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The hrp pathogenicity island (PAI) of Pseudomonas syringae encodes a type 

III secretion system (TTSS) that translocates virulence proteins, called effectors, into 

plant cells.  The whole array of effectors of different P. syringae stains and their 

activities inside the host are not known.  Furthermore, the manner in which effectors 

are selected for secretion, and how the process is regulated are not clear in P. 

syringae.  This study identified a novel effector from P. syringae pv. syringae Psy61 

using a genomic screen.  The effector was a 375 aa protein of 40.5 kDa that was 

  



designated HopPsyL.  A hopPsyL::kan mutant of Psy61 exhibited strongly reduced 

virulence in Phaseolus vulgaris cv. Kentucky Wonder, but did not appear to act as a 

defense response suppressor.  The ectopically expressed gene reduced the virulence 

of P. syringae DC3000 transformants in Arabidopsis thaliana Col-0.  HopPsyL 

appears to be a novel TTSS-dependent effector that functions as a host-species-

specific virulence factor in Psy61.  In addition, this study reports that TTSS-

dependent effectors are subject to the proteolytic degradation by Lon that appears to 

be rate-limiting to secretion.  TTSS-dependent secretion of these effectors could be 

detected from the Lon mutants.  This study found that a primary role for chaperones 

in P. syringae appeared to be protection of effectors from Lon-mediated degradation 

prior to secretion.  Distinct Lon-targeting and chaperone-binding domains were 

identified in at least one effector.  The results imply that Lon is involved at two 

distinct levels in the regulation of the P. syringae TTSS: regulation of assembly of the 

secretion apparatus and modulation of effector secretion.   Interestingly, degradation 

of P. syringae effectors was also retarded by the presence or expression of the P. 

syringae TTSS.  The protection from Lon-mediated degradation was not due to the 

assembly of the TTSS.  Rather, the results suggest the existence of a stabilizing factor 

harbored within the hrp cluster.  This study proposed that this factor functions as a 

general chaperone for type III secretion in P. syringae.   
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Chapter 1: Introduction 

 

Bacterial pathogens use very intricate and elegant methods to manipulate their hosts. 

These pathogens produce a wide variety of virulence factors that promote 

colonization and disease in the host, thereby allowing bacteria to multiply and spread.  

A common theme among bacterial pathogens is the secretion of these virulence 

factors to maximize their influence on the host.  Thus far, five different secretion 

pathways have been discovered for the transport of factors out of the bacterial cell 

[157].  Among them, the Type III Secretion System (TTSS) is one of the major export 

mechanisms for virulence factors in Gram-negative pathogens.  TTSS’s are used to 

inject proteins directly into host and manipulate defense responses by interfering with 

cell signaling [40, 86].  TTSS are closely related to the apparatus for flagellar 

synthesis, and are commonly found among Gram-negative bacteria that cause disease 

on both animals and plants [40, 86].  TTSS contribute to pathogenicity [40, 86], but in 

some cases they were shown to be necessary for symbiotic relationships with hosts 

[157].  Pathogens that depend on TTSS for virulence are usually incapable of causing 

disease if the TTSS is absent or malfunctioning [40, 86, 89] presumably because they 

cannot deliver bacterial proteins into the host cell. 

 

The current understanding of TTSS involves a translocation complex that traverses 

the bacterial membrane, produces a needle that can pierce the host cell membrane, 

and directly inject proteins, called effectors, into the cytoplasm of the host cell [86] 
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(See Figure 1-1).  These delivered proteins can aid the bacterium in the evasion of 

defense responses, or alternatively in permitting the leakage of nutrients from the host 

cell.  Although much effort is currently being placed in discovering the roles of some 

of these effectors and how they influence the host (see [26, 32, 42, 94] for reviews), 

many questions persist about the mechanisms of TTSS.  For example, it is still not 

known what signals are used to target an effector to the secretion port, or once it is at 

the port how the effector is actually loaded into the system, or what triggers the 

system to physically transfer the effector into the host.  Furthermore, although it is 

known that effectors interact with a cytosolic chaperone in the bacterium, it is not 

known how this interaction facilitates secretion.  This study began as an attempt to 

understand some of the early steps in the selection of substrates for TTSS by using 

Pseudomonas syringae as a model system.  The project later matured into a study of 

the impact on the TTSS of proteolytic degradation of effectors, and the specific 

question of why effectors interact with specific chaperones.     

Structure of type III secretion systems 

 

Structurally, the TTSS shares similarity to the inner membrane components of 

flagellar biosynthesis and to the pore-forming protein involved in filamentous-phage 

assembly [40, 86].  The system is thought to span the inner and outer membrane 

analogously to the flagellar basal body [101] and form a long needle that protrudes 

out of the bacterium and into the host [40, 86] (See Figure 1-1).  For two species 

(Salmonella and Shigella spp) the structure of the TTSS needle-complex (NC) has  
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Figure 1-1.  The type III secretion system of P. syringae injects virulence factors 

into host cells.    

A schematic representation of the needle complex based on electron-microscopy 

images (see inset), with several ring structures that span the inner and outer 

membranes. The indigo protrusion is the 'needle' filament, which is thought to engage 

a bacterial pore-forming complex that can penetrate the plant cell wall and become 

lodged in the host cell membrane. The hrp/hrc gene cluster is portrayed below with 

the genes colored to represent their proposed location in the TTSS structure.  The 

virulence factors/effectors wait to be transported through the export machinery.  

Some effectors may be bound by chaperones during this wait.  This figure was 

adapted with permission from [180]. 
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been visualized using electron microscopy [21, 110, 111].  It was characterized as a 

cylindrical structure composed of at least four substructures: (i) two inner membrane 

rings 40 nm in diameter that anchor the whole structure, (ii) two outer rings 20 nm in 

diameter which are in close contact with the peptidoglycan and outer membrane, (iii) 

a rod that links the two sets of rings, and finally (iv) a needle-like extension about 80 

nm in length and 8 nm in diameter that protrudes from the base (Figure 1-1). 

 

It is believed that once the system is organized, effectors arrive at the inner membrane 

rings of the TTSS, proceed to be loaded into the central channel of the translocon, and 

are then pushed through the needle out of the bacteria.  This process is similar to what 

is thought to occur during flagellar biosynthesis [132]. There, the basal body forms a 

conduit through which the flagellin monomers can travel unfolded to the distal end of 

the flagellar propeller and elongate the structure [113].  Effectors, too, are thought to 

travel unfolded through the TTSS needle since higher-order protein structures cannot 

be secreted through the system [60].  In addition, studies of TTSS in P. syringae 

provided compelling evidence that secretion must occur through the lumen of the 

needle since effectors were only visible at the tip of the TTSS needle [98, 99].     

 

Effectors are thus called because they can cause an effect in the host.  The variety of 

functions and effects of effectors is beginning to be understood, but appear to involve 

the active suppression of defense reponses, remodeling or rearrangement of the host 

cytoskeleton, and possibly changing the physiology of the host membrane to allow 
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the release of nutrients into the intercellular space [26, 42].  Effectors are divided into 

three functional domains.  The first domain contains the N-terminal secretion signal 

discussed below.  The second domain is the chaperone-binding domain, which is only 

present in the subset of effectors that interact with a cytoplasmic chaperone, also 

discussed below.  The third domain is the activity domain which carries out the 

function of the protein once inside the host cell.  The array of known functions and 

activities of effectors is well covered in other reviews, for example [26, 42].   

Targeting of effectors to the TTSS 

 

Targeting of secretion substrates to the TTSS is only beginning to be understood.  

Despite the increasing number of identified TTSS export substrates, no conserved 

secretion signal has been determined.  So far, two different signals within effectors 

have been identified and shown to be required for proper translocation.  The first 

signal is surrounded by controversy.  This signal was shown to be sufficient for 

export of reporter constructs in Yersinia, Erwinia, and Xanthomonas [7, 9, 145].  

Anderson et al [7] and Mudgett et al [145] propose that the signal is located in the 5’ 

end of the mRNA.  In their experiments, frameshift mutations that altered the 

sequence of the first 15 amino acids, but retained the remainder of the protein intact, 

led to reporter secretion.  They argued that since no conserved protein sequence was 

necessary for secretion the signal was most likely a stem loop structure in the mRNA 

and secretion likely to be co-translational [9], as has been proposed for flagellar 

biosynthesis [104].   However, effector accumulation in the cytoplasm prior to 
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secretion [184] implies that there must also be a mechanism for post-translational 

secretion.  Interestingly, Lloyd et al [124] showed that while frameshift mutations 

drastically reduced secretion of the reporter, changes in the mRNA sequence, but not 

in the amino acid sequence, had no effect on reporter secretion [124].  They proposed 

that the signal is contained in the N-termini of effectors and it consists of an 

amphipathic helical domain residing in the first 15-20 amino acids.  Furthermore, 

they show that even a synthetic amphipathic helix could drive secretion of a reporter 

[125].  Thus, it is possible that both targeting mechanisms are not mutually exclusive, 

but may act simultaneously.  Whether peptidic or mRNA, the signal contained in the 

first 15-20 amino acids can be recognized by heterologous TTSS, since plant 

pathogens can secrete mammalian pathogen effectors and vice versa [7, 77, 144, 164].   

The second signal is between residues 20-70 and is dependent on the presence of a 

chaperone [34], as will be discussed in greater detail below.  

 

The process of type III secretion 

 

Perhaps as a consequence of the undefined nature of the secretion signal, the manner 

in which the secretion signal is relayed to the translocation apparatus is also 

unknown.  How an effector is mounted to the secretion port and how it is pushed 

through the system are questions that remian unanswered.  From the knowledge 

gathered in flagellar biosynthesis, the soluble components of the TTSS could be 

predicted to play an important role in substrate recognition and secretion.  For 
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example, FliI forms a complex with FliH that interacts with export substrates bound 

by chaperones [143] (Figure 1-2).  This complex can further interact with FlhA, and 

FlhB, two inner membrane components of the basal body of the secretory apparatus 

to provide the initial docking of the substrate-chaperone complex [204] [183] (Figure 

1-2).  As this occurs, FliI most likely hydrolyzes ATP [58], a process that could 

energize the initiation of translocation, as well as a conformational change that 

ultimately dismounts the soluble complex from the membrane.  Dismount would 

leave the pore open for secretion of other substrate complexes.  FliK, which has been 

implicated in substrate selection and as a switch mechanism for substrate specificity 

can be determined, also interacts with inner membrane components  

[106, 142].  The process appears to be similar for the virulence TTSS since there are 

homologs to most of the soluble components and inner membrane proteins of 

flagellar biosynthesis, excluding FliK (see Table 1-1).  In addition, the ATPase of 

Yersinia pestis, Shigella flexneri and enteropathogenic Escherichia coli have been 

shown to be also capable of interacting with  inner membrane components or 

chaperone-effector complexes [65, 96, 102].       

The role of chaperones in TTSS 

 

Recently, many studies have dealt with the identification and characterization of 

chaperones in TTSS.  Chaperones have been shown to be necessary for secretion of 
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Figure 1-2.  The process of substrate docking and mounting in the flagellar 

TTSS. 

FliJ acts as a chaperone for an export substrate.   The FliJ—substrate complex 

interacts with the cytoplasmic components FliI (the ATPase) and FliH (the ATPase 

regulator).  The whole complex interacts with inner membrane components FlhA and 

FlhB, to dock the FliJ—substrate complex on the TTSS.  This interaction most likely 

induces ATP hydrolysis by FliI, which could provide the necessary energy for 

translocation.  After the substrate has been pushed through the system, FliJ is released 

and the FliI—FliH complex is prepared to energize the translocation of other 

substrates. 

 

9 
 
 



 

 

10 
 
 



Table 1-1.  Type III secretion components of P. syringae TTSS are conserved 

with the Yersinia pestis TTSS and flagellar biosynthesis apparatus. 

Pseudomonas 
syringae Yersinia pestis Flagellar 

biosynthesisa Cellular location 

HrcC YscC  Outer membrane 
(OM)  

HrpQ YscD FliG Inner membrane (IM)
HrcJ YscJ FliF IM/OM 
HrpE YscL FliH Cytoplasmic 
HrcN YscN FliI Cytoplasmic/ATPase 
HrcQ YscQ FliN IM 
HrcR YscR FliP IM 
HrcS YscS FliQ IM 
HrcT YscT FliR IM 
HrcU YscU FlhB IM 
HrcV YscV FlhA IM 
 YscW  OM lipoprotein 
HrpD YscK  Cytoplasmic 
HrpO YscO  Secreted 
HrpP YscP  Secreted 

 YscF  Secreted, needle 
subunit 

 YscE  Cytoplasmic 
 YscG  Cytoplasmic 
HrpB YscI  Secreted 
 YscX  Secreted 
 YscY  Cytoplasmic 
HrpA   Secreted 
HrpF   Cytoplasmic 
HrpG   Cytoplasmic 
HrpT   OM 
HrpK   Cytoplasmic 
HrpL   Cytoplasmic 
HrpJ   Cytoplasmic 
HrpV   Cytoplasmic 
HrpR/HrpS   Cytoplasmic 
HrpW    
HrpZ   Secreted 
   IM 
  FliO IM 
  FliM IM 
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their corresponding effector [59, 156].  The reason for this necessity is not clear.  In 

some instances, the chaperone was shown to bind to the translocation domain and 

thus permit secretion.  The chaperone is thought to interact with a signal contained 

within the N-terminus of the effectors.  The interaction between the chaperone and 

the effector was sufficient to drive secretion of an effector, even in the absence of the 

first secretion signal [34].  These results imply that there must be a recognition step 

after the first signal has been processed.  This fact, along with some evidence that 

some chaperone-effector interactions form similar structures (see below) led to the 

hypothesis that the TTSS can recognize three-dimensional structures as the signal for 

secretion [20].  Secretion using this signal, however, is absolutely dependent on the 

presence of the chaperone [24].  Some effectors are not secreted at all in the absence 

of their corresponding chaperone even when the first signal is present [117, 155], thus 

underscoring the importance of chaperones in the process of secretion. 

 

An alternative manner in which chaperone may be necessary for secretion is by 

maintaining effectors in a “secretion competent” structure.  For instance, two 

chaperones were shown to form coiled-coil motif with their substrates that prevents 

higher order structures that might “clog up” the secretion port [19, 179].  

Interestingly, the manner in which both of these chaperones interact with their 

corresponding effector was very similar [20].  These results led to the exciting 

hypothesis that the chaperone-effector complex would form a three-dimensional 

structure that could act as the elusive secretion signal [20].  This hypothesis was 

similar to the mechanism in which flagellar components are recognized and secreted 
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[83, 132]. However, it does not seem that all chaperone-effector interactions form the 

same structure [148].  Moreover, the crystal structure of two type III effectors not 

associated with chaperones, AvrB and AvrPphB, do not overlap with any of the 

structures mentioned above [115, 205].  Therefore, although this hypothesis provides 

a novel concept in chaperone function, it may not fully describe the phenomenon. 

 

Another way in which chaperones have been implicated in secretion is through the 

regulation of transcription of effector genes.  For example, SicA has been shown to be 

required for the expression of sopE, a Salmonella effector [186].  SicA was later 

shown to act as a co-factor of InvF (an AraC/XylS family activator) and drive the 

expression of sigDE [49, 50].  SycH in Yersinia and FlgN from flagellar biosynthesis, 

in contrast, are not transcription co-factors; instead, they have a positive impact on 

effector gene transcription by sequestering transcriptional inhibitors YscM1, YscM2, 

and FlgM.  Upon binding of the chaperone to these negative regulators, secretion 

through the TTSS is possible and thus the repression is relieved [4, 30].  Lastly, 

chaperones may be necessary for secretion by virtue of their stabilizing role on 

effectors.  By binding to their respective effector, chaperones can sequester and 

protect it from proteolysis, resulting in higher levels of effector [44].  A higher 

abundance of effectors in the cytoplasm might result in a greater chance of secretion, 

thereby increasing the levels of effectors in culture supernatants.   

 

Paradoxically, as more data have been gathered about the function of chaperones, 

their exact roles are becoming harder to define.  For example, at first chaperones were 
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proposed to inhibit premature aggregation and folding of effectors in the bacterial 

cytoplasm to prevent possible enzymatic activity and maintain effectors competent 

for secretion [59, 156, 179].  However, later studies showed that the enzymatic 

activities of different effectors were still detectable even in the presence of the 

chaperone [20, 130], challenging the notion that effectors do not fold in the 

cytoplasm.  Another contradiction was found when YopE was secreted in the absence 

of its chaperone only when its chaperone-binding domain was deleted, indicating that 

somehow the chaperone was necessary for relieving an inhibition of secretion [24].  

Therefore, there is not one universally recognized function for chaperones, but rather 

it is generally accepted that their importance is based on multiple functions.    

The notion of hierarchical secretion from the TTSS 

 

What has become recently apparent, however, is that chaperones are not only 

involved in permitting an effector to be secreted, but also in determining when that 

effector is produced and/or secreted [59, 156].  With these data a model was created 

that proposes an ordered sequence for effector secretion, and states that chaperones 

are responsible for establishing this hierarchy [24].  Hierarchical secretion through the 

TTSS was not a novel concept.  For flagella, this ordered secretion had been proposed 

to explain how the system changes from secreting membrane components, to filament 

components and finally to placing the cap on the flagellum [112, 196].  In pathogens, 

the importance of hierarchical secretion lies in the idea that in order to invade and 

colonize a host, a highly regulated order of events must occur.  For example, a 
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pathogen initially might want to induce host cell death or leakage, but does not want 

secondary and delayed defense alarms to be activated.  

 

The fact that chaperones were also involved in a feedback regulation of effector gene 

transcription and other methods of posttranscriptional regulation supported the model 

of hierarchical secretion [4, 29, 50, 198].  It appears, then, that chaperones can dictate 

when an effector is transcribed, translated, and whether the TTSS apparatus 

recognizes and secretes the effector [20].  This model, however, does not take into 

account the important observation that chaperones can stabilize effectors in the 

bacterial cytoplasm, nor does it deal with the fact that most effectors in plant 

pathogens are not associated with chaperones.   

Type III Secretion and Pathogenesis of Pseudomonas syringae  

 

Pseudomonas syringae is a fluorescent pseudomonad in the γ-subgroup of 

proteobacteria that facultatively infects a wide range of plant species.  A typical 

symptom of P. syringae infection is an initial “water soaking” (darkening of the 

tissue) at the site of infection (indicative of altered membrane physiology) followed 

by slowly developing programmed cell death, and in the some cases, a spreading 

chlorosis (yellowing of the tissue as chlorophyll is broken down) [17, 122].  Most 

agriculturally important plant species are susceptible to at least one P. syringae strain.  

However, individual P. syringae strains usually have a very limited host range and 

only cause disease in a small subset of plant species.  Some strains can only infect a 
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few varieties of a single plant species [82]. 

 

P. syringae occurs naturally on plant surfaces, and becomes pathogenic if the bacteria 

invade the intercellular space of the leaf mesophyll of susceptible plants [82, 122].  

This invasion is aided by wounding and leaf wetting [134].  Although not much is 

known of the molecular interaction between the bacterium and the plant cell, it 

appears that the bacterium adsorbs to the host cell surface, multiplies, and begins to 

produce virulence factors that contribute to symptom formation [134].  Common 

virulence factors of P. syringae strains are type III effector proteins [87, 100], 

extracellular polysaccharides [118, 165], derivatized peptide exotoxins [16, 74], and 

several plant growth hormones and cytokinins [67].  Over several days, bacterial 

populations in infected tissue can reach as high as 109 cells / g fresh weight of leaf 

tissue, but bacterial cells are found only in the intercellular spaces of the tissue.   

 

Resistance or susceptibility of a plant host to a specific P. syringae strain depends on 

the timing of the plant defense response to the initial colonization by the bacterium.  

In a susceptible plant, recognition of the pathogen and response to the infection 

occurs slowly [87].  As a result, the bacterial population is able to spread into new 

tissue before the cellular defense responses of colonized cells are activated, thus 

enabling the pathogen to spread continuously.  Eventually, large areas of leaves and 

other tissues become infected and necrosis develops due to a slowly induced 

oxidative burst and programmed cell death in the host [47, 54].  In contrast, a resistant 

plant is able to initiate a rapid cellular defense response during the initial colonization 
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and is able to prevent the spread of the infection.  The bacteria elicit a cascade of 

cellular defense responses in the cells of the resistant plant within 1-2 h that result in 

an oxidative burst and later programmed cell death (PCD).  PCD typically develops 

within 12 hours of infection [92, 109], a phenomenon called the hypersensitive 

response (HR).   

 

When the pathogenicity of P. syringae was first characterized, a genetically clustered 

set of transposon mutations were isolated that abolished virulence [121].  This region 

was called the hypersensitive response and pathogenicity (hrp) cluster because it was 

necessary for both the induction of HR and for disease [87, 120].  This cluster was 

shown to be sufficient to enable non-pathogenic bacteria to elicit a cellular response 

in plants [85].  The hrp cluster includes 7 operons containing 26 genes that encode a 

TTSS and its dedicated regulatory system.  Among TTSSs of mammalian pathogens, 

the Yersinia Ysc proteins are the closest homologs to the conserved Hrc products of 

the hrp cluster (see Figure 1-1 and Table 1-1).   Nine of these twelve genes are 

conserved components of all TTSS necessary for proper assembly and secretion 

through the translocation apparatus [23]. 

   

Expression of the P. syringae TTSS is environmentally regulated in such a manner 

that it is activated during pathogenesis [87].  Within the hrp cluster three genes, hrpR, 

hrpS, and hrpL positively regulate the expression of genes responsible for plant 

pathogenesis.  Previous work demonstrated the interaction between HrpR and HrpS 

activated the expression of hrpL in yeast models [91, 199].  In turn, it has been shown 
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that the activation of hrpL then induces transcription of all other hrp operons 

including, hrpK, hrpJ, hrpU, hrpC, hrpA, hopPsyA, other genes in the hrp PAI, and 

effector genes dispersed throughout the genome [201] [33, 62, 76, 206].  HrpL is an 

alternative sigma factor related to FliA, the alternative sigma factor involved in 

expression of class III flagellar genes [199] [153].  Promoters positively regulated by 

HrpL are highly conserved between P. syringae strains.  The HrpL-dependent 

promoter consists of a 12 base pair sequence, are critical to the formation of the 

binding motif of HrpL-dependent promoter [199].  According to this model, genes 

involved in the pathogenesis process appear to be under the control of a single 

transcription factor.        

 

Among the negative regulators of the P. syringae TTSS are Lon protease and HrpV.   

Lon is involved in the degradation of HrpR, and therefore, the assembly of the 

secretion apparatus [25].  Lon mutants are capable of hypersecreting effectors and 

eliciting plant defense responses in about one half the time required for wild-type 

cells.  Conditions that mimic the environment in plant tissue (amino acid starvation) 

suppress Lon-mediated degradation of HrpR, which would allow the HrpR/HrpS 

complex to form.  Interestingly, Lon has also been implicated in the regulation of 

TTSS from the SPI-1 system in Salmonella typhimurium [22, 182], suggesting that 

this mode of negative regulation might be conserved among Gram-negative 

pathogens with a TTSS.  HrpV also negatively regulates hrp expression, but this 

mechanism remains unknown [161].   
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Type III effectors and secretion in Pseudomonas syringae  

 

Because the main role of the P. syringae TTSS is to translocate effector proteins 

directly into the plant cell host cytoplasm, identification of effectors is of great 

importance.  However, finding P. syringae effectors has been comparatively tricky 

because they are difficult to detect by biochemical methods [88, 188, 203] or by using 

molecular reporters. Thus far the only reporter useful to detect translocated effectors 

in P. syringae strains is the avirulence domain of AvrRpt2 [144], which itself is an 

effector.  The ability to identify effectors from various strains of Pseudomonas 

syringae would provide tools to characterize common and necessary factors for 

pathogenesis, and would also provide a way to study the manner in which pathogens 

adapt and evolve according to the hosts they can infect.   

 

Recently, bioinformatics and genetic methods for identifying effectors have revealed 

many novel candidate effectors (see [26, 39, 73] for review).  Analyses of the 

genomes of two P. syringae strains have indicated that individual strains encode a 

large number of effectors, at least five times more than mammalian pathogens.  By 

searching for HrpL-dependent promoters and proteins that fit a set of effector 

characteristics, the genome of P. syringae DC3000 was found to encode 58 known or 

likely effectors [39, 73, 158] and B728a is predicted to express at least 30 probable 

effectors [73].  The variety of effectors produced by each P. syringae strain could 

reflect the complex interactions with plant cells, which have cell walls, chloroplasts, 
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large vacuoles, or alternatively be due to the unique requirements to infect various 

hosts.  An interesting result from the genomic analyses of P. syringae was that the 

genes for the vast majority of effectors were not associated with genes for a candidate 

chaperone [39, 73].  However, as in other species, the known chaperones found in P. 

syringae strains were necessary for the secretion of effectors [14, 189, 193].   

Statement of Purpose 

 

When I began my research at Dr. Steven Hutcheson’s laboratory five years ago, I was 

intrigued by the controversy surrounding the TTSS export signal.  Two studies had 

been published suggesting that the secretion signal for effectors of mammalian and 

plant pathogens might be contained in the mRNA [7, 9].  Many investigators were not 

convinced by the data, and a later study showed that the mRNA sequence could be 

altered without effect on secretion of effectors, but the the proper amino acid 

sequence was absolutely necessary [124].  From studies demonstrating that 

mammalian and plant pathogen effectors could be secreted from heterologous TTSS 

[7, 77], it was proposed that the secretion signal must be at least partially conserved 

between all effectors.  However, no consensus sequence could be detected among the 

known effectors.   It was possible that the number of effectors studied until then had 

been too limited to form a large enough statistical group.  Thus, in order to determine 

whether there existed a conserved secretion signal in Pseudomonas syringae effectors 

that could be extrapolated to other TTSS, I proposed to find and characterize novel 

effectors in Psy61, and identify possible sequence and/or feature similarities that 
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could act as the candidate secretion signal.  The first part of this dissertation describes 

the studies carried out for this purpose. 

 

The second part of my study, discussed in Chapter 3 and 4, was focused on 

determining the mechanisms of early substrate selection for TTSS in Pseudomonas 

syringae.  When I first arrived in Dr. Hutcheson’s laboratory, it was known that 

secretion by P. syringae appeared to be more tightly regulated than in mammalian 

pathogens [89], but the reasons for this tight regulation were not understood.  The 

initial observation that a Lon protease null mutant of P. syringae could hypersecrete 

proteins (Lisboa, K. and S.W. Hutcheson, unpublished results) prompted me to study 

whether some of the hypersecreted proteins were TTSS effectors, and if so, the 

manner in which the tight regulation of secretion was bypassed.  Given that proteases 

degrade proteins, I was interested in determining if Lon protease was directly 

responsible for the degradation of effectors in P. syringae, and in this manner 

regulated secretion through the system.  Furthermore, the roles of chaperones in 

secretion of effectors were beginning to be elucidated for other TTSS, but not in P. 

syringae.  One of these roles was the capacity to stabilize effectors in the bacterial 

cytoplasm.  Therefore, I investigated whether the role of chaperones in the hrp TTSS 

was to protect the effectors from Lon-mediated degradation to allow secretion. 

 

As a result of the initial studies delving into the roles of Lon in the regulation of 

TTSS from P. syringae, I discovered that effectors were stabilized when the hrp 

regulon was expressed.  These results led me to explore the possibility of a 
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generalized stabilizing factor that could prevent Lon mediated degradation of 

effectors, similarly to chaperones, and thereby allow secretion.  The interaction 

between this generalized factor and effectors could also explain how and when 

substrates were selected for secretion in the hrp TTSS.  These studies are discussed in 

chapter 4.  
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Chapter 2: Identification of a novel Pseudomonas syringae 

Psy61 effector with virulence and avirulence functions by a 

HrpL-dependent promoter trap assay. 

 

As published in Mol Plant Microbe Interact, 2004. 17(3): p. 254-62. 

Introduction 

Identification of the effectors produced by P. syringae strains was of high priority to 

clarify the secretion signal guiding effectors to the TTSS, and to understand P. syringae 

pathogenesis in general. This task, however, has been comparatively difficult.  Initially, 

genomic libraries of one strain were screened for avr genes that alter the host range of 

another strain [73, 114, 178, 191].  The products of avr genes were subsequently shown 

to encode translocated effector proteins [69, 119, 159].  In some cases, proteins detected 

in the growth medium have also been found to be secreted by the TTSS [203].  A 

randomly generated fusion to a truncated effector lacking the native secretion domain has 

also been used to identify effectors [76].  Most recently, in silico approaches were used to 

screen the genome of P. syringae pv. tomato DC3000, a pathogen of tomato and 

Arabidopsis thaliana, and the bean pathogen P. syringae pv. syringae B728a for genes 

that match a set of postulated effector characteristics [158] or carry conserved promoter 

sequences unique to the hrp regulon [62, 206].  These studies indicate that P. syringae 

strains carry numerous effector genes that are distributed throughout the genome as 

individual loci [62, 76, 108, 158, 206], clustered with the pathogenicity island (PAI) as 
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apparent “integron-like” modules [5, 33, 52, 89] and/or are found in plasmid-borne gene 

clusters [11, 97].   

 

Although these approaches have established catalogs of the effectors secreted by a few P. 

syringae strains, the effectors produced by most strains are still uncharacterized. Thus, 

the effectors that define the host range of the majority of strains have yet to be 

established. Genome analysis of multiple strains is limited by its cost, and most other 

previously employed methods are laborious.  Due to the limitations of these approaches, 

a more generally applicable method for screening previously uncharacterized P. syringae 

strains for effector genes was developed in our laboratory.  

 

Because the genes for all known or candidate effectors of P. syringae require the 

alternative sigma factor HrpL for expression [62, 201, 206], an inexpensive plate assay 

was devised to identify HrpL-dependent promoter fusions to a promoterless ‘lacZYA 

cassette based on the Lac phenotype of E. coli transformants carrying an arabinose-

inducible hrpL construct, pSHL4K .  The inducible hrpL construct was used to 

distinguish HrpL-dependent promoter fusions, which produce a Lac+ phenotype only in 

the presence of arabinose, from constitutively expressed promoters of other genes.  The 

promoter-trap assay was used to perform a partial screen of the P. syringae pv. syringae 

Psy61 genome. Twenty-two HrpL-dependent promoter fragments were identified (Pak, 

K. Senior Thesis, Sussan, T. personal communication).  These fragments revealed 

promoters for previously characterized hrp PAI operons of Psy61, effector genes 

originally identified in other P. syringae strains, and a candidate gene for a novel 
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effector.  This candidate gene was shown here to produce a translocated effector that is 

necessary for virulence of Psy61 in bean plants but elicits defense responses in other 

plants.  This work has been published in [128]. 

Results 

Identification of ORF54 

From the genomic analysis carried out previously in the lab (Pak, K. Senior Thesis, 

Sussan, T. personal communication), a potential ORF, ORF54, was identified 23 bp 

downstream of the deduced HrpL-dependent promoter (Figure 2-1).  ORF54 was 

preceded by a strong candidate ribosome binding site.  The predicted ORF54, however, 

extended past the end of the initially cloned fragment.  TAIL-PCR [123] and Inverse 

PCR [152] were used to determine the remaining sequence of the ORF.  ORF54 was 

found to encode a leucine-rich (12.8%) 375 aa protein with a predicted molecular weight 

of 40.5 KDa and a predicted pI of 8.74 (Figure 2-1) (Genbank accession number 

AY349161).  The deduced ORF54 product exhibited characteristics similar to other type 

III effectors, including an amphipathic N-terminus, high serine and isoleucine content in 

the first 50 aa, and few cysteines in the polypeptide [76, 158].  Other than an apparent 

chloroplast localization signal and two deduced transmembrane domains (residues 289-

307 and 349-369) in the carboxy-terminal region of the protein, no other similarities to 

the deduced ORF54 product were detected in the databases.   

 

To confirm the expression of ORF54, translational fusions between each open reading  
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Figure 2-1.  Arrangement and Sequence of ORF54. 

 

Sequence of the hopPsyL locus in Psy61.  Bases labeled in bold-type are the candidate 

hrpL-dependent promoter.  The open reading frame is italicized, and the translation is 

underneath.  hopPsyL encodes a leucine-rich (12.8%) 375 aa protein, predicted molecular 

weight of 40.5 KDa and pI of 8.74.  The Genbank accession number is AY349161.  The 

asterisk denotes the stop codon TGA.  Nucleotide sequence was obtained by primer 

walking using synthethic oligonucleotides at the CBR sequencing facility at the 

University of Maryland. 
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      AGGTGGCGGTGGAGTCGGCGTAACGGCAAGACGCCCTTCAGTGACGGACAG  51 
      AGACCTGTCTGTATTGGAACCGCTGTCTGCGTCGGGTCCACCAAGGGGTTT  102 
hopL: TAGGCCATGAGACCCGCCATGAACCCCATTCGTAATTCTCCGTCTTTCATC  153 
 +1:          M  N  P  I  R  N  S  P  S  F  I     
hopL: CCGCCCGCTCATTCGCCGGCAACTCAAGCGCCATCGCCTGGCACTGCGCTG  204 
 +1:   P  P  A  H  S  P  A  T  Q  A  P  S  P  G  T  A  L   
hopL: CATTCTGCAGTGGTCAGTCGCGACAGCAAGGCCGTAGCGCAGCTGCGCAAT  255 
 +1:   H  S  A  V  V  S  R  D  S  K  A  V  A  Q  L  R  N   
hopL: GAGGGCGCGCGCGCGAATAAACTGGATGCACAAGGGCACTCGCCTCTGGAC  306 
 +1:   E  G  A  R  A  N  K  L  D  A  Q  G  H  S  P  L  D   
hopL: GTCCTCGACACTATGCGTGATATCGACGAGCGCAGCCGTTCCAGTCTGCGC  357 
 +1:   V  L  D  T  M  R  D  I  D  E  R  S  R  S  S  L  R   
hopL: ATGGCATTACTGCAGTCACTCAATCCGACTGCGCAACTGGGCTATACCAAG  408 
 +1:   M  A  L  L  Q  S  L  N  P  T  A  Q  L  G  Y  T  K   
hopL: CCCGAGGCTCTGCACGGAACGCCCTGGGGCCTGGAAATCCTGCAGTCGGGA  459 
 +1:   P  E  A  L  H  G  T  P  W  G  L  E  I  L  Q  S  G   
hopL: GCGCTCAGGGGCGGTGTCAATGATGCAAAGGGTGGAACCCAGTCTCTTGAA  510 
 +1:   A  L  R  G  G  V  N  D  A  K  G  G  T  Q  S  L  E   
hopL: GGCAAGGTGTTTTTCTCTGATCGAACGCGGGAGAGTGCGAGCGCTGAAACC  561 
 +1:   G  K  V  F  F  S  D  R  T  R  E  S  A  S  A  E  T   
hopL: ACTCGTGCAGACTTNCGCAGCAAGCCCAGAGTCTATGCGAGAGGNGAGGGG  612 
 +1:   T  R  A  D  X  R  S  K  P  R  V  Y  A  R  G  E  G   
hopL: ATGCATCCCAGCAATGCTTACTCGCGCGCTCAGCAACACCGAATGGCGCAA  663 
 +1:   M  H  P  S  N  A  Y  S  R  A  Q  Q  H  R  M  A  Q   
hopL: GTGATCCTGCATGCGCTGGACAACGGCAGATCGCTCTCCACCAATGAACTC  714 
 +1:   V  I  L  H  A  L  D  N  G  R  S  L  S  T  N  E  L   
hopL: GCGCCATCGATCGAAGTGAGCAGCCCAGAGACGCTGTATATCGAAGGTGCT  765 
 +1:   A  P  S  I  E  V  S  S  P  E  T  L  Y  I  E  G  A   
hopL: GCGTGGCTGCAACGTTTACTGCATGGCGGGTACATCAATAAATTAGGCGGG  816 
 +1:   A  W  L  Q  R  L  L  H  G  G  Y  I  N  K  L  G  G   
hopL: CTCCCATTCATCAATGCCCCACTGGGCGAGCATCTGGACTCACTGAGGTTA  867 
 +1:   L  P  F  I  N  A  P  L  G  E  H  L  D  S  L  R  L   
hopL: CCTGGCTCGATTGAGTTGAGAGTCGATGGGCAGGTAAAGAAGTTACAGGGT  918 
 +1:   P  G  S  I  E  L  R  V  D  G  Q  V  K  K  L  Q  G   
hopL: GAAGAGCTGAATCGCTTTTATCATCAGGCGGCGAGTGAACTGCAGCGTTCT  969 
 +1:   E  E  L  N  R  F  Y  H  Q  A  A  S  E  L  Q  R  S   
hopL: CTGGAAAATGGCAAGGCCCCTTACCTGGGTTTGTTGAACAAGGGAGCCATT  1020 
 +1:   L  E  N  G  K  A  P  Y  L  G  L  L  N  K  G  A  I   
hopL: GTTCCACTGGTGTTCGGTTTCGAGAAAATCAACAACCTGTCTACGCATGAA  1071 
 +1:   V  P  L  V  F  G  F  E  K  I  N  N  L  S  T  H  E   
hopL: ATCAAATTACGCTCGAAAACCACACAGCACTCCTATCAGGATACCGAGCAC  1122 
 +1:   I  K  L  R  S  K  T  T  Q  H  S  Y  Q  D  T  E  H   
hopL: CCACTTGCCGGAAGTCCGGAGAATGGTGGGAAGCTGAAAGAAGTGGAGGTG  1173 
 +1:   P  L  A  G  S  P  E  N  G  G  K  L  K  E  V  E  V   
hopL: CGTAGCCTGGGTGATTTCGCCACATTGTGCCTGGGGTGCGCGGGTCAAGGG  1224 
 +1:   R  S  L  G  D  F  A  T  L  C  L  G  C  A  G  Q  G   
hopL: GCTTTGAATTGCCTACCGACATAGTCGTGCGTGTTAAAGGCCAAAAAAGCC  1275 
 +1:   A  L  N  C  L  P  T  *  
      AAAAAGCTCAGTATCTGGACGCGCAACAAATACAGGCATTTCGGCAAAACC  1326 
      TGGCAGCTCAAGTGGCCGAGCAGGCAAAGGGGAAGCCTCTGGGNACGCTCC  1377 

27 
      CTTTGCATCAGTTGCAGGAGAATCAATTCTCGACTGCGGGCTGGCGATTTA  1428 

 
 



frame in the region and ‘lacZ were constructed in pMLB1034.  Only the fusion to the 

deduced ORF54 expressed appreciable β-galactosidase activity in induced SLR400 

(pSHL4K) (Figure 2-2A).  To verify the deduced size of the gene product, an amino- 

terminal 6xHis fusion to ORF54 was constructed in pQE30.  The predicted 40 kDa 

ORF54 product was detected in immunoblots of DH5α (pLL54Q30) probed with anti-

6xHis antibody (Figure 2-2B). 

 

The ORF54 product is translocated into plant cells.   

The structural and genetic features of ORF54 suggested that this protein could be an 

effector translocated by the hrp TTSS.  To test this hypothesis, translational fusions 

between the amino terminal 46 codons of ORF54 and the carboxy terminus of ‘AvrRpt2 

were created in pDSK519 and tested in the effector translocation assay described 

previously [73, 76, 146].  In this assay, the avirulence domain of AvrRpt2 lacking the 

ability to be secreted (‘AvrRpt2) was fused to the potential secretion signal of the 

candidate effector.  If secretion and translocation of ‘AvrRpt2 occurs, an Rps2-specific 

HR would be observed only in Rps2+ plants.  Pto DC3000 (pLL54AvrRpt2K) expressing 

the fusion elicited a classic hypersensitive response (HR) in RPS2+ A. thaliana (Figure 2-

3A).  The inoculated tissue of rps2 plants developed disease symptoms by 42 h in the 

form of purple, expanding lesions (Figure 2-3A).  A null response was detected when 

these fusions were expressed in the Pto DC3000-A9 (hrpA::Ω) mutant that is incapable 

of type III secretion (Figure 2-3A).  These results are consistent with the TTSS-dependent 

translocation of the ORF54 product into plant cells and its identification as an effector.  
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Figure 2-2.  Translational Fusions Between the three possible open reading frames 

and lacZ. 

A. PCR products carrying the region with the hrpL-dependent promoter, the 

ribosome-binding site and the first 120, 121, or 122 bp of hopPsyL were cloned 

into pMLB1034, which generated a translational fusion to ‘lacZ in three distinct 

reading frames.  The constructs were assayed for β-galactosidase activity in E. 

coli SLR400 carrying pSHL1K, which expressed HrpL from an arabinose 

dependent promoter.  The expression of hrpL was induced with 0.02% arabinose.  

Lac activity was measured following the procedures of Miller [139] and 

expressed as Miller Units. 

B.  hopPsyL was amplified by PCR using specific primers (See Table 2-3) and 

cloned into pQE30 as a BamHI- HindIII fragment in frame with the 6xHis tag.  

The expression of HopPsyL6xHiswas induced with 1mM IPTG for 4 hours in 

DH5 α.  Whole cell extracts were resolved in a 12% SDS-PAGE and 

HopPsyL6xHis was visualized using the anti-His antibody and ECL 

chemiluminescence kit. L, HopPsyL; M, protein marker. 
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β-Galacotisdase 

Activity (M.U.) 
  

 
Frame 

+1 310 +- 24 

50 +- 2

38 +- 7 

36 +- 2 

 

 

 

 
No fusion 

+3 

+2 

  

B.  

 
L     M MW (KDa) 

 

<185 
<81 

<41.5 

<31.3 

<18.1 

<6.9 
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Figure 2-3.  HopPsyL is a translocated effector with virulence and avirulence 

functions.    

(A) AvrRpt2 translocation assay.  A truncated AvrRpt2 protein (80-255 aa, ‘AvrRpt2) 

was fused to the N-terminal 46 aa of HopPsyL (HopPsyL46::AvrRpt2).  Plasmids 

expressing the indicated proteins were introduced into DC3000 or DC3000-A9 (-hrp).  

Arabidopsis thaliana Col-0 (RPS2) or rps2- leaves were infiltrated with bacterial 

suspensions at 108 cfu/ml and evaluated for hypersensitive response (HR) after 18 h or 

disease symptoms after 42 h.  Col-0 leaves showing the HR (+) appeared wrinkled at 18 

h, rps2- leaves showing disease appeared yellow and necrotic at 42 h. (B) Responses of P. 

vulgaris cv. Kentucky Wonder to P. syringae Psy61 and the hopPsyL::kan mutant, 

Psy61-LL.  Leaves were inoculated at the indicated inoculum and photographed at 36 h.  

Note the lesions observed in tissue inoculated with Psy61 at 105 and 104 CFU/ml that are 

absent with the same levels of Psy61-LL1.  (C) Ectopic expression of HopPsyL in P. 

syringae pv tomato DC3000 abolishes symptom development in A. thaliana.  DC3000 

was transformed with plasmids expressing the indicated protein.  Bacterial suspensions of 

105 cfu/ml were used to inoculate A. thaliana Col-0 plants. The photographs were taken 

at 72 h after inoculation and were representative of developed symptoms.  Note the 

necrosis and water soaking symptoms in leaves where HopPsyL was not expressed, 

indicative of a resistant plant response.  These symptoms were absent where HopPsyL 

was expressed. 
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The ORF54 product was therefore designated as HopPsyL.   

hopPsyL is necessary for virulence in Phaseolus vulgaris cv Kentucky Wonder. 

 

To determine the role of HopPsyL in the virulence of Psy61, a hopPsyL::kan insertion 

was constructed in Psy61 by allelic exchange to create Psy61-LL1.  The mutation was 

confirmed by Southern hybridization analysis (Figure 2-4).  Psy61 has recently been 

reported to be a pathogen of Phaseolus vulgaris [52].  P. vulgaris cv. Kentucky Wonder 

was susceptible to Psy61 infection as demonstrated by the appearance of water-soaking 

lesions (symptom score of 4 [93]) and necrosis observed at all inoculum levels by 36 hr 

(Figure 2-3B, Psy61).  A 105-fold increase in bacterial populations detected 3 days post-

inoculation (Figure 2-5).  The mutant strain, in contrast, was considerably reduced in 

virulence.  Plants inoculated with Psy61-LL1 showed minimal water-soaking symptoms 

(Figure 2-3B, Psy61-LL1). Red-brown necrotic response, typical of resistance [93], 

developed near the inoculation site by 36 h at high inocula and macroscopic symptoms 

did not develop in tissue inoculated with less than 106 CFU/ml (Figure 2-3B, Psy61-

LL1).  Detected populations of Psy61-LL1 were 102 lower than in the parent strain at 3 

days (Figure 2-5).  Complementation of the mutant with a plasmid-borne hopPsyL 

restored virulence to the strain as indicated by the population levels detected in tissue 

(Figure 2-5).  The failure of the hopPsyL::kan mutant to develop disease symptoms and 

the reduced growth in the previously susceptible host indicate that HopPsyL is important 

for Psy61 virulence in this bean cultivar.   
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Figure 2-4.  Southern Hybridization confirms hopPsyL insertion.  

 

A.  A 32P-labelled probe was generated by PCR amplification from Psy61 genomic DNA 

with primers 54-549E and 54-1247B (see Table 2-3).  Chromosomal DNA from Psy61 

and Psy61-LL1 was digested with BamHI and transferred to a charged nylon membrane.  

Membranes were allowed to hybridize to the labeled probe and washed under low 

stringency conditions [167].  Bands that hybridized to the probe were visualized by 

autoradiography.  The shift in size from the wild-type to the mutant is consistent with the 

insertion of the 2.9 Kb plasmid into the chromosome.     
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Figure 2-5.  HopPsyL is required for virulence of Psy61 in P. vulgaris cv. Kentucky 

Wonder.   

 P. vulgaris leaves were inoculated with a 105 cfu/ml suspension of Psy61 (wild-type, 

▲), Psy61-LL1 (hopPsyL::kan, ■), or the complemented strain Psy61-LL1 expressing 

HopPsyL (♦).  The bacterial populations were monitored every 24 h by mascerating a 38 

mm2 leaf disk in 100 µl of M63 media.  The suspensions were diluted to appropriate 

bacterial concentrations and bacteria were enumerated after 24 – 30 h.  The values 

reported are the mean of 6 replicates. Error bars represent the standard deviation. The 

experiment was repeated three times with similar results.  
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HopPsyL acts as an avirulence determinant in Arabidopsis thaliana. 

 

Ectopic expression of effectors in non-native strains has been previously shown to affect 

virulence of the recipient P. syringae strains [177, 191].  The region carrying hopPsyL 

was amplified from Psy61 genomic DNA and cloned into the broad host range cosmid 

pLAFR3 to create pLL54L.  When A. thaliana Col-0 was inoculated with Pto DC3000 

(pLL54L) at 107 cfu/ml, an HR developed by 18 h.  A null response was observed at 

lower inoculum levels (Figure 2-3C, HopPsyL).  In contrast, leaves inoculated with the 

virulent Pto DC3000 (pLAFR3) developed typical disease symptoms by 42 h (Figure 2-

3C, None).  To quantify the effect of HopPsyL on the virulence of Pto DC3000, 

populations of Pto DC3000 (pLAFR3) and Pto DC3000 (pLL54L) were monitored in 

inoculated A. thaliana Col-0 leaves.  Whereas DC3000 (pLAFR3) populations increased 

104-fold during the 4 day assay period, those of DC3000 (pLL54L) increased only 500-

fold (Figure 2-6).   

 

HopPsyL does not suppress the HR. 

 

Various TTSS-dependent effectors of P. syringae strains have been recently identified 

that facilitate pathogenicity of the source strain by an apparent suppression of host 

defense responses [1, 27, 55, 185].  Several lines of evidence argue against HopPsyL  
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Figure 2-6.  Ectopic expression of HopPsyL reduces the virulence of DC3000 in A. 

thaliana Col-0.   

A. thaliana leaves were inoculated with a 105 cfu/ml suspension of DC3000 carrrying 

either the empty vector pLAFR3 (♦), or a construct in pLAFR3 expressing HopPsyL (●).  

The bacterial populations were monitored every 24 h as in Figure 2-5.  The values 

reported are the mean of 6 replicates. Error bars represent the standard deviation. The 

experiment was repeated three times with similar results.  
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suppressing host defense responses.  Unlike HopPtoD2, which could delay the timing of 

the HR during an incompatible host-pathogen interaction [27, 55], HopPsyL did not alter 

development of the HR of DC3000 in P. vulgaris cv Kentucky Wonder.  Bacterial 

suspension (108 cfu/ml) of DC3000 (pLAFR3) or DC3000 (pLL54L) were used to 

inoculate P. vulgaris cv Kentucky Wonder leaves and the appearance of HR was checked 

every 2 hours for the first 16 h.  No differences in phenotype or development of the HR 

elicited were detected (Table 2-1).  In addition, several non-host plants of Psy61 (see 

Materials and Methods) were challenged with high inocula of Psy61 or Psy61-LL1 and 

the timing and manifestation of the elicited HR were studied.  The induced HR was 

indistinguishable in all the hosts studied.   Taken together, these results suggest that 

HopPsyL does not suppress plant defense responses, but instead acts by another 

mechanism to facilitate parasitism of Kentucky Wonder by Psy61. 

 

Distribution of hopPsyL among P. syringae strains.   

 

To determine the distribution of hopPsyL alleles among P. syringae strains, a PCR screen 

was performed using the primers 54-549 and 54-1247.  Diagnostic fragments indicative 

of the presence of hopPsyL were amplified from six of 10 P. s. pv. syringae strains tested 

(each with distinct host range) (Table 2-2), but not from any of the P. syringae pvs. 

tomato, maculicola, or phaseolicola strains screened.  Sequence of the amplified 

fragments exhibited greater than 99% identity with the Psy61 hopPsyL (data not shown).  

To  
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Table 2-1.  The hypersensitive response is not inhibited by HopPsyL. 

 

 

Time (h)1 Psy612 Psy61-LL12 

2 nr Nr 

4 nr Nr 

6 2 2 

8 2-3 2-3 

14 3-4 3 

18 4 4 

20 4 4 

22 4-5 4-5 

24 5 5 

 

1. Leaves of Phaseolus vulgaris cv. Kentucky Wonder were inoculated with a 108 

cfu/ml suspension of Psy61 or the hopPsyL::kan mutant, Psy61-LL1.  The 

induced hypersensitive response (HR) was measured every 2 hours for water 

soaking as initial evidence of initiation of HR, and then for tissue collapse and 

necrosis.  

2.  The symptoms were scored using the following scale: nr, no reaction; 2, glazing; 

3, water soaking;  4, tissue collapse; 5, desiccation and necrosis. 
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Table 2-2.  Conservation of hopPsyL among P. syringae strains.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detection by: 
Strain1 PCR2 Hybridization3

Response in 
Kentucky Wonder4

Psy    

   61 + + D 

   B3A + + D 

   B76 + + Null 

   5D417 + + Null 

   B362 + + D 

   B382 + + Null 

   3097 + + Null 

   Ps-1 Bean - - na 

   B460 - - na 

   Ps-1 - - na 

   1053 - - na 

   WYN 108 - - na 

   S-4B-1 - - na 

E. coli  - -  

   DH5α - - na 

 

1  Strains and hosts were described in [53].  Other P. syringae pathovars were tested but 

resulted in a lack of either amplification or signal from the different assays.  Those strains 

are as follows:  pv. maculicola #1, #5, and #10;   pv. phaseolicola NK343, B130, and 

BK378;   pv. tomato T1,4355, 3523, B76, B88, B118, B121, B122, B19, and DC3000. 

2  PCR analysis was performed using primers 54-549 and 54-1247 and an annealing 

temperature of 55º C.  A positive sign indicates specific amplification of a 700 bp 
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fragment.  Psy61 was used as a positive control, and DH5α as a negative control. 

3  Hybridization experiments were performed using a 698 bp probe generated using 

primers 54-549 and 54-1247 and room temperature washes in 1x SSC.  A positive sign 

indicates that hybridization of the probe could be detected in autoradiograms. 

4  Overnight cultures were diluted into fresh media and allowed to grow until the OD600 

reached 1.0.  The cells were collected, washed in M63, and respuspended at 106  cfu/ml.  

The suspension was used to inoculate Phaseolus vulgaris cv Kentucky Wonder.  The 

symptoms were scored daily up to 5 days.  D, slowly developing necrosis typical of 

disease observed at 36 h; d, slight symptoms of disease by 72 h; Null, no response 

detected during the 5 day assay period;  na, not tested.  
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screen for more divergent alleles, the 698 bp fragment carrying the amino terminal 

portion of  hopPsyL was amplified from Psy61 genomic DNA and used to probe the 

genomes of the selected strains for presence of an hopPsyL allele by low stringency 

hybridization.  Hybridization results mirrored those from the PCR screen.  Those strains 

that produced the indicative PCR product hybridized to the probe whereas the other 

strains did not.  An ortholog of hopPsyL was not detected in the DC3000 and B728A 

genomes.  Of the strains carrying HopPsyL, only B632, originally isolated from diseased 

beans (J. DeVey, personal communication) and B3A, isolated from a peach variety, were 

apparent pathogens of Kentucky Wonder (Table 2-2).  The contribution of HopPsyL to 

this virulence has not been established.  The observation that only a few strains carrying a 

hopPsyL allele are pathogens of bean indicates that HopPsyL does not act epistatically to 

other effectors to enable virulence in bean. 

 

Discussion 

The pathogenicity and host range of P. syringae strains have been linked to the 

expression of strain-specific arrays of effectors that are translocated into host cells by the 

hrp TTSS.  By utilizing the previous observations that all known effectors expressed by 

P. syringae strains are components of the hrp regulon [62, 201, 206], and therefore are 

dependent upon HrpL for transcription, an E. coli-based HrpL-dependent promoter trap 

screen was developed to identify candidate effector genes expressed by a strain.  The 

screen was successful in identifying several effectors previously characterized in other 

strains.  Of primary interest in this study was the promoter active fragment KP54.   This 
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fragment carried a near consensus HrpL-dependent promoter but the associated coding 

sequence lacked similarity to other genes.  HrpL-dependent activity of the fragment was 

verified in Psy61 and the ORF identified directly downstream of the HrpL-dependent 

promoter was shown to encode HopPsyL, a 40.5 kDa protein with no homologs in the 

databases. HopPsyL was translocated into host cells by the hrp TTSS and facilitated 

Psy61 virulence in P. vulgaris cv. Kentucky Wonder.  When ectopically expressed in the 

A. thaliana pathogen DC3000, HopPsyL acted as an avirulence determinant, reducing the 

growth of the expressing strain and suppressing symptom development. 

 

The mechanisms through which HopPsyL contributes to parasitism and disease in 

Kentucky Wonder remain unknown.  No enzymatic or metabolic function could be 

assigned to HopPsyL but the structural features suggest that it may localize to 

chloroplasts as suggested for several other effectors of P. syringae strains [73, 76].  

HopPsyL is unique in that it also contains an apparent ankyrin repeat motif at residues 

36-64.   Ankyrin-like domains are thought to function in protein-protein interactions, and 

are present in some plant defense response genes, such as PR1 [170].  HopPsyL also has 

a comparatively high Leu content that could be indicative of protein-protein interactions.  

The Yersinia effector YopM, and Salmonella effectors SspH1 and SspH2 also have high 

Leucine content and carry Leucine-rich repeats [56] [138] which are used in the 

pathogenicity of both organisms.  However, leucine rich repeats were not identified in 

HopPsyL by the REP, REPRO  or Radar algorithms [10, 66, 79].  The presence of two 

separate TM domains suggests that this effector could localize to a membrane.  

Unfortunately, a function for HopPsyL during pathogenesis could not be identified.   
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In contrast to several recently characterized effectors [1, 27, 55, 78], HopPsyL does not 

appear to be a general suppressor of plant defense responses.  For instance, expression of 

the locus in the native Psy61 or in Pto DC3000 did not affect the ability of the strain to 

elicit the HR or related responses in resistant plants.  HopPsyL does not appear to act 

epistatically to other effectors to facilitate pathogenesis.  Namely, ectopic expression of 

hopPsyL in Pto DC3000 did not expand its host range to include Kentucky Wonder, and 

most strains of P. syringae that carry a homolog of hopPsyL were not pathogens of 

Kentucky Wonder.  One explanation for the role of HopPsyL in pathogenicity could be 

that it acts as a virulence gene required for Psy61 to replicate in Kentucky Wonder.  

Alternatively, HopPsyL could act to mask the activity of another avr product specifically 

active in Kentucky Wonder, similarly to the suppression of AvrPphF activity in Canadian 

Wonder by AvrPphC [185].  Consistent with this hypothesis, inactivation of hopPsyL in 

Psy61 resulted in an apparent conversion to an incompatible interaction in Kentucky 

Wonder.  Irrespective of the mechanism of action, HopPsyL can be added to a growing 

set of P. syringae effectors that are required for virulence in one host but elicit defense 

responses in another host.    

 

Unfortunately, the great number of discovered P. syringae effectors has not led us any 

closer to the clarification of the type III secretion signal.  Petnicki-Ocweija, et al. [158] 

postulated a set of common characteristics shared among type III effectors.  These 

characteristics include: 1) the first 50 amino acids of known 

effector proteins have a high serine content compared to a set of random housekeeping 
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proteins in P. syringae [76]; 2) the N-termini of most Hops are amphipathic and rich in 

polar amino acids; 3) they have an aliphatic amino acid (Ile, Val, or Leu) or Pro at the 

third or fourth position; 4) they have no acidic amino acids (Asp or Glu) in the first 12 

amino acids; 5)  the fifth position is rarely Met, Ile, Leu, Phe, Tyr, or Trp; 6) cysteine 

residues are rarely found after the fifth position (among the N-terminal 50 residues); and 

7) there are no more than three consecutive residues consisting of Met, Ile, Val, Phe, Tyr 

or Trp [158]. Genomic searches for ORFs with these characteristics have yielded many 

potential hop genes [76, 158].  Although some of these ORFs were confirmed to encode 

Hops [169], most of the effector proteins identified thus far, including HopPsyL, do not 

share all of the postulated characteristics.  Interestingly, HopPtoV did not share any of the 

characteristics [169], but was still shown to be secreted and translocated [169, 193].  

Identifying more P. syringae effectors does not seem to be the answer for the secretion 

signal riddle.  Instead, bioinformatic and biochemical methods such as those using 

engineered synthetic peptides [125] might aid in fully clarifying the signal.   

  

In summary, the HrpL-dependent promoter trap screen provides a relatively inexpensive, 

high throughput assay for candidate HrpL-dependent promoters that is independent of the 

role of the gene product in pathogenesis, and can be used to survey previously 

uncharacterized P. syringae strains for effector genes.  The ability to identify the set of 

effectors produced by a strain should facilitate comparative analyses of P. syringae 

strains to identify the factors controlling pathogenicity and host range.  By applying this 

screen to Psy61, we were able to isolate five effectors, including a novel locus required 

for virulence of the source strain, but the survey of the Psy61 genome is far from 
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complete.  P. syringae strains are predicted to express up to 60 effectors [73].  In 

DC3000, a trial promoter trap screen led to the identification of a translocated protein 

tyrosine phosphatase that modulates several defense responses [27] and sequences 

obtained during the characterization of the promoter-active fragment carrying the shcA 

promoter facilitated characterization of the exchangeable effector loci carried by 30 P. 

syringae strains [33].  Thus, the conservation of hrpL among P. syringae strains [168] 

indicates that this assay should be broadly applicable to all P. syringae strains.     

 

Materials and Methods 

Bacterial Stains and Media.   

 

Strains and plasmids used in this study are described in Table 2-3.  Bacteria were 

routinely grown on King's medium B [12].  Plasmids were propagated in E. coli DH5α.  

E. coli strains were grown at 37ºC, and Pseudomonas syringae strains were grown at 

25ºC.  LB, MacConkey and M63 minimal salts media were used for culture of E. coli 

strains [12].  M63 medium was supplemented with 1mM MgSO4 and 1% fructose.  The 

following antibiotics were added at the indicated concentrations (in µg/ml):  ampicillin, 

200; kanamycin, 50; spectinomycin, 100, tetracycline, 25; nalidixic acid, 50; rifampicin, 

200; and chloramphenicol; 30.  L-arabinose concentration in agar media was 0.01%, 

unless stated otherwise. 
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General DNA manipulations.   

 

Restriction enzymes were purchased from Invitrogen (Bethesda, MD).  T4 DNA ligase 

was acquired from New England Biolabs (Beverly, MA) and used according to the 

manufacturer's recommendations.  Basic manipulations were done using standard 

procedures [167].  PCRs were performed using a Hybaid PCRSprint™ thermal cycler 

with 50 µl reaction volumes.  Unless indicated otherwise, Pwo polymerase (Boehringer-

Mannheim) was used to amplify fragments for cloning. 

Construction of genomic library.   

 

Genomic DNA isolations were performed following the CTAB protocol [167], and DNA 

concentration was adjusted to 1.5 µg/µl.  Genomic DNA (30 – 40 µg) was digested with 

1 unit of Sau3A for 2, 5, 10,15, and 30 min at 37ºC.  Partially digested DNA was 

fractionated by agarose gel electrophoresis, and fragments of desired sizes were isolated 

from gels using the Prep-A-Gene™ kit (Bio-Rad, Hercules, CA).  Isolated fragments 

were ligated to BamHI digested pRG970 at a molar ratio of 5:1 using T4 DNA ligase at 

4ºC.   

β-galactosidase assays.   

 

β-galactosidase activity in bacterial cells was estimated by the procedures of Miller 

[139]. 
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Table 2-3.  Strains, plasmids and primers used in this study. 

 

Strain or plasmid Genotype or phenotype Reference or source 

Strains   

E. coli 
  

 DH5α endA1 hsdR17 (rk- mk-) supE44 thi-1 recA1 

gyrA96 relA1 ∆(argR-lacZYA) U169 

φ80lacZDM15 

Invitrogen 

 MC4100 F' araD139 ∆(argF-lacZYA) U169 rpsL150 

relA1 flb-5301 ptsF25 deoC1 

[31] 

 SLR400 araD139 ∆(ara leu)7697 derivative of 

MC4100 

S. Benson  

P. syringae   

A9 hrpA mutant, HR- , Rifr, Kanr [194] 

DC3000 Wild-type, Rifr, HR+ 

Tomato and Arabidopsis pathogen 

[46] 

Psy61 Wild-type, Nalr , HR+ bean pathogen [15, 52] 

Psy61-2070 hopPsyA::TnphoA, Nalr, Kanr [84] 

Psy61-2074 hrpL ::TnphoA, Nalr, Kanr [84] 

Psy61-LL1 hopPsyL::pUC18K, Nal r Kanr  This work 

Plasmids   

pDSK519 Broad-host range vector, IncQ Kanr [107] 
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pJBAvrRpt2-600 avrRpt2 cloned into pDSK600 [27] 

pLAFR3 IncP1, Tetr [177] 

pLL54L 1.3-kb PCR product containing hopPsyL 

cloned into pLAFR3 

This work 

pLL5446-170K 0.5-kb PCR product containing codons 46—

146 of hopPsyL cloned into pUC18K 

This work 

pLL54AvrRpt2K  This work 

pLL5446::AvrRpt2K N-terminal 46 aa of HopPsyL fused to 

‘AvrRpt2 in pDSK519 

This work 

pLL54Q30 1.2-kb PCR product containing ORF54 

cloned into pQE30 

This work 

pMLB1034 ‘lacZYA, for creating translational fusions, 

Ampr

[173] 

pMPM-K6 AraC+, PBAD –MCS, Kanr, Spr:Ω, OriVP15A [136] 

pQE30 Amr, mcs:his Qiagen 

pRG970 IncP, Spr , promotorless lacZ and gusA in 

opposite orientations 

[187] 

pSHL4K PBAD:’hrpL fusion in pMPM-K6, Kmr, 

∆Ω:Spr

[27] 

pTS54R 1.2-kb genomic fragment from Pss61 cloned 

into pRG970  

This work 

pUC18K   
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Primers  

54-549E GGAATTCGGCAACGCATGATTGAG 

54-1247B CGGGATCCAGCGATCTGCCGTTGTCCA 

54-739E GGAATTCGTCGCGACAGCAAGGCCGTA 

54-739B CGGGATCCTACGGCCTTGCGTCGCGAC 

54-1098 AACACCTTGCCTTCAAGAGA 

54-1029 GCTCAGGGGCGGTGTCAATG 

54-549X GCTCTAGAGGCAACGCATGATTGAG 

54q30S TCCCCCGGGAACCCCATTCGTAATTCT 

54-1871S ACGCGTTTGCCGAAAATGCCTGTAT 

54-Rpt46-SapI GATGCTCTTCACCCTACGGCCTTGCTGTCGCG 

AvrRpt2408SapI GATGCTCTTCAGGGAAGCACGAGACGGGCGGT 

AvrRpt2-1028X GCTCTAGATAGGGACCAAAAAGCCAGAC 

970-5 CCACAGCCGTCGGAGT 

970-3 ACGCCAGGGTTTTCCCAGTCA 
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Inverse PCR.   

 

Inverse PCR was performed using the procedures of [152].   Psy61 genomic DNA (1 µg) 

was digested with SstI and self ligated.  The ligation mixture was diluted 100X and used 

as template for PCR using primers 54-739B and 54-1029 and ProofPro™ DNA 

polymerase (Continental Lab Products) following the manufacturer’s protocol. These 

primers were located 100-200 bp internal to the previously sequenced portion of ORF54, 

such that any specific amplification product could be identified by the presence of these 

known flanking sequences.  Thermal cycling was carried out using a 53°C annealing 

temperature and an extension time of 6 min.  Amplified fragments were gel purified and 

nucleotide sequence obtained at the University of Maryland Sequencing facility.    

TAIL-PCR.   

 

The Psy61 genome was used as template for TAIL-PCR following the protocols of Liu 

and Whittier [123].  Primer 54-549E was used for the primary PCR reaction with the 

degenerate primer AD3.  For the secondary and tertiary nested PCR reactions, primers 

54-739E and 54-1029 were used, respectively.  The PCR product was purified using 

Qiaquick PCR purification kit (Qiagen) and nucleotide sequence obtained at the 

University of Maryland sequencing facility.  

54 
 
 



Construction of Psy61-LL1.  

 

The region of hopPsyL corresponding to codons 40-170 was amplified by PCR from 

genomic Psy61 DNA using primers 54-739E and 54-1247B, digested with EcoRI and 

BamHI and ligated into pUC18K which does not replicate in Psy61.  The resulting 

plasmid was transformed into Psy61.  Nalr Kanr integrants were selected and gene 

disruption confirmed by PCR analysis and Southern hybridization. 

Construction of pLL54Q30 and size determination of HopPsyL.  

 

hopPsyL was amplified using primers 54q30S and 54-1871S, and cloned into pQE30 as a 

SmaI fragment.  To determine the size of HopPsyL, DH5α (pLL54Q30) was grown to 

OD600 0.2, IPTG was added to 2mM and HopPsyL expression was induced for 2 hr.  The 

cells were harvested and resuspended in 50 µl SDS-loading buffer.  Samples were run on 

a 12% SDS-PAGE gel, and blotted onto PVDF membranes.  The samples were probed 

using a monoclonal anti-His antibody (Novagen, WI), and visualized using a goat anti-

mouse HRP conjugate and an ECL chemiluminescence kit (Amersham-Pharmacia, NJ). 

AvrRpt2 translocation assay.   

 

AvrRpt2 translocation assays were performed as described previously [76] with minor 

changes.   The amino terminal region of hopPsyL was amplified from genomic Psy61 

DNA using primer 54-549 and reverse primer 54-Rpt246-SapI to generate a fragment 

carrying the first 46 codons of hopPsyL. ‘avrRpt2 was amplified using primers AvrRpt2-

55 
 
 



408SapI and AvrRpt2-1028X.  These fragments were digested with SapI and ligated.  

The ligation mixture was used as a template for a PCR amplification of the fusion using 

primers 54-549X and AvrRpt2-1028X.  The resulting PCR product was extracted from 

agarose gels using the QIAspin kit (Qiagen, CA) and cloned into pDSK519 as an XbaI 

fragment. Clones with the correct orientation were transformed into DC3000 and 

transformants screened for phenotype in wild-type or rps2 A. thaliana leaves. 

 

Virulence assays. 

 

A. thaliana Col-0 and P. vulgaris cv. Kentucky Wonder plants were inoculated with 105 

cfu/ml suspensions of the indicated strains unless indicated otherwise. P. vulgaris cv 

Kentucky Wonder plants were scored daily using the five point scale described 

previously [93].  Bacterial populations were monitored as described previously [18].  For 

HR phenotype in N. tabacum, A. thaliana, or P. lunatus leaves, bacteria were grown to 

109 cfu/mL in KB and serially diluted to 108, 107, and 106.  Dilutions were infiltrated into 

leaves and HR was scored after 18 hours.  The plants used were: N. tabacum cv. Samsun, 

Phaseolus lunatus cv Roma, and A. thaliana accessions Col-0, Col-0/rps2, Tsu-1, 

Leesburg, Shadhana, Ws and Dijon.  

PR1 induction assay 

 

Leaves of A. thaliana Col0:PR1/GUS plants [172] were inoculated with bacterial 

suspensions (106 cfu/ml).  After 48 h single leaf disks were excised and used for GUS 
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assay with the fluorogenic substrate 4-methyl-umberlliferyl-β-D-glucuronide (ICN 

Biochemicals).  Reactions were incubated 30 minutes at 37º C, and the fluorescence was 

measured using a TKO 100 fluorometer (Hoefer Scientific).  The units of activity were 

calculated using a standard curve. 

Colony Hybridizations.   

 

A 32P-labelled probe was generated by PCR amplification from Psy61 genomic DNA 

with primers 54-549E and 54-1247B in a reaction containing 25 µCi of γ -32P dATP.  P. 

syringae colonies were transferred to charged nylon membranes, lysed and allowed to 

hybridize to the labeled probe under low stringency conditions[167].  Colonies that 

hybridized to the probe were visualized by autoradiography.  
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Chapter 3: Type III secretion chaperones of Pseudomonas 

syringae protect effectors from Lon-mediated degradation. 

Introduction 

The array of effectors translocated by the TTSS of each pathogen is distinct [26, 39, 

45].  For plant pathogenic bacteria, effectors have been associated with the 

suppression of defense responses and enhanced nutrient leakage in susceptible plants, 

or alternatively with the activation of programmed cell death in resistant plants [26, 

48, 73, 176].  In mammalian pathogens, effectors have been shown to suppress or 

activate innate defense responses, regulate the inflammatory response and cause 

cytoskeletal rearrangements in host cells [45]. The number of effectors produced by 

pathogenic strains varies from as few as nine in Yersinia [41] to an estimated more 

than sixty for individual P. syringae strains [39, 73].   Interestingly, effectors from 

both groups of pathogens can be enzymes, such as protein tyrosine phosphatases and 

cysteine proteases [13, 27, 55, 103, 151, 154, 171], but in P. syringae strains the 

function for most has not been established. 

 

Despite the variety of effectors produced by plant and mammalian pathogens, the 

mechanism of effector secretion is thought to be similar for all TTSS.  A cryptic N-

terminal secretion signal directs effectors to the secretion port [44] [162]. Both co-

translational and post-translational mechanisms have been proposed to be involved in 

this process [7, 9, 124, 125, 162].  Once at the secretion port, effectors appear to be 
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introduced and directed through the central channel of the secreton in an ATP-

dependent process [160, 197].  The size restriction of the secreton channel (~20Å) 

[21, 111] predicts that effectors are likely to be in an unfolded state during the 

secretion process. Consistent with this model, peptide structures with diameters 

greater than the ~20 – 30Å obstructed the secretion channel [60].  

 

Regulation of effector secretion is complex and involves multiple tiers as observed in 

flagellar biosynthesis [175].  In many cases, contact with a host cell activates a 

regulatory network to express the genes required for assembly of the TTSS [2, 40] 

[89].  Transcription and/or translation of these genes is thought to occur in a specific 

order to assemble the translocation apparatus similarly to the flagellar biosynthesis 

apparatus [35].  Culture conditions mimicking the host environment have been used 

to bypass the contact-dependent regulation of the TTSS of many pathogens such as 

Yersinia pestis [61] and P. syringae [188, 202].  A second tier of regulation results in 

the expression of genes whose products are substrates for type III secretion [40, 89].  

In some species, effectors do not appear to be secreted simultaneously [24, 37, 51].  

Therefore, an additional level of regulation within the second regulatory tier has also 

been proposed that establishes a hierarchy for effector secretion [24].  The exact 

manner in which the hierarchy is determined is as yet unclear, but appears to involve 

a family of proteins called TTSS chaperones [59, 156, 198].   

 

P. syringae strains express a TTSS encoded by the hrp pathogenicity island that is 

closely related to its counterpart found in strains of Yersinia spp [38, 89].  Analysis of 
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the regulatory network associated with the hrp TTSS showed that HrpR and HrpS are 

truncated enhancer binding proteins that interact to form an activation complex for 

the hrpL promoter [90].  HrpL, an alternative sigma factor, can recognize a conserved 

promoter sequence to direct the expression of all known genes encoding components 

of the hrp translocation apparatus as well as the translocated effectors and their 

cognate chaperones [62, 199, 201].  Expression of the TTSS of P. syringae is minimal 

under nutritionally-rich growth conditions, but is activated in planta or under 

conditions that mimic the host environment, such as acidic minimal salts media (i.e. 

inducing conditions) [202].  During a search for a postulated negative regulator of the 

hrp TTSS, Lon protease was shown to mediate the turnover of HrpR to regulate 

expression of hrpL [25].  Regulated proteolysis by Lon functions in several regulatory 

networks in eubacteria, and Lon has also been associated with the degradation of 

abnormally folded proteins [70].  Interestingly, lon mutants of P. syringae exhibited 

substantially higher protein secretion and induced plant defense responses faster than 

the wild type strain [25].  Ectopic expression of HrpRS by several groups, however, 

has not reproduced this phenotype, suggesting that Lon could have an additional role 

in the regulation of type III secretion in P. syringae strains. 

 

Here we report that Lon-mediated regulation of the P. syringae TTSS also involves 

regulated proteolysis of effectors prior to secretion that can be suppressed by the 

cognate chaperone.  Domains targeting effectors for degradation were identified.  The 

data advances our understanding of the essential role of chaperones in protecting 

effectors from degradation prior to secretion and provides a potential mechanism for 
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hierarchical secretion of effectors.   

 

Results 

P. syringae lon mutants hypersecrete the TTSS-dependent effector AvrPto 

During the initial studies, other members of the lab noticed lon mutants could elicit 

the early visible symptoms of the HR more rapidly than wild-type P. syringae.  

Additionally, the mutants secreted higher amounts of specific proteins into cell 

supernatants.  The data suggested that these mutants were specifically secreting 

higher amounts of effectors.   To determine if the lon::Tn mutants could secrete 

effectors in the absence of plant host, avrPto was ectopically expressed using a 

vector’s Plac promoter and secretion of AvrPto into culture filtrates was monitored. As 

reported previously [188], secretion of AvrPto by the wild-type P. syringae was 

difficult to detect.  Levels of AvrPto in immunoblots of concentrated culture filtrates 

from Psy61 (pAVRPTO6H-600) were nearly undetectable (Figure 3-1). Culture 

filtrates of the lon::Tn mutant KL11 (pAVRPTO6H-600), however, were estimated to 

contain at least 100-fold higher levels of AvrPto than its Lon+ parent strain after 

densitometry analysis. 

Secretion through the hrp TTSS is regulated beyond HrpL 

To determine whether the role of Lon in the regulation of the hrp TTSS is limited to 

the control of hrpL expression, we attempted to bypass the known regulatory activity 

of Lon by ectopic expression of HrpL.  If the role of Lon were solely to regulate hrpL  
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Figure  3-1. Secretion of AvrPto from P. syringae lon mutants.  

Levels of AvrPto were monitored in Psy61, Psy61-KL11 (lon::Tn) and a TTSS 

secretion mutant, Psy61-2082 (hrcN::Tn) expressing AvrPto from pAvrPto6H-600 

(+), or the empty vector pDSK600 (-). Overnight cultures were diluted in fresh rich 

media and grown to an OD600 of 1.0.  The cells were collected, washed and 

resuspended in hrp-inducing media (M63Fructose, pH 5.5) at an OD600 of 0.6 and 

grown for an additional 4 hours.  The cells from a 250 µL sample of the culture were 

collected and resuspended in SDS-PAGE loading buffer.  Culture filtrates of the 

remaining culture were obtained by centrifugation and concentrated 50X using 

MilliPore Ultra-free centrifugal filter devices. Ten µg of protein were loaded and 

separated in an SDS-PAGE and levels of anti-AvrPto reactive proteins monitored in 

cell lysates (A) and culture filtrates (B) using immunoblots. AvrPto migrated as an 

18 kDa protein.  
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expression, then vector-directed expression of hrpL should result in the same 

phenotype as a ∆lon mutant.  The induction of effector-dependent programmed cell 

death in resistant hosts and the secretion of effectors into culture supernatants was 

studied in wild-type and Lon- strains carrying a hrpL construct expressed from the 

lacUV5 promoter of pDSK600 (pMLL600).  A similar construct expressing the 

lacZYA operon (pLLlac600) exhibited equal activities in both strains.  The steady 

state level of LacZ activity in P.  syringae pv tomato DC3000 (pLLlac600) was 

346±12 Miller units whereas 375±34 units were measured in the DC3000 lon::Tn 

mutant JB7 (pLLlac600).  This similarity indicates that this expression system is 

insensitive to the activity of Lon.  Concentrated culture supernatants of DC3000 

(wild-type), JB7, or the DC3000 hrpA::kan mutant A9 carrying pMLL600 were 

monitored for AvrPto secretion using immunoblots.  As before (Figure 3-1), secretion 

of AvrPto could be detected at low levels in culture filtrates of DC3000, but up to 50-

fold higher levels were detected by densitometry in culture filtrates of the JB7 lon 

mutant (Figure 3-2).  Ectopic expression of HrpL, however, did not affect AvrPto 

secretion from the wild-type cells or the lon null mutant as levels of AvrPto in culture 

filtrates of strains carrying a HrpL expression system were indistinguishable from 

their counterparts lacking the HrpL construct.  Similarly, ectopic expression of HrpL 

did not affect the development of the HR in leaves of Nicotiana tabacum  (Table 3-1) 

whereas the Lon mutant elicited a more rapid HR as reported previously [25].  The 

observation that ectopic expression of HrpL could not bypass the Lon-mediated 

repression of the hrp TTSS activity implied that Lon has a second activity in the 

regulation of the hrp TTSS. 
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Figure 3-2.  Ectopic expression of hrpL does not bypass Lon regulation on the 

hrp cluster. 

Levels of AvrPto were monitored in culture filtrates of DC3000 (wild-type), JB7 

(lon::Tn) and a secretion mutant, A9 (hrpA::Tn) expressing hrpL from pMLL600, or 

carrying the empty vector pDSK600.  Overnight cultures were diluted into M63 

Fructose with 1% casein hydrolysate and grown to an OD600 of 1.0.  The cells were 

collected and washed in M63Fructose and diluted to an OD600 of 0.6 in hrp-inductive 

media (M63Fructose, pH 5.5) and grown for 6 hours.  The supernatants were 

concentrated 50X in centrifugal devices and ten µg of total protein from each sample 

were fractionated by electrophoresis in a 12% SDS-polyacrylamide gel.   Levels of 

anti-AvrPto reactive proteins were monitored using immunoblots.  AvrPto migrated 

at 18 kDa, and apparent levels were higher in the lon mutant. 
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  Table 3-1.  HrpL overexpression does not affect the induced HR. 

 

Time (h)1

DC3000, empty 

vector2

DC3000 + 

HrpL2

2 nr nr 

4 nr nr 

6 nr nr 

14 ++ ++ 

16 ++ ++ 

18 +++ +++ 

20 +++ +++ 

22 +++ +++ 

24 ++++ ++++ 

 

1. Leaves of Nicotiana tabacum cv. Samsun were inoculated with a 108 cfu/ml 

suspension of DC3000 (empty vector) or DC3000 (pMLL600 expressing 

HrpL).  The induced HR was measured every 2 hours for water soaking as 

evidence of initiation of HR, and then for tissue collapse and necrosis.  

2. The symptoms were scored using the following scale:  nr, no reaction; ++, 

water soaking;  +++, tissue collapse; ++++, necrosis. 
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P. syringae effectors are subject to Lon degradation 

The role of Lon in the proteolysis of abnormally folded proteins [70] raised the 

possibility that Lon could directly target AvrPto and other TTSS effectors for 

degradation, since they are predicted to be in an unfolded state prior to secretion [60, 

179].  The stability of AvrPto was compared in DC3000 (pMLAvrPto600) and JB7 

(pMLAvrPto600) expressing AvrPto from the Lon-insensitive pDSK600 expression 

system described above. The amounts of AvrPto after inhibition of translation were 

measured by probing whole-cell extracts with anti-AvrPto sera.  The stability of 

AvrPto in translationally inhibited cells appeared to be substantially higher in the lon 

mutant.  The estimated half-life of AvrPto was 8 min in DC3000, but was greater than 

30 min in JB7 (Figure 3-3).  Notable differences in the initial levels of AvrPto were 

detected between Lon+ and Lon- strains.  Roughly five times more AvrPto could be 

detected in JB7 when compared to DC3000 (Figure 3-3).  Since the rate of synthesis 

would be expected to be equivalent in the two strains, the difference in accumulation 

of AvrPto is likely attributable to faster degradation of AvrPto in the presence of Lon.  

In contrast, the levels of a similarly expressed bacterial alkaline phosphatase (BAP-

FLAG) were indistinguishable between the two strains (Figure 3-3) and the half-life 

of BAP-FLAG was found to be greater than 30 minutes in either DC3000 or JB7 

(Figure 3-3). 

 

To assess whether other effectors might also be targets for Lon-mediated degradation, 

the stability of selected effectors was monitored under hrp-inducing  
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Figure 3-3.  Effect of Lon protease on stability of effectors in P. syringae. 

Levels of AvrPto, HopPsyA, AvrRpt2 and BAP-FLAG detected in immunoblots.  

Overnight cultures of DC3000 (wild-type) or JB7 (lon::Tn) ectopically expressing the 

effectors were diluted into M63 fructose media and grown at 25º C to an OD600 of 0.6.  

Translation was stopped by the addition of tetracycline to a final concentration of 200 

µg/ml, and 250 µl samples were taken at the times (min) indicated above.  The cells 

were collected by centrifugation and resuspended in 50 µl of SDS-PAGE loading 

buffer to lyse the cells.  Whole-cell lysates were separated in a 12% SDS-PAGE, and 

immunoprobed with anti-AvrPto, anti-AvrRpt2, anti-HopPsyA or anti-FLAG sera.  

Levels of effectors were estimated in scanned images using NIH Image 1.59 and 

normalized to total cells.  The abundance of effectors (DC3000, open circles; JB7, 

closed squares) was calculated relative to their initial amounts at time 0 min.  

Estimated levels from single experiment are shown, but similar results were obtained 

in at least 3 additional experiments. 
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conditions known to enhance expression of effectors.  Using polyclonal antibodies 

raised against the purified polypeptides (gifts of S. Heu, and J. Greenberg, 

respectively), HopPsyA from Psy61 and AvrRpt2 from P. syringae pv. maculicola 

ES4326 were also found to be unstable in Lon+ P. syringae cells.  As with AvrPto, 

the initial levels of both HopPsyA and AvrRpt2 appeared to be 2-5 times higher in the 

Lon- mutants than in wild type strains (Figure 3-3) and the observed half-lives of both 

effectors were considerably longer in the lon null mutant.  HopPsyA exhibited an 

apparent half-life of 6 min in the wild-type strains that increased to >30 min in the 

∆lon mutant.  Similarly, the half-life of AvrRpt2 increased 3-fold in the ∆lon mutant.  

Lon modulates hrp TTSS in an E. coli background. 

Previous studies had shown that E. coli MC4100 expressing a the hrp cluster carried 

by pHIR11 could elicit effector-dependent responses in tobacco leaves [85], and 

therefore, assemble a functional TTSS [6].  Because a P. syringae lon allele could 

complement a mutation in its E. coli counterpart [25], inactivation of lon in E. coli 

should modulate effector levels and stability similarly to that observed in P. syringae.  

The MC4100 derivatives SG22622 (wt) and SG22623 (∆lon) were transformed with 

pHIR11 and their ability to elicit an effector-dependent response in tobacco plants 

was tested.  As observed in P. syringae, Lon- SG22623(pHIR11) elicited a visible 

programmed cell death response in 14 hrs, whereas Lon+ SG22622(pHIR11) took 

over 30 hrs to produce a similar response (Figure 3-4).  These results suggest that the 

role of Lon in the regulation of the hrp TTSS is similar in E. coli.   
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Figure 3-4.  E. coli ∆lon mutants induce HR in half the time as wild-type. 

Overnight cultures of E. coli SG22622 (wild-type) and SG22623 (∆lon) carrying 

pHIR11 (cosmid clone expressing a functional hrp cluster) were diluted in M63 

Fructose with 1% casein hydrolysate and grown at 37 °C to an OD600 of 1.0.  The 

cells were collected and washed with fresh media, and resuspended to 109 cfu/ml. 

Nicotiana tabacum cv Samsun leaves were infiltrated with roughly 100 µl of the 

suspension and scored for visible signs of a hypersensitive response (HR) during the 

first 30 h.  Note that lon mutants could induce the HR as indicated by water soaking 

and tissue collapse by 14 h (highlighted area), whereas wild-type required greater 

than 30 h to produce a similar response. The picture was taken 20 h post-infiltration. 
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To determine if inactivation of lon also caused enhanced secretion of effectors from 

the E. coli transformants, levels of ectopically-expressed AvrPto, AvrRpt2 and 

HopPsyA were monitored in culture filtrates.  The effectors could be detected at low 

levels in culture filtrates of Lon+ SG22622 (pHIR11) transformants (Figure 3-5).  

AvrPto, AvrRpt2 and HopPsyA, however, were detected in culture filtrates of the 

Lon- SG22623 (pHIR11) and were not obvious in culture filtrates of SG22623 

(pLAFR3), a vector control. These results suggest that the role of Lon in the 

regulation of effector secretion is similar in the E. coli and P. syringae systems.  

 

Lon affects stability of effectors in E. coli 

 

To assess whether Lon plays a role in the stability of effectors in E. coli, the half-lives 

of AvrPto, HopPsyA, and AvrRpt2 were determined in translationally-inhibited Lon+ 

SG22622 and Lon- SG22623 as before.  For all three of these effectors, a 2- to 5- fold 

increase in their observed half-life was detected in the lon null mutant as observed in 

P. syringae  (Figure 3-6).  However, similar to what occurred in P. syringae, the 

initial amounts of the polypeptides were significantly lower in the wild-type than the 

lon mutant cells. The abundance of effectors in the wild-type cells was between 20 

and 40% of that observed in the ∆lon cells (Figure 3-6).   

 

To determine if the stability of effectors from other P. syringae strains was also 

affected by Lon, HopPtoG from P. syringae pv. tomato 5846 and HopPsyE1 from P. 
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Figure 3-5.  P. syringae effectors are secreted from an E. coli lon background 

 

Levels of effectors secreted from E. coli in immunoblots.  AvrPto, HopPsyA, and 

AvrRpt2 were ectopically expressed from pDSK600, pYXSS or pDSK519 in E. coli 

SG22622 (wild-type) or SG22623 (∆lon) carrying either pLAFR3 or pHIR11 

expressing a functional hrp TTSS.  Overnight cultures were diluted into M63 

Fructose with 1% casein and cells were grown 5 h at 37ºC.  The supernatants were 

concentrated as in Figure 3-1 and protein levels determined using the micrBSA 

protein assay kit (Pierce, Ca).  Ten µg of total protein were loaded and separated in an 

12% SDS-PAGE and anti-AvrPto, anti-HopPsyA or anti-AvrRpt2 reactive proteins 

were monitored using immunoblots. AvrPto migrated at 18 kDa, HopPsyA migrated 

at 39 kDa, and AvrRpt2 migrated at 28 kDa.  
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Figure 3-6.  Lon affects the stability of P. syringae effectors in E. coli. 

E. coli SG22622 (WT) or SG22623 (Lon-) carrying AvrPto, AvrRpt2 or HopPsyA 

expressed as in Figure 3-3, and HopPtoG, or HopPsyE expressed from pTrcHis2 were 

grown to an OD600 of 0.6 and translation was stopped by the addition of excess 

chloramphenicol (200 µg ml-1).  Whole cell lysates were treated as in Figure 3-3, and 

the levels of effectors were monitored in immunoblots using NIH Image 1.59.  The 

half lives were estimated in immunoblots using appropriate polyclonal or anti-His 

antibodies as in Figure 3-3.  Equivalent results were obtained in three different 

experiments. 
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syringae pv syringae DH015 were cloned into pTrcHis2 to generate a C-terminal 

6xHis epitope tag and the stability of each fusion was monitored in SG22622 and 

SG22623 using anti-His antibodies.  A comparison between the half-life of native 

AvrPto and 6xHis-tagged AvrPto in P. syringae showed that the fusion did not alter 

the stability of AvrPto (8.5 vs. 9 min, respectively).  In all cases, the measured 

stability of the epitope-tagged effector was 2-4-fold higher in ∆lon mutants (Figure 3-

6).  These results suggest that effectors are generally susceptible to degradation by 

Lon prior to secretion, irrespective of the source and host strain.  The effectors 

appeared to fall into two general categories of stability: effectors had half-lives 

shorter than 2 minutes, and those with half-lives of >6 minutes (Figure 3-6).   

Chaperones stabilize effectors 

To investigate the effect of chaperones on the stability of P. syringae effectors, the 

half-lives of HopPsyB1, HopPtoM and HopPsyV1 were determined in Lon+ SG22622 

or Lon- SG22623 in the presence or absence of their cognate chaperones, ShcB1, 

ShcM, and ShcV1, respectively. Each chaperone was cloned individually into 

pDSK519 such that expression was directed from the lac promoter and the construct 

was transformed into the E. coli strains carrying one of the previously mentioned 

effector constructs.  In each case, the co-expression of the chaperone had a stabilizing 

effect on its cognate effector as expected.  The t½ of HopPsyB1 increased from under 

1 min in SG22622 (pLLhopB1-Trc)(pDSK519) to 5 min in SG22622 (pLLhopB1-

Trc)(pLLshcB-1D) (Figure 3-7).  This effect was only observed in Lon+ SG22622.  

HopPsyV1 was also stabilized by its apparently dedicated chaperone.   Expression of  
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Figure 3-7.  Effectors are stabilized by their chaperone. 

Estimation of half-lives of effectors in the presence of chaperones.  Overnight 

cultures of E. coli ectopically expressing HopPsyB1, HopPsyV1, or HopPtoM 

carrying their cognate chaperone (Chap) or empty vector in SG22622(WT) or 

SG22623 (Lon) were diluted and grown in LB at 37ºC until they reached an OD600 of 

0.6 and the half life of each effector was estimated as in Figure 3-3.  The results are 

representative of three experiments.   
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ShcV1 increased the half-life of HopPsyV1 to >30 min which is comparable to its t0.5 

in Lon- SG22623.  Likewise, the half-life of HopPtoM increased from 5 min in the 

absence of its chaperone to >20 minutes when ShcM was expressed (Figure 3-7).  

The effects of these chaperones were specific, as expression of a heterologous 

chaperone did not affect the stability of the effectors HopPsyB1 or HopPsyV1 (Figure 

3-7).  The results suggest that a primary role for chaperones in TTSS could be 

protection of effectors from Lon-mediated degradation.   

The Lon-Targeting Domain of HopPtoM Does Not Overlap Its Chaperone-

Binding Domain 

The manner in which chaperones protect effectors from degradation is unknown.  

Other Lon-degraded proteins, such as SulA and UmuD, are targeted to Lon by 

specific amino or carboxy terminal motifs [68, 95].  It is possible that a TTSS 

chaperone protects its cognate effector by masking a Lon-targeting motif.  

Alternatively, the chaperone could be directly inhibiting Lon activity or forming a 

complex with the effector that is immune to degradation.  To test the possibility that 

the chaperone directly inhibits Lon, the activity of RcsA was monitored in strains 

expressing the chaperones ShcB1, ShcV1 or ShcM from pDSK519.  RcsA is a 

transcriptional activator that regulates the expression of cpsB, and whose activity is 

regulated by Lon [72].  A chromosomal cpsB::lacZ reporter that is only expressed 

when RcsA is not degraded by Lon was used to monitor Lon activity.  Consistent 

with the specificity of activity for the chaperones, none of the chaperones had an 

effect on the Lac phenotype of the indicator strains, indicating that the chaperones do 
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not generally inhibit Lon activity.   

 

The apparent chaperone-binding domain (CBD) of HopPtoM had previously been 

localized to an internal 300 aa domain located between residues 100-400 [14]. To 

determine if the Lon-targeting domain of HopPtoM overlaps this apparent CBD, His-

tagged derivatives of HopPtoM were created that carried either amino or carboxy 

terminal deletions that mirrored those used in the previous analyses (Figure 3-8a).  

One of the constructs (∆400) contained the fragment encoding the polypeptide 

domains that did not interact with ShcM, whereas the other two constructs (∆200 and 

N200) contained coding sequence for regions that did interact [14].  When the 

constructs were expressed in Lon+ cells, the constructs expressing the C-terminus of 

the peptide were degraded (Figure 3-8b).  Among these, the ∆400 truncation lacking 

any of the CBD exhibited a short half-life (3 min).  In contrast, the construct that 

expressed only the N-terminus, N200, which includes a portion of the  CBD, was not 

degraded by Lon as the half-lives were equal in both strains (>30 min)(Figure 3-8b).  

These results suggest that the Lon-targeting domain of HopPtoM is located in the C-

terminal 312 amino acids, and does not overlap with the CBD. 

 

To verify that the C-terminus of HopPtoM could target the peptide for Lon-mediated 

degradation, a fusion between HopPtoM∆400 and the maltose binding protein (MBP) 

was constructed and tested for sensitivity to Lon.  MBP has previously been shown to 

be immune to degradation by Lon, and a similar assay was used before to determine 
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Figure 3-8.  The C-terminus of HopPtoM targets the peptide for degradation. 

A.  Schematic diagram of HopPtoM truncations used in this study.  CBD, chaperone 

binding domain.  B. N-terminal truncations lacking the first 200 or 400 amino acids 

(HopPtoM∆200, and HopPtoM∆400, respectively) or a C-terminal truncation expressing 

only the first 200 amino acids (HopPtoM200) were expressed in SG22622 (WT) and 

SG22623 (Lon) or SG22622 carrying pShcMD (Chap).  The half lives of each 

derivative were estimated as in Figure 3-3 using polyclonal antibodies raised against 

HopPtoM.   Equivalent results were obtained in three different experiments.  The 

reduced levels of HopPtoM∆400 observed in the 8 minute sample from the lon mutant 

was not observed in the other replicates. 
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the Lon-targeting motif in SulA [95].  A MBP:LacZ fusion was expressed in 

SG22622 and SG22623 and its half-life determined to be roughly 35 minutes in both 

backgrounds (Figure 3-9).  In contrast, when HopPtoM∆400 was fused to MBP, it was 

degraded in the wild type background with a half-life of 8.5 min (Figure 3-9).  This 

construct was only slowly degraded in the ∆lon mutant background as its half-life 

was 24 minutes.  Taken together these results support the hypothesis that the Lon-

targeting domain of HopPtoM is located in the C-terminus, and that it is sufficient to 

target polypeptides for Lon-mediated degradation.   

 

Discussion 

Lon has been previously shown to regulate assembly of the hrp-encoded TTSS in P. 

syringae strains through its effects on the activity of the hrpL promoter [25]. 

Regulated proteolysis of the transcriptional activator HrpR controlled the activity of 

the hrpL promoter, thereby modulating expression of the Hrp regulon.  Interestingly, 

the lon mutants also secreted several effectors consistent with a TTS+ phenotype that 

could not be reproduced by ectopic expression of hrpRS or hrpL.  This suggested that 

Lon had an additional activity in the regulation of hrp TTSS.  Consistent with this 

hypothesis, eight distinct effectors isolated from several P. syringae strains were 

found to be unstable in Lon+ P. syringae and E. coli strains, but were relatively stable 

in the corresponding Lon- mutants.  Targeting domains for Lon-mediated degradation 

were identified in two effectors and chaperones were shown to suppress 
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Figure 3-9.  An MBP fusion to the C-terminus of HopPtoM is degraded. 

A The ∆400 or N200 truncations of HopPtoM (Figure 3-8) were amplified by PCR 

using specific primers and used to create fusions with the C-terminus of MBP in the 

vector pMAL-p2x (New England Biolabs) following manufacturer’s instructions.  

Cells expressing any of MBP::LacZ or the fusion proteins were induced for 2.5 h and 

translation was stopped using cholarmphenicol (200 µg/mL) and levels of the fusions 

estimated in 250 µl samples at the indicated times.  The relative amounts of the fusion 

proteins were monitored in immunoblots using anti-MBP antibodies, and the half 

lives were estimated from densitometry analyses.  
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MBP

MBP HopM∆400

B

LacZ

MBP-HopMN200

0    2      8     15   30

MBP HopMn200
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 the degradation of the cognate effector in Lon+ cells.  Thus it appears that Lon has a 

dual function in the regulation of the hrp TTSS of P. syringae strains by: 1) 

regulating the assembly of the TTSS and expression of effectors through regulated 

proteolysis of HrpR [25]; and 2) controlling the accumulation of effectors prior to 

secretion through turnover.   

 

Lon belongs to a family of cytosolic ATP-dependent proteases that are highly 

conserved among prokaryotes and Archea and are also found in eukaryotic organelles 

(reviewed in [195]).  Like other bacterial energy-dependent proteases, Lon forms a 

multimeric complex that couples ATP-dependent protein unfolding with an 

endopeptidase activity [190] [195] to rapidly degrade targeted proteins.  Each of these 

activities is assigned to independent domains separated by a “sensor and substrate-

discrimination” domain (SSD) which functions in substrate selection.  Each of the 

functional domains is conserved in the P. syringae Lon homolog and the P. syringae 

Lon can complement its E. coli counterpart [25].  P. syringae lon::Tn mutants 

exhibited enhanced cell length and UV sensitivity similar to Lon null mutants of other 

bacteria.  Thus, P. syringae Lon likely functions similarly to its homologs of other 

bacteria.   

 

Lon is well known for its involvement in the degradation of unstable regulatory 

proteins, such as FlhC/FlhD, SulA and RcsA/RcsB [36, 71, 181].  Another principal 

activity of Lon is the degradation of misfolded or abnormal proteins, such as those 

that occur due to the incorporation of irregular amino acids or temperature-sensitive 
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mutations [70].  Because TTSS-linked effectors are predicted to be in an unfolded 

state prior to secretion [59, 156, 179], they would be strong candidates for 

degradation by proteases such as Lon.  Among the effectors studied, five had 

apparent half-lives of less than 2 min in Lon+ strains whereas three others had 

apparent half-lives longer than 6 min.  Consistent with the observed degradation rates, 

steady state levels of effectors expressed from a lacUV5 promoter were 20 to 50% of 

the levels detected in Lon- mutants.  Since levels of LacZ expressed from the same 

promoter were indistinguishable between Lon+ and Lon- cells, the rate of synthesis 

for these ectopically-expressed effectors is likely to be equivalent in Lon+ and Lon- 

cells.  The differences in the steady state levels, thus, are consistent with the observed 

differences in the rate of decay.  The instability of the tested effectors in Lon+ P. 

syringae and E. coli cells and the absence of proteolytic degradation products in 

immunoblots suggest the direct degradation of effectors by Lon.   

 

TTSS chaperones are usually small acidic proteins that can interact with one or more 

effectors.  In the absence of their cognate chaperones, some effectors are not readily 

secreted, and consequently chaperones have been proposed to act either as secretion 

pilots or as factors that maintain effectors in a “secretion-competent” state [59, 156].  

For example, the crystal structure of the Salmonella effector SptP interacting with its 

chaperone SycP revealed that SptP was maintained in an “unfolded” state in which 

the effector is wrapped around the chaperone [179].  A similar structure was resolved 

for the YopE-SycE complex [20].   Another proposed role of chaperones has been to 

block enzymatic or toxic activity of effectors within the bacterial cytoplasm.  For 
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example, binding of the chaperone SycD neutralizes the intracellular toxicity of YopB 

when expressed in E. coli [150].  More recently, chaperones have been proposed to 

control the timing of effector secretion as mentioned above.  This activity was first 

identified for SicA, the Salmonella chaperone for SopA, which interacts with the 

TTSS transcriptional activator InvF to promote the expression of virulence factors 

[186].  In addition, other chaperones, such as FlgN, can control the expression of 

class III flagellar genes by activating the secretion of FlgM [105].  The Yersinia 

chaperone SycD/LcrH can interact with YopD to regulate the expression of YopQ 

[8], and IpgC, the chaperone for IpaB and IpaC, can bind to MxiE and activate the 

transcription of at least two effectors in Shigella [135]. 

 

Our results are consistent with other studies proposing that chaperones act as 

stabilizing agents for their effectors.  In Yersinia and Salmonella strains, cytoplasmic 

levels of some effectors have been higher in the presence of their cognate chaperone 

consistent with protection from proteolytic degradation [63, 64].   Lon-mediated 

degradation of the tested effectors could be suppressed by the cognate chaperone.  

The effect was specific to a chaperone-effector interaction as only the cognate 

chaperone stabilized the effector.  It is likely, then, that one of the major roles for 

chaperones is in fact to protect effectors from Lon-mediated degradation.  Consistent 

with this hypothesis, the chaperones had little effect on the half-lives of effectors in 

strains lacking Lon.  In contrast to many effectors of mammalian pathogens, most 

effectors expressed by P. syringae strains do not have an obvious cognate chaperone.  

In P. syringae DC3000, only 7 out of 60 postulated effectors have been associated 
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with a chaperone.  Why some effectors have a chaperone, and most do not is an 

enigma.   

 

The mechanism by which P. syringae chaperones protect effectors from Lon-

mediated degradation does not appear to be due to the masking of the targeting motif 

in the case of HopPtoM.  ShcM has been reported to interact with an internal domain 

of HopPtoM located between residues 100-300 [14] whereas the Lon-targeting 

domain in HopPtoM was shown here to be located in the carboxy terminal domain 

and does not overlap with the previously established chaperone binding domain.  

Most likely, this chaperone-effector complex has a Lon-insensitive conformation.  

Crystal structures of other chaperone-effector interactions have revealed a high 

degree of secondary structure [19, 57, 179].  Since unfolding of the substrate is an 

essential part of Lon proteolysis [190], the formation of a stable complex structure 

with the chaperone would inhibit its degradation by Lon.  

 

It is becoming increasingly clear that, at least in mammalian pathogens, chaperones 

play a crucial role in determining the hierarchy of effector secretion [59, 156, 198].  

Whether the chaperones in P. syringae also have a similar role is an interesting 

question.  Differential degradation of effectors prior to secretion, however, could 

provide a mechanism for controlling the hierarchy of effector secretion.  Since 

suppression of proteolysis through inactivation of Lon increased the secretion of 

effectors from the hrp TTS, it appears that proteolytic degradation of effector 

precursors is rate limiting to effector secretion (but other effects on the secretion 
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system itself [22] can not be completely excluded).  Effectors with longer half-lives 

are likely to be secreted at higher levels than those with short half-lives and would 

accumulate more rapidly in host cells.   

 

In conclusion, we found that Lon plays an important role not only in the regulation of 

assembly of the TTSS, but also in controlling the secretion of effectors through that 

system.  The impact of Lon on effector stability may not be unique to P. syringae 

effectors.  A stabilizing effect of chaperones has been reported in other systems [63] 

[34] [64].  YopE and SptP, for example, are readily detectable in the presence of their 

corresponding chaperones, SycE and SicP respectively, but only a small percentage 

of that amount is present in the absence of the chaperone [34] [64].  The mechanism 

for effector degradation and chaperone stabilization has not been established in these 

systems but seems likely to be due to Lon-mediated degradation.  Lon has been 

shown to influence the assembly and activity of the SPI TTSS of Salmonella [22, 

182].  Here we propose a model in which effectors would have two distinct fates in 

the bacterial cell:  secretion through the TTSS, or degradation by Lon that is most 

consistent with the post-translational mechanism for secretion of effectors by the 

TTSS.  Differential turnover of effectors could provide a mechanism for the 

hierarchical secretion of effectors.   
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Materials and Methods 

Bacterial Stains and Media.   

Strains and plasmids used in this study are described in Table 3-2.  Bacteria were 

routinely grown on King's B medium [12].  Plasmids were propagated in E. coli 

DH5α.  E. coli strains were grown at 37ºC, and Pseudomonas syringae strains were 

grown at 25ºC.  LB and M63 minimal salts media were used as described previously 

[167].  M63 medium was supplemented with 1mM MgSO4 and 1% fructose (M63F).  

The following antibiotics were added where needed at the indicated concentrations 

(in micrograms per milliliter):  ampicillin, 200; kanamycin, 50; spectinomycin, 100, 

tetracycline, 25; nalidixic acid, 50; rifampicin, 200; and chloramphenicol; 30. 

General DNA manipulations.   

Restriction enzymes were purchased from Invitrogen (Bethesda, MD).  T4 DNA 

ligase was acquired from New England Biolabs (Beverly, MA) and used according to 

the manufacturer's recommendations.  Basic manipulations were done using standard 

procedures.  PCRs were performed using a PCRSprint thermal cycler (Hybaid, 

Ashford, UK) with 50 µl reaction volumes.  Unless indicated otherwise, ProofPro 

polymerase (Continental Lab Products, San Diego) was used to amplify fragments for 

cloning. 
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Table 3-2.  Strains, plasmids and primers used in this study. 

Strain or plasmid Genotype or phenotype Reference or 

source 

Strains   

E. coli   

 DH5α endA1 hsdR17 (rk- mk-) supE44 thi-1 recA1 

gyrA96 relA1 ∆(argR-lacZYA) 

U169φ80dlacZDM15 

Invitrogen 

SG22622 cpsB::lacZ ∆ara malP::lacIq S. Gottesman 

SG22623 SG22622 ∆lon-510 S. Gottesman 

SLR400 araD139 ∆(ara leu)7697 derivative of 

MC4100 

S. Benson 

 TOP10 F- mcrA (mrr-hsdRMS-mcrBC) 80lacZ

M15 lacX74 recA1 ara 139 (ara-

leu)7697 galU galK rpsL (StrR) endA1 

nupG 

Invitrogen 

Pseudomonas syringae  

A9 DC3000 hrpA mutant, HR- , Rifr, Kanr [194] 

DC3000 Wild-type, Rifr, HR+ 

Tomato and Arabidopsis pathogen 

[46] 

JB7 DC3000 lon::Tn, Rifr Kanr [25] 
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Psy61 Wild-type, Nalr , HR+ 

Weak bean pathogen 

[15] 

Psy61-KL11 Nal r Kanr , lon::Tn [25] 

Plasmids   

pAvrRpt2D 1.0 kb PCR product containing avrRpt2 

cloned into pDSK519 

This work 

pDSK519 Broad-host range vector, IncQ Kanr [107] 

pDSK600 Broad-host range vector, IncQ Spr [147] 

pFLAG-CTS-BAP Bacterial Alkaline Phosphatase in pFLAG-

CTC 

Sigma-Aldrich 

pHIR11 pLAFR3 derivative carrying P. syringae pv. 

syringae 61 hrp/hrc cluster, Tcr

[85] 

pHopPsyB1trc hopPsyB1 cloned into pTrcHis2 This work 

pHopPsyEtrc hopPsyE cloned into pTrcHis2 This work 

pHopPtoGtrc hopPtoG cloned into pTrcHis2 This work 

pHopPtoMtrc hopPtoM cloned into pTrcHis2 This work 

pHopPtoM∆400trc C-terminal 1836 bp of hopPtoM cloned into 

pTrcHis2 

This work 

pHopPtoM∆200trc C-terminal 1536 bp of hopPtoM cloned into 

pTrcHis2 

This work 

pHopPtoM200trc N-terminal 600 bp of hopPtoM cloned into 

pTrcHis2 

This work 
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pHopPtoM∆400MAL MBP fusion to the C-terminal 1836 bp of 

hopPtoM in pMAL-p2x 

This work 

pHopPsyV1trc hopPsyV1 cloned into pTrcHis2 This work 

pLAFR3 Tcr, IncP1  [177]  

pLLlac600 HindIII-PstI fragment from pRG970, 

subcloned into pDSK519 and then the Lac 

operon excised with EcoRI and cloned into 

pDSK600 , Spr, Lac+  

This work 

pMAL-p2x MBP::lacZ fusion New England 

Biolabs 

pMLAvrPto600 0.45 kb PCR cloned  as EcoR1-HindIII into 

pDSK600 

[25] 

pMLL600 0.4-kb PCR product containing hrpL  

cloned into pDSK600 

This work 

pSGAS 3.6-kb fragment containing hopPsyA in 

pYXSS 

[80] 

pSHAMB hopPsyA cloned into pMLB1034 [80] 

pShcB1D 0.5 kb PCR product cloned into pDSK519 This work 

pShcMD 0.5 kb PCR product cloned into pDSK519 This work 

pShcV1D 0.5 kb PCR product cloned into pDSK519 This work 
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Construction of 6xHis protein fusions.   

The genes for individual effectors were amplified from chromosomal DNA from the 

indicated strain using the following primers: hopPsyB1( Psy B5) 

ATGAACCCGATACAAACG;TTCCAACCTGAATGCCGG, hopPtoM (Pto 

DC3000) ATGATCAGTTCGCGGATC;  ACGCGGGTCAAGCAAGCC, hopPsyE1 

(Psy W4N15) ATGAGACCTGTCGGTGGG; GACCTTATAAGACAGGAC , 

hopPsyV1 (Psy B728a) ATGAATATCTCAGGTCCG; 

AGGCTTGGCCCGGACCCT, and hopPtoG (Pto DH015) 

ATGAGACCCGTCGGTGGA; ATCAGCGCCAACAATCGG, The products were 

cloned into pTrcHis2 using the TOPO TA cloning kit (Invitrogen, Carlsbad) 

following manufactures instructions.  The fusion was verified by sequencing and by 

immunodetection as described by the manufacturer. 

Cloning of effector chaperones.   

shcPsyB1 and shcPsyV1 were amplified from genomic DNA using the following 

primers:  ; GCTCTAGACAGTTCGGGATTGACAGG; 

CGGAATTCCGACAGACGCTGGAATACGG; and 

CTCTAGAACTGGACATGACGCTGGA;  

GCTCTAGAATCGAATAGTCCCCGCCA, respectively.  The PCR products were 

cloned into pDSK519 a XbaI or BamHI fragments.  shcPtoM was cloned into 

pTrcHis2 using the primers ATGACCAACAATGACCAG and 

CTGGAATCTCCCAGGAGC, and subsequently amplified using the primers 

GCTCTAGAGAATAAACCATGGCCCTT and 
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GCTCTAGAGATTTAATCTGTATCAGG  to clone into pDSK519 or pBAD33 as 

an XbaI fragment.  Inserts were verified by restriction analysis and sequencing. 

Cloning of HopPtoM truncations.    

N-terminal truncations of HopPtoM were amplified using the forward primers M∆25 

CAGCACGATACTGTTCCC, M∆200 GCCGGTCGTGCAAGCAAG, M∆400 

CTGAAAAGCGAACACGGT, and the reverse primer 

ACGCGGGTCAAGCAAGCC.  C-terminal truncations were generated using the 

forward primer ATGATCAGTTCGCGGATC, and the reverse primers M100aa 

ACTACCGATCAACAAGCG, and M200aa GTATTCGCCAAGGGCAGT.  All 

amplification products were cloned into pTrcHis2 and inserts were verified by 

sequencing and by immunodetection following manufacturer’s directions. 

Maltose binding protein (MBP) fusions.   

The 3’ 936 bp of hopPtoM were amplified using the primers 

GCTCTAGATTAACGCGGGTCAAGCAA and 

GCTCTAGAAAAAGCGAACACGGTGAG, digested with XbaI and ligated to 

pMAL-p2x (New England Biolabs, Beverly MA) to create a C-terminal fusion to 

MBP following manufacturer’s instructions.  The 5’ 150 bp, and the 3’ XX bp of 

hopPsyB1 were amplified using the primers 

GCTCTAGATTCCAACCTGAATGCCGG; 

GCTCTAGACCGCAGGACAGGACAAGC, digested with XbaI and cloned into 

pMAL-p2x.     
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β-galactosidase assays.  

β-galactosidase activity in bacterial cells was estimated by the procedures of Miller 

[139]. 

Plant assays.   

P. syringae DC3000, JB7 and A9 were transformed with pMLL600 or pDSK600.  

Overnight cultures grown at 25 C were harvested and diluted in M63 minimal media.   

Nicotiana tabacum cv Samsun leaves were syringe infiltrated with a 108 cfu/ml 

solution of the different strains as described previously [85].  Infiltrated leaf panels 

were scored for responses beginning 2 h after inoculation and monitored for 24 h.  

For E. coli, SG22622 and SG22623 were transformed with pHIR11, pHIR11-2082, or 

pLAFR3 and used to inoculate N. tabacum plants in the same way as P. syringae. 

Secretion of effectors from bacterial cultures. 

Culture supernatants were collected as described previously [25].  Briefly, P. syringae 

DC3000, JB7 and A9 carrying pMLL600 or pDSK600 cells were grown in KB 

overnight.  Cells were harvested, diluted into fresh KB medium containing selecting 

antibiotics and 2mM IPTG and grown to an OD600 0.6.  Cells were harvested, washed 

once with M63 and transferred to 50 mL M63F, at an OD600 of 0.6.  After 6 hours, 

cells in a 500µL sample were harvested and cell pellets were resuspended in SDS-

PAGE sample buffer for analysis of proteins in whole cell lysates.  An identical 

sample was collected and it was resuspended in 10% SDS to calculate protein 

concentrations.  Culture filtrates of the remaining culture was obtained by 
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centrifugation and concentrated 50X using MilliPore Ultra-free centrifugal filter 

devices with a 5 KDa exclusion limit.  Total protein concentration in whole cell 

lysates was measured using the BCA Total Protein Assay kit (Pierce, Rockford).  

Total protein concentration in supernatant samples were measured using the 

MicroBCA Assay Kit (Pierce).   

 

E. coli SG22622 or SG22623 carrying pHIR11 or pLAFR3 and ectopically 

expressing AvrPto or HopPsyA from pDKS600 or pYXSS, respectively, were grown 

overnight in KB medium with proper antibiotics.  One ml of overnight culture was 

used to inoculate 50 ml of M63 media containing fructose and 1% casein hydrolysate 

and cultures were grown to an OD600 of 1.0.   Supernatants and whole cell lysates 

were collected in the same manner as P. syringae.  

Immunoblots.   

Ten µg of total protein from every sample were separated by SDS-PAGE and 

transferred to nitrocellulose membranes.  Immunoblotting was carried out using a 

polyclonal antibody raised against AvrPto, AvrRpt2, HopPsyA or HopPtoM at 1:3000 

dilution.  Commercial antibodies, anti-His (Novagen, San Diego), anti-FLAG (Sigma, 

St. Louis), anti-MBP (New England Biolabs, Beverly) and secondary antibodies 

conjugated to horse radish peroxidase were used following manufacturer’s 

recommendations.  Cross-reactive proteins were visualized using the ECL 

chemiluminescence kit (Amersham-Pharmacia, Piscataway). 
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Stability of Effectors. 

Overnight cultures of P. syringae strains expressing AvrPto, HopPsyA or AvrRpt2 

were diluted into M63 media containing fructose as the carbon source to an OD600 of 

0.6 and incubated for 4 h at 25°C.  After incubation, tetracycline (200 µg ml-1) was 

added to inhibit translation.  Cells were harvested at specified time points, lysed in 

sample buffer and fractionated in 12% SDS-PAGE gels.  For E. coli, SG22622 or 

SG22623 were grown overnight at 37°C, diluted into fresh M63F containing 1 % 

casein hydrolysate and grown to an OD600 of 0.6.  After incubation, chloramphenicol 

(200 µg ml-1) was added and samples were collected as in P. syringae.  The half-life 

effectors were calculated from the exponential decay in levels estimated in scanned 

images using NIH Image 1.59.  Each experiment was repeated at least three times. 
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Chapter 4: Identification of a generalized stabilizing factor 

within the hrp cluster 

Introduction 

Although the general mechanism for assembly of the TTSS is considered to be 

conserved in both mammalian and plant pathogens, secretion through P. syringae 

TTSS is considerably different from that in mammalian pathogens.  Firstly, the hrp 

TTSS appears to regulate secretion more tightly than in mammalian pathogens.  For 

example, levels of effectors in supernatants from P. syringae cultures appear to be 10 

to 100-fold lower than observed in cultures from mammalian pathogens.  In addition, 

secretion of reporter constructs used in mammalian pathogens has proven very 

difficult in P. syringae. Secondly, it has been proposed that P. syringae produces 

significantly more effectors than mammalian pathogens [39, 43, 62, 73].  Lastly, a 

majority of the effectors from P. syringae are not associated with a chaperone, 

whereas in mammalian pathogens more than half of the effectors have a dedicated 

chaperone.  So far, only three chaperones have been described for P. syringae [14, 

189, 193] and a total of four more have been postulated according to their localization 

and characteristics [62, 76].  

The exact role of TTSS chaperones remains elusive.  By binding to their 

respective effector, chaperones can sequester and protect them from proteolysis, 

resulting in higher levels of effectors in the cytoplasm [63, 64].  It has been postulated 

that the three-dimensional structure of the chaperone/substrate complex is recognized 
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by the TTSS [20] to trigger the secretion of an effector.  Most chaperones have been 

defined because they are either necessary for secretion of their specific effectors, 

physically interact with the effectors, or they are involved in stabilizing effectors in 

the cytoplasm [34]; [64, 137, 141].  Chaperones have also been implicated in the 

regulation of transcription of effector genes by acting as either activators or by 

preventing transcriptional repression [49, 104, 126].  Taken together, these data 

suggest that chaperones can be involved not only in stabilizing and targeting effectors 

to the translocation complex, but may also play an important role in controlling which 

effectors are produced and secreted.   

 

We observed previously that effectors were degraded by Lon protease, and that 

chaperones had the ability to protect effectors from this degradation.  We proposed 

that the differential stability of effectors in P. syringae could be a method for 

determining hierarchical secretion of effectors (See Chapter 3).  In our model, 

chaperones would permit the rapid accumulation of an effector in the cytoplasm, and 

in this manner aid secretion.  Considering the important roles of chaperones, it is 

incongruous that P. syringae only contains 7 chaperones for its 60 known or 

candidate effectors [39, 73].  It is possible that not all the chaperones carried in the P. 

syringae genome have been identified.  However, it is important to note that the genes 

for most chaperones in P. syringae and other species are found adjacent or in close 

proximity with their corresponding effector [14, 33, 59, 156, 189, 193].   None of the 

candidate effectors are adjacent to ORFs that exhibit the expected properties of a 

TTSS chaperone [59, 62, 76, 156, 206].  In addition, it would be expected that a hrp 
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chaperone would be coordinately regulated by HrpL along with the effectors. And 

yet, none of the candidate proteins found in the extensive studies of HrpL-dependent 

genes from DC3000 [62, 76, 206] have the predicted chaperone characteristics either.   

 

It is possible, then, that in P. syringae an alternative to individualized chaperones to 

stabilize effectors evolved.  One alternative is that each of the seven characterized 

chaperones interacts with a large number (> 8) of effectors.  Many TTSS chaperones 

in mammalian pathogens can interact with more than one substrate [148, 149, 155, 

192], although interaction has been limited to two effectors.  A serendipitous 

observation from the results of experiments carried out for Chapter 3, showed that the 

stability of effectors was also affected by the presence or expression of the hrp 

cluster.  These experiments gave birth to the hypothesis that there exists a factor 

within the hrp cluster that is involved in enhancing effector stability, and could 

therefore be a candidate for a generalized chaperone, as opposed to the specific 

chaperones currently accepted.   This generalized chaperone could function 

analogously to individual chaperones of TTSS in mammalian pathogens, and could be 

an adaptation to the large number of effectors necessary for virulence on plant hosts 

for P. syringae.  This study aimed to test the existence of a generalized chaperone in 

P. syringae, whether this factor fits into the description and roles of known 

chaperones.     
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Results 

AvrPto is more stable in the presence of the hrp cluster. 

My previous work had shown that the stability of effectors was affected by the 

presence of Lon protease (Chapter 3).  I proposed that this sort of degradation was 

limiting to TTSS from P. syringae.  Because wild-type cells were capable of secretion 

only when the TTSS was induced, we hypothesized that effectors would be protected 

from Lon-mediated degradation under these conditions in order to be secreted.  We 

studied the abundance and stability of effectors under hrp-inducing or repressive 

conditions (See Materials and Methods).  No difference could be detected between 

AvrPto’s cytoplasmic abundance under hrp-inducing or repressive conditions (Figure 

4-1A, time 0).  Since a difference in the apparent half-lives had been detected 

previously in Lon mutants of E. coli and Psy61 compared to wild-type (See chapter 

3), the same experiment was performed in Psy61 under hrp repressive and inductive 

conditions.  When the cells were grown under hrp-inducing conditions, the half-life 

of AvrPto was about 12 minutes, whereas it was close to 3 minutes under repressive 

conditions (Figure 4-1A).  In addition, the steady state levels of the effector AvrPto 

were also studied in E. coli cells with or without pHIR11, which encodes for the 

whole hrp cluster.  It was found that in the presence of pHIR11, estimated levels of 

AvrPto levels were at least 5-fold higher than in cells without pHIR11 (Figure 4-1B).  

Combined, these results provide evidence for a stabilizing factor for AvrPto contained 

within the hrp cluster  
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Figure 4-1.  AvrPto is more stable in the presence of the hrp cluster. 

A. An overnight culture of P. syringae Psy61 (wild-type) expressing AvrPto 

from pDSK600 was diluted into fresh media and grown to an OD600 of 1.0.  

The cells were collected and resuspended in either inducing (M63 Fructose) or 

repressive (M63 Fructose with 1% casein) media to an OD600 of 0.6 and 

grown at 25º C for 4 additional hours.  Translation was stopped by the 

addition of tetracycline to a final concentration of 200 µg/ml, and the levels of 

AvrPto were estimated in 250 µl samples.  The cells were collected at the 

indicated times and resuspended in 50 µl SDS-PAGE loading buffer.  Samples 

were fractionated in a 15% SDS-PAGE, and blotted to nitrocellulose and 

probed using anti-AvrPto sera.   

B. AvrPto was expressed from the Lac promoter in pDSK600 in E. coli SG22622 

(wild-type) in the presence of either pHIR11 (+hrp) or pLAFR3 (-hrp).  Cells 

were grown to an OD600 of 0.8, and levels of AvrPto were estimated in a 0.5 

ml aliquot as described above. 
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that is only expressed under hrp-inducing conditions in Psy61, suggesting this factor 

is part of the hrp regulon. 

Search for the stability factor within the hrp cluster 

Because the stability of effector proteins seemed to be affected by the expression of 

the hrp cluster, it was reasonable to predict the existence of a stabilizing factor within 

the cluster.  The stability of AvrPto was tested in an hrpL mutant, lacking the 

alternative sigma factor responsible for hrp gene expression.  If the stability factor 

was part of the hrp cluster, then the levels of AvrPto in the hrpL::Tn strain would be 

decreased compared to the wild-type hrp cluster because the factor would not be 

expressed.  The steady state levels of AvrPto were studied in strains carrying the wild 

type pHIR11 or the transposon-mutated derivative.  E. coli SG22622 (Lon+) were 

transformed with pMLAvrPto600, which expresses a 6xHis tagged AvrPto, and either 

pHIR11 or pHIR11-2084 (hrpL::Tn).  The cells were grown to mid-log phase and the 

whole cell extracts were assayed for the amount of AvrPto in immunoblots.  The 

levels of AvrPto were decreased in the hrpL mutant cells (Figure 4-2), validating the 

hypothesis that the stabilizing factor is contained in the hrp cluster.  The difference in 

levels was not due to a loading difference since the levels of BAP-FLAG were 

equivalent in these strains (Figure 4-2).   

 

It was possible that the enhanced stability of the effectors was due to the 

compartmentalization of the effector into the TTSS and, thus, a physical separation 

from Lon protease.  If this were the case, any mutation that resulted in an abnormal  
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Figure 4-2.  Levels of AvrPto in cells expressing hrp operon mutants.   

A. Overnight cultures of E. coli SG22622 (wild-type) carrying different pHIR11 

transposon mutants (containing mutations in different operons of the hrp 

TTSS) and ectopically expressing AvrPto and BAP-FLAG were diluted into 

fresh media until they reached an OD600 of 1.0.  The cells were washed and 

resuspended in M63 fructose with 1% casein to an OD600 of 0.6, and grown 

for 4 hours.  A 0.5 ml aliquot was centrifuged and the cells were resuspended 

in 50 µl of SDS-PAGE sample buffer.  An identical sample was taken but 

resuspended in 50 µl 10% SDS to measure the total protein amounts using the 

BCA kit (Amersham-Pharmacia, NJ).  Ten µg of total protein from the 

samples were separated in a 15% SDS-PAGE and immunoprobed with anti-

AvrPto antibodies.  The blots were stripped with 10M urea and reprobed with 

anti-FLAG antibodies. 

B. Schematic representation of the hrp/hrc operons and the locations for the 

transposon insertions (triangles) used in the different pHIR11 derivatives.
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TTSS, would also result in an inability to protect effectors from degradation.  

Alternatively, it was possible that there existed a chaperone-like molecule that 

protected effectors from Lon-mediated degradation.  If this were the case, then only 

the mutation in one specific gene would abolish the protective effect of expressing the 

hrp cluster.  To differentiate between these alternatives, various pHIR11 mutants 

were used to study their impact on the stability of AvrPto.  These mutants included 

the insertion of a polar transposon in each of six identified hrp operons, except hrpRS.   

The results showed that the stability of AvrPto was still enhanced in four of the 

mutants, suggesting that the effect of the hrp cluster was not due to a sequestering of 

the effector into the secretion apparatus, but could be due to the production of a 

stabilizing agent.  Two mutants, pHIR11-2090 (hrpU) and pHIR11-2093 (hrpA) 

consistently showed a decreased amount of AvrPto when assayed (Figure 4-2), 

suggesting that the stabilizing factor was contained in one or both of these operons.    

The levels of AvrPto in the hrpK operon mutant also appeared to be decreased (~ 

50% of wild-type, data not shown), however, these levels varied in the different trials 

carried out, and therefore were not further pursued.  

 

Attempts were made to verify the stabilizing effect of the hrpA and hrpU operons.  

Each operon was cloned into pCR-XL and co-expressed with AvrPto.  Both the hrpA 

and hrpU operons were expressed from the Lac promoter present in pCR-XL and 

induced with IPTG.  When expressed at the same time as AvrPto, both operons were 

able to stabilize the effector (Figure 4-3A-B) to similar levels as pHIR11, but 

 

112 
 
 



Figure 4-3.  The hrpA and hrpU operons can stabilize AvrPto. 

A.  Wild-type E. coli SG22622 carrying pAvrPto600 were transformed with either 

pLAFR3 (empty vector, open circles) or the cosmid clone pHIR11 (carrying a 

functional hrp cluster, closed circles).  Overnight cultures were diluted in fresh M63 

Fructose with 1% casein hydrolysate and grown to an OD600 of 0.6.  Translation was 

stopped by the addition of chloramphenicol to a final concentration of 200 µg/ml, and 

250 µl samples were taken at the times (min) indicated.  Cells were collected and 

resuspended in SDS-PAGE loading buffer.  Whole-cell lysates were separated in a 

12% SDS-PAGE, and levels of AvrPto were estimated as before.  The abundance of 

AvrPto was measured relative to its initial amounts at time 0 min. B.  The levels of 

AvrPto in cells carrying inactive pHIR11-2093 (hrpA::Tn, solid line, open squares); a 

construct expressing the entire hrpA operon in pCR-XL (solid line, closed squares); 

hrpA, hrpZ, and hrpB genes of the hrpA operon in pCR-XL, pTophrpAXL (dashed 

line, open triangles); or hrcJ, hrpD, and hrpE genes of the hrpA operon in pCR-XL, 

pBottomhrpAXL (dashed line, closed triangles).  C.  The levels of AvrPto were 

estimated also in cells expressing inactive pHIR11-2090 (hrpU::Tn, solid line, open 

diamonds);  a construct expressing the entire hrpU operon in pCR-XL (solid line, 

closed diamonds);  hrcP, hrpQa, hrcQb,and  hrcR genes of the hrpU operon in pCR-

XL, pTophrpUXL (dashed line, star);  or hrcS, hrc, hrcT, and hrcU genes of the hrpU 

operon in pCR-XL, pBottomhrpUXL (dashed line, double stars).  Experiments were 

repeated five times with similar results obtained in three of these attempts.  
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variability was observed.  The experiments were performed a total of 5 times, but 

only 3 out of those gave the reported results.  The other 2 trials resulted in opposite 

outcomes in which AvrPto was not stabilized at all by the presence of the operon 

(data not shown).  The outcome may be a result of inconsistencies in expression from 

the lac promoter in the pCR-XL system or a problem with the experimental approach. 

 

Identification of the gene encoding the stabilizing factor.   

 

In order to identify the gene responsible for the stability, half of the genes from each 

operon was subcloned individually into pCR-XL and their effects on AvrPto were 

studied.  Neither half of the hrpA operon had the ability to stabilize AvrPto (Figure 4-

3C).  The results from the hrpU operon are very similar.  Neither the 5’ nor 3’ genes 

of the operon could consistently stabilize AvrPto (Figure 4-3D).  The experiments 

suggest that there was a problem with the expression of the cloned genes, or more 

than one gene product is necessary for the stabilizing effects observed on AvrPto.  

Alternatively, the approach used was improper for this study and could not be relied 

upon to identify the stabilizing factor in the hrp cluster.  As a consequence, 

biochemical approaches were attempted to ascertain the nature of the stabilizing 

factor. 

 

Further attempts to identify the stabilizing factor. 
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Building on the hypothesis that the generalized stabilizing factor would be acting in a 

similar fashion to a chaperone that physically interacts with its effector, three 

different biochemical methods were used to try to identify proteins which interact 

with AvrPto and other effectors:  Far Westerns, crosslinking, and column binding 

experiments.  Each of these methods probes for interacting proteins, that, if found, 

would have to be characterized using peptide sequencing or mass spectrometry 

analysis.  The following experiments were performed on at least two effectors, 

however only representative results from HopPsyV1 are shown. 

 

Far Westerns.  Far-Western blotting is a method of probing a nitrocellulose or PVDF 

membrane, containing immobilized proteins, with another protein to detect specific 

protein-protein interactions.  The method involves transferring cell extracts to a 

membrane, allowing a 8-24 h refolding period, and then overlaying the blot with a 

soluble protein that may bind to one or more immobilized proteins on the blot.  After 

the overlay, interacting proteins are visualized by immunodetection based on the 

probing protein.  A band would appear on the blot at the location where the 

interacting protein was located.  For these experiments 6xHis tagged effectors were 

purified using Ni-NTA columns and used as the probing protein. Out of five 

effectors, two, AvrPto and HopPsyV1, were purified at high enough concentrations to 

carry out the experiments. The purified effectors were used to probe blots of whole 

cell extracts from different strains and growth conditions, including P. syringae 

grown under hrp-inducing and non-inducing conditions, P. syringae hrpL mutants, 

and E. coli either expressing or not the hrp cluster carried in pHIR11.  As a positive 
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control an E. coli strain that expresses ShcV1 was used.  ShcV1 is the predicted 

chaperone for HopPsyV1 and it’s expected to interact physically with its effector.    

Neither AvrPto nor HopPsyV1stably associated with another protein (Figure 4-4).  

The experiments were performed with 10X more effector than recommended in other 

methods [167], but no interactions could be detected.  The major limitation of this 

method is that it relied on a very strong physical interaction between the effector and 

the stabilizing factor.  It is possible that the interaction between this generalized factor 

and each effector is in reality very weak, and thus, this approach could not be used.  

Because the effector used as a probe would be washed away easily during the 

procedure it would be impossible to identify interacting proteins properly.  

Consequently, other more sensitive approaches were used.  

 

Column-binding experiments.  These experiments were performed by immobilizing 

the effectors on a Ni-NTA column by virtue of a 6xHis epitope, and passing whole 

cell extracts through the column.  Those proteins that interact with the effector would 

remain immobilized in the column until both proteins are eluted.  The experiments 

were tried with AvrPto, HopPsyV1, HopPsyB1 and HopPtoG.  Both HopPsyV1 and 

HopPsyB1 are proposed to interact with their chaperones ShcV1 and ShcB1, 

respectively, and these interactions were used as controls for detecting protein-protein 

interactions.  Only the representative results from HopPsyV1 are shown, but similar 

results were obtained with all the effectors.  The effectors were adequately  
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Figure 4-4.  Far Western Analysis of effector interacting proteins. 

HopPsyV1 was purified from E. coli SG22622 wild type cells using the Ni-NTA 

agarose slurry (Qiagen, CA) following manufacturer’s instructions. Ten µg of 

purified protein were diluted in interaction buffer and incubated with a blot of whole 

cell extracts for 2 hours.  The blot was washed once with wash buffer (10mM Tris-

HCl, 0.01% Tween-20) and the blot was probed with anti-His antibodies and 

recommended by the manufacturer.  Lanes 1:  SG22623 (∆lon) pLAFR3 (empty 

vector);  2:  SG22623, pHIR11 (expressing a functional hrp TTSS);  3:  SG22623, 

pShcV1D (expressing ShcV1 chaperone);  4:  P. syringae Psy61 (wild-type), 

inducing conditions;  5:  Psy61, repressive conditions;  6:   Psy61-2084 (hrpL::Tn, 

hrp-), inducing conditions;  7:  P. syringae DC3000 (wild-type), inducing conditions;  

8:  purified HopPsyV1 (as a positive control for the immunoblot).  Similar results 

were achieved with AvrPto.  HopPsyV1 ran as a doublet.
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immobilized on the column as is evident because very low amounts of HopPsyV1 of 

other effectors were detected in the flow through or wash fractions of the column 

(Figure 4-5A).  The effectors were not eluted from the column by the whole cell 

extracts from Psy61 or the secondary washes (Figure 4-5A).  The buffers used were 

sufficient to elute the effectors, as is evident because of the high concentration of 

HopPsyV1 in the eluate fraction (Figure 4-5A).  HopPsyV1 was always purified as 

two bands at around 69 KDa and 73 KDa, this molecular weight shift might be the 

result of the loss of the peptide added by cloning the protein into the pTrcHis2 vector.  

However, too many additional proteins could be detected in the elution after 

application of whole-cell extracts from Psy61, even under the most stringent of wash 

buffers (Figure 4-5A).  These results did not make it possible to identify a single 

protein that was directly interacting with the effector.  Moreover, the eluates of 

different stains all resulted in the same protein species (Figure 4-5B).  Even cell 

extracts of a strain expressing the cognate chaperone, ShcV1, did not result in a band 

at the expected 18 KDa, suggesting that the observed bands were not specifically 

interacting with the effector, but were some form of contamination.  Regardless of the 

wash protocol followed, the eluate was always contaminated.  The most obvious 

limitation to this approach was that it did not appear to be functioning adequately.  

The controls used to test the interaction between an effector and its cognate 

chaperone did not result in the expected purification of the chaperone.  Those results 

suggest that the method was not fine-tuned, and needs to be optimized.   
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Figure 4-5.  Column binding experiments. 

A. A whole cell lysate (WC) of E. coli SG22622 (wild-type) expressing 

HopPsyV1was mounted on a Ni-NTA agarose column (Qiagen, CA) as 

recommended by the manufacturer.  The lysate was allowed to pass through 

the column by gravity (FT) and then washed three times with a stringent 

buffer (W) containing 50 mM imidazole.  A cleared lysate from Psy61 grown 

under inducing conditions created as recommended by the manufacturer 

(Qiagen, CA) was passed through the column (FT2).  The column was washed 

once again with a mild buffer (W2) containing only 10 mM imidazole and 

eluted with elution buffer (E) containing 250 mM imidazole as recommended 

by the manufacturer.  The results presented are from one experiment but it is 

representative of three attempts.   

B. Whole cell extracts were treated as before, except that cell lysates from the lon 

null cells SG22623 carrying pLAFR3 (lane 1), pHIR11 expressing a 

functional hrp TTSS (lane 2), or the wild type cells SG22622 carrying 

pShcV1D which expressed the ShcV1 chaperone (lane 3), pLAFR3 the empty 

vector (lane 4), or pHIR11with the hrp TTSS (lane 5) were passed through the 

column and the eluates were run on a SDS-PAGE side by side.  No difference 

in the proteins detected could be observed.  Similar results were obtained with 

all other effectors tested. 
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Cross-linking experiments. Two cross-linking agents were used to covalently link 

proteins that are in close proximity.  If there are proteins that physically interact with 

the effectors, then the crosslinking would result in a species with a higher molecular 

weight than the effector.   Formaldehyde and DSP were used as described in other 

methods [167].  After crosslinking, cell extracts were either fractionate by SDS-

PAGE and immunoblotted, or the poteintial effector-interacting protein complex was 

purified on the Ni-NTA columns as described before.  These experiments were 

performed on AvrPto and HopPsyV1.  As a positive control, ShcV1 was expressed 

and its interaction with HopPsyV1 was monitored.  For neither of these proteins or 

with either of the methods was there a detectable weight shift that could be attributed 

to interaction with another protein (Figure 4-6).   As was the case for the Far 

Westerns, the major limitation of this approach was that it depended on a very 

intimate and strong interaction between the effector and the proposed generalized 

stability factor.  If this interaction does not occur, then no proteins could be cross-

linked to the effector.  These results suggest that the methods used were not properly 

optimized for the protein-protein interaction under scrutiny, and that the positive 

controls used were insufficient to adequately troubleshoot the protocols used. 
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Figure 4-6.  Crosslinking experiments. 

A. Overnight cultures of SG22623 (∆lon) carrying pHIR11 that expresses a 

functional hrp TTSS (lanes 1 and 4), the empty vector, pLAFR3 (lanes 2 and 

5), or pShcV1D expressing the ShcV chaperone (lanes 3 and 6) and co-

expressing HopPsyV1 were diluted into fresh LB media and grown to an 

OD600 0.6.  DSP to 1 mM was added to one half of the culture (lanes 4 – 6) 

and the cells were incubated for two additional hours.  A 0.5 ml aliquot 

sample was centrifuged and the pellet was resuspended in 50 µl of SDS-

PAGE loading buffer.  The samples were fractionated by SDS-PAGE and 

immunoblotted with anti-His antibodies.    

B. SG22623 (∆lon) cells were treated as above except that formaldehyde (10 

mM) was used for crosslinking instead of DSP and the incubation time was 

reduced to 30 min.  After the incubation 6xHis tagged moieties were purified 

using the Ni-NTA agarose slurry and analyzed by immunoblots.  Similar 

results were obtained with AvrPto.  Lanes 1 and 5: no vector;  lanes 2 and 6: 

pLAFR3;  lanes 3 and 7: pHIR11;  and  lanes 4 and 8:  pShcV1D.
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Discussion 

 

Secretion through the TTSS of P. syringae is different from mammalian pathogens in 

various ways.  Most notably, the number of proteins which are substrates for TTSS in 

P. syringae is very high (>60) compared to less than 15 for other pathogens [39, 43, 

62, 76].  All effector genes are controlled by the alternative sigma factor, HrpL, and 

there are no known mechanisms for regulation of their transcription and/or 

translation.  In P. syringae, however, chaperones appear to be associated with a very 

small minority of these effectors [62, 75].  These facts pose a dichotomy in P. 

syringae:  either chaperones are not important for its TTSS; or P. syringae has found 

an alternative method for carrying out the roles of individual chaperones.  The 

observation presented here that effectors can be generally stabilized by expression of 

the hrp regulon in P. syringae, provides some evidence that indeed there is a need for 

at least one of the chaperone activities prior to secretion.   In addition, the recent 

studies that show that three chaperones, ShcA, ShcM and ShcV, are necessary for the 

secretion of their corresponding effectors [14, 189, 193] underlines the necessity for 

chaperone functions in the hrp TTSS.  It is likely, then, that P. syringae requires 

chaperone functions for secretion, but developed a novel way to achieve these 

functions. 

 

The results obtained in the course of this study suggest that there is a factor within the 

hrp cluster that can complete the stabilizing function of a TTSS chaperone.  Effectors 
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appeared to be more abundant and had longer apparent half lives when the hrp 

regulon was expressed in P. syringae.  Those effectors were also stabilized in E. coli 

cells expressing the hrp cluster, suggesting that the protein(s) responsible for 

stabilization was encoded by one of those genes.  I proposed that this factor could act 

as a generalized chaperone that could protect effectors from proteolysis, and also 

allow their secretion through the TTSS.  This proposed generalized chaperone would 

act analogously to other TTSS chaperones.  Firstly, it was necessary for the 

cytoplasmic stabilization of effectors.  Secondly, it would be regulated as part of the 

hrp regulon by HrpL.  Thirdly, it would physically interact with the effectors and 

form either a “secretion competent” structure [179], or alternatively, a three 

dimensional structure that would be recognized by the secretion apparatus [20].  

Lastly, the generalized chaperone would be necessary for proper secretion of the 

effectors.  

 

The initial attempts to identify the generalized chaperone were based on its ability to 

stabilize effectors in the cytoplasm.  To this end, various transposon mutations of the 

operons in the hrp cluster were used to find mutants where the abundance of AvrPto 

was decreased when compared to the wild-type hrp cluster.  The approach was useful 

to identify two operons that had the ability to stabilize AvrPto, the hrpA and hrpU 

operons.  The hrpA operon consists of hrpA, hrpZ, hrpB, hrpJ, hrpE and hrpD.  As 

shown in Table 1-1 (page 27), HrpA (the main component of the TTSS needle [163]), 

HrpZ (an HR elicitor), and HrpB are all secreted proteins, and might not function as 

the generalized stability factor.  However, HrpD, HrpE, and HrpJ are all predicted to 
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be cytoplasmic, and at least HrpD has been shown to also associate with membranes 

[140].  Most interestingly, however, is the fact that HrpE is the FliH/YscL homolog 

(Table 1-1).  FliH and YscL have been proposed to interact with FliI and YscN, the 

ATPases involved in flagellar biosynthesis and Yersinia TTSS [96, 204].  FliH 

appears to interact with chaperone/substrate complexes and seems to be involved in 

the initial docking of flagellar export substrates [183] (see Figure 1-2, pg. 26).  In 

Yersinia, YscL interacts with YscK [96], which is the HrpD homolog (Table 1-1).  

Thus, it is possible that the stability factor in P. syringae could indeed be one of these 

docking proteins.  The function of HrpJ is still unknown, and therefore could also be 

an excellent candidate for the stability factor.  In the future, experiments that directly 

address the ability of HrpD, HrpE, and HrpJ to interact with specific effectors should 

be conducted.    

The hrpU operon consists of hrcU, hrcR, hrcS, hrcT and hrcQa /hrcQb and is mostly 

responsible for the formation of the inner membrane structure of the TTSS [89].  

Inner membrane components of the flagellar TTSS are known to interact with 

chaperone/substrate complexes [204], and are also involved in the initial docking onto 

the system [183].  Therefore, it is most likely that the stability factor is one of the 

soluble components expressed from the hrpA operon.   Possibly, in the absence of the 

proper inner membrane components, the soluble complex formed between the 

effector and the soluble components dissolves quickly, and hence the effector would 

be prone to Lon-mediated degradation.  

 

Further analyses were carried out to decipher the gene(s) responsible for the 
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stabilization, but none of the results was sufficiently convincing to pinpoint the nature 

of the stabilizing factor.  The major limitation of the genetic approach was the lack of 

sensitivity of the antibody used during the study.  The antibody was cross-reactive 

with too many proteins which made it difficult to determine the actual levels of 

AvrPto in the blots, and therefore, unreliable.  In the future, these experiments should 

be performed using more precise antibodies, such as anti-HopPsyA and anti-

HopPtoM which were recently acquired.  In addition, these experiments should also 

be conducted using the native P. syringae background, since it would be more 

accurate than the E. coli-based screen.  There are transposon mutants in all the 

operons tested in this study, and therefore, a complete screen of the hrp cluster could 

be performed. 

 

The second set of experiments attempted in this study focused on the identification of 

a protein that could physically interact with effectors.  Based on other TTSS, the 

stabilizing factor could act as a chaperone that has multiple substrates, such as SycD, 

IpgC, and SycH in Shigella, and Yersinia spp. [148, 149, 155, 192].  Three different 

biochemical methods for identifying protein interactors were used.  All of these 

attempts were based on the premise that the stability factor could physically interact 

with the effectors.  In some cases, the methods were modified to fit the conditions 

necessary for even weak interactions.  Since the positive controls did not yield the 

expected results these experiments remain inconclusive.  More effort should be 

dedicated to enhance the effectiveness of these methods and to obtain the proper 

results with the control reactions in order to find the stabilizing factor.   
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It is essential to keep in mind that the generalized stability factor may influence other 

processes that may stabilize the effectors.  For example, the stability factor may be 

involved in the post-translational modification of the effector, therefore protecting it 

from degradation.   However, none of hrp the gene products is predicted to have an 

enzymatic activity capable of modifying the effectors, and hence it is unlikely that the 

stabilizing factor is involved in such a modification.  Alternatively, it may regulate 

protease activity and in this manner protect effectors.  Other results comparing 

proteolysis in P. syringae between hrp-inducing and hrp-repressing conditions have 

shown that there is no difference in the general turnover of proteins (Bretz, 

unpublished results).  These results suggest that the activity of proteases is the same 

under both conditions and supports the idea that effectors are differentially protected 

under the two different conditions.   The assay has not been carried out specifically 

for Lon, and so it is possible that the affinity of Lon for the effectors is different under 

the two situations.  Since the stability factor could be directly interacting with the 

effector, or involved in other mechanisms that change the affinities of Lon, it is vital 

that both genetic and biochemical approaches with enhanced sensitivity be used to 

discover the stability factor.   

 

In conclusion, during this study various attempts were conducted to identify a 

possible generalized stability factor for TTSS in P. syringae.  This stability factor 

would accomplish the roles of other TTSS chaperones by acting on a wide range of 

effectors. Although several approaches were used, the nature and function of the 
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stability factor still remains to be discovered. 

Materials and Methods 

Bacterial Stains and Media.   

Strains and plasmids used in this study are described in Table 4-1.  Bacteria were 

routinely grown on King's B medium [12].  Plasmids were propagated in E. coli 

DH5α.  E. coli strains were grown at 37ºC, and Pseudomonas syringae strains were 

grown at 25ºC.  LB and M63 minimal salts media were used as described previously 

[167].  M63 medium was supplemented with 1mM MgSO4 and 1% fructose (M63F).  

The following antibiotics were added where needed at the indicated concentrations 

(in micrograms per milliliter):  ampicillin, 200; kanamycin, 50; spectinomycin, 100, 

tetracycline, 25; nalidixic acid, 50; rifampicin, 200; and chloramphenicol; 30. 

 

Table 4-1.  Strains and Plasmids. 

Strain or plasmid Genotype or phenotype Reference or source

Strains   

E. coli   

 DH5α endA1 hsdR17 (rk- mk-) supE44 thi-1 recA1 

gyrA96 relA1 ∆(argR-lacZYA) 

U169φ80dlacZDM15 

Invitrogen 

SG22622 cpsB::lacZ ∆ara malP::lacIq S. Gottesman 

SG22623 SG22622 ∆lon-510 S. Gottesman 
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SLR400 araD139 ∆(ara leu)7697 derivative of 

MC4100 

S. Benson 

 TOP10 F- mcrA (mrr-hsdRMS-mcrBC) 80lacZ

M15 lacX74 recA1 ara 139 (ara-leu)7697 

galU galK rpsL (StrR) endA1 nupG 

Invitrogen 

Pseudomonas syringae  

Psy61 Wild-type, Nalr , HR+ 

Weak bean pathogen 

[15] 

Psy61-KL11 Nal r Kanr , lon::Tn [25] 

Plasmids   

pAvrRpt2D 1.0 kb PCR product containing avrRpt2 

cloned into pDSK519 

This work 

pDSK519 Broad-host range vector, IncQ Kanr [107] 

pDSK600 Broad-host range vector, IncQ Spr [147] 

pFLAG-CTS-BAP Bacterial Alkaline Phosphatase in pFLAG-

CTC 

Sigma-Aldrich 

pHIR11 pLAFR3 derivative carrying P. syringae pv. 

syringae 61 hrp/hrc cluster, Tcr

[85] 

pHIR11-2074 hrpL:Tn derivative of pHIR11 [84] 

pHIR11-5134 hrpK:Tn derivative of pHIR11 [84] 

pHIR11-2075 hrpJ:Tn derivative of pHIR11 [84] 

pHIR11-2084 hrpU:Tn derivative of pHIR11 [84] 

pHIR11-2090 hrpC:Tn derivative of pHIR11 [84] 
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pHIR11-2093 hrpA:Tn derivative of pHIR11 [84] 

pHopPsyB1trc hopPsyB1 cloned into pTrcHis2 This work 

pHopPsyEtrc hopPsyE cloned into pTrcHis2 This work 

pHopPtoGtrc hopPtoG cloned into pTrcHis2 This work 

pHopPtoMtrc hopPtoM cloned into pTrcHis2 This work 

pHopPsyV1trc hopPsyV1 cloned into pTrcHis2 This work 

pLAFR3 Tcr, IncP1  [177]  

pLLHrpAXL hrpA operon cloned into pCR-XL This work 

pLLHrpUXL hrpU operon cloned into pCR-XL  This work 

pLLBottomHrpAXL 5’ genes of hrpA operon cloned into pCR-

XL 

This work 

pLLBottomHrpUXL 5’ genes of hrpU operon cloned into pCR-

XL 

This work 

pLLTopHrpAXL 5’ genes of hrpA operon cloned into pCR-

XL 

This work 

pLLTopHrpUXL 5’ genes of hrpU operon cloned into pCR-

XL 

This work 

pMLAvrPto600 0.45 kb PCR cloned  as EcoR1-HindIII into 

pDSK600 

[25] 

pMLL600 0.4-kb PCR product containing hrpL  

cloned into pDSK600 

This work 

pSGAS 3.6-kb fragment containing hopPsyA in 

pYXSS 

[80] 

pSHAMB hopPsyA cloned into pMLB1034 [80] 

pShcB1D 0.5 kb PCR product cloned into pDSK519 This work 
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pShcMD 0.5 kb PCR product cloned into pDSK519 This work 

pShcV1D 0.5 kb PCR product cloned into pDSK519 This work 

 General DNA manipulations.   

Restriction enzymes were purchased from Invitrogen (Bethesda, MD).  T4 DNA 

ligase was acquired from New England Biolabs (Beverly, MA) and used according to 

the manufacturer's recommendations.  Basic manipulations were done using standard 

procedures.  PCRs were performed using a PCRSprint thermal cycler (Hybaid, 

Ashford, UK) with 50 µl reaction volumes.  Unless indicated otherwise, ProofPro 

polymerase (Continental Lab Products, San Diego) was used to amplify fragments for 

cloning. 

 

Cloning of operons into pCR-XL   

The regions containing the hrpA and hrpU operons, including their ribosome binding 

site, were amplified from Psy61 genomic DNA using the following primers: hrpA 

complete operon A1 (TACCGTCGCATCAAGGAAT) and A2 

(CCATTTTCGCCGCAAGA); 5’ region A1 and A3 

(GCAGGCCCGTTCTCTTCGT); 3’ region A4 (ACGAAGAGAACGGGCCTGC) 

and A2, hrpU complete operon U1 (GATCCTCGACCACTTAGCA) and U2 

(GGTACGCGTATGGCTAAAC); 5’region U1 and U3 

(AACTACAGTTTGTCGGCGTTG); 3’ region U4 

(CAACGCCGACAAACTGCAG) and U2. The products were cloned into pCR-XL 

using the TOPO TA cloning kit (Invitrogen, Carlsbad ) following manufacturer’s 
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instructions.  The inserts were verified by sequencing. 

Immunoblots.   

Ten µg of total protein from every sample were separated by SDS-PAGE and 

transferred to nitrocellulose membranes.  Immunoblotting was carried out using a 

polyclonal antibody raised against AvrPto at 1:3000 dilution.  Commercial antibodies, 

anti-His (Novagen, San Diego), anti-FLAG (Sigma, St. Louis), and secondary 

antibodies conjugated to horse radish peroxidase were used following manufacturer’s 

recommendations.  Cross-reactive proteins were visualized using the ECL 

chemiluminescence kit (Amersham-Pharmacia, Piscataway). 

 

Stability of Effectors. 

Overnight cultures of P. syringae strains expressing AvrPto, HopPsyA or AvrRpt2 

were diluted into M63 media containing fructose as the carbon source to an OD600 of 

0.6 and incubated for 4 h at 25°C.  After incubation, tetracycline (200 µg ml-1) was 

added to inhibit translation.  Cells were harvested at specified time points, lysed in 

sample buffer and fractionated in 12% SDS-PAGE gels.  For E. coli, SG22622 or 

SG22623 were grown overnight at 37°C, diluted into fresh M63F containing 1 % 

casein hydrolysate and grown to an OD600 of 0.6.  After incubation, chloramphenicol 

(200 µg ml-1) was added and samples were collected as in P. syringae.  The half-life 

effectors were calculated from the exponential decay in levels estimated in scanned 

images using NIH Image 1.59.  Each experiment was repeated at least three times. 
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Purification of Effectors. 

C-terminally 6xHis tagged effectors were purified using the Ni-NTA agarose slurry 

(QIAGEN, CA) under native conditions as recommended by the manufacturer.  

 

Far Western  Blots. 

Ten µg of whole cell lysates from Psy61 and Psy61-2084 under inducing or 

repressing conditions as described by [200] were separated by SDS-PAGE and 

transferred to a PVDF membrane.  Blots were incubated with up to 10 µg of purified 

effector in binding buffer (10 mM MgSO4, 10mM Tris-Cl pH 7.8) for two hours.  

Blots were washed with PBS buffer once for 10 min, and then immunoprobed using 

anti-His antibody as recommended by the manufacturer.   

Column Binding. 

Whole cell lysates of cells expressing 6xHis tagged effectors were prepared following 

the instructions for native isolation of proteins (Qiagen, CA) with the exception that 

after four washes the proteins were not eluted.  Instead, a 3 ml sample of a whole cell 

lysate of Psy61, Psy61-2084 (inducing and repressing conditions), SG22623(pHIR11) 

or SG22623(pLAFR3) was allowed to pass through the column in 0.5 ml aliquots.  

The column was then washed with wash buffer (50 mM NaH2PO4 , 300 mM NaCl, 20 

mM imidazole pH 8.0) three times and eluted with elution buffer (50 mM NaH2PO4 , 

300 mM NaCl, 250 mM imidazole pH 8.0).  250µl samples were taken after the flow-
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through and washes to detect any leaking of the bound effector.  After elution, 

proteins were separated by SDS-PAGE, and either stained with Coommassie Brilliant 

Blue or immunoprobed for the effector to verify the proper functioning of the column. 

Crosslinking experiments. 

Cells were grown to an OD600 of 0.8 at which point either formaldehyde (10 mM) or 

DSP (1 mM) were added.  Cells were incubated for an additional 30 min with 

formaldehyde or two hours with DSP.  Whole cell extracts were created by taking a 

0.5 ml aliquot, centrifuging, and resuspending the pellet in 50 µl of SDS-PAGE 

sample buffer and separating them by SDS-PAGE and immunoprobing for the 

effector.  Alternatively, after the crosslinking, cell lysates were created under native 

and denaturing conditions and incubated with the Ni-NTA agarose slurry for 1 hour 

and treated as recommended by the manufacturer.  Eluted proteins were detected by 

immunoblots with anti-His antibodies.   
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Chapter 5:  General Conclusions and Future Directions 

 

This work was successful in identifying and characterizing a novel effector in P. 

syringae Psy61, HopPsyL.  This effector was shown to be necessary for virulence in 

Phaseolus vulgaris cv Kentucky Wonder, and was an avirulence determinant on 

many non-host plants.  In addition, effectors were found to be hypersecreted and 

more stable in strains lacking Lon protease.  From those experiments, a novel model 

on how P. syringae regulates secretion of effectors through its TTSS was proposed.  

The model stipulates that the cytoplasmic abundance of effectors is limiting to 

secretion, and suggests that an order for effector secretion could be established 

depending on the relative abundances of different effectors.  This study found that 

effectors were protected from Lon-mediated degradation by their corresponding 

chaperones, therefore clarifying the role of chaperones in P. syringae. The study also 

found evidence for a generalized chaperone used in P. syringae secretion in order to 

stabilize effectors prior to secretion.  This general chaperone could be another method 

for imposing hierarchy in effector secretion, and an adaptation to the great number of 

effectors present in the P. syringae genome.  

 

One of the major impasses of studying secretion through the P. syringae TTSS was 

that the process is very tightly regulated.  I found that lon mutants were capable of 

hypersecreting effectors (Chapter 3) [25], and that bypassing the regulation of the hrp 

TTSS by ectopically expressing HrpL did not result in the same phenotype (Chapter 
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3).   The hypersecretion was due to an enhanced amount of the effector in the 

cytoplasm, mainly because effectors were not degraded by Lon in that strain (Chapter 

3).   These results led me to propose that secretion was limited by the cytoplasmic 

amount of effectors available, and that selection of secretion substrates in P. syringae 

could be dictated by the comparative abundance of each effector in the cytoplasm 

(Figure 5-1a).  This model was novel in the field and could help to explain the 

manner in which a hierarchy of effector secretion could be established in P. syringae.  

The model implies that effectors present at high concentrations would be secreted 

more readily, and would accumulate in the host more rapidly than those at low 

concentrations. The model is exciting because up to now, the only method proposed 

for imposing an order of secretion has been through chaperones.   However, most 

TTSS have fewer chaperones than effectors, and thus it was unclear how the order 

could be established for effectors that don’t appear to have a cognate chaperone.  The 

model is especially important for plant pathogens that have only a small number of 

chaperones compared to the vast number of effectors [76], and thus could explain 

how those effectors are selected for secretion.  

 

I found that chaperones positively affected the stability of effectors in the P. syringae 

cytoplasm by protecting them from Lon-mediated degradation.  Therefore, I was able 

to clarify the role of these chaperones in this system.  The results fit in with my 

proposed model of effector secretion, since an effector that interacts with its 

chaperone is more stable and present at higher amounts in the cytoplasm, and 

therefore, could be more easily secreted through the TTSS (Figure 5-1b).  
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Figure 5-1.  Substrate selection in the TTSS of Pseudomonas syringae. 

A. (i)  Two effectors wait to be secreted.  Effector A is more stable and more 

abundant, and therefore is secreted more readily than Effector B.  (ii)  The 

relative abundance of Effector B rises and becomes a proper substrate for 

secretion through the system.  Thus Effector B is secreted later than Effector 

A, and it takes a longer time for accumulation of Effector B in the host cell. 

B. (i)  The effector is not stable without its chaperone, and consequently its 

cytoplasmic abundance is limited and not sufficient for proper secretion.  (ii) 

In the presence of its chaperone, the effector is stabilized and begins to 

accumulate in the bacterial cytoplasm and is secreted through the TTSS. 
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Interestingly, effectors interacting with chaperones were also susceptible to Lon 

protease to different degrees, suggesting that here chaperones might also be involved 

in imposing a secretion hierarchy as in the Yersinia and flagellar biosynthesis TTSS 

[3, 198].           

 

Many tests need to be conducted, however, in order to understand if the model I 

proposed actually describes what occurs in P. syringae.  For instance, eight effectors 

were analyzed in this study, which is only a fraction of the total number of effectors 

produced by P. syringae strains.  Moreover, most of the sampled effectors belonged 

to different strains.  The observation that there exist two categories of effectors due to 

their difference in stability might be a consequence of the small sample used for the 

study, and might not reflect what really occurs in the bacterial cell.  More effectors, 

from a single strain, should be analyzed to determine if the model is still valid. It still 

remains to be shown whether secretion through the hrp TTSS is ordered in a similar 

fashion to Yersinia or flagellar biosynthesis [142, 198].  However, the available 

technology is not sensitive enough for this type of analysis, since secretion from P. 

syringae is very limited and reporter constructs cannot be used effectively to analyze 

the amount of secretion.  There might be the possibility of using the adenylate cyclase 

reporter assay as recently published [169].  Although the assay appears to be 

quantitative in nature [169], it is still not known whether it is sufficiently sensitive to 

detect very low levels of translocated effectors, or whether it can differentiate 

between early and late secretion.   Furthermore, if the model we propose is applicable 

to other Gram-negative pathogens, particularly mammalian pathogens which appear 
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to secrete elevated amounts of effectors, then it could be possible to assay the 

existence of “early” and “late” secretion substrates in those species, and their 

correlation with Lon-mediated degradation. 

 

A contradiction within our proposed model was that effectors that have very short 

half lives, and therefore do not accumulate in the bacterial cytoplasm, are still 

secreted through the TTSS, albeit at an unknown rate.  For example, HopPsyB has 

been shown to be secreted and translocated through the system [33] despite its short 

half life (>3 min).  Our observation that AvrPto and other effectors were stabilized 

when the hrp regulon was expressed provided evidence of the existence of a 

generalized stability factor that could potentially be in charge of stabilizing effectors.  

This generalized stability factor would accomplish the roles of chaperones, and 

possibly form the three-dimensional structure used for targeting an effector to the 

secretion port, as discussed later.  The proposed factor could have distinct affinities 

for different effectors, that might allow it to act as the regulator of substrate selection, 

much like FliK in flagellar biosynthesis [106, 142], or Spa32 in Shigella flexneri 

[133]. This stability factor, however, still remains to be identified, and its real role in 

TTSS from the hrp system needs to be elucidated.  More genetic and biochemical 

attempts to identify the generalized stability factor should be carried out as discussed 

in greater detail in Chapter 4.     

 

I determined that the protection granted by the chaperone ShcM on its cognate 

effector, HopPtoM, was not a result of masking of the Lon-targeting motif.  The C-
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terminal motif leading HopPtoM to Lon-mediated degradation did not appear to 

overlap the chaperone-binding domain.  The chaperone probably protected the 

effector because of the formation of some Lon-insensitive structure.  Interestingly, 

this structure might also function as the elusive TTSS signal, as discussed below.  It 

would be of great interest to locate the Lon-targeting motif of HopPtoM and other 

effectors more precisely.  It is possible that the identified motif would be different 

between “early” and “late” secretion substrates, and therefore would provide us with 

the molecular basis for the difference, and a possible mechanism for imposition of the 

proposed secretion hierarchy.  The targeting sequence from SulA [81, 95] was not 

present in HopPtoM or other effectors, and no consensus sequence that might target 

effectors to Lon could be discerned.    To clearly define the Lon-targeting motif, 

further experiments using the MBP fusion strategy should be attempted.  Both 

truncations of the C-terminal domain of HopPtoM, and N- and C-terminal truncations 

of other TTSS effectors should be studied.   

 

The results from my studies, namely that the secretion from P. syringae is limited by 

Lon-mediated degradation of effectors, also helps clarify the controversy surrounding 

the TTSS secretion signal.  My results imply that the secretion signal is contained in 

the peptide, and not the mRNA as had previously been proposed [7, 9, 145].  If the 

signal was in the form of mRNA, then it would be likely that secretion occurred co-

translationally, and would imply that there exists a mechanism for the ribosome to get 

in close contact with the TTSS, the idea known as “co-translational translocation” [9].  

If translocation occurs at the same time as secretion, then there would be no necessity 
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for the cytoplasmic accumulation of effectors, as observed here and elsewhere [184].  

In addition, the degradative effects of Lon protease should not have an impact on the 

secretion of effectors, as I observed.  It is fascinating that the field of flagellar 

biosynthesis had been through a very similar situation trying to explain their secretion 

signal [105, 131], and to date both signals remain uncertain [132, 162].  

 

Since this study was initiated, three P. syringae genomes have been partially or 

completely sequenced [28]; www.tigr.org; www.jgi.doe.gov), and several studies 

have attempted to identify novel effectors [27, 33, 62, 76, 128, 158, 206].  One of 

these studies [158], postulated a set of rules that defined the peptidic secretion signal 

of P. syringae effectors.  The rules postulate that the N-termini of effectors are 

generally basic amphipathic helices with several restrictions on the amount and 

location of non-polar and cysteine residues.  A survey I conducted of thirteen known 

or candidate effectors revealed that the majority did not fit these characteristics.  

HopPsyL, the novel effector identified in Chapter 2, did not fit three of the postulated 

characteristics (Table 5-1), and other effectors long known to be secreted and 

translocated also failed at least two of these rules (Table 5-1).  Indeed, proteins 

lacking any of those characteristics were recently shown elsewhere to be secreted and 

translocated [169].  Thus, a consensus sequence that could function as a secretion 

signal has not been identified by me or others [62]. 

 

It is obvious to me that the secretion signal is more complicated than what we have  
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Table 5-1.  The proposed secretion signal of P. syringae effectors is not 

conserved. 

Effector Rule 1a Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 

HopPsyA No Yes No Yes Yes Yes 

HopPsyL No Yes Yes No No Yes 

AvrPphE Yes Yes Yes No Yes Yes 

AvrPphC Yes Yes Yes No Yes Yes 

HopPtoB1 No Yes Yes No Yes Yes 

HopPtoB2 No Yes Yes No Yes Yes 

AvrXcT Yes Yes Yes Yes Yes Yes 

HopPsyE1 Yes Yes Yes No Yes Yes 

HopPsyC1 Yes Yes Yes Yes Yes Yes 

HopPsyV1 Yes Yes No No No Yes 

HopPtoV No No No No No No 

HopPtoG Yes Yes No No Yes Yes 

 

a.   Rule 1:  Ile, Leu, Val, Ala or Pro in position 3 or 4, but not both. 

Rule 2:  Position 5 is rarely Met, Ile, Leu, Phenylalanine, Tryptophan, or 

Tyrosine. 

Rule 3:  Asp or Glu not present in first 12 positions. 

Rule 4.  Cys is rarely present in after position 5. 

Rule 5.  First 50 residues form an amphipathic helix rich in polar amino acids 

except Ser or Gln. 

Rule 6.  No more than 3 consecutive residues consisting of Met, Ile, Leu, Val, 

Phe, Tyr or Trp in first 50 amino acids. 
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thought up to now.  It is likely that the secretion signal is actually a three-dimensional  

structure produced as a result of the interaction between the N-termini of effector 

proteins and one or more of the soluble components of the TTSS.  To date, almost all 

the data about the secretion signal has come from the Yersinia TTSS [7-9, 20, 29, 34, 

60, 116, 124, 127, 174, 184].  I believe that it is important to study the signal from 

many different species, since the similarities and slight differences between their 

TTSS might shed some light onto the actual nature of the signal.  Some of the studies 

that have attempted to elucidate the signal used alanine scanning of the first 15 

codons of the effector peptide [9].  Inserting an alanine might not have sufficiently 

disrupted the possible interactions with soluble components, and therefore I think it is 

necessary to carry out studies that more aggressively interrupt the N-terminus of 

various effectors.  These studies could use highly polar amino acids, in particular 

acidic residues, since the N-termini have been proposed to be basic [158].  

Alternatively, the studies could incorporate proline residues which would severely 

interfere with the secondary and tertiary structures of the peptides.   

 

For those effectors that interact with a chaperone, it is likely that the interaction leads 

to either the supramolecular structure required for the secretions signal, similar to 

what Birtalan, et al. propose [20], or allows the proper contact with the soluble 

components of the system, like FliJ or CesT [65, 141, 183].  An expensive and time-

consuming approach, but which ultimately may be the only way of clarifying the 

issue of the secretion signal, is resolving the three-dimensional structures of more 

effectors and effector/chaperone complexes interacting with the soluble components 
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of the TTSS, including those from flagellar biosynthesis.  These structures may help 

reveal the spatial organization of the secretion signal.  These approaches must all be 

combined with different bioinformatic tools that are becoming more capable of 

predicting hidden similarities.      

 

The knowledge of the secretion signal would be beneficial for several reasons. A 

thorough understanding of the secretion signal could allow us to predict other 

effectors in genomic data from both plant and animal pathogens, in similar fashion to 

how the knowledge of the hrpL-dependent promoters allowed identification of 

effectors in P. syringae [62].  Elucidating the whole artillery of each pathogen could 

help us better prevent and treat diseases in animals, humans, and plants.  For example, 

pharmaceuticals could be artificially produced that inhibit or prevent the function of 

one or more of the bacterial effector proteins.  An interesting novel application of 

understanding the secretion signal has been the production of fusion proteins for 

therapeutic functions.  For example, the TTSS-dependent delivery of the fusion 

products between YopE and Listeriolysin 0 or p60 from Listeria monocytogenes are 

currently being studied as a novel immunization method against listeriosis [166].  

Other therapeutic applications have recently been initiated with tumor-seeking, 

attenuated Salmonella, such that direct delivery of toxic proteins and/or surface-

localized antigens could be delivered into tumor cells to attack or induce an immune 

response against the tumor [129].  I believe that this form of “inverted pathogenicity” 

[166] holds great promise for future therapeutic treatments, not to mention the 

awesome irony of the whole process! 
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