] on this subject that took place in Ottawa, 

Canada, in November 2014. 

 The International Seismic Safety Centre of IAEA has been working on 

developing a series of Safety Reports for MUPRA [41, 42].  

 Plenary lectures, special sessions and technical presentations on the MUPRA 

issues have been conducted or planned in a series of proceedings including the 

workshops organized by OECD [43-45], PSA2013 [46], the 12th PSAM [47], 

PSA2015 [48], the 13th PSAM [49], the PSA2017 [50], the 14th PSAM [51]. 
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 The European countries have sponsored the project ASAMPSA_E [52] to 

investigate the challenges in light of the Fukushima accident. 

 Most importantly IAEA has developed MUPRA methodology documents and 

continues to refine the documents, including an ongoing case study involving a 4-

unit nuclear plant site [53]. 

 

This paper aims to provide a review of the state-of-the-art MUPRA research. The 

MUPRA researches are summarized from three aspects: multi-unit events, MUPRA 

modeling and site-based risk metrics. This study would benefit the researchers 

interested in MUPRA research and contribute to identifying existing gaps and 

opportunities in future work. 

 

2.3. MUPRA Research Summary 

The MUPRA research could be summarized in terms of three categories: (1) identify 

and understand all the possible dependencies across reactor units to explicitly 

recognize the role of multi-unit events in enhancing the site safety; (2) develop a 

MUPRA methodology to characterize the multi-unit events and incorporating their 

impacts to the accident sequences involving multiple reactor units; (3) develop 

appropriate site-based risk metrics for multi-unit scenarios. 
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2.3.1. Multi-Unit Event 

A variety of events could result in dependencies across multiple reactor units and 

potentially lead to failure events of similar or dissimilar nature during the same 

mission time such as shared electric buses, failure of grid, flooding and earthquake. 

Unfortunately, much of what is known today about the multi-unit events is based on 

what has been learned through the operational experiences and Fukushima accident. 

A systematic approach should be built to fully identify and understand the multi-unit 

events [54]. Schroer and Modarres [20] reviewed all the U.S. Licensee Event Reports 

(LERs) submitted to the U.S. NRC between 2000 and 2011, and confirmed the 

significance of multi-unit events because over 9% of the total LERs affected multiple 

units on a site [21]. A classification scheme was also proposed, and the multi-unit 

events were sorted into six categories: initiating events, shared connections, identical 

components, proximity dependencies, human dependencies, and organizational 

dependencies. This classification scheme has been adopted in most current researches 

and a classification study was presented by Dennis et al. [55] for an integral 

pressurized water reactor (iPWR). The knowledge of multi-unit events allows further 

development of screening criteria to identify the multi-unit events that needed to be 

modeled. Three forms of root causes were identified [25]: (1) common site conditions 

(e.g., organizational dependency), (2) external events include both explicit type (e.g., 

failure of the grid), and implicit type (e.g., similar design errors), and (3) common 

events or components (e.g., shared electric buses).  
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Recent research and operational experiences [22, 23] have recognized that loss of 

offsite power (LOOP) and external hazards to be the dominant multi-unit initiating 

events. Among these, external events are the most likely event sequences that 

challenge multiple radiological sources. Furthermore, some of the hazards may 

potentially occur in combination namely correlated hazards [56], which may cause 

significant consequences and even have comparable occurrence frequency as well as 

that of individual hazard. Screening criteria need to be developed to identify the 

hazards that deserve additional consideration, and methodologies also need to be 

developed to assess frequencies of individual hazard and correlated hazards [36, 57]. 

 

2.3.2. MUPRA Modeling 

The MUPRA modeling involves two challenging tasks: characterize multi-unit 

dependencies and incorporate their impacts to the accident sequences involving 

multiple reactor units. In general, the MUPRA modeling could be categorized into 

either a dynamic approach or a static approach. A simple, but practical approach to 

static MUPRA is proposed by the IAEA [53] where SUPRA logic is simplified and 

then multiple SUPRA are integrated using traditional single unit common cause 

dependencies to treat multi-unit dependencies. However, more complex and realistic 

methodologies have also been proposed as discussed in this paper. There have been 

few dynamic MUPRA studies which rely on certain dynamic simulators. For 

instance, Dennis et al. [55] developed a framework for assessing integrated site risk 

of small module reactors using an upgraded version of ADS-IDAC; Mandelli et al. 

[58] presented a PRA analysis of a multi-unit plant using RAVEN as stochastic 
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method coupled with RELAP5-3D. Although the dynamic studies could provide more 

realistic multi-unit insights by considering timing chain of events and more complex 

dependencies, they offer limited practicality because they would be subject to several 

common limitations: (a) increase model complexity; (b) lack of information to 

support characterizing the very detailed time-based multi-unit scenarios; (c) major 

constraint on the computational demand.  

 

Most of the practical methods rely on expanding the existing SUPRA model, 

including the IAEA methodology, because sufficient basis for estimating the multi-

unit dependencies are available from the traditional methods of common cause 

parametric estimation [25]. There have been lots of interests to develop such 

integrated approach. The most important works in this direction are Yang [59], 

Vecchiarelli et al. [60], Hassija et al. [61], Le Duy et al. [62], Zhang et al. [63] and 

Modarres et al. [25]. Note that most of the research provides limited considerations of 

the data needed to characterize the impacts of multi-unit events. As such, Modarres et 

al. [25] proposed to extend the traditional parametric method for common cause 

failure to multi-unit dependent event situations and reported a four-stage approach 

[64] to assess the observed multi-unit incidents and failure events based on the LERs 

reported to the U.S. NRC. This approach provides a defensible technical basis to 

characterize the multi-unit events and was illustrated by analyzing the U.S. LERs 

from years 2000 to 2011. The results showed that inter-unit dependencies among 

human errors, hardware failures and initiating events are generally large, but smaller 

than intra-unit common cause dependencies. However, the study recommends that to 
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enhance the treatment of the uncertainties and the risk significance of different types 

of multi-unit events, importance measures [23] and impact vectors [65] would be 

introduced in the future research. Furthermore, more reported U.S. LERs should be 

analyzed, and the application of advanced knowledge engineering tools and 

techniques would be the solution to assist the identification and characterization of 

multi-unit events [66].  

 

One must also note that simply lumping multi-unit events with different features 

could lead to inaccuracies and even errors in the characterization of multi-unit events. 

The features of MUPRA modeling should be addressed specifically in terms of 

different types of multi-unit events, for instance, the LOOP [29-30], shared SSCs [32, 

67], human errors [68], and external hazards [69, 70]. Among these, seismic events 

have received a lot of attention because of their likelihood to induce multi-unit 

dependencies with significant consequences [33, 35, 57, 71-73]. The adequacy of the 

current methods for seismic dependency modeling in MUPRA was discussed by 

Zhou et al. [73]. Although most current researches focus on seismic hazards, the 

external event MUPRA methodologies can be extended to other external hazards such 

as high wind hazards. 

 

2.3.3. Site-Based Risk Metric 

Site-based risk metric needs to be properly developed to evaluate the multi-unit site 

risk profile and assure the public health and safety [40]. The current practice is to 

define site-based risk metrics based on the conventional single-unit risk metrics: core 
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damage frequency (CDF), large release frequency (LRF) and large early release 

frequency (LERF). Different types of site-based risk metrics have been proposed [25, 

31, 20, 60], for instance, conditional probability of multi-unit accident (CPMA), site 

CDF describing frequency of one or more CDFs, concurrent multi-unit CDFs, and 

site LRF. Yet there is no consensus on the most relevant choice of site-based risk 

metrics for applications to risk management has emerged. Readers interested in the 

applicability of possible site-based risk metrics are referred to Samaddara et al. [69]. 

It appears, however, that the most commonly adopted metric in the present literature 

[20, 61, 62] is the site CDF which means the frequency of at least one core damage 

per site per year. Most recently, Zhou et al. [35] used three multi-unit CDF metrics 

(site, concurrent and marginal) in a case study for seismic-induced Small Loss of 

Coolant Accident (SLOCA) for a hypothetical two-unit site and concluded the site 

CDF to be the most appropriate multi-unit CDF metric for seismic risk when no 

correlation data is available. There have also been few Level 3 PRA studies [26, 34] 

to evaluate the multi-unit offsite consequences considering multi-unit releases. The 

applicability of U.S. NRC qualitative safety goals and QHOs to multi-unit sites was 

validated by Hudson and Modarres [26] in which the surrogates for QHOs were 

assessed and compared to safety goals. Currently, the U.S. NRC is conducting a 

level-3 MUPRA analysis [74, 75].  

 

2.4. Conclusions  

This paper presented a review of the state-of-the-art MUPRA research and 

summarized the relevant literature in terms of three categories: multi-unit event, 
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MUPRA modeling and site-based risk metric. The relevant activities were also briefly 

summarized including workshops, proceedings, projects and case studies. The paper 

identified some of the existing gaps and the need for future research. 
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Chapter 3:  Advances in Multi-Unit Nuclear Power Plant 

Probabilistic Risk Assessment
2
 

3.1. Abstract 

The Fukushima Dai-ichi accident highlighted the importance of risks from multiple 

nuclear reactor unit accidents at a site. As a result, there has been considerable 

interest in Multi-Unit Probabilistic Risk Assessment (MUPRA) in the past few years. 

For considerations in nuclear safety, the MUPRA estimates measures of risk and 

identifies contributors to risk representing the entire site rather than the individual 

units in the site. In doing so, possible unit-to-unit interactions and dependencies 

should be modeled and accounted for in the MUPRA. In order to effectively account 

for these risks, six main commonality classifications—initiating events, shared 

connections, identical components, proximity dependencies, human dependencies, 

and organizational dependencies—may be used. This paper examines advances in 

MUPRA, offers formal definitions of multi-unit site risk measures and proposes 

quantitative approaches and data to account for unit-to-unit dependencies. Finally, a 

parametric approach for the multi-unit dependencies has been discussed and a simple 

example illustrates application of the proposed methodology. 

 

 

                                                 
2
 The full-text of this chapter has been published in the Journal of Reliability Engineering & System 

Safety, Volume 157, Pages 87-100, January 2017. http://dx.doi.org/10.1016/j.ress.2016.08.005 
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3.2. Introduction 

Nuclear power plants consisting of more than one unit and other radioactive 

inventories are not formally evaluated in an integrated manner in the traditional 

Probabilistic Safety Assessment (PRA). Most PRAs are based on single-unit PRA 

evaluations that don’t provide a complete picture of all possible accident sequences 

and radioactive sources to assess the radiological risk arising from severe events on 

the site. Models for accident sequences involving concurrent releases from multiple 

radiological sources on the site concurrently are still in their infancy. Although the 

risk triplet [76] defined from a general perspective also applies to the multi-unit risk 

concerns and sporadic ad hoc approaches exist which have considered seismically 

induced multi-unit accidents involving loss of coolant accidents, station blackout, and 

consideration of multi-unit common cause failures, there is still a need for an 

integrated approach to Multi-Unit PRA (MUPRA). A formal approach to MUPRA 

would not only improve our understanding of the complete risk profile, but the results 

would also improve regulatory decision-making and accident management. 

 

The accident in March 2011 involving the six-reactor Fukushima Dai-ichi nuclear 

power plant site clearly underlined that scenarios involving nearly concurrent release 

of multiple sources of radioactivity on a site and multiple core damage events should 

be carefully evaluated. While the accident started from a seismic external event, it led 

to a devastating tsunami that, coupled with inadequate emergency response to 

adequately cope with the complex intertwined severe accident challenges to all six 

reactor units and their spent fuel storage facilities, despite some initially successful 
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measures that delayed the radioactive releases that permitted public evacuations, 

resulted in serious radiological releases. The end result was severe core damage of 

three operating reactor units along with containment breach of one of the reactors and 

releases of radioactive material exceeded only during the Chernobyl accident. Major 

weaknesses in emergency response and incompetence in accident management in 

handling multi-unit accidents with extended station blackout conditions were clearly 

alarming. The two units that were down for maintenance and refueling plus operation 

of a single emergency diesel generator circumvented core damage in all six units. 

 

Multi-unit plants, although physically independent to a large extent, have many direct 

and indirect inter-connections that make them practically dependent. Examples of 

these dependencies include certain initiating events simultaneously occurring in 

multiple units, a transient in one unit affecting some or all of the other units, 

proximity of the units to each other, shared structures or components (e.g., shared 

batteries and diesel generators), common operation practices and human actions, and 

substantial procedural and other organizational similarities. Besides considering all 

sources of radioactivity and dependencies among the facilities on a site, to gain an 

accurate view of a site's risk profile, a measure of Core Damage Frequency (CDF) 

and radiation release metrics such as the Large Early Release Frequency (LERF) 

representing the site rather than the unit should be considered and estimated in a fully 

integrated MUPRA. MUPRA refers broadly to an extension of the traditional PRA 

techniques to assess the risks of multi-unit sites.  This includes single-unit PRAs that 

consider the accident sequences that may propagate from one unit to another, fully 
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integrated PRA models that address accident sequences that may involve any 

combination of reactor units and radiological sources, and hybrids of these models. 

This paper will discuss the technical aspects of an integrated MUPRA, including 

consideration of dependencies and assessment of the multi-unit dependency data and 

models for quantifying such dependencies. The paper also provides discussions on 

formal definitions and metrics for multi-unit site risks. Finally, parametric methods 

are used to address multi-unit dependency situations. A conceptual two-unit logic 

example is used to demonstrate the application of proposed methodology. 

 

3.3. Background 

In a MUPRA it is necessary to account for possible interactions between the units 

collocated at a site when a single reactor accident may propagate to affect other units 

(causal interaction), or when a common cause event impacts multiple units and 

radiological sources concurrently.  Consideration of these interactions in MUPRA 

leads to some technical issues and challenges that this paper attempts to characterize 

and offer possible solutions for.  It is clear that MUPRA requires development and 

modeling of initiating events, accident sequences, end states and risk metrics that are 

relevant to multi-unit sites. 

 

There have been limited experiences in performing MUPRAs in the past in the U.S., 

Canada, and other countries; however, such efforts are neither formally nor 

adequately considered. This includes operating plant sites in either the regulatory or 

the commercial nuclear environments [20, 33, 37]. Fleming, Arndt, Omoto, Jung, et 
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al. have recommended methods to deal with facets of a MUPRA analysis [30, 31, 34, 

77], yet no well-established integrated approach and understanding of the 

implications of MUPRA exists. In the early 1980’s the PRAs for the Indian Point 

Station [27], addressed the dual-unit releases as a result of seismic and high wind. 

The other example of a MUPRA was the Level 3 PRA for the Seabrook Station in 

New Hampshire, U.S.A., performed in the mid-1980’s [28]. More recently, MUPRAs 

have been performed for some CANDU plants in Canada [78]. There have also been 

some Level 1 PRAs of multi-unit sites that provide very limited considerations of the 

concurrent states of the other units. Unfortunately, much of what is known today 

about the risks of multi-unit sites is based on what has been learned through operating 

experiences [20] and the multi-unit accident at the Fukushima Dai-ichi plant. 

 

The U.S. Nuclear Regulatory Commission (NRC) has dealt with multi-unit risk in a 

limited manner. For example, after the Chernobyl accident the NRC issued 

recommendations involving limiting noble gases and airborne volatiles being 

transported to the other units during the accident through a shared ventilation system
3
. 

This included addressing issues such as control room habitability, contamination 

outside of the control room, smoke control, and shared shutdown systems [79]. Also, 

the Criterion 5 of the General Design Criteria (GDC) [80] in the U.S. for nuclear 

power plants recommends no sharing of structures, systems and components (SSC) 

among units at a nuclear plant site, “unless it can be shown that such sharing will not 

significantly impair their ability to perform their safety functions”. More recently, the 

                                                 
3
   A similar transport mechanism also occurred during the Fukushima Dai-ichi event, during which the 

fire/explosion at Unit 4 was caused by leakage of hydrogen released from Unit 3 through shared 

ductwork with Unit 4. 
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U.S. NRC has been conducting an effort to create an integrated Level-3 PRA that 

includes the effects of multiple units, as well as the risk from all radiation sources 

onsite, such as the spent fuel pool [81]. The U.S. nuclear industry’s integrated site 

risk solutions generally focus on only one facet of the MUPRA at a time without 

considering other concurrent events. For example, the station blackout event has been 

investigated because of its site impact and the interdependencies in its shared 

electrical systems. Similarly, the seismic-induced dependencies between units and 

component fragilities across a site have been of major interest. But although specific 

aspects of MUPRA have been looked at in an ad hoc fashion with greater detail in the 

U.S., no integrated approach exists. 

 

In the international arena, the International Atomic Energy Agency (IAEA) has been 

working on this area, and its International Seismic Safety Centre has been working on 

developing a series of Safety Reports for MUPRA [36, 41, 42]. Also, the IAEA 

General Safety Requirements Part 4 in its requirement 4.31 for evaluation of external 

events states: 

 

“… Where there is more than one facility or activity at the same location, account 

has to be taken in the safety assessment of the effect of a single external event, such as 

an earthquake or a flood, on all of the facilities and activities, and of the potential 

hazards presented by each facility or activity to the others." 
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In 2012, the IAEA sponsored a workshop that discussed the issue of multi-unit PRA, 

but did not offer any methodological solutions to perform practical PRA analysis, 

including: (1) the possible combinations of hazards induced by external events, (2) 

the ways they may affect multi-unit site, (3) how to address the dependencies under 

the impact of external events among multiple units [39]. NEA/CNSC organized a 

workshop on this subject that took place in Ottawa, Canada, in November 2014 [40]. 

Finally, the ASME/ANS Joint Committee on Nuclear Risk Management (JCNRM) is 

discussing the development of a standard for PRA applications to SMRs, but this 

effort is still in its infancy with no standards available. 

 

In moving forward, the NEA/CNSC Workshop in Ottawa listed many 

recommendations, including the following critical needs for further advances in the 

future: 

1. Designation of additional risk metrics beyond Core Damage Frequency (CDF) 

and Large Early Release Frequency (LERF) to better capture risk profile of 

multi-unit sites 

2. Delineation of single and multi-unit accident sequences including effects of 

single reactor/facility events on other units in form of additional initiating 

events and accident scenarios 

3. Accounting for multi-unit common cause and causal dependencies involving 

functional, human, and spatial dependencies and development of supporting 

data to address inter-unit and intra-unit common cause failures 



 

 28 

 

4. Evaluation of interactions between operator actions that would adversely 

affect multiple-units 

5. Proper accounting of the timing and amount of source-term releases from 

different units 

6. Consideration of site condition in restricting operator access, recovery actions 

and implementation of planned accident management measures 

7. Definition of site-level plant damage end states including the effects of 

cumulative radiological releases and other correlated hazards, as well as 

release categories reflecting multi-unit accidents, spent fuel storage, and other 

radiological sources 

8. Proper accounting of risk in terms of frequency of events per site-year 

including consideration of risk metrics for spent fuel pool accidents involving 

temporal variations in the amount of radiological contents of the pool. 

9. Improvements in human reliability models and analyses to address 

performance shaping factors unique to multi-unit accidents 

10. Consideration of longer mission times beyond currently practiced 24 hours 

length of operation for emergency equipment 

11. Site response to the same earthquake and correlation among the component 

fragilities in the MUPRA context. 

12. Modeling of multiple points of release from the plant site, including possible 

time lags of releases, and release energies for plume rise considerations. 
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The recommendations listed above require significant development that is beyond the 

scope of this paper. However, this paper attempts to address the first three of the 

needs listed above along with related discussions about some of the other needs. 

 

In summary, considering only one reactor unit at a time under the implicit assumption 

that other reactor units are appropriately protected has been the practice so far in both 

deterministic and probabilistic safety assessments of multi-unit sites and facilities. 

Indeed, this problem is recognized as an important issue by the NRC, CNSC and 

IAEA, but very little progress has been made in understanding and measuring the 

safety significance of multi-unit risks and implications and uses of the safety goals in 

the context of multi-unit sites. Despite the fact that single-unit PRAs provide very 

useful results, performing PRAs, one reactor at a time, could potentially yield 

misleading and optimistic risk insights [37] in situations involving multi-unit events, 

and “site-based risk metrics and methods should be defined and used in risk-informed 

decision making.” 

 

3.4. Multi-Unit Quantitative Health Objectives and Their Surrogate Metrics 

The US NRC policy statement on safety goals proposed two safety goals and 

associated Quantitative Health Objectives (QHOs) to articulate levels of acceptable 

risk, which later served as the de facto guidelines for using PRA results in regulation. 

The goals provided indices for the level of “public protection which nuclear plant 

designers and operators should strive to achieve.” Two safety goals were introduced 

in terms of public health risk, one addressing individual risk and the other addressing 
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societal risk. The risk to an individual is based on the potential for death resulting 

directly from a reactor accident – that is, a prompt fatality. The societal risk is stated 

in terms of nuclear power plant operations as opposed to accidents alone, and 

addresses the long-term impact on those living near the plant site. The sources of 

societal risk include all the radiological sources onsite (i.e., reactor cores, spent fuel 

pools and radioactive waste facility). The safety goals were expressed in qualitative 

terms for a nuclear site, perhaps so that the philosophy could be understood. The 

NRC also expressed the qualitative goals for the safety of nuclear power plants in 

terms of individual and societal QHOs. While the QHOs provided metrics to address 

the question of “how safe is safe enough?” around a nuclear plant site, practical 

implementation of the QHOs proved to be difficult because of the large uncertainties 

involved in the calculation of risk [21, 82]. 

 

To address the difficulty of uncertainties related to QHOs, the U.S. NRC observed 

that implementation of the safety goals using surrogate or subsidiary metrics that 

achieve the same intent as the QHOs but do not involve as much complexity can be 

useful in making regulatory decisions. These surrogate metrics anchor, or provide 

guidance on, an appropriate defense-in-depth philosophy that balances accident 

prevention and mitigation. In this light, it was indicated that a CDF of less than one in 

10,000 years of reactor operation is a useful benchmark in making judgments about 

that portion of regulations that are directed to accident prevention. Similarly, a LERF 

of less than 1 in 100,000 years is a useful benchmark to help ensure a proper balance 

between prevention and mitigation. These considerations later evolved into the 
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“benchmark” values of 10
-4

/year for CDF and 10
-6

/year for Large Release Frequency 

(LRF). In addition, the plant design is required to meet a containment performance 

goal, which includes (1) a deterministic goal that containment integrity be maintained 

for approximately 24 hours following the onset of core damage for the more likely 

severe accident challenges, and (2) a probabilistic goal that the Conditional 

Containment Failure Probability (CCFP) be less than approximately 0.1 for the 

composite of all core damage sequences assessed in the PRA. It is the definition and 

these surrogate metrics that led to difficulty when applied to multi-unit sites. The 

implicit assumption in using these metrics is that they are measured on the basis of a 

single unit, whereas the safety goals and QHOs are applicable to the entire site. Since 

it is the entire site that imposes the public risks, we conclude that the measures of 

QHOs should apply and remain unchanged for multi-unit sites. Of course, the prompt 

fatality goal remains more restrictive than the latent cancer fatality goal in multi-unit 

releases. Accordingly, multi-unit risk should be below the QHOs for both prompt and 

latent fatalities. 

 

For multi-unit releases, surrogates for QHOs (such as CDF, LRF and LERF) for site 

risk should be defined, assessed and compared to the goals. An important 

consideration is whether the limits of 10
-4

, 10
-6

, and 10
-5

 per year for these surrogates 

in the context of site risk should change. The site-based acceptance limits for the 

QHO surrogates are outside the scope of this paper and need further analysis to justify 

proper limits.  In the remainder of this section we will discuss possible definitions of 

these surrogates in the context of the site risk and MUPRA. 
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In MUPRA the definition of the site CDF, LRF and LERF are more complex than the 

simple sum of the individual frequencies of a single unit because there are complex 

unit-to-unit dependencies. Dependencies between the units (albeit small) and other 

structures holding radiological materials do exist because of specific design features, 

operating practices, spatial layout of the site, safety features and culture and 

organizational behavior and practices. Such dependencies, however, could contribute 

significantly to the likelihood of multi-unit core damage. In order to quantify a 

MUPRA, the CDF, LRF and LERF metrics must be clearly defined; dependencies 

between the units identified, accounted and modeled; the PRA model of the site 

developed and quantified; and the health effects estimated. 

 

3.4.1. Single-Unit CDF Metrics 

Site risk can be viewed as an event in which one or more of the units experience the 

core damage (CD) event. Assume events   ( )     ( ) represent random variables 

describing the “events of a core damage” in reactor units 1 to n. Considering the site 

risk in terms of a multivariate distribution (describing joint random variables 

  ( )    and   ( ) risk of each unit), a single-unit CD risk can be expressed in two 

ways:  marginal CD risk of each unit, or conditional CD risk of each unit. In each of 

these definitions, there are dependences within each unit as well as between the units. 

The conditional CD risk may be expressed by the CDF of one unit as the CDF of one 

unit given one or more known states of the other units on the site. The marginal CD 

risk of one unit is then defined as the CDF of one unit regardless of the states of other 
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units. The inter-unit dependencies may exist among all units or among a subset of 

them. Inter-unit dependencies must be defined and probabilistically expressed so as to 

make it possible to estimate the marginal CDF or conditional CDF of a unit. Figure 

3-1 depicts Schroer’s unit-to-unit dependencies discussed earlier [21]. In a causal-

dependency situation, the root causes of these dependencies can be viewed as the 

condition that couples the units together. 

 

 
Figure 3-1: Classes of intra-unit dependencies [20] 

 

3.4.2. Multi-Unit CDF Metrics 

Consider Figure 3-2 depicting multi-unit risk in terms of site core damage composed 

of a set of mutually exclusive CD states for a hypothetical 3-unit site, where each unit 

can be expressed by its marginal or conditional definitions of CD. According to this 
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figure, the multi-unit risk may be defined as the frequency of one or more CD events. 

For example, this definition corresponds to the union of the CD events of Units 1 

through 3 represented by the Venn diagram of Figure 3-2. Alternatively, the multi-

unit risk may be expressed as the frequency of multiple CD events, for example, two 

CD events of Units 1 and 2, but not Unit 3 as shown in the Venn diagram of Figure 

3-2. These events, in turn could be separated by significant time, or could exist nearly 

concurrently. For simplicity, these events are assumed to be existed simultaneously in 

the following discussion. 

 

 
Figure 3-2: Multi-unit CD as single event 

 

The union of the minimal cut sets of the individual units will represent the multi-unit 

CD. Two closely related definitions of the multi-unit CDF (or site CDF) may be the 

formal summation of individual unit CDFs either expressed as the marginal 

probability (per year) for all conditions imposed by inter-unit dependencies of 

 (  ( )), or the conditional CDF of a unit,  , given condition    may be expressed 
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by  (  ( )|   ). Accordingly, the definition of the multi-unit CDF expressed as the 

annual probability of one or more core damage events based on the marginal 

probability of a single unit CD using the total probability theorem would be as below. 

The implicit assumption is that all reactor units onsite are subject to the same 

operating profile through the timing period of interest, and that the Poisson model 

underlies the notion of frequency. Indeed it is understood that the site operations 

could be changed due to the continually improved actions, such as design changes, 

improved organizations, operator training, etc. 

 (    
   ( ))        (  ( ) )          (  (  ) 

   (  ) )     (  )               ( ) (  (  )    (  )   

   (  )) 

(3-1) 

Using Boole’s inequality, a simpler and more conservative estimate of the multi-unit 

CD can be obtained from 

 (    
   ( ))       (  ( )) (3-2) 

If a condition    exists that couples a subset of reactor units, say 1 through k, each 

term of Equation (3-2) may be written as: 

 (  ( ) )   ∑ (  ( )|  ) (  )

 

 (3-3) 

For multiple reactor core damage events under condition   , 

 (    
   ( )   )

  (  ( )   ) (  ( )   ( )     ) (  ( )    ( )    ( )

   )  (  ( )|     
     ( )    ) 

(3-4) 
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From Equation (3-4) the total annual probability for the k units under all conditions     

would be: 

 (    
   ( ))  ∑ (    

   ( )|  ) (  )

 

 (3-5) 

Note that there may be causal dependencies among conditions such that one condition 

leads to others. Accordingly, the hierarchy of such multiple causal conditions is 

 (   )  ∑ (           )

 

 (        ) (3-6) 

where  (        ) is the joint probability of conditions         . The problem 

now reduces to how one can determine the marginal annual probability of a CD event 

for one unit, or conditional probability of a CD for a unit for specific set of 

conditions. Both marginal and conditional measures are addressed in this paper. It 

should be recognized that the marginal and conditions measures are very different. 

Note that events and conditions are treated differently in this paper. In particular, the 

occurrence of an event may lead to a site transient that cause the site operation 

changes condition. For example a site can be led to an abnormal “condition” by 

seismic-induced loss of offsite power (LOOP) accident “event”, following which a 

series of mitigating systems will then be called upon to bring such condition back to 

normal. 

 

3.4.3. Multi-Unit LRF and LERF Metrics 

To estimate the consequences of a multi-unit accident, it is necessary to estimate large 

releases of radioactivity that lead to prompt fatalities. Modarres et al. [83] 
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summarized three options for estimation of large release frequency. In the first option 

the magnitude of release may be measured on the basis of associating a “large” 

release with an expectation that it would result in at least one early fatality. For 

example, the ASME/ANS Standard for PRA (RA-S-1.2-2014) [84] defines a “large 

early release” as a “rapid, unmitigated release of airborne fission products … such 

that there is a potential for early health effects.”  Incorporating the effectiveness of 

temporal consequences, such as public evacuation and other protective actions, 

however, complicates the definition of a large release in this context. SECY-13-0029 

[85] removes this complication by defining a release as large when it leads to an early 

fatality (with high probability) for a stationary individual standing one-mile from the 

site. This is a simple and convincing measure. However, it nevertheless requires some 

assumptions when applied to a particular site. To determine this measure of LRF, a 

hypothetical site should be assumed along with assumed meteorological data and an 

assumption of what constitutes a “high probability.” While identifying a 

representative site is possible, major conservatisms may be necessary to make it 

justifiable. For example, a site with medium to high population density, a weather 

stability condition resulting in high exposure, and limited evacuation routes may be a 

reasonable representative site. 

 

The second option measures the large release (i.e., on the basis of magnitude of the 

source term associated with each multi-unit core damage scenario) in the form of 

either absolute or relative quantities of radionuclides released. The absolute measure 

is often expressed in terms of activity released to the environment as a surrogate for a 
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quantitative calculation of dose. This is typically done for a few isotopes that tend to 

dominate estimates of offsite health effects, such as I-131 or Cs-137. For relative 

release, the traditional form expressed is fractional release of core inventory of 

various radionuclide groups to the environment, and the timing of the release may be 

specified. NUREG/CR-6595 [86] (Appendix A) suggests specific release fractions 

that may be considered as large (e.g., 2-3% of the iodine inventory). This option is 

simple to describe, but selecting the total amount of release or release fractions 

considered large is subjective and contentious [87-88]. 

 

The third option for large release de-emphasizes the amount of radioactivity released, 

by defining it in terms of the physical condition of systems, pressure boundaries and 

radionuclide barriers at the time release begins. For example, a large release might be 

considered as one involving failure of multiple reactor pressure vessels and 

containment pressure boundaries due to isolation failure(s), bypass, or structural 

damage within a few hours of core melting and fission product release from fuel, 

during which opportunities for attenuation of the airborne concentration are minimal. 

Conditions associated with multiple units may also be defined, if necessary. Note that 

this option is typically used for defining LERF. 

 

In summary, the three options for measuring LRF (surrogate for prompt fatality 

QHO) are: (1) Frequency of rapid, unmitigated release of airborne fission products 

that would result in at least one early fatality from the sites (NUREG/CR-6094 [89] 

suggests a stationary individual one mile from plant); (2) Frequency of site-level 
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absolute or relative quantities of radionuclides released (absolute expressed in terms 

of activity released, relative in terms of the percent of available inventory—usually of 

I-131 or Cs-137); (3) Frequency of pre-set site-level plant states: physical operating 

states of systems, states of pressure boundaries, and/or states of the radionuclide 

barriers at the time release begins. Note that the prompt fatality in the safety goals 

applies to an average individual living in the region between the site boundary and 

one mile beyond. The latent cancer fatality in the safety goals, however, applies to an 

average individual living in the region between the site boundary and ten miles 

beyond. 

 

Large early release frequency (LERF) proposed by EPRI and adopted in RG 1.174 

[90] as the surrogate for prompt fatality goal is defined by the NRC as “the frequency 

of those accidents leading to significant, unmitigated releases from containment in a 

time frame prior to effective evacuation of the close-in population such that there is a 

potential for early health effects.” The use of system states to define large release for 

calculating LERF has been discussed in NUREG/CR-6596. Note that the NRC 

rejected the recommendation to use LERF (10
-5

/year) in place of LRF (10
-6

/year) in 

the Safety Goal Policy statement [88]. 

 

It appears that the LRF option for multi-unit sites would be preferable as it also is 

formally part of the NRC safety goals. For example, in option 3 discussed above, 

multi-unit reactor-system states and other conditions can be selected by performing a 

level-3 PRA based on a surrogate site, from which one can roll back to the level-2 
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release categories to see which ones contribute to one or more deaths. Having 

identified those release categories, the contributing unit (system states) with 

characteristics that may be designated as large releases can be defined. Because this 

method uses conservative site meteorological condition, population density and 

evacuation, the resulting system states would yield certainly conservative risks for a 

single unit. Equally its extension can justify events considered as conservative release 

frequency measures for simultaneous release events from multiple units. 

 

Important factors that influence the prompt fatality risk relate to source term 

parameters: radionuclide activity, rate and timing of release, chemical and physical 

form of radionuclides, thermal energy, release fractions, etc. Level 3 consequence 

analysis would be needed assuming a “generic” site and applying multi-unit PRA 

scenarios to quantify and evaluate the implications of the NRC’s QHOs. Although 

detailed site-specific Level-3 PRAs are not available for the U.S. plants, relevant 

information could still be obtained from the site-specific environmental impact 

analyses performed in support of the license renewal applications that involve 

simplified Level 3 analyses. 

 

3.5. Illustration of the MUPRA Approach 

The MUPRA involves development of an integrated model involving a combination 

of individual unit PRAs that also include unit-to-unit dependencies. Regardless of the 

risk definition used, to estimate multi-unit risk a MUPRA model representing each 

unit and dependencies among the units must be developed. Two general approaches 
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are possible: 1) treating each unit through a separate unit-specific PRA and expanding 

the single-unit static PRAs into a multi-unit one by superimposing the effects of the 

unit-to-unit dependencies, or 2) using a Dynamic Probabilistic Risk Assessment 

(DPRA) to establish a simulation approach to capturing interaction of the units. The 

approach in Option 1 which is to develop a site-level static PRA can be accomplished 

either through development of a single, integrated PRA model of the site, or by 

combining individual PRAs of each unit in the site. The single integrated site-level 

PRA approach is more complex and more applicable to simple designs. In this paper 

we focus on the approach involving combining single unit static PRA models by 

superimposing all unit-to-unit dependencies. For related research on dynamic 

MUPRA see Dennis, et. al. [55] 

 

To demonstrate the approach, consider Figure 3-3, which depicts a conceptual 

example of a MUPRA model representing a two-unit logic including the classes of 

interactions between the units. The unit-to-unit dependencies models will be 

described next. Note that this logic is not related to any reactor design or site and 

serves in this paper only for MUPRA illustration purposes. In the first step we define 

the unit-to-unit dependencies and next we demonstrate a method of parametrically 

quantifying such dependencies, and finally we use the parametric dependency 

estimates to quantify the conceptual example. 
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3.5.1. Multi-Unit Dependencies 

Schroer [20, 21] discussed a number of dependent analysis methods and classified 

them into three major groups, combination, parametric and causal-based. A brief 

description of each group follows. 

 

3.5.1.1. Combination 

In this case, the condition    in Equation (3-5) describes a common (shared) event 

that should be explicitly modeled in each unit’s PRA model (e.g., the event may be 

failure of a shared SSC serving multiple units, or the same initiating event affecting 

multiple units, such as loss of power); they simply need to be represented as an 

identical item in the MUPRA logic, so that they are not double counted in the 

quantification of the site risk metrics. This would be a simple problem to handle, with 

the accounting done as part of the PRA logic manipulation. 

 

3.5.1.2. Parametric 

Parametric methods are commonly used in the traditional single-unit PRAs for 

common cause failure events as the catchalls technique to address dependencies that 

cannot be modeled explicitly.  However, internal hazards (e.g., internal fires and 

floods) and external hazards (e.g., earthquakes and high winds) are modeled explicitly 

in PRAs and are not treated by parametric analyses. The Seabrook PRA, one of the 

only MUPRAs performed in 1983, used the parametric beta factor [3]; however, the 

parameters currently in use in the single-unit PRAs would not be applicable to the 

MUPRAs. Extension of the parametric methods to multi-unit situations is a major 
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contribution of this paper that will be described in Section 3.5.2. Use of the 

parametric methods in MUPRA may lead to undue conservatism when the common 

cause failure group is higher than four [3]. The current parametric methods may not 

adequately address MUPRAs because they use parameter estimators for a single unit 

when one train of a system is challenged, but all similar trains are also assumed 

challenged [3]. This is oftentimes not the case for multi-unit events. For example, 

during a single-unit reactor trip, the supporting systems for that unit will be called 

upon while other units’ systems usually continue with normal operation. Parametric 

methods may be used to assess common cause failures between redundant SSCs and 

human actions across multiple units. However, when it becomes difficult to explicitly 

model non-redundant (not identical trains and equipment) as causal events, it would 

be possible to treat potential dependencies in these cases by the parametric method, 

although finding supporting data to estimate the parameters would be challenging. 

 

3.5.1.3. Causal-Based 

This type of dependent failure is important and poses difficult coupling mechanisms 

that contributed in a major way to the Fukushima Dai-ichi accident. There are two 

classes of causal dependencies started from within one unit or from events external to 

the site. They are (1) those started by SCC failures, an initiating event or human 

action in one unit leading to different SCC failures, initiating events and human 

actions in the other units, and (2) those started by an external event leading to 

different SCC failures, initiating events and human actions in the other units.   As 

such, in this approach one attempts to estimate the MUPRA risk metrics conditioned 
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on a common causal factor    to multiple units. There are several techniques for 

causal-based probabilistic estimation, including the parametric method, physics-of-

failure and Bayesian Belief Networks (BBN) [91]. 

 

This paper contributes to the parametric approach to causal-based multi-unit failures. 

However, ongoing research at the University of Maryland uses the BBN graph to 

model causal dependencies [92]. The benefit of the BBNs is that they allow dissimilar 

information to be combined, such as qualitative information like that from expert 

elicitation, as well as quantitative data.  Also, the ongoing research expands uses of 

the probabilistic physics-of-failure model to model the causal dependencies [92]. The 

physics-of-failure approach allows the underlying physical failure mechanisms 

induced by the root cause of the condition     (e.g., seismic impact, SSC failure in one 

unit causing failure in another, fatigue fracture, etc.) to be incorporated into the 

assessment of  (   ) and thus the entire risk model [93]. 

 

Figure 3-3 conceptually illustrates examples of the dependencies discussed above 

originated from events within one unit or from external causes. In this example the 

root external event “C” shown by a pentagonal symbol in Figure 3-3 (e.g., a seismic 

event) could lead (conditionally) to initiating events (similar or different events) in 

the multiple units. The probability of the conditional event,      , (described by a 

lozenges shaped symbol) represents the likelihood that the root external event will 

cause the initiating events in unit i.  Similarly, other less obvious common conditions 

across a site rooted in the organizational, design, environmental and operational 
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events may also be the source of causal failures, leading to multiple failures (similar 

or dissimilar events) in more than one unit. These events are shown by a trapezoid 

(described as event “D”) in Figure 3-3 leading to similar events in the two units (i.e., 

failure of component B in units 1 and 2). Finally, event “D” describing shared events 

(shared SSCs, human, etc.) is explicitly modeled as part of the integrated MUPRA 

logic affecting multiple units (again through the conditional event W|D and Z|D 

leading to different outcomes—failure events Z and W in units 1 and 2, respectively). 

Similar to the shared events, failures originated in one unit could lead to another 

event in the other unit. This situation in Figure 3-3 is shown by event Y in unit 2, 

leading to an initiated event in unit 1 described by the probability of the condition: 

    . 

 

 
Figure 3-3: Conceptual examples of unit-to-unit dependencies 
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3.5.2. Parametric Estimation of Common and Causal Dependencies in Multi-Units 

Section 3.5.1 discussed the types of dependencies in multi-units. It provided three 

classes of the root-causes of the dependencies in form of (1) common site conditions 

as denoted by event B (e.g., organizational dependency), (2) external events as 

denoted by event C include both explicit type (e.g., failure of the grid, earthquake, 

and flood), and implicit type (e.g., similar design errors, procedure deficiencies, and 

inadequate operating environments), and (3) common events or components as 

denoted by event D (e.g. shared electric buses, internal flooding, internal fire). These 

root causes then, conditionally, could lead to failure events of similar or dissimilar 

nature in multiple units.  In Figure 3-3 such conditional events were shown by the 

events depicted by a diamond shaped symbol, whose probabilities should be 

estimated for an integrated MUPRA. Also Section 3.5.1 discussed the parametric 

method as well as the more elaborate probabilistic physics-of-failure and BBN 

techniques. It appears that the parametric methods to model unit-to-unit dependencies 

provide a quick and practical approach to quantifying important dependencies in 

MUPRA analyses. This approach will be discussed in the remainder of this section. 

 

To perform parametric estimates of dependent events across units, the traditional 

methods of common cause parametric estimation provide sufficient basis for 

estimating both common cause (here referred to as the dependencies among similar 

events) and causal (diverse events), occurring in multiple units. For example the 

Alpha-Factor Method [3] is a simple technique to estimate the parametric 

dependencies and conditional probabilities. Further, evidences of multiple failure 
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events should be available for such estimations. Considering Schroer’s [21] analysis 

of the years 2000-2011 Licensee Event Report (LERs) [94] reported by the U.S. 

nuclear plant operators to the USNRC, one may generate the data needed to 

parametrically estimate the specific conditional probabilities depicted in Figure 3-3. 

Note that uncertainties may arise since the information and applicability of the events 

from the LER reports are subject to interpretation. In the past single-unit common 

cause studies, such uncertainties were addressed with the notion of the impact vectors 

[6, 95], which may also be applied to multi-unit issues. However, the impact vectors 

are not considered at this preliminary stage analysis and we conservatively assume 

that the LERs events are applicable to all units. It could be a preliminary analysis to 

get insight about the magnitude of site risks vs. single-unit risks. 

 

It is expected that external events and particularly seismic events to play major roles 

and are these events are extremely small in LERs. For instance, the seismic event was 

identified to be involved in the dominant Seabrook multi-unit scenario. In the LER 

events of years 2000-2011, only one LER event [96] involved an earthquake, the 

August 23, 2011 earthquake in Mineral Springs, VA that affected the North Anna 

plant and led to a dual unit reactor trip and subsequent engineering safety feature 

(ESF) actuations. Therefore, it is part of our current research to study such high 

significant events like seismic event in MUPRA analyses. 

 

The methodology used to make the parametric estimations is rather straightforward. 

Suppose that the parameters of the parametric model are the fractions of the total 
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probability,    , of an event of interest (conditional or unconditional) that involves 

occurrences in multiple units,  , due to a common root cause event of type j. The 

point estimation of    , is calculated according to the binomial maximum likelihood 

estimator: 

 ̂     
   

 
 (3-7) 

where     is the total number of observed events of type j (such as initiating event or 

human error) involving occurrences in i reactor units (i= 2, or 3 for the U.S. sites) due 

to the total number of LER events of type-j events observed in N total events that 

occurred in the multi-unit sites. The confidence within which the real probability,    , 

resides can also be found using the conjugate Bayesian estimation of     assuming 

that the beta distribution represents the random variable    . Accordingly, the beta 

distribution Beta (   ; α, β) with the cumulative density function of the form below 

may be used to represent     

 (   |   )  
 (   )

 ( ) ( )
 ∫     (   )   

   

 

   (3-8) 

where α, β are the distribution shape and scale parameters that should be determined 

for the prior and posterior distributions. Beta distribution representing the random 

variable     when using the Jeffrey’s non-informative prior Beta (   ; 
 

 
 , 

 

 
 ), leads to 

the conjugate posterior distribution Beta (   ; 
 

 
    , 

 

 
      ). 

 

As such using the posterior the (   )  probability interval for     using inverse of 

Equation (3-8) is, 
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(3-9) 

where     (   ) is the inverse of Equation (3-8) with the shape and scale parameters 

described. 

 

A detailed analysis of all 4207 events occurred in years 2000-2011 is reported in the 

LER. A subset of 2448 events was identified as occurring in reactors located in multi-

unit sites, which were analyzed to determine the root cause and consequential 

outcome of such a root cause. Using this subset of LERs, Schroer’s data [21] shows 

that 391 of these LERs involved events affected more than one unit. If one considers 

the LER events as precursors to multi-unit accidents, then the probability that severe 

accident involves multi-units would be 391/2448, or 16%.  If one thinks of the LER 

events as precursors to severe accidents, then this number is consistent with the 

results of the Seabrook MUPRA model estimating a conditional probability core 

damage in a second unit given the first unit core damage of 14% [28]. Schroer [21] 

provides details of the events involving multi-unit occurrences in this period as also 

summarized by Schroer and Modarres [20]. As a follow on to Schroer’s analysis, the 

LER events for the same years were further analyzed as part of the research 

summarized in this paper to determine the root causes of the 2448 LER events that 

occurred in multi-unit sites in 2000-2011. The events were judged to have originated 

from one of the following primary apparent root causes: 
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1. HA: Human action  

2. SSC: Structure, System, Component Failure or Degradation  

3. OI: Organizational Issue  

4. EEP: Event External to Plant  

5. IE: Initiating Event  

 

A procedure was developed in this study to include events that can potentially cause 

failures in multiple units during accident conditions that are normally considered in 

the traditional single-unit PRAs. A summary of steps in this procedure to include and 

exclude LERs that be designated as precursors to multiple unit events is described 

below. 

 

Exclusion Criteria of the Multi-Unit LERs Identified by Schroer: 

1. Organizational LER events were not considered since these are not currently 

explicitly modeled in the single-unit PRAs. Note that of the 391 multi-unit 

LERs that Schroer identified, 159 are organizational events, which were 

excluded in this analysis. 

2. Events that are not typically considered in single-unit PRAs were eliminated. 

For example, events involving precautionary actions on a second unit because 

of events occurred in the first unit, such the LER where, in one multi-unit 

divers working on one of the unit’s piping became unresponsive, so the 

operators tripped the other unit due to concerns for divers’ safety [97].  
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3. LERs involving violation of the technical specifications (missed, falsification 

or incorrect actions) were also eliminated for consideration. 

4. Design errors that had no impact on the safety function of equipment or 

operator actions were eliminated. 

5. Events involving software logic faults that did not affect emergency operation 

of equipment were also excluded. 

 

Of the 232 non-organizational multi-unit LER events identified by Schroer, 114 were 

eliminated based on the consideration of the exclusion criteria 2 through 5 above. 

Therefore, only 118 events were deemed to be important for consideration in 

estimation of the MUPRA events.  Clearly, the total set of the remaining events is not 

very large and detailed estimation at the level of very specific multi-component, 

multi-human errors and causal errors would not be possible. For example, the number 

of events are not large enough to estimate common cause failure of a specific Motor 

Operated Valve across multiple units. As such, a mostly conservative approach was 

adopted in which all hardware equipment in two- or three-unit sites were grouped into 

one category. This effectively would result in a higher conditional probability of 

failure estimation for dependent failures across multiple units.   

 

To differentiate the multiple-unit events involving identical failures (common cause) 

and causal failures in two or three unit sites, the end effects of the 118 LER events 

selected as potential multi-unit precursor events leading to dependent failures across 
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two or three units were further divided into more specific mutually exclusive generic 

categories of LER events that resulted in: 

1. Identical human error events in two units 

2. Identical human error events in three units 

3. Human error event in one unit caused different human error(s) in other unit(s) 

4. Identical component failure/degradation events in two units 

5. Identical component failure/degradation events in three units 

6. Identical initiating events in two units 

7. Identical initiating events in three units 

8. Initiating events in one unit caused a different initiating event(s) in other 

unit(s) 

9. Component failure/degradation in one unit caused initiating event(s) in other 

unit(s) 

10. Component failure/degradation in one unit caused different component 

failure/degradation events in other unit(s) 

11. Initiating event in one unit caused component failure/degradation event(s) in 

other units 

 

This categorization of the end effects of the multi-unit site LER events was first done 

on the site-by-site basis and by identifying the specific unit(s) affected, and then they 

were aggregated into a large Excel-based database
4
. The data were then used to make 

estimation of the parametric unit-to-unit dependencies as described by Equations 

(3-7)-(3-9). The above categorization yields the numerator values for Equation (3-7), 

                                                 
4
   Interested readers may request the Excel database from the corresponding author. 
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however we need to also identify the total number of LER events that actually 

involved multi-unit sites (i.e., the denominator in Equation (3-7)). Table 3-1 shows 

the number of LER events of 2000-2011 involving multi-unit sites primarily 

attributed to one of the three categories of events later used as the variable N in 

Equations (3-7) and (3-9). In arriving at the values described in Table 3-1, the 

following criteria were used: 

1. Only LERs that occurred in sites involving more than a single unit were 

considered  

2. LER events involving organizational, technical specifications violations were 

eliminated. 

3. LER events were put into one of the three categories: initiating event, 

component failure/ degradation, and human error. 

 

By using the above criteria, 2459
5
 end effects of the multi-unit unit LERs considered 

remained for consideration. Of these, 400 occurred in sites that had three reactor units 

as is shown in Table 3-1. 

 

The result of the parametric probabilistic analysis of multiple identical and causal 

event analysis is shown in Table 3-2 for the integrated data for all the 35 U.S.
6
 multi-

unit sites as of 2011. The values in the second column of Table 3-2 represent the 

number of events of type j involving i units (i=2 or 3 for U.S. plants) which were 

obtained by categorizing Schroer’s data [21] into the mutually exclusive categories 

                                                 
5
 Note that a few of the 2448 multi-unit LER events resulted in more than one end effect. 

6
 The total number of multi-unit sites is 36 as of November 2015 
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described in column 1 of the Table 3-2, as discussed earlier. The point estimate and 

95% Bayesian probability intervals for the events described in column 1 of Table 3-2 

are shown in the columns 2 and 3 of this table, respectively. Note that in estimating 

the conditional probabilities in Table 3-2, using Equation (3-7) and Equation (3-9), 

the values of N were obtained from columns 2 and 3 of Table 3-1. For example, for 

estimating all two-unit initiating events (due to any reason causal or identical) N=728 

was used. Similarly, for estimating any component failure for two-unit sites, N=1390 

was used. In three unit cases, column three values in Table 3-1 were used. For 

example, for any human error across 3 units (identical or causal) N=45 was used. 

 

The same analysis as summarized in Table 3-2 is repeated on the basis of the data that 

belong to the specific plant sites to observe any site-to-site variability. The site-

specific analysis showed that the probability of human error ranges from 0 to 0.5; the 

probability multiple SSC failures ranges from 0 to 0.25; the frequency of initiating 

events from 0 to 0.17. The result shows that differences do exist among the individual 

sites, especially for events involving human error. 

 

The causal chain of events for each LER event was also mapped and added to the 

database. An example of one such causal chain mapping is shown in Figure 3-4. This 

LER is related to a site which includes 3 reactor units. At the time of this event, Unit 

2 was operating at full power when its operators were advised of a potentially 

important condition (cracking) affecting the integrity of Control Element Assemblies 

(CEAs) which are critical to safe shutdown of the reactor. This resulted from an 
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inspection of Unit 3 CEAs during refueling, which revealed one CEA with cracks. 

Due to the similar design and operating history of CEAs, similar cracks were assumed 

to also be present in Unit 2. Subsequent examination discovered the same cracking 

condition in Unit 1 and Unit 3. Further inspections of the Unit 2 CEAs during 

replacement activities found also several CEA fingers with evidence of cracking near 

their lower ends. This event in multi-unit LER events is considered as one occurrence 

of “Identical Component Failure/Degradation” shown in Table 3-2 among the 221 

such failure/degradations reported by the 3-unit sites (note that most of these 221 

occurrences of equipment failure/degradation were confined in one-unit of the site 

only, and very few involved two or three units). 

 

Table 3-1: Total number of LER end effects affecting multi-units 

Event Description 
Number of Events, N, for 2- 

or 3-Unit Sites 

Number of Events, N,  

3-Unit Sites 

Initiating Events 728
7
 134 

Component Failure / 

Degradation 
1390 221 

Human Error 341 45 

Total 2459 400 

 

 

 

 

 

 

                                                 
7
 There are two types of reactor scram: voluntary and controlled. Most of the events in Table 3-2 are 

general transients due to controlled shutdown. 



 

 56 

 

Table 3-2: LER events involving 2 or 3 units and estimation of probabilities of 

multiple events 

Events Categorization, j 

(identified for either i=2 

for events involving 2 

units, or i=3 for events 

involving 3 units) 

Corresponding 

Events Shown 

in Figure 3-4 

Number of 

occurrences of 

type j events 

involving i 

units,    , 

reported by 

Schroer [21] 

Point 

estimate of 

the 

probability 

of the event, 

 ̂   

The 95% 

posterior 

Bayesian 

interval 

within 

which the 

true     

resides 

Identical Human Error 

Event (2 Units) 
HE → HE-S2 11 0.032 

(1.7E-0.2; 

5.5E-02) 

Identical Human Error 

Event (3 Units) 
HE → HE-S3 1 0.022 

(2.4E-03; 

9.9E-02) 

Human Error Event in 

One Unit Causes 

Different Human Errors 

in Other Unit(s) 

(       ) 

HE → HE-D 0 0 
(1.4E-06; 

7.3E-03) 

Identical Component 

Failure/Degradation 

Event (2 Units) 

SSC → SSC-S2 39 0.028 
(2.0E-02; 

3.8E-02) 

Identical Component 

Failure/Degradation 

Event (3 Units) 

SSC → SSC-S3 2 0.009 
(1.9E-03; 

2.9E-02) 

Identical Initiating Event 

(2 Units) 
IE → IE-S2 23 0.032 

(2.1E-02; 

4.6E-02) 

Identical Initiating Event 

(3 Units) 
IE → IE-S3 2 0.015 

(3.1E-03; 

4.7E-02) 

Initiating Events in One 

Unit Causes Different 

Initiating Event in Other 

Unit(s) (       ) 

IE → IE-D 7 0.010 
(4.3E-03; 

1.9E-02) 

Component 

Failure/Degradation in 

One Unit Causes 

Initiating Event in Other 

Unit(s): (   |  ) 

SSC → IE-D 8 0.011 
(5.2E-03; 

2.1E-02) 

 Component 

Failure/Degradation in 

One Unit Causes 

Different Component 

Failure/Degradation in 

Other Unit(s): (   |  ) 

SSC → SSC-D 24 0.017 
(1.1E-02; 

2.5E-02) 

Initiating Event in One 

Unit Causes Component 

Failure/Degradation in 

Other Units: (    |  ) 

IE → SSC-D 1 0.001 
(1.5E-04; 

6.4E-03) 
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Figure 3-4:  An example of causal mapping an LER event of a multi-unit site 

 

3.6. Quantification of a Conceptual Example to Illustrate the MUPRA Approach 

Consider the conceptual two-unit logic example shown in Figure 3-5, which is similar 

to but not a real reactor MUPRA logic. It is important to note that this example is 

used as a demonstration of the approach only and the corresponding results and 

conclusion are not applicable to any nuclear plant site. In this conceptual situation, 

four types of unit-to-unit dependencies have been modeled. These are the traditional 

common cause dependencies among identical components (e.g., between events  ( ) 

and  ( ))
8
; causal dependencies between different events (e.g.,  ( )     ( ) described 

by the coupling event [ ( ) | ( ) ]{ ( )| ( ) ); causal dependencies between a 

component and initiating event (e.g.,  ( )      
( )

 described the coupling event 

    
( )

   ( ) ); between identical initiating events caused by an external (coupling) 

condition such as earthquake or loss of offsite power (e.g.,     leading to    ), and 

between an external (coupling) condition leading to a component failure [not 

                                                 
8
 The superscript shows the unit number 
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explicitly modeled in this conceptual problem, but for example event     leading to 

loss of components (i.e.,        ( )  ( ) —not shown in the figure). 

 

Some of the dependencies discussed were parametrically estimated and reported in 

Table 3-2 based on the U.S. multi-unit site experiences that are used in this 

conceptual example. Another dependency would be the existence of identical 

components shared between units (e.g., event G is shared between the two units). In 

reality this could be an electric bus or a battery feeding two units. 

 

The cut sets of individual system fault trees for the top events  ( ), ( ), ( ), and 

 ( ), assuming the symbol "+" stands for the union operator in the Boolean algebra, 

"⋅" represents the intersection operator,  " " shows the causal operator, and "*" 

represents undeveloped events, are 

 

 ( )   ( )   ( )   ( ) [  ( )   ( )⏟      
{ ( )| ( )  { ( )}

]    
( )

  ( )      
( )

 [ ( )   ( )] 

 ( )   ( )   ( ) 

 ( )    
( )

    ( )    

 ( )   ( )   ( )   ( )   ( ) 

(3-10)~(3-13) 
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Figure 3-5: A conceptual two-unit logic for demonstration of classes of dependencies 

and their probabilistic treatment in the PRA 

 

Note that the symbols of the events are further described in Figure 3-5. Similarly, the 

cuts sets of the unit-1 sequences may be expressed as 

   
( )

            ( )   ( ) 

   
( )

             ( ) 

   
( )

 [    
( )

⏟

   
( )

   { ( )     
( )

}

 ]   ( )   ( ) 

   
( )

 [    
( )

⏟

   
( )

   { ( )     
( )

}

]   ( )   ( ) 

(3-14)~(3-17) 
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Equally, by substitution the support system causal events can be further simplified to   

  
( )

  ( )     
( )

 

  
( )

  ( )     

   
( )

   
( )

   , so   
( )

  ( )    
( )

         

(3-18)~(3-20) 

 

Substitution of Equations (3-10)~(3-13) and Equations (3-18)~(3-20) into Equations 

(314)~(3-17) and reducing the Boolean relations will yield the minimal cut sets of the 

Unit-1 marginal CD sequences. 

 

Assume that for all basic events, whether only in one unit, shared or similar 

components in both, have the probabilities   (  
 )       ,   (  )       , 

  (  )       ,   ( )       , and probability of identical failures (common 

cause failure given one component failing such as 

   ( ( )  ( ))    ( ( ))  ( ( )| ( ))  are obtained from Table 3-2 (e.g., such as 

  ( ( )| ( ))       ). Similarly, for causal events originated from another unit, 

the probability of individual causal events such as [ ( )   ( )] can be expressed by 

  ( ( )   ( ) )    ( ( ))   ( ( )| ( )). Conditional probabilities such as 

  ( ( )| ( )) can be obtained from parametric values in Table 3-2. For the initiating 

events, assume the root events leading to the initiating events     and     have 

frequencies of    
       /year,    

      /year with   (  |  )   , 

  (  |  )       . Finally, consider that component-to-component causal failure 

may be represented as   ( ( )|  ( ))       . 
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3.6.1. Single-Unit Marginal Cut Sets and Frequency Assessment 

Using the Unit-1 minimal cut sets of the CD sequences and the data described earlier, 

Table 3-3 summarizes the associated frequency of each sequence cut set specific to 

Unit-1 only (in this paper frequency of CD is used instead of CDF, since this is not 

about core damage frequency of a real nuclear plant). Because of the symmetry 

between the logic of the two units, it is possible to simply change the superscript (1) 

to (2) in the cut sets shown in Table 3-3 to find Unit-2 specific cut sets. 

Table 3-3: Unit-1 specific cut sets 

Freq. 

(/yr.) 
Cut Set 

Freq. 

(/yr.) 
Cut Set 

Freq. 

(/yr.) 
Cut Set 

    
      

    ( ) ( )   
    
      

   
( )

 ( )   
( ) ( ) ( ) 

    
       

   
( )

 ( )  ( ) ( ) 
 

     
      

    ( ) ( ) 
    
      

   
( )

 ( )   
( ) ( ) ( ) 

    
       

   
( )

    ( ) ( ) 

    
      

     
( )

 ( ) 
    
      

   
( )

  ( ) ( ) 
    
       

   
( )

 ( )  ( ) ( ) 

    
      

      
( ) 

    
      

   
( )

  ( ) ( ) 
    
       

   
( )

    ( ) ( ) 

    
    
       

   
( )

 ( )  ( ) ( ) 

    
    
       

   
( )

 ( )  ( ) ( ) 

Total          /yr. 

 

Unit-1 cut sets conditioned on the states of Unit-2 (i.e., occurrence or non-occurrence 

of dependent events) can also be quantified as described by Table 3-4. Cut sets of 

Unit-2 that are conditioned (dependent) on Unit-1 event states can equally be found 

by simply changing superscripts ( )  ( ) and ( )  ( ) in the cut sets of Table 

3-4. 
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Unit-1 cut sets with initiating events caused by occurrence of Unit-2 events may also 

be quantified as shown in Table 3-5. Similarly, Unit- 2 cut sets with initiating events 

started a part of an event in Unit-1 can also be found by changing the superscripts 

( )  ( ) and ( )  ( ) in the cut sets of Table 3-5. 

 

The total Unit-1 frequency would be the sum of the total frequencies from Tables 3-5: 

          (                    )            / yr. The frequency 

would be the same for Unit-2. This would be the marginal frequency (i.e., for reactor 

unit it would be CDF of that unit regardless of the conditions that initiated or affected 

the sequences that led to its core damage). 

 

Table 3-4: Unit-1 cut sets conditioned (causally) on Unit-2 events 
Freq. (/yr.) Cut Set 

              ( ) [  ( )   ( )⏟      

[ ( )̅̅ ̅̅ ̅ ( ( )| ( ))]

  ]  ( ) ( ) 

              ( ) [ ( )   ( )⏟      
 ( )( ( )| ( ))

] 

              ( ) [ ( )   ( )⏟      
 ( )( ( )| ( ))

] 

               
( )

[ ( )   ( )⏟      
 ( )( ( )| ( ))

] 

               [ ( )   ( )⏟      
 ( )( ( )| ( ))

] 

Total          /yr. 
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Table 3-5: Unit-1 cut sets with initiating events are dependent (causally) on Unit-2 

events 
Freq. (/yr.) Cut Set Freq. (/yr.) Cut Set 

    
      

[ ( )     
( )

]  ( )      ( )

  ( ) ( ) 
           

[ ( )

    
( )

] ( )  ( ) ( ) 

    
      

[ ( )     
( )

]  ( )      ( )

  ( ) ( ) 
           [ ( )     

( )
]     ( ) ( ) 

    
      

[ ( )     
( )

]    ( ) ( )            
[ ( )

    
( )

]  ( )  ( ) ( ) 

    
      

[ ( )     
( )

]    ( ) ( )            [ ( )     
( )

]     ( ) ( ) 

             
[ ( )

    
( )

]  ( )  ( ) ( ) 

             
[ ( )

    
( )

]  ( )  ( ) ( ) 

Total          /yr. 

 

3.6.2. Double-Unit Cut Sets and Frequency Assessment 

Consider conditioned cut set probabilities of each unit (e.g.., conditioned on event x) 

expressed as 

   
( )

   
( )

   
( )

  (3-21) 

   
( )

   
( )

   
( )

  (3-22) 

 

Accordingly, using Equations (3-21)-(3-22), the probability of the intersection of cut 

sets would be 

     (   
( )

    
( )

)

 ∑{  
( )

   
( )

 [  
( )

   
( )

   
( )

   
( )

   
( )

   
( )

]  }

   

 
(3-23) 
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When no common condition exists, then Equation (3-23) simplifies to 

∑ (   
( )

   
( )

)   . Or, if symmetric cut sets (i.e. ∑    
( )

 ∑    
( )

  ), Equation (3-

23) becomes {∑    
( )

 }
 

. 

 

Not all double cut sets using Equation (3-23) can produce the relatively largest CD 

frequencies. Denote common cause event as    (  
   

 )         . Two cut sets 

account for 90.81% of the double-unit CD frequency:         ( ( ) ( )), and 

      
( ) ( ). The important causal double unit sequences and common cause 

double unit sequences (and their frequencies) after Boolean reduction are shown in 

Table 3-6 and Table 3-7. In summary, the double (concurrent) CD cut sets 

quantification leads to the following conclusions: 

 

Table 3-6: Causal double unit sequences 

Freq. (/yr.) Cut Set 

                ( 
( )| ( )) ( ) ( ) 

                ( 
( )| ( )) ( ) ( ) 

                ( 
( )| ( )) ( )( ( )| ( )) ( ) 

                ( 
( )| ( )) ( )     

( )
  ( ) 

              
( )

  ( ) ( )       ( 
( )| ( )) 

Total           /yr. 

 

 

 

 

 

 



 

 65 

 

Table 3-7: Common cause double unit sequences 

Freq. (/yr.) Cut Set 

                    ( ( ) ( )) 

           

    ( )  ( ( ) 

 ( ( )  ( )))    ( ( ) ( ))   ( ( ) ( )) ( ) ( ( )

 ( ( )  ( ))) 

                  ( ( ) ( ))   ( ( ) ( )) 

                  ( ( ) ( ))   ( ( ) ( )) 

                  (  
( )

  
( )

)   ( ( ) ( )) 

Total          /yr. 

 

 

1. The frequency of double-unit CD frequency (total independence) without 

consideration and correction for causal or common cause dependencies 

                         yr. 

2. Double-unit CD frequency with causal dependency correction, but without 

common cause parametric correction:                       

          /yr. 

3. Double-unit CD frequency with common cause parametric correction, but 

without causal dependency correction:                      

         /yr. 

4. Double-unit CD frequency with causal dependency correction and common 

cause parametric correction:                                 

         /yr. 

5. Contribution from CCF dependencies to the total double-unit CD frequency = 

98.66%. 
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6. Contributions from causal dependencies to the total double-unit CD frequency 

= 1.18%. 

7. Contribution from independent double-unit CD cut sets to the total double-

unit CD cut set frequency = 0.16%. 

8. The marginal CD frequency of unit 1or unit 2:          /yr 

9. Site-CD frequency (i.e., frequency of at least a CD)     (         )  

                   /yr. 

10. Factors by which site CD frequency events are smaller than the double-unit 

CD frequency events                            .  

 

Note that while the double CD frequency is smaller than single marginal CD 

frequency (although not significantly), the source term will increase and the total site 

risk in terms of consequences (early death and health effects) will remain about the 

same or possibly involve a marked increase. The risks from single unit (marginal) risk 

and double unit risk are substantially different. Therefore, it is possible that the total 

site consequences and risk may increase, in some plant sites nonlinearly, due to the 

increased source term from multiple units. Source term releases can be staggered, 

even if triggered by the same external event. The emergency response in this case 

could involve evacuation of the surrounding population, thus affecting the 

consequences resulting from additional releases. The site consequence and risk, 

however, requires more analysis. This conclusion assumes that a large number of 

components due to common fragility to external events (such as external flood and 
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seismic) are not present. If they are present, the difference of the factor multiple and 

single CD events will have similar frequencies. 

 

3.6.3. Marginal Single-Unit Important Events 

The cut sets with highest fractional contribution to the total CD frequency of a single 

unit are shown in Table 3-8 (take unit 1 for illustration):  

 

Table 3-8: Significant cut sets for the single-unit CD 

Fractional 

Contribution 
Cut Set 

19.19%    
( )

  ( ) ( ) 

19.19%    
( )

  ( ) ( ) 

18.04%    
( )

 (   ( ( ) ( )))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (   ( ( ) ( )))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   ( )     
( )  ( )  ( ) 

18.04%    
( )

  (   ( ( ) ( )))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (   ( ( ) ( )))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   ( )     
( )  ( )  ( ) 

9.69%       
( ) 

3.79%    ( ( ))̅̅ ̅̅ ̅̅ ̅̅ [( ( ))̅̅ ̅̅ ̅̅ ̅ (   ( ( ) ( )))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (( ( )  ( )))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]  ( ) ( ) 

1.94%     ( ) ( ) 

1.94%     ( ) ( ) 

1.94%      
( )

 ( ) 

 

 

The cut sets with highest fractional contribution to the double-unit CD frequency are 

shown in Table 3-9: 
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Table 3-9: Significant cut sets for the double-unit CD 

Fractional 

Contribution 
Cut Set 

66.91%           ( ( ) ( )) 

23.90%        
( ) ( ) 

1.43% 

    ( ) ( ( )

 ( ( )  ( )))    ( ( ) ( ))   ( ( ) ( )) ( ) ( ( )

 ( ( )  ( ))) 

0.41%         
( ) ( )( ( )| ( )) 

0.41%         
( ) ( )( ( )| ( )) 

0.37%        ( ( ) ( ))   ( ( ) ( )) 

0.37%        ( ( ) ( ))   ( ( ) ( )) 

0.37%        (  
( )

  
( )

)   ( ( ) ( )) 

 

3.7. Conclusions 

In this paper a conceptual procedure was proposed to evaluate and assess the 

contribution of multi-unit risk for applications to PRA analyses. The procedure 

identifies and explicitly models four categories of dependencies among units: 1) 

common (identical) SSCs shared between multiple units; 2) causal dependence of an 

event (SSC state) in one unit to another event(s) in other units; 3) causal dependence 

of an initiating event and/or SSC failures in one unit to an event external to the SSCs 

of other units (seismic, flood, loss of power); 4) parametric (traditional) common 

cause events within one unit and across multiple-units among similar SSCs, initiating 

events or human errors. The paper also reported analysis of eleven years of the U.S. 

LER data from multi-unit sites to estimate probability of common and causal failures 

among the components. A conceptual two-unit logic example was used to 

demonstrate the multi-unit PRA procedure proposed in this paper. Results from the 

analysis showed that all dependencies are important, but the traditional CCF events 
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dominate. Also, causal events initiated by external events that could substantially 

reduce the margin of protection and mitigation are important to multi-unit risk. From 

this example and by qualitative examination of the single-unit PRA, it appears that 

multi-unit core damage CDF would be small and the frequency would be dominated 

by the traditional common cause failures that can be addressed through traditional 

parametric methods. Causal core damage sequences starting from another unit could 

be significant. These conclusions are based on the simple example used in this paper 

and need to be further validated by using real reactor units. 
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Chapter 4:  Issues in Dependency Modeling in Multi-Unit 

Seismic PRA
9
 

4.1. Abstract 

This paper addresses issues related to dependency modeling in multi-unit seismic 

probabilistic risk assessment of nuclear power plants. The concept of multi-unit 

probabilistic risk assessment (MUPRA) is briefly summarized. The current 

methodologies to seismic-induced dependency modeling are discussed and grouped 

into four main approaches. Several issues are identified in the present methodologies 

for consideration of dependencies in seismic MUPRA. It is shown that the β-factor 

and correlation coefficient approaches to account for dependencies are different. 

Further, the paper highlights the weakness of the Reed-McCann method in modeling 

dependencies. These findings underline the need for improved methods for 

characterizing dependencies in the multi-unit structures, systems and components 

(SSCs) with shared features and their links in the MUPRAs.  

 

4.2. Introduction 

It is evident from the 2011 Fukushima Daiichi accident that correlated external 

hazards resulted in initiating events and sequences that challenged multiple 

radiological sources on the plant site, including reactor cores and spent fuel pool 

storage. The earthquake damaged the electric power supply lines at the site, and the 

                                                 
9
 The full-text of this chapter has been published in the Proceedings of the 2017 International Topical 

Meeting on Probabilistic Safety Assessment and Analysis (PSA 2017), September 24-28, 2017, 

Pittsburgh, PA. 
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subsequent tsunami extensively damaged the operational and safety infrastructures of 

the site [98]. These combined effects devastated this six-unit nuclear power site and 

eventually resulted in the melting of multiple reactor cores (i.e., Units 1, 2 and 3) and 

spent fuels (i.e., Unit 4). It became evident that the interaction across reactor units, 

namely unit-to-unit dependencies, played a critical role. An example of such 

interaction included the explosion in the Unit 4 was caused by the hydrogen escaped 

from the Unit 3 through the shared ductwork. 

 

Recently, the different facets relevant to multi-unit sites (i.e., hazards, methodological 

challenges, site risk metrics, safety goals and associated quantitative health 

objectives) have been investigated and possible solutions have been developed by the 

international experts [36, 39-42] and the research groups in the U.S. [1, 20, 25, 31, 

34, 37, 55, 81, 99], Japan [33, 57, 69, 72], South Korea [30, 100, 101], India [61, 

102], Canada [60, 78], France [62], and China [63]. This included addressing multi-

unit risks due to loss of offsite power, station blackout, and seismic events. External 

hazards have been recognized by recent research as the most likely events that affect 

multiple reactor units with significant consequences [56]. As was evident from the 

Fukushima accident, combined hazards could occur which involve causal natural 

events such as earthquake and tsunami. 

 

The seismic events have been particularly recognized as the most significant natural 

event that induces unit-to-unit dependencies [33, 72, 103, 104]. Typically, seismic 

PRA (SPRA) [105] evaluates the impacts of seismic-induced dependencies in SSCs. 



 

 72 

 

The main challenge is to appropriately specify the level of dependency and 

incorporate the dependency effects in seismic MUPRA. Seismic-induced failures of 

SSCs rely on the magnitude of the ground motion resulted from the earthquake. The 

failure data could be used for dependencies estimation as long as the failed SSCs are 

of similar types and are under equal seismic loading. As such, the amount of useful 

data is extremely scarce for the dependencies estimation due to seismic events. In 

general, one must either assume that the seismic failures are completely independent, 

or assume that such failures are perfectly dependent, both of which are incorrect and 

the truth lies somewhere in between. To account for dependencies the literature can 

be grouped into four main approaches: 

 

1. Follow the traditional parametric approaches used in common cause failure (CCF) 

modeling in the internal PRA. For the case of partial dependencies, engineering 

judgment should be used, which could potentially lead to conservative or even 

non-conservativeness results. An example of this approach involved evaluation of 

the seismic fragility of the heat transport system of a liquid metal fast breeder 

reactor considering partial correlation based on engineering judgment [106]. 

2. Incorporate the dependencies by the means of the linear correlation coefficient 

between seismic failures. In the absence of statistical evidence or engineering 

experience, one might resort to analytical and simulation techniques. The first 

study using this approach dates to the studies of the Seismic Safety Margins 

Research Program (SSMRP) in the 1980’s [107]. Since the SSMRP approach 

requires extensive analysis of multiple time histories and simulation efforts, a set 
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of rules [108] was developed for the sake of simplification based on the SSMRP 

findings in 1990.  

3. Incorporate the dependencies by means of correlation of the ground acceleration 

capacity. The essential idea is that the dependencies particularly arise in various 

attributes considered in the existing fragility development [109], and grouping 

these attributes can suggest a partial correlation between SSCs within the same or 

different classes. Therefore, it is practical that one can further account for full or 

partial correlation between SSCs. This idea was originally proposed by Reed et al. 

referred to as Reed-McCann method [110] in the literature. The correlation of 

ground acceleration capacities is treated as constant, regardless of the magnitude 

of ground motion, which is different from the correlation of seismic failures that 

is usually increased given larger ground motion. Recent works by R. J. Budnitz 

consider the Reed-McCann method as a suitable approach to address the partial 

correlation in seismic events [71]. 

4. Combined methodologies have also been introduced to take advantage of specific 

features of the three approaches above. They usually determine the relationship 

between the CCF parametric estimation and correlation coefficient of failure 

occurrences, so as to estimate CCF models (e.g., the β-factor). For example, the β-

factor model may be set equal to model to the correlation coefficient [111]. M. 

Pellissetti treated the seismic-induced dependencies by the integration of 

correlation models [108] developed in NUREG-1150into the fault tree based 

seismic PRA with β-factor model [112].  
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Two issues related to above methodologies that this paper addresses include: 

1. Lack of rigorous discussions on the appropriate relationship between β-factor and 

correlation coefficient. 

2. Lack of rigorous discussions on the performance of the numerical quantification 

procedure in the Reed-McCann method. 

 

To address these issues, Section 4.3 briefly summarizes the seismic fragility 

evaluation. In Section 4.4, the paper shows that the equivalence assumption between 

β-factor and correlation coefficient is inappropriate. In Section 4.5 the paper 

highlights limitations of the quantitative procedure of the Reed-McCann method. In 

Section 4.6, the results and contributions of this paper are summarized. All the 

simulations and computations in this paper are performed using the open-source 

language and computing environment R [113]. 

 

4.3. Seismic Fragility Evaluation 

The seismic fragility is defined as the conditional failure probability given an 

earthquake. The limit state of each SSC is characterized by the binary case (i.e., fail 

or survive), depending on the global ground motion intensity (e.g., peak ground 

acceleration), the ground acceleration capacity and the associated uncertainties. The 

ground motion capacity of each SSC is denoted as follow: 
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           (4-1) 

where A is the ground acceleration capacity,    is the median ground acceleration 

capacity,    and    are random variables representing aleatory uncertainty and the 

epistemic uncertainty of the median estimates, respectively. Both    and    are 

assumed to be lognormally distributed with unit medians and logarithmic standard 

deviations of    and   . 

 

A failure is considered to occur if the ground motion intensity exceeds the associated 

ground acceleration capacity. The fragility function is typically characterized by a 

cumulative lognormal distribution as displayed by Equation (4-2).  

 (   )   [
  (

 
  

)       ( )

  
] (4-2) 

where   is the cumulative standard normal distribution,   is the ground motion 

intensity of the earthquake,    is the median ground acceleration capacity,    

represents the aleatory uncertainty,    represents the epistemic uncertainty, and Q is 

the desired non-exceedance probability or confidence. 

 

Fragility curves are used to express the failure probability of the SSCs due to 

earthquakes as a function of ground motion intensity. An example of typical fragility 

curves is shown in Figure 4-1 including the median, 5% confidence, and 95% 

confidence curves. 
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Figure 4-1: Example fragility curves [114] 

 

 

The fragility function can also be expressed in terms of the total uncertainty    as 

shown in Equation (4-3), which generates the so-called composite curve displayed in 

Figure 4-1. This composite curve is often used as equivalent to the mean curve of the 

family of fragility curves. 

 (   )   [
  (

 
  

)

√   
     

 
]   [

   (
 

  
)

  
] (4-3) 

 

4.4. Issues with the Equivalence Hypothesis Between β-Factor and Correlation 

Coefficient 

The equivalence hypothesis
39

 between the β-factor in CCF and correlation coefficient 

has been applied in an ad hoc manner with no rigorous proof or discussions. The 

distinctness between the β-factor and correlations was shown by M. Pellissetti based 

on a numerical example
40

 constructed based on certain specific seismic failure 

probability and correlation coefficients. Without loss of generality, an analytical 
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approach based on a two-component system is presented to examine the relationship 

between the β-factor and correlation coefficient. 

 

Consider a parallel system composed of two dependent components A and B. Given 

the occurrence of an earthquake with certain ground motion intensity, the component 

states    and    are determined as 1 (failure) or 0 (survive) with the corresponding 

marginal failure probabilities    and   , respectively. The joint probability     

denotes the probability that both components failures with the system state     of 1. 

As such    and    would be random variables that follow a Bernoulli discrete 

distribution with the expectations (mean)    and   , and variances   (    ) and 

  (    ), respectively. Suppose the linear correlation coefficient of seismic failures 

is    . Then the correlation     is: 

    
          

   
    

 
                  

   
    

 
        

√  (    )  (    )
 

(4-4) 

where            is the covariance between the two state variables    and   ;    
 

is the standard deviation of the state variable   ;    
 is the standard deviation of the 

state variable   ;       is the expectation (mean) of the state variables   ;       is 

the expectation (mean) of the state variables   ;        is the expectation (mean) of 

the system state variable    . Therefore, the joint failure probability     can be 

expressed as: 

   =        √  (    )  (    ) (4-5) 

 



 

 78 

 

Consider identical components as is the common consideration in the β-factor 

modeling. Therefore, for components A and B,        , and the joint failure 

probability in Equation (4-5) would be: 

   = 
        (   ) (4-6) 

 

Also, from the β-factor model, the joint failure probability is: 

    (   )        (4-7) 

 

Clearly Equations (4-6) and (4-7) are different. The analytical relationship between 

correlation coefficient and β-factor can be found by equating the Equations (4-6) and 

(4-7): 

     (    )        (   )    (4-8) 

 

The analytical solution to Equation (4-8) provides the correct relationship between 

the β-factor and correlation coefficient methods as: 

  
(    )  √(    )     (   )     

  
 (4-9) 

 

The relationship between β-factor and correlation coefficient varies depending on the 

correlation coefficient     and the seismic failure probability  . Treating the β-factor 

and correlation coefficient equivalently may lead to either conservative (i.e.,   

   ) or non-conservative results (i.e.,      ), given      ,        , and 

     . 
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 Let us start by assuming correlation coefficient is greater than the actual β-factor 

(i.e.,      ), which can only be satisfied with the following conditions:   

{
  

(    ) √(    )     (   )    

  
    

       
     

 Null solution 

 On the other hand, let us assume correlation coefficient is no greater than the 

actual β-factor (i.e.,      ), which can only be satisfied with the following 

conditions:   

{
    

(    ) √(    )     (   )    

  
  

       
     

 {
     

       
    

 

The results above indicate that       is always the truth. Since   and     are 

essentially functions of ground motions, it can be concluded that the β-factor is 

always greater than the correlation coefficient regardless of the ground motion 

intensity. As such, the equality between correlation coefficient and the β-factor would 

ignore the dependent effects and lead to non-conservative estimates. Therefore, the 

equivalence hypothesis between the β-factor and correlation coefficient was 

inappropriate. 

 

4.5. Issues with the Reed-McCann Method 

The Reed-McCann method was proposed by Reed et al. in 1985, to characterize the 

mutual correlation by the common sources of uncertainties within the fragility 

development, and ultimately quantify the joint fragility by an analytical approach 
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[110]. The literature lacks a rigorous mathematical discussion on the performance of 

the Reed-McCann method. This section discusses the Reed-McCann method and 

examines its quantitative procedure. 

 

4.5.1. Reed-McCann Method 

The Reed-McCann method is illustrated by the flowchart in Figure 4-2. The first step 

is to determine the common sources of uncertainties (i.e., epistemic and aleatory) and 

then numerically quantify the joint fragility by a two-stage process. In the first stage, 

the median capacities are sampled, for example by using the Latin Hypercube 

Sampling (LHS) method considering the dependencies among epistemic 

uncertainties. In the second stage, the dependencies among aleatory uncertainties are 

addressed and a multiple integration approach is developed to compute the joint 

fragilities without directly using the correlation. 

 

 
Figure 4-2: Flowchart of the Reed-McCann method 
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Consider an n-component group for illustration purpose. As discussed in Section 4.3, 

the     component fragility is described by the triplet vector:    ( )   ( )   ( )  in 

Equation (4-1), where          . Therefore, the properties of all components can 

be represented as: 

 Median capacity vector: 

  
⃑⃑ ⃑⃑  ⃑     ( )     ( )     ( )  

 Epistemic uncertainty vector: 

  
⃑⃑ ⃑⃑      ( )     ( )     ( )  

 Aleatory uncertainty vector: 

  
⃑⃑ ⃑⃑     ( )     ( )     ( )  

 

Suppose the common uncertainties between each component have been identified, 

where                             , such that: 

 Common epistemic uncertainty vector:    ⃑⃑ ⃑⃑ ⃑⃑       (   )   , for epistemic 

uncertainty between component j and component k. 

 Common aleatory uncertainty vector:    ⃑⃑⃑⃑ ⃑⃑       (   )   , for aleatory 

uncertainty between component j and component k. 

 

Therefore, the reduced uncertainties can be obtained by subtracting the common 

uncertainties which exists between the component of interest and other relevant 

components. 

 Reduced epistemic uncertainty vector:    ⃑⃑⃑⃑⃑⃑      ( )      ( )      ( ) , 

where     ( )  √  
 ( )    

 (   ) given         . 
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 Reduced aleatory uncertainty vector:    ⃑⃑⃑⃑⃑⃑      ( )      ( )      ( ) , where 

    ( )  √  
 ( )    

 (   ) given         . 

 

Then the two-stage process is carried out to quantify the joint fragilities. The 

objective of first stage is to sample the median capacities that can be either 

independent or dependent. 

 

If the median capacities are independent, there is no commonality between the 

epistemic uncertainties. The LHS simply consists of dividing the probability density 

function for each component into N equal probability slices. For each component and 

each slice, a random number is generated with equal weight and hence a median 

capacity is sampled based on the lognormal distribution, bounded by the limits of the 

slice with the median value of   
⃑⃑ ⃑⃑  ⃑ and the logarithmic standard deviation value of   

⃑⃑ ⃑⃑  .  

 

When the median capacities are dependent, two steps are necessary to sample the 

correlated median capacities. The first step is called the independent step in which the 

same process described for the independent case is done, but by means of different 

bounded probability distribution with the reduced epistemic uncertainty vector 

   ⃑⃑⃑⃑⃑⃑  instead. The second step is the dependent step where the effect of dependency is 

considered by multiplying the correction factors. N correction factors are generated 

using the LHS for each of the common epistemic uncertainty, where the sampled 

distribution is lognormal with the median value of 1.0 and the logarithmic standard 

deviation value of    ⃑⃑ ⃑⃑ ⃑⃑ . Then the components in each set which have the common 
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dependency are scaled sequentially by the same corresponding correction factors. The 

procedure is repeated for each of the common groups of dependencies. After the 

scaling option is completed, the N sets of combined median values reflect the inherent 

dependencies which exist in the median values. 

 

After the N sets of median capacity values are generated, the dependencies between 

the aleatory uncertainties are incorporated in the second stage and then compute the 

joint fragility.  

 If there is no commonality between the aleatory uncertainties, it is simple to 

convert the Boolean systems equation to an algebraic equation. By calculating the 

individual component failure probability at a series of ground acceleration values, 

the system fragility curve is obtained based on the system algebraic probability 

equation.  

 When dependencies exist between the aleatory uncertainties, the system fragilities 

could be quantified by a closed-form numerical integration procedure to 

incorporate the effects of correlated aleatory uncertainties. By using an exact 

approach, no assumption is made to estimate higher order terms.  

 

4.5.2. Examination and Observations 

The example problem presented by Reed
37

 is herein adopted for examination purpose. 

There are three safety-related components (i.e., A, B and C) located in two structures. 

Component A and B have response dependencies since both components are situated 

in the same building near each other. Components A and C have high capacity 
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dependence since they are the same component made by the same manufacturer. 

Components B and C are independent since they are different component located in 

different buildings. The component properties and the common uncertainties can be 

found in Ref. 37.  

 

Table 4-1: Four cases for examination purpose 

Case No. Dependency System Configuration Description 

1 
Dependent 

components 

Intersection of 

components 

All three components 

fail 

2 Union of components 
At least one 

component fails 

3 
Independent 

components 

Intersection of 

components 

All three components 

fail 

4 Union of components 
At least one 

component fails 

 

The performance of Reed-McCann method is examined by comparing the joint 

fragilities of four different cases using Reed-McCann method. The four cases are 

established depending on the system configuration with or without dependencies as 

displayed in Table 4-1. It is worthwhile noting that no complete comparison exists, 

although two sets of results are available for this example problem in the current 

literatures. The first set of results was provided by Reed [110] for all the four cases, 

but the results are only for one specific sample set within the ten sample sets 

generated in total. The second set of results were generated and validated by Budnitz 

[71]. It is noted that only two dependent cases (i.e., case 1 and case 2) are considered 

and the results are provided based on the same sample set used in Reed’s results. 

Although Budnitz also provided the results for ten equally weighted sample sets, the 

results are generated based on only one iteration.  
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For the sake of performance examination, a complete comparison study is presented: 

(a) the comparison of independent cases (i.e., case 3 and case 4); and (b) the 

comparison between dependent and independent cases (i.e., case 1 versus case 3; case 

2 versus case 4). The R script
10

developed as part of this study was used to implement 

the Reed-McCann. The validity of this R script was confirmed by: 1) the R script is 

used to calculate the joint fragility based on the same sample set of the combined 

median values in the Reed’s. The Budnitz’s results and the results from this study 

matched perfectly, which were also compared with the Reed’s results; 2) the R script 

was used to calculate the results for the ten equally weighted sample sets reported in 

Budnitz’s. It is shown that this study results and Budnitz’s results perfectly compared 

as well. This was done to test the accuracy of the R script. 

 

Within the independent cases, the objective is to examine the performance by the 

comparison between the mean fragility curve and the composite fragility curve. The 

R script is used to compute the joint fragility of the independent cases based on ten 

sample sets as well. As displayed in Figure 4-3, the composite fragility curve overlaps 

with the mean fragility curve for both intersection and union configurations, which 

follows the common practice that use composite curve as equivalent to the mean of 

the family of fragility curves. 

                                                 
10

 The multidimensional integration computation is done using the package "cubature" [115] 
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Figure 4-3: Comparison between independent cases with fifty iterations (intersection 

& union) 

 

Examination is also needed to compare the dependence case with the independent one 

for either intersection or union configuration, respectively.  As all the components are 

positively correlated, one component failure leads to an increased tendency for 

another component to fail. The existing dependency is going to reduce the failure 

probability of the union configuration (i.e., either-or condition) and increase the 

failure probability of the intersection configuration. In other words, the ratio of the 

joint fragility of Case 1 (i.e.,   ) to the joint fragility of Case 3 (i.e.,   ) should 

always be greater than 1 and the ratio of the joint fragility of Case 2 (i.e.,   ) to the 

joint fragility of Case 4 (i.e.,   ) should always be less than 1. These patterns could 

be used as the rules to justify the performance of Reed-McCann method. Given a 

number of iterations with different random seeds, it is found that these patterns could 

be either violated or followed depending on the initialization of the pseudorandom 

number generator. Therefore, the performance index   can be constructed as shown 
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in Equation (4-10) to track the performance of the Reed-McCann method. In this case 

when   equals to one, it means the perfect performance, and when less than one it 

means low performance: 

  

∑ [ (
  

 

  
 )   (

  
 

  
 )] 

   

 
            

(4-10) 

where N is the total number of iterations;  ( ) is an indicator function which equals 1 

given    , otherwise equals 0;   
  is the joint fragility of Case 1 in the 

   iteration;   
  is the joint fragility of Case 2 in the    iteration;   

  is the joint fragility 

of Case 3 in the    iteration;   
  is the joint fragility of Case 4 in the    iteration. 

 

Suppose ten tests are designed with ten different numbers of iterations N (i.e., 50, 

100, 150, 200, 300, 350, 400, 450 and 500). The performance index   for each test is 

displayed in Figure 4-4. It is obviously seen that the   value is far less than 1 for all 

the tests, which reflects the poor performance of the quantitative procedure of the 

Reed-McCann method.  

 
Figure 4-4: Performance index with ten different numbers of iterations N 
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Let us take one example with seed number 500, the results of which are shown in 

Figure 4-5. For the comparison between intersection configurations, the consistence 

of dependent with independent scenarios held true that Case 1 is always higher than 

Case 3. However, for the comparison between union configurations, an inconsistent 

pattern is found between Case 2 and Case 4. In the low end of the fragility curve (i.e., 

less than 0.5g), the failure probability of dependent case is even higher than the 

independent case. This violates the rules that dependencies reduce the joint fragility 

of the union configurations. In the upper end of ground motion (i.e., greater than 

0.5g), the pattern is alternated and followed the rules. Therefore, the observation 

reveals the possible limitations of Reed-McCann method. 

 

 
Figure 4-5: Comparison between dependent and independent cases (intersection & 

union) 
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4.6. Conclusions 

In this paper, the MUPRA and seismic dependencies were reviewed and highlighted 

issues in the present methodologies for modeling seismic dependencies. The 

equivalence hypothesis between the β-factor and correlation coefficient was shown to 

be inappropriate. The weakness of the Reed-McCann method was examined through 

a comparison study which showed that the Reed-McCann method cannot correctly 

characterize the contribution of dependencies. These findings were important and 

recognized the need for improved methods for characterizing the SSCs with shared 

features. Development of such improved methods is part of our current research for 

applications to external event MUPRAs that consider unit-to-unit dependencies. 
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Chapter 5:  An Improved Multi-Unit Nuclear Plant Seismic 

Probabilistic Risk Assessment Approach
11

 

5.1. Abstract 

This paper proposes an improved approach to external event probabilistic risk 

assessment for multi-unit sites. It considers unit-to-unit dependencies based on the 

integration of the copula notion, importance sampling, and parallel Monte Carlo 

simulation, including their implementation on standard PRA software tools. The 

multi-unit probabilistic risk assessment (MUPRA) approach and issues related to the 

current methods for seismic dependencies modeling are discussed. The seismic risk 

quantification is discussed in the context of two typical numerical schemes: the 

discretization-based scheme and simulation-based scheme.  The issues related to the 

current discretization-based scheme are also highlighted. To address these issues and 

to quantify the seismic risk at the site level, an improved approach is developed to 

quantify the site-level fragilities. The approach is based on a hybrid scheme that 

involves the simulation-based method to account for the dependencies among the 

multi-unit structures, systems and components (SSCs) at the group level of dependent 

SSCs, and the discretization-based scheme. Finally, a case study is developed for the 

seismic-induced Small Loss of Coolant Accident (SLOCA) for a hypothetical nuclear 

plant site consisting of two identical advanced (GEN-III) reactor units. The results 

from this case study summarize the effects of correlation across multiple reactor units 

on the site-level core damage frequency (CDF). Three multi-unit CDF metrics (site, 

                                                 
11

 The full-text of this chapter has been published in the Journal of Reliability Engineering & System 

Safety, Volume 171, Pages 34-47, March 2018. https://doi.org/10.1016/j.ress.2017.11.015 
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concurrent and marginal) were calculated for this case study. It is concluded that 

based on correlations between the SSCs, the total site CDF metric would be the most 

appropriate multi-unit CDF metric for seismic risk.  

 

5.2. Introduction 

The Fukushima Daiichi accident has given greater urgency to the need for nuclear 

safety regulations that consider unit-to-unit dependencies [98]. Different facets 

relevant to multi-unit sites have been studied in the past few years, including 

correlated hazards, methodological challenges, site risk metrics, safety goals and 

associated quantitative health objectives. For instance, the recent works of 

international teams [36, 39-42] and the research groups in the U.S. [1, 20, 25, 31, 34, 

37, 55, 81, 99], Japan [33, 57, 69, 72], South Korea [30, 100, 101], India [61, 102], 

Canada [60, 78], France [62], and China [63] have addressed such multi-unit risks as 

loss of offsite power, seismic events. Among these, seismic events have been 

recognized as the most significant natural event that induces unit-to-unit 

dependencies with significant consequences [33, 72, 56, 103, 104]. While seismic-

induced failures are the focus in this paper, other random and dependent failures of 

SSCs involved in multiple reactor units have been addressed in the authors’ previous 

research [25]. The occurrence of an earthquake imposes strong spatial correlations on 

structures, systems and components (SSCs) either in the same or different reactor 

units. Identical or similar SSCs will behave in analogous ways, tending to fail 

together due to the dependencies that arise from three types of sources: (1) ground 

motion similarity due to common earthquake sources, similar propagation paths and 
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local conditions; (2) seismic demand similarity due to but not limited to similar 

construction guidelines and contractors; (3) seismic capacity similarity due to but not 

limited to similar SSC types and manufacturers.  

 

Typically, seismic PRA [105] (SPRA) evaluates the impacts of seismic-induced 

dependencies among SSCs. The objective is to quantify the seismic risks by 

integrating the results of the seismic hazard analysis, seismic fragility evaluation and 

system models. There are two common numerical schemes: (1) the discretization-

based scheme, which follows the standard quantification process of internal event 

PRA by approximating the continuous function with discretized sub-intervals; and (2) 

the simulation-based scheme, which uses simulation techniques to randomly sample 

from the continuous function.   

 

Single-unit SPRAs have been developed for decades, and standards are available to 

help develop them. Also available are methods to extend single-unit SPRAs to multi-

unit SPRAs [25]. However, the main challenge remaining is a method to 

appropriately specify the degree of dependency and incorporate these dependent 

effects into the seismic MUPRA. Nearly all the current SPRAs use the same seismic 

hazard curve for all SSCs located on the same site. This study follows this practice 

too, but recognizes the need for methods to consider the ground motion dependencies 

across nuclear reactor units. Clearly, seismic-induced failures of SSCs depend on the 

magnitude of the ground motion resulting from the earthquake. Historical failure data 

can be used to estimate dependency as long as the failed SSCs are of similar types 
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and they are under equal seismic loading. However, the amount of useful data is 

extremely scarce for estimating all kinds of seismic dependencies. In general, one 

must either assume that the seismic failures are fully independent, or assume that such 

failures are perfectly dependent, both of which are inaccurate, with the truth lying 

somewhere in between. There is no common agreement on how to account for 

dependencies, but from the present literature the dependency methods can be grouped 

into four main approaches: 

 

1) Follow the traditional parametric methods used for modeling the common cause 

failure (CCF) in the internal events PRAs. For the case of partial dependencies, 

engineering judgment should be used, which could lead to either conservative or 

non-conservative results. An example of this approach involves evaluation of the 

seismic fragility of the heat transport system of a liquid metal fast breeder reactor 

considering partial correlation based on engineering judgment [106]. 

2) Incorporate the dependencies by means of the linear correlation coefficient 

between seismic failures. In the absence of statistical evidence or engineering 

experience, one might resort to analytical and simulation techniques. The first 

study using this approach dates to the Seismic Safety Margins Research Program 

(SSMRP) [107]
 
in the 1980’s. Since the SSMRP approach requires extensive 

analysis of multiple time histories and simulation efforts, a set of rules [108] was 

later developed to consider dependencies globally so as to simplify the SSMRP 

approach. 
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3) Incorporate the dependencies by means of correlation of the ground acceleration 

capacity. Note the dependencies possess various attributes considered in the 

existing fragility development [109]. The essential idea is that grouping of these 

attributes can suggest a partial correlation between SSCs within the same or 

different classes. Therefore, it is practical that one can further account for full or 

partial correlation between SSCs. This idea was originally proposed by Reed et al.
 

[110], and is referred to as Separation-of Variable-approach. It is also known as 

Reed-McCann method in the literature when Separation-of-Variable approach is 

used with a two-stage process to numerically quantify the joint fragility. The 

correlation of ground acceleration capacities is treated as constant, regardless of 

the magnitude of ground motion, which is different from the correlation of 

seismic failures that is usually increased given larger ground motion. Recent work 

by Budnitz et al. [71] considered the Reed-McCann method as a suitable approach 

to address the partial correlation where SSCs are not fully correlated or entirely 

independent in seismic events. In Reference 37, the interested readers can find 

more details on how to determine the actual dependencies given the similarities in 

response and capacity factors. 

4) Combined methodologies have also been introduced to take advantage of specific 

features of the three approaches above. They usually determine the relationship 

between the CCF parametric estimation and correlation coefficient, so as to 

estimate CCF models (e.g., the β-factor). For example, the value of the β-factor 

can be set equal to the correlation of failure occurrences [111]. Pellissetti et al. 

[112] treated the seismic-induced dependencies by the integration of correlation 
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models developed in NUREG-1150 [108] into the fault tree based seismic PRA 

with β-factor model.   

 

However, several issues exist with these methods. First, the underlying features of the 

dependencies can be altered with different interpretations of seismic hazard, fragility 

development and reactor design research results. Hence, further work is needed to 

check the validity of the application of the SSMRP rules to the current nuclear power 

plants. Second, the above approaches inappropriately incorporate the effects of 

seismic dependencies, given the features of dependencies available. Zhou et al. [73]
 

have identified two main issues: (1) the equivalence hypothesis between the β-factor 

and correlation coefficient is inappropriate; and (2) the Reed-McCann method is 

limited in its ability to correctly characterize the contribution from dependencies. 

These open issues underline the need to develop an improved method for 

characterizing dependencies in the multi-unit structures, systems and components 

with shared features and their links in the MUPRAs.  

 

To address these issues, this paper proposes an improved hybrid approach to quantify 

unit-to-unit dependencies in the external event MUPRAs. In this approach, the 

seismic-induced dependencies among the correlated SSCs can be properly considered 

at the group level using the simulation-based scheme that integrates the copula notion 

[116], importance sampling [117] and parallel Monte Carlo simulation [118]. Further, 

the discretization-based scheme in the proposed approach allows for the use of 

standard PRA software tools to determine the site-level fragilities and allows transfer 
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of the results from level-1 PRA to level-2 PRA. As such, this approach enhances the 

treatment of dependent SSC reliability under common seismic loading for application 

to site-level MUPRA, and achieves a balance between risk estimation accuracy and 

computational simplicity in two steps. First, the estimation accuracy is assured based 

on the improved characterization of seismic-induced dependencies when compared to 

the Reed-McCann method, and based on a justified selection of the reference ground 

motion level in the discretization-based scheme. Second, the computational simplicity 

is accomplished by the hybrid scheme, where any changes made in the MUPRA 

model, only the affected correlated groups or individual SSCs need to be modified to 

reflect the resulting changes in the risk estimates. This is more practical and efficient 

when compared with the conventional simulation-based scheme in which the whole 

system must be reconfigured in accordance with the required changes. This approach 

also ensures scalability of the MUPRA model, especially when dealing with complex 

seismic MUPRA models.  

 

This paper is organized as follows. Section 5.3 discusses the common numerical 

schemes for seismic risk quantification and highlights the issues associated with the 

current use of the discretization-based scheme. Section 5.4 discusses the proposed 

framework to model the seismic-induced dependencies and quantify of the joint 

fragility. In Section 5.4.1, a method is presented to quantify the joint fragilities at the 

group level based on the copula notion and importance sampling. To derive the site-

level fragility, the proposed discretization-based scheme is discussed in Section 5.4.2, 

which as a matter of practicality makes use of standard PRA software tools such as 
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SAPHIRE [119]. Finally, a case study is developed in Section 5.5 for a seismic-

induced small LOCA for a hypothetical nuclear power site consisting of two identical 

advanced (GEN-III) reactor units. The risk metric for the MUPRA is defined in terms 

of the site CDF, and three types of multi-unit CDF metrics are discussed. Results 

obtained from these activities are discussed to set the basis for studies of the impacts 

of seismic-induced dependencies on multi-unit risk. Section 5.6 provides conclusions 

and recommendations. 

 

5.3. An Overview of Seismic Risk Quantification Methods 

This section discusses the common numerical schemes for performing seismic risk 

quantification. The objective is to estimate the CDF by integrating the results of the 

seismic hazard analysis, seismic fragility evaluation, and system models (i.e., seismic 

event trees or structure functions leading to core damage sequences). To make the 

discussion self-contained, we follow with a review of the seismic hazard analysis and 

seismic fragility evaluation. 

 

5.3.1. Seismic Hazard Analysis 

Probabilistic seismic hazard analysis (PSHA) is the standard approach for 

characterizing the seismic hazard at each nuclear power site. The results are usually 

expressed by the seismic hazard curves indicating the annual exceedance frequency in 

terms of a series of ground motion parameters such as the commonly used Peak 

Ground Acceleration (PGA). Figure 5-1 shows an example of typical seismic hazard 
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curves including the median, mean, 15% confidence, and 85% confidence curves. 

The uncertainty expressed in this exceedance frequency is attributed to both aleatory 

uncertainty and epistemic uncertainty. 

 

The seismic hazard curve can be used in two different ways through the risk 

quantification process. The simpler way is to approximate it by a finite number of 

discrete intervals. Such discretization simplifies the computation and allows the 

process follow the quantification procedure of the standard internal-event PRAs. The 

more complicated way is to use the power law relationship relating the annual 

exceedance frequency and the ground motion parameter as expressed by Equation 

(5-1). In this way, the seismic hazard curves that are typically close to log-linear can 

be properly represented [120-123]: 

 (  )     (  )   (5-1) 

where IM is the ground motion intensity in units of the gravitational acceleration, g, 

 (  ) is the annual exceedance frequency of a ground motion intensity IM, and 

  and k are empirical constants. 
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Figure 5-1: Example seismic hazard curves [105] 

 

5.3.2. Seismic Fragility Evaluation 

The seismic fragility is defined as the conditional failure probability given an 

earthquake. The state of each SSC is characterized by the binary outcome (i.e., fail or 

survive), depending on the global ground motion intensity (e.g., peak ground 

acceleration), the ground acceleration capacity and the associated uncertainties. The 

ground motion capacity of each SSC is denoted as follows: 

           (5-2) 

where A is the ground acceleration capacity,    is the median ground acceleration 

capacity, and    and    are random variables representing aleatory uncertainty and 

the epistemic uncertainty of the median estimates, respectively. Both    and    are 

usually assumed to be lognormally distributed in units of median and logarithmic 

standard deviations of    and   , respectively. 
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A failure is considered to occur if the ground motion intensity exceeds the associated 

ground acceleration capacity. The fragility function is typically characterized by the 

cumulative lognormal distribution of Equation (5-3): 

 (   )   [
  (

 
  

)       ( )

  
] (5-3) 

where   is the cumulative standard normal distribution,   is the ground motion 

intensity of the earthquake,    is the median ground acceleration capacity,     is the 

inverse cumulative standard normal distribution, and Q is the desired non-exceedance 

probability or confidence. 

 

Fragility curves are used to express the failure probability of the SSCs due to 

earthquakes as a function of ground motion intensity. An example of typical fragility 

curves is shown in Figure 5-2, including the median, 5% confidence, and 95% 

confidence curves. An alternative and commonly used form of the fragility function is 

expressed in terms of the total uncertainty,   , as shown in Equation (5-4), which 

generates the so-called composite curve displayed in Figure 5-2. This composite 

curve is often used as equivalent to the mean curve of the family of fragility curves. 
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Figure 5-2: Example fragility curves [114] 

 

5.3.3. Numerical Schemes 

Given the seismic hazard curve and seismic fragility curve, there are two common 

numerical schemes used to execute the risk estimation noted in Section 5.2. The first 

scheme is the discretization-based scheme, which follows the standard quantification 

process of the internal event PRA by approximating the seismic hazard curve with 

discrete sub-intervals. As such, the final seismic risk estimate would be denoted by a 

finite number of doublets in the form of: <ground motion intensity, CDF>. The 

computational effort could be considerably reduced with the aid of standard PRA 

software tools, while uncertainty analysis cannot be supported. The second scheme is 

the simulation-based scheme, which uses simulation techniques such as Monte Carlo 

simulation and Latin Hypercube Sampling to randomly sample from the continuous 

function of seismic hazard and then combine it with the fragility of individual SSCs.  

As such, the final seismic risk estimate would be determined by a large number of 

trials. The insights of uncertainties would be conveniently obtained, while specific 

software tools are required to implement such scheme.  
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The numerical scheme should be chosen carefully when dealing with seismic-induced 

dependencies. For instance, the system failure probability is approximated by the 

minimal cut-set method in the SSMRP. A Monte Carlo simulation based approach 

(called DQFM) was developed by Watanabe et al. [124] to directly quantify the fault 

trees, which also demonstrated that using the minimal cut-set method would 

overestimate the CDF. Monte Carlo simulation is a general method and can more 

appropriately consider the effects of dependencies. The effect and efficiency of the 

above methods for assessment of seismic-induced core damage were investigated by 

Uchiyama et al. [125-127] On the other hand, the analytical approach proposed in the 

Reed-McCann method is based on a Latin Hypercube Sampling (LHS) approach 

[110]. A comparison between the LHS approach and the traditional Monte Carlo 

simulation is presented by Ravindra et al. [128]. It should be noted that some 

simplifications are needed in the discretization-based scheme. For instance, the 

reference level of ground motion needs to be selected for each discrete sub-interval. 

Due to the importance of uncertainties from hazard and fragility analysis, the 

simplification should be carefully evaluated. However, there is no standard guideline 

for such discretization, and different practices have been suggested in the selection of 

reference ground motion level. For example, the IAEA recommends choosing the 

upper limit of the subintervals, which typically leads to conservative estimates, so as 

to be certain that no significant contributions to the assessed probability of core 

damage are omitted [129]. Other studies use the geometric mean of the two bin range 

limits for each subinterval [130, 131]. It remains unknown whether using the 
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geometric mean would lead to either non-conservative or conservative insights. 

However, it will be shown in Section 5.4.2 that the geometric mean of the two bin 

limits is particularly not a suitable choice. 

 

5.4. Proposed Hybrid Methodology with Demonstration 

This section discusses the proposed approach to quantify the site-level fragility; the 

approach integrates the mean seismic hazard curve with the mean fragility curve 

[120]. This hybrid scheme is used to take advantage of the simulation-based scheme 

to account for the dependencies at the group level as presented in Section 5.4.1, and 

then the discretization-based scheme is used to quantify the seismic risk at the site 

level as presented in Section 5.4.2. It is assumed that the generic fragilities are used 

and the correlation or dependent features would be provided by the seismic fragility 

analysts by separating the common sources of uncertainties among the interested 

SSCs. All the simulations are performed using the open-source language and 

computing environment R [113].  

 

5.4.1. Seismic Risk Quantification at the Group Level 

The proposed simulation-based scheme is shown by the flowchart in Figure 5-3. First, 

an importance sampling method is used to tackle the ground motion intervals as 

discussed in Section 5.4.1.1, which allows the propagation of uncertainty in the 

seismic hazard curve. Second, the copula notion is applied to construct the joint 

distribution of the ground acceleration capacity for the components with shared 
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features. The constructed joint distribution is then used to randomly simulate 

correlated ground acceleration capacity as discussed in Section 5.4.1.2. Then, the 

seismic risk at the group level is estimated as discussed in Section 5.4.1.3. All the 

random sample sets are used to estimate the seismic risk of single-component or a 

system consisting of multiple components, where the seismic risk is usually 

characterized by the failure frequency or the conditional failure probability, referred 

to as fragility, as noted in Section 5.3.2. A three-component example is demonstrated 

in Section 5.4.1.4 to derive the joint fragility of a correlated group.  

 

 

 
Figure 5-3: Flowchart of the simulation-based scheme at the group level 
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5.4.1.1. Seismic Hazard Sampling 

It is advantageous to exploit the power law relationship (i.e., seismic hazard function) 

as shown in Equation (5-1) when relating ground motion intensity to seismic ground 

acceleration capacity. This enables us to assess the risks with the propagation of 

uncertainty in the seismic hazard curve. The important aspect of these hazard curves 

is the exponent k as shown in Equation (5-1), which represents the steepness of the 

hazard curve. Kennedy [120] recommended that the values of k range from 1.66 to 

3.32 for eastern and central U.S. sites, and 2.84 to 4.11 for California sites. Baker 

[123] suggested that k=2 and k=3 represent typical shapes of the spectral acceleration 

hazard curves observed in seismically active parts of the U.S.  

 

It should also be noted that  (  ) is usually not normalized, and it is not 

straightforward to directly sample from  (  ). Even with the normalized version of 

 (  ), most samples would be simulated in the regions of small magnitude. 

However, seismic risk contributions from small-magnitude events are insignificant 

comparing to large-magnitude events. Accordingly, it would be preferred to simulate 

from an alternate distribution that allows a high probability of producing samples 

from the regions of large magnitude so as to improve the efficiency of considering 

important ground motion intervals and the resulting seismic risk estimates [132]. 

Therefore, it is proposed to apply the self-normalized importance sampling technique 

that simulates the samples from an alternate probability density function  (  ) 

called proposal distribution [117]. The truncated normal distribution is used as the 

proposal distribution within the interested ground motion interval in the current study. 
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The mean is set equal to the upper limit of the ground motion interval and the 

standard deviation is set equal to the range of the ground motion interval.  

 

5.4.1.2. Correlated Ground Acceleration Capacity Sampling 

The composite correlations are used to tackle the mutual dependencies among the 

ground acceleration capacities of SSCs. It would be initially desirable to follow the 

conventional fragility development to separate the uncertainties and then determine 

the common sources within epistemic and aleatory uncertainties. For example, the 

Reed-McCann method treats the correlation of epistemic uncertainty and correlation 

of aleatory uncertainty separately. However, it is usually difficult and even 

impractical to separately identify the common randomness and uncertainty. 

Furthermore, Kennedy [120] shows this separation is unnecessary since it increases 

the complexity and does not improve the accuracy in the estimate of seismic risk. The 

sensitivity study of Huang et al. [133, 134] also showed similar observations as 

Kennedy’s [120]. Therefore, treating the composite correlation should be a more 

practical and efficient approach that does not compromise accuracy. 

 

The copula notion is applied to quantify the dependencies among the ground 

acceleration capacities of SSCs. One of the main aims of this paper is to introduce the 

copula as a generic tool for dependency for both individual and combinations of 

external hazards. The copula is a powerful technique for modeling and simulating the 

features of large-scale joint distribution from separate marginal distributions. The 

essential idea of a copula is described in Sklar’s theorem, which states that any 
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multivariate distribution can be modeled using the arbitrarily univariate marginal 

distribution functions and a copula describing the linear or non-linear dependencies 

among the variables [116]. Applications of copulas include system health 

management such as system performance evaluation [135] and prognostics [136]; 

natural hazard risk modeling including seismic [137], flooding [138], and slope 

collapses [139]; decision-making support such as event trees analysis [140]; 

reliability-based design optimization [141]; the uses of expert judgments [142]; and 

model uncertainty assessment [143]. However, the use of copulas in the risk 

assessment of nuclear plants has been very limited. The earliest study dates to Yi et 

al. [144] in which a copula is applied to the precursor analysis in a nuclear power 

plant site. Another study is presented by Kelly [145], who uses a copula-based 

approach for CCF analysis. 

 

Suppose there is a correlated group of n components where the ground acceleration 

capacity of the     component is represented by the random variable    (       ). 

The marginal distribution of each capacity    is denoted by   (  )           (  

     ). By applying the probability integral transform element, one could generate a 

uniform random vector      (  ) (       ), where    is a uniform random 

variable over the unit interval [0, 1]. According to Sklar’s theorem, the joint 

distribution function  (            ) and the marginal distribution functions 

  ( ) (       ) can be connected using the copula  (            ) as shown 

in Equation (5-5): 
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 (            )    (  (  )     (  )     (  ))

  (            ) 

(5-5) 

 

With the constructed multivariate distribution, one can then generate pseudo-random 

samples from the copula distribution (            )    (            ). With 

realization from the joint distribution, the correlated samples can be obtained by 

applying the inverse transform method at each margin distribution      
  (  ). 

 

There are two common types of copulas [116]: elliptical copulas (e.g., Gaussian 

copulas) and Archimedean copulas (e.g., Frank, Clayton, and Gumbel copulas), due 

to their differences in dealing with tail dependency modeling. The elliptical copulas 

are restricted to symmetrical tail dependencies. Specifically, the elliptical copulas are 

the copulas of elliptical distributions [146] and provide useful examples of 

multivariate distributions because they share many of the tractable properties of the 

elliptical distributions. The Gaussian copula is the copula that underlies the 

multivariate normal distribution. It shares the same dependency structure with the 

multivariate normal distribution and uses pairwise Pearson correlation coefficient to 

measure dependency and allows arbitrary marginal distributions for the uncertainties. 

The t-copula [116] presents symmetric and positive upper and lower tail 

dependencies, which indicates a tendency for the t-copula to generate joint extreme 

events. When the number of degrees of freedom increases, the t-copula converges to 

the Gaussian copula [116]. For a limited number of degrees of freedom, however, the 

behaviors of the two copulas are quite different. Archimedean copulas model upper 
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tail dependency, lower tail dependency, or both, so that they provide additional 

flexibility to describe the behavior of tail dependency in realistic situations.  

 

The current state of practice of seismic PRA assumes lognormal distribution for the 

ground acceleration capacity. It is noticed that non-parametric approaches [147] were 

applied to establish fragility curves without any assumption and the results indicate 

the classical lognormal assumption is not appropriate. As a generic tool for 

dependency modeling, the copula notion would be promising to handle dependencies 

among non-normal random variables in future works. Consistent with the current 

state of practice, this research assumes linear Pearson correlations for modeling SSC 

dependencies. Hence, the Gaussian copula is adopted to construct the multivariate 

distribution of the correlated ground acceleration capacities. Consider the joint 

cumulative distribution function    of a multivariate normal distribution with 

correlation matrix  , where   is the cumulative distribution function of a standard 

normal variable. Note that the Gaussian copula is naturally parameterized in terms of 

the correlation matrix  . A Gaussian copula with correlation matrix   is defined in 

Equation (5-6): 

 (            )      
  (  )      (  )      (  )  (5-6) 

 

Given the constructed copula, one can then generate the sample sets of the correlated 

ground acceleration capacities. This is done using an existing copula package in R 

[148]. 
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5.4.1.3. Estimation of Seismic Risk at the Group Level 

All the sample sets of ground motion intensity and ground acceleration capacities are 

used to estimate the seismic risk by the fraction of sample sets in which ground 

acceleration capacities are less than or equal to the ground motion intensity. Suppose 

we are interested in the ground motion interval from      to     . In the    sample 

set, the state of the of the     component is represented by the state variable   
 , which 

is determined by the ground acceleration capacity      and ground motion intensity    

as shown in Equation (5-7): 

  
   (       ) (5-7) 

where  ( ) is the state indicator function, which equals 1 for component failure when 

     is less than   , and otherwise equals 0, indicating component survival (i.e., 

       ). Within the N sample sets, the fraction of times that   
    represents the 

seismic fragility of the     component. The fragility of the    component is denoted 

by Equation (5-8) based on the realizations of the ground motion and ground 

acceleration capacity: 

 

 (    )  
 

 
∑{  

  
 (  )
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}

 

   

 

∑ { (       )  
 (  )
 (  )

} 
   

∑ {
 (  )
 (  )

} 
   

 (5-8) 

where  (    ) is the conditional failure probability of the     component,  ( ) is 

the seismic hazard function in Equation (5-1)(5-1) that characterizes the interested 

ground motion intensity,  ( ) is the probability density function of the proposal 

distribution (i.e., truncated normal distribution) as discussed in Section 5.4.1.1 to 
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generate ground motion intensity, N is the size of sample sets,      is the     sample of 

the ground acceleration capacity of     SSC, and    is the     sample of the ground 

motion intensity. Note that the self-normalized importance sampling technique is 

applied given  ( ) is a non-normalized function. 

 

As for the system failures, the system state is usually configured in terms of the 

intersection and/or unions of the component states. Based on the PRA model logic, it 

is straightforward to derive the structure function    (             )          

      represents the system state in terms of the   components states. Hence the 

conditional system failure probability  (   ) is represented in Equation (5-9) 

based on the fraction of times that     within the N sample sets. 
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(5-9) 

 

If one is interested in the failure frequency regarding a single component or a system 

consisting of multiple components, the normalization constant C within the interested 

ground motion interval (         ) is needed, where   ∫  ( )
    

    
  . In doing 

so, the frequency of the     component failure  ( (    )   ) can be calculated from 

Equation (5-10) by normalizing Equation (5-8) with constant C. 
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The frequency of system failure can be obtained in Equation (5-11) by multiplying 

Equation (5-9) by the normalization constant C: 

 (   )     (   )
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(5-11) 

 

 

5.4.1.4. Example of Joint Fragility Assessment 

This section presents the application of the proposed approach to the three-component 

example in Reed et al. [110]. There are three safety-related components (i.e., A, B 

and C) located in two structures. Component A and B have response dependencies 

since both components are situated in the same building near each other. Components 

A and C have high capacity dependence since they are the same component made by 

the same manufacturer. Components B and C are independent since they are different 

components located in different buildings. Given the component properties and the 

common uncertainties found in Reed et al. [110], the composite correlation matrix 

between the components is derived as shown in Table 5-1. 
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Table 5-1: Composite correlation between the components 

  A B C 

A -- 0.42 0.53 

B 0.42 -- 0 

C 0.53 0 -- 

 

Suppose the marginal probability distribution of the ground acceleration capacity of 

the     component is denoted by   ( ) and the joint distribution of the components 

capacities is  (        ). Specifically, the marginal distribution for each component 

is lognormally distributed with the median values of      and logarithmic standard 

deviation             . According to Sklar’s theorem, the copula  (        ) 

could be constructed to describe the dependencies among  (        ) and      

     . The observed marginal distributions, the copula and the given ground motion 

intensity determine the joint fragility. 

 

Table 5-2: Four cases for examination purpose 

Case No. Dependency System Configuration (for Failure Logic) 

1 Dependent 

components 

Intersection of components (3/3) 

2 Union of components (1/3) 

3 Independent 

components 

Intersection of components (3/3) 

4 Union of components (1/3) 

 

 

Four cases are established depending on the system configuration with or without 

dependencies as displayed in Table 5-2. The joint fragility is then displayed in Figure 

5-4 and shows both the independent and dependent cases. The impact of correlations 

on the joint fragility varies significantly. In the low acceleration cases of less than 0.5 
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g, the influence of correlation on the intersection cases is quite small, which may 

indicate that the system could be treated as independent. In the high acceleration 

level, the dependent effects become significant in both the intersection and union 

cases. However, in the intersection case, treating the components as fully independent 

would significantly underestimate the seismic risks. The correlation for the union 

cases always leads to the reduction of the likelihood of joint failure, while the 

correlation for the intersection cases always increases the tendency of joint failure. 

These patterns are correct in accordance with the rules used in Zhou et al. [73] to 

justify the performance of the Reed-McCann method. 

 

 
Figure 5-4: Results for the dependent and independent cases in Table 5-2 using the 

simulation-based scheme displayed in Figure 5-3 
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5.4.2. Multi-Unit Site Seismic Risk Quantification 

This section discusses the development of the site-level fragility, in which the 

discretization-based scheme is formulated using the CCF modeling modules (e.g., β-

factor model) in standard PRA software tools like the SAPHIRE. Section 5.4.2.1 

discusses the selection of a reference level of ground motion in the discretization-

based scheme. A separate computational tool is developed using the R routing code to 

combine the simulation-based scheme with parallel Monte Carlo simulation [118] to 

perform the parametric estimation of each correlated group. The parametric 

estimation process is parallelized so as to allow parallel computing to decrease the 

computational burden. Specifically, one full Monte Carlo simulation is concurrently 

carried out for each discretized ground motion interval. These parametric estimations 

are then input to the PRA model coded in SAPHIRE. The discretization-based 

scheme is demonstrated using the correlated group consisting of three identical 

components discussed in Section 5.4.2.2. In Section 5.4.2.3, we present a comparison 

between the SAPHIRE results and the simulation results obtained by directly using 

the simulation-based scheme. 

 

5.4.2.1. Selection of the Reference Level of Ground Motion 

As discussed in Section 5.3.3, the validity of the selected reference ground motion 

level in the current practice of discretization-based scheme should be carefully 

evaluated. The simulation-based scheme proposed in Section 5.4.1 can be a practical 

tool to provide a baseline to check the performance of the discretization-based 
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scheme, since it can accommodate the uncertainties from the hazard into the fragility 

analysis. 

 

Suppose one is interested in the joint fragility of a three-component system, and all 

these components are identical and independent of each other. The component 

properties are:                        . The seismic hazard curve is shown 

in Figure 5-5 with the seismic hazard data fits into the power relationship:  ( )    

            with R
2
 = 0.9961. The first step is then to divide the magnitudes into an 

appropriate number of intervals, which is done as listed in Table 5-3. The frequency 

is calculated as the difference between the frequencies at the range limits of each 

interval.  

 

 

 
Figure 5-5: Example seismic hazard curve 
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Table 5-3: PGA intervals and frequency 

Index PGA Interval (g) PGA – Geometric Mean (g) Frequency 

1 0.05-0.25 0.11 1.80E-03 

2 0.25-0.40 0.32 5.11E-05 

3 0.40-0.50 0.45 1.21E-05 

4 0.50-0.60 0.55 6.71E-06 

5 0.60-0.70 0.65 4.10E-06 

6 0.70-0.80 0.75 2.69E-06 

7 0.80-0.90 0.85 1.86E-06 

8 0.90-1.00 0.95 1.35E-06 

9 1.00-1.05 1.02 5.37E-07 

10 1.05-1.10 1.07 4.67E-07 

11 1.10-1.15 1.12 4.09E-07 

12 1.15-1.20 1.17 3.60E-07 

 

 

Four cases are designed for our testing purpose, as shown in Table 5-4, depending on 

the system configuration and different choices of reference PGA level. The validity 

underlying the selection of the reference ground motion is examined by applying the 

importance sampling approach in Section 5.4.1.1 to account for the uncertainty within 

each PGA interval, the results from which are employed as the baseline. 

 

Table 5-4: Four cases to be analyzed for the selection of reference PGA level 

Case No. 
System Configuration (for Failure 

Logic) 
Reference PGA level 

1 2/3 Upper Limit 

2 3/3 Upper Limit 

3 2/3 Geometric Mean 

4 3/3 Geometric Mean 

 

 

 

 



 

 118 

 

Table 5-5: Results for the system of 2/3 failures  

Index 

PGA 

Interval 

(g) 

Simulated Cumulative 

Probability of Failure 

(CPF) 

CPF Assuming 

Geometric 

Mean 

CPF Assuming 

Upper Limit 

1 
0.05-

0.25 
0 0 0 

2 
0.25-

0.40 
1.61E-06 0 2.32E-05 

3 
0.40-

0.50 
5.85E-04 3.42E-04 2.71E-03 

4 
0.50-

0.60 
1.52E-02 1.34E-02 4.61E-02 

5 
0.60-

0.70 
1.10E-01 1.19E-01 2.41E-01 

6 
0.70-

0.80 
3.46E-01 4.04E-01 5.78E-01 

7 
0.80-

0.90 
6.34E-01 7.32E-01 8.46E-01 

8 
0.90-

1.00 
8.42E-01 9.20E-01 9.62E-01 

9 
1.00-

1.05 
9.30E-01 9.72E-01 9.83E-01 

10 
1.05-

1.10 
9.61E-01 9.90E-01 9.93E-01 

11 
1.10-

1.15 
9.79E-01 9.95E-01 9.97E-01 

12 
1.15-

1.20 
9.89E-01 9.98E-01 9.99E-01 

 

The simulation and SAPHIRE results for the two types of system configurations are 

summarized in Table 5-5 and Table 5-6, respectively. It is observed that when 

selecting the geometric mean as the reference PGA level, the SAPHIRE estimates 

would be non-conservative such as the results in bold, which means significant 

contributions to the assessed seismic risk might be omitted. On the other hand, 

selecting the upper limit as the reference PGA can assure all significant contributions 

are considered over the whole range of ground motions. This suggests that the upper 

limit of the two bin limits is an appropriate choice for the reference PGA level. This 
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observation supports the recommendations in the seismic PRA guidance of the IAEA 

[129].  

 

Table 5-6: Results for the system of 3/3 failure 

Index 

PGA 

Interval 

(g) 

Simulated Cumulative 

Probability of Failure 

(CPF) 

CPF Assuming 

Geometric 

Mean  

CPF 

Assuming 

Upper Limit  

1 
0.05-

0.25 
0 0 0 

2 
0.25-

0.40 
0 0 0 

3 
0.40-

0.50 
4.17E-06 1.22E-06 2.71E-05 

4 
0.50-

0.60 
4.78E-04 3.00E-04 1.95E-03 

5 
0.60-

0.70 
9.78E-03 8.38E-03 2.61E-02 

6 
0.70-

0.80 
6.55E-02 6.31E-02 1.25E-01 

7 
0.80-

0.90 
2.12E-01 2.12E-01 3.16E-01 

8 
0.90-

1.00 
4.25E-01 4.29E-01 5.39E-01 

9 
1.00-

1.05 
5.90E-01 5.81E-01 6.40E-01 

10 
1.05-

1.10 
6.84E-01 6.76E-01 7.26E-01 

11 
1.10-

1.15 
7.62E-01 7.56E-01 7.96E-01 

12 
1.15-

1.20 
8.24E-01 8.20E-01 8.51E-01 

 

 

5.4.2.2. Parametric Estimation 

For each correlated group, the parametric estimations can be derived by constructing 

a simulation scenario under the given failure criteria. In the current study, the β-factor 

model is employed where one β-factor should be estimated for each correlated group. 
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Unlike the internal CCF modeling, the values of β-factor vary depending on the 

ground motion intensity and the capacities. The strategy for numerically 

implementing the parametric estimation is a parallel Monte Carlo simulation, where 

one full Monte Carlo simulation is carried out for each discretized ground motion 

interval. The β-factor is then derived based on the results of the parallel Monte Carlo 

simulation as input to the CCF modeling approach. A flow chart of the proposed 

parametric estimation approach is displayed in Figure 5-6. 

 

 
Figure 5-6: Flowchart of the discretization-based scheme at the site level 

 

 

The parametric estimation is demonstrated by three correlated groups where one β-

factor is derived for each group. Suppose each group contains three nominally 
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identical SSCs. In this case, the general fragilities of each type of SSC are displayed 

in Table 5-7, representing the containment building, heat exchanger and manual 

valve.  

 

Table 5-7: SSCs properties [131] 

             

Containment 

Building 
1.10 0.46 0.30 0.35 

Heat Exchanger 1.90 0.46 0.30 0.35 

Manual Valve 3.80 0.61 0.35 0.50 

 

Within each correlated group, it is assumed that the correlation coefficient between 

each SSC is 0.8. Given the twelve PGA intervals in Table 5-3, we execute the 

simulation-based scheme in Figure 5-3, in which the β-factors are estimated as the 

fraction of dependent failures involving more than a single component as represented 

in Equation (5-12), where the denominator denotes the number of all failures and the 

numerator denotes the number of dependent failures. 
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Figure 5-7 displays the β-factor for the three correlated groups. In general, the β-

factor is strongly dependent on the acceleration. In the low acceleration range, the β-

factor is quite small and the SSCs in the system might be treated as independent. With 

increasing acceleration, the likelihood of concurrent failures increases rapidly. Given 

the same acceleration, for the SSCs with different fragilities, it is seen that the heat 
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exchanger group and manual valve group are rugged and the β-factor low, while for 

containment building the β-factor is high and approaches to unity in the high 

acceleration range. This demonstrates that increasing the capacities of the SSCs can 

significantly reduce the influence of seismic-induced dependencies. In summary, the 

perfect dependent assumption (i.e., setting β-factor to unity) would be a highly 

conservative approach. 

 

 
Figure 5-7: β-factor with equivalent correlation coefficient of 0.8 

 

 

5.4.2.3. Example of Parametric Estimation 

This section outlines a method to estimate the system fragility using the 

discretization-based scheme in Figure 5-6. The three-component system described in 

Section 5.4.2.1 is selected and all the components are assumed to be dependent with 
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the correlation coefficient assumed to be 0.8. The first step is to determine the β-

factor as discussed in Section 5.4.2.2. The simulated value of the β-factor is 

illustrated in Figure 5-8 and is then used as the input to the SAPHIRE model.  

 

 
Figure 5-8: β-factor for the three-component system 

 

 

The PRA model for both 2/3 and 3/3 systems are modeled in SAPHIRE, which are 

used to calculate the joint fragility. In addition, the proposed approach in Section 

5.4.1 is used to generate the baseline results of the same scenario. Table 5-8 

summarizes the SAPHIRE results and the simulation results, which are compared 

with each other. It is observed that the SAPHIRE results are more conservative than 

the simulation results. This is expected since the upper level of each discrete interval 

is selected as the reference acceleration. 
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Table 5-8: SAPHIRE results and simulation results 

Inde

x 

PGA 

Interva

l (g) 

Referenc

e PGA 

(g) 

Simulation CPF 

(2/3 System) 

SAPHIRE 

CPF (2/3 

System) 

Simulatio

n CPF 

(3/3 

System) 

SAPHIR

E CPF 

(3/3 

System) 

1 
0.05-

0.25 
0.25 0 0 0 0 

2 
0.25-

0.40 
0.40 2.14E-04 6.63E-04 5.44E-05 6.40E-04 

3 
0.40-

0.50 
0.50 8.42E-03 1.32E-02 2.93E-03 1.05E-02 

4 
0.50-

0.60 
0.60 5.76E-02 1.03E-01 2.57E-02 6.12E-02 

5 
0.60-

0.70 
0.70 1.89E-01 3.77E-01 1.03E-01 2.00E-01 

6 
0.70-

0.80 
0.80 3.89E-01 7.29E-01 2.51E-01 4.38E-01 

7 
0.80-

0.90 
0.90 5.96E-01 9.31E-01 4.41E-01 6.93E-01 

8 
0.90-

1.00 
1.00 7.63E-01 9.89E-01 6.23E-01 8.70E-01 

9 
1.00-

1.05 
1.05 8.53E-01 9.97E-01 7.39E-01 9.26E-01 

10 
1.05-

1.10 
1.10 8.94E-01 9.99E-01 7.99E-01 9.58E-01 

11 
1.10-

1.15 
1.15 9.25E-01 1.00 8.48E-01 9.77E-01 

12 
1.15-

1.20 
1.20 9.48E-01 1.00 8.87E-01 9.88E-01 

 

5.5. Example Application to the Seismic MUPRA 

This section illustrates an application of the proposed approach by constructing a 

seismic-induced accident scenario involving concurrent SLOCA at a generic site 

consisting of two advanced reactor units at power. The SLOCA event is chosen as the 

representative case due to many small pipes and tape lines [105, 149]. In this 

example, the SLOCA is assumed to be caused by a seismic-induced break outside of 
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the containment [150]. The objective herein is to demonstrate the process and 

understand the influence of seismic-induced multi-unit common cause failures 

between the SSCs across reactor units on the site risk. In the absence of information 

to support the correlation specifications, the equi-correlated model [151] is selected as 

a reasonable characterization model, which means that only one correlation 

coefficient needs to be specified between the similar or identical SSCs.
 

As a 

sensitivity study, varying degrees of correlation are considered across the reactor 

units to examine sensitivities to the assumptions regarding correlations of SSCs 

across reactor units. When considering the frequency of seismic-induced SLOCA, it 

is assumed that the seismic-induced SLOCA are fully correlated. In other words, the 

SLOCA are always assumed to occur concurrently in both reactor units. The multi-

unit risk is defined in terms of site core damage, and three types of multi-unit CDF 

metrics are discussed. The definition of each metric is summarized as follows. 

 Total Site CDF: defined as the frequency of one or more core damage events; for 

example, this definition corresponds to the union of the core damage events of 

Units 1 and Unit 2.  

 Concurrent CDF: defined as the frequency of multiple core damages events nearly 

simultaneously; for example, two core damage events in Unit 1 and Unit 2. 

 Marginal CDF: defined as the frequency of core damage events of one unit that 

includes consideration of all states of the other units affecting this unit; for 

example, the core damage events in Unit 1 including consideration of all states of 

Unit 2. 
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5.5.1. A Two Reactor Unit Site Seismic PRA 

The two reactor units are assumed to be identical and symmetrically constructed. A 

single-unit seismic PRA model is adopted [150], and the corresponding event tree 

results in thirteen core damage sequences. The multi-unit seismic PRA is established 

from the existing single-unit seismic PRA by superimposing the seismic-induced 

multi-unit CCF between the identical SSCs across reactor units through the Level 1 

fault trees according to the MUPRA methodology proposed by Modarres et al. [25]. 

The seismic hazard data [152, 153] developed for the eastern United States were used 

and divided into ten PGA intervals as shown in Table 5-9. The reference PGA is 

selected as the upper limit of each discrete interval, and the frequency is calculated as 

the difference between the frequencies at the range limits of each interval. The 

SLOCA initiating event frequency is estimated based on the generic conditional 

probability of occurrence of SLOCA developed from the piping calculations in the 

SSMRP [108]. The annual frequency of core damage for the seismically initiated 

events is then computed using the initiating event frequencies listed in Table 5-9. The 

SSCs’ fragility data are employed from the generic fragility database available from 

published articles and reports [105, 131, 154-156]. A sensitivity study is then 

performed to investigate the influence of the correlation coefficient on the multi-unit 

CDF. Five cases are constructed: independent (i.e., 0), partial (i.e., 0.3, 0.5 and 0.8) 

and full dependency (i.e., 1.0), respectively.  
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Table 5-9: PGA intervals and frequency 

Index 
PGA 

Interval (g) 

Reference 

PGA (g) 

Exceedance 

Frequency (1/yr.) 

Initiating Event SLOCA 

Frequency (1/yr.) 

1 0.05-0.25 0.25 1.15E-03 5.75E-05 

2 0.25-0.45 0.45 5.70E-05 3.42E-06 

3 0.45-0.65 0.65 1.62E-05 3.23E-06 

4 0.65-0.85 0.85 7.02E-06 2.81E-06 

5 0.85-1.00 1.00 2.99E-06 1.91E-06 

6 1.00-1.10 1.10 1.42E-06 1.08E-06 

7 1.10-1.20 1.20 1.12E-06 9.87E-07 

8 1.20-1.30 1.30 9.02E-07 8.20E-07 

9 1.30-1.40 1.40 7.37E-07 7.37E-07 

10 1.40-1.50 1.50 6.12E-07 6.12E-07 

 

5.5.2. The Two-Unit Site Seismic PRA Results 

The software SAPHIRE is used to calculate the conditional core damage probability 

(CCDP) in each PGA interval, and the corresponding CDF is calculated by 

multiplying CCDP with the initiating event frequency of that PGA interval. The final 

multi-unit CDF is then derived by summing the CDFs of all the PGA intervals. The 

results are summarized based on the three types of metrics in Figure 5-9, Figure 5-10 

and Figure 5-11, respectively. These figures summarize the mean CDF estimates in 

terms of the five correlation strengths and show the contribution of dependency in 

each PGA interval. The results are useful to examine the impact of the correlation 

assumptions and to identify the important risk contributors in different PGA levels as 

the correlation conditions vary. The important insights are summarized as follows: 

1. Compared to the conservative full correlation assumption, it is demonstrated in all 

three CDF metrics that there is a significant reduction of the multi-unit CDF even 

when using a small reduction of the complete dependent assumption (i.e., when 

the correlation is changed from 1.0 to 0.8). 
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2. At the higher correlations, the main sensitive region would be shifted to the lower 

end of the site fragility curve. The most important risk contributors would become 

the SSCs with lower fragilities and potentially higher correlations. Hence, 

reducing the degree of correlation for the relatively weak critical SSCs would help 

enhance the site safety. 

3. In the high PGA intervals, the concurrent CDF would approach the total site CDF. 

In other words, the CCDP is close to unity and both reactor units would fail 

together.  

4. The most sensitive region is the middle region of the site fragility curve with 

respect to the potential correlation assumption, while it is less sensitive to both the 

low-end and high-end of the site fragility curve. Specifically, the effect of the 

seismic capacity of the SSCs on site safety is remarkable in the middle PGA 

interval around 0.3g to 0.5g. Ruggedizing components in this interval would 

enhance the site safety. 

5. Comparing the three types of CDF metrics shows that the contribution of 

dependency is the most significant when applying the concurrent CDF metric. 

This means the concurrent CDF metric would be the most sensitive to the 

underlying assumption of correlation coefficient.  It could provide a less 

conservative estimate when choosing the multi-unit metrics as the total site CDF 

or marginal CDF. 
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Figure 5-9: Results for the total site CDF metric 

 

 

 
Figure 5-10: Results for the concurrent CDF metric 
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Figure 5-11: Results for the marginal CDF metric 

 

 
Figure 5-12: Contribution of concurrent CDF to total site CDF 

 

Figure 5-12 shows the contribution of concurrent CDF to the total site CDF. Given 

the PGA level under 0.4 g, the contribution from the concurrent CDF is relatively 

small, since the independent failures are dominant within the low PGA interval. As 

the PGA level increases, the likelihood of concurrent core damage increases rapidly, 
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as indicated by the abrupt slope starting at around 0.7 g. At this point, all the units 

become more likely to fail simultaneously. For high PGA levels of more than 1.0 g, 

the contribution of concurrent CDF approaches the 100% mark. The concurrent CDF 

approaches the total site CDF, and it is very likely that both reactor units on site 

would fail simultaneously. It is intuitive to understand that an extremely large ground 

motion would lead to concurrent core damage. The multi-unit CDF results shown in 

Table 5-10 summarize the corresponding CDFs in the ten PGA intervals. As 

confirmed earlier, a moderate relaxation of the complete dependency assumption 

could significantly reduce the multi-unit CDF. The perfect independent assumption 

would lead to 7.93%, 20.92% and 17.69% underestimation for the total site CDF, 

concurrent CDF, and marginal CDF metrics, respectively, with respect to a 

correlation coefficient of 1.0. Again, this confirms that the concurrent CDF metric is 

the most sensitive to the value of the correlation coefficient. The total site CDF metric 

is shown to be the least sensitive and, hence, should be used as a relative multi-unit 

CDF metric when no correlation data is available. 

 

Table 5-10: Multi-unit CDF results 

Correlation 

Coefficient 
Total Site CDF Concurrent CDF Marginal CDF 

0 8.83E-06 6.54E-06 7.26E-06 

0.30 9.00E-06 7.05E-06 7.79E-06 

0.50 9.07E-06 7.19E-06 7.92E-06 

0.80 9.22E-06 7.53E-06 8.19E-06 

1.00 9.59E-06 8.27E-06 8.82E-06 
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5.6. Conclusions and Recommendations 

This paper presented an improved hybrid approach to evaluate the seismic multi-unit 

risk, and a case study was developed for a seismic-induced SLOCA for a hypothetical 

two-unit nuclear power plant site. The improved approach to external MUPRA 

considers unit-to-unit dependencies based on a hybrid scheme that integrates the 

copula notion, importance sampling, parallel Monte Carlo simulation and use of the 

standard PRA model and software tools. In doing so, a balance between estimation 

accuracy and computational simplicity is achieved in the proposed approach. A 

review of the current practice of seismic risk assessment emphasized the 

shortcomings of the current practice of seismic-induced dependencies modeling. The 

proposed methodology was applied to a three-component example and demonstrated 

the issues related to the uses of the geometric mean as reference level of the ground 

motion. Three multi-unit CDF metrics were calculated for this case study. It has been 

concluded that given the correlations between the SSCs, the total site CDF metric 

would be the most appropriate multi-unit CDF metric rather than the concurrent CDF 

or marginal CDF metrics. It was also demonstrated that the effect of the seismic 

capacity of SSCs on site safety is more important in the midrange of PGAs.  
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Chapter 6:  A Common Cause Failure Model for Components 

under Age-Related Degradation
12

 

6.1. Abstract 

This paper reports on the effect of age-related degradation in hardware components 

on the likelihood of common cause failures (CCFs). It proposes a CCF model for 

components that undergo age-related degradation that superimposes the impacts of 

maintenance on the component degradation evolutions inferred from condition 

monitoring data. Major limitations of the state-of-the-art parametric CCF models are 

discussed, and recent enhancements including existing gaps are summarized. To 

bridge the gaps, a new approach is proposed to exploit recent advances in sensor-

based data analytic algorithms. The approach involves a state-space based 

degradation model that describes component degradation processes based on either a 

physics-based model or a data-driven model. The model uses a degradation index 

based on features of the sensor monitoring data. The CCF impacts are then 

characterized as a function of time based on the component degradation states. The 

proposed approach characterizes the CCF impacts based on the conventional 

parametric CCF model, but unlike the parametric CCF models, the parameters are 

derived from estimated degradation states and any renewal or component 

rejuvenation achieved through maintenance. As such, the proposed parametric CCF 

model is specific to the component being analyzed and is dynamic over lifetime 

service. The β-factor model is adopted without loss of generality, and two scenarios 

                                                 
12

 The full-text of this chapter forms a paper currently (i.e., April 2018) under review at the Journal of 

Reliability Engineering & System Safety. 
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are presented depending on the availability of sensor monitoring data. The first 

scenario is a sensor-driven scenario that estimates degradation state from the sensor 

monitoring data of components using a recursive Bayesian approach. The second 

scenario is simulation-based, whereby the component degradation evolution is 

simulated under an imperfect maintenance regime to estimate the CCF over the 

component’s lifetime. A laboratory-based degradation test of three identical 

centrifugal pumps generated several types of sensor monitoring data until failure. The 

results concluded that the component degradation and maintenance practices could 

significantly affect the CCF estimates and that treating CCF with the traditional 

generic CCF parameters would underestimate plant risks as components degrade. 

This study also introduces physical evidence to the CCF research for application in 

the multi-unit nuclear power plant Probabilistic Risk Assessment (PRA). 

 

6.2. Introduction 

The term common cause dependencies encompasses the possible mechanisms that 

directly compromise component performances and ultimately cause degradation or 

failure of multiple components, referred to as common cause failure (CCF) events [3]. 

CCF events are a major contributor to the risk imposed on most engineering systems 

and notably on nuclear power plants, where considerable research efforts have been 

devoted to modeling the impacts of CCF on plant risks. The relevant CCF models [2] 

may be grouped into two major categories: shock models (e.g., binomial failure rate 

model) and non-shock models. The non-shock models, including the β-factor model, 

the α-factor model and the multiple Greek letter model, have been widely adopted in 
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probabilistic risk assessment (PRA) practices [4]. In these models, the CCF events are 

characterized by some static CCF parameters that need to be quantified through 

statistical analysis based on historical observations and engineering judgment [5, 6]. 

However, these CCF models suffer from several major limitations summarized as 

follows: 

 The models are built mainly from generic operational experience and are usually 

not specific to the operating conditions of individual components. 

 The number of observed failure events, particularly in the nuclear power plants is 

very limited, especially for the events involving failures of more than one 

identical or similar component. 

 It is difficult to model asymmetrical components and to account for the 

dependencies among the components within multiple common cause component 

groups.  

 

To address these limitations, four main approaches in the present literature have been 

reported to enhance these CCF models: 

 Improve the quality and quantity of CCF database by compiling the CCF event 

data in a more consistent manner. For example, the International Common-Cause 

Failure Data Exchange (ICDE) Project [7] has been established to obtain both 

qualitative and quantitative insights of CCF by properly integrating many 

international experiences. 

 Formulate a causal CCF model to account for the relationship of specific root 

causes and coupling factors on the CCF events. A Bayesian network is usually 



 

 136 

 

adopted to establish the causal framework to probabilistically link all relevant 

sources. Examples include the unified partial method and its extension, referred to 

as the Zitrou’s model [8], the Kelly-CCF method [9], the alpha-decomposition 

method [10], and the general dependency model [11]. 

 Extend the scope of the current parametric CCF to include both the identical and 

diverse component groups: for example, from multiple nuclear reactor units on a 

common site. This includes the recent works of Fleming [31], Ebisawa et al. [72], 

and Modarres et al. [25, 35]. 

 Address other limitations of the current CCF models: for instance, by treating the 

dependencies among the components across multiple common cause component 

groups [12, 13], improving the uncertainty treatment [14, 15], and developing the 

extension of current CCF models [16, 17]. 

 

The implicit assumption of the present parametric CCF models is constant failure rate 

where the failures are treated as fully random and the effects of degradation are not 

considered. The validity of this implicit assumption is debatable, especially when 

components are subject to harsh environmental challenges (e.g., high temperatures, 

corrosive fluid). Indeed, the nuclear industry is faced with concerns due to plant aging 

and plant life extension where effects of CCF would be paramount.  Research efforts 

presented by US NRC [157], IAEA [158, 159] and CNSC [160] discuss these 

concerns. It is also evident from the nuclear industry’s operational experiences [161] 

that the aging impact of CCF on plant risks is important. However, how to properly 

consider the aging impact on the CCF modeling remains an open and challenging 

issue. The primary objective of this paper is to address this issue. 
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Figure 6-1: CCF for components under age-related degradation 

 

It is important to investigate the dynamic characteristics of CCF for components 

undergoing age-related degradation (e.g., wear, corrosion, fatigue, erosion). As 

displayed in Figure 6-1, CCF events are caused by age-related degradation processes 

[162] that result in cumulative degradation in multiple components, impairing their 

capacities to perform the design function. Typically, the common cause dependencies 

are characterized [2] by three related root causes—pre-operational, operational-

maintenance and operational-environment-related—and three coupling factors—

hardware-based, operation-based and environment-based. While the root causes of 

most CCF events are attributed to age-related degradation processes [162], other root 

causes involving extreme loads and shock impacts (e.g., under seismic, flood and fire 

conditions), and root-causes that leave multiple components in inoperable states (e.g., 

due to maintenance errors), are excluded in this model. Nevertheless, nearly all CCF 

coupling factors [161] are influenced by component aging. That is, CCF events from 

all the environment-based coupling factors, including same component location and 
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internal environment/working medium, some of the operation-based coupling factors, 

such as same operating procedure and same maintenance/test/calibration, and some of 

the hardware-based coupling factors, such as component configuration and the 

attributes of manufacturing, construction and installation, can be attributed to age-

related degradation. 

 

To bridge the existing gaps and assumptions described above, this paper proposes a 

novel approach to modeling degradation-related CCF events by integrating the 

maintenance impacts and the component degradation evolution that can be 

characterized through condition monitoring data. The proposed approach consists of 

two main parts and adopts the CCF β-factor model without loss of generality. The 

first part focuses on the component degradation assessment. Specifically, the 

degradation state of each component is characterized through a degradation index 

obtained by extracting features of data obtained from sensors that monitor evidence of 

degradation. Based on the proposed degradation index, a state-space based 

degradation model is built to describe the component degradation evolution; this 

model considers the variations both within and across involved components. In the 

second part, the time-dependency of CCF events is estimated based on the detected 

degradation evolution. At each time instant, the β-factor for CCF probability is 

estimated as the fraction of the degradation states of multiple components that 

simultaneously exceed each component’s endurance to degradation. The estimation of 

the β-factor for CCF probability, however, follows the conventional parametric CCF 

model. Accordingly, the scope of the parametric CCF model is dynamic over lifetime 
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service rather than static. The component degradation evolution under imperfect 

maintenance and renewal is also simulated to support the CCF estimation over the 

lifetime. The maintenance effect on CCF is also investigated through sensitivity 

studies. 

 

The primary focus of this research is to advance the state-of-the-art CCF analysis by 

exploiting the opportunities provided by recent advances in sensor-based techniques 

that facilitate understanding of the component degradation evolution [163, 164]. Note 

that the terms degradation state and degradation index are used interchangeably in 

this paper, since the component degradation state is characterized by the proposed 

degradation index. The key elements of the proposed approach are summarized as 

follows: 

 Integration of components’ degradation evolutions to model CCF. 

 Generalization of the common cause influences among similar or even slightly 

dissimilar components with shared features. 

 Introduction of a new way to quantify the CCF. 

 Infusion of physics-based information to the CCF. 

 Reliance on a large amount of sensor-based condition monitoring data, to 

complement the scarcity of failure data. 

 

The proposed approach is demonstrated below by a test rig generating diverse sensory 

data acquired from a special-purpose experiment involving a redundant pump system 

at the University of Maryland. Three centrifugal pumps were continuously tested, and 
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the common cause dependencies were monitored and established through application 

of shared environment, identical system design and proximity. The pump conditions 

were monitored using three types of techniques including process monitoring, 

vibration monitoring, and acoustic emission (AE) monitoring. Development of pump 

failure analysis, degradation assessment and condition-based maintenance policy will 

also be presented in detail. Simulation, as well as sensitivity analysis, is performed to 

evaluate the effects of maintenance on CCF over the lifetime of components. 

 

The remainder of this paper is organized as follows. Section 6.3 discusses the 

proposed approach to modeling CCF through integrating component degradation 

evolution. Section 6.4 presents the experimental design, instrumentation, pump 

failure analysis, degradation assessment, and CCF estimation results. Section 6.5 

presents the conclusions. 

 

6.3. Proposed Approach 

This section presents the proposed approach, which consists of two parts as illustrated 

by the flowchart in Figure 6-2. Section 6.3.1 presents the modeling scope and some 

key assumptions, followed by a description of Part 1, the overall degradation 

assessment to CCF modeling. Section 6.3.2 covers treatment of the condition 

monitoring data, definition of the degradation index and development of the 

degradation model. Section 6.3.3 discusses Part 2, estimation of the β-factor for CCF 

probability. 
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Figure 6-2: Flowchart of the proposed approach 

 

6.3.1. Modeling Scope and Assumption 

Before proceeding to the proposed approach, the modeling scope and some key 

assumption are summarized as follows: 

 This research advances CCF analysis with a focus on multiple identical or similar 

components undergoing age-related degradation. 

 Multiple components are operated under common conditions and environments. 

 Components are equipped with condition monitoring capabilities, where the 

sensory data can be directly or indirectly correlated to the severity of the 

underlying degradation process. 

 Effective degradation assessment methods are available to infer the degradation 

state for the components of interest.  
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 The component degradation evolution is modeled as a continuous process 

characterized by a physics-based model or a data-driven model. 

 No maintenance-based rejuvenation is assumed in the development of sensor-

driven scenario, which follows the state-of-the-art practice of degradation 

modeling. 

 Effect of imperfect maintenance on CCF is accounted for by superimposing the 

amount of renewal achieved onto the estimation of the β-factor for CCF 

probability through simulation-based scenarios. 

 

6.3.2. Degradation Assessment 

To accurately assess component degradation, three main steps must be taken: (1) 

determine the most useful condition monitoring techniques that would cost-

effectively track component degradation state; (2) obtain useful degradation 

information that fully characterizes the underlying physical transition of degrading 

components; (3) develop an appropriate estimation model for the β-factor for CCF 

probability. 

 

6.3.2.1. Condition Monitoring Techniques 

Condition monitoring techniques have been widely used to understand and track the 

component degradation [165]. A variety of techniques can be applied depending on 

the specific types of component and application of interest [166]. The sensor 

measurements collected using condition monitoring techniques are known as 
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condition monitoring data, which are analyzed, trended and used to obtain indications 

of component degradation state. Note that baseline data should be collected usually in 

the pre-service period; these data provide information on initial component condition 

and provide a basis for comparison with the data from subsequent examinations 

[167]. Three typical condition monitoring techniques involved in this study are as 

follows: 

 Process monitoring is a condition monitoring technique to detect problems by 

monitoring changes in any combination of the process variables such as pressure, 

temperature and power consumption. Monitoring the trend over a long period can 

typically provide indications of improper machine conditions.  

 Vibration monitoring is the most common non-destructive technique to measure 

the level of vibration as acceleration, velocity or displacement. The level of 

vibration can then be compared to historical baseline values to assess the 

component’s condition. 

 AE monitoring was originally developed for non-destructive testing of static 

structures and has recently received a lot of attention for the applications to 

machinery condition monitoring. It offers the advantage of early fault detection in 

comparison to vibration monitoring due to the increased sensitivity of AE [166]. 

 

6.3.2.2. Degradation Index Construction 

Degradation index construction is influenced by the nature of the data available. In 

general, the condition monitoring data [168] may be classified into two categories: a) 

direct condition monitoring data that can be directly related to the underlying physics-
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of-failure, such as crack size measurements or amount of wear or corroded materials 

in the oil; (b) indirect condition monitoring data from which the degradation state can 

only be indirectly inferred, such as vibration and oil analysis data. With the growing 

complexity of engineered components, it is difficult or even impossible to identify the 

physical signals that directly characterize the underlying degradation process [169]. 

Typically, the raw signals are transformed into more informative features, so as to 

enhance the data quality to better represent the current component condition. As such, 

indirect approaches are more practical. Numerous signal processing methods are 

available to extract these features, including time-domain analysis, frequency-domain 

analysis, and time-frequency-domain analysis [170]. Then the fault relevant features 

need to be identified, and an appropriate transformation process is used to construct 

the degradation index. This transformation process is typically achieved by the 

common algorithms within five categories [171]: classification-based, statistical-

hypothesis-testing-based, weighted-based, regression-based and distance-based 

methods. More recently, machine learning techniques have attracted attention, 

including application of deep learning to automatically identify data features for 

diagnostic and prognostic purposes [172]. 

 

In this paper, a distance-based degradation index is defined and used to characterize 

the degradation evolution observed during the experimental case study. Figure 6-3 

summarizes the basic steps necessary to assess the component degradation. The first 

step is to process the raw condition monitoring data to extract useful features that 

appropriately characterize the component condition. Then the anomaly is detected 
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based on the distance between the test data formed by the features describing the 

current component condition and the training data observed during the normal 

operation. Specifically, in this approach, the distance is computed using the 

Mahalanobis distance (MD) methodology [173-175], which is a process of 

distinguishing multivariable data groups using a univariate distance measure. The 

magnitude of the MD values signifies the number of abnormalities, which can then be 

used to construct the degradation index indicating the component degradation state as 

a function of time. 

 

 
Figure 6-3: Proposed degradation assessment method 

 

Suppose the component condition can be described by an  -dimensional feature 

vector extracted from the raw condition monitoring data at each time step. The feature 

vectors as the training data collected at the     time step during the normal operation 

are denoted as                     , where     is the     feature observed at the 

    time step, with           and          . Note that the     time step is the 
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time index for the training data collected from the normal operation period. These 

training data are used to describe the normal operation by calculating the 

corresponding mean   ̅ and standard deviation    of the     feature. Then normalize 

each feature of the training data as shown in Equation (6-1): 

 

   
  

      ̅ 

  
                      (6-1) 

where    
  is the normalized value of    ,   ̅  

 

 
∑    

 
    and    √∑ (      ̅̅ ̅)
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normalized feature vector is denoted by   
      

       
       

  . The     

covariance coefficient matrix, C, for the normalized vector   
  in Equation (6-2) 

would be: 

  
 

   
∑  

    

 

   

 (6-2) 

Consider the feature vectors as the test data collected during the abnormal operation, 

                    , where     is the     feature observed at the     time step, 

        , and          . Then obtain the normalized feature vectors   
  of test 

data at the     time step by subtracting the mean   ̅ and dividing by the standard 

deviation   . The MD value of the test data is calculated using the normalized vector 

  
  and the covariance coefficient matrix   from Equation (6-2): 

   
 

 
  

      
  

 (6-3) 
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where    is the MD value,   
  is the normalized feature vector of the test data   ,  

  
  

 is the transpose of the row vector   
 , and    is the inverse of the correlation 

matrix C,  

 

The MD values usually fluctuate since the degradation process is driven by multiple 

dependent competing failure mechanisms involving gradual degradation and random 

shocks. Post-processing (e.g., smoothing and filtering techniques) is usually required 

to obtain a smooth degradation index to track the component degradation. In this 

study, a distanced-based degradation index is proposed in Equation (6-4) to extract 

the central tendency of the degradation, where    is the degradation state at the time 

step k, and   is a tuning parameter to control the extent of smoothing. 

   
∑    (  )

 
 

   
 (6-4) 

 

6.3.2.3. State-Space Based Degradation Model 

The degradation evolution of the     component       
    

    
   is modeled as a 

continuous stochastic process, where   
  is the degradation state of the     component 

at the time step k. Note that this process can be built according to a physics-based 

degradation model or some functional form referred to as the empirical degradation 

model based on the degradation index developed in Section 6.3.2.2. In this study, the 

degradation process is modeled by one of the most common stochastic processes 

referred to as general path model [176]. The parametric function is assumed to be 

  
   (    

   ) , where   
  is a vector of model parameters that is usually treated as 
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a vector of random variables to account for unit-to-unit variability, and   is an 

independent and identically distributed (i.i.d.) random error term. Herein, we assume 

the initial degradation state is zero without loss of generality. Note that this functional 

form can be linear, polynomial or exponential, and depends on the specific 

application.  Furthermore, a state-space model is built to describe the dynamics of the 

degradation process, because of its ability to account for different sources of 

uncertainties [177-179]. The state-space model assumes that the degradation model 

parameters are unobserved states that evolve over time as a random walk process, so 

as to capture the variability across components. The variation within each component 

itself is reflected by the observation noise. The state-space model is applied to track 

the nonlinear degradation process of the     component in terms of the state function 

in Equation (6-5) and observation function in Equation (6-6).  

 

State function:   
      

      (  
      

 )  (6-5) 

 

Observation function:   
   (    

   )    (  
    

 ) (6-6) 

where  (    
   ) is the empirical degradation model,   

  is the state vector of the     

component that is assumed as the hidden Markov process;   
  is the observation (i.e., 

degradation index) of the     component that is conditionally independent given the 

hidden process;   is the i.i.d. process noise vector;   is the i.i.d. observation noise; k 

is the time step;  (  
      

 ) is the transition distribution; and  (  
    

 ) is the 

observation distribution.  
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6.3.3. Estimation of the β-Factor for CCF Probability 

In the context of degradation modeling, a component failure is usually defined as the 

point at which the degradation state exceeds a predetermined level of endurance to 

degradation. Given that the degradation state estimate is known at each time instant, 

the occurrence of CCF would be indicated by the concurrent exceedance of the 

endurance to degradation. Therefore, the CCF impacts would be characterized by the 

fraction of multiple exceedances of the endurance to degradation, which follows the 

conventional parametric CCF model. As such, the scope of the parametric CCF model 

would be extended to be dynamic over the service lifetime rather than being static. 

 

Without loss of generality, as illustrated in Figure 6-4, suppose the degradation state 

of component 1 is realized by the N samples     
(   )

denoted by circles and the 

degradation state of component 2 is realized by the N samples     
(   )

 denoted by 

triangles at the time step k. The endurance to degradation    is treated as the same for 

both components, as is the convention of CCF. Note that it is straightforward to 

generalize to different points of endurance to degradation regarding each component 

due to the different operational requirement. 
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Figure 6-4: Characterization of CCF with the components’ degradation states and 

endurance to degradation 
 

 

All the samples associated with each component at each time step would be gathered 

to describe the degradation state of the two-component system. In this study, the  -

factor model is adopted for demonstration. The  -factor at each time instant k is 

estimated as the fraction of dependent failures involving more than a single 

component as represented in Equation (6-7), where the denominator denotes the 

number of all failures and the numerator denotes the number of dependent failures: 
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(6-7) 

where    is the estimate of the degradation CCF  -factor parameter at the time step k, 

   denotes the endurance to degradation, N is the total number of samples,   
(     )

 is 
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the realization of the degradation state of component 1 at the time step k,   
(     )

 is 

the realization of the degradation state of component 2 at the time step k,  ( ) is the 

state indicator function, which equals 1 for component failure when   
(   )

 is greater 

than   , and otherwise equals 0, indicating component survival. 

 

6.3.3.1. Sensor-Driven Degradation Monitoring 

Sensor-driven monitoring enables the  -factor for CCF probability to be estimated by 

combining the general degradation property with the sensor monitoring data of plant-

specific components. To do this, we monitor individual components using real-time 

sensor monitoring data to update the component degradation states, and in turn, 

update the CCF estimation. Specifically, the state-space model in Section 6.3.2.3 is 

further utilized such that once the sensor monitoring data are collected from an 

operating component, the hidden states can be inferred to calibrate the estimate of 

CCF in real time. The recursive Bayesian updating method provides a rigorous and 

general way to estimate the posterior probability density function (pdf) of the 

degradation state of the     component  (  
      

 ) given the observations. Through 

recursive Bayesian filtering, prediction and update will be recursively implemented in 

two steps.  

 

(1) Prediction step: obtain the prior pdf  (  
        

 ), which means that the state   
  

is inferred from the observations       
 .  

 (  
        

 )  ∫ (  
      

 )  (    
        

 )     
  (6-8) 
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(2) Update step: obtain the posterior pdf  (  
      

 ) in terms of the current 

observation. 

 (  
      

 )  
 (  

        
 ) (  
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 |      
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∬ (  
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(6-9) 

 

It is usually difficult to obtain Equation (6-9) in a closed-form, so we must resort to 

Monte Carlo methods. In this study, the particle filtering approach is used to achieve 

such a recursive state estimate and update because of its capability of handling non-

linear and non-Gaussian systems. The key idea of particle filter [180] is to 

approximate the posterior pdf  (  
      

 ) at the     step by N random samples or 

particles {  
(   )

} with associated weights { (   )}        . Here N is the total 

number of particles: 

 (  
      

 )    ∑  
(   )

 (  
( )

   
(   )

)

 

   

 (6-10) 

where   is Dirac’s delta function and   
(   )

 is the weight of the     particle of the     

component at time k. 

 

The weights are normalized as ∑   
(   ) 

   , where   is the identity column vector. 

The sample   
(   )

 is drawn from importance density  (  
( )

|    
 ). Through recursive 

relation, the weights are updated as follows: 
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 (6-11) 

After multiple iterations, the variance of the weights increases such that only some 

particles have a significant weight, and all the other particles have negligible weights. 

This is known as the degeneracy problem, which is usually addressed by a resampling 

to eliminate particles that have small weights and concentrates on particles with large 

weights [181]. At each time step, the samples obtained from the resampling process 

could be viewed as the realizations of the degradation state for each component, and 

hence can be used to estimate CCF as shown in Equation (6-7). 

 

6.3.3.2. Consideration of Maintenance Impacts on Degradation-Based Common 

Cause Failure Probability 

This section aims to develop a simulation-based approach to superimpose the 

imperfect maintenance on the degradation process identified in Section 6.3.2. The 

component degradation history can then be simulated given the identified component 

degradation process and the specific maintenance policy. With a few iterations of 

simulations, one can generate samples of component degradation states at each time 

step which are ultimately used to estimate the  -factor as shown in Equation (6-7). 

This allows the effects of various maintenance policies on the CCF over the 

component lifetime to be evaluated. 

 

A generic condition-based maintenance policy is established for elucidating the 

approach. The maintenance policy is subject to the following assumptions (the 
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authors also recognize the possibility of optimizing the decision variable [182, 183], 

which is out of the scope of this paper): 

 The component is subject to periodic inspection and the component failure can 

only be detected at the time of inspection. 

 The inspection itself is perfect in that it reveals the true degradation state of the 

component and does not change the condition of the component. 

 Inspection and maintenance actions take negligible time compared to the expected 

lifetime of the maintained component. 

 Preventive and corrective replacement is perfect, while preventive maintenance 

(PM) could be imperfect.  

 Each component over lifetime service would randomly follow one of the various 

types of classical degradation processes or failure mechanisms according to the 

knowledge of component’s historical performance.  

 

Suppose the inter-inspection interval length is     so the degradation state of a 

component after its installation at time 0 will be inspected and measured at times 

{                 }. According to the degradation state    
 at the     inspection, 

one of the following maintenance actions would be needed, and the degradation state 

of the component after maintenance would be    

 : 

 If    
   , no maintenance action is performed, and    

     
, where    is the 

preventive repair threshold. 

 If       
   , an imperfect preventive maintenance of the component is 

immediately performed. The impact of imperfect maintenance is considered by 



 

 155 

 

adjusting the degradation state of a maintained component by a random amount to 

some level lower or equal to the preventive repair threshold   . As such,    

  

would be (   )    , where   is a rejuvenation factor defined within the interval 

[0, 1]. The θ indicates the degree of repair and follows the beta distribution 

parameterized by two positive shape parameters, denoted by α and γ. Note     

means a perfect repair and     means a minimal repair, and    is the preventive 

replacement threshold.  

 If       
   , preventively replace the system. In doing so, the component is 

considered as good as new, which means    

  is equal to zero, and     is the 

threshold (i.e., endurance to degradation) to trigger corrective replacement. 

 If    
   , the component fails and correctively replace the component. The 

component is considered as good as new, indicating    

  equals to zero. 

 

6.4. Experimental Study 

There are six steps involved in the experimental case study to demonstrate the 

proposed approach: 1) design a special-purpose experiment with advanced sensing 

capabilities for a redundant pump system; 2) conduct failure analysis to identify the 

failure mechanisms and root causes; 3) construct a degradation index using 

information from diverse sensor data; 4) develop a degradation model that 

quantitatively characterizes the degradation evolution; 5) estimate the β-factor for 

CCF probability using the observed sensor monitoring data; 6) estimate the β-factor 
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for CCF probability by simulating, superimposing and accounting for the inspection 

frequency and the rejuvenation effects of preventive maintenance. 

 

6.4.1. Experimental Design and Instrumentation 

As an active component susceptible to CCF [184], the centrifugal pump was chosen 

for this case study. The general-purpose horizontal centrifugal pump tested was a 

mechanically sealed pump driven by a 12-Vdc Totally Enclosed Fan-Cooled (TEFC) 

motor. The centrifugal pumps were tested from brand-new condition to full failure 

inside a temperature chamber, where pump degradation and failure were exposed to 

recirculated seawater at elevated temperature. The test rig, depicted in Figure 6-5, 

consisted of two testing loops: (1) a heating loop to heat the temperature of testing 

fluid, which contained a circulation pump, titanium inline immersion heater, and 

titanium shell and tube heat exchanger; and (2) a testing loop to expose the testing 

pump to the environmental stresses. The fluid temperature was maintained at around 

75°C, and the chamber temperature was kept at around 70°C. Thus, the pumps 

operated in a harsh condition that is close to the upper limit of the fluid temperature 

(i.e., 95°C).  Accordingly, the common-cause dependencies among the pumps were 

rooted in the same component configuration, the same operating practice, and 

common inter-environmental conditions (i.e., elevated temperature) and intra-

environmental conditions (i.e., elevated temperature and corrosive seawater). 

 

Unlike most current research based on the data acquired from artificially-seeded 

damage experiments, no artificial damage was seeded in this experimental setting, to 
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more closely represent the real field situation. Since the useful life of a centrifugal 

pump can range from several months to a few years, the experiment was planned to 

stop when the pump fully or partially ceased to perform. 

 

The operating conditions of the pumps tested were continually monitored by the 

sensing system, which comprises three types of condition monitoring techniques:  

1. Process monitoring was implemented through measurements of the pump’s 

differential pressure, flow rate, electric current and electric voltage. All the 

measurements were performed at the sampling rate of 0.5 Hz using a Keysight 

Technology 34972A LXI data acquisition and an in-house developed 

Labview-based tool. 

2. Vibration monitoring was implemented using three single-axis AC240 

accelerometers from Connection Technology Center (CTC) Inc., the National 

Instruments (NI)-9230 analog input module, NI-cDAQ-9174 CompactDAQ 

chassis, and an in-house developed Labview-based tool. To ensure accurate 

measurement, the sampling rate was set at 10240 Hz, which is approximately 

40 times the maximum vane passing frequency.  The recordings of every 60 

seconds of data were stored in a separate file.   

3. AE monitoring was implemented using three Micro30 miniature AE sensors 

manufactured by Physical Acoustics Corporation (PAC). The sensors were 

placed in three locations on the pump: suction, bearing, and motor. The 

sampling rate was set at 1 MHz. The output signal was pre-amplified at 40 dB 

and was collected by a commercial AE data acquisition System by PAC. The 
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AE signals from all three channels were recorded simultaneously by 

extracting selected features such as absolute energy, root mean square (RMS), 

and counts. 

 

 

 
Figure 6-5: Test rig and instrumentation 

 

6.4.2. Pump Failure Analysis 

The interactions between the surrounding environment and the operating pump could 

lead to degradation in form of changes in physical properties and dynamic behaviors 

including part damage and reduction of performance. Failure analysis was conducted 

after the experiment to identify the root causes and the actual failed parts of the 

pumps. Table 6-1 shows the experiment duration, failure mode and failure 

mechanism and root causes for each pump. 
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Table 6-1: Failure analysis for each of the three pumps 

Inde

x 
Failure Observation 

Durati

on 

Failure 

Mode 

Failure 

Mechani

sm 

Root Cause 

Pum

p 1 

 

1954 

hours 

Seal 

fracture 
Fatigue 

Excessive fluid 

pressure on seal 

caused seal 

fracture. The 

broken pieces 

then led to 

rubbing between 

pump’s housing 

and impeller, 

which caused the 

impeller to stick, 

and the pump 

functionally 

stopped. 

Pum

p 2 

 

5103 

hours 

Red-

brown 

corrosiv

e fluid 

Fretting 

corrosio

n 

Fretting corrosion 

occurred on the 

contact surface 

between the 

mechanical seal 

and the rotating 

shaft. This caused 

extensive 

corrosion 

indicated by the 

red-brown 

corrosive fluid. 

Pum

p 3 

 

4654 

hours 

Pump 

leaking 

Pitting 

corrosio

n 

Pitting corrosion 

occurred on the 

contact surface 

between the 

mechanical seal 

and the rotating 

shaft. This caused 

serious leakage 

located in the 

coupling section. 
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6.4.3. Pump Degradation Assessment 

This section describes the construction of the degradation index based on the three 

types of condition monitoring data. The main challenge was to extract useful 

information from raw sensor signals and to establish a feature vector representing the 

pump condition. The degradation assessment method proposed in Section 6.3.2.2 was 

used to construct a degradation index using the established feature vector with the 

tuning parameter γ=100. Data collected in the first ten days of the testing were used to 

establish the health baseline that characterizes the pump’s normal operation. 

 

6.4.3.1. Process Monitoring Data 

The pump degradation state was monitored by the rich information contained in the 

pump efficiency data derived from the four measured operational characteristics: 

electric current, electric voltage, differential pressure and flow rate. The objective was 

to track the statistical features extracted from the pump efficiency data that indicate 

the pump performance fluctuations as it degraded. As shown in Equation (6-12), the 

pump efficiency   is determined as the ratio of the hydraulic power    to the electric 

power    consumed by the pump [185]: 

  
  

  
 

       

   
 (6-12) 

where   is the electric voltage   is the electric current,   is the density of the pump 

liquid, g is the gravity constant,   is the measured flow rate, and H is the pump head 

converted from the measured differential pressure [185]. 
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The four sensor measurements were first smoothened with a moving average filter 

and then used to determine the pump efficiency according to Equation (6-12). The 

pump efficiency data were segmented every hour and various statistical features were 

extracted from each segment. Specifically, seven statistical features were extracted 

from the pump efficiency data including mean value, peak to peak value, root mean 

square, standard deviation, crest factor, shape factor and mean square frequency. 

These features constituted a seven-dimensional feature vector describing the pump 

operating condition. The resulting degradation index of the three pumps is illustrated 

in Figure 6-6, where the x-axis is the testing time of pumps and the y-axis is the 

degradation index. The same pattern in the degradation index was observed indicating 

similar degradation paths for all pumps.  

 

 
Figure 6-6: Degradation index constructed based on process monitoring data 

 

6.4.3.2. Vibration Monitoring Data 

The operating pumps produce vibration signals with distinctive characteristics 

recognized by specific vibration spectrum patterns [186]. By inspecting the frequency 

spectrum of the related vibration signals, one can identify the characteristic 

frequencies, tracking the changes that uniquely indicate pump degradation status.  
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In this study, the vibration signals were segmented every minute, and then each 

segment was transformed into a frequency spectrum using Fast Fourier transform 

(FFT). The first step was to identify the characteristic frequencies by searching for the 

frequencies with top one-hundred magnitudes in the frequency spectrum. The 

measurements collected from all three directions were analyzed to explore the 

allocation of energy within the frequency spectrums. The same pattern was 

discovered in each pump: most energy was distributed in the five principal frequency 

bands from 20 Hz to 300 Hz. Indeed, variations existed across different pumps 

because of the speed variations and the different failure mechanisms involved. The 

next step was to track the pump condition by measuring the energy of characteristic 

frequencies, which is expressed by the RMS of the spectrum magnitude in terms of 

the five principal frequency bands. Given one single-axis vibration signal at each time 

instant, the pump condition could be represented by a five-dimensional feature vector 

consisting of the RMS of each characteristic frequency. In this study, the vibration 

data from the three directions were used to establish a fifteen-dimensional feature 

vector to describe the pump condition at each time step. Figure 6-7 demonstrates the 

degradation index for the three pumps. It is important to note the similar pattern 

observed among the three pumps’ degradation paths. 
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Figure 6-7: Degradation index constructed based on vibration monitoring data 

 

6.4.3.3. AE Monitoring Data 

The sources of AE in rotating machinery include impacting, friction, turbulence, 

cavitation and leakage [187]. Depending on the underlying failure mechanism, the 

degradation of a rotating machine can be captured by the changes in the AE signal 

features (e.g., amplitude, counts, energy), among which the energy-related features 

are useful indicators of damage in rotating machinery [188]. The energy-related 

features include RMS, energy, absolute energy and average signal level.  

 

In this study, it was observed that all four types of energy-related features above were 

highly correlated, and hence only the RMS feature was selected for further analysis. 

The RMS features were utilized in terms of the AE signals collected in each of the 

three different locations. Thereafter, a three-dimensional feature vector was 

established to describe the pump condition at each time step. Figure 6-8 shows the 

degradation index of the three pumps, where the x-axis is the testing time of pumps 

(in hours), and the y-axis is the magnitude of degradation index. The results also 

show a similar pattern across different pumps.  
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Figure 6-8: Degradation index constructed based on AE monitoring data 

 

6.4.4. Pump Degradation Model Development 

Given the three types of degradation indices constructed in Section 6.4.3, this section 

first discusses the most appropriate degradation index that can be used to characterize 

the degradation behaviors of the three pumps, followed by a description of a state-

space based degradation model. 

 

6.4.4.1. Selection of Degradation Index  

The degradation profiles of the three pumps are summarized in Figure 6-9 for each 

type of condition monitoring technique used. For comparison purposes, a reference 

level is provided of the minimum value of the degradation index at the end of each 

experiment. It clearly shows that the degradation profiles of the pumps tend to be 

highly correlated in all three types of condition monitoring technique. On the other 

hand, regardless of the sensitivity or sampling frequency differences among the 

monitoring techniques, the same functional relationship could be applied to 

characterize the pump degradation behaviors associated with different failure 

mechanisms. Indeed, the ability to track the pump degradation behavior varied 
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depending on the sensitivity of condition monitoring technique to the underlying 

failure mechanism. Some insights are summarized as follows: 

 For all three monitoring techniques used in this study, the levels of degradation 

index tended to stabilize at the end of the test, which provides a reference level to 

properly define the endurance to degradation. Clearly, variations exist due to the 

stochastic nature of the degradation process. 

 Given the same failure mechanism, the sensitivity of the condition monitoring 

technique was different. Hence, the same family of monitoring technique should 

be used to monitor.  

 Different failure mechanisms may have distinct influences on the degradation 

evolution, which can be indicated by the differences between degradation rate 

and/or degradation state. For instance, the failure mechanism underlying Pump 3 

(pitting corrosion) results in a higher degradation state than those involved in 

Pump 1 (fatigue) and Pump 2 (fretting corrosion). 

 The developed degradation index is demonstrated to be applicable to a pump 

involved in any one of the three failure mechanisms. 

 

 
Figure 6-9: Degradation index regarding three types of condition monitoring data 
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With the three types of degradation index, the most appropriate degradation index 

was related to the process monitoring data. This choice was based on the following 

criteria [189, 190]: (a) the variance in the failure limit of the developed degradation 

index should be minimal; (b) the larger slope of the data provides a clearer trend; and 

(c) the range of information should be as large as possible. Indeed, the authors also 

recognize that a fusion approach has the potential to improve the characterization of 

the degradation evolution by making use of the information from different monitoring 

techniques, but this was considered out of the scope of this paper. Finally, the 

endurance to degradation should be selected as some value lower than the degradation 

state at the end of each test, where the pumps failed. Specifically, the endurance to 

degradation    was empirically selected as 6.0. 

 

6.4.4.2. Degradation Model Development 

Once the degradation index was developed, a mathematical degradation model was 

needed to describe the pump degradation evolution. Examination of the degradation 

index showed that the degradation path follows the power function in Equation 

(6-13):  

            (6-13) 

where a, b and c are the model parameters, k is the time step,    is the observation of 

the degradation index at time step k, and   is the additive Gaussian noise with zero 

means and different standard deviation  . To demonstrate the feasibility of Equation 

(6-13) for describing the degradation evolution, a nonlinear least squares regression is 

conducted for the selected degradation index. The goodness-of-fit statistics is 
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employed to measure the fitting performance of Equation (6-13). The R-squared 

values (  ), the adjusted   , the root mean squared error (RMSE) and model 

parameters are summarized in Table 6-2. Based on these results, one can conclude 

that Equation (6-13) represents a good fit for describing the degradation evolution. 

 

Table 6-2: Results for regression and goodness-of-fit statistics 

 Goodness-of-Fit Statistics Model Parameters 

Component    Adjusted    RMSE a b c 

Pump 1 0.9763 0.9762 0.2386 5.206 0.1367 -7.711 

Pump 2 0.9915 0.9915 0.1245 1.985 0.1908 -3.355 

Pump 3 0.9644 0.9643 0.3054 7.47 0.1063 -10.94 

 

The pump state-space model used in this paper is constructed as follows. The power 

function is used as the observation function, and the model parameters are 

incorporated as the elements of the state vector with        . 

 

State function: 

  
      

     (6-14) 

  
      

      (6-15) 

  
      

      (6-16) 

Observation function: 

  
    

     
 
   

     (6-17) 

where k is the time step,   
  is the observation of the degradation index of the     

pump at time step k,   
 ,   

  and   
  are the model parameters of the     pump at time 
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step k, and   ,   ,    and    are the additive Gaussian noises with zero means and 

different standard deviation   ,   ,    and   , respectively. 

 

6.4.5. Experimental Results for CCF Estimation 

6.4.5.1. Results for Sensor-Driven Scenario 

As shown in Figure 6-10, the entire testing profile is categorized into three phases 

(Phase 1, Phase 2 and Phase 3) based on the system configuration changes. Phase 1 

involved a three-pump redundant system from the beginning to 1714 hours of 

operation. When Pump 1 failed, the test proceeded to Phase 2 involving a two-pump 

redundant system until 4414 hours of operation. After Pump 3 failed, Phase 3 ran 

with only Pump 2 until 4863 hours of operation. Note that only Phase 1 and Phase 2 

are of interest for CCF events. 

 

 
Figure 6-10: Testing profile with three phases 

 

At a time instant of 1500 hours of operation, the degradation state of each pump is 

estimated and characterized by six thousand samples as illustrated by the histograms 
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in Figure 6-11 (a), which respectively indicates the number of occurrences for the 

possible degradation states associated with all three pumps. Then the CCF is 

estimated based on the fractions of concurrent exceedance of endurance to 

degradation as discussed in Section 6.3.3. Therefore, given newly arrived sensor 

monitoring data at each time instant, the degradation state of each pump is estimated 

and is then used to update the CCF estimation. Figure 6-11 (b) displays the estimate 

of CCF over the entire test, which shows the dynamic features of CCF assuming no 

maintenance-based rejuvenation. 

 

   
Figure 6-11: (a) Illustration of the degradation states of all three pumps at t= 1500 

hours; (b) estimate of β-factor over the entire test 

 

The CCF estimates for Phase 1 and Phase 2 are provided in Figure 6-12. The 

differences between Phase 1 and Phase 2 are attributed to the different failure 

mechanisms underlying each pump and system configuration changes. Some 

important observations are summarized as follows: 
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 Over the entire test, the β-factor starts from zero and approaches one at the end. It 

is intuitive that the redundant pump system would fail eventually without any 

maintenance actions. 

 In Phase 1, Pump 1 degrades much faster than the others, as is evident from its 

shortest experiment duration in Section 6.4.2. As such, Pump 1 is subject to more 

likely failure, while the other two pumps are not. It appears that independent 

failure is dominant in Phase 1, which results in low β-factor.  

 In Phase 2, the β-factor approaches one because of the pump degradation without 

mitigating actions. 

 From the perspective of the CCF control, knowing the pump degradation state 

allows one to determine the time required to implement mitigating actions based 

on some critical level of CCF [191]. Suppose the β-factor should be less than 

0.05, as such maintenance actions would be needed before 2870 hours of 

operation. 

 

 
Figure 6-12: Estimate of  -factor for Phase 1 and Phase 2 
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6.4.5.2. Results for Simulation-based Scenario 

With the knowledge of the degradation processes involved in the three testing pumps, 

a condition-based maintenance policy was selected as illustrated in Figure 6-13 (a). It 

is assumed that the preventive repair threshold is     , the preventive replacement 

threshold is     , and the endurance to degradation is     . During service, the 

pump is subject to any of the three failure mechanisms identified in Section 6.4.2. 

The degradation behavior would be random throughout the service based on the 

different parameters set regarding the three failure mechanisms as provided in Table 

2. The following results are generated based on the simulation of one year of pump 

service. 

 

 
Figure 6-13: (a) Condition-based maintenance policy; (b) imperfect maintenance 

characterized by the beta distribution with α=5 and γ=1.5 

 

As an illustrative example, suppose the inspection interval is         hours, and 

the rejuvenation or renewal factor follows the beta distribution with     and 

     , indicating good maintenance practices as displayed in Figure 6-13 (b). The 

hourly evolution of the  -factor is provided in Figure 6-14 (a) and the overall 
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variation of the  -factor is summarized by the distribution of the  -factor as shown in 

Figure 6-14 (b). The mean estimate of the  -factor is 0.025 and the component failure 

rate is          failures/hr. The 5% quantile, median and 95% quantile estimates of 

 -factor are 0, 0.008 and 0.084, respectively. Some important observations are 

discussed as follows: 

 The dynamic characteristics of CCF are captured by evolution of the β-factor, 

which shows a periodical increasing trend. This indicates that the β-factor would 

be underestimated as the components degrade and maintenance actions vary, 

which results in the underestimation of plant risks. 

 It is expected that most β-factors are close to zero, and the distribution of β-factor 

is positively skewed. The variation of β-factor is large and is attributed to the 

underlying component degradation and the relevant maintenance actions.  

 Examination of the quantile estimates indicates that simply treating the CCF 

impacts based on the mean estimate of β-factor is not sufficient and would lead to 

underestimation of the β-factor. 

 

 
Figure 6-14: (a) Hourly evolution of β-factor; (b) distribution of β-factor in relation to 

component degradation and maintenance actions. 
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Different maintenance policies lead to different patterns of  -factor through 

component service. Therefore, a sensitivity study was conducted to investigate the 

CCF changes under different maintenance effectiveness in terms of two decision 

parameters: the inspection interval    and the rejuvenation factor θ. There are 

twenty-seven maintenance interval and effectiveness characteristics defined by the 

combinations of (1) nine options for inspection interval    in units of hours: {240, 

360, 480, 600, 720, 840, 960, 1080, 1200}, and (2) three options for rejuvenation 

factor with the parameter sets (   ): {(5, 1.5), (5, 2.5), (5, 3.5)}, which respectively 

represents a decreased degree of repair as displayed in Figure 6-15 (a). 

 

 
Figure 6-15: (a) Three options for rejuvenation factor considered in sensitivity 

analysis; (b) mean β-factor changes according to twenty-seven imperfect maintenance 

policies 

 

The results of the sensitivity analysis are summarized in Figure 6-15 (b), which 

provides the mean estimates of the  -factor for each imperfect maintenance 

characteristic. The results are used to examine the overall impact of maintenance 
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policy on the CCF through service and to identify the appropriate maintenance policy 

from the perspective of CCF control. It shows that the component degradation and 

maintenance practices could significantly affect the  -factor for CCF probability. The 

insights are discussed as follows: 

 Examination of the nine options for the inspection interval shows that, as 

expected, with longer inspection intervals, the β-factor monotonically increases. 

Assuming the same degree of effectiveness, it is straightforward to see that 

performing inspections more frequently is more likely to prevent potential failure 

and thus less concurrent failure, leading to smaller β-factor.  

 Poor maintenance is associated with low rejuvenation and higher β-factor for CCF 

probability. 

 It is demonstrated that there would be a significant increase in the β-factor with a 

decrease in the degree of repair quality (i.e., lower rejuvenation). This means that 

the β-factor would be significantly underestimated when assuming the 

maintenance practices are perfect, when in practice there is a degree of 

effectiveness. 

 Overall, it is intuitive that frequent high quality maintenance reduces pump 

degradation, leading to smaller β-factor.  

 

Although perfect maintenance would considerably reduce pump degradation and lead 

to a small  -factor, the patterns of the  -factor would vary depending on the 

effectiveness of the maintenance repair. Another sensitivity study was conducted to 

investigate the effects on  -factor assuming perfect maintenance, but for different 
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inspection intervals,   , in units of hours: {720, 1080, 1440, 1800, 2160, 2520, 2880, 

3240, 3600}. The results are summarized in Figure 6-16, which shows that mean 

estimates of the β-factor incresaes as the inspection intervals become longer. A 

comparison of the inspection intervals 720 and 1080 hours for perfect and imperfect 

maintenace regimes from Figure 6-16 and Figure 6-15 (b), respectively, further 

demonstrates that perfect maintenance would significantly reduce the  -factor. On the 

other hand, this confirms that the  -factor would be significantly underestimated 

under the assumption of perfect maintenance, when in practice there is always a 

degree of maintenance effectiveness. As the  -factor monotonically increases with 

longer inspection intervals, it is possible to underestimate the  -factor as components 

degrade even under perfect maintenance practices. 

 

  
Figure 6-16: Mean β-factor changes according to nine perfect maintenance policies 
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6.4.5.3. Application to Estimate the  -Factor for CCF Probability of Specific 

Components  

The results of this research are envisioned to have applicability to estimate the  -

factor for CCF probability of degrading components during their useful life. 

Specifically, one needs to develop a CCF adjustment curve that characterizes the 

relationship between component failure rate and the   -factor estimates from the 

experimental observations of the component. Next, adjustment in the level of 

component failure rate would be needed to accommodate the differences between the 

experimental results and the field performance of components. Finally, the  -factor 

estimate would be determined in the CCF adjustment curve based on the adjusted 

failure rate.  

 

Suppose the differences between field performance and experimental study could be 

adjusted based on a composite multiplication factor    and the base failure rate    as 

determined from operational experience, for which historical failure rate data from 

IAEA and NRC are available [192, 193].    need to be determined based on 

engineering judgment, design standards, regulatory requirements and operational 

practices [194, 195]. Note that    could be further decomposed to address the 

differences associated with specific sources, depending on the level of information 

available. For instance,    could be further decomposed into three multiplying factors 

that consider the differences in terms of the three types of coupling factors discussed 

in Section 6.2. In doing so, the adjusted failure rate    would be derived from the 

base failure rate    as shown in Equation (6-18). 
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                     (6-18) 

where     is the adjusted failure rate in units of failures per hour,    is the base failure 

rate in units of failures per hour,    is the composite multiplying factor which 

considers the overall difference between field performance and experimental study, 

   is the multiplying factor which considers the differences in terms of hardware-

based coupling factors,    is the multiplying factor which considers the differences in 

terms of operation-based coupling factors,    is the multiplying factor which 

considers the differences in terms of environment-based coupling factors. 

 

For illustration purpose, a conceptual example is demonstrated to infer the CCF 

probability of the service water pump in the nuclear power plant. It is also discussed 

the relationship between the inferred  -factor and the generic  -factor estimated from 

the operational experience of the nuclear industry. The generic  -factor used for 

service water pump is 0.03 and its failure rate    is         failures/hr [191]. 

 

In this example, a CCF adjustment curve is developed based on the results of 

sensitivity analysis involved twenty-seven maintenance policies in Section 6.4.5.2. 

The results are denoted by a number of doublets in the form of <the mean estimate of 

component failure rate, the mean estimate of  -factor>, which are summarized in 

terms of the three options for the maintenance renewal or rejuvenation factors 

described by the circle symbol, the diamond symbol and the triangle symbol, 

respectively, as shown in Figure 6-17.  Examination of these results shows that this 
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adjustment curve follows a power function  (  ) in Equation (6-19) with     

       . As such, this parametric function would be used to estimate the  -factor 

given an adjusted failure rate available. 

 

 (  )          
    

 (6-19) 

 

 
Figure 6-17: CCF adjustment curve according to twenty-seven maintenance policies 

 

The composite multiplying factor is adopted to account for the differences between 

the testing pump and the service water pump. In particular, a lower bound of the 

composite multiplying factor is estimated based on the knowledge from the three 

sources as follows: 

 General regulation of nuclear facility pump unit: as claimed in [196], the nuclear 

facility pump unit must have a design basis operating lifetime of at least three 
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years of uninterrupted operation. This indicates the requirement of minimum 

25920 hours of uninterrupted operation. 

 Design specification of testing pump: the technical manual from the manufacturer 

[197] indicates that the motor lifetime of the testing pump is 3500 hours and 

motor brushes need to be replaced. 

 Experimental observation of testing pump: the operating lifetime of uninterrupted 

operation could be estimated as 3903 hours, which is the average of the duration 

of all three testing pumps as provided in Table 6-1. 

 

The lower bound of the composite multiplying factor is then estimated as        , 

which is the ratio of 25920 to 3903. With Equation (6-18), the adjusted failure rate is 

then determined as            /hr. Finally, one could obtain the estimate of  -

factor using the power function in Equation (6-19). The lower bound of the  -factor 

estimate is      , which is close to the generic  -factor 0.03.  

 

Note that       is a lower bound of the  -factor estimate. The differences between 

the estimate of such lower bound and the generic  -factor could be explained from 

two aspects. (1) If one considers most of service water pumps are designed beyond 

the minimum requirement of three years of uninterrupted operation, the actual 

composite multiplying factor should be larger and hence results in a larger adjusted 

failure rate. Then the actual  -factor estimate should be some value greater than 

0.023; (2) As discussed in Section 6.2, the CCF sources with only instantaneous or 

short-term effect are excluded in the proposed approach. If one aggregates the 
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contribution of such sources, the actual  -factor estimate should also be some value 

greater than 0.023. Therefore, the estimate of  -factor based on the experiment 

examinations is consistent with the generic  -factor used for service water pumps in 

the nuclear power plant. 

 

6.5. Conclusions  

This paper presented a novel approach to advance the state-of-the-art CCF research 

by taking advantage of the recent advances in sensor-based techniques and 

computation capabilities. The proposed approach models the CCF for components 

under age-related degradation by superimposing the maintenance impacts on the 

component degradation evolutions that can be characterized through condition 

monitoring data. An experimental case study involving three redundant centrifugal 

pump systems was presented to demonstrate the approach. The pump degradation 

assessment and condition-based maintenance policy were presented. The significance 

of CCF events using a component-specific study was discussed, along with the 

dynamic characteristics of CCF by a sensor-driven scenario and a simulation-based 

scenario. Sensitivity studies were provided to evaluate the maintenance effects on 

CCF over lifetime services. The results concluded that the parametric estimates of 

CCF failure probability may be limited to ideal conditions of perfect maintenance, 

and age-related degradation could significantly affect the β-factor for CCF 

probability, leading to underestimation of risks as components degrade. This study 

also showed the important role of recent advances in sensing techniques and data 
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analytic algorithms in enhancing the current PRA research via online monitoring with 

reduced uncertainty. 
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Chapter 7:  Conclusions, Contributions and Recommendations 

7.1. Conclusions 

This dissertation developed three approaches to address the important issues 

regarding both external event and interval event in the MUPRA. The research results 

mainly concluded that: 

1) Multi-unit accidents are important contributors to multi-unit site risks. 

2) The dynamic MUPRA model that relies on certain dynamic simulator offers 

limited practicality, and the parametric MUPRA model is recommended in the 

development of MUPRA methodology. 

3) It is a useful and practical approach to develop parametric MUPRA model that 

relies on expanding the existing SUPRA model and uses traditional CCF 

parametric method to treat multi-unit dependencies. 

4) It is possible to provide a defensible technical basis to characterize the impact of 

multi-unit dependencies based on the LERs reported to the U.S. NRC. 

5) Seismic-induced CCFs between the SSCs across reactor units are significant 

contributors to the multi-unit site risks. 

6) Assumption of perfect dependency among SSCs is highly conservative, and 

partial dependency values should be considered for applications to MUPRAs with 

reduced conservatisms. 

7) The geometric mean of the two bin limits is not an appropriate choice for the 

reference PGA level when implementing the discretization-based scheme for 

seismic risk quantification. The upper limit of the two bin limits should be used. 
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8) The CCF for specific common cause component group could vary significantly 

due to the variations of component failure behaviors, operational requirement and 

maintenance practice. 

9) The generally estimated CCF parameters used in the current practice might not 

properly reflect the actual effects of common cause dependencies. Therefore, the 

estimate of component-specific CCF would be more appropriate.  

10) Age-related degradation significantly affects CCF probabilities and estimates of 

plant and site risks.  

11) The recent advances in the sensing techniques and data analytic algorithms could 

play an important role in enhancing the current PRA research via online 

monitoring with reduced uncertainty. 

 

7.2. Contributions 

Major contributions of this dissertation are summarized in three categories as follows: 

 

1) Extend the state-of-the-art seismic PRA. 

 Develop a seismic dependency modeling technique for seismic MUPRA. 

 Identify and demonstrate the existing issues. 

 The incorrect equivalence hypothesis between the β-factor and correlation 

coefficient.  

 The weaknesses of the Reed-McCann method that is recently recognized 

as a suitable approach and recommended to use in modeling dependencies 

in seismic PRA.  
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 The issues related to the inappropriate uses of the geometric mean as the 

reference level for the ground motion in the discretization-based scheme 

of seismic risk quantification. 

 

2) Extend parametric-based approach to CCF modeling for MUPRA. 

 Develop a general MUPRA framework for applications to multi-unit nuclear 

power plant site that considers unit to unit dependencies. 

 Develop an improved approach to external event PRA for multi-unit site that 

considers the seismic-induced dependencies across units. 

 Propose a more appropriate seismic dependency approach and demonstrate it 

in a case study for the seismic-induced Small Loss of Coolant Accident 

(SLOCA) at a hypothetical nuclear plant site consisting of two identical 

advanced (GEN-III) reactor units. 

 Conduct a feasibility analysis of three different multi-unit risk metrics in the 

MUPRA. 

 

3) Develop a novel approach to CCF modeling for internal events of the MUPRA. 

 Propose a novel CCF model for components under age-related degradation by 

exploiting the recent advancement in the sensing techniques and data analytic 

algorithms. 

 Introduce a new way to model CCF by integrating components’ 

degradation evolutions inferred from condition monitoring data.  
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 Extend the scope of conventional parametric CCF model to be component 

specific and dynamic over lifetime.  

 Develop a sensor-driven scenario to achieve specific CCF evaluation by 

combining the general degradation property and the sensor monitoring 

data of plant-specific components in a recursive Bayesian approach.  

 Develop a simulation-based scenario to assess the effects of imperfect 

maintenance and renewal on the CCF over lifetime. 

 Demonstrate the proposed approach using the diverse condition monitoring 

data acquired from a special-purpose experiment. 

 Design and set up a special-purpose test rig involving redundant 

centrifugal pump systems with the heating function and advanced 

condition monitoring capability. 

 Develop a degradation database, including diverse sensor measurements: 

temperature, electric current, electric voltage, flow rate, differential 

pressure, vibration and acoustic emission. 

 Develop pump failure analysis, degradation assessment and condition-

based maintenance policy for testing pump.  

 Conduct simulation as well as sensitivity studies to investigate the 

maintenance impacts on the CCF over lifetime.  

 Demonstrate the applicability of the proposed approach to estimate the β-

factor for CCF probability of specific components. 
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7.3. Recommendations for Future Research 

 Conduct multi-hazards risk aggregation and importance analysis to better 

characterize the critical contributors to multi-unit risks. 

 Consider the ground motion dependencies across nuclear reactor units, rather 

than using the same seismic hazard curve for all nuclear reactor units on the 

same site. 

 Improve the computational efficiency for the simulation of seismic risk, for 

instance, use stratified sampling for seismic hazard simulation; use Latin 

Hyper Cube Sampling with Copula for the simulation of correlated ground 

acceleration capacity; optimize the importance sampling with the applications 

of the cross-entropy method. 

 Enhance the capability of degradation modeling from different aspects: 

consider other options of stochastic process modeling (e.g., Wiener process, 

Gamma process and inverse Gaussian process); develop a fusion approach to 

make use of all the information from the different condition monitoring 

techniques. 

 Improve the modeling for sensor-driven scenario as matter of practicality to 

address the uncertainties of environmental evolutions and imperfect 

maintenance effects. For instance, apply variations of particle filtering 

algorithm (e.g., auxiliary particle filtering, regularized particle filtering); 

implement model noise adaptive strategies (e.g., expectation maximization 

algorithm); consider estimation of maintenance effects for the online filtering 

algorithm. 
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 Application of simulation-based approach to assess the influences of various 

operational requirements, maintenance practices and repair quality on the CCF 

evolution during service. Furthermore, the integration of organizational and 

human effects might generate a more realistic insight of the dynamic 

properties of CCF. 
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