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The recent advent of experimental techniques that study biological systems

on the level of a single molecule have lead to a number of exciting new results.

These experiments have a variety of applications in understanding both the kinetics

and equilibrium properties of biomolecules. By applying the concepts of polymer

physics to these single molecule experiments, we are able to more fully understand

the physical picture underlying a number of experimental observations. In this

thesis, we use a variety of polymer models to develop a better understanding of

many single molecule experiments. We show that the kinetics of loop formation in

biopolymers can be generally understood as a combination of an equilibrium and

dynamic part for a number of different polymer models. We study the extension of

a homopolymer as a function of applied tension, and develop a simple theoretical

framework for determining the effect of interactions on the stretching of the chain.

We show that the measured hopping rates in a laser optical tweezer experiment are

necessarily altered by the experimental setup, and suggest a method to accurately

infer the correct hopping rates using accurately measured free energy profiles. We



show that the effect of the experimental setup can be understood using a novel

polymer model. Finally, we propose a Hamiltonian-based method to study the

properties of spherically confined wormlike chains, which accurately determines the

equilibrium properties of the system for strongly confined chains. In these studies,

we are able to better understand the behavior of many disparate systems using

relatively simple arguments from polymer theory.
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Chapter 1

Introduction

1.1 Single Molecule Experiments in Biophysics

The field of biophysics is broad, encompassing a number of biologically relevant

studies, from protein sequence analysis to cellular motility to protein folding and

beyond. Recent advances in single molecule experiments have allowed experimen-

talists to directly study the behavior of important biomolecules under a number of

different conditions [1, 2]. With these new experimental techniques, many properties

of biologically relevant systems can be probed in new ways, providing new informa-

tion about the structural [3] and kinetic [4] properties of biomolecules. These new

experimental advances require a similar increase in our theoretical understanding

of single molecule systems, in order to correctly interpret the experimental results,

and suggest further experiments to be attempted. Many single molecule studies can

be approached theoretically within the framework of polymer physics, providing

powerful physical insights into the complex world of biology.

The question of loop closure in biomolecules is of great interest, both experi-

mentally [5, 6, 7, 8, 9] and theoretically [10, 11, 12, 13]. The loop closure problem is

relevant to determining the kinetics of RNA or protein folding, and can be used to

determine the intrinsic stiffness of DNA. Loop closure times can be experimentally

determined on the single molecule level using the Förster Resonance Energy Trans-
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fer (FRET) experimental technique [2, 14, 15]. In a FRET experiment, donor and

acceptor dyes are attached to the ends of a biomolecule, and light of a particular

wavelength is shone on the system to excite the donor dye. If the donor and acceptor

are sufficiently close together, the excited energy of the donor can be transferred to

the acceptor via a dipole-dipole interaction. The efficiency of this energy transfer

(i.e. the probability that the donor’s energy is transferred to the acceptor) is given

by E = [1 + (RDA/R0)6]−1, with RDA the distance between the donor and acceptor,

and R0 a constant, depending on the details of the dyes. By monitoring the emis-

sions of photons from the donor and acceptors, the time-dependent distance between

the dyes can be monitored, allowing a direct experimental measurement of endpoint

fluctuations in the biomolecule. As the timescales of loop closure are experimentally

accessible, it is of importance to theoretically understand this process [10, 11]. In

particular, can we predict the timescales of loop closure using simple polymer the-

ory? How does the loop closure process depend on the particular polymer model?

And finally, can we determine any general principles for understanding the process

of loop closure? These questions will be addressed in chapter 2, where we show that

the process of loop formation can be simply understood in terms of an equilibrium

and dynamic contribution for multiple polymer models.

With the advent of single molecule pulling experiments, it is possible to directly

measure the effect of an external tension on a biopolymer [16, 17, 18]. This allows a

direct measurement of the folding landscapes of RNA [19, 20] and proteins [21, 22],

and can estimate the bending rigidity of stiff chains. One technique for applying an

external tension to a biomolecule is a Laser Optical Tweezer (LOT) experiment [23]
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Polystyrene Beads

Handle Molecules

Molecule of

   Interest

Figure 1.1: Schematic of a Laser Optical Tweezer Experiment. Labeled are the
optically trapped beads, the handle molecules, and the molecule of interest.

(shown schematically in Fig. 1.1). By shining a tightly focused laser on a polystyrene

bead, the bead becomes trapped, with a harmonic restoring force towards the center

of the beam. In a LOT experiment, handle molecules are bonded to the endpoints

of the biomolecule of interest, which are in turn attached to the polystyrene beads.

One bead is pinned at the origin by a fixed laser while the position of the other

optical trap is moved, causing an external tension to be applied to the system. One

important question one can ask about LOT experiments is whether we can predict

the behavior of the force-extension curves (FEC’s) under a constant eternal tension.

Can we develop scaling laws to understand the FEC’s? And how do the interactions

of the biomolecule change the behavior of the FEC’s? One may also wonder whether

the experimental setup changes the intrinsic behavior of the molecule of interest

(i.e. the behavior in the absence of the handles and beads). Do the handles and

beads alter the behavior of the molecule of interest? If the handles do effect the

molecule’s behavior, what choice of the properties of the handles will allow the
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closest measurement of the intrinsic behavior of the biomolecule? These questions

will be addressed in chapters 3 and 4. In chapter 3, we show that the known scaling

laws for the FEC’s under constant force do not accurately reproduce the behavior

of short chains under tension, and develop a theory that does capture the essential

features of a homopolymer under tension. In chapter 4, we show that the handles

that are attached to the molecule of interest do alter the kinetic behavior of the

system, regardless of their stiffness, but stiff handles can accurately measure the

equilibrium properties of the system. We also show that the intrinsic kinetics of the

molecule of interest can be inferred from the measured free energy profiles of the

system.

The effect of confinement on biomolecules is an area of active experimental

[24, 25] and theoretical [26, 27, 28] interest. Histone wrapping of DNA and strong

adsorbtion to curved surfaces are essential in many biological processes, showing the

importance of surface confinement. The viral encapsulation of its genome [27, 28],

and the resulting structured configurations of the confined DNA [29, 30], are also of

great interest. Finally, the ability to fabricate nanochannels allows experiments of

confined biomolecules in many geometries [31]. Single molecule pulling experiments

have allowed the direct measurement of the behavior of histone wrapped DNA [24],

as well as the loading forces and encapsulated pressures in viruses [25]. However,

many aspects of confined biomolecules remain undetermined experimentally, and

poorly understood theoretically. Due to the importance of confined biomolecules, we

wish to develop a simple theory to understand the properties of these systems. Can

we determine the structures of confined biopolymers, and predict the pressure due to

4



confinement? In chapter 5, we develop a simple, Hamiltonian-based theory to study

the effects of spherical confinement of a stiff chain, and show that the development

of structure can be well understood using a locally defined order parameter.

1.2 Simulation Techniques

Computer simulations have become an essential aspect of biophysics. Simula-

tions allow us to study the equilibrium and kinetic behavior of complex biomolecules

with a level of detail that is inaccessible using experimental methods. In order

to apply the principles of polymer physics to biological systems, we must treat

biomolecules on a coarse grained level. In coarse graining, we replace the complex

interactions found in the system of interest with minimal, unified interactions that

are simpler to work with, while still capturing the essential features of the system.

In our studies, we will treat biomolecules as chain of monomers, whose interactions

can be generally divided into a backbone bonding potential, which keeps the dis-

tance between neighboring monomers fixed, a bending potential if the chain is stiff,

and a non-local, inter-monomer potential, which accounts for non-nearest neighbor

interactions. Non-local potentials must be chosen such that it closely mimics the

interactions observed for the biological system of interest. The details of the models

we will use are discussed in the next section.

Monte Carlo (MC) techniques are an important method in the simulation of

polymer physics and coarse grained models of biomolecules [32, 33]. By iteratively

making small changes to the state of a polymer, the configurational space available

5



to the chain can be efficiently explored. The pivot algorithm, a common imple-

mentation of the MC technique, samples the conformational space iteratively as

follows: given an initial polymer, a trial polymer is generated by selecting a random

monomer i and rotating the bond between monomers i and i+1 or i−1 by a random

angle θ. The energy of each conformation (E0 and Etest) is computed, and the new

configuration is accepted using the Metropolis criterion. If ∆E = E0 − Etest < 0,

the trial chain is accepted, whereas if ∆E > 0, the new configuration is accepted

with probability Pacc = e−β∆E, with β = 1/kBT . This acceptance rule ensures that

the trial chains are Boltzmann distributed, such that the average of an observable

A in the simulation is given by

〈A〉 =
∫ ∏

n

ddrnA({rn})e−βV [{rn}]/
∫ ∏

n

ddrne
−βV [{rn}] ≈ 1

M

M∑
i=1

Ai, (1.1)

after M samples have been taken. The pivot algorithm implicitly takes the backbone

potential into account, by keeping the distance between neighboring monomers fixed.

Another powerful Monte Carlo technique is Configurational Bias Monte Carlo

(CBMC), which enables the generation of equilibrated and uncorrelated chains of

N bonds [32, 34]. This is accomplished by iteratively growing the chain out of a

number of generated trial bonds. The procedure is as follows: suppose we have

created n− 1 bonds of a chain, and wish to add the nth. We generate l trial bonds,

{uj}lj=1, and compute the weight for each trial bond uj as w(j)
n = exp(−βEj). A

particular trial bond m is added to the end of the chain with probability w(m)
n /Wn,

with Wn =
∑l
j=1 w

(j)
n (effectively an estimate of the partition function for the nth

bond). Once the full chain is grown using this method, we compute the total
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weight, Wtot =
∏N
n=1Wn, and compare this to the weight of another chain, grown

with the CMBC algorithm with weight W old
tot . The new chain is accepted using

the Metropolis criterion, Pacc = min(1,Wtot/W
old
tot ). Repeated application of this

scheme allows the creation of many chains which satisfy Boltzmann statistics, with

the advantage of each chain being completely uncorrelated from the previous chain.

Free energies are also easily computed, with βF = − log( 〈Wtot〉 ). This ability to

calculate F explicitly is another advantage of the CBMC algorithm. While the

number of trial bonds l is arbitrary, it is essential that l be chosen large enough such

that energetically favorable bonds are often tested (i.e. the estimate of the partition

function must be accurate).

Monte Carlo simulations are useful in the study of the equilibrium properties of

coarse grained biomolecules, but the methods above can not give us any information

about the kinetics of these systems. Instead, Langevin dynamics simulations can be

used to determine the kinetic properties of biological systems [32]. The equations

of motion of a coarse grained homopolymer in an implicit solvent can be written as

m
∂2rn(t)

∂t2
= −γ ∂rn(t)

∂t
− δH[rn(t)]

δrn(t)
+ ~ηn(t), (1.2)

where rn(t) is the position of the nth monomer of mass mn, and γ is the friction

coefficient. The Hamiltonian H[rn] describes the intra-chain interactions, minimally

containing the backbone bonding of the chain, and also includes the backbone stiff-

ness and inter-monomer interactions when needed. In our work, the solvent is

addressed implicitly using the random white noise force ~ηn(t), with 〈η(i)
n (t)〉 = 0 and

〈η(i)
n (t)× η(j)

m (t′)〉 = 2kBTγ × δnmδijδ(t− t′) (with i and j denoting the components
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of the force). In our Langevin simulations, the equations of motion are integrated

using the velocity Verlet algorithm [32]. In the case of high friction, the inertial

term is negligible compared to the dissipative term in eq. 1.2, and the equations of

motion are approximately Brownian,

γ
∂rn(t)

∂t
= −δV [rn(t)]

δrn(t)
+ ~ηn(t). (1.3)

We will primarily be interested in the Brownian limit of the Langevin equation

when studying the dynamics of a system, as most biological systems satisfy the high

friction requirement, and the kinetics are more accurately determined in this regime.

1.3 Polymer Models

Polymer physics involves the study of a chain of interacting monomers. One

of the simplest polymer models [35, 36] is the Freely Jointed Chain (FJC), with a

fixed bonding distance and no inter-monomer interactions, shown schematically in

Fig. 1.2a. The distribution in phase space for a FJC with N bonds and with bond

spacing a is

ΨFJC =
N∏
n=1

δ(|rn+1 − rn| − a), (1.4)

where 〈· · ·〉FJC =
∫ ∏

n d
3rn (· · ·)ΨFJC/

∫ ∏
n d

3rn ΨFJC . One experimental observ-

able of interest, which roughly measures the ‘size’ of the polymer, is the end-to-end

distance of the polymer R = rN+1 − r1 =
∑N
n=1 rn+1 − rn ≡ a

∑N
n=1 un, with the

bond vector un = (rn+1− rn)/a. The FJC is rotationally invariant, so 〈R〉 = 0, but

〈R2〉 = a2
∑
nm

〈un · um〉 = a2
∑
n

〈u2
n〉+ a2

∑
n6=m
〈un · um〉 = Na2, (1.5)
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where the last equality follows from the fact that 〈u2
n〉 ≡ 1 for all n, and the bond

angles are uncorrelated, with 〈un · um〉 = 0 for n 6= m.

u u

a a

R
r r

i i+1

1 N+1

(a)
(b)

{ r    } r (s)n

Figure 1.2: (a) Schematic of a Freely Jointed Chain. Shown are the bond vectors and
end-to-end distance. (b) Schematic of the continuum representation of a polymer.

The FJC is closely mimicked by the Gaussian chain, which treats the bonds

between monomers as harmonic springs, rather than rigid constraints. This ap-

proximate representation for the FJC is much simpler to work with than the rigid

constraints for the FJC, and can be expressed in terms of the discrete Hamiltonian

βHG =
3

2a2

N∑
n=1

(rn+1 − rn)2. (1.6)

The Gaussian chain is simpler than the FJC to work with, and gives the expected

〈R2〉 = Na2. The end-to-end distribution function (or Green’s function) is also

simple to work out exactly,

PG(R;N) =
(

3

2πNa2

)3/2

exp
(
− 3R2

2Na2

)
. (1.7)

In the thermodynamic limit (with N → ∞, a → 0, while holding the length and

Na = L fixed), the discrete Hamiltonian HG can be written in the continuum limit
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(with rn → r(s) and lima→0(rn+1 − rn)/a→ ∂r(s)/∂s) as

βHG[r(s)] =
3

2a

∫ L

0
ds
(
∂r(s)

∂s

)2

. (1.8)

This continuum representation is often useful in obtaining analytic results for the

Gaussian chain, shown schematically in Fig. 1.2b. The continuum Gaussian chain

is equivalent to a random walk, as the Green’s function for the end-to-end distance

satisfies (∂/∂N − a2/6 ∇2
rL

)P (rL − r0;N) = 0. The continuum representation, and

the resulting connection to the diffusion equation, is quite useful for determining

the behavior of a Gaussian chain in a variety of situations.

Many biological molecules are stiff, with an intrinsic resistance to bending

[35, 36]. This resistance to bending can be introduced through an energy penalty in

the distribution in phase space,

ΨWLC =
N∏
n=1

δ(|un| − 1) exp
(
lp
a

N−1∑
n=1

un+1 · un
a2

)

∝
N∏
n=1

δ(|un| − 1) exp
(
− lp

2a

N−1∑
n=1

(un+1 − un)2
)
. (1.9)

This provides an energy penalty for inducing a bend between bonds n and n + 1,

while keeping the lengths of the bond vectors fixed. In the continuum limit (with

un → u(s) and (un+1 − un)/a → ∂u(s)/∂s = ∂2r(s)/∂s2), the distribution in eq.

1.9 becomes

ΨWLC [u(s)] =
∏
s

δ(|u(s)| − a) exp
[
− lp

2

∫ L

0
ds
(
∂u(s)

∂s

)2]
(1.10)

As in the case of the Gaussian Hamiltonian (eq. 1.8), eq. 1.10 is equivalent to the

diffusion equation, (∂/∂L − lp/4 ∇2
u)G(uL,u0;L) = 0 on the unit sphere, with the
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resulting Green’s function [37]

G(uL,u0;L) =
∞∑
l=0

l∑
m=−l

Y m
l (θ0, ϕ0)Y m

l (θL, ϕL)e−l(l+1)L/2lp . (1.11)

This Green’s function allows the correlations in the bond vectors to be determined

as

〈u(0) · u(L)〉 = e−L/lp , (1.12)

showing that the persistence length is the range over which the bonds are correlated.

While many averages for the WLC are known exactly, the behavior of a WLC

remains poorly understood in a number of biologically relevant situations, making

the wormlike chain a fascinating system of study. Further discussion of the behavior

of a WLC can be found in chapters 4 and 5.

Single molecule techniques allow us to pull on the ends of a polymer, with

a force f applied to one end of the chain and −f to the other. This gives rise to

the additional energetic term H[r(s), f ] = H[r(s)] − f · [r(L) − r(0)] = H[r(s)] −

f ·
∫ L

0 dsu(s). The effect of tension on the linear extension of the flexible polymer

models (both the FJC and Gaussian chains) can be computed directly. In particular,

the linear extension, 〈R · f̂〉 ≡ 〈Z〉, which is generally used as the experimental

observable for real biomolecules, can be determined for any polymer model as

〈Z〉 =
∂

∂(βf)

[ ∫
D[r(s)]e−βH+βf ·(rL−r0)

]
(1.13)

In the case of the FJC, we find that 〈Z〉FJC = Na[coth(aβf) − 1/(aβf)], with

f = |f |. For a Gaussian chain, the extension is proportional to the tension, with

11



〈Z〉G = Na(aβf)/3. This shows that the Gaussian chain is extensible, with the av-

erage extension proportional to f for all external tension. Thus, while the Gaussian

model is extremely useful for describing a flexible chains under certain situations, it

can not fully describe an inextensible system such as the FJC. The linear extension

for a WLC is significantly more difficult to determine analytically, but is well ap-

proximated by [1] lpβf = x−1/4+1/4(1−x2), with x = 〈Z〉/L. Further discussion

of the effect of tension on polymers can be found in chapters 3 and 4.

Additional interactions between non-nearest neighbors are essential in relating

the concepts of polymer physics to systems of real biological interest. One of the

simplest and most essential of these is the excluded volume interaction, which ac-

counts for the fact that multiple monomers can not occupy the same space. These

self-avoiding chains are difficult to deal with analytically, but a simple scaling argu-

ments due to Flory [6] allow us to determine the behavior of a self-avoiding chain

for large N . If the ‘size’ of the self avoiding polymer is R, the free energy for a

d-dimensional self-avoiding chain can be written as

F ∼ R2

N
+ v0N ×

N

V
∼ R2

N
+ v0

N2

Rd
(1.14)

where we have neglected all numerical coefficients. The first term is the entropy of

a simple Gaussian chain (the exponent in eq. 1.7), and the second term accounts

for the interactions of monomers with excluded volume v0, which are localized to a

volume V ∼ Rd. Minimization of the free energy with respect to R gives

R ∼ RF ∼ N
3

2+d ≡ N ν (1.15)

defining the Flory exponent ν = 3/(2 + d), and RF the Flory radius. The Flory
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exponent has been shown to be exact in 1 and 2 dimensions, and remarkably accurate

in 3 dimensions, showing the power of such simple scaling arguments. The Flory

radius is the only scaling variable in the problem of self-avoiding chains, so the

distribution of end-to-end distances can be written in terms of x = |R|/RF , and the

properties of self-avoiding chains will be invariant to changes in v0 or N for large

enough N when written in terms of the scaled variable x. Self avoiding (purely

repuslive) homopolymers are also referred to polymers in a good solvent, in contrast

to self-attracting homopolymers, referred to as polymers in a poor solvent. In a poor

solvent, each monomer on the chain feels a short ranged attraction to every other

monomer. The scaling of a poor solvent can be determined using a Flory scaling

argument as well, with R ∼ N1/3 for poor solvents. However, the relative attraction

between monomers decreases with increasing temperature, with a transition from

poor to good occurring at the Θ-temperature. At T = Θ, the homopolymer has

the scaling R ∼ N1/2 (identical to the random walk), and is expected to behave

similar to a FJC. The effect of solvent quality on homopolymers is further discussed

in chapters 2 and 3.

The kinetic behavior of polymers is often quite difficult to determine ana-

lytically. One simple analytic approach to determining the timescales of polymer

fluctuations is the Rouse model, which describes the time-dependent behavior of a

Gaussian chain in the overdamped limit of the Langevin equation (eq. 1.3). In the

continuum limit [35], the time-dependent Gaussian Hamiltonian is

βHG[r(s, t)] =
3

2a2

∫ N

0
ds
(
∂r(s, t)

∂s

)2

. (1.16)
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If we take the center of mass of the chain to be at the origin, this can be broken into

normal modes, with r(s, t) =
∑N
n=1 r̃n(t) cos(nπs/N), and the equations of motion

become

∂r̃n
∂t

= −3n2π2D

N2a2
r̃n + ~ηn(t), (1.17)

with the diffusion coefficient D = kBT/γ. This is exactly solvable, with r̃n(t)

expressible in terms of e−n
2t/τR , giving the Rouse time τR = N2a2/3Dπ2. τR is the

slowest mode of the Gaussian chain, and gives the timescale of global fluctuations of

the polymer. Many time-dependent averages can be computed in terms of τR with

little difficulty. The Langevin equation can also be solved exactly in the discrete

case (eq. 1.6) using normal modes as well. Further discussion of the kinetics of

simple polymer models can be found in chapters 2 and 4.

1.4 Summary

In this thesis, we will apply the theoretical approaches of polymer physics to

systems of biological interest. In chapter 2, we address an inconsistency between two

analytic theories to determine the loop closure time of a noninteracting Gaussian

chain. The theory of Wilemskiy and Fixman [38] (WF), which determines the loop

closure time in terms of a sink-sink correlation function, finds τc ∼ N2, which has

been shown to agree well with simulations and experiments. However, the theory

of Szabo, Schulten, and Schulten [11] (SSS), which determines the closure time

as diffusion in terms of an effective potential for the endpoints depending only on

the equilibrium properties of the chain, shows that τc ∼ N3/2. We show that, if
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the dynamics of the endpoints are correctly taken into account, using an effective

diffusion coefficient that addresses the kinetics of the endpoints, the SSS theory can

be made to agree with the WF theory, with the kinetics of loop formation broken

into equilibrium and dynamical parts. We also show that this result is quite general,

and can be used to address the closure for an interacting chain as well. The ability

to break the problem of loop closure into two experimentally accessible parts allows

for a simple and intuitive understanding of closure in real biological systems.

In chapter 3, we address the equilibrium behavior of an interacting homopoly-

mer under the application of an external tension, f . Pincus determined that, for

large N , the extension of a self-avoiding chain in the direction of the force should

scale as [39] 〈Z〉 ∼ f 2/3. We analytically show, using the methods of Edwards and

Singh (ES) [40], that this scaling regime does indeed exist for large N . However,

we find that ‘large N ’ requires a surprisingly long chain, with the expected scaling

emerging only for N > 9 × 104. We show using simulations that the ES theory

agrees well with simulations, and that the Pincus scaling is not observed for shorter

chains (N ≤ 1600). We show that this is due to a failing of the scaling arguments

used to determine the f 2/3 scaling, which is not applicable to short chains. We also

study the behavior of a homopolymer in a poor solvent, and show that the extension

of such a chain shows rich behavior as a function of external tension.

In LOT experiments, handles are attached to the molecules of interest in order

to study the equilibrium and kinetic properties of the molecule of interest. In chapter

4, we study the effect of attaching these linkers to the P5GA RNA hairpin. We show

that the intrinsic equilibrium distribution functions are accurately reproduced only
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using very stiff handles. We also show that all handles, either flexible or stiff,

will change the kinetic properties of the system (the folding and unfolding times),

with stiff handles having the largest effect on the hopping times. We develop a

simple Generalized Rouse Model (GRM) to explain these effects, which treats the

complicated RNA interactions as a unified harmonic bond with a cutoff, and the

handles as Gaussian chains. We find that the GRM is able to almost quantitatively

reproduce the effect of attaching both flexible and stiff linkers. Finally, we show

directly that the kinetic properties of the chain under any applied force can be best

determined by accurately measuring the equilibrium distribution at the midpoint

force fm, and using Kramer’s theory to determine the folding or unfolding rates.

In chapter 5, we study the equilibrium behavior of a spherically confined WLC.

By applying the mean field method [41, 42] to a WLC confined to the surface of

a sphere, we are able to recover all known scaling laws, as well as reproduce the

exact average end-to-end distance for the confined system. We also determine the

effect of external tension on a surface confined WLC, of interest in studying the

unravelling of DNA wrapped around a histone. Finally, we apply the mean field

method to a WLC confined to the interior of a sphere, which is of great interest in

studying the behavior of DNA encapsulated in a virus. We show that long, volume

confined WLC’s behave as a surface confined chains, and that the structure of the

encapsulated chain can be understood by examining the correlations in the local

winding axis. We also determine the pressure on the sphere due to the confined

WLC, and show that the entropy of confinement is insufficient to determine the

huge pressures observed in real viruses, with intra-chain interactions playing a huge
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role in the pressure.
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Chapter 2

The Kinetics of Loop Closure in Polymer Chains

2.1 Introduction

Contact formation between the ends of a long polymer (cyclization) has been

intensely studied both experimentally [5, 6] and theoretically [38, 11, 12, 13, 43,

44, 45]. Recently, the kinetics of loop formation has become increasingly important

largely because of its relevance to DNA looping [7, 46] as well as protein [8, 47,

48, 49, 50, 51, 52] and RNA folding [9]. The ease of cyclization in DNA, which is

a measure of its intrinsic flexibility [46, 53], is important in gene expression and

interactions with proteins and RNA. In addition, the formation of contacts between

residues (nucleotides) near the loop [44] may be the key nucleating event in protein

(RNA) folding. Experiments studying loop formation of proteins [8, 47, 54] and

RNA [3, 55] have prompted a number of theoretical studies [43, 56, 57] that build

on the pioneering work of Wilemski and Fixman [38] (WF) and Szabo, Schulten,

and Schulten [11] (SSS). The WF formalism determines the loop closure time τc

by solving the diffusion equation in the presence of a sink term. The sink function

accounts for the possibility that contact between the ends of a polymer chain occurs

whenever they are in proximity. The time for forming a loop is related to a suitable

time integral of the sink-sink correlation function. SSS developed a much simpler

theory to describe the dependence of the rate of end-to-end contact formation in
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an ideal chain on the polymer length N . The SSS approximation [11] describes the

kinetics of contact formation between the ends of the chain as a diffusive process in

an effective potential, derived from the end-to-end probability distribution P (Ree)

The validity of using the dynamics in a potential of mean force, F (Ree) ∼

−kBT log[P (Ree)], to obtain τc hinges on local equilibrium being satisfied, i.e. all

processes except the one of interest must occur rapidly. In the case of cyclization

kinetics in simple systems (the Rouse model or self-avoiding polymer chains), the

local equilibrium approximation depends minimally on the cyclization time τc, and

the internal chain relaxation time τR. In the limit τc/τR � 1, one can envision the

motions of the ends as occurring in the effective free energy F (Ree), because the

polymer effectively explores the available volume before the ends meet. By solving

the diffusion equation for an ideal chain for which F (Ree) ∼ 3kBTR2
ee/2R̄

2
ee, with

R̄ee ∼ b
√
N , where b is the monomer size, subject to absorbing boundary conditions,

SSS showed that the mean first passage time for contact formation (∼ τc) is τSSS ∼

τ0N
3
2 , where τ0 is a microscopic time constant The simplicity of the SSS result,

which reduces contact-formation kinetics to merely computing P (Ree), has resulted

in its widespread use to fit experimental data on polypeptide chains [8, 47, 54]. The

dependence of τc on N using the SSS theory differs from the WF predictions. In

addition, simulations also show that τc deviates from the SSS prediction [58, 59, 60,

61], which predicts τc ∼ N2. The slower dependence of τSSS on N can be traced to

the failure of the assumption that all internal chain motions occur faster than the

process of interest.

The theory based on the WF formalism and simulations show the closure time
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τWF ∼ N1+2ν (ν ≈ 3/5 for self-avoiding walk and ν = 1/2 for the Rouse chain),

where Dc is a diffusion constant. In this chapter, we show that the WF result

for Rouse chains, τWF , can be obtained within the SSS framework, provided an

effective diffusion constant that accounts for the relaxation dynamics of the ends

of the chains is used, instead of simply using the monomer diffusion coefficient D0.

Thus, the simplicity of the SSS approach can be preserved while recovering the

expected scaling result [38, 12] for the dependence of τc on N . (ii) The use of

the Rouse model may be appropriate for polymers or polypeptide chains near Θ-

conditions; however, in both good and poor solvents interactions between monomers

determine the statics and dynamics of the polymer chains. The chain will swell in

good solvents (ν ≈ 3/5) whereas in poor solvents, polymers and polypeptide chains

adopt compact globular conformations. In these situations, interactions between the

monomers or the amino acid residues affect τc. The monomer-monomer interaction

energy scale, εLJ , leading to the chain adopting a swollen or globular conformation

influences both ν and the chain relaxation dynamics, and hence affects τc. Because

analytic theory in this situation is difficult, we provide simulation results for τc as a

function of εLJ and for 10 < N ≤ 100.

2.2 Derivation of τWF for the Rouse Model using the SSS Approxi-

mation

The Rouse chain consists of N beads, with successive beads connected by a

harmonic potential that keeps them at an average separation b, the Kuhn length.
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Contact formation between the chain ends can occur only if thermal fluctuations

result in monomers 1 andN being within a capture radius a. There are three relevant

time scales that affect loop closure dynamics: τ0 ≈ b2/D0, the fluctuation time scale

of a single monomer, τee, the relaxation time associated with the fluctuations of the

end-to-end distance, and τR, the relaxation time of the entire chain. Because loop

formation can occur only if the ends can approach each other, processes that occur

on time scale τee must be coupled to looping dynamics, which must be accounted

for in the kinetics of the system.

The Langevin equation for a Gaussian chain in the continuum limit is [36]

γ
∂r(s, t)

∂t
= −δH0[r(s, t)]

δr(s, t)
+ ~η(s, t), (2.1)

where ~η(s, t) a white noise force with 〈~η(s, t)〉 = 0, 〈~η(s, t) · ~η(s′, t′)〉 = 6γkBTδ(t−

t′)δ(s − s′). γ is the friction coefficient, and D0 = kBT/γ is the microscopic dif-

fusion coefficient. By writing r(s, t) = r0 + 2
∑N−1
n=1 rn(t) cos(nπs/N), the Gaussian

Hamiltonian H0 becomes

H0 =
3

2b2

∫ N

0
ds
(
∂r(s, t)

∂s

)2

=
3

2Nb2

∑
n

n2π2r2
n(t). (2.2)

The equation of motion for each mode

ṙn(t) = −3n2π2D0

N2b2
rn(t) + ~ηn(t). (2.3)

can be solved independently, and the solutions naturally reveal the time scale for

global motions of the chain, τR = N2b2/3D0π
2 ∼ N2b2/D0. We note that τR is

much larger than the relevant time scale for internal motions of the monomers,

τ1 ≈ b2/D0 for large N . Solving eq. 2.3 directly, we find the fluctuations in the
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end-to-end distance Ree are given by

〈δR2
ee(t)〉 = 16Nb2

∑
n odd

N2

n4π4
sin2

(
nπ

N

) (
1− e−n2t/τR

)
. (2.4)

with 〈δR2
ee(t)〉 ≡ 〈[Ree(t) −Ree(0)]2〉. The details of the calculation leading to eq.

(2.4) are given in Appendix A.1. If we define an effective diffusion constant using

D(t) =
〈δR2

ee(t)〉
6t

, (2.5)

then D(0) = 2D0, as is expected for the short time limit [11, 60]. On time scales

on the order of τR ∼ N2, we find D(τR) ∼ D0/N . This is identical to the diffusion

constant for the center of mass of the chain [36], and is expected for the diffusion

constant for global chain motion.

The theory of Szabo, Schulten, and Schulten [11] (SSS) determines the loop

closure time by replacing the difficult polymer problem, having many degrees of

freedom, with a single particle diffusing in a potential of mean force. With this

approximation, τc, which can be related to the probability that the contact is not

formed, becomes

τc =
1

N

∫ Nb

a
dr

1

D(r)P (r)

( ∫ Nb

r
dr′P (r′)

)2

+
1

κ NP (a)
, (2.6)

where κ is the rate of loop closure given |Ree| = a, P (r) is the equilibrium end-to-

end distribution of the chain, and N =
∫Nb
a dr P (r). Here, we will consider only a

chemically irreversible process, with the binding rate constant κ→∞. In the case

of the non-interacting Gaussian chain, P (r) ∼ r2 exp(−3r2/2Nb2), and we find (for

N � 1 and with the assumption D(r) = D0 = const, the loop closure time is [11]

τSSS ≈
1

3

√
π

6

N
3
2 b3

D0a
. (2.7)
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The scaling of τSSS ∼ N
3
2 given in eq. (2.7) disagrees with other theories [38, 43]

and numerous simulations [58, 59, 60, 61] that predict τc ∼ N2 for Nb2 � a2 and

a ≥ b. It has been noted [56, 62] that the SSS theory may be a lower bound on

the loop closure time for a freely draining Gaussian chain, and that an effective

diffusion coefficient that is smaller than D0 is required to fit the simulated [56] and

experimental [2] data using τSSS.

As noted by Doi [12], the relevant time scale for loop closure is not simply

the global relaxation time. Fluctuations in Ree are given not only by the longest

relaxation time (i.e. the ground state approximation), but also from important

contributions that arise from higher modes. This gives rise to the differences between

the Harmonic Spring and Rouse models [12, 59]. In the Harmonic Spring model,

the chain is replaced with only one spring, connecting the two ends of the chain

(the spring constant is chosen to reproduce the end-to-end distribution function).

The higher order modes give rise to excess fluctuations on a scale ∼ 0.4
√
Nb = R′,

and their inclusion is necessary to fully capture the physics of loop closure. In the

approximation of a particle diffusing in an effective potential (as in the SSS theory),

this time scale is simple to determine. If we consider only the x component of Ree,

we can treat it as a particle diffusing in a potential Ueff (Rx) = 3R2
x/2Nb

2 − O(1),

with diffusion constant D = 2D0 (the factor of 2 arising from D(0) = 2D0, see eq.

2.5). In this case, we find

〈δR2
x(t)〉 =

2

3
Nb2

(
1− e−t/τee

)
, (2.8)

and 〈R2
ee(t)〉 = 3〈δR2

x(t)〉, with τee = Nb2/6D0 the natural relaxation time of the
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end-to-end distance. Because we have evaluated τee using diffusion in an effective

potential, the dependence of τee on N should be viewed as a mean field approxima-

tion.

We can determine the effective diffusion constant on the time scale τee, which

includes the relaxation of Ree(t) at the mean field level. We define the effective

diffusion constant as

Dee = lim
t∼τee

〈δR2
ee(t)〉
6t

. (2.9)

with 〈δR2
ee(t)〉 given in eq. (2.4), which includes all of the modes of the chain, and

not simply the lowest one (see eq. 2.5). Noting that τee/τR ∼ N−1 � 1 for large N ,

we can convert the sum in eq. (2.4) into an integral:

〈δR2
ee〉 ≈

2
√

2

π
N

3
2 b2

∫ ∞
0

dx
sin2(bx/

√
3D0t)

x4

(
1− e−x2

)
(2.10)

≈ 8b

√
3D0t

π
. (2.11)

In particular, for t ≈ τee/2 = Nb2/12D0,

Dee ≈
8D0√
Nπ
− 16D0

3N
+O(N−

3
2 ). (2.12)

We expect these coefficients to be accurate to a constant on the order of unity.

The effective diffusion constant Dee takes the higher order modes of the chain into

account, and should capture the essential physics of the loop closure. In other words,

on the time scale τee, resulting in Dee ∼ N−
1
2 , the monomers at the chain ends find

themselves within a volume ∼ a3, so that contact formation is possible. Substituting

Dee into eq. (2.7) gives

τc ≈
N2b3π

24
√

6D0a
∼ τWF , (2.13)
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in the limit of large N . Thus, within the SSS approximation, the N2 dependence of

τc may be obtained, provided the effective diffusion constant Dee is used.

The importance of using a diffusion constant that takes relaxation dynamics of

Ree into account has also been stressed by Portman [56]. However, eq. (2.13) does

not account for the possibility of τc ∼ Nατ , with 1.5 < ατ < 2, as observed with

simulations by Pastor et. al. [58] when the capture radius a < b. Additionally, the

closure time in eq. (2.13) depends on the capture radius as a−1, which disagrees with

the a-independent prediction of Doi [12]. Both of these discrepancies are discussed

below, using insights garnered from simulations.

In order to measure Ree(t) and τc for a non-interacting Freely Jointed chain,

we have performed extensive Brownian dynamics simulations, the details of which

are given in Appendix A.2. For comparison with the analytic theory, we calculated

the modified SSS first passage time, with P (r) given in eq. (A.4), and Dee given

in eq. (2.12). The results are shown in Fig. 2.1. We find that the behavior of τc

depends strongly on the ratio a/b.

For N ≤ 100 and a ≥ b, we find that the modified SSS theory using the

effective diffusion constant Dee in eq. (2.12) gives an excellent fit to the data, as a

function of both N and a (Fig. 2.1(A)). Thus, modeling the loop closure process as

a one-dimensional diffusive process in a potential of mean force is appropriate, so

long as a diffusion coefficient that takes the dynamics of the chain ends into account

is used.

For N ≥ 100 and a ≥ b, we notice significant deviations in the data from

the theoretical curves. The data points appear to converge as a is varied for large
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Figure 2.1: Dependence of τc on N for various values of a. The symbols correspond
to different values of the capture radius. (A): The values of a/b are 1.00 (+), 1.23
(×), 1.84 (∗), 2.76 (∆), 3.68 (∇), and 5.52 (3). The lines are obtained using
eq. (2.6) with κ → ∞. The diffusion constant in eq. (2.6) is obtained using
D = 〈δR2

ee(τee/2)/3τee〉, with 〈δR2
ee(t)〉 given in eq. (2.10). (B): The values of

a/b are 0.10 (+), 0.25 (×), 0.50 (∗), and 1.00 (∆). The lines are the theoretical
predictions using eq. (2.15). The poor fit using eq. (2.13) with a = 0.1b (solid line)
shows that the two-stage mechanism has to be included to obtain accurate values of
τc. The effective exponent ατ , obtained by fitting τc ∼ Nατ , is shown in parentheses.
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N , suggesting the emergence of Doi’s [12] predicted scaling of τc ∼ N2a0. This

departure from the predictions of eq. (2.13) suggests that the one-dimensional mean

field approximation, which gives rise to the a dependence of τc, breaks down. Even

our modified theory, which attempts to include fluctuations in Ree on a mean field

level leading to Dee, cannot accurately represent the polymer as a diffusive process

with a single degree of freedom for large N . In this regime, the many degrees of

freedom of the polymer must be explicitly taken into account, making the WF theory

[38] more appropriate.

The condition a < b is non-physical for a Freely Jointed Chain with excluded

volume, and certainly not relevant for realistic flexible chains in which excluded vol-

ume interaction between monomers would prevent the approach of the chain ends to

distances less than b. However, that for Wormlike Chains, with the statistical seg-

ment lp > b, the equivalent closure condition a < lp is physically realistic, although

we do not address chain stiffness directly here. In this case, we find τc ∼ Nατ , with

1.5 < ατ < 2, in agreement with the simulation results of Pastor et. al. [58] (see

Fig. 2.1(B)). In deriving Dee, we assumed [12] that the relaxation of the end-to-end

vector is rate limiting. Once |Ree| ∼ R′ ≈ 0.4
√
Nb, the faster internal motions of

the chain will search the conformational space rapidly, so that τc is dominated by

the slower, global motions of the chain (i.e. it is diffusion limited). This assumption

breaks down if a � b, because the endpoints must continue their search using the

rapid internal motions on a time scale ∼ b2/D0 (as D(0) = 2D0; see eq. 2.5). In the

limit of small a, the memory of the relaxation of the ends of the chain is completely

lost. In this case, our derivation of Dee, using a mean field approach, can not accu-
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R  = b R  = aee ee

κeff

R  = b Nee
1/2

Stage I Stage II

Figure 2.2: Sketch of the two-stage mechanism for loop closure for Rouse chains
when a < b. Although unphysical, this case is of theoretical interest. In the first
stage, fluctuations in Ree result in the ends approaching |Ree| = b. The search of
the monomers within a volume b3 (> a3), which is rate limiting, leads to a contact
in the second stage.

rately describe the finer details when the endpoints search for each other over very

small length scales, and hence the theory must be modified in this regime.

We view the loop closure for small a as a two step process (Fig. 2.2), with

the first being a reduction to |Ree| ∼ b. The first stage is well modeled by our

modified SSS theory (see Fig. 2.1(A)) using the effective diffusion coefficient in eq.

(2.12). The second stage involves a search for the two ends within a radius b, so that

contact can occur whenever |Ree| = a < b. The large scale relaxations of the chain

are not relevant in this regime. We therefore introduce a scale-dependent diffusion

coefficient

Dee(r) ≈


8D0/

√
Nπ r > b

2D0 r ≤ b

. (2.14)

Substitution of eq. (2.14) into eq. (2.6) (with P (r) given by eq. (A.4)) yields

τc(a) ≈ N2b2π

24
√

6D0

+
N3/2b2(b− a)

√
π

6
√

6D0a
. (2.15)

for a ≤ b. In Fig. 2.1(B), we compare the predictions of eq. (2.15) for the closure

time to the simulated data for a ≤ b. The fit is excellent, showing that the simple
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scale-dependent diffusion coefficient (eq. (2.14)), that captures the two stage mech-

anism of cyclization when a < b, accurately describes the physics of loop closure for

small a. By equating the two terms in eq. (2.15), we predict that the N3/2 scaling

will begin to emerge when N ≤ 16b2(a/b− 1)2/a2π, consistent with the predictions

of Chen et. al. [60].

An alternate (but equivalent) description of the process of loop formation

for small a can also be given. After the endpoints are within a sphere of radius

b, chain fluctuations will drive them in and out of the sphere many times before

contact is established. This allows us to describe the search process using an effective

rate constant κeff , schematically shown in Fig. 2.2. For small a, the loop closure

(a search within radius b) becomes effectively rate limited as opposed to diffusion

limited [2] contact formation. The search will be successful, in the SSS formalism,

on a time scale

τb→a ≈
1

2D0N ′
∫ b

a

dr

P (r)

( ∫ b

r
dr′ P (r′)

)2

, (2.16)

with N ′ =
∫ b
a dr P (r). Again, we have taken D = 2D0 in this regime, because loop

formation is dominated by the fast fluctuations of the monomers, which occur on the

time scale of b2/D0 (see eq. 2.5). For a ≈ b, τb→a ≈ (a − b)2/6D0, whereas τb→a ≈

b3/6aD0 as a → 0. τb→a can be used to define the effective rate constant κeff ∝

(b−a)/τb→a. This can be substituted into eq. (2.6), and gives the approximate loop

closure time as a→ 0

τc(a)− τc(b) ≈
1

κeffN ′P (b)
∝ N3/2b3

D0a
, (2.17)

reproducing the same scaling for small a as in eq. (2.15). The parameter κeff
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is analogous to the reaction limited rate [2], reminiscent of the two-state kinetic

mechanism used to analyze experimental data. If the search rate within the capture

region (given by κeff ) is small, then we expect the exponent ατ < 2. Indeed, the

experiments of Buscaglia et. al. suggest that ατ changes from 2 (diffusion-limited)

to 1.65 (reaction-limited). Our simulation results show the same behavior ατ = 2

for a/b ≥ 1, which corresponds to a diffusion limited process, and ατ ≈ 1.65 for

a/b = 0.1, in which the search within a/b < 1 becomes rate limiting.

2.3 Loop Closure for Polymers in Good and Poor Solvents

The kinetics of loop closure can change dramatically when interactions between

monomers are taken into account. In good solvents, in which excluded volume in-

teractions between the monomers dominate, it is suspected that only the scaling

exponent in the dependence of τc on N changes compared to Rouse chains. How-

ever, relatively little is known about the kinetics of loop closure in poor solvents

in which enthalpic effects, that drive collapse of the chain, dominate over chain

entropy. Because analytic work is difficult when monomer-monomer interactions

become relevant, we resort to simulations to provide insights into the loop closure

dynamics. We use a Lennard-Jones interaction to represent the inter-monomer in-

teractions (see Appendix A.2). The second virial coefficient, defining the solvent

quality, is given approximately by

v2(εLJ) =
∫
d3r

[
1− exp

(
− βHLJ(r)

)]
, (2.18)
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with β = 1/kBT . In a good solvent v2 > 0, while in a poor solvent v2 < 0. A plot

of v2 as a function of εLJ given in Fig. 2.3(A) shows that v2 > 0 when βεLJ < 0.3

and v2 < 0 if βεLJ > 0.3. Throughout this chapter, we will refer to βεLJ = 0.4 as

weakly hydrophobic and βεLJ = 1.0 as strongly hydrophobic. The classification of

the solvent quality based on eq. (2.18) is approximate. The precise determination

of the Θ-point (v2 ≈ 0) requiring the computation of v2 for the entire chain. For our

purposes, this approximate demarcation between good, Θ, and poor solvents based

on eq. (2.18) suffices.

To fully understand the effect of solvent quality on the cyclization time, our

simulations run over βεLJ = i/10, with 1 ≤ i ≤ 10. In our simulations, N was varied

from 7 to 300 for each value of εLJ , with a fixed capture radius of a = 2b = 0.76nm,

with the loop closure time identified as the mean first passage time. In Fig. 2.3(B),

we show the scaling of the radius of gyration 〈R2
g〉 as a function of N . We find

〈R2
ee〉 ∼ N

6
5 for the good solvent and 〈R2

ee〉 ∼ N for the Θ solvent (βεLJ = 0.3). In

poor solvents (βεLJ > 0.3), the large N scaling of 〈R2
ee〉 ∼ N

2
3 is not observed for

the values of N used in our simulations. Similar deviation from the expected scaling

of 〈R2
ee〉 with N have been observed by Rissanou et. al. [63] for short chains in a

poor solvent. Simulations using much longer chains (N ≥ 5000) may be required to

observe the expected scaling exponent of 2/3.

The loop closure time for the chains in varying solvent conditions is shown

in Fig. 2.4(A) and (B), and it is clear that the solvent quality drastically changes

the loop closure time. The values of τc for the good solvent (βεLJ = 0.1) are

nearly three orders of magnitude larger than in the case of the strong hydrophobe
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(βεLJ = 1.0) for N = 80 (Fig. 2.4(A)). For N in the range of 20 to 30 (typically

used in experiments on tertiary contact formation in polypeptide chains) the value

of τc is about 20ns in good solvents, whereas in poor solvents τc is only about 0.3ns.

The results are vividly illustrated in Fig. 2.4(B), which shows τc as a function of

εLJ for various N values. The differences in τc are less pronounced as N decreases

(Fig. 2.4(B)). The absolute value of τc for N ≈ 20 is an order of magnitude less

than obtained for τc in polypeptides [2]. There could be two inter-related reasons

for this discrepancy. The value of D0, an effective diffusion constant in the SSS

theory, extracted from experimental data and simulated P (Ree) is about an order

of magnitude less than the D0 in our paper. Secondly, Buscaglia et al. [2] used

the WLC model with excluded volume interactions whereas our model does not

take into account the effect of bending rigidity. Indeed, we had shown in an earlier

study [62] that chain stiffness increases τc. Despite these reservations, our values of

τc can be made to agree better with experiments using η ≈ 5cP [45] and a slightly

larger value of b. Because it is not our purpose to quantitatively analyze cyclization

kinetics in polypeptide chains we did not perform such comparison.

We also find that the solvent quality significantly changes the scaling of τc ∼

Nατ , as shown in Fig. 2.4(C). For the range of N considered in our simulations,

τc does not appear to vary as a simple power law in N (much like 〈R2
g〉; see Fig.

2.3(B)) for βεLJ > 0.3. The values of τc in poor solvents shows increasing curvature

as N increases. However, if we insist that a simple power law describes the data

then for the smaller range of N from 7 to 32 (consistent with the methods of other

authors [54, 2, 50]), we can fit the initial slopes of the curves to determine an effective
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exponent ατ (2.4(C)), i.e. τc ≈ τ0N
ατ . In the absence of sound analytical theory,

the extracted values of ατ should be viewed as an effective exponent. We anticipate

that, much like the scaling laws for 〈R2
g〉, the final large N scaling exponent for

τc will only emerge for [63] N ≥ 5000, which is too large for accurate simulations.

However, with the assumption of a simple power law behavior for small N , we find

that the scaling exponent precipitously drops from ατ ≈ 2.4 in the good solvent to

ατ ≈ 1.0 in the poor solvent. Our estimate of ατ in good solvents is in agreement

with the prediction of Debnath and Cherayil [43] (ατ ≈ 2.3 − 2.4) or Thirumalai

[64] (ατ ≈ 2.4), and is fairly close to the value obtained in previous simulations[61]

(ατ ≈ 2.2). The differences between our results and ref. [61] may be related to the

choice of the Hamiltonian. Podtelezhnikov and Vologodskii [61] used a harmonic

repulsion between monomers to represent the impenetrability of the chain, and took

a/b < 1 in their simulations.

In contrast to the good solvent case, our estimate of ατ in poor solvents is sig-

nificantly lower than the predictions of Debnath and Cherayil [43], who suggested

ατ ≈ 1.6−1.7, based on a modification of the WF formalism [38]. However, fluores-

cence experiments on multiple repeats of the possibly weakly hydrophobic glycine

and serine residues in D2O have found τc ∼ N1.36 for short chains [54] and τc ∼ N1.05

for longer chains [50], in qualitative agreement with our simulation results. The

qualitative agreement between simulations and experiments on polypeptide chains

suggest that interactions between monomers are more important than hydrodynamic

interactions, which are not considered here.

The dramatically smaller loop closure times in poor solvents than in good
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solvents (especially for N > 20; see Fig 2.4(B)) suggest further study. In poor sol-

vents, the chain adopts a compact globular conformation with the monomer density

ρb3 ∼ O(1), where ρ ≈ N/R3
g. For large N , when entanglement effects may domi-

nate, it could be argued that in order for the initially spatially separated chain ends

(|Ree|/a > 1) to meet, contacts between the monomer ends with their neighbors

must be broken. Such unfavorable events might require overcoming enthalpic barri-

ers (≈ Q̄× εLJ , where Q̄ is the average number of contacts for a bead in the interior

of the globule), which would increase τc. Alternatively, if the ends search for each

other using a diffusive, reptation-like mechanism without having to dramatically al-

ter the global shape of the collapsed globule, τc might decrease as εLJ increases (i.e.

as the globule becomes more compact). It is then of interest to ask whether looping

events are preceded by global conformational changes, with a large scale expansion

of the polymer that allows the endpoints to search the volume more freely, or if the

endpoints search for each other in a highly compact, but more restrictive, ensemble

of conformations.

In order to understand the mechanism of looping in poor solvents, we analyze

in detail the end-to-end distance |Ree(t)| and the radius of gyration |Rg(t)| for two

trajectories (with βεLJ = 1 and N = 100). One trajectory has a fast looping

time (τcF ≈ 0.003ns), while the looping time in the other is considerably slower

(τcS ≈ 4.75ns). Additionally, we compute the time-dependent variations of the

coordination number, Q(t) for each endpoint. We define two monomers i and j to

be in ‘contact’ if |ri − rj| ≥ 1.23b (chosen since VLJ(1.23b) = −εLJ/2, see Appendix

A.2), and define Q1(t) and QN(t) to be the total number of monomers in contact
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Figure 2.5: Mechanism of loop closure for a trajectory with a short (∼ 0.003ns) first
passage time. The values of N and βεLJ are 100 and 1.0 respectively. (A): Plots of
|Ree| and |Rg| (scaled by the capture radius (a) as a function of time. The structures
of the globules near the initial stage and upon contact formation between the ends
are shown. The end to end distance is in red. (B): The time-dependent changes in
the coordination numbers for the first (Q1(t)) and last (QN(t)) monomers during
the contact formation.
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with monomers 1 and N respectively. We do not include nearest neighbors on the

backbone when computing the coordination number, so the geometrical constraints

gives 0 ≤ Q(t) ≤ 11. With this definition, an endpoint on the surface of the globule

will have Q = 5. These quantities are shown in Figs 2.5 and 2.6.

The trajectory with the fast looping time τc
F (Fig 2.5) shows little variation

in either |Rg| or |Ree|. We find |Ree| ≈ |Rg|, suggesting that the endpoints remain

confined within the dense globular structure throughout the looping process. This is

also reflected in the coordination numbers for both of the endpoints, with both Q1(t)

and QN(t) are in the range 5 ≤ Q(t) ≤ 10 throughout the simulation. The endpoints

in this trajectory, with the small loop closure time τFc , always have a significant

number of contacts, and traverse the interior of the globule when searching for each

other. Similarly, we also found that the trajectory with a slow looping time τSc

(Fig 2.6) shows little variation in Rg throughout the run. The end-to-end distance,

however, shows large fluctuations over time, and 〈R2
ee〉 ≥ 2〈R2

g〉 until closure. This

suggests that, while the chain is in an overall globular conformation (small, constant

R2
g), the endpoints are mainly found on the exterior of the globule. This conclusion is

again supported by the coordination number, with Q(t) ≤ 5 for significant portions

of the simulation. While the endpoints are less restricted by nearby contacts and

able to fluctuate more (as they are outside of the globule), they spend much longer

searching for each other. Thus, it appears that the process of loop formation in

poor solvents, where enthalpic effects might be expected to dominate for N = 100

occurs by a diffusive process, with no significant entanglement effects observed in

our simulations.

38



(A)
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

R
ee

/a
 (

R
g/

a)

t(ns)

Ree/a
Rg/a

(B)

 0

 2

 4

 6

 8

 10

 12

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Q
1/

N
(t

)

t(ns)

Q1(t)
QN(t)

Figure 2.6: Same as Fig. 2.5, except the data are for a trajectory with a first passage
time for contact formation that is about 4.7ns. (A): Although the values of |Rg|
are approximately constant, |Ree| fluctuations greatly. (B): Substantial variations
in Q1(t) and QN(t) are observed during the looping dynamics, in which both ends
spend a great deal of time on the surface of the globule.
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We note that trajectories in which the first passage time for looping is rapid

(with τc
i < τc for trajectory i) have at least one endpoint with a high coordination

number (Q > 5) throughout the simulation. In contrast, for most slow-looping runs

(with τc
i > τc), we observe long stretches of time where both endpoints have a low

coordination number (Q < 5). These results suggest that motions within the globule

are far less restricted than one might have thought, and loop formation will occur

faster when the endpoints are within the globule than if the endpoints are on the

surface (i.e. entanglement effects are irrelevant for loop closure with N ≤ 100). The

longer values of τc are found if the initial separation of the end points is large, which

is more likely if they are on the surface than buried in the interior. The absence of

any change in |Rg(t)| in both the trajectories, which represent the extreme limits

in the first passage time for looping, clearly shows that contact formation in the

globular phase is not an activated process.

The above results suggest a very general mechanism of loop closure for inter-

acting polymers. The process of contact formation for a given trajectory depends

on the initial separation Ree, and the dynamics of the approach of the ends. Thus,

τc should be determined by the distribution of P (Ree) (an equilibrium property),

and an effective diffusion coefficient D(t) (a dynamic property). We have shown

for the Rouse model that such a deconvolution into equilibrium and dynamic parts,

which is in the spirit of the SSS approximation, is accurate in obtaining τc for a

wide range of N and a/b, and will see below that a similar framework is applicable

to more general chains.

The decomposition of looping mechanisms into a convolution of equilibrium
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Figure 2.7: (A): Distribution of end-to-end distances for a weakly (βεLJ = 0.4)
and strongly (βεLJ = 1.0) hydrophobic chain. (B): Diffusion constant Dee(t) in
units of D0 for varying solvent quality. The diffusion constant is defined using
Dee(t) = 〈δR2

ee(t)〉/6t. The values of εLJ are shown in the inset.

and dynamical parts explains the large differences in τc as the solvent quality

changes. We find, in fact, that the equilibrium behavior of the endpoints domi-

nates the process of loop formation, with the kinetic processes being only weakly

dependent on the solvent quality for short chains. In Fig. 2.7(A), we plot the

end-to-end distribution function for weakly (βεLJ = 0.4) and strongly (βεLJ = 1)

hydrophobic polymer chains. The strongly hydrophobic chain is highly compact,

with a sharply peaked distribution. The average end-to-end distance is significantly

lower than is the weakly hydrophobic case. While the distribution function is clearly

strongly dependent on the interactions, the diffusion coefficient D(t) is only weakly

dependent on the solvent quality (Fig. 2.7(B)). The values of D(t) = 〈δR2
ee〉/6t are

only reduced by a factor of about 2 between the βεLJ = 0.1 (good solvent, with a

globally swollen configuration) and the βεLJ = 1.0 (poor solvent, with a globally

globular configuration) on intermediate time scales. We note, in fact, that the good

solvent and Θ solvent cases have virtually identical diffusion coefficients throughout
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the simulations (Fig 2.7(B)). This suggests that the increase in τc (Fig 2.4) between

the Rouse and the good solvent chains is primarily due to the broadening of the

distribution P (Ree), i.e. the significant increase in the average end-to-end distance

in the good solvent case, 〈R2
ee〉 ∼ N2ν , with ν = 3/5.

In fact, if we take D ≈ 2D0 in eq. (2.6) and numerically integrate the

distribution function found in the simulations for N = 100, τc(βεLJ = 1.0) and

τc(βεLJ = 0.4) differ by two orders of magnitude, almost completely accounting for

the large differences seen in Fig. 2.4(B) between the two cases. Because P (Ree)

can, in principle, be inferred from FRET experiments [65, 66] the theory outlined

here can be used to quantitatively predict loop formation times. In addition, FRET

experiments can also be used to assess the utility of polymer models in describing

fluctuations in single stranded nucleic acids and polypeptide chains.

It is also of interest to determine the mechanisms of interior loop formation.

We performed simulations for N = 80 by first computing the time for cyclization

τc using the methods above. In another set of simulations, two interacting linkers

each containing 20 beads were attached to the ends of the N = 80 chain. For the

resulting longer chain we calculated τl for l = 80 as a function of βεLJ . Such a

calculation is relevant in the context of single molecule experiments in which the

properties of a biomolecule (RNA) is inferred by attaching linkers with varying

polymer characteristics. It is important to choose the linker characteristics that

minimally affects the dynamic properties of the molecule of interest. The ratio

τl=80/τc depends on βεLJ and changes from 2.6 (good solvents) to 2.0 under Θ

conditions, becoming unity in poor solvents (Fig. 2.8). Analysis on the dependence
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Figure 2.8: The ratio τl=80/τc as a function of βεLJ for a chain with two linkers (each
of 20 beads) that are attached to beads 20 and 100. In good solvents, the interior
loop closure kinetics is about 2.5 times slower than the end-to-end one with the
same loop length. In poor solvents, however, there is virtually no difference between
the two.
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of the diffusion coefficients of interior-to-interior vector Dij (i = 20 and j = 100)

and end-to-end vector (of original chain without linkers) Dee on solvent conditions

indicates that on the time scales relevant to loop closure time (analogous to τee for

the Rouse chain), Dij reduces to about one half of Dee in good and Θ solvents,

whereas the two are very similar in poor solvents. The changes in the diffusion

coefficient together with the equilibrium distance distribution explains the behavior

in Fig. 2.8.

2.4 Conclusions

A theoretical description of contact formation between the chain endpoints is

difficult because of the many body nature of the dynamics of a polymer. Even for

the simple case of cyclization kinetics in Rouse chains, accurate results for τc are

difficult to obtain for all values of N , a, and b. The present work confirms that, for

large N and a/b > 1, the looping time must scale as N2, a result obtained using the

WF formalism [38, 12]. Here, we have derived τc ∼ N2 (for N � 1 and a ≥ b) by

including the full internal chain dynamics within the simple and elegant SSS theory

[11]. We have shown that, for N < 100 and especially in the (unphysical) limit

a/b < 1, the loop closure time τc ∼ τ0N
ατ with 1.5 < ατ ≤ 2. In this limit, our

simulations show that loop closure occurs in two stages with vastly differing time

scales. By incorporating these processes into a scale-dependent diffusion coefficient,

we obtain an expression for τc that accurately fits the simulation data. The resulting

expression for τc for a < b (eq. (2.15)) contains both theN
3
2 andN2 scaling behavior,
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as suggested by Pastor et. al. [58]

The values of τc for all N change dramatically when interactions between

monomers are taken into account. In good solvents, τc ∼ τ0N
ατ (ατ ≈ 2.4) in the

range of N used in the simulations, in reasonable agreement with earlier theoretical

estimates [64, 43]. The simulation results for τc in poor solvents show a rich behavior,

with τc decreasing over two orders of magnitude as the solvent quality changes. In

the range of N considered here, a power law fit of τc with N (τc ∼ Nατ ) also shows

that the exponent ατ depends on the solvent quality. Analysis of the trajectories

that monitor loop closure shows that contact between each end of the chains is

established by diffusive, reptation-like motion within the dense, compact globular

phase.

The large variations of τc as the solvent quality changes suggests that there

ought to be significant dependence of loop formation rates on the sequence in

polypeptide chains. In particular, our results suggest that as the number of hy-

drophobic residues increase, τc should decrease. Similarly, as the number of charged

or polar residues increase, the interactions between amino acids will become more

repulsive, increasing τc. Our work, however, neglects sequence effects, which are

also likely to be important. It may be possible to directly test the predictions in

Fig. 2.4(B) by varying the solvent quality for polypeptides. A combination of de-

naturants (makes the solvent quality good) and PEG (makes it poor) can be used

to measured τc in polypeptide chains. We expect the measured τc should be quali-

tatively similar to the findings in Fig. 2.4(B).

The physics of loop closure for small and intermediate chain lengths (N ≤ 300)
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is rather complicated, due to contributions from various time and length scales

(global relaxation and internal motions of the chains). The contributions from these

sources are often comparable, making the process of looping dynamics difficult to

describe theoretically. To better understand the interplay of these scales, we have

explored wide ranges of conceivable parameters, namely the chain length N , capture

radius a, and conditions of the solvents expressed in terms of εLJ . By combining

analytic theory and simulations, we have shown that, for a given N , the looping

dynamics in all solvent conditions is primarily determined by the initial separation

of the end points. The many body nature of the diffusive process is embodied in

D(t), which does not vary significantly as the solvent quality changes for a fixed

N . We find that the process of loop formation can be divided quite generally into

equilibrium and kinetic contributions.
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Chapter 3

The Extension of a Homopolymer Under an External Tension

3.1 Introduction

Single molecule nanomanipulation methods have been used to measure the

response of biological macromolecules to mechanical force. Such measurements give

direct estimates of the elasticity of DNA [67], RNA [68], proteins [69, 70], and

polysaccharides [71]. Single molecule experiments allow the study of the tension-

induced stretching of RNA [17, 18, 72] and proteins [18, 73]. A theoretical under-

standing of the resulting force-extension curves (FECs) is desired. Sequence effects

[74] make this a very difficult problem, but stretching of homopolymers by force

provides a potentially simpler case for which the FECs can be calculated.

In a pioneering paper, Pincus [39] considered the strong stretching of ho-

mopolymers in a good solvent. The strong stretching limit corresponds to a large

enough force, f , such that N νa < 〈Z〉 � Na, where ν = 3/5 is the Flory exponent,

N is the number of monomers, a is the size of a monomer, and 〈Z〉 = 〈zN − z0〉 is

the mean tension-induced end-to-end distance (with f = f ẑ). Pincus showed that

the size of the stretched polymer should be determined by an interplay between

the Flory radius RF = N νa and the tensile screening length (or the blob size) [39],

ξP = kBT/f . When f is small, then x = RF/ξP � 1, while in the opposite limit,

x � 1. The scaling assumption is that for arbitrary f , the average end-to-end
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distance can be written as

〈Z〉 = RFΦ(RF/ξP ) (3.1)

Assuming such a scaling argument holds, the FEC can be divided into three regimes.

(i) For small f , we expect a linear increase in the extension of the chain. At

low forces, Φ(x) ≈ x, and hence 〈Z〉 ∝ R2
F × (aβf). (ii) In the strongly stretched

limit, which arises for intermediate forces, the value of 〈Z〉 can be obtained by

dividing the chain into a sequence of aligned tensile blobs (along the force axis)

whose size is [75] ξP ∼ (βf)−1. The monomers contained within each blob behave

as an unperturbed self-avoiding walk. In this case ξP = (βf)−1 ∼ Nν
b , with Nb the

number of monomers in a blob. The linear extension of the chain is then given by

〈Z〉 ∼ ξP ×N/Nb ∼ N(βf)
1
ν
−1 ∼ N(βf)

2
3 . We will refer to this intermediate scaling

regime as the Pincus regime. It should be stressed that this argument is valid only if

ξP/a� 1, which may not be satisfied for a stiff polymer, or a flexible polymer with

small N (see below). (iii) For extremely large forces (beyond the strong stretching

regime), we expect the excluded volume to become irrelevant, as the bonds between

monomers become fully aligned with the z-axis, and inter-monomer interactions

become rare. The FEC in this regime will be model-dependent, with 〈Z〉 ≈ Na2βf/3

for an extensible chain, and 〈Z〉 ≈ Na for a inextensible chain. We will refer to this

behavior as the non-universal regime.

The Pincus scaling description of the stretching of homopolymers is well known.

However, as far as we are aware, a microscopic derivation of the FEC anticipated

by Pincus has not been directly shown. More importantly, it is unclear how the
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FEC of polymers with finite N compares with the predictions of the scaling theory.

In other words, for finite values of N (on the order of 1000), how pronounced is

the Pincus regime? In this paper, we develop a self-consistent, variational theory

based on the Edwards-Singh method [40] to determine the average extension of a

homopolymer in a good solvent. The theory gives excellent agreement with simu-

lations. Surprisingly, neither the theoretical predictions nor simulations display the

Pincus regime for N = 100 or N = 1600. We show that this is due to a finite-size

effect, and show that the Pincus regime emerges only for N ≥ 105. Only when N is

sufficiently large is the concept of the tensile blob (with ξP ∼ aN ν
b ) satisfied, where

N � Nb � 1. Additionally, we show using both theory and simulations that the

tension induced stretching of homopolymers in a poor solvent exhibits a first order

transition between an ensemble of collapsed states and rod-like conformations. The

nature of the transition is dependent on the solvent quality, which is measured in

terms of the relative attraction between the monomers. The theoretical predictions

for the poor solvent case are only in qualitative agreement with the simulations, with

simulations showing that tension-induced transitions occur via a hierarchy of struc-

tures, depending on the solvent quality. Force-dependent structure factors show

that, for a weakly hydrophobic polymer, the transition to the fully extended state

occurs through a variety of structures, depending on the length scales of interest.

3.2 Polymers Under Tension in a Good Solvent

Extensible Polymer: The continuum Hamiltonian for a self-avoiding Gaussian
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chain under tension is taken to be

βH0 =
3

2a2

∫ N

0
ds ṙ2(s)− βf

∫ N

0
ds ż(s) + ∆2, (3.2)

where f is aligned with the z-axis, β = 1/kBT . The excluded volume is represented

by

∆2 =
v0

2

∫ N

0
ds
∫ N

0
ds′ δ[r(s)− r(s′)], (3.3)

with v0 the strength of the self-avoiding interaction, with v0 > 0 in a good solvent.

To compute the force-extension curves (FECs) and compare them to simulations, we

use a self-consistent variational method, originally proposed by Edwards and Singh

[40]. Following the convention in single molecule experiments, we use the term FEC

for the extension changes upon application of force. However, throughout the paper,

we will derive and plot the extension 〈Z〉 as a function of f . A reference Hamiltonian

βH1 =
3

2a2λ2

∫ N

0
ds ṙ2(s)− βf

∫ N

0
ds ż(s), (3.4)

is chosen, and the parameter λ is determined self-consistently. Because we are

interested in calculating the FEC of a self-avoiding chain, the relevant quantity is

the dependence of 〈Z(f)〉0 = 〈zN − z0〉 =
∫N
0 ds 〈ż(s)〉0 on f , where 〈· · ·〉0 indicates

the average with respect to the Hamiltonian βH0 (eq. 3.2). Because it is not possible

to compute the exact average 〈Z〉0, we calculate the difference between 〈Z〉0 and

〈Z〉1 (where 〈· · ·〉1 is the average with respect to βH1), assuming that ∆1 + ∆2 is

small, with

∆1 =
3

2a2

(
1− 1

λ2

) ∫ N

0
ds ṙ2(s). (3.5)
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To first order in ∆1 + ∆2, we obtain [40]

〈Z〉0 − 〈Z〉1 = 〈Z(∆1 + ∆2)〉1 − 〈Z〉1〈∆1 + ∆2〉1. (3.6)

A self-consistent equation for λ is obtained by insisting that 〈Z〉0 ≈ 〈Z〉1, which

leads to the condition

〈Z(∆1 + ∆2)〉1 = 〈Z〉1〈∆1 + ∆2〉1. (3.7)

Throughout this work, we compute averages with respect to βH1 only, so the sub-

scripts on 〈· · ·〉 will be dropped. The terms involving ∆1, ∆2 are easily calculated

using

〈Z∆1〉 − 〈Z〉〈∆1〉 =
1

2
λ(λ2 − 1)

∂〈Z〉
∂λ

=
λ2(λ2 − 1)Na2

6
βf (3.8)

and

〈Z∆2〉 − 〈Z〉〈∆2〉 =
v0

2

∫ N

0
ds
∫ N

0
ds′

∂

∂(βf)
〈δ[r(s)− r(s′)]〉 (3.9)

with 〈δ[r(s)− r(s′)]〉 = (3/2πa2λ2|s− s′|) 3
2 exp (−|s− s′|λ2a2β2f 2/6) (the details of

the calculations are given in Appendix B.2). Using Eqs. (3.7), (3.8), and (3.9), the

self-consistent equation for λ becomes

λ2 − 1 =
v
√
N

λ3

∫ 1

δ
du

1− u√
u

e−Nuλ
2ϕ2/6

=
6v

λ5ϕ2
√
N

{
e−Nλ

2ϕ2/6 −
√
δ e−δNλ

2ϕ2/6 (3.10)

+
ϕ

λ3

√
Nπ

6

(
1− 3

Nλ2ϕ2

)[
erf
(
λϕ

√
N

6

)
− erf

(
λϕ

√
δN

6

)]}
,

where we have defined the dimensionless excluded volume parameter v = (3/2π)
3
2 v0/a

3,

the dimensionless force ϕ = aβf , and where erf(x) is the error function. We have

also included a cutoff, δ, in the integral over u (with u = |s− s′|/N), to account for
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the finite separation between the monomers, which is neglected in the continuum

representation of the Hamiltonian in Eq. 3.4. As the system is truly discrete in

both simulations and experiments, such a cutoff may be necessary in the continuum

limit. We expect δ ∼ λ/N , since the discrete monomers are separated by a distance

|ri+1 − ri| ≈ λa on an average in the reference Hamiltonian, βH1. The cutoff is

usually only imposed in theories that have a self-energy divergence [40, 76, 77, 78],

and is generally not required if there is no divergence inherent in the theory, as is the

case here. However, we will see that this cutoff is essential in order to reproduce the

FECs obtained in simulations. Given a solution λ to the SCE, the linear end-to-end

distance is given by 〈Z〉 = Na2λ2βf/3 (see Appendix B.2).

It is not difficult to show that, as f → 0, a solution to Eq. 3.7 is λ ≈

λ0 ∝ (v2N)
1
10 , giving the expected linear regime, 〈Z〉 ∼ N

6
5v

2
5a × (aβf). We

immediately see that this gives the correct scaling with N and v for low forces, with

〈Z〉 ≈ 〈R2〉f=0 × (βf)/3. We also note that, if we set δ = 0, we exactly recover

(in our notation) the original, tension-free (f = 0) self-consistent equation for a

self-avoiding chain, λ2−1 =
√

6N/π3 v0a
3/λ3 developed by Edwards and Singh [40].

For intermediate f , we can obtain the correct Pincus scaling for large N . If

we assume λ ≈ λ0, we find Nλ2
0ϕ

2 � 1 when ϕ ≈ aβfT ∼ N−
3
5v−

1
5 , defining the

transition force fT into the strongly stretched Pincus regime. For f ≥ fT , we can

neglect terms of order N−1 and exp(−Nλ2ϕ2/6) for large N , and set erf(λϕ
√
N/6) ≈

1. This gives the approximate SCE

λ2 − 1 ≈ v
√

6π

λ4ϕ

[
1− erf

(
λϕ

√
Nδ

6

)]
+O(N−1). (3.11)
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With δ ∼ λ/N , we see that we can neglect the error function in this regime as well

if aβfT ∼ λ
− 3

2
0 v

1
10N−

9
20 � 1. If N is sufficiently large to satisfy this requirement,

the SCE becomes λ2 − 1 ≈ v
√

6π/λ4ϕ + O(vN−
1
4 ). We thus find the approximate

solution in the Pincus regime λ ≈ λP ∝ (v/ϕ)
1
6 . For large N and intermediate

forces, we find 〈Z〉 ∝ Nv
1
3f

2
3 , as is expected of the Pincus scaling [39]. Note that

neglecting terms of order vN−
1
4 may be valid only for extremely large N (on the

order of N ∼ 105). Thus, the onset of the non-linear scaling regime depends on

both v and N , as was anticipated by Pincus.

For sufficiently large ϕ, we can neglect terms of order ϕ−1 in Eq. 3.10, to find an

extended or rod-like solution λ ≈ λE = 1. This root gives 〈Z〉 ≈ Na2βf/3, identical

to the non-interacting average for an extensible chain. This is not surprising; as the

tension becomes large, the excluded volume interaction is not relevant. We also note

that, in this regime, the chain will become greatly overextended. As was shown by

Pincus, the extension beyond the non-linear regime is non-universal and depends on

the precise model used for the homopolymer [39].

Inextensible Polymer: Because the extensible polymer can overstretch for large

forces, which does not occur for real polymers that are linked by covalent bonds,

we wish to develop a theory for an approximately inextensible model. We were

also motivated to consider the inextensible model because Monte Carlo simulations

(which are less computationally expensive, allowing for longer chains to be studied)

hold the distance between successive beads fixed at precisely a, independent of f .
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From the discrete, non-interacting, spring-like Hamiltonian

H[{rn}] =
k

2a2

∑
n

(|∆rn| − a)2 − βf
∑
n

∆zn, (3.12)

the average end-to-end distance, as well as the fluctuations in the transverse and

longitudinal directions can be computed exactly. Defining X = xN − x0 (with x

transverse to the force axis), we find

〈Z〉
Na

=
1

N

∫ ∞
0

dx x2e−k(x−1)2/2 cosh(ϕx)− 1

ϕ
(3.13)

〈Z2〉 − 〈Z〉2

Na2
=

1

N

∫ ∞
0

dx x3e−k(x−1)2/2 sinh(ϕx)−
(〈Z〉
Na

)2

− 2

ϕ

(〈Z〉
Na

)
(3.14)

〈X2〉
Na2

=
1

ϕ

(〈Z〉
Na

)
, (3.15)

where N =
∫∞

0 dx xe−k(x−1)2/2 sinh(ϕx), and we have used 〈Z2〉 = N〈z2
n〉 + N(N −

1)〈zn〉2 in Eq. 3.14. We approximate the Hamiltonian in Eq. 3.12 with a continuous

chain using an Inextensible Gaussian Hamiltonian (IGH) [79, 80]

HI [r(s)] =
3

2a2

∫ N

0
ds
(
ẋ2(s) + y2(s)

α2
1(k, ϕ)

+
ż2(s)

α2
3(k, ϕ)

)
− βg(k, ϕ)

∫ N

0
dsż(s) (3.16)

where α1 and α3 are the effective spring constants in the longitudinal and transverse

directions, respectively, and g is an effective tension. The spring constants α1 and

α3, and the effective tension g, are functions of both k and ϕ. Using the IGH in eq.

3.16, we find

〈Z〉 = Naα2
3βg/3,

〈Z2〉 − 〈Z〉2 = Na2α2
3/3,

〈X2〉 = Na2α2
1/3. (3.17)

Equating the averages in Eq. 3.17 with those in Eqs. (3.13)-(3.15) explicitly gives

the desired IGH in terms of k and f . The full expression for the αi’s and g are
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quite lengthy for general k and f , and we omit them here. However, in the limit as

k →∞, we recover the Freely Jointed Chain (FJC) averages. In the FJC limit, the

expressions for the αi’s and g are quite simple, and we find

α2
1 =

3

ϕ2

(
ϕ coth(ϕ)− 1

)
,

α3 =
3

ϕ2

(
1− ϕ2csch2(ϕ)

)
,

αβg = ϕ
α2

1

α2
3

. (3.18)

These spring constants, αi(k →∞, f), were derived by Hatfield and Quake using a

different method [80], but the effective tension g has been thus far unreported.

We note that this approximate FJC Hamiltonian gives the simple Gaussian

behavior for ϕ → 0, whereas in the limit of ϕ → ∞, we can easily show that

the distributions give the expected form of P (X) = δ(X), P (Y ) = δ(Y ), and

P (Z) = δ(Z −Na), with X = xN − x0, and Y = yN − y0. We therefore expect that

the IGH to be an good approximation for an inextensible chain in the limits of small

and large f , with possible deviations from the correct distribution for intermediate f .

Because of the more complicated form of the Hamiltonian in Eq. 3.16, exact analytic

work is difficult in the inextensible case. We can, however, generate a self-consistent

equation using Eq. 3.7 to determine the FEC of a self-avoiding inextensible chain

in a manner similar to the extensible case. Using the reference Hamiltonian

Hr =
3

2a2λ2

∫ N

0
ds
(
ẋ2(s) + y2(s)

α2
1

+
ż2(s)

α2
3

)
− βg

∫ N

0
ds ż(s), (3.19)

and defining

∆
(IGH)
1 =

3

2a2

(
1− 1

λ2

) ∫ N

0
ds
(
ẋ2(s) + y2(s)

α2
1

+
ż2(s)

α2
3

)
, (3.20)
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we can, to first order in ∆
(IGH)
1 + ∆2 (with ∆2 the excluded volume interaction, eq.

3.3), develop the self-consistent equation 〈Z(∆
(IGH)
1 + ∆2)〉 = 〈Z〉 〈∆(IGH)

1 + ∆2〉,

similar to Eq. 3.7. The final form of the inextensible SCE is similar to that of eq.

3.10, with

λ2 − 1 =
v
√
N

λ3α2
1α3

∫ 1

δ
du

1− u√
u
e−Nλ

2α2
3γ

2u/6, (3.21)

with γ = aβg the dimensionless effective tension. It is possible, albeit complicated,

to show that the solution to Eq. 3.21, with k � 1, will be divided into approximately

the same scaling regions as we found in the extensible case (which we do not explicitly

show here). The roots to the inextensible SCE, determined using Eq. 3.21, are

similar to the extensible roots from Eq. 3.7, with significant differences in the two

models occurring only for aβf ≥ 1. As in the case of the extensible chain, the

expected Pincus scaling of 〈Z〉 ∼ f
2
3 emerges only for very large N . Thus, both

for the extensible chain and the IGH with excluded volume interactions, the linear

behavior and the Pincus regime are obtained (for large N). The behavior of the

FEC in the limit of very large force is clearly model dependent, as predicted by

Pincus [39].

In order to determine if the extensible theory accurately predicts the effect

of excluded volume on a self-avoiding polymer under tension, we have performed

Langevin simulations with N = 100 at various stretching forces (the details are

given in Appendix B.1. To compare our theory (with the self consistent equation

given in eq. 3.10) to simulations, we need two fitting parameters, v0 and δ. We

determine v0 by fitting the simulated FEC in the linear, low force regime, and
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obtain δ by a global fit of the theoretical predictions of the FEC to the results of

the simulation. The scaling laws for the extension as a function of force can not be

accurately determined by simply fitting a linear [33, 81, 82] or log-log [83] plot of

the FEC. Such fits implicitly assume that there exists a well-defined scaling regime,

where 〈Z〉 ∼ f y with y constant. In order to determine the various scaling regimes

of the FEC without imposing such an assumption, we will define the force dependent

effective scaling exponent y(ϕ) such that

y(ϕ) = ∂ log( 〈Z〉 )/∂ log(ϕ). (3.22)

For a true scaling regime to exist, we expect y(ϕ)=const for a non-vanishing range

of φ. In Figure 3.1, we show the best fit of the extensible theory (eq. 3.10) compared

to the simulations for the polymer in a good solvent (v0 > 0). We find v ≈ 58.6 and

δ = 1.6λ/N agrees well with the simulation data. We note that this gives v0 ≈ 178a3,

significantly larger than the hard-core second virial coefficient of v0 = 4πa3/3. It is

known from the Edwards-Singh calculation [40] (with f = 0) that if higher order

terms are included in deriving the self-consistent equation (Eq. 3.7), they merely

renormalize v without altering the scaling behavior. A similar behavior is expected

when f 6= 0. As a result of the renormalization of v, we find that the extracted value

of v from simulations is larger than the value calculated directly from the second

virial coefficient.

We see that the theoretical predictions depend very strongly on the choice of

cutoff, with the δ = 0 theoretical FEC showing very poor agreement with the simu-

lated data for aβf ≥ 0.1. This is somewhat surprising, as a cutoff in the continuum
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Figure 3.1: 〈Z〉 as a function of ϕ for varying ϕ. The dots are the simulation results
with N = 100. The linear regime corresponds to the dimensionless excluded volume
parameter v ≈ 58.6. The best visual fit (solid line) is obtained with δ = 1.6λ/N .
Also shown are the fits with δ = 0 (dotted line). The inset compares the theoretical
predictions (solid line) and the simulations results (dots) for the effective scaling
exponent, y(ϕ).
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limit approximation generally is used only to avoid self-energy divergences in the

theory [40, 76, 77, 78], which are not present here. We also note that neither the

theory nor the simulation predicts a Pincus-like scaling of y ≈ 2/3. We will find

that this is due to the fact that the notion of the unperturbed tensile blob is not

applicable for N = 100 (see below).

In order to asses the conditions under which the Pincus regime can be ob-

served, we plot the theoretical effective scaling exponent y(ϕ) for increasing N in

Fig. 3.2(a). While there is no clear Pincus regime for N=100, the expected 2/3 scal-

ing emerges for larger N . Variation in v (i.e. changing repulsion between monomers)

only effects the depth of the trough in the non-universal regime (see Fig. 3.2(a)), so

adjusting v can not yield the expected Pincus scaling for smaller N . Figure 3.2 also

shows that a very large N ∼ 106 is required in order to see the 2/3 scaling over a

large force range. For small values of N , the inequality N � (ξP/a)
1
ν � 1 required

to observe the Pincus scaling is not satisfied, and the tensile blobs are thus effec-

tively stretched. The width ∆f over which the strong stretching is observed can be

computed using the self-consistent theory. If we define the Pincus regime such that

∂y(ϕ)/∂ϕ ≤ ε (with y defined in Eq. 3.22) for some tolerance ε, we can numerically

determine the dependence of the width of the Pincus regime with respect to N . The

width of the Pincus regime, ∆f , is shown in Fig. 3.2(b) for ε = 0.05, along with a

fit ∆f ≈ 0.018−1600N−1. In the inset, we show the transition force into the Pincus

regime, fT , along with the expected scaling of N−
3
5 . We can extrapolate that the

minimum number of monomers, Nmin, for a self-avoiding polymer to show that the

Pincus regime emerges only when Nmin ≈ 9× 104 for ε = 0.05. Larger values of N
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Figure 3.2: (a) The effective scaling exponent y(ϕ) for N = 102 (—), N = 104 (· · ·),
N = 106 (−−), N = 108 (− · −), and N = 1010 (− · ·−), all with v = 58.6 and
δ = 1.6λ/N obtained theoretically. The inset shows the log-log plot of the extension
vs. force, for the same parameters. (b) The width of the Pincus regime ∆f as a
function of N for ε = 0.05. The inset shows the initial Pincus transition force fT as
a function of N . Also shown is the predicted N−

3
5 scaling.
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are required for the Pincus scaling to continue over an observable interval of f . This

finite size effect is remarkable, because when f = 0 the Flory exponent (ν ≈ 0.6) can

be accurately obtained with N < 100 [84]. Because Nmin is too large for accurate

simulations, it is not possible to explicitly demonstrate the Pincus scaling of f 2/3in

silico. In principle, single molecule AFM or optical tweezer experiments can be used

to confirm the predictions for such large N .

In order to test our inextensible theory, we determine the best fit to a Monte

Carlo simulation of a thick chain [33, 81] with N = 1600. The thick chain is

an inextensible, hard-core excluded volume model, with a configuration rejected if a

triplet of monomers lie within a circle of radius a (see Appendix B.3 for details). Our

variational Hamiltonian in Eq. 3.19 is generated using the spring constant k = 104

in Eq. 3.16. In Fig. 3.3, we compare the FEC and effective scaling exponent (Eq.

3.22) for the simulations and the inextensible theory, in Eq. 3.21. The theoretical

predictions are in very good agreement with the FEC obtained using Monte Carlo

simulations (Fig. 3.3(a)). We find v ≈ 15.7 gives a good fit for the simulation data

for low forces, and again δ = 1.6λ/N gives a good global fit to the simulated data.

In Fig 3.3(b), we see that there is a deflection in y(ϕ) ≈ 2/3 at ϕ ≈ 0.1

(denoted Pincus-like), corresponding to a Pincus-like regime observed in the simula-

tions, and accurately predicted by the theory based on Eq. 3.21. Such a deflection

near y = 2/3 is predicted by the theory for both the extensible and inextensible

Hamiltonians, and can be clearly seen in Fig. 3.2(a) for N = 104. This deflection

shows that the Pincus regime is beginning to emerge, but the width of the regime
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Figure 3.3: (a) Force extension curve for an inextensible chain with N = 1600.
Shown are the simulation data (dots), along with the best fit for the IGH (solid
line) and extensible Hamiltonian (dashed line), with v = 15.7 and δ = 1.6λ/N . (b):
Effective scaling exponent y(ϕ) for the inextensible FJC. Shown are the theoretical
exponents for the IGH (solid) and extensible Hamiltonian (dashed). Also shown is
the non-interacting FJC exponent (dotted line).
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∆f is vanishingly small. We also see the expected return to the non-interacting

FJC behavior for large f . The fit is, however, quite poor for aβf ≈ 1 − 4, where

the effective scaling exponent differs greatly from the simulation data. Figure 3.3(a)

shows that the poor fit for intermediate f originates with a slight overestimation in

〈Z〉 vs. f near aβf ≈ 1, followed by an underestimation in 〈Z〉 near aβf ≈ 3. This

over- and underestimation produces a FEC that is not monotonically increasing with

f , a completely non-physical result. The small differences between the theoretical

and simulated FECs are greatly exaggerated by the effective scaling exponent in the

intermediate force range.

The reason for the discrepancy between theory and simulation for intermedi-

ate forces is that, in the approximate representation for the (nearly) inextensible

chain, extensions from |∆rn| = a are allowed (see Appendix B.3). As a result,

the chain can stretch somewhat, with an average monomer spacing exceeding a.

For this reason, less force is required to extend the chain at intermediate forces,

producing an overestimate of the FEC. The consequences of the minor disagree-

ment between theory and simulations are exaggerated when the effective exponent

y(ϕ) = ∂ log( 〈Z〉 )/∂ log(ϕ) is computed (Fig 3.3(b)). We see, however, that both

the extensible and inextensible polymer models in a good solvent accurately predict

the Pincus-like regime observed for aβf ∼ 10−2−10−1. At high forces, the response

to the force depends on the precise model used to account for chain connectivity.

As a result, the predictions for the extensible and inextensible polymer models are

vastly different when aβf > 1.
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3.3 Reexamination of the Blob Concept for Finite N

In order to better understand the unexpected scaling behavior of the FEC’s for

finite N , a more detailed study of the physical processes of extension are required.

There are three mechanisms by which the average extension of an extensible chain

can increase as a function of force. The first is orientation of the polymer along the

force axis. We expect that, for small f , the force will cause alignment with the z

axis, with little perturbation of the chain conformation. In the second mechanism,

the extension of the polymer is determined by an interplay between ξP (a length

scale below which f is not relevant), and N (which effectively determines the number

of aligned blobs along the force direction). We expect this mechanism will occur for

intermediate forces, and for sufficiently large N , cause the emergence of the Pincus

regime. As these blobs are stretched, 〈Z〉 will increase without significantly affecting

the alignment along the f axis. For large forces we expect overextension to dominate,

when the chain is fully aligned and the monomers on a length scale ξP are stretched.

In order to see these physical mechanisms of the extension in the simulations of

finite, extensible polymers with N = 100, we compute the effective force-induced

alignment exponent ω, given by 〈Z/|R|〉 ∼ fω, and the effective overextension

exponent µ, given by 〈Z/L〉 ∼ fµ. If the polymer is perfectly aligned along the

z-axis, we expect that the exponent ω → 0 (i.e. 〈Z/|R|〉=const). Likewise, if

the extension is dominated by the overextension of the chain, we expect µ → 1

(i.e.〈Z〉 ∼ L(f) ∝ f)The variations of the effective exponents ω and µ for N = 100

as f changes are shown in Fig. 3.4(a). We see that the polymer aligns with the z
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Figure 3.4: (a) Contributions to the effective scaling exponent y(ϕ). Shown are y(ϕ)
(dots), as well as the alignment exponent ω (solid line) and overstretching exponent
µ (dashed line). (b) The ensembles of structures at aβf = 0 (red), 0.5 (green), and
8.0 (blue) are given to demonstrate the three step mechanism of the extensible chain
stretching, i.e., (i) alignment, (ii) disruption of tensile blob, and (iii) overstretching.
(c) The blob density as a function of force. The inset shows a log-log plot of the
monomer density inside the blob, showing three distinct scaling regimes. Scaling
relation ρm vs f is obtained by fitting the data above red line in the inset.

axis at relatively small forces, with full alignment (ω → 0) occurring for ϕ ≈ 0.1.

Overextension does not begin until ϕ ≈ 3 (in the non-universal regime, see Fig

3.4(a)), giving a wide range of forces in which stretching of the monomers inside of

the blobs contributes to the behavior of 〈Z〉. Representative snapshots of the chain

configuration in the three regimes are shown in Fig. 4(b).

The absence of a clear signature of the Pincus regime, even for N = 1600, is

intimately related to the breakdown of the inequality N � (ξP/a)
1
ν � 1. For large
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enough N , when the Pincus regime in the FEC is observed (Fig 3.2(a)), the size

of the blob ξP ≈ kBT/f is expected to scale as ξP ≈ aNν
b , where Nb (presumed to

be much greater than unity) is the number of monomers inside of the blob. The

monomer density, ρm, inside the blob will scale as

ρm ∼ Nb/ξ
3
p ∼ ξ1/ν−3

p ∼ (f/kBT )3−1/ν . (3.23)

In good solvents, ν = 3/5, and hence ρm is given by ρm ∼ f 4/3 ≡ fw. If the effective

value for w with finite N exceeds w = 4/3, as could be the case when the force

locally stretches the chain segments inside ξP , we will find 〈Z〉 ∼ f y with y 6= 2/3

in the intermediate force regime.

In order to provide insights into the effective blob response to f for the self-

avoiding extensible polymer of the finite size (N=100), we have calculated the de-

pendence of the monomer density inside the blob on f . To obtain the scaling

behavior between monomer density and the force from the simulations, we perform

the following steps:

1. Make a sphere of radius b = ξP/2, with ξP (= kBT/f), centered on the ith

monomer and count the number of monomers (Nb) within the sphere whose

volume is b3. The density of monomers within the sphere center at ith monomer

is ρm(i) ∼ Nb/b
3.

2. Move to the (i+ 1)th monomer, and compute the density again.

3. When i = N , the average density is computed using 〈ρm(f)〉 = 1/N
∑N
i=1 ρm(i).

4. Repeat this procedure for the ensemble of structures obtained at each force.
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Although this method of computing the monomer density from the polymer struc-

tures is very crude, the scaling exponent between ρm and f should not be affected

by the details of the calculation. The results are shown in Fig. 3.4(c). We find that

ρm ∼ f 1.6 in the intermediate force regime (data above the red base line in the inset

of Fig. 3.4(c)) . From Eq. 3.23, a density scaling of f 1.6 implies ξp ∼ N0.71
b 6= N0.60

b ,

which indicates that there is no force range in which ideal blobs can be observed

for small N . The observed scaling exponent for Nb is greater than that for a sim-

ple self-avoiding walk, which suggests that the monomers inside of the blob do not

behave as unperturbed SAW’s. Thus, the fundamental premise used in the blob

argument used to derive the Pincus regime breaks down for small N . The tensile

force is felt by the monomers within the blobs, which swell due to the stretching

of monomers inside ξP . The density of monomers inside the blob scales differently

than is expected for large values of N , and provides the microscopic reason why

〈Z〉 ∼ fx with x < 2/3 for a finite-sized self-avoiding chain. As N increases, the

intermediate force regime can be large enough so that ρm ∼ f
4
3 , which is needed to

see the Pincus scaling 〈Z〉 ∼ f
2
3 .

3.4 Homopolymer in a Poor Solvent

In a poor solvent, the second virial coefficient (v0) becomes negative, with the

strength of the attractive interactions between monomers exceeding those between

the monomers and the solvent. As a result, the polymer adopts collapsed, globular
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conformations at temperatures below the Flory Θ temperature. In poor solvents, the

Edwards model is modified to include an effective three-body interaction, to ensure

that averages of physical observables are convergent. The extensible Hamiltonian

in a poor solvent is βHP = βH0 + ∆3, where H0 is defined in Eq. 3.2 and

∆3 =
w3

6

∫ N

0
ds
∫ N

0
ds′

∫ N

0
ds′′ δ[r(s)− r(s′)] δ[r(s′)− r(s′′)]. (3.24)

The self-consistent equation for the extension in this case becomes 〈Z(∆1 + ∆2 +

∆3)〉 = 〈Z〉〈∆1 + ∆2 + ∆3〉, similar to Eq. 3.7. We have already determined the ∆1

and ∆2 terms, and need only compute 〈Z∆3〉 − 〈Z〉〈∆3〉 = a∂/∂ϕ〈∆3〉. The SCE

for an extensible polymer in a poor solvent can then be written

λ2 − 1 =
v
√
N

λ3

∫ 1

δ
du

1− u√
u
e−Nλ

2ϕ2u/6 (3.25)

+
w

λ6

∫ 1

δ
du1

∫ 1−u1

δ
du2

(1− u1 − u2)(u1 + u2)

u
3/2
1 u

3/2
2

e−Nλ
2ϕ2(u1+u2)/6,

where we have defined the dimensionless w = (3/2π)3 w3/a
6. The inextensible self-

consistent equation is similar, with a similar root structure, and we will therefore

omit such a calculation here. Again, we have included a cutoff δ in the integrals,

as was done for the two-body case. However, the three-body integral in Eq. 3.25

is clearly divergent for δ = 0 (scaling as δ−1/2), unlike the two-body term. This

divergence must be removed for the self-consistent equation to converge in the limit

of N → ∞, by renormalizing w. For f = 0, we can evaluate the three-body

integral exactly, and find that, with δ ∼ λ/N and as N → ∞, it diverges as

∼ 16/3
√
δ. The N → ∞ divergence is therefore removed if we renormalize w =

w̄/
√
N . It can be shown that the self-consistent equation has a globular solution
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λ ≈ λg = (4w̄/|v|) 1
3N−

1
6 for f = 0 and large N , giving the expected 〈R2〉 ∼ N

2
3 for

a homopolymer in a poor solvent. However, the final term of Eq. 3.25 can not be

evaluated exactly for non-zero ϕ, so we must resort to numerical work in order to

determine the roots for larger forces.

We find that Eq. 3.25 has three unique roots beyond a critical force fc, which

correspond to collapsed (λc), extended (λE), and intermediate (λb) structures. Nu-

merically, we find 0 < λc ≤ λg, and λE ≈ 1 for f > fc. Our interpretation of λc

as corresponding to a collapsed state is only qualitative, because an extensible ho-

mopolymer (used as the reference Hamiltonian in the calculations) in a poor solvent

does not have a unique ‘collapsed’ state. With the interpretation of λg and λE as

the roots signifying the two local minima of the free energy for the collapsed and

extended states, we can interpret the intermediate root λb as a local maximum of the

free energy, i.e. the barrier (or saddle point) between the two states. Again, this in-

terpretation is qualitative only, because there is no well defined ‘barrier’ between the

collapsed and extended states. In Fig. 3.5(a) we show the extension 〈Z〉/L = ϕλ2/3

for the three solutions to the self-consistent equation (3.25) for v = −5 and w̄ = 1

(arbitrarily chosen), and with δ = 1.6λ/N . We see aβfc ≈ 3.5 is the critical force

at which the extended and intermediate roots emerge. We expect fc to depend on

the particular values of v and w̄, and expect it will be an increasing function of

|v|/w̄. In this triple-root regime, the polymer will be in bistable equilibrium be-

tween the collapsed ensemble and extended state, suggesting the development of a

pearl-necklace structure for intermediate f . The collapsed and intermediate solu-

tions coalesce for a finite f = fE (Fig 3.5(a) inset). For f > fE, λc and λb vanish,
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leaving the extended root λE the only solution to Eq. 3.25. This shows, as ex-

pected, that the inter-monomer interactions become irrelevant for sufficiently high

force, and 〈Z〉 ∼ Na×(aβf)/3 as f →∞. A schematic picture of the free energy as

a function of the extension 〈Z〉 is shown in Fig. 3.5(b-e), for varying force, showing

our qualitative interpretation of the solutions to the self-consistent equation (3.25).

A similar multi-root structure has been previously predicted for a polymer in

a poor solvent with electrostatic interactions [78, 85, 86]. These references note the

emergence of multiple roots beyond a critical value of the backbone charge density

(in this respect, equivalent to the tension), and qualitatively identify the meaning

of the multiple roots as we have. However, because the Edwards Singh method can

not predict the barrier height or the depth of the minima, we can not quantitatively

predict 〈Z〉 for a polymer in a poor solvent. This qualitative picture, namely the

tension-induced globule to rod transition which should occur when f > fc, is con-

firmed using explicit simulations of force-induced stretching of a homopolymer in a

poor solvent. The simulations (see below) also provide a microscopic picture of the

structural transitions that occur as w3, appearing in Eq. 3.25, increases.

In Figure 3.6, we show the average linear extension for weakly hydrophobic

(a) and strongly hydrophobic (b) polymers as a function of force. The weakly hy-

drophobic polymer does show a transition between two linear scaling regimes, with

the low force behavior of 〈Z〉 ≈ 〈R2〉f=0 × (βf)/3, and the high force behavior

returning to the non-interacting 〈Z〉 = Na2βf/3. The transition is very smooth,

and does not show the expected first order transition due to the weak nature of the
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Figure 3.5: (a): The extension 〈Z〉/L = (aβf)λ2/3 for the three roots of the self-
consistent equation in a poor solvent for v = −5 and w̄ = 1, with δ = 1.6λ/N :
λg (solid line), λb (dashed line), and λE (dotted line). The three values for λ are
shown in the inset. (b) For f < fc, the polymer is globular. (c) In the force range
fc < f < fE, the chain conformations are a combination of globular and extended
states. (d) at f = fE, the globular configuration is marginally stable. (e) For
f > fE, the chain is in the fully extended state.
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Figure 3.6: (a) Extension as a function of force for a weakly hydrophobic polymer
(ε in Eq. B.2 is 0.5). (b) Same as (a), except the chain is strongly hydrophobic (ε =
1.5). The insets show the effective scaling exponent y(ϕ) (Eq. 3.22). The transition
to the extended state in (a) appears continuous. For the strongly hydrophobic
polymer, the globule→ rod like transition is sharp. The transition force depends on
the energetic details of the globule. The heterogeneity of the transition is manifested
as the broad variations of transition force. The ensemble of structures found at the
globule-to-rod transition force (fc = 1.8kBT/a) are shown in (c).
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interactions, as shown in the inset. The strongly hydrophobic chain does show a

first order transition around aβfc ≈ 1.8, but with broad dispersion. Variations in

the critical unbinding force are substantial from molecule to molecule, due to the

microscopic heterogeneity of the globular structures. The observed plateau in Fig

3.6(b) is due to full alignment of the globule along the z-axis, as was the case for

the self-avoiding polymer (Fig 3.4(a)), and seen in the theoretical predictions (Fig

3.5). There is a large range of forces over which the FEC does not resemble either

the globular or fully extended states, showing the bistable equilibrium between the

two.

3.5 The Scattering Function Under Force

The analysis using scattering experiments is extremely useful for investigating

the overall polymer configurations, because the scattering intensity as a function

of transfer momentum (I(q) = 〈1/N2∑
i<j exp (iq · rij)〉) provides structural infor-

mation on all length scales, while the FEC only provides information about the

extension of the chain. By comparing with the well-known scaling relations of I(q)

with respect to q, one can envision the configurations of the polymer over all length

scales. For example, for the various structures we expect I(q) ∼ q−x, with x = 2

(Gaussian chain), x = 1 (rod), x = 4 (globules), and x = 5/3 (polymer in a good

solvent) [87]. We calculated the scattering intensity by integrating the distance
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Figure 3.7: (a) I(q) for a homopolymer in good solvent under varying tension,
(b) I(q) for weakly hydrophobic homopolymer under tension, (c) I(q) for strongly
hydrophobic homopolymer under tension. The arrows in (a), (b), and (c) indicate
increasing f values. The tension-induced structural changes of a homopolymer are
illustrated in three solvent conditions (good, near theta, and poor solvent conditions)

distribution function obtained from the ensemble of structures,

I(q, f) =
∫
d3rP (r, f)eiq·r = 4π

∫ ∞
0

dr r2P (r, f)
sin qr

qr
, (3.26)

with q = |q|. In our simulations performed under varying tension values, we obtained

4πr2P (r, f) directly from the ensemble of structures by collecting the histograms

between the interval of (r, r + dr) with dr = 0.2a.

An inspection of the scattering intensity I(q) of a homopolymer in different sol-

vent conditions, shown in Fig. 3.7, along with snapshots of representative structures,

succinctly summarizes the series of dynamic processes during the tension-induced

structural transitions. (i) In good solvents (Fig 3.7(a)), the entire chain of N=100 is

characterized by the tensile blob under a small force (I(q) ∼ q−5/3 for q ∼ (0.1−1)).

As f increases, the tensile blobs continuously change to the rod state, which is in-

dicated by I(q) ∼ q−1. (ii) For the weakly hydrophobic condition (with εLJ = 0.5,
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see Fig. 3.7(b)), the chain has hierarchy of structures in terms of distinct length

scales. When f is small, both signatures of Gaussian (I(q) ∼ q−2) and globule

structure (I(q) ∼ q−4) are found on small length scales q−1 ≤ 1, while the chain

is characterized by the polymer in a good solvent for q−1 ≥ 1. As f increases, the

globule to rod transition of the self-avoiding chain takes place continuously. (iii)

For the strongly hydrophobic condition (Fig (c)), the whole chain is collapsed to

compact globule (I(q) ∼ q−4. The globular structure is maintained so that all I(q)’s

are practically identical for q−1 ≥ 1 as long as f < fc. When f becomes greater

than fc, a sharp transition occurs, reflecting the globule (I(q) ∼ q−4) to the rod

(I(q) ∼ q−1) transition. The first order nature of force-induced stretching has been

previously described using scaling arguments [88].

3.6 Conclusions

We have developed a general theory for describing the response of homopoly-

mers to an external force for arbitrary values of N , the number of monomers. By

using both an extensible and inextensible model for the polymer in a good solvent,

we show that the theoretical results are in accord with the predictions of the Pincus

scaling laws for large N . The mean chain extension depends linearly on the force

at small f , and scales as 〈Z〉 ∼ f
2
3 for intermediate f and sufficiently large N .

Simulations of an extensible chain with N = 100 and the thick chain model with

N = 1600 were performed to validate the theory. The theoretical predictions for
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the force-extension curves are in excellent agreement with the simulation results.

Surprisingly, the expected Pincus scaling is not observed in simulations, even for

N = 1600. The theory predicts that the width ∆f for observing the Pincus regime

for N ∼ O(103) is vanishingly small. Only when N exceeds ∼ 105 can the strong

stretching limit (〈Z〉 ∼ f
2
3 ) be unambiguously observed. The failure to observe the

Pincus scaling is linked to the breakdown of the notion that the monomers inside

the well-defined tensile blobs are unperturbed. For N ∼ O(103), the monomers

inside each blob feel the effect of force, which essentially violates the required in-

equality N � (ξP/a)
1
ν � 1. Other scaling theories that depend on the unperturbed

tensile blob concept, such as the statistics and dynamics of a cylindrically confined

self-avoiding chain [77, 89, 90], may also show a similar finite size effect.

Applying tension to a polymer in a poor solvent produces a much richer set

of structures, because of the attractive monomer-monomer interactions that, with

f = 0, leads to globule formation provided T < TΘ. For this case, the theoretical

analysis predicts that the globule to stretched (i.e. rod-like conformation) transition

should occur abruptly via a first-order transition when f exceeds a critical force.

While the simulation results are in accord with the theoretical predictions, they

show several structural transformations, depending on the quality of the solvent.

The hierarchy of structures are reflected in the force-dependent structure factor.

For weakly hydrophobic polymers (T ≈ T+
Θ ) at small forces, the scattering function

I(q) shows signatures of Gaussian and globular structures at large length scales

(small q), whereas at small length scales the polymer behaves as a self-avoiding

chain. At large forces, the transition to a rod-like conformation occurs. These
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structural transitions occur continuously as f increases for a weakly hydrophobic

chain. Strongly hydrophobic chains (T < TΘ) adopt globular structures at small

forces. The conformation remains globular as long as f < fc ≈ kBTΘ/Rg. The

globular nature of the conformation is reflected in the I(q) ∼ q−4 scaling. If f > fc,

there is an abrupt transition to the rod-like state, which is reflected in the I(q) ∼ q−1

scaling.

The predictions made here can be, in principle, validated with single molecule

AFM or optical tweezers experiments. Our simulations show that the forces required

to stretch the homopolymer (N ≈ 100) is on the order of about 30 pN, which are

easily accessible in current experiments.
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Chapter 4

The Effect of Linkers on the Equilibrium and Kinetic Properties of

RNA Hairpins

4.1 Introduction

A greater understanding of the process of protein or RNA folding, needed to

understand many biologically relevant systems [91, 92] and diseases [93], can be

attained by the study of the underlying energy landscape of the system [94, 95, 19].

It is possible to construct the shape of the energy landscape, including the energy

scales of ruggedness [96, 97], using dynamical trajectories that are generated by

applying a constant force (f) to the ends of proteins and RNA [98, 20, 99, 23]. For an

experiment spanning a time such that the system samples the conformational space

ergodically, the distribution P (X) should converge to the equilibrium distribution

function Peq(X). Using this strategy, laser optical tweezer (LOT) experiments have

been used to obtain the sequence-dependent folding landscape of a number of RNA

and DNA hairpins [100, 20, 101, 23], using X = Rm, the end-to-end distance of the

hairpin that is conjugate to f , as a natural reaction coordinate.

In LOT experiments, the hairpin is held between two long handles (DNA [23]

or DNA/RNA hybrids [100]), whose ends are attached to polystyrene beads (Fig.

4.1a). The dynamics of the RNA extension (zm = z3′−z5′ ≈ Rm, provided transverse
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Figure 4.1: a. A schematic diagram of the optical tweezers setup used to measure
the hairpin’s folding landscape. Two RNA/DNA hybrid linkers are attached to
the 5’ and 3’ ends of the RNA hairpin, and a constant force is applied to one end
through the bead. b. The ensemble of sampled conformations of the H-RNA-H
system during the hopping transitions obtained using L=25 nm and lp = 70 nm.
The illustration is created using the simulated structures collected every 0.5 ms.
An example of the time trace of each component of the system, at f = 15.4 pN, is
given L for both linkers is 25 nm. zm(= z5′ − z3′) and zsys(= zp − zo) measure the
extension dynamics of the RNA hairpin and of the entire system respectively. The
time averaged value zT (t) = 1

t

∫ t
0 dτzsys(τ) for the time trace of zsys is shown as the

bold line, displaying the ergodicity of the system. The histograms of the extension
are shown on top of each column.
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fluctuations are small) in the presence of f can not be observed directly in an exper-

iment, and is indirectly obtained in a LOT experiment by monitoring the distance

between the attached polystyrene beads (zsys = zp − zo), one of which is optically

trapped at the center of the laser focus (Fig 4.1a). The goal of these experiments is to

extract the intrinsic folding landscape (βF o
eq(zm) ≡ − log[Peq(zm)] ≈ − log[Peq(Rm)])

and the intrinsic dynamics of the hairpin (intrinsic meaning in the absence of han-

dles), using the f -dependent trajectories zsys(t). To achieve these goals in a LOT

experiment, the fluctuations in the handles should minimally perturb the dynamics

of the hairpin in order to probe the true dynamics of a molecule of interest. How-

ever, depending on the handle length, L, and the handle stiffness, lp, the intrinsic

fluctuations of the handles can not only disort the signal from the hairpin, but also

directly affect its dynamics. The first is a problem that pertains to the measurement

process, while the second is a problem of the coupling between the instruments and

the dynamics of RNA.

Here, we use coarse-grained molecular simulations of a RNA hairpin to show

that in order to obtain accurate βFeq(Rm) under a constant external tension, the

linkers used in the LOT must be stiff, i.e., the value of L/lp has to be small. Sur-

prisingly, the force-dependent folding and unfolding rates that are directly measured

using the time traces, zm(t), are closer to the intrinsic values (the rates as measured

without handles attached) for larger L/lp, i.e. more flexible handles. Most impor-

tantly, accurate estimates of the f -dependent hopping rates over a wide range of

f -values, in the absence of handles, can be made using βFeq(R), in the presence

of handles obtained at f = fm, the transition midpoint at which the native basin
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of attraction (NBA) and the unfolded basin of attraction (UBA) of the RNA are

equally populated. The essential physics of the system is captured using a gener-

alized Rouse model (GRM), in which there is a favorable interaction between the

two non-covalently linked ends. The GRM gives quantitative agreement with the

simulation results. We provide a framework for using the measured folding land-

scape of nucleic acid hairpins at f ≈ fm to obtain f -dependent folding and unfolding

times and the transition state movements as f is varied [102, 103, 104, 105, 106, 107].

4.2 Modeling the LOT experiments

In order to extract the folding landscape from LOT experiments, the time

scales associated with the dynamics of the beads, handles, and the hairpin have to

be well-separated [108, 109, 110]. The bead fluctuations are described by the over-

damped Langevin equation γdxp/dt = −kxp + F (t) where k is the spring constant

associated with the restoring force, and the random white-noise force F (t) satisfies

〈F (t)〉 = 0 and 〈F (t)F (t′)〉 = 2γkBTδ(t − t′). The bead relaxes to its equilibrium

position on a time scale τr = γ/k. In terms of the trap stiffness, kp, and the stiffness

km associated with the Handle-RNA-Handle (H-RNA-H; see Fig. 1), k = kp + km.

With γ = 6πηa, a = 1µm, η ≈ 1cP, kp ≈ 0.01 pN/nm [111], and km ≈ 0.1 pN/nm,

we find τr ≤ 1 ms. In LOT experiments [108, 110], separation in time scales is

satisfied such that τ oU ≈ τ oF � τr at f ≈ fm, where τ oU and τ oF are the intrinsic values

of the RNA (un)folding times in the absence of handles.
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Since zm is a natural reaction coordinate in force experiments, the dispersion

of the bead position may affect the measurement of Feq(zm). At equilibrium, the

fluctuations in the bead positions satisfy δx2
eq ∼ kBT/(kp + km) ∼ kBT/km, and

hence km should be large enough to minimize the dispersion of the bead position.

The force fluctuation, δf 2
eq ∼ kBTk

2
p/(kp + km), is negligible in the LOT because

kp � km, and as a result δfeq/fm ∼ 0, since δfeq ≈ 0.1 pN while fm ∼ 15 pN. Thus,

we model the LOT setup by assuming that the force and position fluctuations due

to the bead are small, and exclusively focus on the effect of handle dynamics on the

folding landscape and hopping kinetics of RNA (Figs. 4.1a-b).

To study the effects of handles on hairpin formation, we used the self-organized

polymer (SOP) model of the P5GA hairpin [72], and applied a force f = fm ≈ 15.4

pN (see Appendix C.1 for details of the simulation). The force is exerted on the end

of the handle attached to the 3’ end of the RNA (point P in Fig.4.1a), while fixing

the other end (point O in Fig.4.1a). Simulations of P5GA with L=25 nm and lp = 70

nm show that the extension of the entire system (zsys = zp− z0) fluctuates between

two limits centered around zsys ≈ 50 nm and zsys ≈ 56 nm (Fig. 4.1b). The time-

dependent transitions in zsys between 50 nm and 56 nm correspond to the hopping

of the RNA between the NBA and the UBA. Decomposing the system’s extension

as zsys = z5′
H +zm+z3′

H , where z5′
H(= z5′−zo) and z3′

H(= zp−z3′) are the extensions of

the handles parallel to the force direction (Fig. 4.1a), shows that zsys(t) accurately

reflects the transitions in zm(t) (Fig. 4.1b). Because the simulation time is long

enough for the harpin to ergodically explore the conformations between the NBA

82



and UBA, the histograms collected from the time traces amount to the equilibrium

distributions Peq(X) where X = zsys or zm (Fig 4.1B. To establish that the time

traces are ergodic, we show that zT (t) = 1
t

∫ t
0 dτzsys(τ) reaches the thermodynamic

average (≈
∫∞
−∞ zsysPeq(zsys)dzsys=53.7 nm) after t ≥ 0.1 sec (the magenta line on

zsys(t) in Fig. 4.1b).

Fig. 4.1b shows that the handles fluctuate along the force axis, even in the

presence of tension, which results in slight differences between Peq(zsys) and Peq(zm).

Comparison between the free energy profiles obtained from zsys(t) and zm(t) can be

used to investigate the effect of the characteristics of the handles on the free energy

landscape. To this end, we repeated the force-clamp simulations by varying the

contour length (L = 5 − 100 nm) and persistence length (lp = 0.6 and 70 nm) of

the handles. Fig. 4.2 shows that the discrepancy between the measured free energy

Feq(zsys) (dashed lines in green) and the molecular free energy Feq(zm) (solid lines in

red) increases for the more flexible and longer handles The solid black lines show the

intrinsic free energy (with no handles), and shows that attaching handles stabilizes

the folded state. For large L and small lp, the basins of attraction in Feq(zm) are not

well resolved. The largest deviation between Feq(zsys) and Feq(zm) is found when

lp = 0.6 nm and L = 25 nm (L/lp ≈ 40) (the graph enclosed by the orange box in

Fig. 4.2a). In contrast, the best agreement between Feq(zsys) and Feq(zm) is found

for lp = 70 nm and L = 5 nm (the graph inside the magenta box in Fig. 4.2),

which corresponds to L/lp ≈ 0.07. Thus, measurement of the free energy landscape

requires the use of stiff handles. In the LOT experiments, L/lp ≈ 6−7 [100, 20, 23].
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Figure 4.2: The free energy profiles, Feq(zsys) (dashed line in green) and Feq(zm)
(solid line in red), calculated using the histograms obtained from the time traces
zsys(t) and zm(t) for varying L and lp. Feq(zsys) and Feq(zm) for a given lp and
different L are plotted in the same graph to highlight the differences. The intrinsic
free energy F o

eq(zm), the free energy profile in the absence of handle, is shown in
black. The condition that produces the least deviation (lp = 70 nm, L = 5 nm) and
the condition of maximal difference (lp = 0.6 nm, L = 25 nm) between Feq(zm) and
Feq(zsys) are enclosed in the magenta and orange boxes, respectively.
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4.3 The Generalized Rouse Model

In order to establish the generality of the relationship between the free energy

profiles as measured by zm and those measured by zsys, we introduce an exactly

solvable Generalized Rouse Model (GRM) that minimally represents the system of

RNA and handles (Fig. 4.3a). We mimic the hairpin using a Gaussian chain with

N0 bonds and Kuhn length a. The endpoints of the RNA mimic are harmonically

trapped in a potential with stiffness k, as long as they are within a cutoff distance

c = 4nm. Two handles, each with Nh bonds and Kuhn length b, are attached to the

ends of the RNA. We fix one endpoint of the entire chain at the origin, and apply

a force fm ≈ 15.4 pN to the other end. This gives the discrete Hamiltonian

βH =
3

2b2

Nh∑
i=1

(ri+1 − ri)
2 +

3

2b2

2Nh+N0∑
i=Nh+N0+1

(ri+1 − ri)
2 − βf · (rN − r1) + βk0r

2
1

+
3

2a2

Nh+N0∑
i=Nh+1

(ri+1 − ri)
2 + βV [rN−Nh+1 − rNh+1], (4.1)

where

V [r] =


kr2 |r| ≤ c

kc2 |r| > c

. (4.2)

The first two terms in equation (4.1) are the discrete connectivity potentials for

the two handles, each with Nh bonds (Nh + 1 monomers), and with Kuhn length

b. The mechanical force f in the third term is applied along the z direction, with

|f | = fm = 15.4 pN. We also fix the 5’ end of the system with a harmonic bond of

strength k0 = 2.5×104 pN·nm−1 in the fourth term of eq. 4.1. The fifth term mimics

the RNA hairpin with N0 bonds and spacing a = 0.5 nm. Interactions between
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the two ends of the RNA hairpin are modeled as harmonic bond with strength

k ≈ 0.54 pN·nm−1 that is cut off at c = 4 nm (eq. 4.2). When |Rm| exceeds

4nm, the bond is broken, mimicking the unfolded state. This minimal model treats

the complicated interactions of the P5GA hairpin as a unified interaction at the

endpoints, appropriate because of the all-or-none transition from the extended to

the folded state seen in the simulations (Fig. 4.1).

The distribution functions of both Rm (≈ zm at high f) and Rsys (≈ zsys at

high f) are exactly solvable in the continuum representation,

βH[r(s)] =
3

2b2

∫ Nh

0
ds r2(s) +

3

2a2

∫ N−Nh

Nh

ds r2(s) +
3

2b2

∫ N

N−Nh
ds r2(s) (4.3)

+βk0r
2
0/2− βf(zL − z0) + βV [r(N −Nh)− r(Nh)]

with V [r] given in eq. 4.2. The condition that the 5’ end of the chain is fixed

(i.e. k0 → ∞) can be easily satisfied in the continuum limit with a delta function

restriction (δ[r0]) in the averages. As each segement of the chain is Gaussian, we

can then compute

〈· · ·〉GRM =
∫
d3r1d

3r2d
3r3(· · ·) ZG(r1;Nh, b)ZG(r2 − r1;N0, a) (4.4)

×ZG(r3 − r2;Nh, b)e
βf ·r3−βV [r2−r1]

where r(Nh) = r1, r(N − 2Nh) = r2, and r(N) = r3, and where each segment of the

chain has the Gaussian propagator

ZG(r;N, a) =
(

3

2πNa2

) 3
2

exp
(
− 3r2

2Na2

)
(4.5)

We are interested in the distribution functions Peq(Rsys) = 〈δ[r(N) − Rsys]〉GRM

and Peq(Rm) = 〈δ[r(N − Nh) − r(Nh) − Rm]〉GRM . Because of the relatively high
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Figure 4.3: Free energy profiles for the GRM. a. A schematic diagram of the GRM,
showing the number of monomers (N0 and Nh) and Kuhn lengths (a and b) in
each region of the chain, the harmonic interaction between the ends of the RNA
mimic, and the external tension. b. The free energy profile for a fixed b(= a/3) and
increasing Nh as a function of Rsys ≈ zsys. The barrier heights decrease and the well
depths increase for increasing Nh. c: The free energy profile for fixed Nh = 20 and
varying b. The barrier heights decrease and the well depths increase for increasing
b. In both b and c, the profiles are shifted so that the positions of the local maxima
and minima coincide with those of the intrinsic free energy (with Nh = 0).
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external tension (15.4pN) applied to the system, we note that Peq(zm) ≈ Peq(Rm)

and Peq(zsys) ≈ Peq(Rsys). Both of these averages can be computed directly, with

Peq(zm) =
Rm

N
e−3R2

m/2a
2N0−βV [Rm] sinh(βfRm) (4.6)

Peq(zsys) =

√
3

πb2Nh

sinh(βfRsys)

N

∫ ∞
0

dy y sinh
(

3yRsys

Nhb2

)
×e3y2/2N0a2−3(y−Rsys)2/4Nhb2−βV [y] (4.7)

N =
∫ ∞

0
dy ye−3y2/2a2N0−βV [y] sinh(βfy) (4.8)

To model the P5GA system using the GRM, we choose our parameters (k, N0, and

a) such that the handle-free distributions are closely matched by Peq(zm). Note

that Peq(Rm) in the GRM, eq. 4.6, is independent of the handle characteristics (Nh

and b), which agrees with the relative invariance of Peq(Rm) seen in the simulations

(solid red lines in Fig. 4.1). We find that choosing N0 = 20, a = 0.5nm, and

k = 0.54pN/nm gives good agreement with the P5GA free energies (solid black line

in Fig. 4.3b-c).

While the stiffness in the handles of the simulated system (Fig. 4.1) cannot

be accurately modeled using a Gaussian chain, the primary effect of attaching the

handles is to alter the fluctuations of the endpoints of the RNA. By equating the

longitudinal fluctuations for the WLC, 〈δR2
||〉WLC ∼ Ll−1/2

p (βf)−3/2, with the fluc-

tuations for the Gaussian handles, 〈δR2
||〉G ∼ Lb, we estimate that the effective

persistence length of the handles scales as leffp ∼ b−2f−3. Thus, smaller spacing in

the Gaussian handles in the GRM will mimic stiffer handles in the H-RNA-H sys-

tem. The free energies computed for the GRM, shown in Fig. 4.3b-c, are consistent

with the results of the simulations. The free energy profiles deviate significantly
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from F o
eq(zm) as Nh increases or ‘stiffness’ decreases. The relevant variable that de-

termines the accuracy of Feq(zsys) is Nhb
2 ∼ L/leffp , with the free energies remaining

unchanged if Nhb
2 is kept constant. The GRM confirms that accurate measurement

of the folding landscape using zsys requires stiff handles.

4.4 The Effect of Handles on the Kinetics of Hairpin Formation

Because LOT experiments can also be used to measure the force-dependent

rates of hopping between the NBA and the UBA, it is important to assess the

influence of the dynamics of the handles on the intrinsic hopping kinetics of the

RNA hairpin. In other words, how should the structural characteristics of the linkers

be chosen so that the measured hopping rates using the time traces z(t) and the

intrinsic rates are as close as possible?

We first performed force clamp simulations of P5GA in the absence of handles

to obtain the intrinsic (or ideal) folding (τ oF ) or unfolding (τ oU) times, that serve

as a reference for the H-RNA-H system. To obtain the boundary conditions for

calculating the mean refolding and unfolding times, we collected the histograms of

the time traces and determined the positions of the minima of the NBA and UBA,

zF = 1.9 nm and zU = 7.4 nm (Fig. 4.4a). The analysis of the time traces provides

the transition times in which zm reaches zm = zU starting from zm = zF . The mean

unfolding time τU is obtained using τU = 1/N
∑
i τU(i), with the mean folding time

similarly calculated. The values of τ oU and τ oF computed from the time trace of zm(t)
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Figure 4.4: a. The free energy profile for P5GA with L = 0 nm. b. The transition
times at f = fm, obtained using zm(t) (filled symbols) and zsys(t) (empty symbols).
The ratio τmU(F )/τ

sys
U(F ) ≈ 1, which shows that zsys(t) mirrors the hopping of P5GA.

c. Folding rate kmF (L)/kmF (0) as a function of L for varying b, using the GRM. The
plots show b/a =1, 1/2, 1/5, and 1/10. The simulation results for P5GA are also
shown as symbols, to emphasize that the GRM accounts for the hopping kinetics in
the H-RNA-H system accurately.
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are 2.9 ms and 1.9 ms, respectively. At fm = 15.4 pN and L = 0 nm, the equilibrium

constant Keq = τ oF/τ
o
U = 0.67, which shows that the bare molecular free energy is

slightly tilted towards NBA at f = 15.4 pN (see also Fig. 4.2).

The values of the folding (τmF ) and unfolding(τmU ) times were also calculated

for the P5GA hairpin with attached handles (Fig. 4.1). As the length of the handles

increases both τmU and τmF increase gradually, and the equilibrium distribution shifts

towards the UBA, i.e. Keq = τmF /τ
m
U increases (Fig. 4.4b). Strikingly, the use

of flexible handles results in minimal deviations of τmU and τmF from their intrinsic

values (Fig.4.4b). The attachment of handles (stiff or flexible) to the 5’ and 3’ ends

restricts their movement, which results in a decrease in the number of paths to the

NBA and UBA. Thus, both τmU and τmF increase (Fig.4.4b). As the stiffness of the

handles increases, the extent of pinning increses. These arguments show that flexible

and short handles, that have the least restriction on the fluctuations of the 5’ and

3’ ends of the hairpin, cause minimal perturbation to the intrinsic RNA dynamics,

and hence the hopping rates.

Because the experimentally accessible quantity is the extension of the H-RNA-

H system (zsys), it is important to show that the transition times can be reliably

obtained using zsys(t). Although zsys(t) differs from zm(t) in amplitude, the “phase”

between the two quantities track each other reliably throughout the simulation, even

when the handles are long and flexible. We calculated τ sysU and τ sysF by analyzing

the trajectories zsys(t) using the same procedure used to compute their intrinsic

values. Comparison of τ sysU (τ sysF ) and τmU (τmF ) for both stiff and flexible handles

shows excellent agreement at all L values (Fig.4.4b). Thus, it is possible to infer
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the RNA dynamics zm(t) by measuring zsys(t). However, attaching handles will still

alter the hopping times, increasing both the folding and unfolding rate noticeably

(see Fig. 4.4), so that τ sysU(F ) ≈ τmU(F ) < τ 0
U(F ).

The simulation results can be fully understood using the GRM (Fig 4.3a), for

which we can exactly solve the overdamped Langevin equation using the discrete

representation of the Gaussian chain. We can use the theory of Wilemski and

Fixman (WF) [112] to determine an approximate loop closure time for the H-RNA-

H system. The WF theory writes the loop closure time in terms of a sink-sink

correlation function

τmF ≈
∫ ∞

0
dt C(Rm)Peq(Rm, t|R0

m)C(R0
m)Peq(R

0
m) (4.9)

with Peq(Rm, t|R0
m) the time-dependent propagator for Rm, giving the probability

of finding rN−Nh+1(t) − rNh+1(t) = Rm given the initial separation rN−Nh+1(0) −

rN−Nh+1(0) = R0
m. This propagator is calculated exactly in terms of the GRM

interaction matrix M (given in Appendix C.2, eq. C.5 with k = 0), with

Peq(Rm, t|R0
m) =

(
3

2π∆x2
eq

√
1− h2(t)

)3

exp
(
− 3

2∆x2
eq[1− h2(t)]

×
[
(R̄0

m)2 + R̄2
m − 2h(t)R̄0

m · R̄m

])
(4.10)

with R̄m = Rm−〈Rm〉 (see Appendix C.3 for details). ∆xeq and h(t) can be written

in terms of the interaction matrix M, given in Appendix C.2. We find

∆x2
eq = a2

[(
M−1

)
Nh+1,Nh+1

+
(
M−1

)
N−Nh+1,N−Nh+1

− 2
(
M−1

)
Nh+1,N−Nh+1

]
h(t) =

a2

∆x2
eq

[(
M−1G(t)

)
Nh+1,Nh+1

+
(
M−1G(t)

)
N−Nh+1,N−Nh+1

(4.11)

−2
(
M−1G(t)

)
Nh+1,N−Nh+1

]
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and where G(t) = exp(−3DMt/a2) (see Appendix C.3). ∆xeq and h(t) are most

easily determined by diagonalizing the matrix M, which must be done numerically

for b 6= a. We take C(Rm) = δ[|Rm| − c], i.e. the GRM is considered ‘folded’ when

the interactions in the RNA mimic are turned on (see eq. 4.2). Because of the high

external tension (15.4pN), we approximate Peq(Rm, t|R0
m) ≈ Peq(zm, t|z0

m). We then

finally find

τmF ∝
∫ ∞

0
dt Peq(c, t|c) (4.12)

The refolding rate of the RNA hairpin under tension is analogous to kmF = τmF . A

plot of kmF (L)/kmF (0) versus L (Fig. 4.4c) illustrates that smaller deviations from

the handle-free values occur when lp is small. We use the WF theory to determine

an approximate time of contact formation (τmF = (kmF )−1) as a function of b (i.e.

increasing handle ‘stiffness’) and Nh. Moreover, Fig. 4.4c shows that the refolding

rate decreases for increasing Nh regardless of the stiffness of the chain. The satu-

rating value of kmF as Nh → ∞ depends on b, with ‘stiffer’ handles having a much

larger effect on the folding rate, as seen in the simulations.

We also find the dependence of kF on L agrees well with the behavior observed

in the simulation of P5GA. The ratio kmF (L)/kmF (0) for b = a agrees well with the

trends of the flexible linker (lp = 0.6 nm) for all of the simulated lengths, with

both saturating at kF (L) ≈ 0.35kF (0) for large L. The trends for ‘stiffer’ chains

(smaller b) in the GRM qualitatively agree with the P5GA simulation with stiff

handles (lp = 70 nm), with remarkably good agreement for 0.1 ≤ b/a ≤ 0.2 over the

entire range of L. The GRM, which captures the physics of both the equilibrium

93



and kinetic properties of the more complicated H-RNA-H, provides a theoretical

basis for extracting kinetic information from experimentally (or computationally)

determined folding landscapes.

4.5 Free energy landscapes and hopping rates

Stiff handles are needed to obtain Feq(zsys) [23] that resembles F o
eq(zm), whereas

the flexible handles produce hopping rates that are close to their handle-free val-

ues. These two findings appear to demand two mutually exclusive requirements in

the choice of the handles in LOT experiments. However, if zm is a good reaction

coordinate, then it should be possible to extract the hopping rates using accurately

measured Feq(zsys)(≈ Feq(zm) ≈ F o
eq(zm)) at f ≈ fm, using handles with small L/lp.

The (un)folding times can be calculated using the mean first passage time (Kramers’

rate expression) with appropriate boundary conditions [113],

τKRU =
∫ zU

z
dyeβFeq(y) 1

DU

∫ y

zmin
dxe−βFeq(x),

τKRF =
∫ z

zF
dyeβFeq(y) 1

DF

∫ zmax

y
dxe−βFeq(x), (4.13)

where zmin, zmax, zU and zF are defined in Fig. 4.4a. The effective diffusion

coefficient DF (DU) is obtained by equating τKRF (τKRU ) in equation (4.13), with

Feq(zm) = F o
eq(zm), to the simulated τ oF (τ oU). We calculated the f -dependent τmU (f)

and τmF (f) by evaluating equation (4.13) using F o
eq(zm|f) = F o

eq(zm|fm)−(f−fm)·zm.

The calculated and simulated results for P5GA are in good agreement (Fig 4.5a-b).

At the higher force (f = 16.8 pN), the statistics of hopping transition within our

simulation time is not sufficient to establish ergodicity. As a result, the simulation
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Figure 4.5: a. Comparison of the measured free energy profiles (symbols) with the
shifted free energy profiles βF o(zm|fm)− β(f − fm) · zm. b. Folding and unfolding
times as a function of force f = 14 pN < fm, f = 15.4 pN ≈ fm, and f = 16.8 pN >
fm. τmF (U) is obtained from the time trace in Figure 2B in Ref [72] at each force, while
τmF (U) is computed using the tilted profile βF o

eq(zm|f) = βF o
eq(zm|fm)−β(f−fm) ·zm

in equation (4.13). c. Folding and unfolding times using the GRM. Symbols are
a direct simulation of the GRM (error bars are standard deviation of the mean).
The solid lines are obtained using the Kramers theory (equation (4.13)). We choose
DU ≈ 3D0, so that that the simulated and Kramers times agree at f = fm. The
position of each basin of attraction as a function of force for the GRM is given by
zU ≈ N0a

2βf/3 and zF ≈ N0a
2βf/(3 + 2N0a

2βk).
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results are not as accurate at high forces (data not shown). To further show that the

use of F o
eq(zm|f) in equation (4.13) gives accurate hopping rates, we calculated τ oU(f)

for the GRM and compared the results with direct simulations of the handle-free

GRM, which allows the study of a wider range of forces (using the Hamiltonian in

eq. 4.1). The results in Fig. 4.5c show that F o
eq(zm|f) indeed gives very accurate

values for the transition times from the UBA and NBA over a wide force range.

4.6 Conclusions

The self-assembly of RNA and proteins may be viewed as a diffusive process

in a multi-dimensional folding landscape. To translate this physical picture into a

predictive tool, it is important to discern a suitable low-dimensional representation

of the complex energy landscape, from which the folding kinetics can be extracted.

Our results show that, in the context of nucleic acid hairpins, precise measurement

of the sequence-dependent folding landscape of RNA is sufficient to obtain good

estimates of the f -dependent hopping rates in the absence of handles. It suffices

to measure Feq(zsys) ≈ Feq(zm) ≈ F o
eq(zm) at f = fm using stiff handles, while

Feq(zm|f) at other values for f can be obtained by tilting Feq(zm|fm). The accurate

computation of the hopping rates using Feq(zm) show that zm is an excellent reaction

coordinate nucleic acid hairpins under tension. Further theoretical and experimental

work is needed to test if the proposed framework can be used to predict the force

dependent hopping rates for other RNA molecules that fold and unfold through

populated intermediates.
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Chapter 5

Spherical Confinement of Wormlike Chains

5.1 Introduction

The Wormlike Chain (WLC) model [114] has been shown to accurately model

the intrinsic stiffness (or resistance to bending) of DNA [115, 1] under a variety of

conditions. The WLC model incorporates this stiffness into a persistence length lp

(≈ 50nm≈ 150bp for DNA), the length scale over which the polymer is difficult

to bend. When confined upon or within a curved geometry, the interplay between

the intrinsic stiffness of the polymer and the curvature of the confinement may

drastically change the behavior of the polymer.

Confinement of a polymer to a curved surface has been an area of active in-

terest. In eukaryotes, the first level of chromosomal compaction of DNA is histone

wrapping, with the DNA wrapped around the cylindrical histone (with radius 4.2nm

and height 2.4nm) about 1.7 times [116, 24, 26]. The stability of this tightly bent

structure is essential in understanding the development of the chromosome. Many

authors have studied theoretically the behavior of polymers confined to cylinders

[117, 118, 119] and spheres [117, 120, 121, 122]. The symmetry of spherical con-

finement An exact solution for the end-to-end distance R of a WLC confined to

the surface of a sphere [120] from a microscopic Hamiltonian has been shown to be

correct using simulations [121].
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Cylindrical confinement is of particular interest due to the change in the effec-

tive dimensionality of the system [77] (with tight cylindrical confinement becoming

effectively one dimensional as the radius vanishes), inducing changes in the length

scales of the system [123, 124, 125, 34, 126]. The ability to fabricate nanochannels

allows direct study of such a confined system, and many theoretical results have

been confirmed [127, 31].

Experiments on the dsDNA-containing bacteriophages φ29 [128, 129] and ε15

[29], as well as the T [130, 131, 30, 132, 133], P [134], and λ [135, 136, 137, 138] phage

classes, have all determined a number of details of the structures, pressures, and

ejection timescales of many viruses. Regardless of the shape of the viral capsid, it is

generally seen that the DNA orders itself in concentric rings [130, 135, 29, 131, 30,

136, 139], with the spacing between rings ∼0.3nm. The 5’ endpoint of the DNA has

been shown to be found near the center of the encapsulated mass of DNA [132, 133],

with the 3’ end found near the capsid wall [138]. Single molecule experiments

[67] have shown the pressure on the capsid walls to be on the order of 60atm,

inducing a significant resistance to the DNA encapsulation. These observations

have generated a number of theoretical studies, primarily interested in the packaged

structure [28, 140, 141, 142, 143], inter-strand spacing [144, 27, 145], energy or

pressure [146, 144, 28, 142, 147, 148, 149, 150], and the loading or ejection process

[27, 151, 28, 140, 152, 142]. These studies have predicted a number of properties

of an encapsulated chain. While the specific geometry of the confining viral capsid

varies from phage to phage, the properties of the encapsulated DNA can be studied

using spherical [141, 152, 140] or cylindrical [144, 145] to a very good approximation.
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The study of confined WLC’s in these simple geometries is thus of great relevance

to improving our understanding of the properties of viruses.

In order to study the effects of both surface and volume confinement on the

behavior of a WLC, we will use the mean field method [41, 153, 42] of Ha and

Thriumalai. This method has been successful in computing a number of different

properties of a WLC in a number of different situations [153, 62], and can be used

to approximate the effect of intra-chain interactions [154]. Additionally, the mean

field method has been shown to produce a tractable theory for a closed, smooth

chain on the surface of a sphere [122]. This chapter is organized as follows. In

Sec. 5.2, we determine the mean field theory for an open WLC, and show that

it reproduces all known averages and scaling laws. We also show that the mean

field theory accurately reproduces the correct scaling coefficient of the free energy

of confinement. In Sec. 5.3, we determine the behavior of a surface-confined WLC

under the application of an external force. In Sec. 5.4, we adapt the mean field

theory to the case of volume confinement. We show that the volume confined chain

behaves similar to a surface confined chain, and explicitly determine the pressure

due to confinement. The mean field theory is able to accurately reproduce a number

of properties observed in the simulations. We also show that the structural order of

the confined WLC can be understood by defining a local winding axis ai. Finally,

in Sec. 5.5, we consider a self-avoiding WLC confined to the interior of a sphere.

We show that the the development of ordered shells can be again understood via

the local winding axis, and find that ordered structures depend sensitively on the

relative stiffness (lp/R).
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Figure 5.1: (a) Schematic of the problem of surface confinement, showing the po-
sition and bond vectors rn and un. (b) One structure of a surface confined WLC,
with R = 8a and lp = 20a. (c) Same as (b), with R = 8a and lp = 100a.

5.2 Confinement to the Surface of a Sphere

We will begin by developing the Mean Field formalism for a WLC with per-

sistence length lp, fixed inter-monomer spacing a, and length L = Na, confined to

the surface of the sphere of radius R. We define rn = (xn, yn, zn) the position of the

nth monomer, and the bond spacing un = ∆rn = rn+1 − rn with |un| ≡ a. (shown

in Fig. 5.1). The distribution of the chain in phase space is

ΨS({rn}) ∝
∏
n

δ(r2
n −R2) δ(∆r2

n − a2) e−lp/2a
3 (∆rn+1−∆rn)2

∝
∫ i∞

−i∞

N+1∏
n=1

dkndλn exp
[
− 1

2
alp

(∆rn+1 −∆rn)2

a4
− aλn

(
∆r2

n

a2
− 1

)

−akn
(

r2
n

R2
− 1

)]
, (5.1)
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where the second line follows from the first after a Fourier transform of the delta

functions (with the Fourier variables {λn} and {kn}. Following Ha and Thiru-

malai [41, 42], we can write the partition function as Z =
∫ ∏

n d
3rnΨS({rn}) ≡∫ ∏

n dλndknexp(−FS[{λn, kn}]), which defines the free energy functional for surface

confinement, FS. We can write F = Fx + Fy + Fz − a
∑
n(λn + kn), with the free

energy functional Fx given by

e−Fx =
∫ ∏

n

dxn e
−Hx Hx = a

∑
n

(
lp
2

(∆xn+1 −∆xn)2

a4
+ λn

∆x2
n

a2
+ kn

x2
n

R2

)
.(5.2)

In the Mean Field approximation, we assume F is sharply peaked around {λn, kn} =

{λ∗n, k∗n}, so that Z ∼ exp(−F∗). The optimal values of λ and k will occur when

F is minimized, so we must solve ∂F/∂λn = ∂F/∂κn = 0 (i.e. a saddle point

approximation). In this approximation, we have dropped the integrals over kn and

λn, so that these Fourier variables play the role of spring constants restricting the

position and bending of the chain, respectively.

Since the discrete Hamiltonian is quadratic in the xn’s, we can write F =

3/2 log[Det(Q)] − a∑n(λn + kn) + const, with Q a symmetric (N + 1) × (N + 1)

tridiagonal matrix, given in Appendix D (eqs D.2-D.4). Solving these coupled equa-

tions becomes intractable for large N , and we must make additional approximations.

The symmetry of the matrix is respected by the substitution λn → λ and kn → k,

except for exactly three elements near the endpoints (see Appendix D for more

details). This is similar to the excess endpoint fluctuation terms found in the un-

confined theory[41, 42], where λ was shown to be constant except at the endpoints,

requiring an additional mean field variable to suppress endpoint fluctuations, δ. A
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Figure 5.2: Schematic of mean field variables. k and λ are constant for all interior
points, with γ1, γ2, and δ suppressing excess fluctuations at the endpoints

similar and suggests choosing k1 = kN = k + γ1/a − γ2/R, k2 = kN−1 = k + γ2/R,

λ1 = λN−1 = λ + δ/a − aγ2
2/R

2, with kn = k and λn = λ otherwise (see Fig. 5.2).

The specific forms of λ1, k1, and k2 are chosen to ensure convergence of the contin-

uum limit. With this assumption, we need only minimize F with respect to these

new mean field variables in order to determine F∗. Substitution of these values into

the Hamiltonian in eq. 5.2 and taking the continuum limit (with a → 0, N → ∞,

and Na → L) we can separate the Hamiltonian into interior and endpoint terms,

H = H0 +He, with

H0 =
∫ L

0
ds
(
lp
2
ẍ2(s) + λ ẋ2(s) + κx2(s)

)
(5.3)

He = δ(u2
0 + u2

L) + γ1

(
x2

0

R2
+
x2
L

R2

)
+ 2γ2

(
u0
x0

R
− uL

xL
R

)
, (5.4)

where we have defined u0 = ẋ(0) and uL = ẋ(L), with ẋ = ∂x(s)/∂s. The free
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energy functional Fx in the continuum limit then becomes

Fx = − log
[ ∫

d4x
∫
D[x(s)] exp(−H0 −He)

]
, (5.5)

with x = (x0, xL, u0, uL), and the total free energy becomes FS = Fx + Fy + Fz −

λL − κL − 2δ − 2γ1. The path integral in eq. 5.5 can be evaluated exactly [155],

and we find

Z0(x) ≡
∫
D[x(s)] exp(−H0[x(s)]) = K exp

(
x ·Mx

)
, (5.6)

where M is a 4×4 matrix. M and K are evaluated in Appendix D, and given

explicitly in eqs. D.9 and D.16. This relatively simple propagator allows us to

calculate many averages with little difficulty. In computing M and K, we find that

the confined wormlike chain depends on the two frequencies

ωi =
(
λ

lp
±
√

1− 2klp
λ2

) 1
2

, (5.7)

with averages on the mean field level expressed in terms of cosh(Lωi) and sinh(Lωi).

These quantities can greatly simplified in the limit of large Lωi, which we will term

strong confinement (see below).

The total free energy functional now becomes

FS = −3 log
( ∫

d4x Z(x)
)
− λL− κL− 2δ − 2γ1 Z(x) = Z0(x)e−He (5.8)

with Z0 given in eq. 5.6. The optimal parameters λ, k, δ, γ1, and γ2 are obtained

by solving the five coupled Mean Field equations,

∂FS
∂λ

=
∂FS
∂k

=
∂FS
∂δ

=
∂FS
∂γ1

=
∂FS
∂γ2

= 0. (5.9)
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Note that the λ, κ, δ and γ1 derivatives immediately imply, respectively,

1

L

∫ L

0
ds 〈u2(s)〉 = 1

1

L

∫ L

0
ds 〈r2(s)〉 = R2 〈u2

0 + u2
L〉 = 2 〈r2

0 + r2
L〉 = 2R2

This suggests that the Mean Field approximation is equivalent to replacing the local

requirements u2(s) = 1 and r2(s) = R2 to the global conditions 〈u2(s)〉 = 1 and

〈r2(s)〉 = R2. λ plays the role of a spring constant that keeps the bond spacing fixed

on average, while k is a spring constant that keeps 〈r2〉 = R on average. The γ2

derivative in eq. 5.9 implies 〈r0 ·u0−rL ·uL〉 = 0, which is expected for confinement

to the surface of a sphere, as u(s) is always tangential to the surface of the sphere

(i.e. u(s) ⊥ r̂ for all s).

The solutions to the mean field equations (eq. 5.9) can be determined exactly

for all L, lp, and R, giving

λ =
9

8lp
− lp
R2

k =
lp

2R2
δ =

3

4
γ1 =

3

4
γ2 = − lp

2R
(5.10)

We note that λ, the effective spring constant between monomers which ensures in-

extensibility globally, becomes negative if R < 2
√

2 lp/3. For a free WLC, λ is

found to be strictly positive, and creates an attractive interaction between neigh-

boring monomers. Without this attractive interaction, the chain tends to ‘explode’

on average for the free chain, with 〈u2(s)〉λ=0 > 1. If the radius is sufficiently small,

though, the bond vectors will be compressed, and we find 〈u2(s)〉λ=0 < 1. A re-

pulsive interaction between monomers, with a negative value for λ, is required to

prevent the chain from ‘imploding’ for R < 2
√

2 lp/3. With the solutions to the
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mean field equations in eq. 5.10, eq. 5.7 becomes

ωi =
3

4lp

1±
√

1−
16l2p
9R2

 . (5.11)

We note that, in the limit of large R, Lω1 ∼ L/lp and Lω2 ∼ Llp/R
2. Our de-

marcation of strong confinement, Lωi � 1, then requires stiff chains (L � lp) and

sufficiently small radii (R �
√
Llp). The ωi’s become complex if R < 4lp/3, which

leads to oscillatory behavior in both the partition function (see Appendix D), and

the resulting average properties of the system.

The correlation functions in both position and bending can be computed, using

the solutions to the mean field equations (eq. 5.10), giving

〈r(s) · r(s′)〉 = R2e−|∆s|/ζS
[

cosh
( |∆s|
ζS

ΩS

)
+

1

ΩS

sinh
( |∆s|
ζS

ΩS

)]
〈u(s) · u(s′)〉 = e−|∆s|/ζS

[
cosh

( |∆s|
ζS

ΩS

)
− 1

ΩS

sinh
( |∆s|
ζS

ΩS

)]
, (5.12)

with ζS = 4lp/3, ΩS =
√

1− 16l2p/9R
2, and ∆s = s − s′. We can also explic-

itly confirm that the Mean Field roots satisfy the inextensibility and confinement

constraints on average, finding 〈u2(s)〉 ≡ 1 and 〈r2(s)〉 ≡ R2 for all s. Thus, the

Mean Field theory replaces the rigid local constraints on the system by average lo-

cal constraints. Note that, while our theory gives the exact second moment in both

position and bending, we find 〈u4〉 = 〈r4〉/R4 = 5/3 6= 1 as the rigid constraints

would require.

In the limit as R →∞, we find 〈u(0) · u(L)〉 → e−3L/2lp in eq. 5.12, which is

not the expected limit of the bending correlation function. We would instead expect

the bending correlations for surface confinement to converge on the two dimensional
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solution (〈u(0) ·u(L)〉 = e−L/2lp in two dimensions) for large radius. This suggests a

mean field persistence length, l0, much like in the unconfined theory of Thirumalai

and Ha [41, 42]. Substitution of lp = 3l0 into eq. 5.12 results in the expected limits

of the correlation function as R→∞. Thirumalai and Ha found a similar result for

a three dimensional unconfined WLC, lp = 3l0/2. Their argument was that, since

additional forbidden configurations have been allowed by replacing the δ functions

in eq. 5.1 with Gaussians, the mean field persistence length is smaller than the true

persistence length. In the confined theory, we allow three dimensional configurations

by replacing the confining δ functions with Gaussians, which would be forbidden by

the surface confinement in addition to relaxing the rigid inter-monomer constraints.

For this reason, we would expect more permitted configurations, so lp/l0 in the

confined case should be greater than that of the unconfined case. In practice, lp is

often determined by fitting experimental or simulation data to a suitable polymer

model. Here, the renormalization of lp within the mean field theory is not a serious

concern. With these definitions for the mean field persistence length, we find ΩS =√
1− 16l20/R

2 and the decay length of the correlations becomes ζS = 1/4lp. After

substitution into eq. 5.12, we find that the exact calculation of Spakowitz and Wang

[120] is reproduced, valid for all values of L, l0, and R. The ability to calculate these

averages exactly shows the power of the mean field method.

We can determine the Free Energy and pressure for a WLC confined to the

surface of a sphere (which does not require the substitution of lp = 3l0),

βF ∼ F =
9L

8lp
+
Llp
2R2

+ const βPV ∼ Llp
3R2

(5.13)
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Figure 5.3: Free energy β∆F = βF (R) − βF (∞) as a function of R for a surface-
confined wormlike chain. Shown are lp/a=20, 10, 5 and 2. The inset shows log(β∆F )
as a function of R, displaying the good agreement even for large R.

where the pressure is computed from βP = −∂F/∂V . This is identical to the

scaling predicted by Odijk for a tightly bent WLC [117] as is expected. Addition-

ally, the coefficient of the scaling law agrees with that predicted by Mondescu and

Muthukumar [119] for the Freely Jointed Chain. The accuracy of the correlation

functions in eq. 5.12 have already been explicitly shown using Monte Carlo sim-

ulations [121]. However, it is of interest to show that the coefficients of the free

energy determined by the mean field method agree well with simulations. We use

the Configurational Bias Monte Carlo (CBMC) method [156] to determine the free

energy of a surface confined wormlike chain with L = 50a, for various values of lp

and R. The theoretical curves for βF ∼ Llp/2R
2 + const are accurate to within

∼5%.
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5.3 Surface Confined Stiff Chains under Tension

The true utility of the mean field method is in its ability to study the effect

of additional potentials in problems involving confined WLC’s with relatvie ease.

In this section, we will study the effect of an external tension, f , on a surface

confined WLC. For the free chain, the Mean Field method has been shown [153] to

give excellent agreement previous theoretical and experimental results [1]. Such a

calculation for the surface-confined WLC will also verify that the mean field method

satisfies the confinement on average, even under the extreme situation of a strong

pulling force.

The distribution in phase space of a confined WLC under tension can be

written as Ψs(f) = Ψs exp[−βf · (r1 − rN+1)], with β = 1/kBT and ΨS given in eq.

5.1. Because the external tension does not induce an energetic term quadratic in

{rn}, the mean field theory in the previous section can be used with little change.

The discrete free energy functional can be written as F = Fx+Fy+Fz−βf(zN+1−

z1)−a∑n(λn+kn), with Fx given in eq. 5.2 (Fy and Fz are defined similarly), and we

have taken f = f ẑ. None of the terms involving kn or λn are altered with the addition

of force, and we can again rewrite the quadratic terms of the Hamiltonian in terms

of a symmetric, tridiagonal matrix Q (explicitly given in Appendix D, eqs D.2-D.4).

We again make the substitution k1 = kN = k+ γ1/a− γ2/R, k2 = kN−1 = k+ γ2/R,

λ1 = λN−1 = λ+δ/a−aγ2
2/R

2, with kn = k and λn = λ otherwise. In the continuum

limit (N →∞, a→ 0, and Na→ L), we find

e−F = e−Fx−Fy−Fz−βf(zL−z0)+λL+kL+2δ+2γ1
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=
( ∫

d4xZ(x)
)2 ( ∫

d4zZ(z) e−βf(zL−z0)
)
eλL+κL+2δ+2γ1 , (5.14)

with Z(x) is given in eq 5.8. The mean field free energy can be evaluated, yielding

F(f) = F(0) +
(Rβf)2

2

[(
M−1

)
11
−
(
M−1

)
12

]
(5.15)

where F(0) is the free energy at f = 0 (eq. 5.8), and we have used

∫
dNx exp

(
− x ·Mx + v · x

)
=
(

πN

det(M)

) 1
2

exp
(

1

4
v ·M−1v

)

Under the assumption that Lωi � 1 (a strongly confined chain, see eq. 5.7),

it is not difficult to show that the solutions to the mean field equations (eq. 5.9)

become

λ =
9

8lp
− lp
R2

k =
lp

2R2
δ =

3

4
γ1 =

3

4

√
1 +

4(βfR)2

9
γ2 = − lp

2R
.(5.16)

Under the application of a force, only the behavior of the endpoints of a strongly

confined chain is effected, reflected in the fact that only γ1 depends on f . The

interior monomer behavior should be insensitive to the force, so it is not surprising

that λ and k are independent of the force. The extension as a function of the

external tension can be computed via 〈R〉 = −∂F/∂(βf). For a strongly confined

chain, we find

〈zL − z0〉
R

=
1

3
Rβf

〈R2〉0
R2

(
1− 〈R

2
0〉

4R2

[
1−

√
1 + 4(Rβf)2/9

])−1

, (5.17)

with 〈R2〉0 the average end-to-end distance with f = 0 (we note that 〈R2〉0 =

2R2(1 − 〈r0 · rL〉) 6= 0 for all non-vanishing L, see eq. 5.12). While the force-

extension curves for a confined WLC increase monotonically as a function of f , the
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system has rather complicated behavior as a function of R. In Fig. 5.4, we see

the extension of the chain as a function of R is oscillatory for small R, due to the

non-monotonic values of 〈R2〉0.
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Figure 5.4: Linear extension under a constant external tension as a function of the
radius. For all curves, L = 250a and lp = 50a. The applied tensions are aβf= 10
(solid), 1 (dashed) and 0.1 (dotted).

Eq. 5.17 has the asymptotic limits

〈zL − z0〉 ∼


βf〈R2〉0/3 Rβf � 1

2R− 3
βf

(4 R2

〈R2〉0 − 1) +O(f−2) Rβf � 1

(5.18)

The extension in the low force limit is identical to the expression found for a Gaussian

chain under tension, with 〈R·ẑ〉(G) = Na2βf/3 = βf〈R2〉(G)
0 /3. The large force limit

has the expected limiting extension of zL−z0 = 2R for a chain that is confined to the

surface of a sphere. Surprisingly, though, the scaling of 〈zL− z0〉− 2R ∼ f−1 differs

from the scaling of the unconfined chain in the high force limit, 〈zL−z0〉−L ∼ f−1/2.

The change in the large-force scaling laws is linked to the fact that only the endpoints

are affected by the force for a surface confined chain. In interior, the extension of
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the chain comes about by alignment of all bonds with the force axis. However,

when confined to the surface of the sphere, the extension occurs primarily by to

the translation of the endpoints to the poles of the sphere, rather than a global

realignment in the bond vectors. This is reflected in the fact that γ1, which controls

the position of the endpoints, is the only mean field parameter dependent on f . We

note as well that the f−1/2 scaling is seen in the unconfined mean field theory, and

comes about due to the fact that λ (which determines the behavior of all of the

bonds) becomes a function of f .

It is also possible to numerically solve the mean field equations for small L/R,

and at very high external tensions we find

〈zL − z0〉 ≈


2R sin(L/2R) L ≤ πR

2R L > πR

(5.19)

This is the exact end-to-end distance of a fully stretched chain confined to the

surface of a sphere. The mean field method thus satisfies the confining constraints

on average, even under extreme pulling, and again predicts the lower moments

exactly.

We can also determine the Free Energy of a confined WLC under tension:

βF =
9L

8lp
+
Llp
2R2
− 3

√
1 +

4(βfR)2

9
+ 3 log

[
1 +

√
1 +

4(βfR)2

9

]
+ const, (5.20)

where we have neglected terms of order O(e−3L/4lp). The force-dependent terms

in the free energy are not extensive because the tension only strongly effects the

endpoints of the chain. βF becomes tension-dominated when f exceeds a critical

force Rβfc ∼ Llp/4R
2. Because the only force-scale in the problem is βPA ∼
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Llp/R
2, with A the surface area of the sphere, the scaling of this critical force is

expected. We expect the leading coefficient to be correct, due to the accuracy of

our expression for the free energy of a WLC without the external tension (see Fig.

5.3). It It is amusing to estimate fc for a strand of DNA wrapped around a histone

[116, 24, 26], with lp ≈ 50nm, L ≈ 43nm, and R ≈ 4nm. We find the tension

dominates the free energy when f > fc ≈ 34pN, which is significantly larger than

the force required at each unwrapping event seen in single molecule experiments on

histones [24]. However, as it has been observed that the tilting of the histone with

respect to the force axis is of great importance when determining the behavior of

the system [116], which the mean field theory does not take into account, we can

view our result only as an upper bound on the unravelling force.

5.4 Wormlike chains confined to the interior of a sphere

The mean field theory for computing the average properties of a surface con-

fined chain can be extended to studying the effects of volume confinement. The

distribution in phase space of a WLC confined to the interior of a sphere is

ΨV ({rn}) ∝
∏
n

Θ(R2 − r2
n) δ(∆r2

n − a2) e−lp(∆rn+1−∆rn)2/a3

(5.21)

where Θ(x) is the Heaviside step function, ensuring that each monomer is contained

within the sphere. The other two terms in eq. 5.21 are identical to the ones in

ΨS (eq. 5.1). The similarities between the two distributions suggest that volume

confinement can be treated on the mean field level as well. Two configurations for

a volume confined WLC are shown in Fig. 5.5 for R = 8a for two different values
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of the persistence length (lp/a = 20 and 100), and are qualitatively similar to the

structures seen for the surface confined chains (Fig. 5.1). Unfortunately, the Θ

function in eq. 5.21, ensuring the chain is within the interior of the sphere of radius

R, can not be dealt with as simply as the δ functions in eq. 5.1 at the mean field

level. It is not difficult to show that, for a single particle confined within a sphere,

simply minimizing the Fourier Transform of the Θ function does not give the correct

value of 〈r2〉. However, the similarities between eq. 5.21 and eq. 5.1 suggest that

we can formally write

ΨV ∝
∫ ∏

n

dkndλn exp
[
− 1

2
alp

(∆rn+1 −∆rn)2

a4
− aλn

(
∆r2

n

a2
− 1

)

−akn
r2
n

R2
− g(akn)

]
, (5.22)

where g is an undetermined function, chosen such that free energy minimization

will satisfy the constraints (u2(s) = a2 and r2(s) ≤ R2) on average. This form

is identical to the surface confinement case, except for g. Because of this, we can

immediately see that the same substitution of interior (i.e. kn → k and λn → λ)

and endpoint terms will satisfy the symmetry of the Q (see Appendix D, and eqs

D.2-D.4). This allows the problem of volume confinement in the continuum limit

to be written in terms of the mean field variables λ, k, δ, γ1, and γ2, with the Free

Energy expressible as F = Fx + Fy + Fz − G[λ, k, δ, γ1, γ2]. Fx is defined in eq.

5.5, and G constrains the minimization of F (i.e. contains the as yet undetermined

Lagrange multipliers).

The treatment of volume confinement at the mean field level is more difficult

than the case of surface confinement for a number of reasons. In the case of surface
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Figure 5.5: Two configurations for a stiff chain confined to the interior of a sphere.
Shown are L = 200a, R = 8a, and lp/a = 20 (a) and 100 (b).

confinement, we replaced the strict constraint of r2(s) ≡ R with the global constraint

1
L

∫ L
0 ds〈r2(s)〉 = R2. It was possible to show, however, that the mean field solution

implied 〈r2(s)〉 = R2 for all s under surface confinement. A similar condition will

hold for the volume confined chain, with

1

L

∫ L

0
ds
〈r2(s)〉
R2

≡ ρ, (5.23)

where ρR2 is the average monomer position (with the average taken over both

configurational space as well as along the chain). ρ can not be determined from

the mean field theory itself, and must be supplied using some other method (see

below). Eq. 5.23 is equivalent to the requirement at the mean field level

∂F
∂k

= Lρ (5.24)

(see eq. 5.3). The average position of the endpoints within the sphere need not be

identical to the average position for interior points of the chain, i.e. 〈r2(s)〉 6= const
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for volume confinement. At the mean field level, this can be treated approximately

by the restriction

〈r2
0〉
R2

=
〈r2
L〉
R2
≡ ρ0, (5.25)

with ρ0 6= ρ. This is implemented at the mean field level using

∂F
∂γ1

= 2ρ0 (5.26)

(see eq. 5.4). Much like ρ, we can not determine ρ0 theoretically, and additional

information is required to determine it. Because u(s) need not be perpendicular

to r̂, 〈u(s) · r(s)〉 6= 0, which must be accounted for at the mean field level as well.

There is an inherent asymmetry in the quantity r(s) · u(s), that can be seen as

follows: If we simply relabel the monomers, such that s → L − s, we find r0 → rL

and u0 → −uL (since u(s) = ∂r(s)/∂s). As the average behavior of the endpoints

is independent of the labeling, this immediately implies that 〈u0 · r0〉 = −〈uL · rL〉.

We then restrict

〈uL · rL〉
R

= −〈u0 · r0〉
R

≡ ρc. (5.27)

ρc represents the average correlation between the position and the bending at the

endpoints of the chain. If the endpoints of a confined chain are found near the wall

of the sphere, the direction of the bond vectors at the endpoint will be restricted,

pointing away from the wall of the sphere and giving 〈rL · uL〉 > 0. For the free

chain, we expect ρc(R → ∞) = 0, since there is no restriction on the direction of

the bending. Eq. 5.27 is expressed at the mean field level as

∂F
∂γ2

= −4ρc (5.28)
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(see eq. 5.4). The lagrange multipliers for both λ and δ remain unchanged at the

mean field level, with ∂F/∂λ = L and ∂F/∂δ = 2 (see eq. 5.8).

Up to the three undetermined mean field parameters (ρ, ρ0, and ρc), we can

write the mean field free energy for volume confinement as

FV = Fx + Fy + Fz − λL− 2δ − ρkL− 2ρ0γ1 + 4ρcγ2 (5.29)

where Fx is identical to the one dimensional free energy functional for the surface

case (eq 5.5). The three mean field parameters ρ, ρ0, and ρc can not be determined

using the mean field theory, and are found using simulations. We use Langevin

dynamics simulations to determine the equilibrium behavior of a WLC confined to

the interior of a sphere. The details of our simulations are given in Appendix D.3.

The mean field equations for volume confinement, given in eq. 5.9, are quite

similar to the surface confinement equations, and can be solved in the limit of strong

confinement (i.e. large Lωi, see eq. 5.7). We find

λ =
9

8lp
− lp
ρR2

k =
lp

2ρ2R2
δ =

3(ρ0 + ρ2
c)

4(ρ0 − ρ2
c)

γ1 = − 3

4ρ
+

3

2(ρ0 − ρ2
c)

γ2 = − lp
2ρR

− 3ρc
2(ρ0 − ρ2

c)
(5.30)

which gives ωi = 3/4lp(1±
√

1− 16l2p/9ρR
2). The solutions for the ωi’s, which define

the average behavior over the entire length of the chain, are identical to those found

for a wormlike chain confined to the surface of a sphere of radius
√
ρR (see eq. 5.11).

However, the endpoint terms differ from the surface confined system, allowing for

fluctuations in the average monomer positions near the ends of the chain.

In Figure 5.6, we show the average monomer positions as a function of s

for varying R and lp. Fig. 5.6a shows that “interior” monomer behavior (where
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〈r2(s)〉 ≈ const) begins to emerge within the range 2R ≥ s ≥ L−2R, with endpoint

effects clearly dominating the behavior over the range 2R on either end. In Fig.

5.6b, we see that increasing the persistence length of the chain while keeping R fixed

changes the values of ρ and ρ0 (reflected in the increase of 〈r2(s)〉int/R2, 〈r2
0〉/R2,

and 〈r2
L〉/R2) but does not significantly alter the qualitative behavior of 〈r2(s)〉 as

a function of s. We note that the average position of the interior monomers is

approximately constant (i.e. 〈r2(s)〉int ≈ ρR2, consistent with the fact that the ωi’s

suggest confinement to a sphere of radius
√
ρ R.

The range of the endpoint effect makes physical sense: if r0 is near the bound-

ary of the sphere, the bending energy near the endpoint will be lower if u0 is directed

towards the center of the sphere, as opposed to being directed towards the wall. This

implies that monomers near the endpoints will be found closer to the origin of the

sphere on average, as is seen in Fig. 5.6. This endpoint effect will dominate the

behavior of the chain until another monomer comes into contact with the wall, a

distance of at most 2R.

We perform a number of simulations in order to determine the mean field

parameters ρ, ρ0 and ρc, varying L, lp, and R. We find that, for large L, there is

virtually no variation in any of the mean field parameters. Since ρ determines the

effective surface confinement (see Fig. 5.6b), increasing L does not change ρ, as

the chain simply wraps further around the effective surface at
√
ρ R. ρ0 and ρc are

likewise independent of the length of the chain, as they dominate the behavior of

the endpoints, and have only a strong effect over a length 2R along the chain (see

Fig. 5.6a). Since the only remaining length scales are lp and R, we expect that all
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Figure 5.6: 〈r2(s)〉 vs. s. (a): L = 100a and lp = 100a, with (from highest to lowest)
R/a=5, 10, and 20. The average monomer position is dominated by endpoint effects
for s ≤ 2R and s ≥ L − 2R. (b): L = 200a and R = 5a, with (from highest to
lowest) lp/a=100, 50, and 20. With R fixed, variations in lp change only the value
of ρ, but does not alter the behavior of the monomers.

of the mean field parameters depend only on the ratio lp/R. In Fig. 5.7, we show

the behavior of the three mean field parameters (ρ, ρ0, and ρc) as a function of lp/R,

determined from a simulation with L = 80a and R = 5a. Changing the values of L

or R do not change the measured values of ρ, ρ0 and ρc, as long as lp/R is held fixed,

as expected (data not shown). We find for long, stiff chains (with L/R � 1 and

lp/R � 1) that ρ ≤ 0.9, ρ0 ≤ 0.8, and ρc ≤ 0.5. Most physical systems of interest

(the viral packing of DNA, for example) will be in this strongly confined regime.

Another difference between surface and volume confinement is the relationship

between the true and mean field persistence lengths. In the limit as R → ∞, we

expect to recover the unconfined three dimensional correlation function 〈u0 · uL〉 =

e−L/lp . For the interior monomers (where the system is confined approximately to a

sphere of radius
√
ρ R, see Fig 5.6), we can determine the bending correlation func-

tion as we did for the surface confined chain, which gives 〈u(s) · u(s′)〉 ∼ e−3|∆s|/2lp

in the limit of R → ∞. This only converges to the correct correlation function if
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Figure 5.7: The mean field parameters ρ, ρ0, and ρc as a function of R. ρ (solid line)
defines the radius of the effective surface confinement for the interior monomers (eq.
5.23). ρ0 (dashed line) is the average scaled endpoint distance (eq. 5.25). ρc (dotted
line) gives the correlation between the position and bond vector at the endpoints
(eq. 5.27).

the volume-confined mean field persistence length is lV0 = 3lp/2 for large R, the

same relation between the lp and l0 in the unconfined theory [41, 42]. However,

because the system is approximately confined to the surface of a sphere of radius

√
ρR, and the surface-confined mean field persistence length is lS0 = 3lp 6= lV0 , the

relationship between l0 and lp is R-dependent. The ratio l0/lp to be independent of

L for large L, since we have seen that the development of near-surface confinement

depends only on the raito lp/R (Fig 5.7). We then define l0 = α(lp/R)lp, and expect

3/2 ≤ α(lp/R) ≤ 3 for all lp/R, i.e. a wormlike chain confined to the interior of

a sphere will behave somewhere in between a free wormlike chain in 3 dimensions,

and a surface confined wormlike chain. This gives the correlation functions for the

interior monomers (i.e. s, s′ > 2R and s, s′ < L− 2R),

〈r(s) · r(s′)〉 = ρR2e−|∆s|/ζV
[

cosh
( |∆s|
ζV

ΩV

)
+

1

ΩV

sinh
( |∆s|
ζV

ΩV

)]
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〈u(s) · u(s′)〉 = e−|∆s|/ζV
[

cosh
( |∆s|
ζV

ΩV

)
− 1

ΩV

sinh
( |∆s|
ζV

ΩV

)]
, (5.31)

with ζV = 4αlp/3 and ΩV =
√

1− 16α2l2p/9ρR
2. Near the endpoints, the correlation

functions become more complicated, due to the dependence of the behavior of the

endpoints on ρ0 and ρc.
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Figure 5.8: α(lp/R) = l0/lp as a function of lp/R. Points are the results of simula-
tions, the line is the approximate limiting value for strong confinement (lp/R � 1)
of α ≈ 2.48 ≈ 5/2.
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Figure 5.9: Bending correlation function 〈u(L/2) ·u(s)〉 as a function of s for a chain
with L = 200a. The points are simulation data, the solid lines are the theoretical
results in eq. 5.31. (a) has lp = 20a and R = 8a, and (b) has lp = 100a and R = 5.

In order to determine l0/lp = α(lp/R), we must again turn to our simulation
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results. We perform a number of low friction Langevin Dynamics simulations (see

Appendix D.3 for details) with L = 80a and R = 5a, with varying lp. The bending

correlation function is fit using eq. 5.31, with only α as a fitting parameter. The

resulting values are shown in Fig. 5.8. We find that α does indeed vary with only

lp/R (changing R does not change α as long as lp/R is held constant), and the

saturating value becomes α(∞) ≈ 5/2. It is not surprising that α never reaches the

surface-confined value of α = 3: since ρ < 1 for all values of lp/R, the conformational

space available for the chain is larger than a truly surface-confined chain. The

decay length ζV = 4αlp/3 ≈ 3.3lp, which is the length scale over which the bending

and positions become decorrelated, is strictly less than than the decay length for

surface confinement, ζS = 4lp, due to the larger number of configurations that are

available to volume confined chains. Using the values of α (Fig 5.8) and ρ (Fig.

5.7) determined from the N = 80 simulations, we compare the bending correlation

functions for a simulation with L = 200a to the results of eq. 5.31, shown in Fig.

5.9. The agreement between simulation and theory is excellent with no additional

fitting parameters, and the agreement the position correlation function is equally as

good (data not shown).

Further information about the structure of a stiff chain confined to a sphere

can be determined using the local winding axis of the chain. The unit local winding

axis of bonds i and i+ 1 (the axis about which ui and ui+1 wind) is given by [121]

âi = ai/|ai|, with

ai = ui × ui−1 , (5.32)
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Figure 5.10: (a) Average correlations in the nearest neighbor winding axis as a
function of lp/R. The average is taken over interior points only (i.e. 2R ≤ s ≤
L − 2R). The inset shows the average nearest neighbor correlation for L = 200a,
R = 5a, and lp/a = 100, 50, and 20. The correlations drop sharply near the
endpoints. (b) 〈â(L/2) · â(s)〉 as a function of s for L = 200a and R = 5. From
highest to lowest, lp/a=100,50, and 20. The points are simulation data, the lines
the theoretical curves, 〈â(s) · â(s′)〉 ∝ e−4|∆s|/3l0 . A typical structure for the cases
lp = 100a and lp = 20a are shown on top; the clear correlation of the winding axis
is evident for the stiffer chain.
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Analytical work with the local winding axis is difficult, because

âi · âi+1 =
cos(θi−1,i+1)

sin(θi−1,i) sin(θi,i+1)
− cot(θi+1,i) cot(θi−1,i) (5.33)

where we have defined cos(θi,j) = ui+1 · uj. The details of this result are shown in

Appendix D.4. While directly computing the average of eq. 5.33 is intractable, the

symmetry of the problem quickly shows that, for a free WLC, 〈âi · âi+1〉 = 0 (since

ui+1 may be freely rotated about the ui axis without changing θi,i+1). However, such

a symmetry does not exist for confined chains, and we therefore restrict our study

to the simulation results. We find that, for interior monomers, the local winding

axes are highly correlated, with 〈âi · âi+1〉 ≤ 0.9 for strongly confined chains (Fig.

5.10a). Once again, variations in L and R do not alter 〈âi · âi+1〉, as long as lp/R

is held fixed. The endpoints of the chain are not strongly correlated to the interior

behavior (Fig. 5.10a, inset), with a precipitous drop to 〈âi · âi+1〉 ≤ 0.1 at the

endpoints. This sharp drop suggests that the endpoints of the chain behave more

like an unconfined chain than do the interior monomers, which is consistent with

our physical picture of the origin of the endpoint effects (see the discussion of ρc

above, eq. 5.27). Correlations between the winding axes for interior monomers as a

function of their separation ∆s is exponentially distributed (Fig. 5.10b), with

〈â(s) · â(s′)〉 ≈ 〈âi · âi+1〉e−4|∆s|/3l0 . (5.34)

In eq. 5.34, the decay length 3l0/4 = 3αlp/4 ≈ 1.9lp is determined by fitting the

simulations with L = 80a, R = 5a, and varying lp. The theoretical curves in Fig.

5.10b use this correlation length, with no additional fitting parameters. This shows

that the length scale l0 = α(lp/R)lp defines the length scale over which correlations
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in the confined system decay. The sharp drop in the axis correlation function near

the endpoints shows that the wrapping near the ends of the chain is uncorrelated

to the interior wrapping. Forrey and Muthukumar [142] use 〈ai · ẑ〉as their order

parameter in order to study the wrapping of DNA within the φ29 phage (with the

DNA loaded into the capsid along the z-axis). The find that the local winding axes

become decorrelated with the z-axis, as is expected due to the lack of correlations

between the interior and the endpoints (Fig. 5.10).

The free energy and pressure of the volume confined WLC can be computed

using our mean field roots (eq. 5.30). The expressions are somewhat more lengthy

than in the surface case, due to the endpoint terms involving ρ0 and ρc, but in the

limit of small R (relevant for most physical systems) we find

βF ∼ Llp
2ρR2

− 2ρclp
ρR
− 3 log(R) + const βPV ∼ Llp

3ρR2
− 2ρclp

3ρR
+ 1, (5.35)

with βP = −∂F/∂V . The R−1 terms in the free energy and pressure are not present

in the surface confined case, and are due entirely to the nonuniformity in 〈r2(s)〉 as

a function of s (see Fig. 5.6), reflected in the fact that this term is proportional to

ρc. It is interesting to note that the L-independent, R−1 term is negative, which

is due to the fact that portions of the chain near the endpoints will be found on

average closer to the center of the sphere than the interior monomers (as seen in

Fig 5.6), thus reducing their contribution to the pressure. In order to determine the

pressure from the simulations, we compute

PA =
∑
i

fi→wall · r̂ (5.36)

with A = 4πR2 the surface area of the sphere, and fi→wall the force of the ith
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monomer on the wall. In Fig. 5.11, the simulated results along with the mean field

expression for the pressure (of which eq. 5.35 is the limit of small R). We find

the agreement is excellent for a large range of L, lp and R, particularly for small R

where endpoint effects are less important.
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Figure 5.11: βPV as a function of R for varying lp and L. In both, the dots
are simulation results, and the solid line is the theoretical result with no fitting
parameters. ρ, ρ0 and ρc are taken directly from the simulation results for each
value of L, R, and lp. (a): L = 100a and (from highest to lowest) lp/a=100, 50, 20,
10, and 5. The inset is a log-log plot for this data. (b): L = 200 and (from highest
to lowest), lp/a=100, 50, and 20.

We can compare our results to the experimental pressures determined by Smith

et. al [67], using the φ29 virus. The φ29 viral capsid is not spherical, with an icoso-

hedral shell of radius ≈21nm and height ≈54nm, but has a volume equivalent to

a sphere of radius ≈ 26nm. The fully packed virus contains a strand of DNA of

length 6.6µm, with persistence length 50nm. If we neglect the excluded volume,

electrostatic, and solvent-induced interactions of the DNA (a rather severe approxi-

mation), and take ρ ≈ 0.9 (the saturating value of ρ, see Fig. 5.7), we find P ≈ 1kPa

(=10−3pN/nm2), almost 4 orders of magnitude lower than the 6MPa measured in

the experiments. It is clear that the behavior of a strongly confined wormlike chain

125



is critically dependent on the intra-chain interactions, in agreement with a number

of other studies [144, 27, 145, 28, 142, 148], with the contribution due to entropy

making a negligible contribution to the pressure.

5.5 Confined Excluded Volume Chains

The effect of confinement on an excluded volume self-avoiding chain is difficult

to predict analytically. For a non-interacting chain, we have shown that the relevant

variable for virtually all of the properties of the chain is lp/R. For an excluded vol-

ume chain, we expect a new variable to arise: the packing fraction φ = Vchain/Vsphere.

In order to study the problem of a confined, self-avoiding WLC, we resort only to

simulations. The details of our simulation can be found in Appendix D.3. In our

simulations, we take the chain to be a sequence of soft spheres of radius a/2, so that

the volume fraction is φ = Na3/8R3. A wide range of volume fractions are found in

nature in the context of viral packing, with φ ranging from 0.07 to almost 0.5 [27],

with genomes in the range N ∼ 104− 106. It is computationally intractable to sim-

ulate such long chains, and we will restrict ourselves here to L = 200a and R = 8a

(φ ≈ 0.05). Higher packing fractions require significantly longer equilibration times,

and (as seen below) this packing fraction allows us to see a clear development of

structure. Such short chains do not allow for a direct comparison to any viral pack-

aging problems, but is of interest in studying the structures of confined, self-avoiding

WLC’s.

In Fig. 5.12, show typical configurations for a self-avoiding WLC confined
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Figure 5.12: The corelations in the winding axis for a self avoiding WLC. In all
figures, the dots are the correlations in the winding axes for the outer shell only.
The lines are the correlations in the winding axes for the non-interacting WLC.
Shown are R = 8a, L = 200a, and lp/a = 20 (a), 50 (b), and 100 (c). In all cases,
the intra-chain interaction increases the correlations of the winding axes, which
becomes more clear for stiff chains. As the outer layer becomes more organized,
the correlations in the winding axes become almost constant. Typical structures for
each simulation are shown next to the figures. The development of the outer shell,
and resulting correlations in the winding axis, is evident for increasingly stiff chains.
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to the interior of a sphere. For reasonably flexible chains (Fig. 5.12a), there does

is no clear development of structure in the confiugrations of the chain (compare

to Fig. 5.5). As the stiffness increases, the excluded volume chain develops a

clear, spool-like structure, as noted by many authors [29, 131, 136, 27, 28, 142].

For very stiff chains (Fig. 5.12c), the outer shell is highly correlated, and differs

greatly from its non-interacting counterpart (compare to Fig. 5.5). The highly

correlated nature of the outer shell is confirmed by considering the correlations in

the winding axes for both the self-avoiding and non-interacting cases. In Fig. 5.12,

we also see that intra-chain interactions tend to increase both the magnitude and

the range of the winding axis correlations in the outer shell. As the chain becomes

very stiff, the outer shell has an almost constant correlation in the winding axes,

with 〈â(s) · â(s′)〉outer ≈ 〈âi · âi+1〉outer for all s and s′. This is consistent with the

simulations of Cerdà et. al. [121], which showed that flexible excluded volume chains

confined to the surface of a sphere are disordered, but helicoidal structures develop

for sufficiently stiff chains. Further simulations are required to fully understand the

specifics of the onset of structure for self-avoiding WLC’s under confinement.

5.6 Conclusions

We have shown that spherical confinement of WLC’s can be well understood

by applying the mean field theory of Ha and Thirumalai [41, 153, 42]. For a surface

confined chain we can determine many average properties of the WLC, by replac-

ing the rigid constraints of inextensibility (∆r2
n ≡ a2) and confinement (r2

n ≡ R2)
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with average constraints. We have shown that the mean field approach reproduces

the exact results of Spakowitz and Wang [120], and reproduces the correct scaling

coefficient of the free energy of confinement. The mean field approach is also able

to study the effects of additional potentials on confined WLC’s. We determine the

scaling and free energy of a surface confined WLC under tension, which may be of

use in better understanding the wrapping of DNA around histones [116, 24]. The

force-extension curve (FEC) for a strongly confined WLC is shown to differ greatly

from the unconfined FEC, with a strikingly different method of extension.

We show that the mean field method can approximately determine the behav-

ior of a WLC confined to the interior of a sphere. Interior monomers (far from the

endpoints) to be approximately surface confined, with 〈r2(s)〉 ≈ 0.9R2 for strongly

confined chains, but endpoint effects dominate the behavior of the chain for s < 2R

or s > L− 2R. Structural information about the confined chain can be determined

by examining the correlations in the local winding axis, and we find that strongly

confined stiff chains are highly structured even without intra-chain interactions.

The mean field estimates of the pressure due to confinement show that the extreme

pressures inside of a viral capsid are not strongly dependent on simple confinement

entropy, but depend critically on the intra-chain interactions. Simulations of short,

self-avoiding WLC’s show that the development of structure depends on the stiffness

of the chain, and can again be understood on a qualitative level by examining the

local winding axis. Interestingly, the development of structure for a volume confined

WLC appears similar to the surface confined case, suggested by the effective surface

confinement felt by the non-interacting chain.
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Appendix A

Appendix for Chapter 2

A.1 The Center of Mass Average

In formulating the fluctuations of the end-to-end distance vector, 〈δR2
ee〉, it is

important to take into account the failings of the continuum model of the Freely

Jointed Chain. A simple calculation of 〈δR2
ee(t)〉 with Ree(t) = r(N, t) − r(0, t) as

determined from eq (2.1) gives

〈δR2
ee(t)〉 = 16Nb2

∑
n odd

1

n2π2

(
1− e−n2t/τR

)
(A.1)

We will refer to this result as the standard analytic average. However, the non-

physical boundary conditions imposed on the continuum representation, with ∂r/∂s ≡

0 at the endpoints, will strongly affect the accuracy of this result.

To minimize the effect of the boundary conditions on averages involving the

end-to-end distance, we compute averages with respect to the differences between

the centers of mass of the first and last bonds, using

Ree(t) ≈
∫ N

N−1
ds r(s, t)−

∫ 1

0
ds r(s, t). (A.2)

We will refer to this as the center of mass average. Using this representation,

〈δR2
ee(t)〉 is given in eq (2.4).

In Fig. A.1, we compare the values of D(t) obtained from 〈δR2
ee(t)〉 (in eq.

(2.5)) for N = 19 and b = 0.39. In both cases, b is taken as a fitting parameter.
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Figure A.1: Measured Diffusion Coefficient as a function of time for the Rouse chain
with N = 19 and b = 0.39nm. Symbols are the simulation data, the dashed line
(standard average) is obtained using eqs. (A.1) and (2.5) (with best fit b ≈ 0.26nm),
and the solid line is the center-of-mass average derived using eqs (2.4) and (2.5) (with
best fit b ≈ 0.41nm).
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The center of mass average, which fits the data quite well, has a best fit of b = 0.41

(a difference of 5%), whereas the standard average does not give accurate results.

For this reason, all averages involving Ree are computed using the center of mass

theory.

A.2 Simulation Details

In the case of the non-interacting chain, we model the connectivity of the chain

using the Hamiltonian

βH =
ks
2

N∑
i=1

(
1− |ri+1 − ri|

b0

)2

, (A.3)

with b0 = 0.38nm, and a spring constant ks = 100. We note that 〈(ri+1 − ri)
2〉 12 ≈

0.39nm for this Hamiltonian, which we take as the Kuhn length b when fitting

the data. For large N , the differences between the FJC and Rouse models are not

relevant, and hence the scaling of τc with N for these two models should be identical.

The microscopic diffusion coefficient was taken as D0 = 0.77nm2/ns. The equations

of motion in the overdamped limit were integrated using the Brownian dynamics

algorithm [18], with a time step of ∆t = 10−4ns. The end-to-end distribution P (r)

is easily computed for the model in eq. (A.3), giving the expression for large ks

P (r) = 2r
∫ ∞

0
dq q sin(qr)

(
b0q cos(b0q) + ks sin(b0q)

b0q(1 + ks)
e−b

2
0q

2/k2
s

)N−1

, (A.4)

which must be numerically integrated.

The Hamiltonian used in our simulations of a polymer in a good or poor solvent
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is H = HFENE +HLJ , where

HFENE = −kb
2

2

N∑
i=1

log
[
1−

( |ri+1 − ri| − b
R0

)2]
(A.5)

models the chain connectivity, with k = 22.2kBT , and b = 0.38nm. The choice

R0 = 2b/3 (diverging at |ri+1− ri| = b/3 or 5b/3) allowed for a larger timestep than

using [18] R0 = b/2, and increased the efficiency of conformational sampling. The

interactions between monomers are modeled using the Lennard-Jones potential,

HLJ = εLJ
N−2∑
i=1

N∑
j=i+2

[(
b

rij

)12

− 2
(
b

rij

)6]
, (A.6)

with rij = ri − rj. The Lennard-Jones interaction between the covalently bonded

beads ri and ri+1 are neglected to avoid excessive repulsive forces.

In our simulations, we computed the mean first passage time directly. For the

noninteracting chain, we generated the initial conditions by Monte Carlo equilibra-

tion. The chains in good or poor solvent were initially equilibrated using parallel

tempering (replica exchange) Monte Carlo [32] to ensure proper equilibration, with

each replica pertaining to one value of εLJ . Starting from each equilibrated initial

configuration, the equations of motion were integrated until |Ree| ≤ a for the first

time, with the first passage time computed for multiple values of N and a. The

loop closure time τc was identified with the mean first passage time, obtained by

averaging over 400 independent trajectories.
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Appendix B

Appendix For Chapter 3

B.1 Simulation Details

To calculate the equilibrium FEC of a self-avoiding polymer, we performed

low friction Langevin dynamics simulations using the Hamiltonian

βH =
3

2a2

N−1∑
i=1

(|ri − rj|2 − a2) +
N−2∑
i=1

N∑
j=i+2

ε

(
a

|ri+1 − ri|

)12

− βf(zN − z1), (B.1)

with a = 1, ε = 100, and N = 100. We set kBT = 1/β = 1 in the simulations. The

first term in Eq. B.1 describes the chain connectivity in the extensible form that,

in the continuum limit, becomes 3/2a2
∫N

0 ds ṙ2(s). We model the excluded volume

interactions between the monomers using a r−12 repulsion term (the second term in

eq. B.1). Because of the large ε value, the summation does not include neighboring

monomers (i and i+ 1) to avoid excessive repulsive forces. The last term in eq. B.1

denotes the potential due to tension acting on the ends of the polymer. Thus, this

model can be viewed as the discrete representation of the Hamiltonian in Eq. 3.2.

The natural time unit is τL = (ma2/εh)
1/2. We chose ζ = 0.05τ−1

L and h = 0.002τL.

To begin the simulations, we generate 200 initial random polymer conformations,

and thermally equilibrate those structures for 5× 106 h with f = 0. Subsequently,

a constant force is applied in the z-direction to one end of each polymer, with the

other end held in a fixed position. The force exerted is increased as fj = 10−3+0.1j
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kBT/a with j = 1, 2, . . . , 39. The integer j is increased every 5 × 106 h. For each

force step, we neglect the first 2×106 steps to ensure that the chain has equilibrated

at fj, and collect the statistics of polymer conformations every 104 integration time

steps for the remaining time steps.

The simulation procedure used to study the stretching of a homopolymer in

a poor solvent is identical to the one described in good solvent case, except for the

Hamiltonian used. The Hamiltonian in a poor solvent is

βH =
3

2a2

N−1∑
i=1

(|ri+1−ri|2−a2)+
N−2∑
i=1

N∑
j=i+2

ε

( a

|ri − rj|

)12

− 2

(
a

|ri − rj|

)6
−βf(zN−z1),

(B.2)

where ε = 0.5 and 1.5 are used for different solvent conditions, and where the other

parameters are the same as in the good solvent case. The nature of the polymer is

characterized by the second virial coefficient v2 =
∫
dr{1− e−βVint(r)}, where Vint(r)

is the second term of Eq. (B.2). When ε ≈ 0.3, v2 approaches zero, and corresponds

to the theta condition (T = TΘ).

B.2 Self-Consistent equation for λ

In this appendix, we provide the details for the calculations of 〈Z〉1 and

〈δ[r(s)− r(s′)]〉1 that appear in Eqs. (3.8) and (3.9).

〈Z〉1 =
∫
Dr(s)Ze−βH1∫
Dr(s)e−βH1

= ∂
∂(βf)

log
[∫
Dr(s)e−βH1

]

= ∂
∂(βf)

log
[∫
Dr⊥(s)e−

3
2a2λ2

∫ N
0
dsr2
⊥(s) ∫ Dz(s)e

− 3
2a2λ2

∫ N
0
ds

(
ż(s)−a

2λ2βf
3

)2

+Na2λ2

6
β2f2

]
= 1

3
Na2λ2βf (B.3)
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〈δ[r(s)− r(s′)]〉1 =
∫ ∫ ∫ ∫

dr(N)dr(s′)dr(s)dr(0) G(r(N)− r(s′)|N − s′)δ[r(s)− r(s′)]

×G(r(s′)− r(s)|s′ − s)G(r(s)− r(0)|0)

= G(0|s′ − s), (B.4)

where the propagator G(· · ·) is decomposed into transverse and longitudinal compo-

nents, G(R|N) = G⊥(R⊥|N)G‖(Z|N ; f), each of which can be exactly solved. We

find

G⊥(R⊥|N) =

∫
Dr⊥(s)δ

(∫N
0 dsṙ⊥(s)−R⊥

)
e−

3
2a2λ2

∫ N
0
dsṙ2(s)

∫
Dr⊥(s)e−

3
2a2λ2

∫ N
0
dsṙ2(s)

=

∫
Dr⊥(s)

∫ d2k
(2π)2

e
ik·
(∫ N

0
dsṙ⊥(s)−R⊥

)
e−

3
2a2λ2

∫ N
0
dsṙ2(s)

∫
Dr⊥(s)e−

3
2a2λ2

∫ N
0
dsṙ2(s)

=
∫ d2k

(2π)2
e
−Na

2λ2

6

(
k− 3R⊥

Na2λ2

)2

−
3R2
⊥

2Na2λ2

=
(

3

2πNa2λ2

)
exp

(
− 3R2

⊥
2Na2λ2

)
, (B.5)

where the δ-function is first converted to the Fourier representation, and then the

path integral is performed. The propagator G⊥(R⊥|N) is obtained after performing

the integral in Fourier space. The longitudinal component is also similarly calculated

under the Hamiltonian with linear force term,

G‖(Z|N ; f) =

∫
Dz(s)δ

(∫N
0 dsż(s)− Z

)
e−

3
2a2λ2

∫ N
0
dsż2(s)+βf

∫ N
0
dsż(s)

∫
Dz(s)e−

3
2a2λ2

∫ N
0
dsż2(s)+βf

∫ N
0
dsż(s)

=
(

3

2πNa2λ2

)1/2

exp

− 3

2Na2λ2

(
Z − Na2λ2βf

3

)2
. (B.6)

Thus, we find

〈δ[r(s)− r(s′)]〉1 = G(0|s′ − s) =

(
3

2π|s′ − s|a2λ2

)3/2

exp

[
−|s

′ − s|a2λ2β2f 2

6

]
.

(B.7)
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In obtaining Eq. (3.7), we used the extension Z as the observable to determine

the optimal value of λ. Alternatively, one can also obtain the SCE for λ using the

transverse fluctuation of polymer R2
⊥ = X2 +Y 2 where X and Y are the projections

of the end-to-end distance vector R, i.e., 〈R2
⊥(∆1 + ∆2)〉 − 〈R2

⊥〉〈∆1 + ∆2〉 = 0.

Computations involving R2
⊥ are significantly simpler than those involving the end-

to-end distance vector, R2, because the propagators in the x and y directions are

decoupled from the force-dependent propagator in the z direction. Using the same

methods as before with our original variational Hamiltonian in Eq. (3.4), we find

〈R2
⊥∆1〉 − 〈R2

⊥〉〈∆1〉 =
2Na2λ2(λ2 − 1)

3
, (B.8)

〈R2
⊥∆2〉 − 〈R2

⊥〉〈∆2〉 = −a
2λ2v0

3

∫ N

0
ds
∫ N

0
ds′G(0|s′ − s)(s′ − s) (B.9)

SCE using Eqs. (B.8) and (B.9) results in

λ2 − 1 =
v
√
N

λ3

∫ 1

δ
du

1− u√
u

e−Nuλ
2ϕ2/6 , (B.10)

which is identical to the SCE obtained using the linear end-to-end distance (Z) as

the generating observable in Eq. (3.10). Thus, the computation of the FEC is not

dependent on whether the mean extension or the transverse fluctuations are used in

determining the self-consistent equation.
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B.3 The Thick Chain Model

In order to verify the theoretical predictions for the polymer described by

the (nearly) Inextensible Gaussian Hamiltonian (IGH) with excluded volume in-

teractions, we have simulated the FEC using the thick chain (TC) model for a

self-avoiding polymer. In the TC model, the polymer is viewed as a chain with a

finite uniform thickness D, and is represented as a succession of beads with posi-

tion vectors r0, ..., rN . All of the bond vectors ∆rn = rn+1 − rn (n = 0, .., N) have

the same modulus a. Therefore, unlike the IGH where 〈|∆rn|〉 ≈ a in Eq. (3.16),

the bond length restriction |∆rn| = a is strictly enforced in the TC model. The

Hamiltonian of the chain under tension is given by

HTC =
∑
i,j,k

V (Ri,j,k)− f · (rN − r0), (B.11)

where the first term enforces the self-avoidance, and the second term represents the

external force. In particular,

V (Rijk) =


0, Rijk > D

∞, Rijk ≤ D,

(B.12)

where Rijk is radius of the circle going through the triplet of beads (i, j, k). Phys-

ically, the first term in the Hamiltonian (Eq. (B.11)) ensures the self-avoidance of

the chain by rejecting both local self-intersection (the local radius of curvature must

be no smaller than D) and interpenetration of any two portions of the chain at some

finite arc-length. Intuitively, it allows only configurations satisfying the thickness

constraints, that the radii of circles going through all the triplets of beads (i, j, k)

are greater than D.
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In order to characterize the stretching response of a thick chain with D/a = 1

and N = 1600 we performed Monte Carlo simulations using the following scheme.

Starting from an arbitrary initial chain conformation that satisfies the thickness

constraints, the exploration of the available configuration space was performed by

distorting conformations by means of pivot and crankshaft moves. The new struc-

tures were accepted or rejected according to the standard Metropolis criterion (the

infinite strength of the three-body penalties of Eq. (B.11) was enforced by always

rejecting configurations violating the circumradius constraints). The relative elon-

gation of the chain was calculated for increasing values of the applied stretching

force. For each run, after equilibration, we measure the autocorrelation time and

sampled a sufficient number of independent conformations to achieve a relative error

of at most 10−3 in the average chain elongation. For moderate to high forces, this

typically entailed the collection of 104 independent structures, whereas a 10-fold

increase of sampling was required at small forces due to the broad distribution of

the end-to-end separation along the force direction. At small forces, conformational

fluctuations can be even larger than the mean extension, which makes achieving

converged results for 〈Z〉 more difficult.
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Appendix C

Appendix for Chapter 4

C.1 Simulation Hamiltonian

The Hamiltonian for the RNA hairpin with N nucleotides, which is modeled

using the self-organized polymer (SOP) model [72], is

HSOP = −kR
2
0

2

N−1∑
i=1

log
(

1−
(ri,i+1 − roi,i+1)2

R2
0

)
+

N−3∑
i=1

N∑
j=i+3

εh

[(roi,j
ri,j

)12

− 2
(roi,j
ri,j

)6 ]
∆i,j

+
N−3∑
i=1

N∑
j=i+3

εl

(
σ

ri,j

)12

(1−∆i,j) +
N−2∑
i=1

εl

(
σ∗

ri,i+2

)6

, (C.1)

where ri,j = |ri − rj| and roi,j is the distance between monomers i and j in the

native structure. The first term enforces backbone chain connectivity using the

finite extensible nonlinear elastic (FENE) potential, with k ≈ 1.4 × 104 pN·nm−1

and R0 = 0.2 nm. The Lennard-Jones interaction (second term in equation (C.1))

describes interactions only between native contacts (defined as roi,j ≤ 1.4 nm for

|i− j| > 2), with ∆i,j = 1 if monomers i and j are within 1.4 nm in the native state,

and ∆i,j = 0 otherwise. Non-native interactions are treated as purely repulsive (the

third term in equation (C.1)) with σ = 0.7 nm. We take εh = 4.9 pN·nm and

εl = 7.0 pN·nm for the strength of interactions. In the fourth term, the repulsion

between the ith and (i+ 2)th interaction sites along the backbone has σ∗ = 0.35 nm

to prevent disruption of the native helical structure.
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The handles are modeled using the Hamiltonian

Hhandles =
kS
2

N−1∑
i=1

(ri,i+1 − r0)2 − kA
N−2∑
i=1

r̂i,i+1 · r̂i+1,i+2. (C.2)

The neighboring interaction sites, with an equilibrium distance r0 = 0.5 nm, are

harmonically constrained with a spring constant kS ≈ 1.4 × 104 pN·nm−1. In the

second term of eq. (C.2), the strength of the bending potential, kA, determines the

handle flexibility. We choose two values, kA =7.0 pN·nm and kA =561 pN·nm to

model flexible and semiflexible handles respectively, and assign kA = 35 pN·nm to

the junction connecting two ends of the RNA and the handles. We determine the

corresponding persistence length for the two kA values as lp = 0.6 and 70 nm (see

SI text). The contour length of each handle is varied from N = 5− 200.

C.2 The GRM Hamiltonian Matrix

Defining RN(t) = {x1(t), . . . , xN+1(t)}, we can write the Hamiltonian in eq.

4.1 as

βH =
3

2a2
RT
NMRN − βf(zN+1 − z1) (C.3)

where M can be written in the block matrix form

M =



a2M1/b
2 0

0 M2 0

0 0 a2M3/b
2


. (C.4)

M1 and M3 both symmetric Nh×Nh matrices, and M2 is a symmetric (N−2Nh)×

(N−2Nh) matrix. The symmetric block matrices have non-vanishing elements given
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by

M
(1)
i,i = 2− δi,1 + b2k0/3a

2 M
(3)
i,i = 2− δi,N+1 (C.5)

M
(2)
i,i = 2 + (a2/b2 + k − 1)[δi,Nh+1 − δi,N−Nh+1] (C.6)

M
(1)
i,i+1 = M

(2)
i,i+1 = M

(3)
i,i+1 = −1 (C.7)

M
(2)
1,Nh+1 = k (C.8)

In the case when the interaction is cut off (i.e. |rN−Nh+1− rNh+1| ≤ c), the matrices

are identical with the replacement k → 0. In the case k = 0, k0 = 0, and b = a (i.e.

no interaction, free endpoints, and identical RNA and handle spacing), we recover

the standard Rouse matrix, Mi,i = 2− δi,1 − δi,N+1 and Mi,i+1 = −1, as expected.

C.3 Derivation of the GRM Propagator

For the Generalized Rouse Model, with a Hamiltonian given in eq. C.3, each

component of a monomer’s position evolves under the Langevin equation

ζ
∂X

∂t
= −3kBT

2a2
M ·X + N(t′) + F(t′)

X(t) = G(t) ·X(0) +
1

ζ

∫ t

0
dt′ G(t− t′)

(
N(t′) + F(t′)

)
(C.9)

where X = {x1(t), . . . , xN+1(t)} contains the positions N = {η(x)
1 , . . . , η

(x)
N+1}T con-

tains the random, white noise forces, and F = {f (x)
1 (t), . . . , f

(x)
N+1(t)}T contains the

time-dependent force, and where we have defined

G(t) = exp
(
−M

3Dt

a2

)
(C.10)

The y and z components evolve under an identical Langevin equation, and since the

GRM is purely Gaussian, they do not interact.
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Because the GRM is Gaussian, we can write the propagator for the distance

between monomers n and m, ∆r = rn(t) − rm(t) as P (∆r, t|∆r0)=P (∆x, t|∆x0)

P (∆y, t|∆y0) P (∆z, t|∆z0). For the x component, we have

P (∆x, t|∆x0) =
〈
δ[xn(t)− xm(t)−∆x] δ[xn(0)− xm(0)−∆x0]

〉
(C.11)

=
∫ dk dq

(2π)2
e−ik∆x−iq∆x0

〈
exp

(
ik[xn − xm] + iq[xn(0)− xm(0)]

)〉
(C.12)

The term ik[xn−xm]+ iq[xn(0)−xm(0)] in eq. C.12 can be written as ik[xn−xm]+

iq[xn(0)− xm(0)] = Tn −Tm, where T = T(1) + T(2) + T(3) and

T(1) =
(
ikG(t) + iqI

)
X(0) (C.13)

T(2) =
ik

ζ

∫ t

0
dt′G(t− t′)N(t′) (C.14)

T(3) =
ik

ζ

∫ t

0
dt′G(t− t′)F(t′) (C.15)

We must therefore average exp(T(1)
n −T(1)

m ) over the initial conditions and exp(T(2)
n −

T(2)
m ) over the noise, in order to determine the desired propagator.

In order to compute the noise averages, we write

〈· · ·〉noise =
1

N

∫ ∏
l

D[Nl(t)]
(
· · ·

)
exp

(
− 1

4kBTζ

∫ ∞
−∞

dt N2
l (t)

)
(C.16)

exp(T(2)
n −T(2)

m ) can then easily be evaluated by completing the square, with

− β

4ζ

∑
l

∫ t

0
dt′N2

l (t′) +
ik

ζ

∑
l

∫ t

0
dt′
(
Gnl(t− t′)−Gml(t− t′)

)
Nl(t

′) (C.17)

= − β

4ζ

∑
l

∫ t

0
dt′
[
Nl(t

′)− 2ik

β

(
Gnl(t− t′)−Gml(t− t′)

)]2

(C.18)

− k
2

βζ

∑
l

∫ t

0

(
Gnl(t− t′)−Gml(t− t′)

)2
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= − β

4ζ

∫ t

0
dt′ N̄(t′)N̄T (t′) (C.19)

− k
2

βζ

∫ t

0
dt′
(

[G(t′)GT (t′)]nn + [G(t′)GT (t′)]mm − 2[G(t′)GT (t′)]nm

)

where we have defined N̄l = Nl(t
′) − 2ik kBT [Gnl(t − t′) − Gml(t − t′)]. The path

integral over N can be computed after a change of variables (N → N̄). From eq.

C.10, we find

∫ t

0
dt′G(t′)GT (t′) =

a2

6D
M−1

(
I−G(2t)

)
(C.20)

so that

〈
eT

(2)
n −T

(2)
m

〉
= exp

[
− k2a2

6

∑
lj

(
δnl − δml

)(
M−1

)
lj

(
δjn − δjm

)

+
k2a2

6

∑
lj

(
Gnl −Gml

)(
M−1

)
lj

(
Gjn −Gjm

)]
(C.21)

Note that this noise average is completely independent of the details of the force,

and depends only on the GRM Hamiltonian.

The average over initial coordinates is with respect to the Hamiltonian

H = − 3

2a2
XT (0)MX(0) + βR(0)F0 (C.22)

where we have defined F0 = F(0). We can rewrite for simplicity T(1)
n − T(1)

m =

V ·X(0), with

[V]l ≡ ik([Gnl(t)−Gml(t)]) + iq(δnl − δml) (C.23)

The average over initial coordinates is now trivial, since
∫
dX exp(−XMX + [V +

F0]X) ∝ exp([V + F0]M−1[V + F0]/4). Exploiting the symmetries of the matrices,
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we can rewrite this as

a2

6
(F0)TM−1F0 − a2k2

6

∑
lj

(
Gnl(t)−Gml(t)

)
(M−1)lj

(
Gjn −Gjm(t)

)
(C.24)

−a
2kq

3

∑
lj

(
Gnl(t)−Gml(t)

)
(M−1)lj

(
δjn − δjm

)

−a
2q2

6

∑
lj

(
δnl − δml

)
(M−1)lj

(
δjn − δjm

)

+
ika2

3

∑
lj

(
Gnl(t)−Gml(t)

)
(M−1)ljF

0
j +

iqa2

3

∑
lj

(
δnl − δml

)
(M−1)ljF

0
j

Combining the force-independent terms of all of the averages gives

〈exp(ik[xn(t)− xm(t)] + iq[xn(0)− xm(0)])〉 =

exp
(
− (k2 + q2)

6
∆x2

eq −
kq

3
∆x2

eqh(t) +B(t,F)
)

(C.25)

with

∆x2
eq = a2

[(
M−1

)
nn

+
(
M−1

)
mm
− 2

(
M−1

)
nm

]
(C.26)

∆x2
eqh(t) = a2

[(
M−1G(t)

)
nn

+
(
M−1G(t)

)
mm
− 2

(
M−1G(t)

)
nm

]
(C.27)

where ∆x2
eq = limt→∞〈[xn(t)− xm(t)]2〉|f=0, and where B includes the contribution

from the external tension (see below).

The force-dependent terms are most easily considered by computing the con-

tributions from k and q separately. There is only one q-dependent term, giving the

contribution

iqa2

3

∑
lj

(
δnl − δml

)
(M−1)ljF

0
j = iq〈x〉0 (C.28)

with 〈x〉0 the average initial extension of the chain under the force F0. This term is

independent of the time-dependent details of the force.
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The k dependent terms are more complicated, but we can rewrite

ika2

3

∑
lj

(
Gnl(t)−Gml(t)

)
(M−1)ljF

0
j = ik〈x〉0

−ik
ζ

∫ t

0
dt′
[(

G(t− t′)F0
)
n
−
(
G(t− t′)F0

)
m

]
(C.29)

Combining this term with the non-averaged portion of the propagator, we find the

force-dependent contribution becomes

B(t,F) = i(k + q)〈z〉0 + ika2∆feff (t) (C.30)

a2∆feff (t) ≡
1

ζ

( ∫ t

0
dt′ G(t− t′)[F(t′)− F0]

)
n
− 1

ζ

( ∫ t

0
dt′ G(t− t′)[F(t′)− F0]

)
m

We now have the final form of the propagator:

P (∆x, t|∆x0) =
∫ dk dq

(2π)2
exp

(
−
〈∆x2

eq〉
6

(k2 + q2)− 〈∆x
2〉eqh(t)

3
kq

+k[∆̄x− a2∆feff (t)] + iq∆̄x0

)
(C.31)

with ∆̄x = ∆x− 〈∆x〉0. Integration over k and q gives

P (∆x, t|∆x0) =
3

2π∆x2
eq

√
1− h2(t)

exp
(
− 3

2∆x2
eq[1− h2(t)]

[
∆̄x

2
0 +

(∆̄x− a2∆feff (t))
2 − 2h(t)∆̄x0(∆̄x− a2∆feff (t))

])
(C.32)

In the case of a constant tension, ∆feff (t) ≡ 0, and we can write the full, three

dimensional propagator as

P (∆r, t|∆r0) =
(

3

2π∆x2
eq

√
1− h2(t)

)3

exp
(
− 3

2∆x2
eq[1− h2(t)]

×
[
∆̄r

2
0 + ∆̄r

2 − 2h(t)∆̄r · ∆̄r0

])
(C.33)

with ∆̄r = ∆r− 〈∆r〉0.
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Appendix D

Appendix For Chapter 5

D.1 The Q Matrix

Defining xN = (x1, . . . , xN+1), we can rewrite the Hamiltonian in eq. 5.2 as

Hx = a
∑
n

(
lp
2

(∆xn+1 −∆xn)2

a4
+ λn

∆x2
n

a2
+ kn

x2
n

R2

)
=
(
xN
)T

QxN (D.1)

with Q a tridiagonal matrix with elements:

Qi,i+2 = Qi+2,i =
lp

2a4
(D.2)

Qi,i+1 = Qi+1,i =


− lp
a4 − 2λi

a2 i = 1, N

−2lp
a4 − 2λi

a2 else

(D.3)

Qi,i =



lp
2a4 + λ1

a2 + ak1
R2 i = 1

lp
2a4 + λN

a2 + akN+1

R2 i = N + 1

5lp
2a4 + λi−1+λi

a2 + aki
R2 i = 2, N

3lp
a4 + λi−1+λi

a2 + aki
R2 else

(D.4)

The structure of Q is unchanged under the transformation k1 = kN+1, k2 = kN ,

λ1 = λN , ki = k for 2 < i < N and λi = λ for 1 < i < N .

D.2 Evaluation of the 1-D Confined Propagator

We are interested in evaluating the path integral in eq. 5.5,

Z0(x) =
∫

∆[x(s)] exp
(
− lp

2

∫ L

0
dσ ẍ2(s)−λ

∫ L

0
ds ẋ2(s)− κ

R2

∫ L

0
ds x2(s)

)
, (D.5)
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subject to the boundary conditions x(0) = x0, u(0) = u0, x(L) = xL, and u(L) = uL.

We can write x(s) = f(s) + g(s), where g(0) = g(L) = ġ(0) = ġ(L) = 0 and

lp
2
f (4)(s)− λf̈(s) + κf(s) = 0

with f(0) = x0, f(L) = xL, ḟ(0) = u0, and f(L) = uL. If f satisfies the above

differential equation, a simple integration by parts gives

Z0(x) = K(L) exp
(
− lp

2

[
f̈ ḟ − f (3)f

]L
0
− λ[uLxL − u0x0]

)
(D.6)

K(L) =
∫

∆[g(σ)] exp
(
− lp

2

∫ L

0
dσ g̈2(σ)− λ

∫ L

0
dσ ġ2(σ)

− κ

R2

∫ L

0
dσ g2(σ)

)
(D.7)

where g and g′ vanish at the boundaries. The exponential term in eq. D.6 can be

evaluated by solving the differential equation for f , giving

Z0(x) = K(L)e−x·Mx, (D.8)

where

M =
lpR

2d(L)



Rm11 Rm12 Rm13 m14

Rm12 Rm11 −m14 −Rm13

Rm13 −m14 m33/R m34/R

m14 −Rm13 m34/R m33/R


+
λ

2



0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0


(D.9)

Here, we have defined

d(L) =
2ω1ω2(1− cosh(Lω1) cosh(Lω2)) + (ω2

1 + ω2
2) sinh(Lω1) sinh(Lω2)

ω1ω2(ω2
1 − ω2

2)

m11 = ω1 sinh(Lω1) cosh(Lω2)− ω2 cosh(Lω1) sinh(Lω2)

m12 = ω2 sinh(Lω2)− ω1 sinh(Lω1)
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m13 =
ω2

1 − ω2
2

2ω1ω2

sinh(Lω1) sinh(Lω2)

m14 = cosh(Lω1)− cosh(Lω2)

m33 =
1

ω2

cosh(Lω1) sinh(Lω2)− 1

ω1

sinh(Lω1) cosh(Lω2)

m34 =
1

ω1

sinh(Lω1)− 1

ω2

sinh(Lω2)

with

ωi =

λ
lp

(
1±

√
1− 2κlp

λ2

) 1
2

. (D.10)

Note that the full propagator Z(x)in eq. 5.8 can be written as Z(x) =

Z0(x) exp(−x ·Gx), with the matrix G containing terms suppressing excess end-

point fluctuations, given by

G =



γ1/R
2 0 γ2/R 0

0 γ1/R
2 0 −γ2/R

γ2/R 0 δ 0

0 −γ2/R 0 δ


(D.11)

In general, average values will involve calculating the determinant of some

matrix involving M. Simplification of the determinant is a tediuous process, but it

is useful to note that any matrix with the above symmetries has a determinant

Det(M) = A2
1 − A2

2 (D.12)

A1 = m2
13 +m2

14 +m12m34 −m11m13

A2 = 2m13m14 +m12m33 −m11m34

We can calculate K(L) by the evaluation of a simple integral. Following the

standard method of Feynman [155], we can write the propagator from (x0, u0) to
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(xL, uL) as a sum over all intermediate points, (xs, us),

Z0(x0, xL, u0, uL;L) =
∫ ∞
−∞

dxsdus Z0(x0, u0, xs, us; s)× Z0(xs, us, xL, uL;L− s)(D.13)

=
∫ ∞
−∞

∫ ∞
−∞

dxsdus K(s) exp
(
− xT1 ·M(s)x1

)
(D.14)

×K(L− s) exp
(
− xT2 ·M(L− s) x2

)

where x1 = (x0, xs, u0, us) and x2 = (xs, xL, us, uL). M has already been determined

(eq. D.9), and K(L), given in eq. D.7, is independent of all xi’s and ui’s. The

integral in eq. D.14 is tedious to evaluate, but yields

Z0(x;L) = K(L)e−xT ·M(L) x = K(s)K(L− s) 2π

lp

(
d(s)d(L− s)

(ω2
1 − ω2

2)d(L)

) 1
2

e−xT ·M(L) x

(D.15)

We then find

K(L) =
lp
2π

√√√√ω2
1 − ω2

2

d(L)
e−Lη, (D.16)

where η is an arbitrary constant, independant of L, lp, and R, adding an irrelevant

constant to the free energy.

M and K can be greatly simplified in the limit of strong confinement (Lωi � 1,

see the main text), with

M =
lpRω1ω2

2



R(ω1 + ω2) 0 1 0

0 R(ω1 + ω2) 0 −1

1 0 (ω−1
1 + ω−1

2 )/R 0

0 −1 0 (ω−1
1 + ω−1

2 )/R


K ∝

√
ω1ω2 (ω1 + ω2)e−L(ω1+ω2)/2 (D.17)

This strongly confined representation is significantly easier to work with when com-

puting the mean field solutions.
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To ensure that our calculation of Z0 has the correct limiting behavior, we find

lim
R→∞

∫ ∞
−∞

dxLZ0(x) = e−kLx
2
0

(
lpΩ

2π sinh(ΩL)

) 1
2

exp
(
− lpΩ

2 sinh(ΩL)
(D.18)

×
[
(u2

0 + u2
L) cosh(ΩL)− 2u0uL

]
+O(1/R)

)

which is identical to the unconfined propagator found in the work of Thirumalai and

Ha [41, 42], except for the the term e−kLx
2
0 . Since, as R →∞, the system becomes

translationaly invariant, we would expect x0 to decouple from the bending terms,

and that integration over x0 would lead to a divergent integral ∝ V → ∞. The

integral over the initial position then simply adds an irrelevant constant to the free

energy. We therefore have the relationship

ZU(u0, uL) = lim
R→∞

1

V

∫ ∞
−∞

dx0dxL Z(x) (D.19)

identical to the propagator used by Ha and Thirumalai [41, 42], up to a multiplicative

constant.

D.3 Details of the simulations for volume confinement

Because the Configurational Bias Monte Carlo (CBMC) method [156] is only

applicable to Hamiltonians involving nearest neighbor interactions, we can not use

this method to accurately determine the equilibrium behavior of a spherically con-

fined wormlike chain. We have therefore performed a number of Langevin Dynamics

simulations with varying L, lp, and R when considering volume confinement. The

Hamiltonian used is

βH =
k

2a2

N∑
i=0

(|ri+1 − ri| − a)2 − lp
a

N−1∑
i=0

ui · ui+1 + εS
N+1∑
i=0

(
a

|ri| − (R + a)

)12

(D.20)
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with L = Na. The first term ensures the connectivity of the chain, and we take

k = 104 throughout, ensuring very stiff bonds. The second term accounts for the

bending stiffness of the chain, with persistence length lp. We have confirmed directly

that this Hamiltonian in the unconfined case (i.e. only the first two terms of eq.

D.20 are used) gives 〈u(s) · u(s′)〉 = e−|∆s|/lp to within ∼ 5%. The third term

of the Hamiltonian approximately confines the chain to the interior of a sphere of

radius R, using a Lennerd-Jones repulsion. The confinement energy is on the order

of εS kBT when |ri| = R, and increases sharply for larger |ri|. We choose εS = 1

throughout the simulations, which restricts |ri|/R ≤ 1.01 for all of the parameters

we considered. To determine the equilibrium properties of the system, we use the

low friction limit, with η = 0.1, and a timestep of h = 0.001 (in dimensionless units,

or equivalently with the mass m = 1, spacing a = 1, and kBT = 1).

In order to study the behavior of an excluded volume chain, we instead use

the hamiltonian

βH1 = βH0 + εEV
N−1∑
i=0

N+1∑
j=i+2

(
a

|ri − rj|

)12

(D.21)

We choose εEV = 1 throughout the excluded volume simulations.

D.4 Calculation of the winding axis

Because of the spherical symmetry of the problem, we are free to choose our

coordinate system such that it simplifies the calculation. We define ûi−1 = ẑ,

determining the z-axis, and ûi = (sin(Θi), 0, cos(Θi)), defining the x-axis. We take

our third bond to be ûi+1 = (sin(Θi+1) cos(ϕ), sin(Θi+1) sin(ϕ), cos(Θi+1)). With
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θi,j the angle between bonds i and j, we see θi−1,i = Θi and θi−1,i+1 = Θi+1. It is

convenient to eliminate the azimuthal angle ϕ when computing cos(θi,i+1) = ûi ·ûi+1,

giving

cos(ϕ) = cot(θi,i+1) cot(Θi)− cos(Θi+1) csc(θi,i+1) csc(Θi) (D.22)

In this coordinate system, âi = ŷ, and |ai+1| = sin(θi,i+1). To compute the dot prod-

uct between the two winding axes, we need only ai+1 · ŷ = cos(Θi) sin(Θi+1) cos(ϕ)−

cos(Θi+1) sin(Θi). Eq. 5.33 is recovered upon substitution of cos(ϕ) in âi · âi+1 =

ai+1 · ŷ/|ai+1|.
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[99] J. Brujić, R. I. Hermans Z, K. A. Walther, and J. M. Fernandez. Single-
molecule force spectroscopy reveals signatures of glassy dynamics in the energy
landscape of ubiquitin. Nature Physics, 2:282–286, 2006.

[100] J. Liphardt, B. Onoa, S. B. Smith, I. Tinoco, Jr., and C. Bustamante. Re-
versible unfolding of single RNA molecules by mechanical force. Science,
292:733–737, 2001.

[101] B. Onoa, S. Dumont, J. Liphardt, S. B. Smith, I. Tinoco, Jr., and C. Busta-
mante. Identifying Kinetic Barriers to Mechanical Unfolding of the T. ther-
mophila Ribozyme. Science, 299:1892–1895, 2003.

[102] D. K. Klimov and D. Thirumalai. Stretching single-domain proteins: Phase
diagram and kinetics of force-induced unfolding. Proc. Natl. Acad. Sci.,
96(11):6166–6170, 1999.

[103] C. Hyeon and D. Thirumalai. Mechanical unfolding of RNA hairpins. Proc.
Natl. Acad. Sci., 102:6789–6794, 2005.

[104] M. Manosas, D. Collin, and F. Ritort. Force-dependent fragility in RNA
hairpins. Phys. Rev. Lett., 96:218301, 2006.

[105] D. K. West, D. J. Brockwell, P. D. Olmsted, S. E. Radford, and E. Paci.
Mechanical Resistance of Proteins Explained Using Simple Molecular Models.
Biophys. J., 90:287–297, 2006.

[106] O. K. Dudko, G. Hummer, and A. Szabo. Intrinsic rates and activation free
energies from single-molecule pulling experiments. Phys. Rev. Lett., 96:108101,
2006.

[107] C. Hyeon and D. Thirumalai. Measuring the energy landscape roughness and
the transition state location of biomolecules using single molecule mechanical
unfolding experiments. J. Phys.: Condens. Matter, 19:113101, 2007.

[108] M. Manosas and F. Ritort. Thermodynamic and Kinetic Aspects of RNA
pulling experiments. Biophys. J., 88:3224–3242, 2005.

[109] C. Hyeon and D. Thirumalai. Forced-unfolding and force-quench refolding of
RNA hairpins. Biophys. J., 90:3410–3427, 2006.

161



[110] M. Manosas, J. D. Wen, P. T. X. Li, S. B. Smith, C. Bustamante, I. Tinoco,
Jr., and F. Ritort. Force Unfolding Kinetics of RNA using Optical Tweezers.
II. Modeling Experiments. Biophys. J., 92:3010–3021, 2007.

[111] K. Svoboda and S. M. Block. Biological applications of optical forces. Annu.
Rev. Biophys. Biomol. Struct., 23:247–285, 1994.

[112] G. Wilemski and M. Fixman. Diffusion-controlled intrchain reactions of poly-
mers. II Results for a pair of terminal reactive groups. J. Chem. Phys.,
60(3):878–890, 1974.

[113] R. Zwanzig. Nonequilibrium Statistical Mechanics. Oxford University press,
New York, 2001.

[114] O. Kratky and G. Porod. Rec. Trav. Chim., 68:1106, 1949.

[115] H. Yamakawa. Helical Wormlike Chains in Polymer Solution. Springer, Berlin,
1997.
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