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Data structures for geometric search and retrieval are of significant interest
in areas such as computational geometry, computer graphics, and computer vision.
The focus of this dissertation is on the design of efficient dynamic data structures
for use in approximate retrieval problems in multidimensional Euclidean space. A
number of data structures have been proposed for storing multidimensional point
sets. We will focus on quadtree-based structures. Quadtree-based structures possess
a number of desirable properties, and they have been shown to be useful in solving
a wide variety of query problems, especially when approximation is involved.

First, we introduce two dynamic quadtree-based data structures for storing a
set of points in space, called the quadtreap and the splay quadtree. The quadtreap
is a randomized variant of a quadtree that supports insertion and deletion and has
logarithmic height with high probability. The splay quadtree is also a quadtree vari-
ant, but this data structure is self-adjusting, that is, it rebalances itself depending
on the access pattern. It supports efficient insertion and deletion in the amortized

sense.



We also study how to dynamically maintain an important geometric structure,
called the well-separated pair decomposition (WSPD). A set of n points defines
O(n?) pairs. Callahan and Kosaraju introduced the WSPD as a concise method
for approximating the set of all pairs by using only O(n) subsets of pairs that
are spatially well-separated from each other. We present the first output sensitive
algorithm for maintaining a WSPD for a dynamic point set, that is, one in which the
running time depends on the actual number of newly created (or newly destroyed)
pairs.

Finally, we consider maintaining a data structure for points in motion. Mo-
tion is often presented incrementally in discrete time steps, and future motion may
not be predictable from the past. This is called the black-box model. We present
efficient online algorithms for maintaining two important geometric data structures
for moving points in the black-box model, namely nets and net trees. We establish

the efficiency of these online algorithms through a competitive analysis.
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Chapter 1
Introduction

Recent decades have witnessed the development of many data structures for effi-
cient geometric search and retrieval. A fundamental issue in the design of these
data structures is the balance between efficiency, generality, and simplicity. From
the perspective of computational geometry, one of the greatest successes has been
the development of simple, hierarchical partition-based data structures (such as
quadtrees, kd-trees, and variants) for solving approximate geometric retrieval prob-
lems involving points sets in spaces of relatively low dimension.

In this dissertation, our focus will be on the design of such data structures
in a dynamic setting, that is, where points may be inserted, deleted, or may move
over time. We are particularly interested in geometric queries that either involve
proximity (such as finding the nearest neighbor to a given query point) or involve
range searching (such as reporting or counting the subset of points that lie within a
given query region). There are many different ways in which to analyze point sets

in a dynamic context. Here are some examples:

Worst-case analysis: The most standard form of analysis is to consider the perfor-
mance of the data structure where points may be inserted or deleted. The
principal design issues are how much space is needed, how fast can points be

inserted or deleted, and how fast can queries be answered.



In the field of computational geometry, it is common to analyze these quantities
from the perspective of worst-case asymptotic complexity. Ideally, in order
to store n points, such a data structure requires space O(n), can process
insertions and deletions in time O(logn), and can respond to queries in time
O(log n+k), where k is the size of the query’s output. When solving problems
approximately, it is common to have additional terms (typically in the space

or query time) that depend on the allowed approximation error .

Expected-case and amortized analysis: Worst-case analysis may not be the most
relevant form of analysis in some applications. For example, when data access
patterns are known to be spatially skewed (that is, where some regions of space
are much more likely to be queried than others) it may be more meaningful to
define a probability distribution over the set of possible queries. The expected
case query time for a set of size n is defined as the expected value of the query

time, over all possible queries made to this set.

Such an approach makes the strong assumption that the query distribution is
known in advance. Often this is not the case. When the query distribution is
not known, a good alternative is a self-adjusting data structure. Such a data
structure incrementally reorganizes itself in order to optimize its performance
for whatever query distribution is presented. When dealing with self-adjusting
data structures, it is common to use an amortized analysis. In an amortized
analysis, the running times are averaged over a sequence of accesses. This

allows occasional inefficient accesses to be balanced against a higher number



of more efficient accesses.

Kinetic data: In the above cases we have considered dynamics to mean the insertion
and deletion of points. In many applications, however, dynamics refers to point
sets that move over time. In the field of computational geometry, there are two
common models used for processing kinetic data sets. First, motion may be
highly predictable and follow specified “flight plans.” In this model, the motion
of individual points is typically given as an algebraic function of time. (This is
the model used in the area of kinetic data structures (KDS) [59].) In the second
model, points move incrementally and unpredictably over time. In this model,
it is common to provide an oracle that reveals the location of a given point at

the current time. This is often called the black-box model [38,52,79,114].)

In this dissertation we will explore a number of efficient data structures for
geometric point sets in dynamic contexts. First, we will introduce two new quadtree-
based data structures, called the quadtreap and the splay quadtree. The quadtreap
is a randomized variant of a quadtree that supports insertion and deletion and has
logarithmic height with high probability. The splay quadtree is also a quadtree
variant, but this data structure is self-adjusting and achieves efficiency in the amor-
tized sense. Next, we will present an algorithm that dynamically maintains a fun-
damental data structure in computational geometry, called the well-separated pair
decomposition (see definitions below). Our approach allows for efficient insertion
and deletion of points into the structure. Its principal feature is that the time to

insert and delete points is output sensitive, meaning that it depends on the number



of structural changes to the decomposition. Finally, we will present an approach to
processing points in a kinetic context in the black-box model. We will show how
to efficiently maintain a hierarchical structure called a net tree (see Section 1.3 for
definitions). This structure can be viewed as a generalization of a quadtree in the
context of metric spaces. In the rest of this chapter, we will describe these results

in greater detail.

1.1 Dynamic Data Structures for Multidimensional Point Sets

Binary search trees are widely used for storing data sets from a totally ordered
domain. Efficient worst-case access requires that tree be balanced, meaning its
height is O(logn). As points are inserted or deleted, however balance may degrade,
and many different methods have been proposed for restoring balance. Binary search
trees can be incrementally restructured through an operation called a rotation, which
exchanges the positions of two neighboring nodes in the tree. These are used,
for example, in AVL trees [2], red-black trees [60], the treap data structure [97],
and splay trees [99]. The treap achieves O(logn) time per operation with high
probability, and the splay tree is efficient in the amortized sense, meaning that a
sequence of m operations can be performed in O(mlogn) total time. An alternative
data structure for ordered dictionaries, which is not based on binary search trees,
is the skip list data structure [90], which combines random sampling with a one-
dimensional linked list.

A natural generalization of binary trees for storing points in multidimensional



space are partition trees, which are based on hierarchical subdivisions of space (see,
e.g., [113]). An well known example is the PR-quadtree. The PR-quadtree is based
on a hierarchical subdivision of space into hypercube-shaped cells through a process
of repeated bisection [94]. (For the simplicity, we use the term “quadtree” through-
out this dissertation to mean “PR-quadtree.”) The simplicity and general utility of
quadtree-based data structures is evident by the wide variety of problems to which
they have been applied, both in theory and practice (see, e.g., [94]). One nice fea-
ture of the quadtree, which makes it appropriate for approximate retrieval problems,
is that it decomposes space into disjoint hypercubes, each of which is of constant
combinatorial complexity and bounded aspect ratio, two important properties in
approximate geometric search and retrieval.

Because the size and depth of a quadtree generally depends on the data set’s
aspect ratio (the ratio of the maximum to minimum inter-point distances), it is
common to use compressed quadtrees [20,30,63], which (through the elimination of
trivial chains) can store n points in space O(n), irrespective of aspect ratio. Since a
compressed quadtree may have height O(n), it is often combined with an auxiliary
search structure for maintaining its balance. This can be done by applying some
form of centroid decomposition to the tree [35,63] or by imposing a general-purpose
data structure, like a link-cut tree [21,98]. These approaches are rather inelegant,
however, due to their reliance on relatively heavyweight auxiliary structures.

A much simpler and more elegant solution, called the skip quadtree, was pro-
posed by Eppstein et al. [45]. It consists of a series of compressed quadtrees, each for

a successively sparser random sample of the point set, together with links between



corresponding nodes of consecutive trees. The result is a multidimensional analog
of the well known skip list data structure [90].

Another creative solution is based on reducing the problem into a 1-dimensional
domain by sorting the points according to their relative positions along a space filling
curve. For example, this can be performed by interleaving the bits of the coordinates
of the points, which is sometimes called the Morton order or Z order. The result-
ing data set can be stored in a 1-dimensional dynamic data structure. Gargantini
proposed such a structure, called the linear quadtree [53]. Chan [26,27] presented a
simple and clean implementation of this idea, and he showed how to use it to answer
approximate nearest neighbor queries efficiently.

Yet another approach for achieving balance is to modify the definition of the
decomposition process. Examples of this include the BBD-tree [10,12, 13|, which
uses an operation called centroid-shrinking to produce a balanced tree, and the BAR
tree [43], which uses splitting planes that are not axis-aligned. (Many of these data
structures will be discussed in greater detail in Chapter 2.)

It is noteworthy that, while almost all the 1-dimensional search structures
based on binary trees make use of rotations to maintain balance, almost none of the
aforementioned multidimensional data structures makes use of local restructuring
in the same simple manner. This suggests the question of whether there even exists
a simple way to locally restructure quadtree-based data structures. We show that,
if one is willing to modify the manner in which quadtrees are decomposed, it is
possible to define such a local restructuring operation. We introduce two variants of

the quadtree that support a local restructuring operation called promotion. Based on



promotion, we propose two dynamic versions of quadtrees. The first data structure,
called a quadtreap, is randomized, but its worst-case efficiency can be established
with high probability. The second data structure, called a splay quadtree, is a self-
adjusting structure that is efficient in the amortized sense. We discuss our results

regarding these structures in greater detail in Section 1.1.1 and 1.1.2.

1.1.1 The Quadtreap: A Randomized Dynamic Data Structure for
Approximate Range Searching

An important class of problems for point sets in real multidimensional space is
that of storing these points in order to answer range queries efficiently. Consider a
set P of n points in R?, for some constant d. It is common to assume that each
point p € P is associated with a numeric weight. After preprocessing, we are given a
query range (), and the problem is to compute the sum of weights of the points lying
within ). It is generally assumed that the weights are drawn from a commutative
semigroup. In some cases the semigroup is actually a group, and if so, subtraction
of weights is also allowed. In approrimate range searching, the range () is assumed
to be approximated by two convex shapes, an inner range ()~ and an outer range
Q*, where @~ C Q7 (see Fig. 1.1). Points lying within the inner range must be
counted and points lying outside the outer range must not. It is assumed that the
boundaries of these two shapes are separated by a distance of at least ¢ - diam(Q).
Space and query times are expressed as a function of both £ and n. The only other

assumption imposed on the query shapes is the unit-cost assumption, which states



that it is possible to determine whether an axis-aligned hyperrectangle lies entirely

inside Q™ or entirely outside (J~ in constant time.

°o ® Must be included
o ° © May be included
° © Must not be included
° o
o

Fig. 1.1: Approximate range searching.

Arya and Mount [12] showed that, under the unit-cost assumption, approxi-
mate range queries could be answered with space O(n) and query time O(logn +
(%)d_l). They showed that this is essentially optimal for methods based on partition
trees. Although data structures exist with asymptotically better performance, these
methods require that the value of ¢ be fixed at construction time. The BBD-tree has
the nice feature that preprocessing is independent of £, and hence a single structure
can be used to answer queries of all degrees of accuracy.

Efficient data structures have been developed for geometric search and retrieval
including approximate range queries for point sets in multidimensional space. Ex-
amples include the BBD-tree [10,12,13], the BAR tree [43], Chan’s linear data
structure [26,27], and the skip quadtree [45]. One significant shortcoming of those

data structures, is that none of them admits an efficient solution to the important



problem of approximate range counting together with efficient insertion and dele-
tion. The BBD-tree and BAR tree do not support efficient insertion and deletion
(except in the amortized sense, through the process of completely rebuilding un-
balanced subtrees [6,42]). Chan’s linear data structure and the skip quadtree both
support efficient insertion and deletion, but neither supports range-counting queries.
Intuitively, to support range-counting queries, each internal node of a partition tree
maintains the total weight of all the points residing in the subtree rooted at this
node. With each insertion or deletion, these counts are updated from the point of
insertion to the tree’s root. In Chan’s structure there is no tree, and hence no in-
ternal nodes. (It is possible to augment Chan’s data structure to impose a tree, but
range counting has not been studied for such a data structure.) The skip quadtree is
based on the compressed quadtree, which may have height ©(n). (The skip quadtree
does support efficient range-reporting queries, however, because even an unbalanced
subtree of size k can be traversed in O(k) time.)

In Chapter 3, we introduce a simple dynamic data structure, which supports
efficient approximate range counting. This tree structure is similar in spirit to the
BBD-tree, but whereas the BBD-tree is static, our data structure employs a dynamic
rebalancing method based on rotations. Similar to the skip quadtree, which is based
on combining quadtrees and the 1-dimensional skip list, our data structure can be
viewed as a combination of the quadtree and the treap data structure of Seidel and
Aragon [97].

The treap is a randomized data structure for storing 1-dimensional keys, which

is based on a combination of a binary search tree and a heap. A treap assigns random



priorities to the keys, and it behaves at all times as if the points had been inserted
in order of increasing priority. It relies on the fact that, if nodes are inserted in
random order into an (unbalanced) binary tree, the tree’s height is O(logn) with
high probability. Our structure also assigns priorities to points, and maintains the
tree as if the points had been inserted in this order. The tree structure maintains
something akin to the heap property of the treap (but each node of our structure is
associated with two priority values, not one). Because of its similarity to the treap,
we call this data structure a quadtreap.

We will show that in any fixed dimension d, it is possible to store a set of n
points in a quadtreap of space O(n). The height h of the tree is O(logn) with high
probability. It supports point insertion in time O(h). It supports point deletion in
worst-case time O(h?) and expected-case time O(h), averaged over the points of the
tree. It can answer e-approximate spherical range counting queries over groups and

approximate nearest neighbor queries in time O(h + (%)d_l).

1.1.2  The Splay Quadtree: A Self-adjusting Data Structure for Mul-
tidimensional Point Sets

Balanced trees, such as AVL trees, treap, and skip list in one dimensional space, and
the skip quadtree, Chan’s linear data structures, and our quadtreap data structures
in multidimensional space guarantee O(logn) time (possibly randomized) to access
each node of the tree, and so are efficient in the worst case. Since access patterns

may be highly skewed, however, it is of interest to know whether the data structure

10



can achieve even higher degrees of efficiency by exploiting the fact that some nodes
are much more likely to be accessed than others. A natural standard for efficiency in
such cases is based on the entropy of the access distribution. Entropy-optimal data
structures for point location have been proposed by Arya et al. [7,9] and Tacono [69].
These data structures are static, however, and cannot readily be generalized to other
types of search problems.

A commonly studied approach for adaptive efficiency for one-dimensional data
sets involves the notion of a self-adjusting data structure, that is, a data structure
that dynamically reorganizes itself to fit the pattern of data accesses. The best-
known example is the splay tree of Sleator and Tarjan [99,106]. This is a binary
search tree that stores no internal balance information, but nonetheless provides effi-
cient dynamic dictionary operations (search, insert, delete) with respect to amortized
time, that is, the average time per operation over a sequence of operations. Sleator
and Tarjan demonstrated that (or in some cases conjectured that) the splay tree
adapts well to skewed access patterns. For example, rather than relating access
time to the logarithm of the number of points in the set, it is related to a parameter
that characterizes the degree of locality present in a series of access queries. Exam-
ples of measures of locality include the working set bound [99], static and dynamic
finger bounds [32,34,99], the unified bound [22,67,99], key-independent optimal-
ity [70], and the BST model [40]. Numerous papers have been devoted to the study
of dynamic efficiency of data structures (see, e.g., [41,44,54,89,104,112]).

Given the fundamental importance of the splay-tree to the storage of one-
dimensional point sets and the numerous works it has inspired, it is remarkable

11



that, after decades of study, there are no comparable self-adjusting data structures
for storing multidimensional point sets. In Chapter 4, we propose such a data
structure, called the splay quadtree. Like the splay tree, the splay quadtree achieves
adaptability through a restructuring operation that moves an arbitrary internal node
to the root of the tree. (In our tree, data is stored exclusively at the leaf nodes,
and so it is not meaningful to bring a leaf node to the root.) Each node of our tree
is associated with a region of space, called a cell, which is either a quadtree box or
the set-theoretic difference of two quadtree boxes, called the inner box and outer
box. As seen in other variants of the quadtree, such as the BBD tree [12,13] and
quadtreap [80], this generalization makes it possible to store an arbitrary set of n
points in a tree of linear size and logarithmic height.

As with the quadtreap [80], the tree is maintained by a local operation, called
promotion, which is analogous to rotation in binary trees. The requirement that the
cell associated with each node of the tree has at most one inner box limits the set
of allowable promotions. Due to this added complication, we cannot directly em-
ploy the splaying operation described by Sleator and Tarjan. Instead, our splaying
operation involves making three passes along the path from the node being splayed
to the root. Nonetheless, we show that the fundamental properties of the standard

splay tree apply to our data structure as well.
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1.2 Output-Sensitive Well-Separated Pair Decompositions for Dy-

namic Point Sets

The well-separated pair decomposition (WSPD) is a fundamental structure in com-
putational geometry, which has found numerous applications in the design of geo-
metric approximation algorithms. A set P of n points determines ©(n?) pairs of
points. The WSPD provides a concise representation of these pairs using only O(n)
space, subject to a desired approximation factor in the accuracy to which distances
are represented. In Chapter 5, we present an efficient algorithm for maintaining the
WSPD of a dynamic point set, where insertions and deletions are possible.

The concept of the WSPD was introduced by Callahan and Kosaraju [25], but
it was anticipated in earlier work by Greengard and Rokhlin on the fast multipole
method [56]. Given a positive parameter s, called the separation factor, we say that
two sets A and B in a metric space are s-well separated if they can each be enclosed
within balls of equal radii such that the closest distance between these balls is at
least s times their common radius (see Fig. 1.2). Given an n-element point set P
and s > 0, a well-separated pair decomposition of P with respect to s (an s-WSPD)

is a collection of pairs {A1, By },. .., {A, Br} of non-empty subsets of P such that
(1) for 1 <i <k, A; and B; are s-well separated, and

(2) for any two distinct points p, ¢ € P, there exists exactly one pair {A;, B;} such

that p lies in one of these sets and ¢ lies in the other.
Throughout, we assume that the metric space is R?, for a fixed constant d under
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the Lo, distance function. (Later, we will show that the choice of Minkowski metric
only affects the constant factors. Well-separated pair decompositions can be readily
extended to any metric space of constant doubling-dimension [64].) We treat s and

n as asymptotic quantities, and we will assume that s > 1.

Fig. 1.2: Well separated pairs.

WSPDs have numerous applications in the design of both exact and approx-
imate algorithms for spatial data sets. Given an n-element point set P in R?, it
is possible to use WSPDs to compute the (exact) closest pair of points of P in
O(nlogn) time, and generally for 1 < k < (}), it is possible to enumerate the (ex-
act) k closest pairs of points O(k 4+ nlogn) time [100]. It is also possible to compute
the nearest neighbor for every point in the set in O(nlogn) time [100]. WSPDs
are also used in geometric approximations. For example, it is possible compute an
g-approximation to the diameter of a point set (and generally to approximate the
kth smallest interpoint distance) in O(nlogn + (1/€)?) time. It is also possible
to use WSPDs for computing approximations to the Euclidean minimum spanning
tree [101], constructing geometric spanner graphs (sparse networks whose shortest
paths are not much longer than the straight-line distance between points) [81], and
building distance oracles for spatial networks [96]. In order to apply any of these
algorithms a dynamic context, it is natural to ask how quickly can a WSPD be

updated when points are inserted or deleted.
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It is well known (see, e.g., [25,63,101]) that, given an n-element point set in R,
its possible to build an s-WSPD of size k = O(s%n) in time O(nlogn + k). This is
optimal in the worst case, since it is easy to prove that a uniformly distributed point
set is expected to require (s%n) pairs. It is conventional wisdom, however, that
typical point sets are far from uniform. Effects such as clustering, correlations among
coordinates, and boundary effects tend to reduce the number of well-separated pairs.
This reduction can be quite significant, even in spaces of moderate dimension [82].
We have observed in our own experience with applications in clustering large data
sets arising from terrain maps that the number of pairs resulting from the insertion of
a single point can vary by two orders of magnitude. For this reason, it is important to
consider output-sensitive algorithms, that is, algorithms whose running time depends
on the number of changes to the WSPD structure. While the aforementioned batch
WSPD construction is output sensitive, existing algorithms for maintaining a WSPD
are not.

WSPD constructions in R? are based on hierarchical spatial subdivisions, and
in particular, variants quadtrees and kd-trees. Callahan and Kosaraju used a fair-
split tree. Fischer and Har-Peled [48] point out that the construction can be based
on the simpler compressed quadtree, which is the approach that we take here (see
Section 5.2 for definitions). Construction algorithms follow the same general pattern.
The points are stored in the leaves of an appropriate partition tree of size O(n).
The k sets of the WSPD are generated by a recursive top-down algorithm and are
represented as pairs of nodes of the tree, {u;,v;} for 1 <1i < k. The corresponding

pairs {A;, B;} of the decomposition consist of the points of the subtrees rooted at u;
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and v;, respectively. Construction algorithms generate only maximal pairs, meaning
that the parent pair, {par(u;), par(v;)}, is not s-well-separated.

Clearly, a given point set does not have a unique s-WSPD. Fischer and Har-
Peled [48] observed this issue in their algorithm for maintaining the WSPD of a
dynamic point set. They observed that the number of well separated pairs can
vary based on the choice of the coordinate system’s origin, which in turn affects
the quadtree structure. They showed this instability could be ameliorated in ex-
pectation by applying a random translation to the point set. In particular, they
showed that it is possible to maintain an s-WSPD of a point set under insertions
and deletions in time O(s?(logn + log s) logn) with high probability. WSPDs have
also been considered in a dynamic context mostly in the context of metric spaces.
Examples include the deformable spanner of Gao, Guibas, and Nguyen [52] and
dynamic spanners by Gottlieb and Roditty [55] and Roditty [92].

Since the output size is not uniquely determined by the input, this raises the
question of what is meant by an “output sensitive” algorithm. Our approach will be
to fix a precise notion of s-WSPD procedurally, that is, as the output of a particular
algorithm. In order to achieve the best running times, we will strengthen the notion
of separation to one that is easy to compute in a quadtree setting. We will show
that for any given point set, the size of the s-WSPD that results from our definition
is at most a constant factor larger than the size of any (standard) s-WSPD for this
point set in any Minkowski L, metric. Our approach can be readily generalized to
any quadtree-like subdivision, and it allows for the possibility of variations such as

random translations.
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We relate the update time to the number of changes made to the WSPD.
In our algorithm (and as with Fischer and Har-Peled), there are two ways that
well-separated pairs can change. When a point p is inserted, new pairs of the form
{{p}, Bi} can be created, and an existing pair {A;, B;} can be modified to become
{A;U{p}, B;}. Deletion is just reverse of this. Because only newly created or deleted
pairs affect our quadtree-based representation, our output-sensitive bounds will be
based only on their number. The running time is independent of the number of
modified pairs. (By the way, it is reasonable to believe that the number of newly
created pairs will be significantly smaller than the number of modified pairs, since
they tend to arise in a neighborhood close p, whereas modified pairs can span the
entire data set.) Of course, depending on the application, the modified pairs might
also be of interest. If desired, it is easy to modify our algorithm to report the
modified pairs in an output sensitive manner.

In Chapter 5, we show that it is possible to maintain s-WSPD for a dynamic
point set that supports point insertion in worse-case time O(logn + m), and point
deletion in amortized time O(logn + m), where m denotes the number of newly

created (resp., deleted) pairs in the case of insertion (resp., deletion).

1.3 Maintaining Nets and Net Trees under Incremental Motion

Dynamic data structures can be also considered in the context of maintaining points
in motion. The problem of maintaining discrete geometric structures for points in

motion has been well studied over the years. The vast majority of theoretical work
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in this area falls under the category of kinetic data structures (KDS) [59]. KDS
are based on the assumption that points move continuously over time, where the
motion is specified by algebraic functions of time. This makes it possible to predict
the time of future events, and so to predict the precise time in the future at which
the structure will undergo its next discrete change.

In practice, however, motion is typically presented incrementally over a series
of discrete time steps by a black-boz, that is, a function that specifies the locations
of the points at each time step. For example, this black-box function may be the
output of a physics integrator, which determines the current positions of the points
based on the numerical solution of a system of differential equations [1,78]. Another
example arises in the use of Markov-chain Monte-Carlo (MCMC) algorithms such
as the Metropolis-Hastings algorithm [28] and related techniques such as simulated
annealing [73]. These are applied in solving geometric optimization problems (see,
e.g., [66]). A black-box randomly repeatedly perturbs a set of point locations with
each incremental step. After each perturbation, the objective function is reevalu-
ated, and the algorithm may either accept or reject the proposed perturbation.

In both of the aforementioned applications, it is desirable to maintain the cur-
rent point set in a data structure that can be used for evaluating physical quantities
needed by the integrator or for evaluating the objective function. The data struc-
ture is updated with each new time step. Examples of useful computations include
answering nearest neighbor and range queries [76], or maintaining structures such
as well-separated pair decompositions [25], geometric spanners [58], or core sets [3].

In Chapter 6, we introduce such a computational model for the online mainte-
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nance of geometric structures under incremental black-box motion. Our approach is
similar to the observer-tracker model proposed by Yi and Zhang [114] in the context
of online tracking, and is similar in spirit to the IM-MP model of Mount et al. [79].
Our model involves the interaction of two agents, an observer and a builder. The
observer monitors the motions of the points over time, and the builder is responsible
for maintaining the data structure. These two agents communicate through a set of
boolean conditions, called certificates. The certificates effectively “prove” the cor-
rectness of the current structure (exactly as they do in KDS). Based on the initial
point positions, the builder constructs the initial structure and the initial certifi-
cates, and communicates these certificates to the observer. The observer monitors
the point motion and, whenever it detects that a certificate has been violated, it
informs the builder as to which certificates have been violated. The builder then
queries the new locations of the points, updates the data structure, and informs
the observer of any updates to the certificate set. An algorithm for maintaining a
data structure in this model is essentially a communication protocol between the
observer and the builder. The total computational cost is defined to be the commu-
nication complexity between these two agents. One advantage of this model is that
it divorces low-level motion issues from the principal algorithmic issues involving
the design of the underlying data structure itself.

For the underlying data structure, we consider the maintenance of nets and
net trees. Let P denote a finite set of points in some metric space M, which may
be either continuous (as in Euclidean space) or discrete. Given r > 0, an r-net for

P is a subset X C P such that every point of P lies within distance r of some
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point X, and no two points of X are closer than r. (We will actually work with a
generalization of this definition, which we will present in Section 6.2.) Each point of
P can be associated with a covering point of X that lies within distance r, which is
called its representative. We can easily derive a tree structure, by building a series
of nets with exponentially increasing radius values, and associating each point at
level ¢ — 1 with its representative as parent at level i. Like the Vp-tree [115] and
Gh-tree [108], the net tree can be viewed as a metric generalization of hierarchical
partition trees like quadtrees [94].

The net tree has a number of advantages over coordinate-based decompositions
such as quadtrees. The first is that the net tree is intrinsic to the point set, and
thus the structure is invariant under rigid motions of the set. This is an important
consideration with kinetic point sets. Another advantage is that the net tree can be
defined in general metric spaces, because it is defined purely in terms of distances.
A number of papers have been written about improvements to and applications of
the above net-tree structure in metric spaces of constant doubling dimension. (See,
for example [33, 55,64, 75].) Note that the net tree is a flexible structure in that
there may be many possible choices for the points that form the nets at each level
of the tree and the assignment of points to parents.

Our main results are efficient online algorithms for maintaining both nets and
net trees for a point set undergoing incremental motion. We analyze our algorithms’
efficiency by bounding their competitive ratios relative to an optimal algorithm.
Assuming that the points are in a space of constant doubling dimension, we achieve

a constant factor competitive ratio for the maintenance of a net and competitive
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ratio proportional to the square of the tree’s height for the net tree.

1.4 Organization of the Dissertation

The remainder of the dissertation is organized as follows. In Chapter 2 we begin
with a review of the relevant literature. In Chapters 3 and 4, we introduce the
quadtreap data structure and the splay quadtree, respectively, and analyze their
efficiency. In Chapter 5, we present our output-sensitive algorithm for maintaining
a well-separated pair decomposition under the operations of insertion and deletion.
In Chapter 6, we introduce online algorithms for maintaining nets and net trees for
points under incremental motion. Finally, Chapter 7 presents concluding remarks

and outlines direction for possible future work.
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Chapter 2
Literature Review

In this chapter, we present a survey of the background literature that is relevant
to this dissertation. Because of our interest in dynamic data structures, we begin
by discussing classical dynamic data structures for storing 1-dimensional point sets.
We present approaches that are efficient with respect to a number of different cri-
teria, such as worst-case complexity, amortized complexity, and randomized data
structures that are efficient with high probability. Next, we discuss a variety of
data structures (both static and dynamic) for storing multidimensional point sets.
Most of these structures are based on quadtrees and their variants. We also dis-
cuss common queries that can be efficiently answered using these structures, such
as approximate nearest neighbor queries and approximate range queries. Finally,

we discuss well-separated pair decompositions and spanners.

2.1 Dynamic 1-dimensional Data Structures

An ordered dictionary is a data structure for storing 1-dimensional data that sup-
ports various operations such as insertion, deletion, and searching. These data
structures are of fundamental interest in computer science. To achieve good search
times against an arbitrary sequence of insertions and/or deletions, a number of dif-

ferent methods are used to maintain the tree’s balance. Examples include AVL

22



trees [2], red-black trees [60], weight-balanced trees [85], B-trees [15], skip lists [90],
and treaps [97]. Efficiency is established under various criteria. Some structures
achieve O(logn) time in the worst case, some are probabilistic and achieve O(logn)
time in expectation or with high probability. Some are efficient in the amortized
sense, meaning that a sequence of m operations can be performed in O(mlogn)

total time.

2.1.1 Amortized Efficiency

Balanced trees, such as AVL trees, red-black trees, B-trees, and their variants achieve
a worst-case time bound of O(logn) per operation on n-node trees. However, in
many applications of search trees, not one but a sequence of operations is performed,
and the important issue is the total time to execute the sequence, not the individual
times of the operations. In such cases, the appropriate measure of efficiency is the
amortized time of the operations, where amortized time means the average time of
an operation in a worst-case sequence of operations starting with an empty structure.

One way to obtain amortized efficiency is to use a self-adjusting data structure.
Such a structure is allowed to be in an arbitrary state, but during each operation
a simple restructuring rule is applied to improve the efficiency of future operations.
The splay tree by Sleator and Tarjan [99] is a self-adjusting form of binary search
tree. Each access for an arbitrary node is based on an operation called splaying. This
operation brings the node up to the root by a series of double rotations, followed

possibly by one single rotation at the end. This operation has the effect of bringing
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frequently accessed nodes near to the root of the tree, in short, it adjusts the tree
structure according to the pattern of access. In fact, if the access pattern is highly
skewed, it can be even more efficient than data structures that are optimal in the
worst case. The splay tree does not need any auxiliary information to be stored at
each node.

The amortized bounds for splays are established using a potential argument.
Potential means prepaid work that can be spent on later operations. The potential is
a function of the entire data structure. Let ®; denote the potential after ¢ operations
and ¢; actual cost of the ith operation. Then the amortized cost of the ¢th operation,

denoted a; is defined to be the actual cost plus the increase in potential:

a; = ¢; + (I)z — (I)ifl.

So the total amortized cost of n operations is the actual total cost plus the total

increase in potential:

A potential function is valid if ®; —®y > 0 for all 7. If the potential function is valid,
then the total actual cost of any sequence of operations is always less than the total
amortized cost. Thus, if we define a potential function for the data structure that is
initially equal to zero and is always nonnegative, we can derive the amortized cost

of an operation by adding its actual cost plus the change in potential.
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Sleator and Tarjan defined the potential function for the splay tree to be
the sum of the ranks of its nodes, where the rank of a node v is defined to be
[log size(v) ], where size(v) is the number of nodes in the subtree rooted at v. By
using a telescoping sum, they prove that the amortized cost of a splay is O(logn).
Every search, insertion, and deletion walks down to a node and then splays this
node to the root. Thus all operations can be performed in O(logn) amortized time.

Another approach to define a tree structure that is efficient in an amortized
sense is based upon subtree rebuilding. Andersson [6] and Galperin and Rivest [51]
independently discovered such a structure. Andersson called it a general balanced
tree, and Galperin and Rivest called it the scapegoat tree. Unlike the splay tree, the
scapegoat tree guarantees a logarithmic worst-case bound on a search and does not
restructure the tree during searches. This data structure also supports updates in
a logarithmic amortized time without the need to store any extra information at a
node. It is maintained by the following simple partial rebuilding rule. After a node
is inserted, a walk is performed up to the root along the search path. If a node is
encountered in this walk whose height exceeds a given constant factor of the number
of nodes in its subtree, its subtree is rebuilt to produce a perfectly balanced tree.

Deletion of a node is performed by a lazy deletion rule.

2.1.2 Randomized Dictionary Structures

The skip list discovered by Pugh [90] is a data structure that generalizes a linked

list and employs probabilistic balancing. A skip list can be viewed as a hierarchy
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of successively coarser lists constructed over an original sorted list. For each node
in the original list, we make a duplicate of the node with probability 1/2. These
duplicates are linked to form a list of roughly half the original size. The process
is repeated, and these list are stacked up in levels, where each duplicate stores a
pointer to indicate its copy in the previous level (see Fig. 2.1). Since each level of
the skip lists contains about half the number of nodes as the previous level, the total
number of levels is O(logn) with high probability.

The search algorithm starts from the highest level. Each level is scanned as
far as possible without passing the target value, and it then proceeds down to the
next lower level. The worst-case search time is proportional to the number of levels.
Update operations are also performed in logarithmic time with high probability by

a process similar to the search algorithm.

Fig. 2.1: A skip list

A treap ! is a binary tree in which every node has both a key and a priority.
The keys are sorted according to an inorder traversal of the tree. The priorities
are maintained in heap order, where a parent’s priority is smaller than its children.

Thus, a treap can be viewed as a binary tree for the keys and a heap for the priorities.

1J. Vuillemin introduced the same data structure in 1980 and called it cartesian tree [111].
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This concept was first introduced by McCreight [77] to describe a related data
structure, called a priority search tree. This was applied by Seidel and Aragon [97]
to define the treap. This data structure assigns a random priority to each newly
inserted node. To insert a node, a walk is performed down the treap as in the
standard insertion algorithm for binary search trees, and the new node is inserted
at the bottom of the tree. In order to reestablish the heap structure, a walk is
performed up the treap, and rotations are performed as needed. Deletion is handled
by a symmetrical procedure. All operations take time proportional to the depth
of the affected node in the tree. Seidel and Aragon prove that the expected depth
of any node is O(logn), which implies that the expected time of these operations

matches the worst-case time of the best deterministic tree structures.

2.1.3  Other Methods for Dynamic Dictionaries

If the size of the universe from which keys are derived is sufficiently small, an
interesting alternative is the van Emde Boas tree [110]. We assume that the keys
are drawn from a universe U. Let uw = |U]. The tree performs the operations, insert,
delete, and find in O(loglogu) time. This bound arises from a binary search on
the bits of the key. If a key = has w bits, then we split = into two parts: high(z)
and low(zx), each with w/2 bits. We create y/u substructures. Each substructure
handles a range of size \/u from the universe. These are recursively constructed in
the same way. If a key z is stored in one substructure, S[high(z)], then we care

only about low(z) in the substructure’s children. Each level stores two values, the
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minimum element of the set and the maximum element of the set, and the auxiliary
tree to keep track of which children are non-empty. This gives a recurrence for the
running time of operations of T'(u) = T'(y/u) + O(1), thus, T(u) = O(loglogu).
(The multidimensional variant of this structure is developed by Amir et al. [5].)
For some search problems, it may not be possible to develop a data structure
that can be incrementally rebalanced to deal with such problems in a dynamic
setting. Bently [18] introduced the concept of a decomposable searching problem.
A search problem is decomposable if the answer for a given input set can be found
quickly by combining answers for disjoint subsets of the input. For the decomposable
searching problem, Bentley and Saxe [19] show how to build a dynamic system of
static structures. This data structure consists of [ = |logn| levels, Lo, L1, ..., L;_1.
Each L; is either empty or a static data structure storing exactly 2¢ items. For any
value of n, there is a unique set of levels that must be non-empty. To answer a query,
we perform a query on each non-empty level and combine the results. Suppose that
there exists a static data structure can store n items after P(n) preprocessing time
and answer a query in time Q(n). The query time of the dynamic structure based

on such a static structure is at most

~
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Q(2") <1-Q(n) = O(logn) - Q(n).

@
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=)

If Q(n) > n® for any € > 0, the query time is only O(Q(n)). Insertion is similar to
the algorithm for incrementing a binary counter, where each level, L; plays the role

of the ith least significant bit. We find the smallest empty level k, build a new data
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structure L containing the new item and all the items stored in Lg, Ly, ..., Ly 1,
and finally discard all the levels smaller than L;. During the lifetime of the data
structure, each item will take part in the construction of logn different data struc-
tures. If we distribute the cost of the total processing time to the nodes involved in

the rebuilding process, the total processing time is

logn

> P(2')/2" = O(logn) - P(n)/n.
i=0
If P(n) > n'"® for any ¢ > 0, the amortized time is only O(P(n)/n).

2.1.4 Dynamic Data Structures for Maintaining Trees

Some problems such as network flow and dynamic connectivity require the mainte-
nance of a collection, that is a forest, of vertex-disjoint trees under edge insertion or
deletions. The trees can be rooted or free, and vertices and edges may be associated
with real-valued costs that may change. The basic query operation is tree member-
ship, that is, while the forest of trees is dynamically changing, which tree contains
a given vertex, or whether two vertices are in the same tree.

Sleator and Tarjan [98] introduced the link-cut tree as a structure to maintain
a forest of vertex-disjoint rooted trees, each of whose vertices has a real-valued cost.
A link-cut tree supports the operations, link, cut, and findroot. The [ink operation
merges two trees by inserting the edge between the root of a tree and a node in
another tree. The cut operation deletes the edge between a non-root node and its

parent, thus splitting the tree. The findroot operation returns the root of the tree
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containing a given vertex.

This data structure assumes that the initial forest consists of n single-vertex
trees. These trees grow by a link operation and shrink by a cut operation. In order to
perform these operations, each tree is partitioned into a collection of vertex-disjoint
paths. Each tree operation will be defined in terms of one or more path operations.
This partition is defined by classifying each edge as either solid or dashed. If we
consider edges to be directed from child to parent, at most one solid edge enters each
vertex. Thus, the solid edges define a collection of solid paths that define a partition
of the vertices of each tree. When a vertex is accessed, a solid path from this vertex
to the root of the tree is formed as follows. Every edge on this path becomes solid,
and all the old solid edges that had an endpoint on this path are replaced by dashed
edges (see Fig. 2.2). Each tree operation takes time proportional to the length of
the solid path. Each solid path defines a sequence of nodes along the path, and
this sequence is stored in some type of dynamic tree structure, sorted by the depths
of the nodes. The amortized time of O(logn) per operation is achieved using a
dynamic tree [98] or a splay tree [99] as this underlying tree. The worst-case time
of O(logn) is achieved using biased search trees [16].

An alternative for maintaining dynamic trees, called topology trees, was intro-
duced by Frederickson [49]. Similar to link-cut trees, topology trees follow the idea
of partitioning a tree into a set of vertex-disjoint paths. However, this structure
uses a partition based on the topology of the tree.

The basic idea is to partition the tree into a suitable collection of subtrees,

called clusters, and to implement updates so that only a small number of clusters

30



access v
e

.
fa

di\)

Fig. 2.2: Link-cut tree

are involved with each operation. The decomposition defined by clusters is applied
recursively. This structure assumes that no vertex has degree greater than three. (If
this is not the case, a well-known transformation in graph theory can be applied [65].)

To define the clustering, let the external degree of a cluster be the number of
tree edges incident to it. Given a tree of maximum degree 3, a partition is defined

such that the following three properties are satisfied:

(1) Each cluster of external degree three has only a single vertex.
(7i) Each cluster of external degree less than three has at most ¢ vertices, for a
given constant ¢ € {2,3,4}.

(731) No two adjacent clusters can be combined and still satisfy the above properties.

Assuming that a clustering satisfying the above properties can be computed,
Frederickson shows how to apply this clustering to form a hierarchical representation
of a tree. Clusters at level 0 contain one vertex each. Clusters at level [ > 1 form a
partition of the vertices of the tree obtained by shrinking each cluster at level [ — 1
into a single vertex. (Fig. 2.3 shows the partition of the vertices of a tree and the
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corresponding topology tree.) Using the fact over half the clusters at level [ — 1 will
be of degree less than three, Frederickson proved that the height of a corresponding

topology tree is O(logn).

Fig. 2.3: Topology trees: (a) a multilevel partition of the vertices, (b) the corre-
sponding topology tree.

Each level can be updated upon insertion and deletion of any edge by applying
a few locally greedy adjustments to the partition. In particular, a constant number
of clusters are examined, and these changes percolate up the topology tree, possibly
causing other clusters to be regrouped. Thus, update operations can be performed

in time proportional to the height of the topology tree, which is O(logn).

2.2 Hierarchical Spatial Decomposition for Proximity Searching

A number of data structures for multidimensional data have been developed for ge-

ometric search and retrieval problems, such as range searching and nearest neighbor
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searching. Our focus in this section will be primarily on dynamic data structures
for answering such queries for a set of n points in real d-dimensional space. (We will
also consider for nondynamic data structures.) Many of these are based on a hierar-
chical subdivision of space, which gives rise to tree-based structures. That is, they
associate a node v in a tree with a region R(v) in d-dimensional space. The children
of v are associated with the subregions of R(v) divided by some splitting rule. Dif-
ferent splitting rules define different data structures such as quadtrees [47,94], k-d
trees [17], balanced box decomposition (BBD) trees [12,13], and balanced aspect-
ratio (BAR) trees [42,43]. Efficiency depends on various properties of the tree,
such as its depth and size. One property that is important for many approximate
queries is the maximum aspect ratio of any node’s region. The aspect ratio of a
region R in R? is defined to be the ratio Og /I, where Oy is the radius of the small-
est circumscribed hypersphere in R? and Iy is the radius of the largest inscribed

d-hypersphere [43].

2.2.1 Quadtrees and Variants

A PR-quadtree [94] is a data structure for storing point sets in R? based on a
hierarchical decomposition of space into axis-aligned hypercubes, which we call cells.
Starting with an initial hypercube that encloses the point set (which after scaling
may be assumed to be the unit hypercube), each cell that contains two or more points
is subdivided by splitting it into 2 identical hyercubes, each of half the side length.

This subdivision naturally induces a rooted tree structure, where each internal node
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has 2¢ children. We refer to the regions resulting from such a process as quadtree
bozes. (For simplicity, we use the term “quadtree” throughout this dissertation to
mean “PR-quadtree”.)

Cells have bounded aspect ratio, which is a useful property for achieving good
query time. Point insertions and deletions are simple. However, as we have defined
it, the tree may have arbitrary depth and size, independent of the number of points.
One method for circumventing this problem is path compression [94]. A compressed
quadtree [20,30,63] can store n points using O(n) storage. Regions in this tree
are defined in the same way as in a quadtree, but all maximal chains of nodes
with only a single non-empty child are compressed, and a single node is associated
with the smallest cell containing the data points. Like the quadtree, the resulting
decomposition is based on hypercube regions, and so has good aspect ratio. However,

a compressed quadtree may have height ©(n) for highly skewed point distributions.

2.2.2 Quadtrees and Variants

Eppstein et al. [45] introduced an efficient data structure for maintaining a com-
pressed quadtree under insertions and deletions, called a skip quadtree. It is similar
to a skip list where instead of a linked list we use a quadtree. Given a set P of
n points, the skip quadtree is defined as a sequence of compressed quadtrees for
samples of P. Given P, consider a sequence Sy, Ss, ..., 51 of subsets of P, such
that Sy = P and S; is formed by sampling each point of S;_; with probability 1/2.

Observe that the number of non-empty subsets, called the level [, is O(logn) with
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high probability. For each S;, we form a compressed quadtree, (); for the points of
S;. Every node in (); has pointers to the corresponding node in );_; and a pointer
to the corresponding node in @), 1, if it exists there.

The skip quadtree provides efficient operations for inserting and deleting points

in O(logn) expected time and answers the following tree types of geometric queries:

e point location search in O(logn) time,

e (1+¢)-approximate nearest neighbor searching in O((1/g)4*(log n+log(1/¢)))
time,

e (1 + e)-approximate range query in O((1/¢)? + logn + k) time, where k is

the size of output.

Let us first explain how searches are performed. To find the smallest quadtree
box in )y containing a given query point, ¢, the search algorithm starts at the
topmost quadtree ;1. For each tree (); visited, it finds the lowest node of (); that
contains ¢, and it then moves to the corresponding node in ();_;, and continues the
search from there. Eppstein et al. [45] prove that the expected number of nodes
examed in each tree is constant. Thus, the search can be performed in O(logn)
expected time.

Insertion of a point p is performed by applying the above search and finding
the lowest node v in )y that contains p. Then, it splits v and inserts a new node
in )y that contains p. By flipping a coin, it decides whether p belongs to S;. If
not, the process is done. Otherwise, it inserts p to ()1, and repeats the coin flipping

process. Since the amount of work needed at each level is a constant, the total time
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is proportional to the number of levels, which is O(logn). Deletion is similar to
insertion.

We will not discuss the other search operations (approximate range query
and approximate nearest neighbor searching), but they follow by adapting existing
quadtree-based algorithms to this skiplist-like structure.

In addition, the expected space for a randomized skip quadtree is O(n), since
with high probability the sizes of the compressed quadtrees in the levels of the skip

quadtree forms a geometrical series that converges to O(n).

2.2.3 Balanced Box Decomposition Tree

Arya et al. [12,13] introduced the first tree structure to guarantee both bounded
aspect ratio and O(logn) depth. The structure is a balanced bozx-decomposition
(BBD) tree. The BBD tree is a balanced variant of a data structures based on a
hierarchical subdivision space into hyperrectangular regions as quadtrees [47,94],
k-d trees [17], or fair-split trees [25,109]. The principal difference between the BBD
tree and these other data structures is that each node of the BBD tree is associated
not simply with a d-dimensional rectangle, but with the set theoretic difference of
two such rectangles, one enclosed within the other. (In this respect, it is quite
similar to binary division trees (BD-trees) [37,86].)

Every node of a BBD tree is associated with a region of space called a cell. A
cell is defined to be either an outer rectangular box or the set theoretic difference

between an outer rectangular box and an inner rectangular box. Each cell is as-
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sociated with the set of data points lying within the cell. The size of a cell is the
length of the longest side of its outer box. In order to prove bounds in the efficiency
of approximate nearest neighbor searching, Arya et al. [13] introduced a stickiness
restriction on the inner box. An inner box is sticky if the distance between the
inner box and every face of the outer box is either 0 or not less than the size of
the inner box. Using stickiness, they proved a packing constraint, which is essential
in establishing the efficiency of data structure for geometric queries [12,13]. This
packing constraint states that the number of leaf cells of size at least s that intersect
any ball of radius r is at most O((1 + r/s)?).

The BBD tree is constructed through an alternating application of two oper-
ations, splits and shrinks. They represent two different ways of subdividing a cell
into two smaller cells. A (midpoint) split bisects a cell by a hyperplane orthogonal
to one of the longest sides. The resulting boxes have aspect ratios of either 1 or 2.
A shrink partitions a cell by a box that lies within the original cell. It partitions a
cell into two children, one lying inside this box and one lying outside. The shrink
operation is actually part of a sequence of up to three operations called a centroid
shrink. Let n. denote the number of data points associated with the current cell.
The centroid shrink decomposes the current cell into a small number of subcells,
each containing at most 2n./3 (see Fig. 2.4). The resulting boxes have bounded
aspect ratios.

The centroid shrink operation introduces at most three new levels into the
tree, and it is alternated with splits. These follows that with each four levels the

number of points decreased by at least a factor of 2/3. Thus, the depth of the BBD
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tree is O(logn).

The split operation is preferred because of its simplicity, speed of computation,
and the fact that after every d consecutive splits, the geometric size of the associated
cell decreases by a constant factor. However, it cannot guarantee that the point set
is partitioned evenly. The shrink operation can provide this by rapidly “zooming”
into regions where data point are highly clustered. The construction of alternating
splits and shrinks guarantees that with every 2d levels of descent in the tree, the
sizes of the associated cells decrease by at least a factor of 1/2.

By the above size reduction constraint and a packing constraint, it is shown
in [13] and [12] that a BBD tree can answer (1 + ¢)-approximate nearest neighbor
queries and (1 + ¢)-approximate range counting queries in O((1/¢)?logn) time and

O(logn + (1/¢)?1) time, respectively, with O(n) space.
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2.2.4 Balanced Aspect-ratio Tree

The BBD tree partitions space using non-hyperplanar cuts that result in holes, and
hence cells are not convex. Several applications in computer graphics and graph
drawing require the convexity property of the partitioned regions. (It is possible to
further refine these cells into hyperrectangles by the addition of a constant number of
hyperplanes. The resulting cells do not necessarily have bounded aspect ratios, but
they do satisfy the packing constraint.) A Balanced Aspect Ratio (BAR) tree [42,43]
simultaneously achieves the desired properties of having O(logn) depth and regions
that are convex and have bounded aspect ratios.

Like the k-d tree, the BAR tree is a binary space partition using hyperplane
cuts, but instead of allowing only axis-orthogonal partitions, it also allow a third
partition orthogonal to a vector at an angle of 7/4 with respect to the axes, called
a corner cut. This cut is chosen in such a way that it both divides the point set
between the regions evenly, and also ensures that the child regions have bounded
aspect ratios. The BAR tree only uses corner cuts when an axis-parallel cut would
produce a region does not have bounded aspect ratio.

Duncan et al. [43] show that for any o > 3d and 5 > d/(d+1), their subdivision
algorithm produces a sequence of axis-parallel and corner cuts that result in regions
of aspect ratio at most «, such that each child has at most a fraction of at most
of the points. By this fact, the depth of a BAR tree is O(logn).

They show that using O(n) space, (14 ¢)-nearest neighbor queries can be an-

swered in O((1/¢)? ! logn) time, and (1+¢)-range reporting queries can be answered
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in O(logn + (1/)?! + k) time, where k is the size of the output.

2.2.5 Other Approaches for Approximate Nearest Neighbor Search-
ing

While the aforementioned data structures are space-efficient, they all have query
times of at least (1/£)¢47!, which can be quite high. Har-Peled [62] suggested a
faster method for approximate nearest neighbor queries, called the approximate
Voronoi diagram (AVD). It is based on the fact that nearest neighbor queries can
be reduced to point location in the Voronoi diagram of the point set P. An AVD of
P is defined to be a partition of space into cells, where each cell ¢ is associated with
a representative . € S, such that r. is (1 + ¢)-approximate nearest neighbor for
any query point in ¢. A cell in the subdivision is a cube or the difference between
two axis-aligned cubes, one contained inside the other. These cells are stored in a
compressed quadtree, which (with the aid of an appropriate auxiliary structure) can
efficiently answer point location queries, thus approximate nearest neighbor queries.
For n points in dimension d, this structure requires O((n/e?)(log n)(log(n/c))) space
and answers queries in O(log(n/e)) time.

The construction of this data structure can be viewed as a tournament between
the sites for “balls of influence”, growing around each point. It uses an approxima-
tion to the minimum spanning tree to define this tournament.

Arya et al. [8] generalized the result of Har-Peled to a structure they called

a (t,e)-AVD. It allows up to some given number ¢ > 1 of representatives to be
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associated with each cell ¢ for a given e, where each point in ¢ has one of these ¢
representatives as its (1 4 ¢)-approximate nearest neighbor. This AVD provides a
space-time tradeoff. Arya et al. [8] showed that when ¢t = 1, this structure requires
O((n/e?1)log(1/¢)) space and answers queries in O(log(n/¢)) time, and when t =
O(1/£19=D/2) it requires O(nlog(1/e)) space and answers queries in O(t + logn)
time. Note that when ¢ = 1, this structure is more space efficient than that of Har-
Peled by a factor of roughly O(1/¢). This AVD is based on the BBD tree, and uses
a well-separated pair decomposition of the points to define the subdivision process.

Chan [26,27] introduced one of the simplest implementations of an approxi-
mate nearest neighbor data structure. It is an in-place data structure, that is, it
requires no extra storage except for the input array, which stores an appropriate
permutation of the points. It consists of a sorted array of points, where the ordering
will be defined below. If the array is replaced by an ordered dictionary (e.g., skip
list or balanced tree) insertions and deletions can be performed in O(logn) time.

Chan’s structure is based on a bit-interleaved ordering of point coordinates,
sometimes called the Morton order or Z-order [94]. Assume that coordinates are
positive integers bounded by U = 2". A point p in d-dimensional space is represented
in binary as (piw - P10, P2w = D205 - - - » Paw * * - Pao)- 1ts shuffle is defined to be the
w - d bit binary number formed by concatenating the highest order bits of all the
coordinates, followed by the second highest bits, and so on. Thus, the shuffie of p is
the binary number pi,pow - * * Paw * - - P1oP20 * * - Pao- For a number s, the shifted point
by s is defined to p + (s, s,...,s).

A key property of the Morton order is that all the points that fall within any
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quadtree box appear consecutively in the shuffle order. Another important property
is that, given two points that are within distance r of each other, with constant
probability after a random shift both points lie within a quadtree box of diameter
O(r). Based on these observations, Chan shows that (1 + ¢)-approximate nearest
neighbor searching can be performed by first sorting points shifted by a randomly
chosen number, and then performing a modified binary search. Chan shows that

this can be performed in O((1/¢)?log(1/€)logn) expected time.

2.3  Well-Separated Pair Decompositions and Spanners

A number of problems in computational geometry involve distances determined by
pairs of points in a given point set. Given a set P of n points in R?, where d
is a constant, these includes the closest pair of distinct points in P, the largest
distance between any two points of P, the nearest neighbor of each point of P, or
the minimum spanning tree of P. Most of these problems can be expressed as graph
problems on the complete Euclidean graph for P, in which the weight of each edge
(p,q) is the Euclidean distance |pg| between p and ¢. Since the number of edges
in this graph is ©(n?), the problems involving pairwise distances can be solved in
O(n?) time. There are approaches that approximately solve them in subquadratic
time. Two of these approaches are well-separated pair decompositions (WSPDs)

and spanners. We will discuss these two concepts in the next two sections.
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2.3.1 Well-Separated Pair Decompositions

n

2) edges of

A well-separated pair decomposition (WSPD) [25] is a partition of the (
the complete Euclidean graph into O(n) subsets. For any set P of points in R?, let
R(P) denote its bounding box. For s > 0, point sets A and B are s-well separated, if
R(A) and R(B) can each be contained in balls of radius » whose minimum distance
is at least sr. The real number s is called the separation factor. Given arbitrary

sets A and B, the interaction product, denoted ®, between A and B is defined to

be the set of all distinct (unordered) pairs from these sets, that is,

A® B ={{a,b}|la € A,be€ B,a # b}.

Note that A ® A is the set of all distinct pairs of A. Given a point set P and a
separation factor s > 0, an s-well separated pair decomposition (WSPD) for P, is a

set {{A17 31}7 {AQ, BQ}, ceey {Ak; Bk}}a such that

(1) A;, B; C P, for 1 <i<k

(i) AN B =0, for 1 <i<k
(i17) (A ® B;) U (A; ® B;) =0, for all i, j, such that 1 <i < j <k
(iv) UL, Ai® Bi=P®P

(v) A; and B; are s-sell separated, for 1 <1i < k.

Observe that a WSPD always exists by setting the {A;, B;} pairs to each of
the distinct pair singletons of P. However, the size of this WSPD is (’;) Calla-

han and Kosaraju [23,25] show how to construct an s-WSPD of size O(n) using
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a data structure called a fair split tree. In fact, their construction works on any
hierarchical spatial data structure into cell, of bounded aspect ratio, such as com-
pressed quadtree. They also show that WSPDs can be used to solve a variety of
distance-related problems, such as the k closest pair, the all-nearest neighbors, and
the approximate minimum spanning tree.

Let T denote the fair split tree for the point set P. Note that every internal
node of a fair split tree has two children. For any node u of T', let P, denote the
subset of P that is stored at the leaves of the subtree rooted at u. A WSPD for P is
constructed recursively. For each internal node u of T', the construction performs the
following and returns the union of the results. Let v and w be the two children of w.
If the sets P, and P, are well-separated, then return the pair {P,, P, }. Otherwise,
assume without loss of generality that the size R(P,) is not larger than R(P,). For
each child w; of w and v, it performs a recursive call for w; and v, and returns the
union of the resulting well-separated pairs. Callahan and Kosaraju [23,25] show
that for a given separation factor s, an s-well separated pair decomposition for P,

consists of O(s%n) pairs, and can be computed in O(nlogn + s%n) time.

2.3.2 Spanners

Another approach to approximating the distance information for a point set is a
spanner [81]. Given a set of points P and a parameter ¢ > 1, called the stretch

factor, a t-spanner is defined to be a weighted graph G whose vertex set is P, and
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for any pair of points p,q € P,

Ipg| < da(p,q) <t-|pql,

where d¢(p, ¢) denotes the length of the shortest path between p and ¢ in G.

The measures of a spanner’s sparseness include its size, weight, degree, and
diameter. The size of a spanner is defined to be the number of edges in the graph.
The weight of a spanner is the sum of its edge weights. The degree is the maximum
number of edges incident to any vertex. The diameter is defined as the smallest
integer D such that for any pair p and ¢ of points there is a t-spanner path from
p to ¢ containing at most D edges. Good t-spanners require small size, weight,
degree and diameter. The size of any spanner must be at least n — 1. Because a
spanner must be connected, the weight of a spanner must be at least the weight of
a minimum spanning tree for P, wt(MST(P)). It is possible to achieve trade-offs
between the degree, the diameter and the size [102].

Spanners for complete Euclidean graphs as well as for arbitrary weighted
graphs can be used to solve or approximate version of various optimization prob-
lems such as minimum spanning trees [24], shortest paths [31], traveling salesperson
tour [91], and minimum-cost multi-connectivity in geometric networks [36]. They
can also be used in areas such as metric space searching [83] and broadcasting in
communication networks [46].

The most well-known algorithms for the construction of t-spanners are span-

ners constructed from WSPDs, greedy spanners, and ©-graphs. We discuss each of
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these below.

The construction of a t-spanner using a WSPD is done by first constructing
a WSPD of P with a separation factor s = 4(¢t + 1)/(t — 1). Initially the spanner
graph G consists of the vertex set P and an empty edge set. Add edges iteratively
as follows. For each well-separated pair { A, B} in the decomposition, an edge (a, b)
is added to the graph, where a and b are arbitrary points in A and B, respectively.
The resulting graph is a t-spanner for P with O(s%n) = O(n/(t — 1)¢) edges and
can be constructed in time O(nlogn + s%n) = O(n(logn + 1/(t — 1)%)) [24]. This
spanner has an 2(n) worst case lower bound on the degree and the diameter. (To see
this, consider the case of n points on a line with exponentially decreasing interpoint
distance from left to right.)

The greedy algorithm for spanners appears to have been discovered indepen-
dently by Bern (unpublished) and Althofer et al. [4]. The spanners constructed
using the greedy algorithm are called greedy spanners. The greedy algorithm main-
tains a partial t-spanner G’ while processing all point pairs in order of increasing
edge weight. Processing a pair p, ¢ entails a shortest path query on G’ between
p and ¢. If the shortest path in G’ is at most ¢ - |pg| then the edge (p,q) is dis-
carded, otherwise it is added to G’. This algorithm takes O(n®logn) time using
O(n?) space. Gudmundssson et al. [57] show the improved result that a ¢-spanner
of P with O((n/(t—1)%)log(1/(t —1))) edges, degree O((1/(t —1)%)log(1/(t —1))),
weight O((1/(t — 1)2) - wt(MST(P))) can be computed by the greedy method in
time O((n/(t — 1)*@)logn).

The ©-graph was discovered independently by Clarkson [31] and Keil [71].
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The ©-graph algorithm processes each point p € P as follows. Given a parameter
© > 0, partition R? into k simplicial cones of angular diameter at most § and apex
at p, where k = O(1/69°!). For each non-empty cone C, add an edge between p
and the point of C' whose orthogonal projection onto some fixed ray in C' emanating
from p is closest to p. The O-graph is a t-spanner of P for t = 1/(cosf —sin @) with
O(n/6%1) edges and can be computed in O(n/04 log ' n) time using O(n /0?4 +
nlog??n) space [72,93]. Arya et al. [14] introduce a skip list spanner combining
the ©-graph with skip lists. A skip list spanner supports insertions and deletions
in O(1/6% " log? nloglogn) expected amortized time, having O(n/6?~!) edges and

O(logn) diameter with high probability.

2.3.3 Generalization to Metric Spaces

All results in the previous sections are valid for d-dimensional Euclidean space,
where the dimension, d is a constant. The efficiency of most algorithms depends on
the assumption of constant dimension. This is because the running times of many
algorithms grow exponentially with the dimension, a phenomenon called “the curse
of dimensionality”. In many applicative the distance metric is not Euclidean, but
still behaves in a manner similar to Euclidean space of constant dimension. There
are a number of ways to define a notion of dimension on a finite metric space.

One such concept is the notion of doubling dimension [33,55,64,75,105]. The
set of points within distance r of a point is called the ball of radius r centered at

that point. The doubling dimension of a metric space M is the minimum value
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A such that every ball b in M can be covered by at most 2* balls of half the
radius. A metric is doubling if its dimension is O(1). The space R? with Euclidean
metric has doubling dimension O(d), and so doubling dimension can be thought
of as a generalization of the standard notion of dimension [61]. Doubling metrics
occur naturally in practical applications such as peer-to-peer networks [84] and data
analysis (e.g., when the input data resides on a low-dimensional manifold [107]).
Many algorithmic results on doubling metrics are based on the notion of hier-
archical nets. Consider a set of points P in some metric space M. For p,q € P, let
d(p,q) denote their distance. A subset X C P is a r-net if it satisfies the following

conditions:

(1) for every pair p,q € X, d(p,q) >,

(17) every point of P is within distance r of some p € X.

Krauthgamer and Lee [75] introduced hierarchical nets composed of levels of
r-nets, called navigating nets or net trees. Consider the maximum and minimum
interpoint distances in P, dy;, and dy,q,, respectively. Let T' = {2° : |log dpin| <
i < [logdyas |} Each value r € T' is called a scale. For every r € T', the net level
X, is an r-net of the next lower level X, 5. The bottom level of the navigating net
contains all points of P, and the top level contains a single point. For every r € '
and every p € X, the data structure stores a list of the nearby points to p among

the r/2-net X, ,. This scale r navigation list of p is defined by

Lp,r = {q S XT/Q : d(QaP) S v ’f’},
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where v > 0 is a universal constant. For every scale r, the following properties hold:

(1) Covering property: for every q € P, d(q, X,) < 2r,
where d(¢, X,) = minyex, d(q,p).

(17) Packing property: for every py,p2 € X, d(p1,p2) > 7.

Krauthgamer and Lee [75] applied navigating nets to solve (1+¢)-approximate
nearest neighbor queries on a point set. Letting ® = d,,4/dpmin (called the spread of
P), the query time is O(2°M log ® + (1/2)°W). This data structure has O(2°Mn)
size and supports insertions and deletions in O(2°™ log ® log log ®) time.

Cole and Gottlieb [33] removed the dependency in the spread for the approx-
imate nearest neighbor searching. They presented a data structure for storing a set
of n points in any metric spaces of constant doubling dimension. This data structure
has linear size, supports insertions and deletions in O(logn) worst case time, and
can find a (1 + ¢)-approximate nearest neighbors in time O(logn 4 (1/£)°M). They
base their algorithm on a variant of the hierarchical structure of [75].

Another important problem in metric spaces is computing well-separated pair
decompositions. Note that the earlier definition in Euclidean space can be general-
ized naturally to metric spaces. Talwar [105] extended the WSPDs of Callahan and
Kosaraju [25] to metric spaces. They showed that for every set P of n points in a
metric space of doubling dimension A and spread ®, there exists an s-WSPD with
O(s°Mnlog @) pairs. This is weaker than the result of Callahan and Kosaraju [25]
for Euclidean space, which does not depend on the spread of the point set. Har-

Peled and Mendel [64] improved this result. They showed that an s-WSPD with
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O(5°Mn) pairs can be computed in O(2°Mnlogn + s®Mn) expected time.

Even though the net tree data structure was developed for applications in
metric spaces, they have been applied to problems in Euclidean space as well. For
example, Gao et al. [52] presented a dynamic and kinetic spanner in Euclidean
space using an hierarchical structure similar to the net tree of Krauthgamer and
Lee [75], which they called a deformable spanner. For a set of n points P with
spread ®, they employed a hierarchical structure 7" having O(log ®) levels, where
each level i maintains a 2°-net of the lower level. Each vertex v on level i in T is
connected by edges to all other vertices on level 7 within distance O(2°/(t — 1)) of v.
They proved that the resulting graph is a t-spanner for P with size O(n/(t — 1))
and degree O(log®/(t — 1)4). They also showed how to perform updates in time
O(log ®/(t — 1)9) per insertion and deletion. They generalized deformable spanners
to the kinetic case. Kinetic data structures involve storing point sets that move
according to known motion plans. These plans are pseudo-algebraic, that is, they are
typically assumed to be given by piecewise algebraic curves. They showed that the
total number of events in maintaining the deformable spanner with a stretch factor
t is O(n?log ®) under pseudo-algebraic motion, and for each event, the structure
can be updated in O(log ®/(t — 1)) time.

Gottlieb and Roditity [55] developed a dynamic spanner in metric spaces based
on the deformable spanners of Gao et al. [52]. The partition by Gao et al.has
individual points appearing in as many as O(log ®) levels. In order to avoid the
dependence on ® in the update time of the hierarchy and the spanner, they introduce

a process of point replacements that limited the number of times a single point
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can appear in the hierarchy. The resulting t-spanner has constant degree and can
support insertions and deletions in time O(logn), where the doubling dimension A

and a stretch factor ¢ are taken as constants.
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Chapter 3

A Dynamic Data Structure for Approximate

Range Searching!

3.1 Introduction

Quadtrees and their many variants have proved to be an efficient and flexible method
of storing points in real multidimensional spaces of low dimension. (See, e.g., [94] for
many examples of such structures.) These data structures can answer various types
of queries efficiently, particularly when approximation is involved. The queries of
interest to us include approximate nearest neighbor queries and approximate range
queries (see Chapter 1 for definitions). In this chapter, we consider the question of
how to store dynamic point sets that allow insertion and deletion in order to answer
such queries efficiently. Our focus here will be on establishing good asymptotic
bounds on the space and query time of the data structure.

Static data structures have been developed for answering nearest neighbor and
range search queries approximately. Examples include the BBD-tree [10,12,13] and
the BAR tree [43]. These data structures can store a set of n points in R? in O(n)
space and can answer e-approximate nearest neighbor queries and e-approximate

range queries in O(logn + (1/¢)%"!) time. However, these data structures do not

'The material appearing in the chapter is based on the paper “A Dynamic Data Structure for
Approximate Range Searching” [80].
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naturally support insertion or deletion of points.

Dynamic data structures have been proposed for these problems. Chan’s im-
plementation of the linear quadtree [26,27], and the skip quadtree of Eppstein,
Goodrich, and Sun [45] both support insertion and deletion. Chan shows that
the linear quadtree can efficiently answer approximate nearest neighbor queries in
O((1/¢)%logn) time. Eppstein, Goodrich, and Sun show that the skip quadtree
can answer approximate range reporting queries in time O((1/¢)%logn + k), where
k is the number of points reported. One significant shortcoming of both of these
dynamic data structures, is that neither of them admits an efficient solution to the
important problem of approximate range counting. Intuitively, range-counting is
harder because it requires internal nodes to efficiently aggregate information from
their children. For example, each internal node of a partition tree maintains the
total weight of all the points residing in the subtree rooted at this node. In order to
answer a query, a minimal set of nodes is identified which together form a disjoint
cover of the query region. The weights of these nodes are then summed together.
With each insertion or deletion, these node counts need to be updated. In the linear
quadtree structure there is no tree, and hence no internal nodes. (It is possible to
augment Chan’s data structure to impose a tree, but range counting has not been
studied for such a data structure.) The skip quadtree is based on the compressed
quadtree, which may have height €2(n). Consequently, updating the weights of the
internal from a leaf to the root can take 2(n) time. (The skip quadtree does sup-
port efficient range-reporting queries, however, because even an unbalanced subtree

of size k can be traversed in O(k) time.)
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In this chapter, we introduce a simple, randomized dynamic data structure,
called a quadtreap, for storing multidimensional point sets, which supports efficient
approximate range counting. This data structure is a randomized, balanced variant
of a quadtree data structure. It can be viewed as a multidimensional generalization
of the treap data structure of Seidel and Aragon [97]. When inserted, points are
assigned random priorities, and the tree is restructured through rotations as if the
points had been inserted in priority order. Our main result is stated below. Unlike
the skip quadtree, the quadtreap (with high probability) is of logarithmic height,
and so it is possible update node weights efficiently. Here is the main result of this

chapter.

Theorem 3.1.1 Given a set of n points in R, a quadtreap storing these points
has space O(n). The tree structure is randomized and, with high probability, it has

height O(logn). Letting h denote the height of the tree:

(1) It supports point insertion in time O(h).
(i) It supports point deletion in worst-case time O(h?), and in expected-case time

O(h) (averaged over all the points of the tree).

(1ii) Approximate range-counting queries can be answered in time:

° O(h + (%)d_l), when the point weights are drawn from a commutative

group,

° O(h : (%)d_l), when the point weights are drawn from a commutative

Semigroup.
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(iv) Approzimate range-reporting queries can be answered in time O(h—i—(%)d*l—i—k) ,

where k 1s the output size.

For approrimate range-counting, it is assumed that the inner and outer ranges are
convex, and satisfy the unit-cost assumption. (See the definitions given in Chap-

ter 1).

The rest of the chapter is organized as follows. In Section 3.2, we introduce
the BD-tree data structure and present a simple incremental algorithm for its con-
struction. In Section 3.3, we present our dynamic data structure and show how
insertions and deletions are performed. In Section 3.4, we present the range query

algorithm.

3.2 Incremental Construction of a BD-Tree

To motivate our data structure, we begin by recalling some of the basic elements of
quadtrees and BD-trees. A quadtree is a hierarchical decomposition of space into
d-dimensional hypercubes, called cells. The root of the quadtree is associated with a
unit hypercube [0, 1]¢, and we assume that (through an appropriate scaling) all the
points fit within this hypercube. Each internal node has 2% children corresponding
to a subdivision of its cell into 2 disjoint hypercubes, each having half the side
length. Given a set P of points, this decomposition process is applied until each cell
contains at most one point, and these terminal cells form the leaves of the trees.
A compressed quadtree, is obtained by replacing all maximal chains of nodes that

have a single non-empty child by a single node associated with the coordinates of

%)



the smallest quadtree box containing the data points. The size of a compressed
quadtree is O(n), and it can be constructed in time O(nlogn) time (see, e.g., [30]).

If the dimension of the space is much larger than a small constant, it is imprac-
tical to split each internal node into 2% cells, many of which may contain no points.
For this reason, we consider a binary variant of the quadtree, which is closely re-
lated to bintrees [74,95]. Each decomposition step splits a cell by an axis-orthogonal
hyperplane that bisects the cell’s longest side. If there are ties, the side with the
smallest coordinate index is selected. Each cell has constant aspect ratio, and so
the essential packing properties of cells still hold. Henceforth, we use the terms
compressed quadtree and quadtree box in this binary context. As with standard
quadtree boxes, it is easy to prove that two quadtree boxes in this binary context
are either spatially disjoint or one is nested within the other. Assuming a model
of computation that supports exclusive bitwise-or and base-2 logarithms on point
coordinates, the smallest quadtree box enclosing a pair of points (or more generally
a pair of quadtree boxes) can be computed in constant time.

If the point distribution is highly skewed, a compressed quadtree may have
height ©(n). One way to deal with this is to introduce a partitioning mechanism
that allows the algorithm to “zoom” into regions of dense concentration. In [12,13] a
subdivision operation, called shrinking, was proposed to achieve this. The resulting
data structure is called a boz-decomposition tree (BD-tree? ). This is a binary tree in

which the cell associated with each node is either a quadtree box or the set theoretic

2This data structure is closely related to the binary division tree [37,86], which remarkably
shares the same acronym, BD-tree.
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difference of two such boxes, one enclosed within the other. Thus, each cell is defined
by an outer bor and an optional inner box. The size of a cell is defined to be the
maximum side length of its outer box. Although cells are not convex, they have
bounded aspect ratio and are of constant combinatorial complexity.

We say that a cell of a BD-tree is crowded if it contains two or more points or
if it contains an inner box and at least one point. Each crowded cell is partitioned
into two smaller cells by one of two partitioning operations (see Fig. 3.1). The first
operation, called a split, partitions a cell by an axis-orthogonal hyperplane in the
same manner described above for the binary quadtree. The associated node has
two children, one associated with each of these cells, called the left child and right
child. In contrast to traditional partition-tree definitions, we do not assume that the
coordinates of points in the left node are smaller than those of the the right node.
Instead (for reasons to be discussed later), it will be convenient to assume that, if
the original cell contains an inner box, this inner box lies within the left cell. We
call this the inner-left convention. Otherwise, the nodes may be labeled left and

right arbitrarily.

ARG o @
bl EHIHH I m

L R
Split Shrink

~F
Ot

Fig. 3.1: Splitting (left) and shrinking (right). In each case the initial cell contains
an inner box, which is indicated by a small gray square.

The second operation, called a shrink, partitions a cell by a quadtree box

(called the shrinking box), which lies within the cell. It partitions the cell into
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two parts, one lying within the shrinking box (called the inner cell), and the other
being the set-theoretic difference of the original cell and the shrinking box (called
the outer cell). The associated child nodes are called the inner child and outer
child, respectively. (In our figures, the inner child will always be on the left side.)

We will maintain the invariant that, whenever a shrink operation is applied to
a cell that contains an inner box, the shrinking box (properly) contains the inner
box. This implies that a cell never has more than one inner box. We allow a
degenerate shrink to occur, where the shrinking box is equal to the cell’s outer box.
In this case, the outer box is said to be a vacuous leaf since it has no area, and
hence no points can be inserted into it. In summary, there are two types of internal
nodes in a BD-tree, split nodes and shrink nodes, depending on the choice of the
partitioning operation.

The decomposition process terminates when the cell associated with the cur-
rent node contains either a single point or a single inner box. The resulting node is

a leaf.

3.2.1 Incremental Construction Algorithm

In [12,13], a bottom-up method for constructing a BD-tree of height O(logn) was
proposed. The starting point for our discussion is a simple (top down) incremental
algorithm for constructing a BD-tree through repeated insertion. This construction
does not guarantee logarithmic height, but in Section 3.2.3 we will show that, if the

points are inserted in random order, the height will be O(log n) with high probability.
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Ignoring the trivial case, where the tree is empty, we will maintain the invariant that
the cell associated with each leaf node contains either a single point or a single inner
box, which we call its contents.

Given a point set P = {p1,...,p,}, the incremental construction algorithm
begins with an empty tree, whose only cell is the unit hypercube, and it proceeds
by repeatedly inserting each point p € P into the tree as follows. First, through
a top-down descent, we find the leaf node u that contains p (see Fig. 3.2). Let b
denote u’s contents (either a point or an inner box), and let C' denote u’s outer box.
We compute the minimum quadtree box enclosing both p and b, denoted E. By the
minimality of F and basic properties of quadtree boxes, applying a split to £ will

produce two cells, one containing b and the other containing p.

C C C
E © Shrink

b O split
(] Leaf (with point)
Bl Leaf (with inner box)

Sy
Sy
Sy

Fig. 3.2: Insertion algorithm

We replace u with a pair of internal nodes v and w. The node v shrinks from
u’s outer box down to F. The outer child of v is a leaf node with outer box C' and
inner box E. (Note that £ might be equal to u’s outer box C'), in which case the
outer child is a vacuous leaf.) The inner child of v is a split node w that separates
b from p. The children of w are two leaves. By the inner-left convention, the left

child has b as its contents, and the right child contains p. (Recall that the left child
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does not necessarily correspond to points with smaller coordinates.) Observe that
this insertion process generates nodes in pairs, a shrink node whose inner child is a
split node. Irrespective of the insertion order, the following invariants are preserved

after creation:

e Fach cell contains at most one inner box.

e Each leaf cell contains either a single point or a single inner box (unless the

tree is empty, in which case it contains nothing).

e The inner child of each shrink node is a split node.

Insertion order: a, b, ¢ Insertion order: a,c, b
| |
b* b* b*
Z Z X Z
C_.y 1€ fy
a a - a a] al

Fig. 3.3: The tree on the left has been created with the sequence (a,b,c) and the
one on the right with (a,c,b). Uppercase letters identify the outer cells of shrink
nodes.

An example showing two different insertion orders is given in Fig. 3.3. Al-
though the tree structure depends on the insertion order, the following lemma shows
that the subdivision induced by the tree does not. The proof is based on an induc-
tive argument. The key is that, irrespective of the insertion order, the highest level
decomposition step (which need not be at the root node) is a function of the smallest

quadtree box containing all the points.
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Lemma 3.2.1 LetT be a BD-tree resulting from applying the incremental algorithm
to a set P of points. The subdivision induced by the leaf cells of T is independent of

the insertion order.

Proof: The proof proceeds by induction on the size of the tree. Let P denote the
set of points inserted into the tree, and let U denote the initial unit hypercube.
If |[P| = 1, the claim holds trivially. Otherwise, fix any permutation of P, and
let (p1,...,pn) denote the resulting insertion sequence. Let E denote the largest
shrinking box resulting from this insertion order. (It may be that £ = U.) Let E;
and Ey denote the quadtree boxes that result by splitting F, and let P, = PN F;
and P, = PN FE,. We will show that E is independent of the insertion order, and
hence so are F; and Fy and P, and Ps.

Observe first that P, and P, are disjoint, and no point of P can lie outside of
E. since otherwise the insertion of this point would have generated a larger shrinking
box. Therefore, P, and P, form a partition of P. Assuming that each point of P
is labeled with its position in the insertion order, that is, its insertion time. Let t;
and t, denote the minimum insertion times of P; and P;, respectively. Without loss
of generality, we may assume that ¢; < t5. Just prior to the insertion of point py,,
all the inserted points lie within Fy, and thus, U \ Fj is free of any elements of the
current subdivision. Since t; < t, there exists at least one point in F; at this time,
and therefore the leaf cell into which p;, falls contains either a point of P, or an
inner box containing the previously inserted points of P;. Let b denote the contents

of this leaf.
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The insertion of ¢y into this leaf, produces a shrink to the smallest quadtree
box containing both b and p;,, which, by basic properties of quadtree boxes, is
E. Furthermore, the subsequent split creates nodes with outer boxes E; and FEj.
Following this, all subsequent insertions will be made within either F; or F5, and
therefore no larger shrinking box will be produced.

We have shown, therefore, that irrespective of the insertion order, the largest
shrink box created during tree creation and the subsequent split are independent of
insertion order. (Although the time of their creation is dependent on the insertion
order.) By induction, this is true for the insertion of P, into E; and P, into Es.
Therefore the subdivision resulting from the creation process is independent of the

insertion order. O

3.2.2 Node Labels and the Heap Property

In this section we show that, if points are labeled with their insertion times, then it
is possible to assign labels to the internal nodes of the tree based on the labels of its
descendant leaves, so that these labels satisfy a heap ordering. This observation is
analogous to the heap condition in the treap data structure of Seidel and Aragon [97].

To motivate this labeling, observe that each newly created internal node is
added by the incremental algorithm in order to separate two entities, the newly
inserted point and the existing contents of the leaf node in which the new point
resides. If we were to label every point with its insertion time (and also provide an

appropriate label value to each inner box), it follows that the creation time of any
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internal node is the second smallest label over all the points in the subtree rooted
at this node. This suggests a labeling approach based on maintaining the smallest
and second smallest labels of the descendant points.
To make this more formal, we define the follow-
ing node-labeling rule. First, we define two symbols, |
and T denoting, respectively, numeric values smaller

and larger than any insertion times. We create a la-

beled pair for each node of the BD-tree. First, each

leaf that contains a point is labeled with the pair (¢,1), Fig. 3.4: Node labeling for
where ¢ is the insertion time of the associated point. the insertion order (a,b,c).
Each leaf that contains only an inner box is given the

label ({,7). For each internal node u, let v and w be its two children, and let
(v, vy and (wll, w?) denote the labels of its children. If u is a split node it has
the label

(u[l],u[z]) — (min (v[l],w[l]),max (vm,wm)).

If u is a shrink node, it is given the label of its inner child (the split node). An
example of such a labeling is shown in Fig. 3.4. The following lemma establishes
some useful observations regarding the relationships between the labels of nodes in

the tree and the insertion times of the points in their associated subtrees.

Lemma 3.2.2 Consider the labeled BD-tree resulting from the incremental inser-

tion algorithm. For any node u in this tree:

(1) If u’s cell has an inner box, then ull = |, and in particular, this holds for the
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outer child of any shrink node. Otherwise uY is equal to the earliest insertion

time of any point in u’s subtree.

(13) If u is an internal node, then ul? is equal to the node’s creation time, and in
particular, u? ¢ {1, 1}.

(i4i) If u is a shrink node, then for every node v in its outer subtree v > ul,

Proof: We establish (i) by induction. First, suppose that u’s cell has an inner box.
Clearly, if u is a leaf and it has an inner box, then ulY) = | by definition. If u is a split
node whose cell has an inner box, then this inner box lies within one of its children,
call it v. By induction, we have vl! = |. By the inner-left convention, it follows
that v is u’s left child. Since ul! < vl we have vl = |. If u is a shrink node,
its label is defined to be the label of its inner child, which is a split node. By our
construction the shrinking box contains the inner box, and it follows by induction
that the first label of the inner child is |.

Next, suppose that u’s cell does not have an inner box. Let ¢ denote the
earliest insertion time of any point in the subtree rooted at u. If u is a leaf, then by
definition, ul" = ¢. If u is a split node, then u!! is the minimum of the first label
components of its two children, and so by induction ulY) = ¢. If u is a shrink node,
observe first that a point is inserted into its inner subtree (at the moment the shrink
node is created) before any point is inserted into its outer subtree. Thus, ¢ is the
insertion time of some point in its inner subtree. By definition, ul! is equal to the
first component of its inner child, which is a split node, and, by induction, this is

equal to t. This establishes (i).
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To establish (ii), consider the insertion of point p at time ¢. Consider the leaf
node whose cell contains p, and let b denote its contents. If b is a point, let ¢’ be the
time of b’s insertion. Since b already exists, we have t’ < t. If, on the other hand, b
is an inner box, then let t' = |. Since | is smaller than any insertion time, we have
t' < t. In either case, if u is the newly created split node, then ul? = max(t',t) = t,
as desired. By parts (i), future insertions cannot increase the first label components
of w’s two children, and so ul? = ¢ holds for the final tree. If u is a shrink node,
we appeal to the fact that v was created at the same time as its inner child (a split
node) and the fact that u’s outer child label does not affect u’s label. Thus claim (ii)
holds.

We know from (ii) that the creation time of any internal node v is v/?. As
observed earlier, if v is a shrink node, then every point inserted into its outer child’s
subtree has a higher insertion time than v, For any node w of this subtree, w? is
the insertion time of such a point, and therefore w!? > v, This establishes (iii).

O

With the aid of this observation, the node labels satisfy the following proper-

ties. The second property is called the heap property.

Lemma 3.2.3 The labeled BD-tree resulting from the incremental insertion algo-

rithm satisfies the following properties:

(1) If v and w are left and right children of a split node, respectively, then v <

whl,
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(ii) Given any pair consisting of a parent u and child v, we have u? < VP, Ifu

1S a split node, the inequality is proper.

Proof: Whenever an insertion is performed, the newly inserted point is placed into
a leaf, which is the right child of a newly created split node. The prior contents
of the leaf that was split has an earlier insertion time (or | if the contents were an
inner box). Therefore, claim (i) holds for every split node at the time of its insertion.
Subsequent insertions cannot alter the first label component of a node, since all such
insertions involve points with later insertion times. This establishes claim (i).

To establish claim (ii), we consider two cases. If v is a leaf node, then v? = 1,
and the claim holds trivially. Otherwise, both v and v are internal nodes, and by
Lemma 3.2.2(ii), their second label components are their creation times. Clearly, v
could not be created before u, since our insertion algorithm adds new nodes only to
the bottom of the tree.

If u is a split node, then we assert that ul? < vl?. Observe first that this
holds at the time that u was created, since its two children are leaves, and hence
their second component values are equal to 7. But by Lemma 3.2.2(ii), we know
that ul? # 1, and therefore ul? < vP. Future insertions may replace v with an
internal node, but if so Lemma 3.2.2(ii) implies that u/? and v? are both equal to
their creation times. Since such insertions occur strictly after u’s creation, we have

ull < v as desired. O
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3.2.3 Randomized Incremental Construction

In this section we show that, if points are inserted in random order into the BD-tree
by the above incremental algorithm, with high probability, the resulting tree has
O(logn) height. We begin by showing that the search depth of any query point is
O(logn) in expectation (over all possible insertion orders). The proof is a standard
application of backwards analysis [39]. It is based on the observations that (1) the
subdivision induced by the tree is independent of the insertion order (as shown in
Lemma 3.2.1), and (2) the existence of each cell of the subdivision depends only on
a constant number of points. Thus, the probability that any one insertion affects
the leaf cell containing the query point is inversely proportional to the number of

points inserted thus far.

Lemma 3.2.4 Consider the BD-tree resulting from incrementally inserting an n-
element point set P in random order. Given an arbitrary point q, the expected depth

in the tree (averaged over all insertion orders) of the leaf containing q is O(logn).

Proof: We will track the cell of the induced subdivision containing g throughout the
course of the insertion process. Let A; denote the cell of the induced subdivision
containing ¢ after the insertion of the first ¢ points. Observe that if A; = A;_q,
then insertion of the ¢th point did not affect the cell of the subdivision containing
q, and therefore ¢’s depth is unaffected by this insertion. If, on the other hand, if
A; # A;_1, then the insertion of the ¢th point occurred within ¢’s leaf, and so ¢
may have fallen as many as two levels in the tree. For 1 < ¢ < n, let P, denote
the probability, taken over random insertion orders, that A; # A, ;. Letting D(q)
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denote the expected depth of ¢ in the final search tree, we have D(q) < 23" | P,.
We will show below that P; < % From this it will follow that the expected depth
of ¢ is at most 2)°" | 2 = O(logn).

To show that P; < %, we apply a backwards analysis. We say that a subdivision
cell A depends on a point p, if p would have caused A to be created, had p been
inserted last. Consider the subdivision cell ¢ that contains ¢ after the ¢th insertion.

If ¢ resulted from a split operation, let P, and P, be the two subsets of points
on either side of the split. If either set contains a single point, then ¢ is dependent
on this point, since had it not been inserted, there would be no reason for the split.
If either set has two or more points, the last insertion of such a point could not
have resulted in ¢’s creation, since the other points of the cell would have already
resulted in the cell’s existence. Thus, ¢ is dependent on at most two points.

If, on the other hand, ¢ resulted from a shrink, let P, and P, be the two
subsets of the split node of the inner child of the shrink node. Again, ¢ could be
dependent on at most two points, one from each set. Since, by Lemma 3.2.1, the
subdivision does not depend on the insertion sequence so far (just the set of inserted
points), and each point is equally likely to have been the last point to be inserted,
the probability that the last insertion caused ¢ to change cells is at most %, which

completes the proof. O

The following theorem strengthens the above result by showing that the height
bound holds with high probability. A bound on the construction time and space

follow immediately. Again, this is a straightforward generalization of analyses of
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other randomized incremental algorithms (see, e.g., [39]).

Theorem 3.2.1 Consider the BD-tree resulting from incrementally inserting an n-
element point set in random order. The tree has space O(n) (unconditionally). With
high probability, the height of the tree is O(logn), and the time needed to construct

the tree is O(nlogn).

Proof: (of Theorem 3.2.1) The O(n) space bound follows trivially from the fact
that each insertion creates O(1) new nodes. To bound the height of the tree, we
will show that, for any positive parameter A, the probability that the height of the
tree exceeds AIn(n + 1) is at most 1/n*™. We define a directed acyclic graph G,
with one source and one sink. Paths in G from the source to the sink correspond to
the permutations of P. There is a node for every subset of P, including one for the
empty set. It is convenient to imagine the nodes as being grouped into n + 1 layers,
such that layer ¢ contains the subsets of cardinality 7. The node corresponding to
a subset P’ has an outgoing arc to the node corresponding to a subset P” if P”
can be obtained by adding one point of P to P’. We label the arc with this point.
Note that the node corresponding to P’ in layer i has exactly ¢ incoming arcs, each
labeled with a point in P, and exactly n —¢ outgoing arcs, each labeled with a point
S\ S

Directed paths from the source to the sink in G now correspond one-to-one
to permutations of P, which correspond to possible executions of the construction.
Consider an arc of G from the node corresponding to P’ in layer ¢ to the node

corresponding to P” in layer i + 1. Let the point p be the label of the arc. We
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mark this arc if the insertion of p changes the cell containing point ¢g. To be able
to say something about the number of marked arcs, we use the same backwards
analysis argument from the proof of Lemma 3.2.4. There are at most two points
whose insertion would change the cell containing ¢ when they are removed from a
subset P”. This means that any node in G has at most two marked incoming arcs.

We want to analyze the expected number of marked edges on a source-to-sink
path in GG. To do this we define the random variable X; to be 1 if the ¢-th arc on the

sink-to-source path in G is marked, and 0 otherwise. Since each node in layer i has

I

i incoming arcs, at most two of which are marked, this implies that Pr[X; = 1] < 2.
Let Y = )" | X;. Since a query point can fall at most two levels with each
change of its containing cell, the number of nodes on the search path for ¢ is at

most 2Y. We will bound the probability that Y exceeds Aln(n + 1). By Markov’s

inequality, for any ¢t > 0 we have

PT[Y 2 )\ln(n—l— 1)] — Pr |:€tY Z et)\ln(nJrl)} < eft)\ln(nJrl)E[etY].

Since the random variable X; is independent, we have

n

1] - TIee)

i=1

E[eY] = E [eZ?:ltXf} - B
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By setting t = In 1.5, we obtain

Putting everything together, we obtain

1 At—1
PrlY > An(n+1)] < e (4 1) = (n+1)Mn+1) = ( +1) :
n

which is 1/n%W | as desired.
Since the depth of an arbitrary point is O(logn) with high probability, the
total search time for all the points of P is O(nlogn), also with high probability, and

this is the dominant term in the tree’s construction time. O

3.3 The Quadtreap

In this section we define our dynamic data structure, which we call the quadtreap.
Before presenting the algorithm, we discuss the basic rebalancing operation upon

which the data structure is based.

3.3.1 Pseudo-nodes and Rotation

The BD-tree depends on the insertion order, but we will show in this section that it

can be rebalanced through a simple local operation, which we refer to variously as
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rotation or promotion. This operation is much like the familiar rotation operation
defined on binary search trees, but some modifications will be needed in the context
of BD-trees. This operation will be a central primitive in maintaining balance in
our data structure as points are inserted and deleted.

Throughout this section we assume that the BD-tree satisfies the property
that the internal nodes of the BD-tree can be partitioned into pairs, such that each
pair consists of a shrink node as a parent and a split node as its inner child. We call
this the shrink-split property. As mentioned in Section 3.2, the BD-tree resulting
from our incremental construction algorithm satisfies this property.

This assumption allows us to view each shrink-split combination as single
decomposition operation, which subdivides a cell into three subcells. Thus, we can
conceptually merge each shrink-split pair into a single node, called a pseudo-node
(see Fig. 3.5), which has three children. The first two children, called the left and
right child, correspond to the children of the split node, and the third child, called
the outer child, corresponds to the outer child of the shrink node. Note that this is

a conceptual device and does not involve any structural changes to the tree.

pseudo-node

Y NN

left right outer

shrink-split

Fig. 3.5: The pseudo-node corresponding to a shrink-split pair.

Let us now define rotation on pseudo-nodes. We call the operation a promotion
and it is specified by giving a node y of the tree that is either a left child or an outer

child. Let = denote y’s parent. If y is a left child, the operation promote(y) makes z
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the outer child of y, and y’s old outer child becomes the new left child of z. Observe
that the inner-left convention is preserved, since y’s left child is unchanged, and z’s
left child (labeled w in the figure) contains the inner box (consisting of the union of

A and B’s cells in the figure).

~ promote(y)

_ promote(z) y E
R SR enatt A S
o A AAQ\ <[

B T
(a) (b)

Fig. 3.6: Rotation operation on pseudo-nodes (a). The associated subdivision is
shown in (b). (The order of left-right children is based on the assumption that the
earliest insertion time (or inner box, if present) lies within the cell associated with
subtree A.)

Next, let us consider the promotion of an outer child x. Let y denote its
parent. The operation promote(x) is the inverse of the previously described left-
child promotion. It makes y the left child of =, and z’s old left child becomes the
new outer child of y. Again, the inner-left convention is preserved, since prior to
the promotion, if y’s cell had an inner box it must lie in its left child A, and so after
promotion it lies in x’s left child y. (The reason for the inner-left convention is to
allow us to define one promotion rule. Otherwise, there would need to be a third
promotion rule involving the right-child edge.)

Based on the above descriptions, it is easy to see that the essential proper-
ties of the BD-tree are preserved after applying either promotion operation. Note
that promotion does not alter the underlying spatial decomposition, just the tree

structure. Since it is a purely local operation, promotion can be performed in O(1)
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time.

3.3.2 Point Insertion

We have seen that, if the points are inserted in random order, the height of the BD-
tree is O(logn) with high probability, but a particularly bad insertion order could
result in a tree of height Q(n). In order to make the tree’s height independent of
the insertion order, we assign each point a random numeric priority at the time it is
inserted, and we maintain the tree as if the points had been inserted in increasing
priority order. This is essentially the same insight underlying the treap data struc-
ture [97]. Intuitively, since the priorities are not revealed to the user of the data
structure, the tree effectively behaves as if the insertion order had been random.

The tree’s structure is determined by the node-labeling rule described in Sec-
tion 3.2.2 and the properties of Lemmas 3.2.2 and 3.2.3. Recall that the labeling
procedure of that section gives both nodes of each shrink-split pair the same label.
We define the label of each pseudo-node to be this value. Whenever a new point
is inserted into or deleted from the tree, we need to restructure the tree so that its
structure is consistent with the heap property. Thus, the tree behaves as if the
nodes of the tree had been inserted in priority order. We begin with the insertion
algorithm.

A newly inserted point is assigned a random priority 0 < ¢ < 1. It is then
inserted into the tree, by the incremental algorithm. The newly created nodes (three

leaves, one split node, and one shrink node) generated by the incremental algorithm
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are labeled as if the insertion took place at time ¢. The resulting tree may violate
the heap properties, however, and the tree needs to be restructured to restore this
property. The restructuring algorithm is presented in Algorithm 1. Recall that the
label of a node u is denoted by (ul'), u?). The restructuring procedure makes use

of the following simple utility functions:

e adjust-left-right(u): Let v and w be the left and right children of u, respec-
tively. If wll < ol swap these children. (This enforces property (i) of

Lemma 3.2.3.)

e update-label(u): Let w; and wy denote u’s left and right children, respectively,
Set

(!, u?)  (wr, ).

Finally, the operation update(u) invokes both of these functions on u.

Algorithm 1 Tree restructuring after inserting a point in a new leaf node v.

1: while v # root(7") do

2 u < parent(v)

3 if v is a left or right child then
4 update(u)

5: if v < 4l then

6: promote(v), update(u)
7 else v+ u

8 else if v/? < ul? then

9 promote(v), update(v)

10: else break

An example of the insertion and subsequent restructuring is shown in Fig. 3.7.
(For ease of illustration, we assume that priorities are positive integers.) Consider

the insertion of a point with priority 2, which lies within the leaf node indicated in
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Fig. 3.7(a). This insertion creates a pseudo-node v with label ({,2), which violates
Lemma 3.2.3(ii) with respect to its parent u (see (b)), thus causing a promotion.
After the promotion, there is a violation of Lemma 3.2.3(ii) between v and its new
parent, whose label is (],6) (see (c)), resulting in another promotion. There is
now violation of the heap property with the root node (see (d)), causing a final

promotion. At this point v is the root, and we obtain the final tree (see (e)).

J O H

(c)

Fig. 3.7: Example of quadtreap restructuring after insertion.

The following lemmas establish the correctness and running time of this pro-
cedure. The proof involves a straightforward induction involving a case analysis
of the relationships between the labels of nodes before and after each promotion.

Together, they establish Theorem 3.1.1(i).

Lemma 3.3.1 After inserting a point and applying Algorithm 1, the quadtreap sat-

isfies Lemma 3.2.3.

Proof: Let us assume that Lemma 3.2.3 was satisfied prior to the insertion. Let
t denote the priority of the newly inserted point. Consider an arbitrary iteration
of the while loop of Algorithm 1. We assert that the subtree rooted at v satisfies

the properties of Lemma 3.2.3. To see that this suffices, observe that the algorithm
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terminates either (1) when v is the root or (2) when v is an outer child and v? > /2.
In the former case, our assertion applies to the entire tree. In the latter case, since
v is an outer child, u’s label is not affected by v’s label (and hence neither are any
of u’s ancestors). Therefore, Lemma 3.2.3 holds for the subtree rooted at v (by the
assertion), and they hold throughout the rest of the tree (since (u,v) is satisfied,
and no other labels have been changed).

To establish the assertion, consider an arbitrary iteration of the while loop.
Let v be the current node, and let u be its parent. We consider two cases: (1) v is

a left or right child, and (2) v is an outer child.

Case 1 (v is a left or right child): Let w be other left-right child of u, and let x
be v’s outer child (see Fig. 3.8(a)). The call to update(u) on line 4 guarantees that
claim (i) of Lemma 3.2.3 holds for v and w. (Note that there is no change to u’s
label, since it is a symmetric function of its left and right children.) If vl > 4/,
then v does not violate claim (ii) of Lemma 3.2.3 with respect to u. In this case,

the algorithm sets v to u and continues with the next iteration.

NN /N N/ /A /B

(b) (c) (d)

Fig. 3.8: Proof of Lemma 3.3.1.

On the other hand, if v < w/ then Lemma 3.2.3(ii) is violated. First, we
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claim that v < wll. To see this, observe that otherwise we would have

ol < o < 4 = max (vl wl') = ol
which is clearly impossible. By this claim, the call to adjust-left-right resulting from
update(u) on line 4 guarantees that v is the left child, and w is the right child. Since
ul? = max (vl w), we have ul? = wll. After applying the right rotation on line 6,
v is now the parent of u, and v now has x as its left child (see Fig. 3.8(b)).
After the call to update(u) on line 6, claims (i) and (ii) of Lemma 3.2.3 are
established among u and its children, but u’s label may have been modified. We

2]

claim that the newly assigned second label component, call it «/*, cannot violate

claim (ii) of Lemma 3.2.3 with respect to v. To see this, observe that

o = max(z!V, w) = max(z!V, u@) > W@ > o2,
Because v’s left and right children have not changed, they still satisfy Lemma 3.2.3(i).

Thus, the new subtree rooted at v satisfies Lemma 3.2.3(i) and (ii), as desired.

Case 2 (v is an outer child): If v >« there is no violation of Lemma 3.2.3(ii).
Because v’s label does not affect u’s label (and hence it does not affect any of the
other tree labels), the algorithm may terminate at this point.

If, on the other hand, v < /¥, then let x and w denote the left and right

children of v, respectively (see Fig. 3.8(c)). By Lemma 3.2.3(i) we have z[!l < w),
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and so

v = max(z!M ') = wl,

After the call to promote(v) on line 9, v is now the parent of u, and u has now
acquired z as its new outer child (see Fig. 3.8(d)).

Prior to the insertion, v’s second label component was not smaller than u’s
second label component. The fact this is now violated implies that w!" has decreased
as a result of the insertion, and hence its value is the priority of the newly inserted
point. In particular, this means that the insertion did not occur in the subtree
rooted at x. Prior to the insertion, v was u’s outer child, and since z is a node
of this outer subtree, by Lemma 3.2.2(iii) we have 2 > ull. Since 2 is the only
child of u to change, Lemma 3.2.3(ii) is now satisfied at w. Since u’s left and right
children have not changed, Lemma 3.2.3(i) is still satisfied at w.

After the call to update(v) on line 9, Lemma 3.2.3(i) will be satisfied at v.
Because v/2 < uld| Lemma 3.2.3(ii) is satisfied at v as well. Therefore, the new

subtree rooted at v satisfies Lemma 3.2.3(i) and (ii), as desired. O

Lemma 3.3.2 The time to insert a point in a quadtreap of size n and height h is

O(h). Thus, the insertion time is O(logn) with high probability.

Proof: The promotion and updating of priority values can be performed in O(1)
time per node. The time needed to locate the point to be inserted is O(h). The time
to insert the point is O(1). Since the algorithm traces the path from the insertion

point to the root, the time to perform the restoration of the heap properties by
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Algorithm 1 is O(h). Thus, the entire insertion time is O(h). By Theorem 3.2.1,

h = O(logn) time with high probability. O

3.3.3 Point Deletion

Next, we consider the deletion of a point, p. We first determine the leaf node v
containing this point. We handle deletion by reversing the insertion process. In
particular, we effectively set the deleted point’s priority to 1 by assigning v a label
of (1,7). We then restructure the tree, described below, so that the properties of
Lemmas 3.2.3 are satisfied. Because of p’s high priority, the tree’s structure would be
the same as if p had been the last point to be inserted. Viewing from the perspective
of pseudo-nodes, when a point is inserted into the tree, it is placed within a leaf
cell that is the right child of its parent, and its two siblings are both leaves. To
establish this claim, observe first that v cannot be an outer child because the cell
associated with an outer child has an inner box. Since v contains a point, it cannot
also contain an inner box. Also, v cannot be a left child since this would violate
Lemma 3.2.3(1). Therefore, v is the right child of its parent. To show that v’s
siblings are leaves, note that by the node-labeling rule, v’s parent’s second label
component is 1. If its siblings were not leaves, their second label components would
be strictly smaller than this, thus violating property (ii) of Lemma 3.2.3. Therefore,
after restructuring, we can delete p by simply “undoing” the insertion procedure by
replacing the subtree rooted at v’s parent with a single leaf node. All that remains

is to describe the above restructuring process. This is given in Algorithm 2.
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Algorithm 2 Restructuring the tree as part of the deletion of a point in a leaf v.
1: label(v) < (1,1)
2: 1 < parent(v)
3: while r # null do

4: u <1, 1< parent(r)

5: update(u)

6: w < left(u), x < outer(u)

7. while w? < v or 2 < v/ do
8: if w? < 2 then

9: promote(w), update(u)
10: w < left(u)

11: else

12: promote(x), update(z)
13: x +— outer(u)

An example of the restructuring for the deletion process is shown in Fig. 3.9.
(For ease of illustration, let us assume that priorities are positive integers.) The
point to be deleted lies in node v (see (a)). We set its label to (1,1), set u to
v’s parent and then invoke the update procedure on line 5 of Algorithm 2. As a
result, u’s left and right children are swapped, and u’s label is updated (see (b)). A
sequence of promotions (actually “demotions”) is then applied to restore the heap
properties (see (c)—(e)). Finally, the subtree rooted at v’s parent is replaced by a

single leaf node (see (f)).

5 L (1)

©f

%) g “

ol JOR HER ¢

(a) (b) (e)

Fig. 3.9: Example of deletion from a quadtreap.

The following lemmas establish the correctness and running time of this pro-
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cedure.

Theorem 3.3.1 After deleting a point and applying the restructuring procedure of

Algorithm 2, the quadtreap satisfies Lemma 3.2.35.

Proof: The algorithm begins by setting the priority of the leaf v to (1,1) and
assigning r to be v’s parent. The algorithm then enters the outer while loop, which
assigns v to r, and r to its parent, and then proceeds to restructure the subtree
rooted at u, which we call local restructuring.

This local restructuring will generally alter this subtree’s root, and hence may
violate the conditions of Lemma 3.2.3 with respect to r. Thus, the outer loop
repeatedly invokes the local restructuring until arriving at the root. (In fact, the
algorithm could terminate as soon as the subtree’s root label is unchanged following
the local restructuring, but this would not alter the worst-case running time.) To
complete the proof, it suffices to establish the correctness of the local restructuring.

The effect of setting v’s label to (1,1), results in the second label component
of its parent u to be set to 1. In general, in subsequent iterations of the outer loop,
the first label of the restructured subtree can only increase. The call to update(u)
on line 5, results in an increase of u’s label components, and this may result in
a violation of Lemma 3.2.3(ii), with respect to the siblings of the node with the
increased label. If there is such a violation after the call to update, the violated
siblings will be the left child w or the outer child x of u (since the node with the
larger first label is made the right child after invoking update(u)).

Consider the sequence of nodes consisting of the iterated outer children of w
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Fig. 3.10: Illustrating the execution of the inner loop of Algorithm 2.

and the sequence of the iterated left children of x (see Fig. 3.10 (a)). The effect
of the inner while loop is to repeatedly rotate these nodes up one at a time, while
rotating v down, until u’s left and outer children both satisfy Lemma 3.2.3(ii) with
respect to u. The order in which the nodes are rotated depends on the values of
their second label components. Each time through the inner while loop, the node
at the head of each sequence (either w or x) having the smaller second-label value
is rotated into u’s position. (The effect of these rotations is illustrated in Fig. 3.10.
Part (a) shows the initial configuration, where we assume that the alphabetical
ordering of the node names {a,b, ..., h} correspond with an increasing enumeration
of second-label components.)

It follows that, after the inner loop terminates, the nodes along the path from u
up to r satisfy Lemma 3.2.3(ii). Except along the path from w, the nodes involved in
the rotations keep their original children, and therefore they satisfy Lemma 3.2.3(ii)
as well. After each right rotation, node u obtains a new left child, and so the
subsequent call to update(u) enforces Lemma 3.2.3(i). Similarly, after each left

rotation, node x obtains a new left child, and the subsequent call to update(z)
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enforces Lemma 3.2.3(i). Therefore, on termination, the conditions of Lemma 3.2.3

are satisfied throughout the subtree, as desired. O

Deletion requires O(log®n) time. Intuitively, the reason that deletion is more
complicated than insertion is because the deleted node’s priority may exist among
the label components along the entire search path to the root. (Consider, for exam-
ple, the deletion of the point with the lowest priority in the tree.) Deleting the point
involves updating the label of each such node. Each update may result in O(logn)

promotions.

Lemma 3.3.3 The time to delete a point from a quadtreap of size n and height h

is O(h?). Thus, the deletion time is O(log® n) with high probability.

Proof: The promotion and updating of each label can be performed in time O(1).
Each iteration of the inner loop of Algorithm 2 takes time proportional to the height
of node u. This inner loop may be repeated for each ancestor of the leaf v containing
the deleted point. Therefore, the total deletion time is at most O(h?). Since the
depth of the tree by Theorem 3.2.1 is O(logn) with high probability, the deletion

time is O(log®n), also with high probability. O

The worst case scenario for point deletion is rather pessimistic. The follow-
ing lemma shows that the expected time to delete a random point of the tree is
linear in the tree’s height. The expectation is over the choices of which point to
delete, whereas the high-probability bound is over the assignment of priorities. This

establishes Theorem 3.1.1(ii).
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Lemma 3.3.4 The expected time to delete a random point from a quadtreap T of
size nand height h is O(h). Thus, the expected deletion time is O(logn) with high

probability

Proof: Before giving the proof, we begin with a useful observation. Consider a node
u visited in an arbitrary iteration of the outer while loop of Algorithm 2 during the
deletion of some point p. We claim that the inner loop will be entered only if p’s
priority is among the two smallest in the subtree rooted at u. First, observe u is an
ancestor of the leaf containing p. The second component of u’s label is equal to the
second smallest priority in u’s subtree, which implies that this component’s value
can be changed only if p has one of the two smallest priorities in u’s subtree. If this
observation holds for p and u, p applies a charge to u.

Define an indicator variable, x(u, p) as follows.

1 if p charges u,

0 otherwise.

Thus, the expected deletion time ¢ is

Bt < = 3757 height(u) - x(u.p).

peP uweT

Each node is charged by at most two points, and thus,

E(t) < %Zlheight(u) < %-n~2h = O(h) = O(logn).

ueT
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3.4 Approximate Range Queries

In this section we present an algorithm for answering approximate range-counting
queries using the quadtreap. Recall the problem description from Chapter 1. Be-
cause promotions will not be needed here, most of the description here will be based
on the simpler representation of the tree as a BD-tree with split and shrink nodes.

In order to provide efficient response to queries, we will need to add a couple
of enhancements to the basic data structure. Before discussing these enhancements,
let us recall that we are given a set P of n points R? for fixed d. Let wgt(p)
denote the weight of point p. Recall that a query is presented in the form of two
convex shapes, an inner range and outer range, @~ and Q*, respectively, whose
boundaries are separated by a distance of at least ¢ - diam(Q). Let T" be a BD-tree
storing these points, and let h denote its height. For the sake of generality, we
will express running times (deterministically) in terms of n, h, and e, but as shown
in the previous sections, if the BD-tree is a quadtreap, then h will be O(logn)
with high probability. Our best results are for range counting where the weights are
drawn from a commutative group, but we will also consider the case of commutative
semigroups and range reporting.

The first enhancement to the tree is to maintain at each node v the total weight
of the points in the associated subtree. Given a node v, let P, denote the points

of P lying within v’s subtree, and let wgt(v) denote their total weight. Observe

86



that this sum can be updated as points are inserted or deleted, without altering the
construction time or space bounds.

The second enhancement is a structural addition to the tree. To motivate the
addition, it is useful to recall how approximate range queries are answered in parti-
tion trees. We apply a standard top-down recursive algorithm (see for example [12]).
Starting at the root, let v denote the current node being visited. We compare v’s
cell C' to the range. If the cell lies outside the inner range or inside the outer range
or is a leaf, we can process it in O(1) time. Otherwise, we recurse on its children.

(See the code block.)

Algorithm 3 Range Query

Input: A range @, given with an inner range Q- and an outer range Q, and a
node v in the Quadtreap

Output: The total weight of points in the approximate range

1: function rangeQuery(Q,v)

2 C < cell(v)

3 if CNQ™ =0 then return 0

4 else if C' C Q" then return wgt(v)

5: else if v is a leaf then

6 if v contains a point in @) then return wgt(p)

7 else return 0

8 else if v is a split node then

9 return rangeQuery(Q, left(v)) + rangeQuery(Q, right(v))
10: else > v is a shrink node
11: return rangeQuery(Q, inner(v)) + rangeQuery(Q), outer(v))

The key issue in analyzing the algorithm is determining the number of internal
nodes that are expanded, which means that a recursive call is made to the node’s
two children. Recall that the size of a cell in the tree is the maximum side length
of its outer box. The analysis classifies expanded nodes as being of two types: large
nodes are those whose cell size is at least 2 - diam (@), and remainder are called
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small nodes. To understand the issue, recall the analysis of the small expanded
nodes given in [12]. It relies on an crucial property of the BBD-tree, namely that
whenever the search descends a constant number of levels, the size of the associated
cells decreases by a constant factor. This property holds for the binary quadtree,
since with each d levels of descent in the tree, every side is bisected and so the cell
size is halved. However, this generally does not hold for BD-tree. The problem
arises from the fact that a the outer child of a shrink node has the same outer box
as its parent. Thus, there may arbitrarily long chains of shrink nodes, for which the
cell size does not decrease. We define a shrink chain to be a maximal sequence of

shrink nodes, where each node is the outer child of its predecessor.

Fig. 3.11: A link.

We fix this problem by adding a special pointer, called a [ink, which points
from the first node of each shrink chain to its last node (see Fig. 3.11). We also
assume that each node of the tree stores a pointer to its parent. A BD-tree with
all the above enhancements (internal weights, parent pointers, and links) is called
an augmented BD-tree. A quadtreap based on such a tree is called an augmented

quadtreap.
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In Section 3.3.1 we discussed promotions. It is easy to modify the promotion
process to maintain node weights and links. To see this, let us briefly return to the
pseudo-node view of the tree. Consider the operation promote(y), where y is the
left child of some node x (recall Fig. 3.6). Let w be y’s outer child. The associated
weights wgt(z) and wgt(y) can be updated by assigning each the sum of the weights
of their new children. The links are updated as follows. Prior to the promotion, x
and y may each have been the head of some shrink chain. Therefore, each may have
a link. If y was the first node of a shrink chain prior to the promotion, w is now
the head of this chain, and so w is assigned y’s old link. If x was the first node of
a shrink chain prior to the promotion, y now becomes the first node of the chain
after the promotion, and so y is assigned z’s old link. The modifications for the
promotion of an outer child are symmetrical. (In particular, = is assigned y’s old
link, and y is assigned w’s old link.)

Let us see how the link is used in answering range searching. Given an aug-
mented tree, when the search arrives at the start of a shrink chain and the node is
small, rather than descending the chain from top to bottom, as the above search
algorithm would, it will traverse the chain from bottom to top. Why does this work?
Recall from Section 3.2 our invariant that, if the cell of a shrink node has an inner
box, the shrinking box properly contains this inner box. This implies that, when
considered from bottom to top, the sizes of the inner boxes decrease monotonically.
This is exactly the property we desire when visiting small nodes.

There is a simple and elegant way in which to implement the modified search

algorithm. The algorithm is exactly as described above, but whenever we visit a
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small shrink node, we “redefine” the meanings of the various tree primitives for
each node: left, right, cell, and weight. To motivate this modification, observe that
it is possible to transform each shrink chain, into one in which each node in the
transformed sequence is the inner child of its parent (see Fig. 3.12). Let 7™ denote
the resulting transformed tree.> Note that this transformed tree exists merely for

conceptual purposes (we do not actually modify the tree).

Fig. 3.12: A shrink chain and the transformed tree.

As mentioned above, this transformation can be achieved “on the fly” by
appropriately redefining the primitive tree operations as the range search algorithm
is running. The algorithm proceeds as before, but whenever a shrink node is first
encountered, we save this node, which is called the head of the chain (labeled “a” in
Fig. 3.12). We then immediately follow its link to obtain the next node to be visited
by the search. As long as we continue to visit shrink nodes, we apply the alternate
definitions of the various tree primitives given in Fig. 3.13. On returning to a leaf

or split node, we return to the standard definitions. Note that the modified weight

3The conversion of each shrink chain can be viewed as arising from a series of promotions to
the nodes of the shrink chain, but, since we are not considering nodes at the level of pseudo-nodes
here, the resulting transformed tree does not satisfy the shrink-split property. Nonetheless, it is
equivalent to the original tree from the perspective of the subdivision of space that it defines, and
thus it is a valid BD-tree. This is the only property that the range-search procedure requires.
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function requires the use of a subtraction operator.

*

inner* (v v = head) 7 inner(v) : parent(v)

*

cell* (v

outer(v) is a leaf) 7 cell(head) : cell(head) \ cell(outer(outer(v)))
outer(v) is a leaf) ? wgt(head) : wgt(head) — wgt(outer(outer(v)))

*

v

(v)
outer”(v)
(v)
(v)

(
(outer(v) is a leaf) 7 outer(v) : inner(outer(v))
(

wgt (

Fig. 3.13: Redefined tree primitives.

For example, in Fig. 3.12, in the tree T™ the outer child of b is C', which is
equivalent to inner(outer(b)) in the original tree 7', and this matches the definition
of outer*(b).

Because the search algorithm does not rely on the shrink-split property, es-
tablishing correctness of the modified range-search algorithm involves showing that

the modified primitives achieve the desired transformation.

Lemma 3.4.1 Given a set of points with weights drawn from a commutative group
and an augmented BD-tree storing these points (which need not satisfy the shrink-
split property), the modified query algorithm correctly returns a count that includes
all the points lying inside the inner range and excludes all the points lying outside

the outer range.

Proof: We exploit the equivalence between the transformed tree and the original
tree, and analyze the search algorithm from the perspective of the transformed tree
T*. Let E be the set of nodes visited for which the algorithm does not make a
recursive call to its children. It follows by an easy inductive argument that the set

of the cells corresponding to nodes of E forms a disjoint union of the hypercube
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containing all data points.

We first show that all the points lying inside the range are included in the
final count. Let p be some point lying inside the inner range )~, and let v be the
node of E that contains it. If v is a leaf node, p would be included in the count
since it lies within @). If not, the fact that no recursive call was made implies that
cell(v) C @, and hence p’s weight would have been included in the final count.

In an analogous way, we can also show that all the points outside the outer
range are not included in the final count. Let p be some point lying outside the
outer range QT and let v be the node of E that contains it. As before, the case of a
leaf node is trivial. If v is a non-leaf node, the fact that we did not make a recursive
call implies that the intersection of cell(v) N @~ = () must be empty, and hence p’s

weight would not have been included in the final count. O

The transformed tree T™ satisfies the property that the cell sizes decrease by a
constant factor with every constant number of levels of descent. The original tree T’
is of height h. Tt follows from a straightforward generalization of the analysis of [12]
(using T for the large expanded nodes and 7 for the small expanded nodes) that
the query time is O(h + (1/£)471). Because the use of wgt* requires subtraction,
this query time applies only if the weights are drawn from a group. In the case of
semigroup weights, we perform the entire query in 7. In the absence of the size-
decreasing property, the query time that results is the product (not the sum) of ~ and
d-1)

(1/2)471. (Answering an approximate range query can be reduced to O((1/¢)

cell queries in T' [45], each of which takes O(h) time.)
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The above query algorithm (for the group case) can be adapted to answer
range reporting queries. Whenever we encounter a node whose cell lies entirely
inside Q", rather than returning the sum of the weights of the points in this node,
the algorithm traverses the associated subtree and enumerates all its points.

Summarizing all of these observations, we have the following result, which

establishes Theorem 3.1.1(iii) and (iv).

Theorem 3.4.1 Consider a set of n points in R? that have been stored in an aug-
mented BD-tree of height h. Then, for any € > 0 and any convex range () satisfying

the unit-cost assumption:

(1) If the point weights are drawn from a commutative group, it is possible to

answer e-approzimate range counting queries in time O(h + (1/£)471).

(73) If the point weights are drawn from a commutative semigroup, it is possible to

answer e-approzimate counting queries in time O(h - (1/¢)%71).

(131) It is possible to answer e-approximate range reporting queries in time O(h +

(1/e)*t + k), where k is the number of points reported.

Proof: Let () denote the query range and let T" denote the augmented BD-tree. We
start with some definitions. An internal node v is said to be wvisited if a recursive
call is made on it. It is said to be expanded if it is visited, and a recursive call has
been made to its children. Let w = diam(Q). We distinguish between two kinds of
expanded nodes depending on the size (longest side length) of the associated cell.
An expanded node v whose size is at least 2w is large, and otherwise it is small.
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We will show that the number of large expanded nodes is bounded by O(h), and
the number of small expanded nodes is bounded by O((1/£)¢"!). Since each node
can be expanded and its children visited in constant time, it follows that the total
running time is the sum of these two quantities.

We first bound the number of large expanded nodes. Recall that the trans-
formed primitives apply only to the small expanded nodes, and hence we may assume
that we are dealing with the original augmented BD-tree. Consider the set of all ex-
panded nodes of size greater than 2w. These nodes induce a subtree of the BD-tree.
Let L denote the leaves of this subtree. The cells associated with the elements of
L have pairwise disjoint interiors, and they all intersect the range (otherwise they
would not have been expanded). By the packing lemma of [12], there are O(1) such
boxes. Thus, the total number of large expanded nodes is O(h).

Next, we consider the small expanded nodes. In processing these nodes, we
consider that we are traversing the transformed tree 7. We show first that the total
number of small expanded nodes is not greater than a constant times the number of
small split and leaf nodes that are visited. To see this, consider a small shrink node
v that is expanded by the search. Such a node will be traversed in the transformed
tree T*. By definition of outer*(v), if v’s outer child in 7" is a leaf, then this leaf is
also its outer child in 7. Otherwise, outer*(v) = inner(outer(v)). The outer child of
a shrink node is never a split node, and therefore outer(v) is a shrink node. By the
shrink-split property, the inner child of a shrink node is a split node, and therefore
outer*(v) is a split node. In either case, it cannot be a shrink node. Each time a

shrink node is expanded, we charge its processing to its outer child. No visited leaf
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node nor split node will receive more than a constant number of charges in this way.

Having dispensed with the small expanded shrink nodes, to complete the proof,
it suffices to bound the number of small expanded split nodes. First, we claim that
any node of size less than we/ V/d cannot be expanded. For a node to be expanded
its cell must intersect both the inner range )~ and the complement of the outer
range Q1. Recall that the boundaries of )~ and Q% are separated from each other
by a distance of at least we. Since the diameter of a cell of size s is at most sv/d,
a cell of size less than we/+v/d cannot intersect both range boundaries and hence
cannot be expanded.

Thus, it remains to count the number of expanded split nodes of sizes from 2w
down to 2we/v/d. As in the analysis of Theorem 1 of [12], we partition these nodes
into groups according to their sizes. For ¢ > 0, define size group i to be the set of
nodes whose cell size is 1/2°. Since small nodes are of size less than 2w, the first
size group of interest is a + 1, where 1/2°t! < 2w < 1/2% and hence a = [—1g2w]|.
Since nodes that are smaller than 2we/ V/d are not expanded, the last size group of
interest is b, where 1/2°%1 < 2we/v/d < 1/2°, and hence b = ng (2w5/\/3)J.

Because a node and its child may have the same size, we cannot apply the
packing lemma directly to each size group. Define the base group for the ith size
group to be the subset of nodes in the size group that are leaves or whose children
are both in the next smaller size group. The cells corresponding to the nodes in a
base group have pairwise disjoint interiors, since none of their descendants can be
in the same base group. By the convexity of () and a standard packing argument

(e.g., Lemma 3 of [12]), it follows that the number of nodes in the ith base group is
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at most
o (14 [22 ) = o (1 [w2 )™
1/21'

Since each successive split halves one of the side lengths of the outer box, the
size of the nodes decrease by a factor 1/2 after any d consecutive splits by recursive
invocation of the range search procedure. Thus at most 2d levels of split ancestors
above the base group can be in the same size group, and thus the number of nodes
in any size group is at most 2d times the above quantity.

Thus, over all of the base groups, the total number of expanded nodes, which

we denote by N, is

b
N o< ST 2d (14 Jw2 )

i=a+1
Observe that for i > a + 1, we have w2t > w2%*2 > 1. For any x > 1, note that

1+ [x] < 3z, and hence we have

b b
N < 3 2 (3uw2t) T < 2d? (6w) Y (20

i=a+1 =0
Solving this geometric series yields

d—1\b+1 __ 1
N S 2d2(6w)d—1< )

241 — 1
d—1
syt (Y3 209)
< 2d°(6w) YE—
d—1
PP 3Vd
B 2011\ ¢
<

(%)
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Thus, the total number of small expanded nodes is bounded by O((1/£)41). Com-
bining this with the O(h) bound on the number of large expanded nodes completes

the proof. O
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Chapter 4

A Self-adjusting Data Structure for

Multidimensional Point Sets!

4.1 Introduction

In the previous chapter we presented a quadtree variant that uses a local restruc-
turing operation, called promotion, to maintain its balance. This resulted in the
quadtreap data structure, which (with high probability) can support insertion and
deletion in O(log n) worst-case time. In some applications, especially when the prob-
ability distribution of accesses is highly skewed and varies over time, it is desirable
that data structures adapt to achieve optimal performance for this access pattern.
This leads to the concept of a self-adjusting data structure, whose structure adapts
to the pattern of accesses over time. The best known example of such a structure
for 1-dimensional data is the splay tree of Sleator and Tarjan [99].

In this chapter we present a multidimensional generalization of this structure,
which we call the splay quadtree. Similar to the traditional splay tree, accesses
are based on an splaying operation that restructures the tree in order to bring an
arbitrary internal node to the root of the tree. We show that, given a splay quadtree

with n points, the amortized time to splay a node is O(logn) (see Theorem 4.3.5),

!The material appearing in the chapter is based on the paper “A Self-adjusting Data Structure
for Multidimensional Point Sets” [87].
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and the amortized time to insert or delete a point is also O(logn) (see Theorems 4.4.1
and 4.4.2). We also present multidimensional generalizations of many of the results
of [99], including the Balance Theorem, the Static Optimality Theorem, the Working
Set theorem, and variants of the Static Finger Theorem for a number of different
proximity queries, including box queries (which generalize point-location queries),
approximate nearest neighbor queries, and approximate range counting queries.
The rest of the chapter is organized as follows. In Section 4.2, we present
some background material on the BD tree, the variant of the quadtree on which
the splay quadtree is based. In Section 4.3, we present the splaying operation and
analyze its amortized time. In Section 4.4, we present and analyze algorithms for
point insertion and deletion. Finally, in Section 4.5, we present the various search

and optimality results.

4.2 Preliminaries

We begin by recalling some of the basic elements of quadtrees and BD-trees. A
quadtree is a hierarchical decomposition of space into d-dimensional hypercubes,
called cells. The root of the quadtree is associated with a unit hypercube [0, 1]¢,
and we assume that (through an appropriate scaling) all the points fit within this
hypercube. Each internal node has 2¢ children corresponding to a subdivision of its
cell into 2¢ disjoint hypercubes, each having half the side length.

It will be convenient to consider a binary variant of the quadtree as bintrees [74,

95]. Each decomposition step splits a cell by an axis-orthogonal hyperplane that
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bisects the cell’s longest side. If there are ties, the side with the smallest coordinate
index is selected. Although cells are not hypercubes, each cell has constant aspect
ratio. Henceforth, we use the term quadtree box in this binary context.

If the point distribution is highly skewed, a compressed quadtree may have
height ©(n). One way to deal with this is to introduce a partitioning mechanism
that allows the algorithm to “zoom” into regions of dense concentration. In [12,13] a
subdivision operation, called shrinking, was proposed to achieve this. The resulting
data structure is called a boz-decomposition tree (BD-tree). (In fact, it would be
more accurate to call our data structure a “splay BD-tree.”) This is a binary tree in
which the cell associated with each node is either a quadtree box or the set theoretic
difference of two nested boxes, called the outer box and inner box. Although cells
are not convex, they have bounded aspect ratio and are of constant combinatorial
complexity.

The splay quadtree is based on a decomposi-

C
: : - o E ¢
tion method that combines shrinking and splitting '.:‘ \
LR ol O
at each step. We say that a cell of a BD-tree is g . I R CE\] E

crowded if it contains two or more points or if it

contains an inner box and at least one point. Let B denote this cell’s outer box, and
let C' be any quadtree box contained within B, such that, if the cell has an inner
box, C contains it. We generate a cell O = B\ C. We then split C' by bisecting
its longest side forming two cells L and R. By basic properties of quadtree boxes,
the inner box (if it exists) lies entirely inside of one of the two cells. We make

the convention, called the inner-left convention, that the inner box (if it exists) lies
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within L. (Thus, the left child’s cell is not necessarily geometrically to the left of
the right child.) We generate a node with three children called the left, right, and
outer child, corresponding to the cells L, R, and O, respectively. We allow for the
possibility that C' = B, which implies that the outer child’s cell is empty, which
we call a vacuous leaf. Our algorithms will maintain the invariant that the left and
right children separate at least two entities (either two points or a point and inner
box). It follows from the analysis given in [80] that the size of the tree is linear in
the number of points.

As shown in [80], the tree can be restructured through a local operation, called
promotion, which is analogous to rotation in binary trees. The operation is given
any non-root internal node x and is denoted by promote(z). Let y denote z’s
parent. There are three cases depending on which child = is (see Fig. 4.1). Note

that promotion does not alter the underlying subdivision of space.

promote(y) -
promote(z) QO v
‘mY
/A /B\ ﬂc D
. A
Y/ N/
(a)
Yy X
Q) . promote(z) \ E
T, Promotelz) . oy
A s‘A A s‘s D C
/N NN VAN A Np

Fig. 4.1: (a) Left and outer promotions and (b) right promotion.

Left child: This makes y the outer child of x, and x’s old outer child becomes the

101



new left child of y (see Fig. 4.1(a)). Observe that the inner-left convention is
maintained, since z’s left child is unchanged, and y’s new left child (labeled
C'in Fig. 4.1(a)) contains the inner box (consisting of the union of A and B’s

cells in Fig. 4.1(a)).

Outer child: This is the inverse of the left-child promotion, where the roles of x and
y are reversed (see Fig. 4.1(a)). In particular, let y be an internal node, and
let = be y’s parent. Then, promote(y) makes x the left child of y, and y’s old
left child becomes the new outer child of . Again, the inner-left convention is
maintained, since prior to the promotion, if x’s cell had an inner box, it must
lie in its left child (A in Fig. 4.1(a)), and after promotion, it lies in y’s left

child, z.

Right child: To maintain the convention that a cell has only one inner box, this
operation is defined only if z’s left sibling (labeled D in Fig. 4.1(b)) does
not have an inner box. Letting y denote x’s parent, promote(x) swaps x
with its left sibling and then performs promote(x) (which is now a left-child
promotion). Before the promotion, the inner box that contains z’s shrinking
box (consisting of the union of A and B’s cells in Fig. 4.1(b)) is an inner box
of a’s outer child (labeled C in the figure). After promotion, this inner box

lies within the left child of y, thus satisfying the inner-left convention.

It is easily verified that promotion can be performed in O(1) time, and as shown
above, it preserves the inner-left convention. The complicating feature of promotion
is that right promotions can be performed only if the node’s left sibling does not
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have an inner box. (Note that an inner box is generated with each shrink operation,
and so each outer child’s cell has an inner box and this inner box is inherited by all of
its descendents on its left-child path.) The reason for not allowing such a promotion
is that it would result in z’s cell having two inner boxes. Arbitrary repetition of
this operation could then result in nodes whose cells have an unbounded number
of inner boxes. This would violate one of the principal features of the hierarchical
subdivision, namely that all cells have constant combinatorial complexity. We say
that a promotion is admissible, if it is either a left or outer promotion or if it is a

right promotion in which the left child has no inner box.

4.3 Self-adjusting Quadtrees

Like the standard splay tree [99], our self-adjusting quadtree, or splay quadtree,
maintains no balance information and is based on an operation, called splaying,
that moves an arbitrary internal node to the root through a series of promotions.

This operation is described in terms of primitives, called basic splaying steps.

4.3.1 Basic Splaying Steps

We begin with some definitions. Let x be an internal node. If x is not the root,
let p(z) denote its parent, and if p(x) is not root, let g(z) denote z’s grandparent.
Define rel(p(x),z) to be one of the symbols L, R, or O depending on whether x is
the left, right, or outer child of p(x), respectively. Define str(x) be the string of at

most two characters over {L, R, O} representing z’s relationship to its parent and
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grandparent, if they exist. Formally, if z is the root, then str(z) is the empty string,
which we denote by €. If p(x) is the root of the tree, then str(x) is the single character
sequence rel(p(z), z). Otherwise, str(z) is defined to be two-character string whose
first character is rel(g(x), p(x)) and whose second character is rel(p(z),x). Given a

non-root node z, a basic splaying step is defined as follows.

Basic Splay(z):

zig: If p(x) is the root, perform promote(z) (see Fig. 4.2(a)).

zig-zag: 1f str(z) € {LO, RO,OL}, do promote(z), and then promote(z) (see

Fig. 4.2(b) for the case str(x) = LO).

zig-zig: Otherwise (if str(x) € {LL, LR, RL, RR,OR,O0}), do promote(p(x))

and then promote(z) (see Fig. 4.2(c) for the case str(x) = LL).

Fig. 4.2: The basic splaying operations: (a) zig, (b) zig-zag, and (c¢) zig-zig, where
(before promotion) y = p(x) and z = g(z).
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The astute reader will observe a slight lack of symmetry in the definitions of
zig-zag and zig-zig. With the exception of OR, the zig-zig cases are of the form OO
or ab, where a,b € {L, R}, and the zig-zag cases are of the form aO or Ob. The
principal reason for defining OR to be zig-zig is because the zig-zag processing would
result in an inadmissible promotion. We say that a basic splaying step is admissible
if all of its promotions are admissible. As we will see below, the admissibility of
a basic splaying step at some node generally depends on the structure of the tree
above the node.

Let us now analyze the amortized time of basic splaying. Subramanian [103]
presented a generic analysis of splaying, and a slightly weaker form of our results
could be derived from his analysis. We provide details for the sake of complete-
ness. Following Sleator and Tarjan [99], we will employ a potential-based argument.
We assume that each node x has been assigned a nonnegative weight w(z). (Node
weights will generally depend on the application.) Given such a weight assignment,
define 2’s size, denoted s(z), to be the sum of the weights of its descendants, in-
cluding x itself. Define the rank, denoted r(x), to be logs(x). (Unless otherwise
specified, all logs are taken base 2.) Define the potential of the tree, denoted ®,
to be the sum of the ranks of all its nodes. The amortized time of an operation is
defined to be t + &' — &, where ¢ is the number of promotions performed, and ® and
@’ are the potentials before and after the operation, respectively.

Consider a node x to which a basic splaying step is performed. Let r(z) and

r’'(x) be x’s rank before and after the operation, respectively.
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Lemma 4.3.1 Given a splay quadtree T' and any assignment of weights to its nodes,
the amortized time for a zig operation at node x is at most r'(z) —r(z) + 1, and the
amortized time for a zig-zag or zig-zig operation is at most 3(r'(x) — r(z)).

Proof: Let y = p(x), and (if it exists) let z = g(z) before the operation (see
Fig. 4.2). Let s(z) and s'(x) denote x’s size before and after the operation, respec-
tively.

zig: One promotion is performed, and as a result, y’s size can only decrease. So the

amortized time is

Uug = 1+71(z)+1r'(y) —r(x) —ry)

< 147 (z) —r(z) (since ' (y) < r(y)).

zig-zag: Two promotions are performed. Observe that x inherits all of z’s former
descendents, so 7'(z) = r(z). Since z is a child of y before the operation,

r(z) < r(y). So the amortized time is

Arig-zag = 2+ T'/(SL’) + T’(y) + T/(Z) - T($) - T(y) - T(’Z)
— 2 r(y) () — (@) = () (since r/(2) = (=)

< 247(y) +r'(2) = 2r(x) (since r(z) < r(y)).

We claim that this last sum is at most 2(r'(x) — r(z)), that is, r'(y) +1/'(2) —

2r'(x) < —2. To see this, observe that by the definition of the rank we have

) = )+ ) = o) = o5 g T — g (S8 25

§'(x) s'(x

SN~—
%\

—~
8

~—r
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Since after the operation, y and z are distinct children of x, we have

Using the fact that the geometric mean does not exceed the arithmetic mean,

we have

(AN
DO
)
o
e
DN | —

IN
b
5}

o

as desired. Thus, the amortized time of zig-zag is at most 2(r'(x) — r(z)) <

3(r'(x) —r(x)).

zig-zig: Two promotions are performed. As before, r'(z) = r(2) and r(z) < r(y).
g-ztg Yy

After promotion, y is a child of x, so r'(y) < r/(z). So the amortized time is

Uigsig = 2+7(2) +7'(y) +7'(2) —r(2) —r(y) —r(2)

= 247(y) +7'(2) = r(z) —r(y) (since r'(z) = r(2))
< 24Py () — 2r(a) (since 7(z) < 7(»))
< 2+47(x)+r'(2) = 2r(z) (since ' (y) < r'(x)).

We claim that this last sum is at most 3(r'(z) — r(x)), that is, r(z) + r'(2) —
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2r'(x) < —2. As before, observe that by the definition of the rank we have

e s S (s() $()
rlo) =)+ 1) = o) = T S g TN — g (1 1)

It is easy to verify that x’s subtree before the operation and z’s subtree after
the operation are disjoint. (The cases of the form zy for z,y € {L, R} are
structurally similar to Fig. 4.2(c), and the case OO is just the reverse. The

OR case is illustrated in Fig. 4.4 below.) Thus, we have

Using the fact that the geometric mean does not exceed the arithmetic mean,

we have

IA IA
[\ [\]
=} <}
o2 o2
DO | =

as desired. Thus, the amortized time of zig-zig is at most 3(r'(z) — r(x)).
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4.3.2 Splaying Operation

As mentioned earlier, the splay quadtree is based on an op-

us = t
eration that modifies the tree so that a given internal node u7‘O
N0,
becomes the root. We start with a definition. Let T be a Us R
U5
splay quadtree, let u be a node of T', and let ¢ be T’s root. " :
4
0
Letting (u = uy,us,...,ur = t) denote the path from u to ¢, lf’
Uz
the path sequence seqp(u) is defined " — Ul :

seqr(u) = rel(ug,up_1) ... rel(us,us)rel(us, uy).

(Note that we list paths bottom-up but the sequence string is given top-down. For
example, in the figure to the right we have seqp(u) = OORLOLL.) Using the
terminology of regular expressions, this sequence can be thought of as a string in
the language {L, R,O}*. In the standard Sleator-Tarjan binary splay tree, basic
splaying steps are performed bottom-up along the entire access path. If we were
to ignore admissibility, we can define an analogous approach for splaying along an
entire path. The code is presented in Algorithm 4. It is easy to see that the resulting
sequence of basic splaying steps results in u becoming the new root of the tree (see

Fig. 4.3).

Algorithm 4 Simple-splaying(T’, u)
1. < u
2: while z # root(T") do

3: if p(x) = root(T") then zig(z)
4: else if str(z) € {LO, RO,OL} then zig-zag(x)
5: else zig-zig(x)
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Fig. 4.3: Applying simple splaying along a path with seq,(u) = OOOLOLL.
Of course, we wish to avoid inadmissible promotions. Recall that a promotion
is inadmissible whenever a right child is being promoted, and its left sibling has
an inner box. As we descend the tree, new inner boxes are generated only when
we visit an outer child. By the inner-left convention this box is then inherited by
all the nodes along its chain of left-child descendents. It follows that a promotion
is admissible at a node u provided that seq;(u) does not end with a substring of
the form OL*R. Observe that after we apply a basic splaying step at u, seqp(u) is
transformed by the removal one one or two symbols from its right end (depending
on whether the operation is a zig or zig-zig/zig-zag). This means that if seq,(u) has
no substring of this form, then after repeated applications of basic splaying steps,

it cannot end in a substring of this form. As a consequence we have the following

useful observation.

Lemma 4.3.2 Given a node u in a splay quadtree T, if seqp(u) does not contain a
substring of the form OL*R, then the promotions generated by Simple-splaying(T, w)

are all admissible.

Our splaying algorithm for the general case involves a three-phase approach.
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The first two phases involve basic splaying steps in order to transform the tree so
that seqp(u) satisfies the conditions of Lemma 4.3.2. In particular, the first phase
transforms the path sequence by compressing all subsequences consisting of two or
more Os or Ls into a subsequence consisting of at most one such character. The
second phase modifies the path such that the left sibling of any right child on the
path does not have an inner box. We will see that this can be done by eliminating all
OR subsequences. After this, the third phase simply invokes Simple-splaying(T’, u).

The complete procedure, which we call Splay(T, u) is presented below.

Phase 1: Any string over {O, L, R}* can be viewed as a sequence of substrings
of the form {O, L}* separated by Rs. Thus, seqr(u) € {{O, L}*R}*{O, L}*.
Letting x denote the current node, we repeatedly applying basic splaying steps
whenever str(z) € {LL,00,LO,OL}. Since each application eliminates the
last two symbols from the sequence, this eventually compresses each {O, L}*
subsequence to one of the form {O, L,e}. Thus, the output sequence consists

of a series of Rs optionally interspersed with a single O or L. That is, it has

the form {{O, L,e}R}*{O, L,e}.

This phase is shown in Algorithm 5. Lines 3-5 of the procedure perform the
basic splaying operations, and lines 6-8 jump to the next {O, L}* subsequence.
On exiting the inner while loop, we know that if neither x nor its parent is the
root, then one of these nodes is a right child. Lines 6-8 advance z by jumping
over this R link, thus moving x to the next {O, L}* subsequence, from which

the process is repeated. Because no right children are involved, all the basic
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splaying operations are admissible.

Algorithm 5 Splaying-Phase-1(T, u)

1: x4 u
2: while z # root(T") do

3:

while str(z) € {LL,00,LO,OL} do
if str(z) € {LL,OO0} then zig-zig(z)
else zig-zag(x)
if x =root(T') or p(z) = root(T) then return
else if rel(p(z),z) = R then x < p(x)
else = + g(z) > rel(g(x),p(z)) = R

Phase 2: In this phase, we transform seq;(u) such that the sibling node of any right

child on the path does not have an inner box. To motivate the processing of
this phase, recall that our objective is to eliminate substrings of the form
OL*R. After the first phase seqp(u) € {{O,L,e}R}*{O,L,e}. In such a
string, there is an R between each occurrence of an O and L, and so the only

way a substring of the form OL*R could arise is as OR.

Consider a node = where str(z) = OR (see Fig. 4.4(a)). Since x’s parent is
an outer child, z’s left sibling (labeled C' in Fig. 4.4(a)) has an inner box. Let
us consider the effect of performing zig-zig(x). Let y and z denote z’s parent
and grandparent, respectively. By the preconditions of this phase, seq,(u)
has no LO or OO substrings. Therefore, z is either the root or a right child.
In either case, its cell has no inner box. First, we perform promote(y) (see
Fig. 4.4(b)). After promote(y), x’s new left sibling, z, does not have an inner
box (see Fig. 4.4(b)). Therefore, we may now safely perform promote(x) (see
Fig. 4.4(c)). (Note that this operation is the essential reason for the lack of

symmetry that we noted when presenting the basic splaying steps.)
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) (b) (c)

Fig. 4.4: A zig-zig splaying when str(z) = OR.

Observe that 2’s old outer child (labeled G in Fig. 4.4(a)) becomes the left
child of x’s new outer child, y after the zig-zig operation. Thus, if the original
splaying node u was z’s outer child, the value of str(u) would be mapped from
ORO to OL. In general, an initial path subsequence consisting of consecutive
OR alternations will be mapped to the subsequence OL*. Therefore, after
removing all the OR substrings, the initial path sequence will be transformed
to a sequence of the form {LR, R}*{OL*, O, L,e}. This phase is shown in

Algorithm 6.

Algorithm 6 Splaying-Phase-2(T, u)
T4 u
while z # root(7) do
if str(z) = OR then zig-zig(z)
else z < p(x)

Phase 3: After Phase 2 we have seqp(u) € {LR, R}*{OL*,O, L,e}. In such a string
all the occurrences of O come after all the occurrences of R, which implies that
it cannot contain the substring OL*R. Therefore, by Lemma 4.3.2 we may
apply Simple-splaying(7’,u) to finish up the splaying process, thus moving u

to the root of the tree.

Next, let us analyze the amortized time of our splaying algorithm. Our analysis
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is a straightforward generalization of the analysis given by Sleator and Tarjan [99].
The added wrinkle is that we do not always apply a basic splaying operation at
each node along the access path, but rather we may skip over some nodes. Define
an admissible splaying sequence to be a sequence of non-root nodes (xi,...,xx),
such that if we apply basic splaying operations at each node of the sequence (in
order), each splaying operation is admissible, and for 1 < i < k — 1, after the first i
operations, node x; 1 is either equal to or an ancestor of z;. (Note that the same node
may appear many times in such a sequence.) It is easy to verify that Algorithms 4—
6 generate only admissible splaying sequences. (We have already demonstrated
admissibility when we presented the algorithms. The ancestor condition follows
because whenever a phase skips over a node, it always moves to an ancestor.) The

following lemma establishes the amortized time for each phase.

Lemma 4.3.3 Given a splay quadtree T' with root t and any assignment of weights
to its nodes, let (xy,...,x) be an admissible splaying sequence in T. If no zig
operation is performed, the total amortized time to perform basic splaying steps
along the nodes of this subsequence is at most 3(r(t) — r(x1)). If there is a zig
operation, the total amortized time is at most 3(r(t) — r(x1)) + 1. (All ranks are

defined for the tree before executing the operations.)

Proof: Recall that r(x;) and r'(x;) denote node x;’s rank before and after per-
forming a basic splaying step, respectively. By Lemma 4.3.1, the amortized time to
perform a zig operation at node z; is at most 7’(x;) — r(x;) + 1, and the amortized

time for a single zig-zag or zig-zig is at most 3(r'(x;) — r(x;)). Define x4 to be the

114



root of the tree after the last operation. By admissibility, for 1 < i < k, x;,1 is either
equal to or an ancestor of z;. Therefore, for 1 < i < k, we have r'(z;) < r(x;41).
Thus, ignoring the additional +1 term for a possible zig operation, which can be
applied at most once, the total amortized time for all basic splaying steps at nodes

x; (1 <i<k)is at most

D30 () —r(x)) < 3 (rlwen) —r(m) = 3(r(t) = r(r))
as desired. n

Observe that Phases 1 and 2 involve only zig-zig and zig-zag operations. By
combining the amortized times for each of the three phases, and observing that a
zig can be performed at most once at the end of Phase 3, we obtain the following.
(As in Lemma 4.3.3 ranks and sizes are defined for the tree before executing the

operations. )

Lemma 4.3.4 Given a splay quadtree T with root t and any assignment of weights

to its nodes, the amortized time to perform Splay(T, ) is at most 9(r(t)—r(u))+1 =
O(1 +log(s(t)/s(u))).

We can now present the main result of this section.

Lemma 4.3.5 Given a splay quadtree T containing n points and any internal node

u of T, the amortized time to perform Splay(T,u) is O(logn).

Proof: Consider the following weight assignment w(z) to the nodes = of the tree.
Each leaf node that contains a point is assigned a weight of 1/n, and the remaining
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nodes of the tree (internal nodes and leaves containing inner boxes) are assigned a
weight of zero. Recall that the size s(x) of any node x is defined to be the sum of the
weights of x and all its descendants, which is just the number of points contained
in the corresponding subtree. Under this weight assignment the root node ¢ has a
size of s(t) = 1. Since the subtree rooted at any internal node contains at least one
point, we have s(u) > 1/n. By Lemma 4.3.4, the amortized time of Splay (7}, q) is

O(log(s(t)/s(u))) = O(logn), as desired. O

In traditional splay trees keys are stored in the internal nodes, and splaying on
a node brings its key to the root. This is a central reason behind the self-adjusting
nature of splay trees. As we mentioned earlier, the operation Splay(7’,u) assumes
that u is an internal node of the tree, and it has the effect of bringing u to the root
of the tree. But the points of the tree are not stored in internal nodes, they are
stored in the leaves. This raises the question of whether there is a corresponding
notion of bringing a point’s leaf node near to the root of the tree. Ideally, we would
like to claim that splaying on the parent of a leaf node will bring the leaf node up so
it becomes a child of the tree’s root. This is not generally true, but our next lemma
shows that it is true if the leaf node contains a point (as opposed to containing an
inner box). Further, the relationship between this leaf and its parent is unchanged

after splaying.

Lemma 4.3.6 Let u be a leaf node of the splay quadtree that contains a point. After
applying Splay(T, p(u)), p(u) is mapped to the root of the tree, u remains a child of

p(u), and u’s relationship to p(u) is unchanged.
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Proof: We assert that whenever p(u) is promoted, u remains the same child of p(u).
To establish this, observe that since u contains a point, it cannot contain an inner
box. This implies that u cannot be an outer child, and it cannot be the left child of
an outer child. Consider the possible result of any promotion being applied to p(u)
(recall Fig. 4.1). In the case of a left-child or right-child promotion, both the left
and right children (labeled A and B in Fig. 4.1(a) and (b)) remain the same children
of their respective parents. In the case of an outer-child promotion, we need only
consider the right child. The right child (labeled D in Fig. 4.1(a), read from right
to left) remains the right child of its parent after promotion.

This establishes that u remains the same child of p(u) after a single promotion.
Because the effect of Splay (7', p(u)) is to bring p(u) to the root through a series of

promotions, the lemma follows by simple induction. O

Before concluding this section, we add a final observation. When we discuss
some of our applications below, it will be useful to invoke the splaying operation
on subtrees of T. We allow the first argument of Splay(7,u) to be an arbitrary
subtree T" of an existing splay tree. This is effectively equivalent to detaching T
(by unlinking it from its parent), applying Splay(7”,u) to the detached tree, and

finally reattaching the result back at its original position.

4.4 Insertion and Deletion

In this section we consider how to insert and delete points from the splay quadtree.

Let us first consider the insertion of a new point ¢. We begin by inserting the point
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into the tree following the incremental construction given in [80]. In particular, the
leaf node containing ¢ is located by a straightforward descent of the tree. Let C'
denote the outer box of this leaf’s cell, and let b denote its contents, which is either
a point or an inner box (see Fig. 4.5). We create a new internal node u to replace
this leaf as follows. Let E denote the smallest quadtree box that contains both ¢
and b. (Clearly, E is either contained within or is equal to C.) We create a leaf node
whose outer box is C' and whose inner box is £/ and make this u’s outer child. Next,
we then split F, which by the minimality of E, separates b from gq. We generate
two leaf nodes, one for each side of the split. We make the node containing b the
left child of v and the node containing ¢ the right child. (Since b may be an inner
box, this satisfies the inner-left convention.) After creating u, we invoke Splay (T, u),
which brings v to the root of the tree. By Lemma 4.3.6, ¢’s leaf node is now the

right child of the tree’s root.

c C c
q 71 F
Lb L. .1 )

Fig. 4.5: Point insertion.

To analyze the amortized time of this operation, observe that the time needed
to locate the leaf node containing ¢ is proportional to u’s depth in the tree. There-
fore, the time to do this is dominated by the time to perform Splay(7,u). The
time needed to create u and its children and link them into the tree is O(1). By

Theorem 4.3.5, we have the following.
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Theorem 4.4.1 Given a splay quadtree T with n points, the insertion of a point

into T can be performed in O(logn) amortized time.

Next, let us consider the deletion of an existing point ¢q. As with the deletion of
points from a standard binary search tree, deletion is more complex than insertion.
It is trivial to delete a point that has just been inserted, by simply undoing to the
insertion process. However, subsequent insertions result in changes to the tree’s
structure, and this complicates the removal process. Our approach will be to apply
splaying operations so that the tree is structured as if the point ¢ had been the last
point to be inserted.

We first determine the leaf node v containing the deleted point. Let 7T}, be the
subtree rooted at p(v). We then restructure 7}, by a method that will be described
below. After restructuring, we shall see that T}y will be transformed into a subtree
consisting of a single internal node whose left and outer children are leaf nodes and
whose right child is a leaf node containing ¢. This is exactly the structure we would
have if ¢ had been the last point to be inserted. We complete the deletion process
by effectively “undoing” the insertion process, as described above. In particular, we
will replace Ty with a single leaf node (see [80] for further details.) We then splay
the parent node of this replaced leaf node.

All that remains is to give the restructuring process, which is presented in
Algorithm 7. Note that v cannot be an outer child, for otherwise it would have an
inner box, rather than a point. If v is a left child, then neither it nor its right sibling

has an inner box, and there will be no violation of the inner-left convention if we
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swap v with its right child. Therefore, we may assume that v is a right child. Let

wy and wo denote v’s left and outer siblings.

Algorithm 7 Restructuring the tree as part of the deletion of a point in a leaf v.
if v = left(p(v)) then swap v and its left sibling

w) < wy < left(p(v))
if w] is not a leaf then
while outer(w}) is not a leaf do w) < outer(w})

Splay (T'(p(v), wh)
wh <— wy < outer(p(v))
if w), is not a leaf then
while left(w)) is not a leaf do w!, < left(wy)

Splay (T (p(v), wy)

First, consider the chain of outer children starting at w; until reaching a leaf
node (see Fig. 4.6(a)). Let [; denote this leaf and w] be its parent. In Step 5 of
Algorithm 7 we splay w} in the subtree T,,). The path sequence of w] in the subtree

T

p(v) 18 seqp (wy) = LO*. It is easy to verify that the splaying operation at w]

involves a sequence of outer-child promotions (resulting from zig-zig splaying steps)
followed by one last promotion of a left child. After the outer-child promotions, /; is
still an outer child of w/ (see Fig. 4.6(b)). The final left-child promotion comes about
either as a zig step (if the outer chain is of even length) or the second promotion of
a zig-zag step (if the outer chain is of odd length). It brings w) to the root of the
subtree T}y and makes [y a left child of p(v) (see Fig. 4.6(c)). After this, v’s left
sibling is a leaf node.

Symmetrically, consider the chain of left children starting at wsy until reaching
a leaf node (see Fig. 4.7(a)). Let [y denote this leaf and w}, be its parent. In Step 9 of

Algorithm 7 we splay ws in the subtree T},,). The path sequence of ws in the subtree
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Fig. 4.6: Hlustrating Steps 2-5 of Algorithm 7.

T is sequ(v)(wé) = OL*. By symmetry, the splaying operation at w/ involves a
sequence of left-child promotions followed by one last promotion of an outer child.
After the left-child promotions, I is still a left child of w) (see Fig. 4.7(b)). The
final outer-child promotion brings wj to the root of the subtree T}, and makes [,
an outer child of p(v) (see Fig. 4.7(c)). Thus, after splaying v’s outer sibling is also

a leaf node.

(b) (c) (d)

Fig. 4.7: Hlustrating Steps 6-9 of Algorithm 7.

On completion of the restructuring process, v is a right child with two leaves
as its left and outer siblings (see Fig. 4.7(c)). This is exactly the structure we desire
(recall Fig. 4.5). As mentioned above, we can now locally “undo” the insertion of ¢
and v (see Fig. 4.7(d)), and we splay the parent node of this replaced leaf node.
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To analyze the amortized time of this operation, observe that the time needed
to locate the leaf nodes [; and [, is dominated by the time to splay their respective
parents. The time needed to replace v locally O(1). Therefore, the overall deletion

time is dominated by the time to perform the splays, which by Theorem 4.3.5 is

O(logn).

Theorem 4.4.2 Given a splay quadtree T with n points, the deletion of a point

from T can be performed in O(logn) amortized time.

4.5 Search and Optimality Results

In this section, we present theorems related to the complexity of performing various
types of geometric searches on splay quadtrees. We provide generalizations to a
number of optimality results for the standard splay tree, including the Balance The-
orem, the Static Optimality Theorem, the Working Set theorem, and variants of the
Static Finger Theorem. As in [99], our approach is based on applying Lemma 4.3.4
under an appropriate assignment of weights to the nodes.

Before presenting our results, we begin with a technical lemma that will be
useful in the analyses of this section. Throughout this section, P denotes a set of n
points in R? (where d is a constant), T is a splay quadtree for P, I denotes the set of
internal nodes of T', L denotes the set of leaf nodes, and Z denotes the subdivision

induced by T"s cells.

Lemma 4.5.1 Let T be a splay quadtree, let t be its root, and consider any assign-
ment of weights 0 < w(v) < 1 to the nodes v of T. Given any sequence of valid

122



splay operations on T, the total decrease in the potential over this sequence is at

most |I|-r(t) — >, ().

Proof: Recall that the potential of the tree is the sum of the ranks of all its nodes.
Note that the splaying operation does not change the rank of any leaf node since
each splay acts only on internal nodes. Thus, only the ranks of internal nodes have
an effect on the decrease in the potential.

Consider the rank r(u), of an internal node u. Recall that r(u) is the logarithm
of the sum of weights of all descendants. In particular, if let D(u) be the set of the
leaves among u’s descendants, r(u) is at least log 3, < () w(v). Because the weights

lie in the interval [0, 1], we have

u) > log Z v) > log H Z log w(v

veD(u veD(u) veD(u)

The rank of any internal node is at most the rank r(¢) of the root ¢. Let Ar(u)
denote the change in rank of u over the entire sequences of splays. Therefore, the

decrease in potential of the tree, which is denoted by A®, is
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4.5.1 Basic Optimality Results

We first discuss theorems related to the search time for accessing points. These
theorems are essentially the same as those proved in [99] for 1-dimensional splay
trees. Given a query point ¢, an access query returns the leaf node of T" whose cell
contains ¢. (Thus, it can be thought of as a point location query for the subdivision
of space induced by 7T'.) An access query is processed by traversing the path from
the root to the leaf node containing ¢, and splaying the parent of this leaf.

The working set property states that once an item is accessed, accesses to the
same item in the near future are particularly efficient [99]. Through the applica-
tion of an appropriate weight assignment, similar to one used in [99], and applying

Lemma 4.5.1, we obtain the following.

Theorem 4.5.1 (Working Set Theorem) Consider a set P of n points in R%. Let
Q1, - qm be a sequence of access queries. For each access q; (1 < j < m), let t;
be the number of different cells accessed before q; since its previous access, or since
the beginning of the sequence if this is q;’s first access. The total time to answer m

queries is O(Y_7 log(t; + 1) +m +nlogn).

Proof: We apply the reassignment of weights as in Sleator and Tarjan [99]. In
particular, we assign the weights 1,1/4,1/9,...,1/|Z|* to each cells in order by first
access. The cell access earliest receives the largest weight. As each access occurs,
redefine the weights as follow. Suppose the weight of cell z; during access j is 1/k%.
After access j, assign weight 1 to z;, and for each cell z having a weight of 1/(k’)?
with k' < k, assign it a weight of 1/(k’ +1)%. Note that this reassignment permutes
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the weights 1,1/4,1/9,...,1/|Z|* among the cells, and makes the weight of cell z;
during access j to be 1/(t; + 1)2.

We assign each leaf cell’s weight to the corresponding leaf node and a weight of
zero to each internal node. Let u; be the parent internal node of the node containing
leaf cell z; (1 < j <m). The size s(u;) of a node u; is at least w(z;) = 1/(t; + 1)

The size s(t) of the root ¢ is

S w(z) = %<Z%:%<z (4.1)

By Lemma 4.3.4, the amortized time to access j is at most

9(log s(t) —logs(u;)) +1<9 (log2 — log ) + 1 = 18log(t; + 1) + 10.

The weight reassignment after an access increases the weight of z;, whose corre-
sponding leaf node is a child of the new root u;, and only decreases the weights of
other cells. The size of the root is unchanged, but the sizes of the other internal
nodes can decrease. Thus, the amortized time during reassignment is either zero or

negative. Therefore, the total amortized time is

NE

Z (logs(t) —logs(u;)) +1) =

Jj=1

(181log(t; + 1) + 10)
1

= O(Zlogt +1) +m>.

J=1

<.
Il

By Lemma 4.5.1, the decrease in potential is at most |1|-7(t) —>_,., w(l). By
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our assignment, »_,.; logw(l) =3 _, logw(z), and w(z) is at least 1/|Z|* by our
assignment. Since the size of the tree is linear in n, the net decrease in potential of
a tree over the m accesses is

1

AD < || -r(t)—Zlogw(l) < || -logl—Zlog E

leL zeZ

= O(|Z|log|Z]) = O(nlogn).

Thus, the actual total time is O(3_7", log(t; + 1) +m + nlogn). O

Two additional properties follow as consequences of the above theorem (see,

e.g., lacono [68]):

Theorem 4.5.2 (Balance Theorem) Consider a set P of n points in R? and a splay
quadtree T' for P. Let qq,...,qy, be a sequence of access queries. The total time to

answer these queries is O((m + n)logn +m).

Theorem 4.5.3 (Static Optimality Theorem) Given a subdivision Z, and the em-
pirical probability p, for each cell z € Z, the total time to answer m access queries

is O(m - entropy(Z)).

4.5.2 The Static Finger Results

In traditional splay trees, the static finger theorem states that the running times of
a series of accesses can be bounded by the sum of logarithms of the distances of each
accessed item to a given fixed key, called a finger. In the 1-dimensional context, the
notion of distance is based on the number of keys that lie between two items [99].
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Intuitively, this provides a measure of the degree of locality among a set of queries
with respect to a static key. Generalizing this to a geometric setting is complicated
by the issue of how to define an appropriate notion of distance based on betweenness.
In this section, we present a number of static finger theorems for different queries
in the splay quadtree.

In general, our notion of distance to a static finger is based on the number
of relevant objects (points or quadtree cells) that are closer to the finger than the
accessed object(s). Define the distance from a point p to a geometric object @),
denoted dist(p, @), to be the minimum distance from p to any point of @). Let
b(f,r) denote a ball of radius r centered at a point f. Our first static-finger result

involves access queries.

Theorem 4.5.4 Consider a set P of n points in RY, for some constant d. Let
Q1,- .-, qm be a sequence of access queries, where each q; (1 < j < m) is a point
of P. If f is any fized point in R?, the total time to access points qi,...,qm iS
O( Z;"Zl log N¢(q;) +m + nlog n), where Ny(q;) is the number of points of P that

are closer to f than q; is.

Proof: Since f is fixed throughout, let N(p) = Ny(p). We assign a weight of
w(p) = 1/N(p)? to each point p € P. (This weight is used only to analyze the query
time, and is not stored in the tree.) Each leaf node that has a point is assigned a
weight equal to the point’s weight, and otherwise its weight is zero. We assign each
internal node a weight of zero. Recall that the size s(z) of any node z is defined to

be the sum of the weights of x and its descendants, and corresponds to total weight
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of all points in the subtree rooted at x.

For the analysis of the amortized time, we first compute the size s(t) of the
root t. This is the sum of the weights of all points in P. If we let pq,...,p, be the
sequence of points in nondecreasing distance order from f, the sequence of N(p;) <
-+« < N(p,) = n is nondecreasing. Thus, by Equation (4.1) of Theorem 4.5.1, the

total weight of all points is

n

Zw(p) = Zw(pi) = Z N(;)Q < 2212 <2 (4.2)

peP i=1 i=1

Recall that accessing a point involves finding the leaf node containing this
point and splaying its parent to the root. Let w; be the parent node of the leaf
node containing ¢;. The size of node u; is at least w(g;) = 1/N(g;)?. Thus, the net

amortized time of all m accesses is

Zm: (9(log s(t) —log s(uy)) +1) < Em: (9 (log2 — log @) + 1)

j=1 j=1 /

= 0 (Zlog]\f(qj) —l—m) :

j=1

Now consider the decrease in potential over all m accesses. By Lemma 4.5.1, it
is at most [I|-7(t) =) _,c; logw(l). Since the size of the tree is linear in n, [I| = O(n).

By our assignment, >, logw(l) < > _pw(p), and since N(p) < [P[, w(p) is at
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least 1/|P|?. Thus, the net decrease in potential of a tree over all m accesses is

1

AD < |I|-r(t) —Zlogw(l) < | -10g2—Zlog VZE

leL peEP

= O(|I| +|P|log|P|) = O(nlogn). (4.3)

Recalling that the actual time is the sum of the amortized time and the potential

decrease, the total actual time is O(}_7", log N(g;) +m + nlogn). 0

This theorem extends the static finger theorem for the traditional splay trees
of [99] to a multidimensional setting. However, it is limited to the access of points
that are in the given set. In a geometric setting, it is useful to extend this to points
lying outside the set. The simplest generalization is to point location queries in the
quadtree subdivision, that is, determining the leaf cell that contains a given query
point. More generally, given a quadtree box @), a box query returns the smallest
outer box of any node of a splay quadtree that contains (). (Point location queries
arise as a special case corresponding to an infinitely small box.)

Our next result establishes a static finger theorem to box queries (and so
applies to point location queries as well). Given a query box @, starting from the
root of the tree, we descend to the child node that contains ) until no such child
exists. We then return the outer box of the current node, and if the current node is
an internal node, we splay it, otherwise, we splay its parent node.

The following theorem establishes the static finger theorem for box queries.

Theorem 4.5.5 Consider a set P of n points in R? and a splay quadtree T for P.

129



Let Q,...,Q., be a sequence of box queries. If f is any fized point in R?, the total
time to answer these queries is O(Z;nzl log N¢(Q;) +m + nlog n), where N¢(Q;)
is the number of leaf cells overlapping the ball b(f,dist(f,Q;)) in the subdivision

induced by T.

Proof: Since f is fixed, for each leaf cell z, let N(z) = Nf(z). We assign a weight

of w(z) = 1/N(z)? to each leaf cell z, where
N(z) = {7 : (' isaleaf cell) A (dist(f,2") < dist(f,2))},

that is, N(z) is the number of leaf cells overlapping a ball of radius dist(f, z) centered
at f. We assign each leaf cell’s weight to the weight of the corresponding leaf node,
and we assign a weight of zero to each internal node.

For the analysis of the amortized time, we first compute the size s(t) of the
root t. This is the sum of the weights of all the leaf cells. As in Equation (4.2)
of Theorem 4.5.4, the total weight of the leaf cells is > _, w(z) < 2. Let u; be
the internal node splayed by a query ;. The node u; has a leaf cell, denoted by
z; satisfying dist(f, z;) = dist(f, cell(u;)). The size s(u;) of u; is at least w(z;) =
1/N(z;)% Thus, s(u;) > w(z;) = 1/N(z;)>.

As in Equation (4.3) in Theorem 4.5.4, the net amortized time for the sequence

of all m queries is

O (Z(Q(log s(t) —log s(u;)) + 1) =0 (Z log N(z;) + m) :

J=1 Jj=1
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Note that @); is entirely included in cell(u;). This implies that

dist(f, z;) = dist(f,cell(u;)) < dist(f,Q;).

Thus, N(z;) < N(Q;), and the net amortized time is O(>_7_, log N(Q;) + m).
As in Equation (4.3) in Theorem 4.5.4, the decrease in potential over the m
queries is O(|I| + |Z]|log|Z|), which is O(nlogn) since the size of the tree is linear

in n. Thus, the actual total time is O(} 7" log N(Q;) +m +nlogn). O

Theorem 4.5.5 expresses the time for a series of box queries based on the
number of leaf cells. In some applications, the induced subdivision is a merely a
byproduct of a construction involving a set of P of points. In such case, it is more
natural to express the time in terms of points, not quadtree cells. Given a set of box
queries that are local to some given finger point f, we wish to express total access
time as the function of the number of points of P in an appropriate neighborhood
of f. As before, our analysis is based on quadtree leaf cells that are closer to f than
the query box. The problem is that such leaf cells may generally contain points
are very far from f, relative to the query box. To handle this, we allow a constant
factor expansion in the definition of local neighborhood. Consider a ball containing
the closest points of all given boxes from f (see Fig. 4.8(a)). Given a point set P,
a finger point f, any constant ¢, and the box queries Q1,...,Q,,, the working set

Whex With respect to P, f, ¢, and the box queries is defined:

Wbox(P7 f7 C, Ql? s 7Qm) = {p °p € b<f7 rbox(l + C)) N P7 Tbox = mjax dlSt(fa Q])}
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Fig. 4.8: (a) Working set, (b) the leaf cells overlapping a ball

Theorem 4.5.6 Let (Qq,...,Q,, be the sequence of box queries. For any point
f € R and any positive constant c, the total time to answer these queries is

O(mlog(|Whox| + (2)41) + nlogn).

Proof: By Theorem 4.5.5, the total time is O(3_7", log N(Q;) + m + nlogn).
We will show that N(Q;) (1 < j < m) is bounded by O(|Whe| + (£)471). Since
dist(f, Q;) < Thox, N(Q;) is at most the number of leaf cells overlapping a ball
b(f,Tbox). We distinguish between those overlapping leaf cells depending on whether
the leaf cell is entirely included in the extended ball by b(f, rpox(1 + ¢)), which we
denote by bT.

We first consider the number of leaf cells entirely contained within b among
leaf cells overlapping a ball b(f, m,0x). Each leaf has a point or an inner box. The
number of leaf cells with a point, entirely included in b* is at most the number of
points in b", that is |Wyox|. The number of leaf cells with an inner box, entirely
contained within % is also at most |Wyex| since each inner box has at least one
point that causes it to be created. Thus, the number of leaf cells entirely contained
within a ball b% is O(|Whex|).
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Next we consider the number of leaf cells that intersect the boundary of o™
among leaf cells overlapping a ball b(f, rpox). Since these leaf cells have a distance
from f less than ry,.x, and they intersect the boundary of a ball with radius r. (1+¢),
the size of each such cell is at least rpoxc/d (Fig. 4.8(b)). By the packing lemma
of [11], the number of leaf cells, each of size at least rncc/d, that intersect the
boundary of a ball with radius ryex(1 + ¢) is O((2)*1).

Therefore, the total number of leaf cells overlapping a ball b( f, o), that is,

N(Qj) is O([Whox| + (£)471) as desired. O

We will also analyze the time for answering approximate nearest neighbor and
range searching queries. First, we consider approximate nearest neighbor queries
using splay quadtrees. Let ¢ be the query point, and let € > 0 be the approximating
factor. We apply a variant of the algorithm of [13]. We use a priority queue U and
maintain the closest point p to ¢. Initially, we insert the root of the splay quadtree
into U, and set p to a point infinitely far away. Then we repeatedly carry out the
following process. First, we extract the node v with the highest priority from the
queue, that is, the node closest to the query point. If the distance from v’s cell to
q exceeds dist(q,p)/(1+¢), we stop and return p. Since no subsequent point in any
cell to be encountered can be closer to ¢ than dist(q, p)/(1+¢), p is an e-approximate
nearest neighbor. Otherwise, we descend v’s subtree to visit the leaf node closest to
the query point. As we descend the path to this leaf, for each node u that is visited,
we compute the distance to the cell associated with u’s siblings and then insert these

siblings into U. If the visited leaf node contains a point, and the distance from ¢ to
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this point is closer than p, we update p to this point. Finally, we splay the parent
of this leaf node.
Consider any sequence of m approximate nearest neighbor queries, q1, ..., ¢n.

The working set for these queries can be defined to be

Wann(Pa faCaQIa-~7Qm)

= {p:peb(f,ram(l+ ) NP, rom = m?X(dist(f, q;) + dist(g;, NN(g;))}.

The following theorem shows that the time to answer these sequence of queries

can be related to the size of this working set.

Theorem 4.5.7 Let q¢,...,q, be a sequence of e-approrimate nearest neighbor

queries. For any point f € R and any positive constant c, the total time to answer

qiy - Gm 18 O(m(%)dlog (|Wann| + (%)d_l) + nlogn).

Proof: As in the analysis of Theorem 4.5.5, we assign a weight of w(z) = 1/N(z)?
to each leaf cell z, where N(z) is the number of leaf cells overlapping a ball of radius
dist(f, z) centered at f, and we assign a weight of zero to each internal node.
Consider an approximate nearest neighbor query, ¢;. Let Q1,..., Qs be the
sequence of outer boxes of leafs visited by the algorithm in the order in which they
are visited. The time to answer ¢; is bounded to the time to answer box queries
Q1,...,Q. By the analysis of Theorem 4.5.6, the amortized time for the jth query
is O(klog(|Whox| + (%)d_l)), where Whox = {p 1 p € b(f, Tbox(1 +¢)) N P, 1pox =

max dist(f, @Q;)}. To complete the proof, we show that Wyox = Wann.
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By the nature of priority search, the distances from the query point ¢; to
Q1, ..., Q increases monotonically. Thus, 1, = max dist(f,Q;) = dist(f, Qx)-
K]
The distance from ¢; to @)y, is at most

dist(g;, ANN(g;))
(1+¢)

< dist(g;, NN(gj)) = Tam-

If not, the algorithm terminates, and (), would not be visited. Thus, r,ox = Tann,
that is, Wyox = Wann-

The number of leaf cells k visited by the algorithm is O((£)?) by the pack-
ing lemma of [13]. Thus, the amortized time for a query g¢; is O(klog(|Wann| +
(£)471) = O((2)  log(|Wann| + (2)*1)), and the net amortized time of all m queries
is O(m(L)? 1og([Waun] + (2)1°1))

By the same analysis as Theorem 4.5.5, the decrease in potential over the m

queries is O(nlogn). Thus, the total query time is O(m(2)? log(|Wann| + (2)471) +

nlogn). 0

Next, let us consider approximate range searching using the splay quadtree.
For a given query range R and € > 0, define an inner range R~ and an outer range
R* to be the erosion and the dilation, respectively, of R by a distance of at least
e - diam(R). The approximate range searching returns the sum of weights of all

points in a subset P’ such that

PNR C P C PNnR.
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As with the quadtreap [80], the tree maintains at each node v the total weight of
the points in the associated subtree. Given a node v, let P, denote the points of P
lying within v’s subtree, and let wgt(v) denote their total weight.

Initially, we insert the root of the splay quadtree into the queue, U. Then we
repeatedly carry out the following procedure. First, we extract the node v from the
queue. Then if the cell associated with this node intersects the query range R, we
descend this subtree until we encounter a node that does not intersect R or a leaf
node. Such a node is called a terminal node. When we find a terminal node, we
first splay its parent, and then determine whether its weight is to be included in the
output. Recall that each leaf cell contains a point or an inner box. If the terminal
node is a leaf and has a point, we check whether the point is contained in R. If
so, we return its weight. Otherwise, the node does not intersect R, that is, its cell
is either entirely inside R™ or outside R~. If the cell is inside R*, we return the
sum of weights of all points in its subtree. As we descend the path to the terminal
node, for each node v that is visited, we insert its sibling nodes into the queue. The
procedure is shown in Algorithm 8.

Consider a sequence of m approximate range searching queries, Ry,..., R,,.
In order to define a working set, consider a ball containing all the query ranges. Let

rar be the radius of the smallest ball. The working set, W,,, for approximate range
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Algorithm 8 Range Query

Input: A range R, given with an inner range R~ and an outer range R", and a
node v in the splay quadtree
Output: The total weight of points in the approximate range

1: function Query(R,v)

2 U < {root(T)}

3 while U # () do

4 v < dequeue(U)

5: while v is an internal node and cell(v) intersects R do
6 v < left(v)

7 enqueue (U, right(v))

8 enqueue(U, outer(v))

9 splay(p(v))

10: if v is a leaf and has a point then

11: if point(v) € RT then return wgt(point(v))
12: else if cell(v) C R* then return wgt(v)

queries can be defined to be

Lm@ng(}jafaca]%la---a]%nJ

= {p:peblf,rmg(l+c) NP, 1y = max max dist(f,q)}-

The following theorem shows that the time to answer all the queries of the sequence

can be related to the size of this working set.

Theorem 4.5.8 Let Ry, ..., R, be the sequence of query ranges for e-approximate
range searching. For any point f in R? and any positive constant c, the total time

d—1)

to answer Ry, ..., R, is O(m(%)d_1 log(|Wing| + (%) + nlog n)

Proof: As in previous analyses, we will assign a weight to each node of the splaying
quadtree. (This is not to be confused with the weight is used in answering the
queries.) As in the analysis of Theorem 4.5.5, we assign a weight of w(z) = 1/N(z)?
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to each leaf cell z, where N (z) is the number of leaf cells overlapping a ball of radius
dist(f, z) centered at f, and we assign a weight of zero to each internal node.

The amortized time for R; is bounded by the time to splay all the parents
of all its terminal nodes. Let wuq,...,u; be the sequence of parents of the terminal
nodes, and let @); be the outer box of u; (1 < i < k). The time to answer R; is
bounded to the time to answer box queries ()1, ..., Q. By the analysis of Theorem
4.5.6, the amortized time for R; is O(klog(|Whe| + (1)*1)), where Wiox = {p :
P E b(firbox(1 4+ ¢) NP, Thox = max dist(f, @Q;)}. Here, mpox = max dist(f, Q) <
gréegj dist(f, q) < Tng, since clearly the parent node u; of any terminal node intersects
the query range. Thus, Wiy = Wipg.

The number of terminal nodes k visited by the algorithm is O((2)4"!) by the

packing lemma of [11]. Thus, the amortized time for the jth query is

0 <k log (|ng| n (%)d» _0 (@d log (|ng| n (%)d» |

and the net amortized time of all m queries is O(m(1)* " log(|Wing| + (2)41)). The
decrease in potential over the m queries is O(nlogn) by the same analysis as in
Theorem 4.5.5. Thus, the actual total time is O(m(2)* * log(|Wimg| + (£)471) +

nlogn). 0
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Chapter 5

Output-Sensitive Well-Separated Pair

Decompositions for Dynamic Point Sets!

5.1 Introduction

The well-separated pair decomposition (WSPD) is a fundamental structure in com-
putational geometry. Given a set P of n points in d-dimensional space and a positive
separation parameter s, an s-WSPD is a concise representation of all the O(n?) pairs
of P requiring only O(s%n) storage. Worst-case arguments suggest that the addition
or deletion of a single point could result in the generation (or removal) up to Q(s%)
pairs, which can be unacceptably high in many applications. The actual number of
well separated pairs can be significantly smaller in practice, particularly when the
points are well clustered. This suggests the importance of being able to respond to
insertions and deletions in a manner that is output sensitive, that is, whose running
time depends on the actual number of pairs that have been added or removed.

In this chapter, we present output-sensitive algorithms for maintaining the
WSPD for a dynamic point set under insertion and deletion. The following theorem
presents our main result. We assume that point coordinates are represented as

fixed-point binary numbers that support bit-wise operations (such as boolean-and,

'The material appearing in the chapter is based on the paper “Output-Sensitive Well-Separated
Pair Decompositions for Dynamic Point Sets” [88].
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boolean-or, and shift) in O(1) time. Our deletion operation employs a form of
“lazy updating,” where some housekeeping operations are deferred until later, which

results in amortized running time bounds.

Theorem 5.1.1 Given a dynamic set P C RY and a parameter s > 1, it is pos-
sible to maintain an s-WSPD for P in the Lo, metric that supports the following

operations and running times:
e Insert point: O(logn 4+ m) (worst case)
e Delete point: O(logn +m) (amortized)

where m denotes the number of newly created (resp., deleted) pairs in the case of

insertion (resp., deletion). (The hidden constants depend on d, but are independent

of s.)

The remainder of the chapter is organized as follows. In Section 5.2, we present
basic definitions and introduce our stronger notion of separation. In Section 5.3 we
present static algorithms and utilities for constructing the WSPD. These are used

by our update algorithms, which are given in Section 5.4.

5.2  Preliminaries

We begin by recalling some basic concepts related to quadtrees, upon which our
constructions are based. Let U? = [0,1)? denote the half-open d-dimensional unit
hypercube. We define a quadtree box by the following recursive process. U? is a
quadtree box, and given any quadtree box b, each of the 2¢ regions that result by
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subdividing b into congruent (half-open) hypercubes is also a quadtree box. These
2¢ boxes are called the children of b. The subdivision process naturally defines a
24-ary partition tree whose nodes are correspond to quadtree boxes. Henceforth, we
use the term “box” to mean “quadtree box.”

Consider an n-element point set P C U? Such a set naturally induces a
quadtree subdivision, by repeatedly subdividing each box that contains two or more
points of P. Because the size of the resulting subdivision may be much larger than
n, it is common to compress trivial paths, in which each internal node has only one
nonempty child. A compressed quadtree is obtained by (i) removing all leaf boxes
that contain no point of P and then (ii) replacing any maximal trivial path with
a single edge that goes to the first descendent with two or more children. In any
fixed dimension, it is well known that such a quadtree is of size O(n) and can be
constructed in time O(nlogn) (see, e.g. [30,63]). Given a node u in a compressed
quadtree, let par(u) denote its parent.

Each node of a compressed quadtree is naturally associated with a box, which
is often called its cell. Following [63], we define the level of a box u, denoted lev(u),
to be the base-2 logarithm of its side length, and we define the level of a node to
be the level of its associated box. (Throughout, we use lg to denote the base-2
logarithm. Because we start with U¢, a node’s level is the negation of its depth in a
standard quadtree.) It is convenient to think of a point as a degenerate box of side
length zero, that is, a box at level —oco. (We will often blur the distinction between
a node and its associated box by using the same name for both.) Given an integer
k > 0 and a box u such that lev(u) < —k, let u'™ denote the (unique) box at level
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lev(u) + k that contains u.

Given a compressed quadtree for P and a box b, define node(b) to be node of
the highest level in the tree whose associated box is contained within (or is equal
to) b. If no such node exists (which happens if b contains no point of P) then
we assume that node(b) returns a special null value. By storing the quadtree in a
balanced structure, e.g., as a topology tree [50] or a link-cut tree [98], node(b) can
be computed in O(logn) time. This is called a boz query.

As mentioned in the introduction, we compute the WSPD assuming the L.,
metric. Given two boxes u and v, define dist(u,v) to be the minimum L, distance
between any two points, one from u and one from v. Since the radius of the smallest
L., ball enclosing a box is half the box’s side length, it follows that v and v are

s-well separated if dist(u,v) > s-2°/2, where ¢ = max(lev(u),lev(v)).

5.2.1 Strong Separation

For the sake of simplicity and efficiency, we will need a stronger notion of separation
in our algorithms. (We shall see in Lemma 5.2.3 below that this alters the size of the
WSPD by only a constant factor.) We start by introducing a quadtree-based notion
of separation. We say that two boxes v and v are homogeneously s-well separated
if there exist two (quadtree) boxes u' and v" of equal level such that v C u' and
v C v/, and v/ and v" are s-well separated. If two boxes u and v are homogeneously
s-well separated, then clearly they are s-well separated. (As shown in Fig. 5.1(a),

the converse does not hold.)
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2lev(v) ‘Tu 3 2y and v are
w and v are not ~27» homogeneously 1-w.s.
homogeneously s-w.s. R L t=msh(u,v)
<~ (forany s >0

Fig. 5.1: Homogeneous separation.

To minimize the size of the WSPD, it is important that the well-separated
pairs are maximal in some sense. If v and v are homogeneously s-well separated,
there exists a unique maximum level ¢ at which ' and v’ reside. We call this the
mazimum separation level and denote it by msls(u, v) (see Fig. 5.1(b)).

Assuming a model of computation supporting bit manipulations, mslg(u,v)
can be computed in constant time, for any boxes u and v. (For our algorithms, we

will only need msl (u,v).)

Lemma 5.2.1 Assume we have a model of computation that supports in O(1) time
the bitwise operations boolean-or (“NV”), complement (“T”), and exclusive-or (“®”),
left shift (“<”), and integer base-2 logarithm (that is, the index of the most signif-
icant bit) on point coordinates. Given two boxes u and v that are homogeneously

1-well separated, it is possible to compute msly(u,v) in O(1) time.

Proof: Consider a homogeneous 1-well separated pair {u,v}. To motivate our
construction, let £ = msl; (u,v), and let v’ and v be the boxes of level ¢ containing
u and v, respectively. Let p’ = (p!,...,p})) and ¢’ = (qi,...,q,) denote the lower
left corners of ' and v’, respectively. Since u' and v are 1-well separated, we have

dist(u',v") > 2/2, and by basic properties of boxes and the definition of the L,
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— g—é > 1. Note that for

distance, we have max; |p; — ¢}| > 2. Therefore, max; |5

any point p in o, Vi, [%J = éi Thus, letting p and ¢ be the lower left corners of

u and v, respectively, we have Vi, Lg—ej = g—é, and Lg—gJ — & Therefore, to compute

¢ = msl; (u,v) it suffices to compute the largest ¢ < 0 such that

max
1<i<d

EARE o)

Algorithm 9 Find msl (u, v)
Input: Two boxes u and v that are homogeneously 1-well separated
Output: The maximum separation level of u and v, that is, msly (u, v)

1: function findMaxLevel(u,v)

2 p : the lower left corner of u

3 q : the lower left corner of v

4 m ¢ arg max; |p; — gl

5: T < max(Pm, Gm) Y < Min(pm, Gm)
6:  ji < [lglzdy)]

7 r—r<Lpn yY—y<n

8 Jjo < [lg(z V)]

9 return j; + jo

The code implementing this is presented in Algorithm 9. Let p and ¢ denote
the lower left corners of u and v, respectively. The procedure first computes the
largest absolute coordinate m of p — ¢ (1 < m < d). We let  and y be the
maximum and minimum of p,, and ¢,,, respectively. Recalling that the points lie
within the half-open unit hypercube [0,1)4, LQ%J yields the first j bits in z’s bit
representation. We compare the leading j bits of z and y for increasing values of
J. Let j; be the first position where x and y have different bit values (see Fig. 5.2).

Since x is greater than y, the jith bits of # and y are 1 and 0, respectively. Line 6
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finds this position j; by computing the index of the most significant bit of x & y.
We then shift these matching bits off the left end of the bit string. (We assume that

bits shifted to the left of the decimal point are discarded.)

J1 J2

/\/\
T _ 1 0 1---
Y 0 1 0

! 1
oror

Fig. 5.2: Find the maximum separation level of homogeneous 1-well separated pair

Next, we find the first position, j, following this where x’s bit is not 0 and
y’s bit is not 1 (see Fig. 5.2). This is done by computing the index of the most
significant bit of x VV 3 (Line 8). The result corresponds to the first position where

their difference is greater than 1. It follows that j; + j5 is the desired level. O

In order to define our stronger notion of separation, let s > 1 denote the

WSPD separation factor, which will be fixed henceforth, and define

v = mas ([1s3] ).

We say that two boxes u and v are strongly s-well separated if u'” and v are
homogeneously 1-well separated. As in homogeneous well separation, there exists
a unique maximum separation level ¢ at which two such boxes are strongly s-well
separated, which we denote by msl?(u,v). Clearly, msl’(u,v) = msl; (u!?,v17) — 0.

Our next lemma shows that this is indeed a stronger notion of separation.

Lemma 5.2.2 [If two boxes u and v are strongly s-well separated, then they are
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s-well separated.

Proof: If u and v are strongly s-well separated, then by definition, ' and v'” are
homogeneously 1-well separated. Note that if any two boxes of equal level are not
adjacent, they are separated from each other by an (L.,) distance of at least their

side length. Letting ¢ = max(lev(u),lev(v)), we have

diSt(UTU,UTO-) > 2max(lev(u¢”),lev(v¢”)) _ 2max(lev(u)+o‘,lev(v)+a)

= 20.96 > Z.9f

[NV

Note that since u' and v' contain u and v, respectively, we have dist(u,v) >
dist (uT", UT"). Therefore, dist(u,v) > s-2°/2, which implies that u and v are s-well

separated. O

The notion of maximality can be generalized to this context. Consider two
nodes u and v that are strongly s-well separated. Let «/ = node(u'”) and v' =
node(v'”). By definition, v’ and v’ are homogeneously 1-well separated. We say
that the pair (u,v) is mazimal if par(u’) and par(v’) are not homogeneously 1-well
separated. Our algorithms generate only maximally well-separated pairs.

If we modify the definition of s-WSPD by replacing the standard notion of
separatedness with this stronger notion, we obtain a structure called a strong s-well
separated pair decomposition (strong s-WSPD). The following lemma shows that by
using this stronger notion of separation, we sacrifice only a constant factor in the

size of the WSPD, in comparison to any standard s-WSPD and in any Minkowski
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metric.

Lemma 5.2.3 Given a points set P in R? and s > 1, let ¥ be a strong s-WSPD
(in the Lo, metric) consisting of maximal pairs. Let V' be any (standard) s-WSPD
in the L, metric for any p > 1. Then, there exists a constant ¢ (depending on d but

independent of s and p) such that V| < c- |¥V'].

Proof: Because U consists only of maximal pairs, it suffices to show that each
well-separated pair {A;, B;} € V' can be covered by at most a constant number of
strong s-well-separated pairs. By definition, A; and B; can each be enclosed within
an L, ball of radius r such that the closest L, distance between these balls is at
least sr. In RY, if the L, distance between two points is z, then their L., distance
is at least z/d"/? > z/d (since p > 1). Therefore, the closest L., distance between
these balls is at least sr/d.

Let ¢ be the largest integer (possibly negative) such that 2¢ < sr/(3d). Con-
sider the grid of quadtree boxes of side length 2¢. The L., diameter of any box of the
grid is 2°. Let v/ and v' be any boxes of this grid that have a nonempty intersection
with A; and B;, respectively. By the triangle inequality, the closest L., distance

between v’ and v’ is at least

%—diam(u’)—diam(v’) = —2.20 > 92— = 2 > 2

It follows that u’ and v’ are homogeneously 1-well separated.
Let u and v be any quadtree boxes at level ¢ — o that have a nonempty
intersection with A; and B;, respectively. Clearly, ' and v' intersect A; and B;,
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respectively, and so by the above analysis, they are homogeneously 1-well separated.

Therefore u and v are strongly s-well separated. The side length of these boxes is

14 4
goo 5 2 _ 2

2 gRE T

By definition of £, we have 2¢ > sr/(6d), and therefore u and v are both of side length

at least r/(6d). It follows from a standard packing argument, that the number of

such boxes that can have a nonempty intersection with an L, ball of radius r is a

constant . (In general, v depends on the dimension but not on s or p. A more
careful analysis reveals that v < [1 4 6d]" [12].)

Since at most v quadtree boxes at level £ — ¢ suffice to cover each of A; and

B;, it follows that the number of strong s-well-separated pairs that cover the pairs

A; x B; is at most 7%, In summary, each (standard) s-well-separated pair of ¥’ can

be covered by at most 42 = O(1) strong s-well-separated pairs of ¥, which completes

the proof. O

Throughout the remainder of the paper, we use the term “s-well separated”

to mean strongly s-well separated and we use s-WSPD to mean strong s-WSPD.

5.3  Construction and Utilities

In this section, we present the basic construction algorithm for computing an s-
WSPD for any s > 1. Our construction algorithm employs the standard recursive

process for computing WSPDs (see Algorithm 10). Given a pair of nodes u and v,
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it first dispenses with the trivial cases (either node is empty or the two nodes are
the same leaf). If the nodes are homogeneously 1-well separated, then it computes
¢ = msl; (u,v) and invokes a utility function, called findDescendants, that computes
all the maximal descendants of u and v at level £ — o, where ¢ is the value used in
the definition of strong separation (Section 5.2.1). It returns the cross product of
the resulting nodes. Otherwise (if u and v are not homogeneously well-separated), it
subdivides the node that is at the higher level of the tree and applies the procedure
recursively to the children of this node.

Each well-separated pair is represented in the form ({z,y},¢), where x and y
are the nodes defining the well-separated pair, and ¢ = msl’(x,y) is their maximum
separation level. The initial call is indWSPD(r,r, s), where r is the root of the

compressed quadtree, and s is the separation factor.

Algorithm 10 Construction of WSPD
Input: Two nodes v and v and a separation parameter s > 1
Output: All s-well separated pairs between the subtrees of v and v

1: function findWSPD(u,v,s)

2 if v =v and lev(u) = —oo then return ()

3 if v and v are homogeneously 1-well separated then

4 ¢ < msl; (u,v) > See findMaxLevel in Algorithm 9
5: aemax([lgﬂ ,O)

6 X « findDescendants(u, £)

7 Y < findDescendants(v, ¢)

8 return UxeX,er({x7 y},0)

9 if lev(u) > lev(v) then return (J, findWSPD(u;, v, s)

10: else return J, indWSPD(u, v;, s)

11: function findDescendants(u,¢)
12: if lev(u) < ¢ then return {u}

13: return | J, findDescendants(u;, ¢)
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We test whether two nodes u and v are homogeneously 1-well separated as
follows. Let ¢ = max(lev(u),lev(v)). Let v’ and v denote the respective containing
boxes at this level. Then u and v are 1-well separated if and only if ' and v’ are not
adjacent. This can be determined in O(1) time, using the same bit manipulations
given in Lemma 5.2.1. Recall that each leaf is associated with a point, which we
treat as a box at level —oo. Therefore, two distinct leaves are always homogeneously
1-well separated.

We observe the following properties of the well-separated pairs generated by
Algorithm 10. Recall that par(u) denotes the parent of node u in the compressed

quadtree.

Lemma 5.3.1 Consider any nodes r1 and ro of the compressed quaditree (possi-
bly ri = ry). Consider any pair {x,y} generated by the call findWSPD(rq,1s,S5).
Let {u,v} be the pair of homogeneously 1-well separated nodes that resulted in the

generation of the pair (x,y) at Line 8 of Algorithm 10. Then

(1) lev(u) < msly(u,v), and if u # r1, then msl; (u,v) < lev(par(u))

(1) lev(z) < msl](x,y), and if x # 1, then msl} (z,y) < lev(par(x))

(Symmetrical bounds hold for v and y.)

Proof: First, consider (7). By the definition of homogeneous well separation, there
exist u' and v on level msl;(u,v) such that u C u' and v C v/, and v and v are
homogeneously 1-well separated. Therefore, lev(u) is not greater than msl;(u,v),

which establishes the first inequality. To prove the second inequality, suppose to

150



the contrary that u # r; and msly(u,v) > lev(par(u)). This would imply that
par(u) C v, and so par(u) and v would be homogeneously 1-well separated. By the
nature of indWSPD, par(u) would never have been recursively subdivided, which
yields the desired contradiction.

To prove (ii) observe that, by the definition of findDescendants, = and y are
maximal nodes on a level not more than msl}(z,y). Therefore, lev(z) < msli(x,y) <

lev(par(z)). The analogous bounds for v and y hold by symmetry. O
The following lemma establishes the correctness of the algorithm.

Lemma 5.3.2 Consider a point set P, a separation factor s > 1, and a compressed
quadtree T' storing P. Letting r denote T'’s root, the call findWSPD(r,r, s) returns
an s-WSPD for P. In particular, for any pair {x,y} returned, resulting x and y are

mazimally s-well separated.

Proof: Consider any pair {x,y} generated by the algorithm, and let {u,v} be the
pair of homogeneously 1-well separated nodes that resulted in the generation of this
pair on Line 8. We have msl}(x,y) = msl; (u,v) — 0.

We first show that two boxes, 2% and y'” are homogeneously 1-well separated,
and in particular, msl; (27, y') = msl;(u,v). Let u' and v’ be the boxes at level
msly (u,v) containing v and v, respectively. Note that lev(x) < msli(z,y) and

lev(y) < msl(z,y), and x C u C v and y C v C v'. Therefore

lev(z!) = lev(z)+0 < msli(z,y) +0 = msh(u,v) = lev(u)
lev(y™) = lev(y)+o < msli(z,y)+o = msl(u,v) = lev(v)).
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Clearly, 2™ and y'® are contained within «/ and v’, respectively. Since 21 C /,
y'? C ¢/, and v and v’ are homogeneously 1-well separated, it follows that 2™ and
y'? are homogeneously 1-well separated. The maximum separation level of 2™ and
y1 is msly (u, v).

Next, we show that {z,y} is maximal. By Lemma 5.3.1(ii), par(z)' is on a
level higher than msl’(z, y)4+0 = msl; (u, v), and therefore it is not homogeneously 1-
well separated with any node containing y. The same applies to par(y)!. Therefore

the pair {z,y} is maximal, which completes the proof. O

The following lemma is implied by Lemmas 5.2.3 and 5.3.2.

Lemma 5.3.3 Given a separation factor s > 1, the number of pairs generated by

findWSPD is O(sn).

The following lemma shows that, after constructing the compressed quadtree,

the algorithm’s running time is linear in the number of pairs generated.

Lemma 5.3.4 Given an n-element point set P in R? stored in a compressed quadtree

and s > 1, findWSPD computes an s-WSPD in time linear in the number of pairs.

Proof: Consider the computation tree whose nodes correspond the calls find WSPD.
We say that a call is terminal if it makes no recursive calls to indWSPD, and we
say that a terminal call is effective if it returns on Line 8. We will show that the
total number of nodes in the resulting computation tree can be bounded by the
number of effective terminal calls. To do this, we charge each noneffective terminal
to the nonterminal call that generated it, that is, its parent in the computation
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tree. Recalling that each internal node in the compressed quadtree has at least two
children, it follows that each nonterminal call generates at least two calls, neither
of which is a noneffective terminal. In other words, if we prune all noneffective
terminals from the computation tree, each internal node has at least two children.
Thus, the total number of nodes in the computation tree is linear in the number of
effective terminals.

Now consider the running time of effective terminal call. For a 1-well separated
pair, {u,v} on Line 3, it finds all descendants of u and v of level less than or equal
to msl (u, v) — o, where o = max([lg 2] ,0), by descending the tree (using recursive
calls to findDescendants). It generates s-well separated pairs consisting of the cross
product of these two sets of descendants. Clearly, the total running time of all the
recursive calls to findDescendants is bounded by the total number of pairs it outputs.
Thus, each effective terminal call runs in time linear in the resulting number of s-
well-separated pairs. Therefore, the total running time to construct the WSPD is

proportional to the final output size. O

5.4 Updates

In this section, we present the algorithms for inserting and deleting points into the
WSPD. We first consider insertion in Section 5.4.1, deletion in Section 5.4.2, and

we discuss maintenance of an internal data structure in Section 5.4.3.
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5.4.1 Insertion

Consider the insertion of a new point p into the compressed quadtree. We first locate
the node whose box contains the newly inserted point. By storing the compressed
quadtree using an auxiliary structure, such as a topology tree [50], this can be done
in O(logn) time. As observed by Fischer and Har-Peled [48], there are two cases

depending on the location where the new point is inserted.

Case 1: (no new internal node) The new point p is stored in a leaf, denoted by =z,

that is hung directly beneath its parent (see Fig. 5.3(a)).

Case 2: (between the cells of the compressed node w and its parent) We create new
leaf, z containing p, and a new node z, which has w and x among its children

(see Fig. 5.3(b)).

z z z z
wy w, [P w [P p Py,
w
= x =N = = z
) & & &
wWa wsy w2 w
z insert p . z \C>w insert p z
____________________________ >
p p
w1 Wa w1 W2 T w x

(a) (b)
Fig. 5.3: Inserting a point into the compressed quadtree.

After the insertion of p, we need to update the well-separated pairs. Our
objective is that updated pairs will be the same as would result by running the
static construction algorithm findWSPD on the updated point set. The insertion
procedure is given in Algorithm 11.

First, let us consider Case 2 (Fig. 5.3(b)) where the insertion resulted in the

creation of node z. Note that z’s cell contains the cell of z’s sibling node w, which
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existed prior to the insertion. Recall that each well-separated pair is represented
by a triple ({z,y},¢), where = and y are the two nodes defining the pair, and ¢
is the maximum separation level. Consider any well-separated pair ({w, v}, ) that
existed prior to the insertion, where ¢ > lev(z). If findWSPD were to be run on the
quadtree containing p, then because z will be encountered before w, and so it follows
that (after insertion) this pair involves z rather than w. We replace each such pair
with the new pair ({z,v},¢). Note that since ¢ > lev(z), and ¢ is not affected by
the insertion, ¢ is not changed.

Next, consider Case 1 (Fig. 5.3(a)), where = denotes the leaf containing the
new point. Consider any s-well separated pair {x, y} generated by findWSPD on the
updated point set. Since z and y are not strongly s-well separated (since otherwise
the algorithm would have generated the pair {z,y}), we have 2™ and y' are not
homogeneously 1-well separated. Let B denote the set of boxes at level lev(zT")
that are not homogeneously 1-well separated with respect to 2. Clearly, y' is
contained within some box of B.

To compute these new pairs, for each b € B, we find the corresponding node
in the compressed quadtree by invoking node(b). Recall that this returns the largest
node in the compressed tree that is contained within b. (If the result is null, we
simply ignore the result.) We determine the well-separated pairs involving the new
leaf as follows. For each b € B, we invoke findWSPD(x, node(b),s). We take the
union of all the resulting pairs and add them to the WSPD.

The following lemma establishes the correctness this procedure. (We will

present the running time later.)
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Algorithm 11 Insertion of a point p for output sensitive WSPD
Input: A point, p and a separation factor, s > 1
Output: All s-well separated pairs related to new leaf including p

1: function insert(p, s)

2 Insert p

3 x : a new leaf including p

4 z : parent of x

5: if z is new then

6 w : x’s sibling

7 vV s-WSPs ({w, v}, ) with £ > lev(z)), change ({w,v},?) to ({z,v},¥).
8 o+ max([lg ] ,0)

9: B : set of boxes adjacent to 2" including 27

10: return | J,_, findWSPD(z, node(b), s)

Lemma 5.4.1 Function insert of Algorithm 11 correctly updates the s-WSPD.

Proof: Let T denote the compressed quadtree before p’s insertion, and let 77 denote
the compressed quadtree after p’s insertion. Let WW be the set of well-separated pairs
generated by findWSPD when run on 7', and W’ be the analogous set on T". We
will show that Algorithm 11 converts W into W’. We consider the same two cases
mentioned above, and we use z, z, and w as defined above. There are only two
types of pairs that would be affected by the insertion, those involving z itself and
those involving the newly added internal node z.

First, let us consider the pairs involving z (Case 2). Consider any well-
separated pair, ({z,y},¢) in W', where ¢ > lev(z). Since w is contained within
z, w is also well-separated with y. Therefore, ({w,y}, ) exists in W. Conversely,
consider ({w,y},¢) in W, where ¢ > lev(z). If there exists a node whose level is
less than or equal to ¢, but higher than w, then findWSPD would have generated

a well-separated pair involving it instead of w. Therefore, ({w,y},¢) belongs as
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({z,y},¢) in W’. Line 7 in Algorithm 11 changes each such pair to ({z,y}, (). (Note
that the other well-separated pairs related to w whose maximum separation level is
less than lev(z) are related only with w, and they are included in both W and W".)

Second, consider any well-separated pair, ({z,y}, /) involving = in W’ (Case
1). Such z and y were generated by invoking findDescendants (Line 6 and 7 of
Algorithm 10) on nodes u and v of T" that are 1-well separated, respectively. By
the nature of the algorithm, v and v are maximally homogeneously 1-well sepa-
rated. Recall that B is the set of boxes adjacent to z'” including 2! in Line 9 of
Algorithm 11. We will show that v is contained in some box b € B (see Fig. 5.4).
Assuming this for now, if we let v' be the largest node containing v at level not more
than lev(z1?), for such a b, node(b) in Line 10 of Algorithm 11 will return ¢’. In
the same line, findWSPD(z,v’, s) will first find homogeneous 1-well separated pairs
involving = and descendants of v/, and then invoke findDescendants on each. We
are interested in these calls involving ancestors of v. By the maximality of v and v,
we assert that no proper ancestor of v will be homogeneously 1-well separated with
respect to x. To see this, suppose that there existed a proper ancestor v, denoted by
v” that was homogeneously 1-well separated with x. By definition, a box 2’ on the
same level as v”, containing x is 1-well separated with v”. Since v” is an ancestor
of v, by Lemma 5.3.1(i), lev(u) < msl;(u,v) < lev(par(v)) < lev(v”). This implies
that lev(u) < lev(z’), and therefore, u is contained in 2’. This yields that u and
v are also homogeneously 1-well separated. This would contradict the fact that «
and v are maximally well-separated. Therefore, x is not homogeneously 1-well sep-

arated with any proper ancestor of v. Thus, indWSPD(z, v, s) will find the 1-well
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separated pair {z,v}, and will generate the desired s-well separated pair {x,y} by

invoking findDescendants.

e R e - _quadtree boxes adjacent to z(?)
: : 4" including z(©)

v m Imsll(u, v)

Fig. 5.4: A well-separated pair of new leaf x

To complete the proof, it remains to show that v is contained in some box
b € B. To do this, it suffices to show that v is not homogeneously 1-well separated

with 217, and lev(v) < lev(2'). By Lemma 5.3.1(ii), ¢ < lev(z). Thus,

lev(u) < msl(u,v) = £+0 < lev(z)+0 = lev(z").

By the maximality of u and v, v is not homogeneously 1-well separated with any
box containing u on a higher level than msl; (u,v). Clearly, 21 is such a box. Also,

we have lev(v) < msl; (u,v) < lev(2'). This completes the proof.

5.4.2 Deletion

Deletion essentially is the reverse of the insertion procedure, and is presented in
Algorithm 12. Let x be the leaf containing the deleted point, p. If its parent, z has
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only two nodes, x and w, the node z will be deleted from the compressed quadtree.
Thus, in a symmetrical manner with insertion, we associate the well-separated pairs
with w, instead of z (see Line 5). Also, all well-separated pairs associated with z
are deleted (see Line 7). The correctness proof is symmetrical with the proof for

insertion and is omitted.

Algorithm 12 Deletion of a point p for output sensitive WSPD
Input: A point, p and a separation factor, s > 1

1: function delete(p, s)

2 Find a leaf x including p

3 z : parent of z

4: if z has two nodes, x and z’s sibling, w then
5: Change ({z,v},0) to ({w,v},0).

6: Delete z

7 Delete all well-separated pairs related to x

8 Delete x

5.4.3 Maintenance of WSPD for updates

In order to analyze the running time of our update algorithms, we need to see how
to maintain the s-well separated pairs and the maximum separation level associated
with each.

We store all the well-separated pairs in a hash table, denoted by H. Given a
box u', let W (') denote the set of all well-separated pairs (u,v) such that u' is the
box at level msl}(u,v) containing u. Note that a box may be uniquely identified by
the Morton code of its lower left corner and its depth. We combine these to save
as the key of the hash table. For a box «’, let H(u') denote the hash table entry

associated with «/. The entry, H(u') stores a linked list of the elements of W ().

159



The element of this linked list associated with (u,v) stores a cross reference to an
element of the list in H(v'), where v" is the box at level msl}(u,v) containing v.
Note that a well-separated pair (u,v) is stored as the pair (u/,v’). In addition, we
store a bit for each entry in the hash, which we call the dirty bit. If H(u') is empty,
this bit is set. This will be used for lazy deletion, which will be described below. In
this way, the space of the hash table is proportional to the number of well-separated
pairs.

For each node u, let L, denote the set of levels ¢, such that there exists a
well-separated pair (u,v) such that msl}(u,v) = . We assume that L, is stored as a
bit vector indexed by levels. If there exists a well-separated pair involving u at level
¢, bit ¢ of L, is set. Through this bit vector, we can compute boxes u' associated
with « in the manner presented above. Note that given v and such a level number
¢, it is possible to compute v’ and its associated hash key in O(1) time. This key is
then used to access the hash table. Recall that each point’s coordinates are stored
as fixed-point binary numbers, and bitwise operations can be performed on them in
O(1) time. We assume that each coordinate can be stored in a constant number of
words, and hence the total space required for the coordinates is proportional to the

number of nodes in the tree.

Lemma 5.4.2 Assume we have a model of computation that supports in O(1) time
the bitwise operations boolean-and (“A”), boolean-or (“V7), complement (“T”), left
shift (“<”), and integer base-2 logarithm (that is, the index of the most significant

bit) on point coordinates. Through the bitwise operations, the following operations
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for bit vectors can be performed in O(1) time.

o add(L,,0): Add bit { to L,.

e remove(L,, (): Remove bit { from L,,.

e isMember(L,, ¢): Return true if L, has bit (. Otherwise, return false.

o split(L,, ¢, L,): Split the bit vector L, into two bit vectors, such that one
contains bits whose positions are greater than or equal to ¢, and the other
contains those that are less than €. The higher bits are stored in a new bit

vector L, and the lower entries remain in L,.

e merge(Ly, L,): Merge bits of L, to L,.

e getMembers(L,): Enumerate all bits in L,.

Proof:

e add(L,,¢): Set the bit at ¢ by taking bitwise-or of L, and the bit string = only

whose bit at ¢ is set.

e remove(L,,(): Reset the bit at ¢ by making out the bit at ¢, which can be
implemented by taking bitwise-and of L, and T, where x is the bit string only

whose bit at £ is set.

e isMember(L,, ¢): Return the result of bitwise-and of L, and the bit string x

only whose bit at £ is set.

e split(L,, ¢, L,): We do this by first copying L, to L,. We then mask out all

bits below level ¢ from L, and mask out all bits at or above ¢ from L,.
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e merge(L,, L,): Merge two bit vectors L, to L, by taking bitwise-or of them.

e getMembers(L,): First copy L, to the temporary bit string z. Output integer
base-2 logarithm of x, which is the index of z’s most significant bit, and then
this bit from z by the operation remove. Repeat this until  have no more bit

that is set.

Above operations except the operation getMembers take O(1) time, and the op-
eration getMembers takes O(|L,|) time. Letting p is the representative point of
u, the size of a bit vector, L, is less than the size of p’s coordinates, and hence

O(|Ly|) = O(1). Thus, all of above operations can be performed in O(1). O

Let us consider how to implement point insertion, deletion, and node queries.

Point Insertion: As mentioned above, the first step is to insert the new point p
into the compressed quadtree. Following Fischer and Har-Peled [48] this can be
performed in O(logn) time by representing the compressed quadtree (which may be
unbalanced) as a topology tree [50].

To bound the time needed to update the WSPD, recall nodes z, z, and w
from Algorithm 11. If x’s parent, z, is new (Case 2), we update the well-separated
pairs involving x’s sibling, w. That is, each well-separated pair ({w,v},?), where
¢ > lev(z) is changed to ({z,v}, ). We do this by performing split(L,,,lev(z), L.).
This can be done in O(1) time.

Next, we find all the new well-separated pairs involving the leaf . We first

find the set B of boxes at level lev(219) that are not homogeneously 1-well separated
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with respect to 217 (see Line 9 of Algorithm 11). Observe that because we assume
the L., metric, B consists of boxes of side length equal to the side length of 2.
There are at most 3¢ such boxes, and they can be computed in O(1) time. For
each b € B, we invoke node(b) to compute the highest level node of the compressed
quadtree contained within b (see Line 10). This query can be performed in O(logn)
time through the use of the topology tree. Then, we invoke findWSPD(z, node(b), s).
For each newly generated pair {z, y} resulting from findWSPD, we first update both
L, and L, by add(L,,msl;(z,y)), and add(L,, msl}(x,y)). These take O(1) time.
Let " and y' be boxes on level msl}(z,y) containing x and y, respectively. We add
elements referencing this well-separated pair into both H(z') and H(y'). The dirty
bits of both H(z') and H(y') are then reset. This can also be performed in O(1)
time. Thus, including the O(logn) time to insert the point, the addition of all new
well-separated pairs involving = can be performed in worst-case time O(logn + m),

where m is the number of newly generated pairs.

Point Deletion: Next, let us consider the deletion of a point p. We first find the
leaf x containing p (see Line 2 of Algorithm 12). This can be performed in O(logn)
time, again using the topology tree. Recall z and w from the algorithm. If z would
have only one child w after the deletion of z, z will be also deleted. We then merge
all the well-separated pairs involving z to w by merge(L,, L,,) in O(1) time.

Next, we remove all well-separated pairs involving z. First, we get all bits
of L, that are set by getMembers(L,). This takes O(1) time. For each bit ¢ of

L, that is set, let 2’ denote the box of level ¢ containing x. We access the linked
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list in H(z'). If the dirty bit of H(x') is not set, that is, H(z’) has a nonempty
list, we remove all the elements of the list. For each associated pair (2’,7), we also
remove the corresponding element from H(y'). If H(y') is now empty, we set its
dirty bit. If we attempt to access H(y') as part of a future operation, it is because
the corresponding bit of L, was set, for some node y. Thus, whenever we access any
entry H(y'), if its dirty bit is set, we reset the corresponding bit of L, as well as the
dirty bit. By charging this to the earlier deletion that set the dirty bit, we can easily
see that this takes the O(1) amortized time. After removing all the elements of the
list in H(z'), we remove ¢ from L, by remove(L,, ) in O(1) time. If the dirty bit
of H(z') is set, we remove the corresponding bit ¢ from L,, and reset the dirty bit
like above in O(1) amortized time. Combining this with the initial O(logn) time to
remove the point, deletion can be performed in amortized time O(logn + m), where
m is the number of or deleted pairs.

Combining these results, we have Theorem 5.1.1.
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Chapter 6

Maintaining Nets and Net Trees under

Incremental Motion?

6.1 Introduction

Up to this point in the dissertation, we have interpreted the notion of “dynamic
data structures” in the classical sense, meaning allowing the insertion and deletion
of individual points. In many applications, however, the notion of dynamics involves
points that move over time. In this chapter, we will explore the design of data
structures for dealing with dynamics in this form.

The problem of maintaining geometric structures for points in motion has
been well studied over the years in computational geometry. The vast majority of
theoretical work in this area has been based on the assumption that point motion
is continuous and the future motions of the points are known in advance [59]. In
practice, however, motion is typically presented incrementally in discrete time steps
and the long-term motion of points is not known and may not even be predictable. In
this chapter, we present efficient online algorithms for maintaining a data structure
for a point set undergoing incremental motion.

For the underlying data structure, we consider the maintenance of nets and

!The material appearing in the chapter is based on the paper “Maintaining Nets and Net Trees
under Incremental Motion” [29].
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net trees. Let P denote a finite set of points in some metric space M, which may
be either continuous (as in Euclidean space) or discrete. Given r > 0, an r-net
for P is a subset X C P such that every point of P lies within distance r of
some point X, and no two points of X are closer than r. Each point of P can be
associated with a covering point of X that lies within distance r, which is called its
representative. We can easily derive a tree structure, by building a series of nets with
exponentially increasing radius values, and associating each point at level 7 — 1 with
its representative as parent at level i. Like the vantage point tree (Vp-tree) [115]
and the generalized hyperplane tree (Gh-tree) [108], the net tree can be viewed as
a metric generalization of hierarchical partition trees like quadtrees [94]. (Formal
definitions of nets and net trees are given in Section 6.2.)

Our algorithm is allowed some additional slackness in the properties of the net
to be maintained. For example, while the optimal algorithm is required to maintain
all points within distance r of each net point, we allow our algorithm for nets to
maintain a covering distance of 2r for nets and 4r for net trees. (See Section 6.2 for
the exact slackness conditions.) Because our principal motivation is in maintaining
net trees under motion, we impose the assumption that the input points to our r-net
algorithm arise from an (r/2)-net.

We establish the efficiency of our online algorithms by providing an upper
bound on the competitive ratio on the communication cost of our algorithm, that
is, the worst-case ratio between the communication costs of our algorithm (subject
to the slackness conditions) and any other algorithm (without the slackness). The

exact results are presented in Sections 6.3 and 6.4. Assuming that the points are
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in a space of constant doubling dimension (e.g., Euclidean of constant dimension),
we achieve a competitive ratio of O(1) for the maintenance of a net and O(log” ®)
for the net tree, where ® is the aspect ratio of the point set (the ratio between the
maximum and minimum interpoint distances). Our online algorithm makes no a
priori assumptions about the motion of the points. The competitive ratio applies
even if the optimal algorithm has full knowledge of point motion, and it may even
have access to unlimited computational resources. The constant factors hidden by
the asymptotic notation grow exponentially in the doubling dimension of the space.

The rest of the chapter is organized as follows. In the next section, we present
definitions and background information. In Section 6.3, we present our algorithm
for maintaining a net, and in Section 6.4, we present our algorithm for maintaining

a net tree.

6.2 Preliminaries

We begin with some basic definitions, which will be used throughout the paper.
Let M denote a metric space, with associated distance function dist: M x M —
R. (This means that dist is symmetric, positive definite, and satisfies the triangle
inequality.) Throughout, we let P be a finite subset of points in some metric space
M. For a point p € M and a real r € RT, let b(p,r) = {g € M : dist(p,q) < r}
denote the open ball of radius r centered at p. The doubling constant of the metric
space is defined to be the minimum value A\ such that every ball b in M can be

covered by at most A balls of at most half the radius. The doubling dimension of
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the metric space is defined as d = log, A. Throughout, we assume that M is a space
of constant doubling dimension.
Recall that P is a finite set of points in some metric space M. Given r € RT,

an r-net for P [64] is a subset X C P such that, for some constant v > 1,

max dist(p, X) < r and min dist(z,y) > iy
peEM rxy:y)( ol

The first constraint is called the covering constraint, and the second is called the
packing constraint. Intuitively, a net defines a simple type of clustering of the point
set into balls of radius r, and each point p € P can be associated with a representative
x € X (denoted by rep(p)) lying within distance 7. No two representatives are closer
than r. Note that the representative is not necessarily unique. To simplify notation,
henceforth, we assume that v = 1, but our results apply to any constant ~.

In order to establish our competitive ratio, we will need to relax the r-net
definition slightly. Given constants «, 5 > 1, an («, [3)-slack r-net is a subset X C P

of points such that,
mz}&(dist(p,X) < ar and Vee X, {XNb(z,m)} < B.
pe

Thus, we allow each point to be farther from the closest net point by a factor of
a, and we allow net points to be arbitrarily close to each other, but there cannot
be more than  points within distance r of any net point. Clearly, an («, 3)-slack

r-net is an (o, #')-slack r-net for o/ > « and 5 > S. When we wish to make
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the distinction clearer, we will use the term strict r-net to denote the standard
definition, which arises as a special case when o = § = 1.

Before introducing net trees, we first introduce the concept of the aspect ratio
(or spread) of a static point set to be the ratio of the diameter of P and the distance
between the closest pair of points in P. Since we will be dealing with points in
motion, we assume that we are two values ¢ and A, which provide a lower and upper
bound, respectively, on the distances between any two points of P throughout the
course of the motion. We define ®(P) to be A/d. By scaling distances, we may
assume that 0 = 1.

A net tree of P is defined as follows. The leaves of the tree consists of the points
of P. Note that by our assumption that 6 = 1, these form a 1-net of P itself, which
we denote by P(©) = P. The tree is based on a series of nets, PV, P2 . . P
where m = [log, ®], and P% is a (2°)-net for P~1). Observe that |P™| = 1.
(More generally, we may replace 2 with any constant that is greater than 1.) Recall
that, for each p € P~ there is a point z € P®, called its representative, such that
dist(p, x) < 2°. We declare this point to be a parent of p, which (together with the
fact that [PU™| = 1) implies that the resulting structure is a rooted tree. An easy
consequence of the packing and covering constraints is that the number of children
of any node of this tree is a constant (depending on the doubling constant of the
containing metric space). Our usage of the term “net tree” is not standard. There
have been a number of related data structures, based on a hierarchical collection of
nets. Our definition is based on the simplest forms of net tree [52,75], whose height

depends on the aspect ratio. This is in contrast to more sophisticated forms given
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in [33,55,64], which achieve height of O(log |P|), independent of the aspect ratio.

This definition can be easily generalized to assume that the nets forming each
level of the tree are (o, §)-slack nets. We refer to such a tree as an («, 5)-slack
net tree. Assuming that o and  are constants, this relaxation will affect only the
constant factors in the asymptotic complexity bounds.

Because our ultimate interest is in maintaining net trees under incremental
motion, it will be convenient to impose an additional constraint on the points P. In
a net tree, the input to the ith level of the tree is a (2°~!)-net, from which we are
to compute a 2¢ net. Thus, in our computation of an r-net, we will assume that the
point set P is an (r/2)-net. In addition to just moving the points, we will also allow
points to be inserted or deleted from the set at any time.

Recall that we interested in maintaining points under incremental black-box
motion. More formally, we assume that the points change locations synchronously
at discrete time steps T'= {0, 1,...,tmax}. Given a point p € P and t € T, we use
p to refer to the point in the symbolic sense, and (when time is significant) we use
p; to denote its position at time .

Let us now consider the certificates used in the maintenance of an r-net. In
order to maintain an («, )-slack r-net, the observer must be provided enough infor-
mation to verify that the covering and packing constraints are satisfied. At any time
t, let P, denote the current point set and let X; denote the current slack net. We
assume the incremental maintenance of any net is based on the following two types
of certificates, where the former validates the covering constraint and the latter

validates the packing constraint.
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Assignment Certificate: Given p € P and x € X, rep(p) = z, and therefore at each

time ¢, dist(py, z;) < ar.

Packing Certificate: Given x € X, at each time t we have | X; N b(z,7)| < 5.

The first condition requires constant time to verify. The second condition in-
volves answering a spherical range counting query. For the purposes of the results
presented here, it suffices to answer such queries approximately to within a con-
stant approximation error (which only affects the constant factors in the analysis).

Observe that O(|P|) certificates suffice to maintain the net.

6.3 Incremental Maintenance of a Slack Net

In this section we present an online algorithm for maintaining an r-net for a set
of points undergoing incremental motion and provide an analysis of its competitive
ratio. Given our metric space M, let f = B(M) denote the maximum number
of balls of radius r that can overlap an arbitrary ball of radius r, such that the
centers of these balls are at distance at least r from each other. We shall show in
Lemma 6.3.3 below that 8 < A2 = 4¢, where ) is the doubling constant of M, and

d is the doubling dimension of M. The main result of this section is as follows.

Theorem 6.3.1 Consider any metric space M of constant doubling dimension, and
let B = B(M) be as defined above. There ezists an incremental online algorithm,
which for any real v > 0, maintains a (2, 8)-slack r-net for any point set P under

incremental motion in M. Under the assumption that P is a (2, 8)-slack (r/2)-net,
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the algorithm achieves a competitive ratio of at most (BX* + 2)(8 + 2) = O(\7) =

0(1).

The remainder of this section is devoted to proving this theorem.

6.3.1 Online Algorithm for Maintaining a Slack Net

In this section we present our online algorithm. The algorithm begins by inputting
the initial placements of the points, and it communicates an initial set of certificates
to the observer. (We will discuss how this is done below.) Recall that the observer
then monitors the point motions over time, until first arriving at a time step ¢
when one or more of these certificates is violated or when a point of P is explicitly
inserted or deleted. It then wakes up the builder and informs it of the current event.
The builder applies the operations as described in our algorithm below, and returns
control to the observer.

Our algorithm maintains not only the points of the slack r-net, which we
denote by X, but also the assignment of each point p € P to its representative
rep(p) € X. For each point p € P, we maintain a subset cand(p) C X, called the
candidate list.

Before describing the incremental update process, we begin with three useful

utility operations: reassignment, net-point creation, and net-point removal.

Reassign(p): If cand(p) # (), repeatedly extract elements from cand(p) until finding
a candidate x € X that lies within distance 2r of p. If such a candidate is

found, set rep(p) < x, and create a new assignment certificate involving p and
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x. If no such candidate exists, invoke the net-point creation operation for p.

Create net point(p): We assume the precondition that cand(p) = (). Add p to the
current net X. Set rep(p) « p. For each point p' € P\ {p} such that
dist(p’, p) < 2r, add p to the candidate list cand(p’). Finally, create a packing

certificate for p.

Remove net point(z): First, z is removed from both X and all the candidate lists
that contain it. Remove any packing certificate involving x. For all p € P

such that rep(p) = x, invoke the reassignment operations on p.

Note that the reassignment operation generates one new assignment certificate
(for p) and may create one packing certificate if p is added to X. Let us now consider
the possible actions of the builder, once the observer reports an event (point insertion

or deletion) or a certificate violation (assignment or packing).

Insert point(p): Set cand(p) to be the set of net points € X such that dist(p, z) <

2r. Then apply the reassignment operation to p.

Delete point(p): All certificates involving p are removed. If p € X, then invoke the

net-point removal operation on p. Finally, remove p from P.

Assignment-certificate violation(p): Let p be the point involved, and let x = rep(p)
be its representative. Remove x from p’s candidate list and apply the reas-

signment operation to p.

Packing-certificate violation(z): Invoke net-point removal for each point of X N
b(x,r).
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Observe that the processing of any of the above events results in a constant
number of changes to the certificate set, and hence in order to account for the total
communication complexity, it suffices to count the number of operations performed.

Initially, X is the empty set, and we start the process off by invoking the
insertion operation for each p € P, placing it at its starting location. Observe
that after the processing of each assignment- and packing-certificate violation, the
condition causing the violation has been eliminated, and therefore we have the

following.

Lemma 6.3.1 If no certificates are currently violated, the set X maintained by the

above algorithm is a valid (2, 5)-slack r-net.

6.3.2 Competitive Analysis for Maintaining Nets

In this section we present a competitive analysis of the computational complexity
of the online algorithm presented in the previous section. Recall that P denotes
the point set, which is in motion of some finite time period. For any time ¢, let
Ni(0) denote the optimal neighborhood consisting of the points of P that have o
assigned as their representative by the optimal algorithm. Our competitive analysis
is based on showing that each of the operations performed by our algorithm can be
charged to some operation of the optimal algorithm, in such a manner that each
optimal operation is charged a constant number of times (depending on the doubling
dimension and associated packing lemma).

First, we present some geometric preliminaries, which will be useful later in
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the analysis. Recall that A denotes the doubling constant of the metric space.

Lemma 6.3.2 Given any («, §)-slack r-net X, at most BNE2E/™1 points of X can

lie within any ball of radius R.

Proof: First, we claim that for any p in the metric space, b(p, r/2) contains at most
3 points of X. To see this, suppose not. Take any ¢ € b(q,r/2) N X. Clearly, b(q,r)
contains b(p,r/2), and hence would contain more than § points contradicting the
fact that it is an («, §)-slack r-net. In a metric space with doubling constant A, any
ball of radius R can be covered by at most \&M#/ (/21 = \I&[2E/r] halls of radius /2.

Thus, there are at most BAN&2%/7 points in X within any ball of radius R. 0

Recall that the points of our slack r-net are assumed to arise from a slack
(r/2)-net. By the above lemma and the definition of (o, 3)-slack r-net, we have the

following.

Corollary 6.3.1 Let P be an («, 3)-slack (r/2)-net and let X be an («, 3)-slack
r-net for P. Then the number of points of X (respectively, P) that lie within a ball

of radius 2%r is at most BA*T1 (respectively, BA*T?).

Our choice of 8 = A% in Theorem 6.3.1 is a direct consequence of the following

lemma.

Lemma 6.3.3 Let Z be a set of balls of radius r whose centers are taken from a
(strict) r-net. Then any ball b of radius r (not necessarily in Z ) can have a nonempty

intersection with at most \* balls of Z.
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Proof: Let b’ be a ball concentric with b of radius 2r. Each ball of Z overlapping b
has its center inside ¢’. Let X be the set of centers of balls in Z. Since all the points
of X are separated from each other by distance r, any ball of radius r centered at a
point of X contains at most one point of X. (Recall that balls are open.) Thus, by

2:2r /7

applying Lemma 6.3.2 (with 3 = 1), there can be at most Al 1= X2 points of

X within a ball of radius 2r. O

Given the motion sequence for the point set P, let n denote the total number
of operations performed by our online slack-net algorithm, and let n* denote the
total number of operations processed by any correct (e.g., the optimal) algorithm.

In order to establish the competitive ratio, it suffices to show

n < (BX*+2)(8+2)n". (6.1)

The remainder of this section is devoted to showing this.

Our analysis is based on a charging argument, which relates the total number
of slack-net operations to the number of slack-net creations and then relates the
number of slack-net creations to the number of optimal operations. Let n%, ng,
ny, ny, and n},, and denote, respectively, the total number of assignments, net point
creations, net-point removals, point insertions, and point deletions performed by the
optimal algorithm. Let na, ng¢, ng, nr, and np denote corresponding quantities for

our slack-net algorithm. Thus, we have

n = Nag+nc+ngp+ny+np.
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First, we bound the total number of assignments in terms of the number of
point insertions and slack-net creations. Changes in assignment in our algorithm
occur as a result of running of the reassignment operator. Since the assignment is
made to some point of the candidate list, it suffices to bound the total number of
insertions into candidate lists. This occurs when points are inserted and when net

points are created.

Lemma 6.3.4 ny < B\ne + BAn;.

Proof: Observe that since each reassignment is made to a point in a candidate list,
n 4 is bounded by the total number of additions to all the candidate lists throughout
the course of the algorithm. Such an addition may occur whenever either: (a) a net
point is created or (b) a new point is inserted. Whenever a net point z is created,
it is added to the candidate lists of all points within distance 2r. Whenever a point
p is inserted it adds all the net points within distance 2r of itself to its candidate
list. By Corollary 6.3.1, the number of such candidate-list additions is at most S\?

and BA?, respectively. 0

Since point insertions and deletions must be handled by any correct algorithm,
we have n; = nj and np = n},. The total number of net point removals (ng) cannot
exceed the total number of net point creations (n¢). Thus, it suffices to bound ne,
the total number of slack-net point creations.

Before bounding ne we make a useful observation. Whenever a net point x
is created, it adds itself to the candidate list of all points that lie within distance
2r. Since (by strictness) the diameter of any optimal neighborhood is at most 2r,
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it follows that, in the absence of other events, the creation of net-point x within
an optimal neighborhood inhibits the creation of any other net points within this

neighborhood. Given t </, let (¢,t'] denote the interval [t + 1,¢'].

Lemma 6.3.5 Let o denote an optimal net point. Suppose that no optimal assign-
ments occur to the points of N(o) during the time interval (t,t'], v € N(o) is added
to X at time t, and x is not removed from X throughout (t,t']. Then, for any time

in (t,t'] no point p € N(o) will be added to X .

Proof: When z is added to X at time ¢, x is added to the candidate lists of all the
points that lie within distance 2r of x, which includes all the points that are currently
in N(o0). During the interval (¢, '], no new points are added or removed from N (o),
and z is not removed. Thus, x is a valid representative for each p € N (o). Therefore,
(by our reassignment operator) no point of N (o) will be added to X during this time

interval. O

This implies that, without optimal assignments, each optimal net point o can
have at most one corresponding slack net point x € N(o0). Furthermore, if x is
removed from X (e.g., as the result of a packing-certificate violation), only one of
the points of N(0) may replace it as a slack-net point. When a net point within
an optimal neighborhood is created to replace a removed net point, we call this a
recovery. Whenever a packing-certification violation occurs, at least 5+ 1 slack-net
points are removed. The following lemma implies that the number of recovered net

points is strictly smaller.
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Lemma 6.3.6 The number of net points recovered as a result of the processing of

a packing-certificate violation is at most 3.

Proof: Whenever a packing-certificate violation occurs at some point z, all the
points of X within distance r of x are removed. Consider the set O" of optimal
centers whose neighborhoods contain one of these removed net points. Consider
the ball of radius r centered at each point of O’. By the properties of a strict net
and Lemma 6.3.2, |O'| < g. By Lemma 6.3.5, at most one slack net point can
be created within each of these optimal neighborhoods. Therefore, we obtain the

desired bound. 0

We say that an optimal neighborhood N (o) is crowded (at some time t) if
|N:(0)NX¢| > 2. Our next lemma states that whenever a packing-certificate violation

occurs, at least two of removed net points lie in the same crowded neighborhood.

Lemma 6.3.7 Consider a packing-certificate violation which occurs in the slack net
but not within the optimal net, and let X' C X denote the net points that have been
removed as a result of its handling. Let O’ denote a subset of O of overlapping
neighborhoods, that is, O" = {o | N(o)NX"}. Then, there exists at least one optimal

center o € O' such that |N (o) N X'| > 2.

Proof: We can assume that no optimal packing-certificate violation occurs since
optimal algorithm can avoid the packing-certificate violation simply by using optimal
assignments. Thus, assume that O’ is consistent during our operation.

A packing-certificate violation is triggered by at least 5 + 1 slack-net points
lying within in a ball b(x, r) for some x € X, and X' = X Nb(x,r). For each o € O,
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N (o) N X" consists of some subset of points of X’ that lie within the ball b(o, ). By
Lemma 6.3.3, at most § balls from O can have a nonempty intersection with b(x, ).
Clearly, therefore, at least one of these subsets contains at least two points of X'.

O

The handling of the packing-certificate violation removes the points of X',
and by Lemma 6.3.5, this optimal neighborhood will recover at most one net point.
Thus, in the absence of other effects (optimal reassignment in particular) the overall
crowdedness of the system strictly decreases after processing each packing-certificate
violation. Intuitively, crowdedness increases whenever a point of the slack net is
moved from one optimal neighborhood to another. But such an event implies that
the optimal algorithm has changed an assignment. We can therefore charge slack-
net point creations to optimal assignments. The following lemma formalizes this

intuition.

Lemma 6.3.8 Fach net point creation can be uniquely charged an optimal opera-

tion.

Proof: Consider the creation of a slack-net point x at some time ¢ and let o be the
optimal net point such that z € N(0). We consider two cases. First, there exists
2’ € X such that z,2" € N(o0) and 2’ € cand(z) at some time ¢ < ¢. (This is a
case of recovery.) Second, no such z’ exists. This can be further divided into two
subcases. First, « is the first slack-net point to appear in N (o) after o was added to
O. Second, some slack-net points in N(0) had already been added to X, but z had
never obtained any of them as its candidates. That is, from the time that z was

180



assigned to N (o) until time ¢, there had been no slack-net point creations in N (o).

More formally, we have the following cases:

1.

2.

[Recovery:] Let ¢’ be the latest of the following three events to occur: (1) z
is assigned to N(o), (2) 2’ is assigned to N(o), and (3) 2’ is added to X. At
time ¢, 2’ € cand(xz). Without loss of generality, 2’ is the last element of
cand(x) N N(0). Since x was added to X, we know that 2’ is not valid at time

t. There are three possible reasons. Either:

(a) 2’ was assigned to some other optimal center o/,
(b) 2’ was deleted, or

(¢) 2’ was removed from X.

(a) [Initial Creation:] z is the first slack-net point added to N(o). (Note
that this does not imply that there were no slack-net points in N (o), but
clearly any such points were not created when they were in N(0).) The
creation of x is charged to the creation of o. Clearly, this event can be

charged at most once.

(b) [x Recently Arrived:] Let ¢’ < ¢ be last time such that point =’ € N(o)
was added to X and suppose that x was assigned to N (o) at some time
t" >t
We observe that the optimal assignment of x generates at most one slack-
net point in N (o) (namely, x itself). Before = was added to X, it was not

a net point. Thus, z is not charged to any other net creations. Clearly,
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each such optimal assignment can be charged by at most one such event.

Let us consider Case 1. Observe that each of the possible cases listed above
results in the creation of at most one new net point in N (o) by Lemma 6.3.5. The
cost of the creation of x will be charged to the operation that caused z’ to become
invalid.

Cases 1(a) and 1(b) can be charged directly to an optimal assignment or
optimal deletion operation, respectively. Clearly this optimal operation is charged
at most once.

Finally, let us consider Case 1(c). Note that the removal of 2’ is not directly
related to any optimal operation. First, we show that it is charged at most once.
After adding = to X, = becomes a candidate of all points of N (o). (That is, = takes
a role that 2’ had performed in representing some of the points of N(0), since x was
the last element in cand(p) N N (o) for all p € N(0).) Thus, 2’ is charged only once
in this way. We observe that a removal operation only happens during the handling
of a packing-certificate violation. During the handling of each packing-certificate
violation, we can create at most [ net points by Lemma 6.3.6. Thus, the total
number of net point creations due to Case 1(c) is bounded by [ times the total
number of packing-certificate violations. Since each packing-certificate violation
satisfies the conditions of Lemma 6.3.7, we observe that the condition can be made
by only optimal assignments (see Cases 1(a) and 2(b)). Thus, the total number of

net point creations by Case 1(c) is at most 3 - n’. O

We summarize that above analysis to obtain the following bound.

182



Lemma 6.3.9 nc < (8+2)nY, + ng + nj.

Proof: Let ngy, neog, and neg, denote the total numbers of net-point creations aris-
ing due to cases 1, 2(a), and 2(b), respectively, as given in the proof of Lemma 6.3.8.
Clearly, nco, is at most ng and negp is at most n’. As observed earlier, for neq,

there are three cases. Each case bounds to the number of optimal operations. Thus,

ney =ny + np + B-nY. (By Lemma 6.3.6 and 6.3.8)

Therefore, the total number of slack-net point creations is

ng < Nnet+ Ne2a + Now
< (ny+np+B-nYy) +ns+n7

< (B42) nly +ng+n

The proof of Theorem 6.3.1 follows by combining the observations of this

section with Lemmas 6.3.4 and 6.3.9.

6.4 Incremental Maintenance Algorithm for Net Tree

Recall that a net tree is based on a hierarchy of nets of exponentially increasing
radius values. In particular, the points at level ¢ are a (r;)-net of the points at level

i — 1, where 7; = 2'. Recall that the height of net tree is h = [lg ®(P)], where
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®(P) is the worst-case aspect ratio of the point set. In this section we present an
efficient online algorithm for maintaining a slack net tree for a set of points under
incremental motion in a metric space M. The main result of this section is presented
below. In contrast to the results of the previous section, the slackness parameter «
in the net increases from 2 to 4 and the competitive ratio increases by a factor of
O(Ah?). Recall from Section 6.3 that 8 = A? denotes the maximum number of balls
of radius r that can overlap an arbitrary ball of radius r, such that the centers of

these balls are at distance at least r from each other.

Theorem 6.4.1 Consider any metric space M of constant doubling dimension.
There exists an online algorithm, which maintains a (4, B)-slack net tree for any

point set P under incremental motion in M. The algorithm achieves a competitive

ratio of at most (BA* + BA3 + 4)(B + 3)h? = O(A\%h?) = O(h?).

In the next section we present the algorithm and in the following section we

present the competitive analysis of the algorithm.

6.4.1 Incremental Maintenance Algorithm for Net Tree

Intuitively, our algorithm for maintaining the net tree is based on applying the
algorithm of the previous section to maintain the net defining each level of the
tree. Creation and removal of net points at level will result in point insertions
and deletions at other levels of the tree. Let O® and X® denote nets at level
i of the tree generated by (strict) optimal algorithm and our slack-net algorithm,

respectively. Since X @ is a slack r;-net of X~V it will be convenient to use P®
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as a pseudonym for X~V in order to maintain symmetry with the terminology of
the previous section.

The competitive analysis of the previous section (recovery and crowdedness,
in particular) was based on the relationship between slack-net points and neighbor-
hoods of the optimal net. However, except at the leaf level, there is no reason to
believe that points of P® will reside in level i of the optimal net tree. Consider an
optimal net point 0 € O®. We define the optimal neighborhood, still denoted by
N (o), to be the set of points of P lying in the leaves of the tree that are descended
from o. Because of the exponential decrease in the radius values, it is easy to see
that the descendants of o lie within distance of 0 of 2¢ + 271 ... 41 < 20+ = 2.

Thus, the diameter of N (o) is at most 4r;. We have the following result.

Lemma 6.4.1 Let o denote an optimal net point at leveli. Then, for any v € N(o),

N(o) C b(z,4r;) N P.

This lemma implies that, if we choose any point x € N(0) to be in our (4, 3)-
slack net, it can be used to cover all the points of the optimal neighborhood. This
observation justifies our choice of @ = 4 in Theorem 6.4.1.

Let us now consider the operations performed by our algorithm at level 7. Each
operation is defined in terms of the analogous single-net operation of Section 6.3.1
applied to the points at this level of the net tree. In each case the operation may
cause events to propagate to higher levels of the tree. We begin by describing a few
utility operations. Throughout ¢ denotes the tree level at which the operation is

being applied.
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Reassign(p, i): Invoke the net-reassignment operator to p for X, but use the level-i

net-creation operator (rather than the single-net operator).

Create net point(p,i): Invoke the net-point creation operation for p in X®, with
one difference. The point p is added to the candidate lists of points within

distance 4r; (rather than 2r;). Invoke point insertion for p at level 7 4 1.

Remove net point(z,4): Invoke the net-point removal operation for x in X®. Invoke

a delete-point operation of x at level ¢ + 1.

With the aid of these utility operations, we now present the actions taken by

the builder in response to the various events.

Insert point(p,i): Invoke the point insertion operation for p in P®, but with the
following change. Set cand(p) to be the set of net points z € X such that

dist(p, ) < 4r; (rather than 2r;).

Delete point(p,i): Invoke the point deletion operation for p in P%W. If p € X0,

invoke an net-removal operation for p at level i.

Assignment-certificate violation(p,i): Process the assignment-certificate violation for
pin P® but use the level-i reassignment operation (rather than the single-net

reassignment operator).

Packing-certificate violation(z,%): Invoke the packing-certificate processing for = in
X @ but use the level-i net-point removal operation (rather than the single-net

removal operation).
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Note that operations that involve the creation or removal of net points will
result in point insertion or deletion, respectively, at the next higher level of the
tree. As with single-net operations, each operation may induce addition certificate
violations. All these violations are stored in a priority queue, so that operations are

first applied to the lower levels of the tree and then propagate upwards.

6.4.2 Competitive Analysis for Net Tree

We extend the proof of the competitive ratio for maintaining a single net to the
case of a net tree. The difference between the proof of net and net tree is that
operations in the net tree can propagate events to other levels of the tree. Similar
to the analysis of competitive ratio for a net, our analysis is based on relating the
number of slack-net operations to the number of slack net-point creation events.
Then, we relate net-point creation to a corresponding optimal operation.

In order to establish Theorem 6.4.1, it suffices to show the following, where n
denotes the total number of operations executed by our slack-net algorithm and n*

denotes the total number of operations performed by the optimal algorithm.

n < (B4 BA3 +4)(B + 3)h*n".

As in the single-net analysis, let n’, ng, n}, nj, and nj, denote respectively
the total number of assignments, net-point creations, net-point removals, point in-
sertions, and point deletions performed by the optimal net-tree algorithm. Let n 4,

nc, Ng, ny, and np denote corresponding quantities for our slack net-tree algorithm.
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First, we consider the total number of insertions (n;) and deletions (np). In
contrast to the analysis of a single net, the points at level ¢ of the slack net tree
may differ from those in the optimal tree, and hence insertions or deletions of points
may occur within at various levels within one tree but not the other. Nonetheless,

we can show the following bound on the number of these operations.

Lemma 6.4.2 n; < nj+nc andnp < np+ne.

Proof: Suppose that a point p is inserted at level ¢ of the slack net tree. This
implies that p was added to X@~Y. Thus, the number of insertions is at least the
number of net point creations. Also, if p is inserted at the leaf level, the optimal
algorithm inserts p as well. Thus, the total number of insertions is at most nj + nc.

Similarly, suppose that a point p is deleted from level i. This implies that p is
a net point at level © — 1. If p is deleted from the leaf level, the optimal algorithm

deletes p as well. Thus, the total number of deletions is at most n}, + nc. O

The following is the analog to Lemma 6.3.4, and its proof is similar.

Lemma 6.4.3 ny < AMne+ B\n;.

Proof: Because the radius increase to 47, m, is at most SAng + BA3n; (by

Lemma 6.3.4 and Corollary 6.3.1). O

As in the single-net case, the total number of net-point removals (ng) is
bounded by the total number of net-point creations (n¢). It suffices to bound ne.

As we established in Lemma 6.3.5 for the single-net case, any optimal assignment
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can generate at most one net-point creation. The same applies to each level of the

net tree. This leads to the following observation.

Lemma 6.4.4 FEach optimal assignment is responsible for the creation of at most

h net-points in the slack net.

Proof: Let i denote the highest level of our slack-net tree such that p € P®. It
follows that p € XU, for all j < i. Since p € XU may be assigned to another
optimal net point, an assignment violation may occur at the points having p as
their representative at each such level j. Such points may invoke the reassignment
operation and generate a new net point as a result. By Lemma 6.3.5 there will be
at most one such recovery per optimal neighborhood. In addition, at level ¢, p may
be added to X®. Thus, the total number of net points generated by an optimal

assignment in a net tree is at most h. O

Recall that an optimal neighborhood is crowded if it contains two or more
points of the slack net. As with Lemmas 6.3.6 and 6.3.7 in the single-net case, each
packing-certificate violation results in a strict reduction in the number of crowded

optimal neighborhoods at this level of the tree.

Lemma 6.4.5 After handling a packing-certificate violation, the total number of

net points lying within crowded optimal neighborhoods decreases by at least one.

Proof: Let ¢ denote the level at which the packing-certificate violation occurs. By
the same procedure as in the single-net case, we invoke the removal operation on all
the net points lying within radius r of the affected net point at level i. Recall from
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Lemma 6.3.7 that in order for a packing-certificate violation to occur, there exists at
least one neighborhood that has at least two net points involved in the violation. By
Lemma 6.3.6, the total number of net points of crowded neighborhoods will strictly
decrease by at least one at level 7.

Let us consider the lower and higher levels of our net tree. This handling
operation does not affect any of the levels below ¢ since the net points are removed
from X@ but are still in P®). At the higher levels, some points will be deleted
due to their removal from level :. However, the deletion operation can only reduce
the number of net points. Then, during the reassignment operations (as part of
the removal operation), some net points may be created by recovery case (1(c)) or
creation case (2(a)) of Lemma 6.3.8. However, these do not increase the number
of net points in crowded neighborhoods. It then invokes the insertion operation on
the next higher level. Whenever a point is inserted, the point searches nearby net
points first. It becomes a net point only if there is no net points nearby (that is,
within distance 4r). Thus, the insertion operation does not create a net point in
already crowded neighborhoods.

Thus, we have the desired bound. O

This shows that, in the absence of optimal assignments, whenever we process
a packing-certificate violation, the total number of net points of crowded neighbor-
hoods strictly smaller. Since each crowding event can be charged to an optimal

assignment, we have the following.

Corollary 6.4.1 The total number of packing-certificate violations is at most h-n%.
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Now, we consider all possible reasons that a net-point creation may occur
within the slack net tree. The analysis is essentially the same as in Lemma 6.3.8,

but there is an increase by a factor of h due to propagation.
Lemma 6.4.6 nc < (8+3)h*-n’ +ns+h-n}.

Proof: Let us consider case 1(c) first. A net point can be removed only as a result
of a packing-certificate violation or the explicit deletion of a point. Suppose that at
some level, the jth packing-certificate violation occurs. Then, for some k;, 5 + k;
distinct net points resulted in this violation. Since the handler removes at most 5+4-k;
times h net points, by Lemma 6.3.5, at most (8 + k;)h net points will be recovered.
By Corollary 6.4.1 the sum Zj k; is at most h - n%. Thus, the total number of
net-point creations due to case 1(c) is at most > (8 +kj)h < (8+1)h* - nj.

For case 2(a), the number of net point creations is clearly at most ng,. For
cases 1(a), 1(b), and 2(b), the total number of net-point creations is at most h - n’,
h-n},, and h-n%, respectively, since each operation at level 7 can propagate to each

of the other h levels of the tree. Thus we have

ne < (B+DR*-nl+nh+h-ni+h-nh+h-nk

< (B+3)R* -0l +ns+h-nk.

We now summarize the results of this section to obtain the desired competitive

ratio.
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= nNa + n¢g + ng + np + ng

< ng + 2nc + np + ng

< (B0 + (BN +BN)ne) + 2n0 + (np+ne) + (nf+ne)

< BN+ DR + (BN BN +4) ((B+3) WPy +nE +h-np) + nj
< (BX* 4 BN+ 4)(B + 3)h*n*

This completes the proof of Theorem 6.4.1.
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Chapter 7
Conclusions

In this dissertation, we have explored the design of data structures for storing dy-
namic point sets in multidimensional spaces. Our particular focus has been on struc-
tures that are useful in applications involving geometric approximations in spaces
of relatively low dimension. We have considered dynamics both from the classical
perspective of inserting and deleting individual points and in a kinetic context where
points move over time. In this chapter, we will summarize the main results of the

dissertation and will point to possible directions for future research.

The Quadtreap: In Chapter 3 we introduced a simple dynamic data structure,
called the quadtreap, for storing multidimensional point sets. This data structure
supports efficient insertion, deletion, and query processing. Because it is possible to
update internal node weights efficiently, it is the first dynamic data structure that
can answer approximate range counting queries. This data structure is a random-
ized, balanced variant of a quadtree data structure. The tree is locally restructured
through an operation called promotion. When inserted, points are assigned random
priorities, and the tree is restructured as if the points had been inserted in priority
order.

The quadtreap has logarithmic height (with high probability), which makes it

is possible update node weights efficiently. Given a set of n points in R?, a quadtreap
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storing these points has space O(n), and supports insertion in time O(logn), and
deletion in time O(log”n). It also answers approximate range counting queries in
time O(logn + (%)d_l), when the point weights are drawn from a commutative
group.

There are number of interesting topics for future research. One such question
is whether the O(log®n) time bound on deletion is really tight, or is it merely an
artifact of our analysis. Even if the bound is tight in the worst case, the worst-case
involves a particularly bad substructure of parent-child relationships to be present,
and thus it cannot affect all deletions. Indeed, we showed that the running time
is O(logn) in expectation if a random point is deleted. This raises the question of
whether is possible to modify the tree’s definition to achieve O(logn) deletion time,
perhaps by avoiding occurrences of this bad substructure.

Another shortcoming of the data structure is that our best query bounds for
approximate range counting rely on the assumption that node weights are drawn
from a group, since subtraction of weights is needed. For example, range queries
over idempotent semigroups (such as boolean-or or maximum) in which subtraction
is not possible, are less efficient. Is it possible to improve the quadtreap’s query
time for general semigroups?

As we mentioned, the quadtreap is a generalization of the treap data structure
of Seidel and Aragon, and therefore it is randomized and its running times hold in
expectation (with high probability). Is there a deterministic data structure that
supports all essential capabilities of the quadtreap? For example, such a structure
might be based on height-balancing (thus generalizing AVL trees) or through rules

194



for local substructures (thus generalizing red-black trees).

The Splay Quadtree: In Chapter 4 we introduced another variant of a quadtree
data structure, called the splay quadtree, which can be thought of as a self-adjusting
version of the quadtreap. It can also be thought of as a multidimensional general-
ization of the well-known (1-dimensional) splay tree. The self-adjusting nature of
the data structure means that it can adapt to achieve optimal performance when
the access pattern is highly skewed. When a node is accessed, it is brought close
to the root through a series of promotions. As a consequence, frequently accessed
nodes tend to reside near the root of the tree, and so can be accessed more rapidly.
We proved that the splay quadtree is efficient in amortized sense, meaning the
average efficiency of a series of operations. We showed that, given a splay quadtree
with n points, the amortized time to splay a node is O(logn), and the amortized
time to insert or delete a point is also O(logn). We also presented multidimen-
sional generalizations of many of the results of standard splay trees in 1-dimensional
space, including the Balance Theorem, the Static Optimality Theorem, the Working
Set Theorem, and variants of the Static Finger Theorem for a number of different
proximity queries, including box queries (which generalize point-location queries),
approximate nearest neighbor queries, and approximate range counting queries.
Standard splay trees are known to satisfy two other important access prop-
erties, the Dynamic Finger Property and the Scanning Property. The Dynamic
Finger Property states that total access time can be bounded by the sum of log-

arithms of the distances between consecutively accessed elements. The Scanning
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Property states that all items of the tree can be accessed in any order in O(n) time.
An important question is whether the splay quadtree also satisfies these access prop-
erties.

The quadtreap and splay quadtree are both examples of regular decomposi-
tions, which means that the decomposition elements (quadtree boxes here) are fixed,
independent of the input point set [94]. This is in contrast to non-regular hierarchi-
cal decompositions, such as kd-trees, where the splitting hyperplanes are functions
of the point coordinates. Non-regular decompositions have the practical advantage
that they can generate tighter approximations to the point set. One direction for
future research involves the question of whether there exist data structures that
possess the same properties as quadtreaps and splay quadtrees, but are based on

non-regular decomposition.

Updating Well-Separated Pair Decompositions: In Chapter 5 we proposed
an algorithm for maintaining the well-separated pair decomposition (WSPD) for a
dynamic points set, where point insertions and deletions are allowed. Given an n-
element point set, this structure concisely represents quadratically many pairs using
only O(n) space, subject to a given fixed separation factor. WSPDs have many
applications in problems involving distances determined by pairs of points.

Our algorithm allows for insertion and deletion of points into the structure.
In particular, these updates are output-sensitive, meaning that the time to insert
and delete points depends on the number of changes to the decomposition. Given

a dynamic set P, our algorithm maintains a WSPD for P in the L., metric that

196



supports both insertion and deletion in O(logn + m) time, where where m denotes
the number of newly created (resp., deleted) pairs in the case of insertion (resp.,
deletion). (The running time is amortized in the case of deletions.) For the sake of
efficiency, the specific WSPD structure we maintain is based on a stronger notion of
well-separatedness than the standard WSPD. Nonetheless, we show that the size of
our strong WSPD is at most a constant factor larger than the size of any standard
WSPD.

An obvious question for future research is whether it is possible to main-
tain WSPDs as efficiently without the need of the stronger notion of separation.
WSPDs have numerous applications, for example, computing approximations to
the Euclidean minimum spanning tree, constructing geometric spanner graphs, and
building distance oracles for spatial networks. For the future research, it would be
interesting to see how to incorporate our algorithm into these applications, in order

to apply them to dynamic point sets.

Net Trees for Points in Motion: In Chapter 6 we showed how to maintain two
fundamental metric-space structures, nets and net trees, for a set of points in motion
over time. We assume that motion is presented incrementally over a series of discrete
time steps by a black-box, that is, a function that specifies the locations of the points
at each time step. We presented a novel model for black-box motion, called the
observer-builder model. We presented efficient online algorithms in this model for
maintaining the net tree under incremental motion. We established the efficiency

of our online algorithms by providing an upper bound on the competitive ratio of
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the communication cost of our algorithm, that is, the worst-case ratio between the
communication costs of our algorithm and any other algorithm. Assuming that the
points are in a space of constant doubling dimension (e.g., Euclidean of constant
dimension), we show that our algorithms achieve a competitive ratio of O(1) for the
maintenance of a net and O(log® ®) for the net tree, where ® is the aspect ratio of
the point set (the ratio between the maximum and minimum interpoint distances).

Our original motivation for proposing this model arose from our interest in
producing an efficient implementation of a network embedding problem based on a
Markov-chain Monte-Carlo (MCMC) approach. When applied to point sets, MCMC
algorithms such the Metropolis-Hastings algorithm can be simulated by a black-box
motion model. For example, algorithms for computing latent space embeddings of
networks are solved by application of MCMC methods [66]. One possible topic for
the future research is to apply our net tree algorithms to the efficient computation of
latent space embeddings of networks through the use of MCMC algorithms. Another
interesting direction for future work would be to extend our results on nets and net
trees to other the maintenance of other proximity structures in the black-box model,

such as WSPDs, minimum spanning trees, and Delaunay triangulations.
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