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Abstract

Various interesting results on interpolation theory of entire functions with given
growth conditions have been obtained by imposing conditions on multiplicity varieties
and weights. All the results discussed in the literature are limited to the space of en-
tire functions. In this paper, we shall extend and generalize the interpolation problem
of entire functions to meromorphic functions. The analytic conditions sufficient and
necessary for a given multiplicity variety to be interpolating for meromorphic functions
with given growth conditions will be obtained. Moreover, purely geometric characteri-
zation of interpolating varieties will be given for slowly decreasing radial weights which
enable us to determine whether or not a given multiplicity variety is an interpolating
variety by direct calculation. When weights grow so rapidly as to allow infinite order
functions in the considered space, the geometric conditions would become more deli-
cate. For such weights p(z), we also find purely geometric sufficient as well as necessary
conditions provided that logp(e”) is convex . As corollaries of our results, one obtains

the corresponding results for the interpolation of entire functions .

* This research is supported in part by NSF grants DMS-90-00616 and CDR 88-03012.
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1. Introduction

Suppose that f(z) is a meromorphic function in the complex plane C = {z :
|2] < oo} and {z}7%, is a sequence of complex numbers. By n(r, ~k,%) and n(r, 2, f)
we denote the number# of zeros and poles (counted with multiplicity) of f in the disc

|z—z| < 7}, respectively. Then we have the following Laurent expansion

B(zg,7) = {

I

near each z:

f2)= )" fralz =z,

{=—ny
where
Sy N
Too2mi ), (2= )t
Yk = {z |z — =] = pi, pr > 0 some small number},
and
1
ng = n(0, z, f) — n(0, zx, = ).
f
In particular, if f(z) is regular at some point zg, then fj; = f(’)l(!z").

A subharmonic function p(z):C—[0, oc) is called a weight function if it satisfies the

following conditions :

(i) log(1 + |2[*) = O(p(=))

(ii) there exist constants ' and D such that [( — z| < 1 implies

p(¢) < Cp(=) + D.

* This research is supported in part by NSF grants DMS-90-00616 and CDR 88-03012.



We shall always assume that p(z) is a weight function throughout this paper. Now let

us recall the following definitions (see e.g.[4]).
Definition 1.1. A, = {f entire : | f(2)] < Aexp(Bp(z)) for some A, B > 0}.

Remark 1.2. It is easy to check that all polynomials belong to A, and A, is

closed under differentiation.

Remark 1.3. The two basic examples of such weight functions are p(z) = |=|(p >
0) and p(z) = |Imz|+log(1+ |z|*) corresponding to the space A, of all entire functions
of order< p and finite type and the space &' of Fourier transforms of distributions with

compact support in the real line (see e.g.[8]).

Definition 1.4. Let V = {(zx,mk)}52; be a multiplicity variety , that is , a
sequence of points {z;}72, C C with |z| | oo, and a sequence of positive integers

{my}32, corresponding to the multiplicities of the points z;. Then

myg —1
Ap(V)i={a={ars} ken : Y lawg] < Aexp(Bp(zp))
0<i<my 1=0

for some constants A, B > 0 independent of k& but depending on a}, where N := the
set of all positive integers.

With the above notations, the interpolation problems usually considered are typi-
fied by the following model(see e.g.[4]) : Under what conditions is it true that for any
doubly indexed sequence {ay,;} € A,(V) there exists an entire function f € A, such
that fi; = iﬁl},i) = ay, for any k € N and 0 <1 < my — 1, that is, f(z) has given

Taylor coefficients?

Definition 1.5. If the above problem has a solution for every {ay;} € A,(})., we
will say that V is an interpolating variety for the space A, of entire functions.

Various interesting results arc obtained by imposing conditions on zp.mp.ag or



weights p(z) (see e.g [4],[5],[13],[16] and [17] ). The interpolation results with growth
conditions discussed in the literature are limited to the space of entire functions which
is a proper subspace of the space of meromorphic functions. For the latter, to extend
and generalize the classic Mittag-Leffler theorem and the interpolation theory of cu-
tire functions , it’s natural to try to find a meromorphic function with given Laurent
coeflicients (see Part 3 in the present paper). This provides the model for the general
interpolation problems in the spaces of meromorphic functions which follows. Since any
meromorphic function f is the quotient of two entire functions fi, fo. i.e.. [ = % we

give the following

Definition 1.6. M, = {f = % meromorphic : f; € A,,i=1,2}.

Remark 1.7. If p(z) = log(1+|z]?), then M, is the space of all rational functions.
If p(z) = |2|°(p > 0), then M, is the field of quotient of the rings of all entire functions
of order < p and finite type, or the field of all meromorphic functions of order < p and

finite type (see [18]).

Definition 1.8. Let V' = {(2j, my, nx)} be a multiplicity variety (for meromorphic

functions ) with |z| | oo, my > 1 and ny > 0. Then

Mg -1

MP(‘,f) = {(Z = {ak,l} kgll\i . Z ICL;;JI S ACXp(B])(Zk))
L Mk l:-—nk

for some positive constants A, B independent of k& but depending on «}.

We pose the following interpolation problem for meromorphic functions : under
what conditions is it true that for any sequence a = {ax,;} € M,(V), there exists a
meromorphic function f(z) € M, such that for any k& € N,

fol = 0, if I < —ng 9
kot = ap, if —np <l<my;—1 ’

That is, when does there exist a meromorphic function f € M, such that f(z) has
given Laurent coefficients, in particular, f(z) has given singular parts at poles z. and

given Taylor coefficients at regular points z; ?



To find good choices of f, we also ask that the first nonvanishing Taylor coefficient
of the denominator of f at z; is not ‘too small’ in absolute value , i.e. not less than
g exp(—Lp(z)) for some positive numbers ¢, I independent of k but depending on the

sequence a = {ax,}.

Definition 1.9. If the above problem has a solution for every sequence {¢;,} €
M,(V), we will call that V' = {(z4,ms,nt)} is an interpolating variety for the space
M, of meromorphic functions.

The present paper is divided into five sections. As background , the first two
sections contain the basic notions and notations. In the third section, we obtain the
analytic conditions necessary and sufficient for V to be an interpolating variety for M,.
which give a complete solution to the above problem. The fourth and fifth sections
are concerned with the geometry of interpolating varieties for finite and infinite order
functions. Purely gecometric characterization of interpolating varieties will be given in
Section 4 for radial weights p(z) with p(az) = O(p(z)) for some « > 1. And purely
geometric suflicient as well as necessary conditions will be given in Section 5 for radial
weights p(z) with log p(¢”) being convex. As corollaries, one obtains the corresponding
results for entire functions studied by Berenstein, Taylor, Squires and others in [-],[16]

and [17] , etc.

2. Preliminaries

In the following, we need to introduce some more notations . Let’s start with some
concepts in the standard Nevanlinna theory (see e.g.[9],[18]). If f(z) is a meromorphic

function iu C,then



(counted with multiplicity),

M(r, f)= sup {|f(z)[},

|z]="r

NﬁJ»=/wMLﬁZRWJXﬁ+Mme%n
0

where n(t, f) = n(t,0, f) was defined in §1,

5

mir g = 5= [ tog* Lftre) a0,
0
and

T(r.f)= N(r, f)+ m(r, f)

is the Nevanlinna characteristic. Similarly, we have the functions

N(‘I‘,Z(),f), 7”(7.7507.10) and T(T}Z()Lf)
defined with respect to the disk {|z — 2| < r}.

H Z = {z} is a sequence of not necessary distinct complex numbers such that

Z, — 00 as n — o¢ , then

n(r,z)= Z 1
|

2 i<r
is the number of points of Z in |z| < 7,

oy ‘T?I.(fy,f)—-'n,(o,Z)
N(LA)~/ .

70

dt 4+ n(0, Z)logr,

n

5'(7'.71WZ):l Z (i‘) ,n € N,

n Zh
|zx | <2 #0
and

S(Tl, Ta, M, Z) = .5'(7‘-3,71, Z) — S(’I‘l,'ll, Z),O <1 < 7o

Ut



Similarly we define n(r, z, 7) and N(r, 2, Z) with respect to the disk{|z—z| < r}.

Suppose that A(r) is a non-negative function for » > 0. We shall say that f(z) is
of finite A-type if T'(r, f) < AX(B7) for some constants A, B > 0 and all r > 0.

We shall say that Z has finite A-density if N(r,Z) < AAX(r)(r > 0) for some

A > 0; 7 is A-balanced if

/1/\(7‘1) + A/\(Tg)

S(r1,r2,n, Z) <

(O<T‘1S7‘2,7I€N)

[

for some A > 0; 7 is A —admissible if 7 has finite A—density and is A —balanced.
Throughout the paper, we shall use A and B to denote positive constants the

actual values of which may vary from one occurrence to the next.

3. Interpolating varieties for 3,, I

As is pointed out in Scction 1. the original model for the interpolation problem in
M, is the following result:
LV = {(2k, my, ng)} is a multiplicity variety, then for any sequence {ay } (—ny <

[ < my) of complex numbers, there exists a meromorphic function such that

10, itl < —ny . ” -
fra = {a;\,,l, io—ny, <1< my heN. (3.1)

That is, f(z) has given Laurent cocfficients. In particular, f(z) has given singular parts
at poles z;, and given Taylor cocfficients at regular points z.

This result can be proved by using Theorem 3 in [4] or by the following direct
argument: using the Weierstrass theorem, there exists an entire function ¢(z) such that

near each zj,

(](:) = gk,mk(z - 31\:)mk -+ ,(]1«,711k+1(3 - Zk‘)mk*-l + -, where Gk, my 7£ 0.



Set

ng+mg

Ry(2) = Z cri(z — zk)_i,

=1

where the ¢j ; will be chosen in what follows. We then have, about z.

1

m(‘qk’mk + Grmet1(z— 26) + )

9(2)Ri(2) =

X (ck,nk—}—mk A+t Ck,l(z - Zk)nk—i-mk—l) .

since gi.m, # 0, we can choose ¢ ;(1 < i < my + ny) such that

l 4 —
(/(:)RI\(:) = W(a}“w—nk + ”'+(lk‘—1(z“‘ zk)nk l+

Fapo(z — 25)™ + oo d W -1 (2 = zp) T

(Just compare the coefficients of 1,(z — z;),-++,(z — 2 )™ T™ =1 on both sides).
Now by the Mittag-Lelfler theorem, there is a meromorphic function h(z) such
that the singular part of h(z) at z; is Ry(z) for all k. Then we can readily check that

f(2) = g(2)h(z) satisfies (3.1). The result follows.

For the general interpolation problem in A, the first observation is that a result
similar to the one as above is not true any more. Along the lines of the above result.

the only interesting case occurs when V' = {(z, my, ny)} satisfies
¥ = {(zg, max{myg,nx})} C Z(f)

for some f € A, (scc Theorem 1 below) . Consider, for example, the case when
p(z) = |z|*(p > 0). It’s easy to construct a multiplicity variety V = {(zx, ms, n4)}
such that V* = {(zp.max{my,ni})} is not of finite p -density (e.g. for Z = {z;} =
{logk}(k > 1),N(r,Z) > j; Mdt > n(3,Z)log2 = [eZ]log2 and thus Z is not of

finite p-density). Then such multiplicity variety can not be an interpolation variety for

-1



A,, since otherwise there exists a f € A, such that V* C Z(f) (see Theorem 1) and

thus by the Nevanlinna first fundamental theorem (see e.g. [9])

N(r,V*) < N(n%) < T(vu%

for some A > 0, i.e. V7" is of finite p- density, a contradiction.

) =T(r,[)+O(1) <log M(r, f) + O(1) < Ap(r)

The following both sufficient and necessary conditions give a complete solution to
the interpolation problem for the space M.
Theorem 3.1. A multiplicity variety V = {(z, my,n;)} is an interpolating vari-

ety for M, if and only if there exists an entire function f € A, such that
V== {(zn )} C Z0f)s
where 1, 1= max{my, n;} and
[Jhas] Z cexp (~ep(z)) . k € N, (3.2)
for some constants ¢, ¢ > 0.

To prove this theorem, we shall need the following lemmas.

Lemma 3.2. Let g(2) be analytic in D = {z : |z| < 1} and satisfy |g(z)] < M for
some constant A > 0. If g(a) = 0 for some a € D. Then |a| > J%(]\%.

Proof. Set

oy 9(z) = g(0)
Fiz) = oM

Then F(0) =0 and |F(z)| < 1for z € D. Hence by the Schwarz Lemma [7].

0
%(Ti)"l = [F(a)] < lal.

The proof is finished. |

Lemma 3.3. I V' = {(z4,m.n4)} is an interpolating variety for My and 34 > 0.

then there exist four coustants A, B, Ly, <1 > 0, two sequences {gx} and {»;} of integers



with g > ng,vr > 0, and two scquences {gx} and {h;} of functions in the space A,

such that
(9)iy = 0,1 € N,0 <1< g+ m; — 1,except that|(ge)r,q+me -1 2> €1 exp(—Lap(zx))-

(hi)ig = 0,1€ N,0 <! < v +m;—1,except that  [(Ar)k,w, | > €1 exp(—Lip(zx)).

Moreover

lgu(2)] < Aexp(Bp(z))/ exp(Mp(z1)),

and

|he(2)] < Aexp(Bp(z))/ exp(Mp(zy)).

Proof. Set

S = {(1 = {ap it heN, —co<icmy Gkt = 0,1 < —ny, and

Mg —1

(> laal)exp(=Mp(z)) < 1,k € N}.

l=—ny

Then the space § is complete under the metric induced by the norm

fall = supl( S faxal)exp(-Mpa) : € N}
I=—ny
Let
Apn={f€A,:|fen| >+ ! exp(~Np( 2)), where 7 = n(0,z.1/f)},
and

47

Sm ILN_{< = Al) ES:(O’,,@)EAPXILP’N,
/5 KEN,— oo <I<my
la(z)] < mexp(mp(z)),|8(2)] < n exp(np(:)‘)},

where m, n, N € N. It’s easy to see that

¢ __ o0
uS - Um,n,N:lSmﬂ%N



by the hypotheses of the lemma.

The proof follows the lines of the open mapping theorem (c.f. [10,p.294],[4,p.125]
or [16] ) to show that at least one of Sm,n,~ has non-empty interior which gives the
functions required in the lemma. To this end, we first prove that each .5, ,, v is a closed

subset of 5. In fact, if

a; = ((%)k,l) € Sm,n,N

and a; — a,as i — 00, then
(a;,Bi) € Ap X Ap,Nw

lai(2)] < mexp (mp(2)),

and

Bi(2)] < nexp (np(2)).

It follows that {a;} and {f;} arc locally bounded (by the property (ii) of p(z)) and
hence normal families. By passing to subsequences, we can assume , without loss of

generality, that (a;, 3;) — (a, ) locally uniformly. Clearly
la(z)| <mexp(mp(z)),|8(z)] < nexp(np(z)). (3.3)

We claim that (z) # 0. Otherwise, 3;i(z) converges to 0 uniformly in Dy = {z :

z — z1| < 1}. Thus there exists a 7 such that

&
|3:(2)] < 5

for any z € Dy, where ¢y = & exp (—Np(z1)). But for all /,

il V()
!

(Bl =

.| €
AR

271'1 P 1)l+1

1 f 3:(z 1 €
Ly T N P
oD ( 27 2
which is a contradiction , since 3; € A, y and so

(Bl ] 2 5 oxp (= Np(z0) = &1,

10



where 71 = n(0, 2q, -5—)

[&]

Now we can apply the Hurwitz theorem [2,7] to (=) and conclude that TG

Iz
normally . Therefore % is meromorphic and for each k there exists a p > 0 such that
o; 1 ai(z)/Bi(2)

(7t = 53— 2l2)/Bd2) 5,
/31 ZTFZ |:—:k |=P (Z — 3]\)
L/ ()P a |
2T Jiaezij=p (2 — 2p)HHY (ﬁ)h,l (
as 1 — o0o. Hence
a = ((g)k,l) €S )
3 KEN, —ng <I<ms

Next we prove that 3 € A, y and thus that (a,3) € Ap x A, n. To this end, write,

about zj,
B(2) = Bryre (5 = 21)™ 4 Bryry (2 — 26) T
where Bi . # 0, 7 = n(0, 24, /%)q and
Bi(z) = (Beo+ 4 Bk, (2 — 26)™ + .

Then

(Bidk,j =0, for 0<j<my
and»

(Bidkyre = Bryres  as i — oc. (3.6)

Let ) = —]1\-, exp (=Np(z1)). Then there exists a Ix > 0 such that when 3 > Iy

€k
[(Bi)k,] < >

for 0 < j < 7 and
(P, # 0. (3.7)
We claim that ()0 = 0 for all 7+ > I,,. Otherwise suppose that (3, )x0 # 0 for some

l() 2 Ik Then

0

s Bio)kol > e,

11



since 3;, € A, n, a contradiction. By the same argument, we deduce that

(Bidko = Pi)eg == (Bidk,m—1 = 0.

In view of (3.7), we have that 7, = n(O,:k,%) for ¢« > I}, and so that (3i)n,n, > <&
again since 3; € A, N

Using (3.6), we obtain that
1 :
|Bn| 2 e = 5 exp (=Np(zx))

which shows that 3(z) € A, n

Combining this result with (3.3), (3.4) and (3.5), we get that

a; — a = <(

Now it follows from the fact that S = Uy, » nSmn,n and the well-known Baire

)A:,l) € Sm,n,Ns

™| e

ie., Spon,n is closed.

-category theorem (sce c.g.[12]) that some Sy, »,n has non-empty interior. We can
assume, without loss of generality, that S, » v D {a:| @ ||< ¢}, from which we readily

obtain two sequences {ay} C A, and {3} C Ap n such that

oy .
: )it =0,1€ N,—o0 <l <m; —1, except that (

(E )k mg—1 — = exp (]V]p( ))

/3
(3.%)
and

k()] € Acxp (Bp(2)) . |Bul2)] < Aexp(Bp(2))

for some constants A, B > 0,k € N. Let ay’ = ay/exp (Mp(z;)). Then
|| < Aexp (Bp(zr)) /[ exp (Mp(zi))

and

o' . ayg’ ,
i Yir=0,i€ N, —ooc <[ <m;—1, except that ( ﬁk Jimp—1 = L.
k

(ﬁ



On the other hand, since V = {(zx,m,ny)} is an interpolating variety for M,. it

is not difficult to deduce that there exist

r(z) € A,, and n(z) € Ay N,

for some ng € N such that

(56

("](5))1,-7“ > cexp(—Lp(zy))

)

and

for some constants ¢, L > 0, where 1, = n(0, zk,%) > ny. Set

oy’
gr(z) = /;k “Bie - ()

= a;’ - n(z). (3.9)

Then

l98(2)] < Aexp (Bp(z)) ] exp (Mp(zi)) k€ N,

for some A, B > 0.

We can readily sce that g, € A, and
(gr)ii = 0,4 € N,0 <1 < g +m; — 1 except that (gp)r,gmp—1 2> €1 exp(—Lip{zi))

for some constants £, Ly > 0, where ¢, > ny.
k] M i

Using the same reasoning as above , changing (3.8) into

(E/;—]:),[ =0,1€ N.—occ <l <m; — 1, except that (%ﬁ)k,o =exp(Mp(zy))
)8 Ik

and changing (3.9) into



we can get a sequence {N,} € s, and a sequence {v;} of non-negative integers such

that

|hi()] < Aexp(Bp(2)) [ exp (Mp(zt))

for some constants A, B > 0 and
(hi)ig =0, € N,0 <1< v +m;—1, except that [(hg)r,v | > c1exp(—Lip(z))
for some constants ¢;, Ly > 0. The proof is thus complete. n
Lemma 3.4. If VV = {(z,my.ny)} is an interpolating variety for M,. Then
dy 2= };{};{M = 2|} 2 Aexp (=Bp(2¢)), k € N,

for some constants A. B > 0.
Proof. We apply Lemma 3.3 with M = 1 to get entire functions ¢, € A, and

integers ¢ > ny such that
(gr)iy = 0,2 € N,O <1 < q; +m; — 1,except that (g )k.q, +mp—1 > €1 exp (—Lip(zy))

for some constants €1, L; > 0.

Set
Coy gi(?)
(_11\:(#«) - (: — Zk)qk+777'k -1
Then on |z — z;| = 1, and so in |z — 2| < 1, by the Maximum Modulus Theorem,

|GL(2)] < Aexp(Bp(zk)),
for some constants 4, 3 > 0. Applying Lemma 1 to Gi(z) and noting that the z;(j # k)
are all zeros of ((z), we obtain that

|Grlzn)]
[, >
@ = 2Aexp (Bp(z1))

> Aexp(—Bp(z))

14



for k € N. |
Now we are ready to prove Theorem 3.1.
Proof of Theorem 3.1. «=:
Let {(&x, 8%)} = Z(f?) = {(21.2tx)}. Clearly there exist positive numbers p; < &
such that
B(&k, pi) N B(&jyp5) = ¢
for k # j. Take a sequence {nx}32, such that n > 1 and > 77, =1 < foo. Set
e =Pk < !
M~ 2
and
9(=) = [ =114 - )%
&
Then ¢ is an entire function and it is obvious that
{(zx.2t)} = )i={z € C|f¥2) = g(z) = 0}. (3.10)
We assert that
g(z) € Ayp. (3.11)

In fact, if 2 ¢ U2, B(&k, pi). then |z — &| > py, for all k. Thus
l9(=) < 1f(=) IR (1+—)s"

S - e < AP

If 2 € U2 B(&k, pr). then there is a kg such that = € B(&,,pr, ). Therefore

z)| < ax Nt = glwyg
I )I_weag(lgc‘;pko){lg(wl} g(wy)

for some wy € By, pr,). By the above estimate of |g(z)] on 0B(&,, pi,) and in

view of the property (ii) of p(~) . we have that |g(»)]| £ AeBr(wr) < ABp(=

constants A, B > 0. This shows that g € A,.

} for some



Now by (3.2), (3.10), (3.11), and using Theorem 4 in [4,p.124], we obtain that
Vi = {(2,2t;)} is an interpolating variety for the space A,. In view of the fact that

ng < ny + myg < 2t,, we can get an entire function h(z) € A, such that
h(2) = hpng (2 — 26)™ + By +1(2 = 26)™ T 4 -,
where
hiem, = 1. (3.12)
Applying the Cauchy formula, for j > ng,we have

1 h(z)
bl L —_dz
I Zk7]| |27” /|:~zk|:l (3 - Zk)]+1 ‘

ax  |AePPI| < AePP(31)
k=1 -

(3.13)
< ' max 1|h(z)| <

T—Zp |._

m

|z—=
by the property (ii) of p(=).

For any {ai, }reN,~n, <i<m, € M,(V'), we have that, about z,

my —1

h’(:) Z (I‘/v.l(:’w - 31\')1 = (h/c,‘nk + hk,nk-’rl(z - 21\7) + - ) X

I=—ny
. - mg+ng —1
(ak,——nk + Qp — g —1 (*’* - ~k) + ot Ak my —1(2 - Zk) )

-1 .
=0+ ez = )+t g —1(z = 2)* T 4 say.

Comparing the coefficients of 1,z — zj,- -+, (2 — 2;)™*t™ =1 on both sides, we deduce
that
hk,nk Qp—ng = Ck0,
hk,nk +10k, —ny + hk,nk Qp —pp+1 = Ck,1y

hk,nk tmgtng -10k —ny + hk,'n,k—i-mk+nk Gk 41t F hk,nk Gpomp—1 = Chymyp+rg—1-

By (3.13), we have

me—1
el < AP N ay | < AePP()

I=—ny

16



and thus that

myg+ng —1
Z [kl < (mg + nk)AeB”(:") < 2t AeBr(z1) (3.14)
=0

Also by (3.2),

1 flz
cexp (—ep(z1)) < [foes| = 'F/| e et
z—z |=e

< Acexp (Bp(zr)) [ exp(ix)

and so

ty < et < Aexp (Bp(z)).

It follows from (3.14) that

my g —1
> Jewal < Aexp(Bp(zx))

=0

for some A, B > 0. Clearly my + ny — 1 < 2t — 1. We construct a sequence

{bA:,I}A:EN,0§l<gtk € Ap("l )

such that

by =cpy i 0<T<mp+ng—1

and

[);{’1 =0 il mp+n,—-1<1<2t —1.

Recalling that Vj is an interpolating variety for A, we obtain an entire function ¢(z) €
Ay such that ¢, = by for k€ Nand 0 </ <my +np — 1.

Set

AMz) = ;<(>)

Then A(z) € M, and it’s not difficult to check that

Akt =

)

{0, if 1 < —nyg ke N

(LT if — Ny S ) S my — 1,

17



In view of (3.12), it follows that V' is an interpolating variety for M,.

——:

Suppose that V' is an interpolating variety for M,. By Lemma 3.3, for any M > 0.
there exist functions gx(z) and hy(z) having the properties stated in that lemma.

Set

f(z) — Z(: _ Zk)U-—(Ik“vk,—mk'f'lgk(z‘)hk(z) = Z f;:‘(Z)7

k=1 k=1

where ¢, = max{m,n;},qx > n; and vy > 0 are the same as in Lemma 3.3. This
series converges to an entire function f € A,. Assuming this for the moment, then it is

readily seen that

| k] 2 cexp(—ep(zx)), ke N

for some constants ¢,¢ > 0 and {z, 11} C Z(f).

Therefore, the necessity will hold once we show that f € A,. To this end, we first
consider the upper bound of f for each fixed %.

If |z — z;| > 1, then in view of the property (i) of p(z), there exist two positive

constants Ay and By independent of M such that

[FE() = 1z = mr)gu(2)ha(2) /(2 = )l toetma)=ie]
<z = zllgn(2) ()]

< (AleB”"(’) + /’1,(:'3”)(”“)) AePP3) [exp (2M p(21.))

IA

AeBP(2) (B =2M)p(4) (3.15)

for some constants A, B > 0.
If |z — zx| = 1, then by the property (ii) of p(z),there exists a By > 0 independent

of M such that
!f;:(z)l — |f/k(3)h}.:(3)| < AeBr(2) p—2Mp(zt) < Ae(B2—2M)p(=)

18



By the maximum Modulus theorem, on |z — 2] < 1,
[fr(2)] < Ae(B2=2M)p(2x)

This and (3.15) yield that for any z € C,

|f:(5)l S AGBP(Z) 6(B3 ‘M)P(Zk)

for some constants A, B, By > 0 (B is independent of M).
Let
. T .
di = inf {12 - 2ul}yex = 5 min{1, 4},
and
Dr=4z:]z— 2| < ex}.

Then by lemma 3.4 and the property (ii) of p(z) , we can get two positive constants I3

and By independent of M such that

§ Bq—]\[ )p(= S

/ AelBa=Mp(=e) gy gy
Dy

I
5\13 gk

/ o(Ba=2005(3) .y

< 3/ e(Bs—M)p(= Adzdy < oo,

provided that M is large (in view of the property (i) of p(z) ).

This shows that the series Y77 fr(z) is uniformly convergent in compact sets and

If(2)] < AeBr(2) Z o(Ba=M)p(zk) < AeBr(2)
k=1

for some constants A, B > 0 so that f(z) € A,.

The proof of the theorem is thus complete. |

From the proof of Theorem 3.1, if ny = 0 for all k£, we have the following result
for the space A, of entire functions, which may also be showed by using the results in

[4] and [16].
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Corollary 3.5. A multiplicity variety V = {(zx,my)} is an interpolating variety
for A, if and only if there exists an entire function f(z) € A4, such that V' C Z (/f(z))

and

'fkﬂn;\.' .>_ SQXP(“CP(Zk))7k € Nw

for some constants ¢,¢ > 0.

4. Interpolating varieties for M, II

This section is concerned with purely geometric conditions for V to be interpolating
which only depend on the distribution of the points of the given multiplicity variety
and thus enable us to determine whether or not V is interpolating for M, by direct
calculation. This will be done (sce Theorem 4.1) for radial weights p(z) with p(az) =

O(p(z)) for some « > 1, i.e., p(]z]) = p(z) and

plaz)y < Mp(z)+ C (=€ C) (1.1)

for some M,(C" > 0 (e.g. p(z) = |=|" for p > 0 ). We shall assume these conditions
throughout this section.

We note here that some interesting results on the geometry of interpolating varicties
for A, have been obtained (sce e.g. [5],[17]). But only for the weight p(z) = |z|. purely
geometric characterization has been completely known (see (6) and (7) in [5,p.3]). Now
as a direct consequence of Theorem 4.1, a more general result will be given in Corollary

4.8.

Theorem 4.1. A multiplicity variety V = {(zy, my.nx)} is an interpolating vari-

ety for M,, if and only if for some A, B > 0,
N(|2], V") < A + Bp(z) (1.2)
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and

V('Zk'|1 Zk)‘/r*) < A + Bp(:k)a

where V* := {(zp, max(m, ni)}.

To prove our theorem, some preparations are required. We first set

= max{mg, ng};

7) =% {k : |3k| < 7’};
7(r)

) = Z 7%
k=1

2me - log M

w = exp(

ng + 1 0 log o

an integer, where M, a are the constants in (4.1) ;

and

where z;
(a)
(b)

(¢)

then

f/ — U?i()wj‘/* = {(sk7tk‘)} U { ~1wtk }

Vo= VU U5 V) = {(= )} U (U520 { (25 1))

= wj(:k + a;) is close to wi z;, with

lajr] < 4zl 1<) <mo,keN;
n(r, Y:/) = O(n(27,V™));

]S(T,?l,‘:/)l‘l‘k =0n2r,V*)) (1<n<ng—1);

for any integer n and z € C with 2°7! < |2] < 2", we have if

T(2n+4) no

T T = ol < eampores
k=1 j=1

T(2"+4)

T Fo -l > (™

k=1

21
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for all 0 < j < ng, where 0 < ¢ < 1 is some constant.
Such z;x’s do exist by Lemma 2.5 in [6] and its proof.

V is called an adjacent variety to V.

Lemma 4.2. Let A(7) be a non-negative function satisfying
Alar) < MA(r)+C (4.1)

for some a > 1 and M,C > 0. Then for any sequence Z = {z} of finite A + 1 -density.
the sequence

Z =R wlZ

is A 4+ 1- admissible,where w and ng are defined as above.
Proof. The lemma is essentially due to [18]. Since Z has finite A4 1-density, there

18 a constant A > 0 such that
N, ZYy< AAr)+ 1) S (45)

for all » > 0. From this inequality and (4.4) we easily deduce that for n € N,

® Nat,z) ™ N(at, 2)
/T t”‘H Z/ tn+1 di
(rai+? Z)
<
; raJ
i A (Xadt?r) + 1)
(

nrr(an)i

IA

=0
(

< i,m.)_i (1.6)

= .

for some A > 0 provided that n > %%. We can assume, without loss of generality.

that 0 ¢ Z. Then

ar
n(r,Z) = ! / nr /)dt < ! N(ar, 7).
log a [ log o
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Therefore for ry,ry > 0 with 71 < ro and n > ng we have that , in view of (4.4),(4.5)

and (4.6),

n

~ 1 1
S(Tlvr‘lanaz):— Z (_6_)
ri<fér <2 g
(k€2

e )
1/ dn(t. 2)

ng + 1)n(re, Z) " n(t,Z)
—~ + (ng +1) ST dt
(ng + 1)n(ry, Z)  (ng+1) [ N(at,Z)
+
r logae J, ~— tntd

. T
"y LT

IA
|

IA

< dt

<

for some A > 0. For n € {1,2,---,n9}, we have that

o

S(rira,n, Z) = Z (™) | S(r1,r2,n,Z) =0
i=0
since 3072, (w=™) = 0. Clearly.
N(t,72) < (ng+ 1)N(t, 2) < (ng + 1)A (A1) + 1).

Combining the above results, 7 is A+ 1 admissible. [ |

Lemma 4.3. If there is a F' € A, such that V = Z(F) := {z: F(z) = 0} . then

there exists a G € A, with

1

(a)  Z(G)=V

() there are ¢.C' > 0 such that all components of A(G,e,(*) := {z ¢ C:
|G(2)| < e exp(—~Cp(z))} which contain a z; are disjoint from A(F, ¢, (7).

(7) the ideal T := {f € /A, : f vanishes at z; with multiplicity > 1;} is
algebraically generated by F' and G.

Proof. (a) and () follow {rom Proposition 2.6 in [6]. (-y) folows {rom Theorem

2.7 and its proof in [6]. |
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Lemma 4.4. [18,Th 5.2]. Let A(r) be a non-negative function for » > 0 and
Z = {2} (repeated according to multiplicity) a sequence of complex numbers. If 7
is A-admissible, then there exists an entire function f(z) of finite A -type such that

Z = 2(f).

Lemma 4.5. Suppose that g(z) is analytic in |z| < (de+ 1)R and satisfies |g(z)] <

M. Let a,|a| < R, be such that g(a) # 0. Then there exists a 7,3 < r < R, such that

’13}1_11{105' lg(z)|} > —8log M + 9log |g(a)|

Proof. Let G(z) = ZEZ)) Then G(a) = 1. Applying the minimum modulns theorem

(see [14,p.21]) to G(=z) in |z —a| < 4eR, we then have that inside the circle |z —a| < 2R.

but outside of a family of excluded circles the sum of whose radii is less than %B’
log |G/(z)] > —8log (M/|g(a)])

or

log |¢(z)| > —8log M + 9log |g(a)].
Hence there must be a 'rﬂ% < r < R, such that
|n}£n {log|g(2)]} > —8log M + 9log |g(a)|.

The proof is complete. 3

Proof of the sufficiency of Theorem 4.1:
Since N(|z|, V™) < A+ Bp(z) < A1(p(z) + 1) for some Ay > 0, V*is of finite p+ 1

density. By Lemma 4.2 with A(r) = p(r) and Lemma 4.4, there is an cntire function

F(z) of finite p + 1-type such that V := U;-Lgoij* = Z(F), where w = exp(

2 N
=i ) fo1

some integer ng > lligﬂ Therefore
ofg ¢

T(r,F'y < A(p(Br)+ 1)
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for some A, B > 0 and r > 0. We thus have

or & 7’T(ar,l;‘) < a,+ 1A(p(aBr) +1). (4.7)

ar—r o —

log M(r, I') <

Applying the maximum principle for subharmonic functions to p(r) (see e.g [7]).

we deduce that p(r) is non-decreasing for r > 0. Hence it follows from (4.7) that
log M(r,F) < Ap(r)+ B

for some A, B > 0,i.e., F € A,

Now using Lemma 4.3, there exists a GG € A, such that Z(G) = I:«’, where \: DI
is an adjacent variety of 1 defined in the beginning of this section. It is no loss of
generality to assume that G(0) = 1. Applying the minimum modulus theorem [14] to

G(z) in |2] < 4de|zx|, there exists a ry, 2] < 7p < 2|2k, such that for |z| = 7.
log |G(z)] > —Aj log M(4de|z|,G) > —Ap(z,) — B

for some A, A, B > 0.
Next we apply Lemma 1.5 to the function G(2) in |z — z| < (4e + 1)|zg|. Notice
that

|G(2)] < M((de + 2)|zx|,G) < AeBr(=)

for z satisfying |z — z| < (de 4 1)|zg], and |wy, — 2| < |z, where wy 1= rpet@"97,

We thus obtain a 34(0 < 3 < |zx]) such that

min  {log |G(2)]} > —8log(AePP)) 4 9log |G(wk)| > —Ap(z1) — B,

|2— 2k |= 5

for some A, B > 0.

By the Nevanlinna first fundamental theorem, we have

] 1
log |Gy 1, | + T(ﬁk»:ma) = T(Br, 21, G).
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Thus,

1
log |Gr,i,| = m(Br, 2k, G) — m(/@k,zk,a) - N(Bk, 2k, V)

1 2r )
> o [ 081G+ B0 = Nl 27
J0

> —Ap(zy) - B — N(‘Zlclazkvf/)'
Recall that 1:/ = V* U V,, where
Vii= U}Lgl‘/j = U?gl{(zj,kvtk)}-

Thus

N(lzk]s 21, V) < N(|28] 26 VY + N2k, 20, Va)-

(1.9)

By Lemma 4.3, z;, ¢ A(F,¢,('). Hence F(z;,) # 0. This implies that z; € V. since

F(z;) = 0. We conclude that

/'fk' n(t, 2z, V) = (0, 25, Vi)
0

N(lzklazka ‘/*) t

1
]
mtﬁ

dt + n(0, zx, V) log | 2]

(4.10)

Assume that k is such that 2771 < |z;| < 2™ for some integer n. Then when

|zj.i — 2] < |2k, we have |z;;] < 2|z¢| < 271, But
2= w2+ aj;)
for some aj; with Ja;;| < 1]zi| by (a). It follows that
10 < Lot gl gl < Lzl + lagal < 27+ Sl

and so that |z < 271 <273, From this we deduce that

P <F gzl S ol <F g ]z) S 2700} <F (g g <27} = r(20.
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Now by (4.10),

(qn+4

N(|zk|, 2, Vi) < Z Zlog

i=1 Ty ~k|

2k

=1 ,2.77 2k ‘

n nos(2"+4)
<log (2

— on+4 S
T T3 fai — el

We claim that

(2" %) n,
I IT iz = ael® > (eamyres™™,
i=1 j=1
where c is the constant in (d). Otherwise, by (d) we have

T(2n+4)

H lzk _ wjzilt, > (62n)5(2n+4)

i=1
for 0 < j < no. Especially letting j = 0, we obtain that |2, —z;| # 0for 1 < i < 7{2"H1).
Notice that

B<F g 2] < lanl) <# {g: 12g) < 27} < 727,

Thus |z, —~ z| # 0, a contradiction.
Hence by (4.11), we have

2n)n05(2"+4)

N(|zx], 2k, Vi) < ]Ogm

1
= 5(2"™)ng log p

IN

n(2"H, V> ng 1og%

IA

1
n(2°|z], V*)ng log -

But

T VA
loga J, t

<
~ log o

N(ar,V*)

]oga(A + Bp(ar)) < Ay + Bip(r)
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for some A, By > 0. This shows that
N |2k, 25, Vo) < Az + Bap(2°|2x]) < Ay + Bap(zs)
and so that , by (4.3),(4.9) and (4.8) ,

log |G,i| 2 —Ap(z) = B

for some constants A, B > 0. The sufficiency now follows from Theorem 3.1.

Next we are going to prove the necessity of Theorem 4.1 . It is obviously contained

in the following statement.

Proposition 4.6. A multiplicity variety V' = {(z,my,ny)} is an interpolating

variety for M, if and only if for some A, B >0
N(|2.V*) < A + Bp(2)
and
min{N(|z], zx, V), N(|zkl, zh,s V)} < A+ Bp(z),
where

27
ng + 1

)

VAREENU TN | Vi —
V= U’ Viw = exp(
for some ng > l—l‘%)gg]\—aJ and V is an adjacent variety of V.

Since V* C V. V* C V, we sce that

N{)z], 2, V) < mind N(|2e)y 20, V), N(|2]s 26 V) 1

(4.12)

(4.13)

Therefore (4.12) and (4.13) imply (4.2) and (4.3) and the sufficiency of Proposition 4.6

follows from the one of Theorem -.1. We only need to prove the necessity of Proposition

4.6 which is stronger than the one of Theorem 4.1 . We note here that in Proposition

4.6 the condition (4.13) can not be replaced by the simpler condition:

N(|zp]s 2k, V) < A+ Bp(z1)

28
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although this condition together with (4.12) is also sufficient . A counter example will

be given later.

Proof of the necessity of Proposition 4.6.
If V is an interpolating variety for M,, then by Theorem (3.1) there exists a f € A,

such that V> C Z(f) and
| Jiti] > eexp(—cp(z)), k€ N (1.15)
for some constants ¢,¢ > 0. Thus
N(rV*) < N(r, )
N f
=T )+ 4
< log M(r,f)+ A1 < A+ Bp(r)
for some constants Ay, 4, B > 0, i.c., (4.12) holds. This also shows that V> is of finite
p+ 1-density. Exactly like in the proof of the sufficiency of Theorem 4.1 , there exists a

function F € A, such that V' = Z(F). Again applying Lemma .3, there is a function

G € A, such that V = Z(G') and the ideal
I:={g€ A,:g vanishes at z; with multiplicity > ¢;}

is algebraically generated by the two elements F' and G. Obviously f € 1. Thus there

exist two functions ¢(z),v(z) € A, such that
f=¢F+7G

and thus

fk,ik = ((ﬁF)k,tk + (7G)}»‘,tk'

By (4.15). we deduce that either

|W”md2%ﬁﬂﬂﬂ%ﬂ (L.16)
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or
¢ £ 4~
(7] 2 5 exp(—ep(2x))- (4.17)

If (4.16) holds, then noting that V = Z(F) C Z(¢F) and the Nevanlinna first funda-

mental theorem

- 1
N(lzl, 21, V) < N(|2k|73k7¢—F)
1
< cly 2k =5
— T(lzk|7 ks ¢F)

i 1

= 7(|~’k|,zk,¢F)+logW
e

<log M(|zk|, zk, ¢F) + A + Bp(zx)

< A+ Bp(zx)

for some A, B > 0, since

M(|z|, 2k, 0 F) < m@lx |{|q§F|} < AePriar),
22

If (4.17) holds, then from the fact that Vo= Z(G) C Z(yG), we deduce, using

exactly the same reasoning , that
N(|zk], 26, V) < A+ Bp(2i)

for some A, B > 0.

Thus (4.13) holds in every case. This completes the proof. ]

Example 4.7. We have proved that (4.12) and (4.14) are sufficient for V' to be
interpolating, and (4.12) is also necessary. This example will show that (4.14) is not
necessary. Consider the weight p(z) = |z|. Then p(2z) = 2p(z) and so (4.1) is satisfied

with M = 2. For any ng > 11—0(% = 1, we set w = exp(fﬁi). Take a 37 (0 < j < ng)

such that arg(w=) € [-—%’5, ~Z] ,i.e., w7/ lies in the second or third quadrant. Let

Vi = {0c} = {k}, Vo= {wr} = {w(k+ C—kz)}
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for k € N and V = V] UV, with multiplicity my = 1 and ny = 0 for any k. Then

r sy —
N(r, V)= / n(t, V) " n(O’V)dt + n(0,V)logr
0

1 t

7‘2t r
§/ —;—dtf?/ dt <2r = 2p(r).
Ji ¢ J1

For any 6 = k, the disk Ay := {z : ]|z — ;] < |0x|} does not contain any wy. Thus

961 00(¢, 05, V1) — n(0, 8, V,
N(16k|, 0%, V) :/ M) tn( = l)lern(O’ekvVl)lOgWH
JO

[6i| +
< / 2 it + 108164
J1 :
For any wy = w™J(k+ e*"), the disk 6, := {2 : |z — wi| < |wk|} does not contain any
points 8 € V4. Hence

b (e, wp, Va) = (0,05, V2)

N(|wi|,wg, V') = / dt + n(0,wy, Va)log |wi|

0 t
lorl g 41
< / j_ dt + log |wy |,
Sn ’

where
8 = min{jwiy1 — wi|, lwr — wi_1]}.

For large k . we have that % < 6y < |wyg| and thus that

N(|lwrl,wi, V'Y < 2(|wi] — 6x) + 2|wi| + log 2 < 4p(wy,) + log 2.

The above shows that the multiplicity V7 satisfies all conditions in Theorem 4.1. i.e.
(4.2) and (4.3). V is thus an interpolating variety for p(z) = |z|. But
V= UV OV UV

SViUwiVy = (kYU {k+ e ¥} 1= 1.
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Thus
N(|0k],0x,V) > N(|0k|, 01, Vi Uw!Va)

_ /|9k| n(t,()k,VO) — n(O,Hk,Vo)dt+ 72(0 0, %)10g|0k|
0

This shows that (4.14) can not hold for any constants A, B > 0.

Specializing Theorem 4.1 to entire functions , we have
Corollary 4.8. A multiplicity variety V' = {(z, my)} is an interpolating variety

for A, if and only if for some constants A, B > 0,
N(|=l,V) < A+ Bp(z)
and

N(Jzil 20 V) € A 4 Bp(z).

Remark 4.9. Compared with Corollary 4.8, the following conditions by Squires

[17] , namely,
l=e b n(t, 2y, V
/ Mz D g < A Byl
0 :

and
are necessary for V' = {(zx,my)} to be interpolating for A,. But they are not sufficient
conditions except for some special multiplicity varieties(see [17,Th.2]).

Next we consider the interesting sequences {z} satisfying

2k ] 2 L
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for some constant L > 1, which are frequently used in the theory of Picard set and the
theory of factorization of meromorphic functions (see e.g.[1],[15]). For such sequences,
we have

Theorem 4.10. A multiplicity variety V = {{z, mg, ny)} satisfying (4.18) is an

interpolating variety for M, if and only if for some constants A, B > 0,
N(|z[,V*) < A+ Bp(z) (4.19)

and

max{nm, ng Hoglzx| < A+ Bp(zk), (-£.20)

where V* = {(z;, max{my,ni})}.
Proof. ==
Set ty = max{my,ni}. If ¥V is an interpolating variety, then by Theorem .1

(4.19) holds and for some A, B > 0
]\7(|3k|, ks ‘/"*) < A + B])(:‘A)

Thus

o n(t, 2, V) = n(0, 21, V)
1

trlog|zx| < / dt 4+ n(0, zx. V*) log | 24|
Jo

= N(lz], 21, V™) < A+ Bp(|z]).

That is, (4.20) holds.
=
Using exactly the same argument as in the proofl of the sufficiency of Theorem 4.1,

we can find a [ € A, such that Z(f) = V., where V = U?goij*,w = exp( /Lf;:l ) and

ng > 1 is some integer. Let

e = min{|zpp1] = |2k]s 126] — |2k-1]}-
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Then 7, > 0 by the hypotheses. Without loss of generality, we assume that 7 =
|2k] = |x—1| (otherwise, we consider ny = |zp41] — |2x] in the same way ).Again like the

proof of Theorem 4.1, applying the minimum modulus theorem to f(z) in
|z| < 2eL|z-1],

we obtain

log|f(z)| > =Ap(zr) = B (|2] = k)

for some A, B > 0, where |z;_1| < 1 < Llzgp—y] < |2k

Then applying Lemma 4.5 to f in
= = 2l < (et 1)(12k] = |20-1])
and noting that for wy = rpe* 9%
lwor = 2x] <zl = lzr-1ls
we get a 31,0 < B < i, such that
in Aloglf(2)l} 2 —Ap(ai) - B

for some constants A4, B > 0.

1t’s obvious that
Dy ={lz =zt < B} C{lz = =l <m} C Ap = {lz—a] <2 < fzpal}

and
Apn{ze}is, = {z},  asingle point.
Thus

n(Bis 2k, V) < non( B, 21, V) < ol (1.21)
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Denote

o= oz, (10

If

w!z,(0 < j < mo) & D,

then

N(Bry 21, V) = n(0, 21, V) log 81 < noty log|zx).

Otherwise by (4.21) and (4.20),

Pty 2y, V)

; dt + n(0, 2, V) log Bi

NWm%WWS/
5|2k|

I, ,
ot n(0, zx, V') log B,

/
5l2k|
noty log|zi| + C1 < A + Bp(zi)

IA

noty log

IN

for some A, B > 0. Using the Nevanlinna first fundamental theorem , we obtain that

1 7 . .
log | fi,e.] = *2;/ log | f(z) + Bre®)|d8 — N (P, 2x, V)
0
> —Ap(zp) - B
for some constants A, B > 0.

It then follows that V" is an interpolating variety from Theorem 3.1. 1

Corollary 4.11. A multiplicity variety {(zx,my)} satisfying (4.18) is an interpo-

lating variety for A, if and only if for some constants A, B > 0,
N(|2],V) < A+ Bp(2),
and

mylog |2] < A+ Bp(z).

In particular, if the multiplicity m; = 1 for all £ € N |, then we have. in view of

the property (i) of p(=) :



Corollary 4.12. A sequence V' = {z;} satisfying (4.18) is an interpolating variety

for A, if and only if for some constants A, B > 0,

N(|z|,V) < A+ Bp(z).

5. Interpolating varieties for M,, III

In last section,we gave the geometric characterization of interpolating varieties
for weights p(z) satisfving (4.1). In the case when weights p(z) grow so rapidly as
to allow infinite order functions in M,, the geometric conditions would become more
delicate . They are still unknown even for the interpolation by entire functions with
the fundamental weight p(z) = exp(|z|) (c.f.[3,p.3]).

We shall discuss the above weight in this section. More generally, from now on.
we shall assume that radial weights p(z) only satisfy the weaker condition: logp(¢")
is convex in r (e.g. p(z) = exp(|z|) ). Purely geometric sufficient conditions as well
as necessary conditions for such weights will be given. Meanwhile counter examples
will show that the conditions given here are best possible in some sense. To state our

results, some preparations are required.

We shall always assume that 0 < ¢(r) is a non-increasing logarithmically convex

function of r > 0 satisfying

Wt
—_
—

/w¢(—O(ZT<w (a >0) (5.

7

such that
p(r(1+4q(r)) = O{(p(r)} (5.2)

for 7 > 0, where ¢(r) = ¢(p(r)).
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Remark 5.1. Such ¢(r) exists for any weight p(r). We remark here that, by a
well-known theorem due to Borel (sce [9] or [11]), (5.2) holds for any non-decreasing p(7)
except possibly a union of some intervals with finite logarithmic measure provided that
#(r) is a non-negative and non-increasing function satisfying (5.1) , and thus (5.2) holds
for all » > 0 after some modification of values of ¢(r) (Note that p(r) is non-decreasing

for » > 0 by the maximum principle for subharmonic functions).

Proportion 5.2. If ¢(7) is a non-negative and non-increasing function satisfying
(5.1), then

g(r)logp(r)— 0 as r— o (5.
Proof. By (5.1), we know that for any ¢ > 0,

Too(r)

—tdr < ¢

r1/2 T

for large r. But

[ s o) [ Lar= Loty iogr

p1/2 T -1/2 T

Therefore ¢(r)logr — 0 as r — 0. This implies that ¢(r)logp(r) — 0 as r — oc. 1

Remark 5.3. If p(r) = ¢”. Then for any non-negative ¢(r) satisfying (5.1) (e.g.

#(r) = (logr)~(1+2) (¢ > 0)), ( 5.2) holds for all » > 0. In fact
P+ rq(r)) = AT = p(r)etCIOS A < Ap(r)
for some A > 0 by (5.3).

Now we are going to state our results.

Theorem 5.4. Let V' = {(z, m, ni)} be a multiplicity variety. If
n(r, V) < Ag®(r)p(r) (5.4)
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and
N(([(sk‘)v‘:k?V*) < A'*'Bp(:'k) (5.5)
for some A, B > 0, where V> := {(z, max(my,ng)}. Then V is an interpolating variety

for M,,.

Corollary 5.5. Let V' = {(z), mg,ny)} be a multiplicity variety. If

1

n(r,V*) < Amer (5.6)
and
1
———— & e |: I nT
N(Izkil+61~k7‘ )SA+BC k (’)")

for some A, B,c > 0. Then V is an interpolating variety for Meyp()z))-

Specializing these results to the interpolation problem for entire functions. we have

Corollary 5.6. Let V = {(z, my)} be a multiplicity variety. I
n(r,V) < Ag*(r)p(r)
and
N(q(zx), 25, V) < A+ Bp(zx)

for some A, B > 0. Then V is an interpolating variety for A,.

Corollary 5.7. Let V' = {(z;, ms)} be a multiplicity variety. If

1
n(r,V) < Am e”
and

1

ﬁﬁask.w < A+ Bl
Tk

N

for some A, B,e > 0. Then V is an interpolating variety for Aeyxp(|z))-
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T. . .
o prove our results, we need several lemmas.

Lemma 5.8. If log p(e”) is convex, then

p(r) > br* +c (5.8)

(r > 0) for some b,a > 0 and c.
Proof. For any function A(r), we define the operator D, the right-hand derivative,

as follows:

A7+ h) = A(r)
h

D.+.)\(7‘) = lithOJr

Then D (logp(e”)) is non-decrcasing and non-negative. Thus there exists a 1o > 0
such that » > rg,

Di(logp(c™)) > Dy(logp(e™)) :== a > 0.

That is

D, (logp(e”) —ar) > 0.

This shows that for » > g

log p(c") — ar > logp(e™) — ary :=logb,

and so that p(e”) > be®". Hence we can find a ¢ such that

p(r)y > bro +c

for r > 0. 1

Lemma 5.9. [18,Prop L.14]. Suppose that A(r) is a positive continuous function

and Z = {z.} (repeated according to multiplicity) is a A-balanced sequence, i.c., for

some A > 0,
‘S'("‘]ﬂ".:’vka Z) S A)\(krl) + A)\(Z.Z)
) 5
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for all 71,79 > 0 with 1y <7y and & € N. Then there exists a sequence {ay} such that

for some A7 > 0,

A1 /\(T‘)
7,k

o + Sk, 2)| <

forall r > 0 and k € N.

Lemma 5.10. Under the hypothesis (5.4) in Theorem 5.4, we can find a sequence

{ax} and A, 5 > 0 such that

Ag*(r)p(r)

fon + S(r k., V) i {5.9)
r

<

for all 7 > 0 and k € N, where V := V*\ Ujs1<p {(2r, 1)}, tr 1= max{mg, i}
Proof. Set

p(r) =log ¢*(e")ple”) = 2log q(¢”) + log ple”)

Then p(r) is convex since logp(e”) and log g(e”) = log ¢(p(e")) are all convex (Note
that p(r) is convex since p(r) is subharmonic). Thus

21%2}3_),(2 = exp{log ¢*(r)p(r) — klogr}

= exp{p(0) + / (Dp(t) - k)dt)

by letting r = €. The right-hand derivative of p , Dyp(1), is non-decreasing. IHence
there exists a sequence {Rr};%, which is unbounded and non-decreasing such that
¢*(r)p(r)/r* is non-increasing for r < Ry and non-decreasing for r > Ry, k € N.

Let

where a,b,c and « are defined in (5.1) and (5.8), and

m = min{k: Ry > 3}

Then R,, > 8 and Rm_y < B(Rp := 0).
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Define

V=V Uz <8 {(2k0 1)}

We assert that for any & € N, ry, 70 > 0 with r; < rg,

S(rarak, V) < ACTVR(N) | AT (re)p(rs) (5.10)
ry To

for some A > 0.
First, by the definition, we have
~ 1 1.
S(rlvr‘lak?‘/):—i‘;) Z (T—)kl

. Cn
7'1S|<71 IST'.?nd GV

L,
- - 7
k/n tkdn(t,‘)

n(ry, V) X /7‘2 n(t,V)dt

IA

< r§ {Rt+1
Ag?(ra)p(r2) = 3 (t)p(t)
< e A/T e (5.11)

Using Lemma 5.8 , we have , for any r, that

o), [,
t ~Js t

LT A,

a.ﬁo+CT—C

1 By, c
“a/b (14 )dr

/3Q+C T r—=c

1 ¢r) g . o
~(14 bﬂa)/ ri= A (5.12)

3

J

If ry < 3, it follows clearly that S(ry,7a,k,V) = 0. Thus we assume 79 > /3 in the

following. Denote r] = max{ry,3}. Then,by (5.11),

‘9(7)1”‘27]‘"*‘7) = S(le”%]"vv)

< AP (r2)p(r2) " @ (t)p(t) .
< k +A/ pra dt. (5.13)

T2

We discuss two cases: k < m and k> m.
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Ik <m. Then Ry < R,—1 < 3 <ri. Hence

/‘T2 q3(t)P(t)dt < q*(r2)p(r2) t)dt

g thH & oot
) [~ 40
- t
< A, MIIK’"_"_ (5.14)
7‘% ’

(by(5.12)) . Therefore (5.10) holds by (5.13) and (5.14).

I k> m. Then by the fact that 7} > 3 and Ry > R,, > 3, we have that

/” q3(t)P(t)dt:/R“ g*(t)p(t) +/“’ ¢(tp)

v 1R+l i tk-H Ry tk+1

q° (71 1)(7“1 l/ q(t) dtl+ q- (rg)p(ro | " g(t) m

IN

IA

[4
q° 71])71/ </>(I) )dtJr (7‘2 (7“9)/ @(p t))h‘

4,9 q*(r1 ,)Lp 71)+A1q (r2)p(r2)

s 0]

(by(5.12)), independent of whether Ry is in [r], 2] or not. This together with (5.13)
yields (5.10).

The conclusion of the lemma now follows from Lemma 5.9. B

Similar to Lemma 4.4, the following lemma relates 1 to the set of zeros of an entire
function f in Ag,.

Lemma 5.11. With the same hypothesis as in Lemma 5.10, there exists an entire
function f(z) such that |f(2)] < exp(Aq(z)p(2)) for some A > 0 and Z(f) = V, which
was defined in Lemma 5.10.

Proof. By Lemma 5.10, we can find a sequence {ay} satisfying (5.9). We define,
in |z] < r,¢,(2) and f.(z) as follows:

gr(2) = Z{ak + S(r. lc,f’)}s"’ - Z{ak + l Z (%)k}:k

k> k>1 |2, |<r 2 €V
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and

M) =eplgr(x)) J] -2 (5.15)

Zn
2, | <P, 2, EV

By (5.9), gr(2) and so f,(z) are analytic in |2 < r. It turns out that for any fixed 7,
fr(2) defines a single entire function by means of (5.15). In fact, for any 7, 7> with

T1 < 19, 1if |z| < ry, then

fra(2) = eXP{Z(Q’A + Z Z (—}—)zk+% Z (Zi)k)gk}.

E>1 lzw|<ry T 1<z |<re T
Do-5 [ a2
RS “n r1<]2z, | <rp “n

= fr(z epo 3 (,i)k)exp< Yo log(l— 1))

k>1 7]<[ n|<T'r7 o r1<|z, <o “n

= [n(z)exp{ ) (Z +1og1—-} Fri(2).

1] |[<ry k21 “n
Therefore, we obtain an entire function f(z) defined as above which obviously satisfies

Z(f)=V. For |z] < r, we have that, in view of (5.9) and (5.2),

|Gt rg(ry(2)] < z Ag*(r + rq(r))p(r + Tq(r)

k21 (T + Tq)
1
A 2 . T \k
P i)
1

A(]Q(r)p(r)q—(;) = Aq(r)p(r)

IA

Il

and so that

10| F() < |9 (2)] + Y 1og<1+,;§;‘>

| Krdrq(r),z, €V
r+rq 37‘ . .
< Aq(r)p(r) + / log(—t—)d(n(l, V) —n(0,V))
0 s

- n(0,V )rlt
{

IA

. _ rHraln) (4, V)
Aq(r)p(r) + n(r +rq(r),V)log 3 +
0

Aq(r)p(r) + (log3)n(r + rq(r), V) + n(r +rq(r),V)log Z—j—/;(L,)

IN

Noting (5.4),(5.2),(5.8) and (5.3),we obtain that

|f(2)] < exp(Aq(z)p(r))
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for some A > 0.

Lemma 5.12. (Cartan’s Theorem [14]). Given any number k > 0 and complex

number a1, a,,- -, a,, we have that

for any z € C outside a union of circles with the sum of the radii < 2h.

Lemma 5.13. Suppose that f(z) is an entire function satisfying

J(0)# 0, |f(2)] < exp(Ag(2)p(=)),

and
"(7‘,%) < Aq(r)p(r)

for some A > 0. Then

| 1
log /(=) > —Aip(r) (12} < 7+ Srg(r)

for some A; > 0 outside a union of excluded circles with the sum of radii < {¢(7).

Proof. It is no loss of generality to assume that f(0) = 1. We will use the classic

argument (c.f.[14,p.21]) to set q = ¢(r) and

R(z): —(r+rq)" H(r+7q(z—ak)

aray - -a (r+rq)? — dpz’

where a1, ay, . a, are the zeros of f(z) in |z| < r + rg(r), and

S(z) = f(2)/R().

Recall that if a function G(z) is regular in |z| < R with no zeros and G/(0) = |

then

log |G/(z)] > — "7_1ogM(R,f) (J2| <7 < R)

2
-

44



(see [14,p.19]). Applying this result to S(z) in |z| < 74 rqg. Then in |z| < r + $rg, in
view of (5.16) and (5.2), we have

(r+rq)" )

laras - a,

=2(r + 37q)
log |5(2)| > —
r+rqg—(r+3rq)

A .
>~ ap(=) = = Ap(2). (5.18)

{log M(r +rq, ) — log

Using Lemma 5.12 with h = —%q, we have

[T1e = ad > &y
k=1

for any z outside a union of circles with the sum of radii < 1g. Therefore for such z in
> 7

{lz| <7+ irg}. we have

(r+rg)” (r+rq)" (Lyn = ¢

2y > —
|R( )I - (7, _+_ 71(1)71 2n(7 _+_ 7.(1)271 86 166(7‘ + f,nq)

and consequently , in view of (5.17),(5.8) and (5.3),

g(r)
log |R(z)| > nlog —————
og |R(z)] = nlog 16e(r + rq(r))
q(r)
> A e
, 1
> = Ap(r)q(r)(log p(r) + A1) — p(r)q('r)log%
> —Ap(r). (5.19)
By (5.18) and (5.19), we obtain that
1
log | J(2)] > ~iplr) (2] < 7+ 5ra(r)
foe some A; > 0 outside a union of circles with the sum of radii < %q(r). B

Now we are ready to prove Theorem 5.4 , 5.6 and corollaries.
Proof of Theorem 5.4. First by Lemma 5.11, there exists an entire function

f(z) such that Z(f) =V and (5.16) holds. Clearly by (5.4) we have that

n(?’*%) = n(r, ¥) < n(r, V") < Aq(r)p(r).
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By Lemma 5.13, we know
1
log|f(2)] > ~Ap(r) (2] < |zl + 5 =ela(z0))

outside a family of excluded circles with the sum of radii < %q( zk). Hence, for large k.

one can get a pi(0 < pr < g(zx)) such that on |z — z;| = py,
log [f(2)] > —Ap(z).
By the Nevanlinna first fundamental theorem, we have, for 2 € f/, that
al 1 2l
log |fk7"k| + 1 (/)ka Zksy ?) =1 (pk‘v Zky f)?

where 1 := max{my,ny}, and thus that

1 1
log | fy10| = m(pr.zp. f) ~ m(kaZkv?) = N(pk» 2. =)

s

1 2r ) -
> 5 [ gl 4 pue ) — Mgtz 5 )
T Jo
> —~Ap(z) - B
for some constants A, B > 0.

Set

where [ := max{k : |zx] < 3}, /3 was defined in Lemma 5.10. Then by the definition

of f/, we will have Z( F') = V'*. It is immediate to see that for any z, € V', we still have
log | Fiiy| > —Ap(zx) — B
for some A, B > 0, and
log |F(=)] < Ay log | + log |f(2)] < Ap(=) + B

by (5.8) and (5.16), ie., F' € Ap. Now using Theorem 3.1, we conclude that V' is an

interpolating variety for M,,.
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The proof is thus complete. |

Proof of Corollary 5.5. Taking ¢(7) = W(e > 0), we see that

(15(

—dr < o0
where a = 1 + ¢g with ¢g > 0. By Remark 5.3,
(r(1+ ¢(r)) = O(p(r))

for all » > 0, where ¢(7) = ¢(p(7)) = rl%

The corollary follows directly from Theorem 5.4. |

Next, we consider the converse direction to Theorem 5.4 and its corollaries. We
will prove that (5.5) is also necessary. Moreover, we have

Theorem 5.14. Suppose that V = {(2, mx,nx)} is an interpolating variety for
M. Then

n(r,V*) < A4 e )p(v) {5.20)

for some A > 0 and (5.5) holds.

Corollary 5.15. Suppose that V = {(z1, my,nx)} is an interpolating variety for
M,,p(z) = exp(]z]). Then

n(,,,1 V* ) < Arlteer

for some ¢, A > 0 and (5.7) holds.

Given any double multiplicity variety V = {(zk, mk)}, by changing V* into V'
in Theorem 5.14 and Corollary 5.15, one can get necessary conditions for 17 to be

interpolation for A,.
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Proof of Theorem 5.14. By Theorem 3.1, there is a function f € A, such that
V*C Z(f) and |fes| > cexp(—ep(z)), k€ N, (5.21)

for some ¢, ¢ > 0, where t, = max{my, ny}.

Thus for large r,

n(r, V*) < n(r, =)

/
1 r+rg(r) n(t,%)
< Tog(i +q<r>>/r T
< —A—N(r+ rg(r) -l—)
= q(r) f
A 1
< mﬂ’ +Tq(r)77)
< %{logM(w ra(r), f) + C)
A
2 p(r 5.22
< q(r)ph) (5.22)

for some C' and A > 0. By an appropriate modification of value of A, (5.22) holds for

all » > 0. Also,

1
N((](zk)vzkv ‘V*) < N(Q(:k)v Tk _f-)
1
S T(q(zk)7zkﬂ—f')
= T{q(0)s 200 f) + 10§
|fk,tk!
1
<log M(q(zx), 2k, f) + log m—
| fr ]
< Ap(zp)+ B

for some A, B > 0 by (5.2) and (5.21). The proof is thus finished. ]
Corollary 5.15 is a consequence of Theorem 5.14.

Combining Theorem 5.4 with 5.14, we have
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Theorem 5.16. The multiplicity variety V. = {(zx, mg, ng, )} satisfying (5.4) is

an interpolating variety for M, if and only if
N(q(z1), 21, V*) < Ap(zx) + B

for some A, B > 0.

For the weight p(z) = exp(]z]), we obtain
Corollary 5.17. The multiplicity variety V = {(zk, mx, nx)} satisfying (5.6} is an

interpolating variety for My, |- if and only if

1

N, 2, V) < Aexp(|z]) + B
Bl

for some A, B,¢ > 0.

Similarly, we have the corresponding results for interpolation by entire functions
in Ap.

Obviously we can not drop the hypothesis (5.4) in Theorem 5.16 (resp.(5.6) in
Corollary 5.17). But observing Theorem 5.4 and Theorem 5.14, it is natural to question

whether or not one could find a real number «a such that
n(r,V*) < Ag%(r)p(r) (5.23)

and (5.5) are both sufficient and necessary geometric conditions for V7 to be interpolating
for M,. A negative answer will be provided by the following counterexamples, which
also show that for the sufficient conditions in Theorem 5.4, (5.4) can not be weakened
into

n(r,V*) < Ap(r) (5.21)

and for the necessary condition in Theorem 5.14, (5.20) also can not be strengthened

into (5.24).
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Example 5.18. This example will show that (5.23) and (5.5) are not sufficient for

V to be interpolating if a < 0. Let’s consider the weight p(z) = exp(|z|). Denote

1
"= Togryer

and
— Ty 1
q(?’) = ¢(e ) - r3+2epem

where ¢ is a small positive number. Let

zp =logk and wy = 25,60

with 85 > 0 satisfying

1
|2k [3+22 exp(exp |2x])’

jwr — 2| =

and

Vo= {2}l U{wr}ily
with my = 1,n,, = 0 for £ € N. Then obviously
n(r,V) = 2[e"] < 2p(r) < 2¢°(r)p(r)

for any a < 0, i.e., (5.23) holds for a < 0.

It is easy to see that for any (i € V,

q(¢x) tC, V) — n(0,Cr, V )
N(q(Ch) G V) = / n(ty G V) = 0,66 V) oy 4 g, ¢4 VY log (G

0 {
=log q(Cr) < A
for some constant A > 0. That is , (5.5) holds.
But V is not an interpolating variety for p(z) = exp(|z]). Since otherwise, by

Corollary 5.15 we should have

1
N

N 2, V) < Ael# 4 B (5.2

Ut
NS
[\
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for some constants A, B > 0. However,

dt 4 (0, 2., V) log |z~ ~*

1 |2’°|—1—£n'tz,V - n(0, z,,V
N( 1+E,~7k,‘/7):/(; (7 k )t ( 3 k? )

EN

E7Y 1 .
:A |-3-2 7Y ?dt+loglzkl_ -~
Zg |3 2¢ce~e

= log |sk|2+5 1 oelml 4 log |z;9|'1~€

= log |zx| + el**!.

This shows that (5.25) can not hold, a contradiction.

Example 5.19. We will show, by this example, that (5.23) is not necessary

if @ > 0. Again we consider the weight p(z) = exp(]z]). Let f(z) = €. Then for

2=+ iy =re?,

|f(2)| — eRe(iez) — e-—(siny)e‘” < 66” < eer — ep(r)’
which shows that f € 4, and thus F'(z) := f(z) -1 € A,.
Set
V= Z(F(z)) = {(2k, m)}- (5.26)
We sec that, at each zy,
F'(z) = ['(z) = e ie™ = ie™ # 0. (5.27)
Therefore my = 1. Moreover, by (5.27), for =z = x4 + tyx,
|F'(zp)] = |ie™]| = ™ > e~ 1zl > em e empla) (5.28)

Now (5.26) together with (5.28) shows that V' is an interpolating variety for p(z) =
exp(|z]) by Corollary 3.5.
However, (5.23) is not true for any o > 0. In fact, for any k¥ € N and n € N, we

have

f(log e + 2,,””') — 6)iexp(log21»'7r—+—2n7ri) — 62k7ri - 1.
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Thus
Vi = {log 2km + 2nwi}y, C V.

It is easy to check that

’IZ(’I‘, ‘/1)
er

as T — 0.

But n(r,V) > n(r,V1). Hence, for any o > 0 and ¢(r) satisfying (5.1) we can not find

a A > 0 such that (5.23) holds.

Remark 5.20. Let us point out that all the above results still remain true if
we replace the condition (ii) of p(z) in §1 by the following Hormander’s condition
(see e.g. [5,p.4]): there exist four positive constants ¢p,---, ¢4 such that | — 2| <
exp(—c1p(z) — ¢2) implies that p(&) < e3p(z) + ¢4. We omit the details of modification

here.
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for some constants A, B > 0. However,

1 I I:kl_l—c n t,Z-,"' —-n 073‘,‘/ - I
(—I lHE,%,‘/)'—‘/ 2 )t (0, 2 )dt-{»n(O,z;\.,V)loglz” 1-e
“k 0
Izkl-—l-—c 1
=/ —dt +log|z|717¢
|2k |- 3-2¢ emel 21 t

=log |zx]*t¢ + el*| 4 log |z 71 ~¢

= log |zx| + el**!.

This shows that (5.25) can not hold, a contradiction.

Example 5.19. We will show, by this example, that (5.23) is not necessary

if o > 0. Again we consider the weight p(z) = exp(|z|). Let f(z) = ¢'¢.

oy o e mpif
zz=1x 41y =re’,

|f(3)| — 6Re(iez) — e—(siny)ex < ee’ S eer — ep(r)‘

which shows that f € A, and thus F(z) := f(2) -1 € A,.
Set

V= Z(F(z)) = {(z, mx)}

We see that, at each z,
F'(z) = ['(2) = 7" ie™ = ie™ # 0.
Therefore my, = 1. Moreover, by (5.27), for z; = @ + tyx,

IFI(Zk)I = liez“l = %k > C”‘l:kl > 6“6]1kl — e—p(zk)‘

Then for

(5.28)

Now (5.26) together with (5.28) shows that V" is an interpolating variety for p(z) =

exp(|z]) by Corollary 3.5.

However, (5.23) is not true for any a > 0. In fact, for any k¥ € N and n € N, we

have

f(log O + 27171’“ — €iexp(log‘2k7r+2n7ri) - €2k7ri = 1.
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Thus
Vi = {log 2km 4+ 2nwile, C V.
It is easy to check that

n(r, V1)
CT‘

— X as T — oG,

But n(r,V) > n(r,V1). Hence, for any a > 0 and ¢(r) satisfying (5.1) we can not find

a A > 0 such that (5.23) holds.

Remark 5.20. Let us point out that all the above results still remain true if
we replace the condition (ii) of p(z) in §1 by the following Hormander’s condition
(see e.g. [5,p.4]): there exist four positive constants ¢;,---,¢q such that | — z| <
exp(—e1p(z) — ¢2) implies that p(€) < ezp(z) + ¢4. We omit the details of modification

here.
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