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Documents play an increasingly central role in human communications and workplace pro-

ductivity. Every day, billions of documents are created, consumed, collaborated on, and edited.

However, most such interactions are manual or rule-based semi-automated. Learning from

semi-structured and unstructured documents is a crucial step in designing intelligent systems

that can understand, interpret, and extract information contained in digital PDFs, forms, receipts,

contracts, infographics, etc. Our work tries to solve three major problems in the domain of infor-

mation extraction from real-world multimodal (text+images+layout) documents: (1) multi-hop

reasoning between concepts and entities spanning several paragraphs; (2) semi-structured layout

extraction in documents consisting of thousands of text tokens and embedded images arranged

in specific layouts; (3) hierarchical document representations and the need to transcend content

lengths beyond a fixed window for effective semantic reasoning. Our research broadly binds

together the semantic (document-level information extraction) and structural (document image

analysis) aspects of document intelligence to advance user productivity.



The first part of the research addresses issues related to information extraction from charac-

teristically long-range documents that consist of multiple paragraphs and require long-range

contextualization. We propose augmenting the capabilities of the Transformer-based methods

with graph neural networks to capture local-level context as well as long-range global infor-

mation to solve document-level information extraction tasks. In this aspect, we first solve the

task of document-level temporal relation extraction by leveraging rhetorical discourse features,

temporal arguments, and syntactic features through a Gated Relational-GCN model to extend

the capability of Transformer architecture for discourse-level modeling. Next, we propose Doc-

Time, a novel temporal dependency graph parsing method that utilizes structural, syntactic,

and semantic relations to learn dependency structures over time expressions and event entities

in text documents to capture long-range interdependencies. We also show how the temporal

dependency graphs can be incorporated into the self-attention layer of Transformer models

to improve the downstream tasks of temporal questions answering and temporal NLI. Finally,

we present DocInfer - a novel, end-to-end Document-level Natural Language Inference model

that builds a hierarchical document graph, performs paragraph pruning, and optimally selects

evidence sentences to identify the most important context sentences for a given hypothesis.

Our evidence selection mechanism allows it to transcend the input length limitation of modern

BERT-like Transformer models while presenting the entire evidence together for inferential

reasoning that helps it to reason on large documents where the evidence may be fragmented

and located arbitrarily far apart.

The second part of the research covers novel approaches for understanding, manipulation,

and downstream applications of spatial structures extracted from digital documents. We first

propose LayerDoc to extract the hierarchical layout structure in visually rich documents by



leveraging visual features, textual semantics, and spatial coordinates along with constraint

inference in a bottom-up layer-wise fashion. Next, we propose DocEditor, a Transformer-based

localization-aware multimodal (textual, spatial, and visual) model that performs the novel task of

language-guided document editing based on user text prompts. Further, we investigated methods

for building text-to-speech systems for semi-structured documents.

Finally, we will explore two applications of long-context document-level reasoning: (i) user-

personalized speech recognition systems for improved next-word prediction in specific domains

by utilizing retrieval augmentation techniques for ASR Language Models; (ii) Transformer-based

methods to utilize multimodal information from long-form financial conference calls (document-

level transcripts, audio-visual recordings, and tabular information) for improved financial time

series prediction tasks.
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CHAPTER 1

Introduction and Overview

The goal of Document Artificial Intelligence is to develop systems and solutions that can under-

stand, interpret, and extract information contained in semi-structured documents such as digital

PDFs, forms, receipts, contracts, infographics, etc. In today’s digitally connected world, docu-

ments play an increasingly central role in human communications and workplace productivity.

Every day, billions of documents are created, consumed, collaborated on, and edited, however

majority of such interactions are manual or rule-based semi-automated. The real challenge lies

in enabling structural and semantic understanding of documents so that users can easily extract

relevant information in an automated fashion without the loss of critical information. For exam-

ple, the extraction of important dates mentioned in a contract and aligning the related events

on a timeline may help improve the efficiency of lawyers in their day-to-day jobs. Similarly,
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extracting itemized pairs from scanned receipts can help make accounting easier. However, such

applications are challenged by the loss of structural and semantic understanding of documents

through heuristic and semi-automated methods without the loss of critical information. Extract-

ing information from real-world documents remains a challenging task as documents tend to

be multimodal (text+images+layout), come in a variety of different layouts, encode multi-hop

information flow between several constituents, and require input contextualization beyond a

fixed aperture (context window) for effective applications. For instance, text documents may

be composed of several paragraphs, often running into multiple pages; digital PDFs can have

thousands of text tokens and embedded images arranged in specific layouts; financial documents

may contain numerous tables, charts, and visualizations; legal documents may encode a dense

hierarchical ordering of clauses and terminologies; narrative documents may cross-reference

multiple concepts and entities across paragraphs, pages, and collections.

Effectively, our work tries to solve three major problems in the domain of information

extraction from real-world multimodal (text+images+layout) documents: (1) multi-hop reasoning

between concepts and entities spanning several paragraphs; (2) semi-structured layout extraction

in documents consisting of thousands of text tokens and embedded images arranged in specific

layouts; (3) hierarchical document representations and the need to transcend content lengths

beyond a fixed window for effective semantic reasoning. Our research broadly binds together

the semantic (document-level information extraction) and structural (document image analysis)

aspects of document intelligence to advance user productivity tools. Semantic understanding

involves designing and training methods for extracting information spread across the constituent

passages and sentences of a long document. We overcome this limitation by leveraging the

multi-hop qualities of graph neural networks which helps the Transformer encoder models to
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transcend the input length limitations to reason over long document text. These advances help

us improve upon the pertinent tasks of document-level temporal relation extraction, temporal

dependency parsing, and natural language inference.

In this aspect, my first work explores the problem of temporal relation extraction (TempRel)

which involves determining the temporal order between two events in a text (Pustejovsky et al.

2003a). Ordering events in time is useful for automatically inferring their relative occurrence

and generating precise time anchoring for each event. Prior work focused on extracting tempo-

ral relations between event pairs present in the same sentence or adjacent sentences, mostly

ignoring document-level pairs requiring long-range dependencies and multi-hop reasoning at

the document level. Our main contribution to this work is the TIMERS model for document-

level temporal relation extraction. TIMERS uses discourse features, temporal arguments, and

structural and syntactic dependency parse connections to leverage long-range inter-sentential

relationships in a text document to extend existing contextual BERT embeddings with structural

and syntactic dependency parse connections. These rhetorical, syntactic, and temporal features

are learned through relational Graph Convolutional Networks (R-GCN).

Further extending this work, we explore the task of temporal dependency parsing that aims

to infer a graph of temporal relations rather than relying on densely annotated pairs of events in

long documents. We introduce DocTime - a state-of-the-art temporal dependency parser that

parses document-level text to produce temporal dependency graphs. Unlike previous approaches

using contextual features such as BERT (Ross, Cai, and Min 2020), our model utilizes a graph

network and a novel path prediction loss to reason over long-range multi-hop dependencies

while maintaining global consistency of temporal ordering of inter-dependent events. We also

propose Time-Transformer, a framework to incorporate temporal dependency graphs
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into existing transformer-based architectures without retraining from scratch.

Next, we explored the task of document-level natural language inference where the

premises are in the document granularity, whereas the hypotheses can vary in length from

single sentences to passages with hundreds of words (Yin, Radev, and Xiong 2021). This textual

reasoning task seeks to classify a presented hypothesis as entailed by, contradictory to or neutral

to a premise (Dagan et al. 2010). Prior NLI datasets and studies have focused on sentence-level

inference where both the premises and hypotheses are single sentences. Document-level NLI

challenges modern approaches due to the limited input bottleneck of modern Transformer models

(e.g. BERT model (Devlin et al. 2018) can only encode 512 input sub-tokens due to its quadratic

self-attention complexity). Consequently, evidence in the document premise relevant to the

hypothesis can potentially be distributed in several textual spans located arbitrarily far away

from each other in long documents, and may not be simultaneously available to draw inference.

We address the above challenge with a reasonable assumption that the portion of the premise (the

ground truth evidence) necessary and sufficient for inference can fit entirely into the length limit

of language model for effective representation learning, and hence propose DocInfer – a novel

architecture that simultaneously performs successive optimal evidence selection and textual

inference on large documents. It utilizes a novel graph representation of the document encoding

structural, topical, concept and entity-based relationships. It performs subgraph pooling and

asynchronous graph updates to provide a pruned, hypothesis-relevant and richer sub-document

graph representation and uses a reinforcement-learning based subset selection module to provide

the contextually-relevant evidences for inference.

Structural understanding of multimodal documents involves parsing the hierarchical spatial

organization of document constituents to extract the text, layout boundaries, and visual attributes
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of scanned or digital documents. Digital documents often contain images and scanned text.

Parsing such visually rich documents is a core task for workflow automation, but it remains

challenging since most documents do not encode explicit layout information, e.g., how characters

and words are grouped into boxes and ordered into larger semantic entities. Current state-of-the-

art layout extraction methods are challenged by such documents as they rely on word sequences

to have correct reading order and do not exploit their hierarchical structure. To address these

challenges, we propose the LayerDoc model for extracting hierarchical document layout in a

layer-wise fashion, recursively grouping smaller spatial regions into larger, semantic elements.

We are the first to formulate nested document hierarchy extraction using transformers. In

addition, we propose a multimodal contextual encoder that maximizes the use of context by

simultaneously modeling all possible parent-child pairs in a layer. For element type classification

and semantic grouping, this leads to a relative improvement of 10-15% across several metrics.

We also demonstrate how our extracted nested hierarchical document structure can improve the

inferred token reading order and semantic word grouping by 8-12%.

We further look at how information about these extracted multimodal structure hierarchies

can help us automatically edit documents based on user prompts. Digital documents are used

extensively to help people improve business productivity (drafting contract agreements, pre-

sentation decks, letterheads, invoices, resumes, form filling) and communicate with customers

through online advertisements, social media posts, flyers, posters, billboards, web and mobile

app prototypes, etc. However, modern document editing tools require a skilled professional to

work on a large screen. Challenges emerge when complex editing operations require multiple

different functionalities wrapped within the editing tools for text and image region placement,

grouping, spatial alignment, replacement, resizing, splitting, merging, and special effects. To
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make editing tools accessible to increasingly novice users, we investigate intelligent document

assistant systems that can make or suggest edits based on a user’s natural language request. Such

a system should be able to understand the user’s ambiguous requests and contextualize them to

the visual cues and textual content found in a document image to edit localized unstructured

text and structured layouts. To this end, we propose a new task of language-guided localized

document editing, where the user provides a document and an open vocabulary editing request,

and the intelligent system produces a command that can be used to automate edits in real-world

document editing software. We propose the DocEdit dataset which provides natural language edit

requests on PDFs and design template documents. Each edit request is mapped to an executable

command that can be used to automatically apply edits in real-world document editing software.

We also propose the DocEditor model, a neural architecture to generate the executable computer

command and ground the region of interest bounding box by solving inherent challenges in

automated document editing, namely - (a) interpreting and localizing structured components

and their relative positioning in the document; (b) matching document text tokens in a text-rich

document formatted in varied spatial layouts (checkboxes, choice groups, text fields, columns,

rows), (c) visually understanding the objects as per the user description.

We also explore several applications of document information mining and long-context

multimodal content understanding such as (i) building text-to-speech systems for semi-structured

documents, (ii) user-personalized speech recognition systems for improved next-word prediction

in specific domains by utilizing retrieval augmentation techniques for ASR Language Models;

(iii) Transformer-based methods to utilize multimodal information from long-form financial

conference calls (document-level transcripts, audio-visual recordings, and tabular information)

for improved financial time series prediction tasks.
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The first application shows a use case of ordered document parsing through the task of

synthesizing coherent speech from the text in documents which remains a challenging problem

due to (1) the long sequence length of input text, and (2) the lack of correct reading order provided

by off-the-shelf Optical Character Recognition (OCR) engines that tend to arrange all recognized

tokens in a top-to-bottom and left-to-right manner, and disregard the layout of the long-form

text (Clausner, Pletschacher, and Antonacopoulos 2013). Current TTS systems assume that

the reading order sequence of input text tokens is correct. However, the reading order itself

depends on the structure of the document and is not known apriori. In fact, current OCR systems

cannot infer this correctly from complex spatial documents. Towards this end, we propose the

task of document-level layout-informed text-to-speech synthesis that aims to generate human-

level speech corresponding to the correct reading order of the text present in a semi-structured

document. We present DocLayoutTTS, a neural baseline architecture that simultaneously learns

text reordering, newline prediction, and mel-spectrogram prediction for synthesizing speech

from documents in our proposed dataset in a multi-task fashion. Our proposed model uses

curriculum learning to learn increasingly long document-level speech synthesis.

For the second application, combine publicly available earnings calls in MAEC (Li et al.

2020b)) and M&A calls (Sawhney et al. 2021a) datasets with tabular data extracted from SEC-

EDGAR 10-Q and 10-K company-filing documents. We utilize tabular information from financial

semi-structured documents with existing textual and audio modalities to show improvement in

stock volatility and price movement prediction tasks across several baseline and state-of-the-art

models. Induction of tabular data also reduces induced gender bias due to audio modality in

the financial prediction models and demonstrates the usefulness of tabular data extracted from

semi-structured financial documents as an alternative to audio modality for reducing gender
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bias in audio-based neural networks, without significant performance degradation.

The third application deals with long-form content understanding for capturing rare word

patterns associated with specific users/documents/domains, with a goal to improve domain-

specific languagemodeling and personalized ASR using past data. To fulfill this goal, we introduce

DomainRAG: Domain-distributed span-aggregated K-nearest N-gram retrieval augmentation

to improve language modeling for Automatic Speech Recognition (ASR) personalization. Do-

mainRAG leverages contextually similar n-gram word frequencies for recognizing rare word

patterns associated with unseen domains. It aggregates the next-word probability distribution

based on the relative importance of different domains to the input query. To achieve this, we

propose the Span Aggregated Group-Contrastive Neural (SCAN) retriever that learns to rank

external domains/users by utilizing a group-wise contrastive span loss that pulls together span

representations belonging to the same group while pushing away spans from unrelated groups in

the semantic space. We propose the ASAP benchmark for ASR LM personalization that consists

of three user-specific speech-to-text tasks for meetings, TED talks, and financial earnings calls.

Extensive experiments show that DomainRAG significantly outperforms strong baselines on

popular Wikitext-103, UserLibri, and our ASAP dataset. We further demonstrate the usefulness

of the SCAN retriever for improving user-personalized text generation and classification by

retrieving relevant context for zero-shot prompting and few-shot fine-tuning of LLMs on the

LAMP benchmark.
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CHAPTER 2

TIMERS: Document-level Temporal Relation Extraction

Abstract

We present TIMERS - a TIME, Rhetorical and Syntactic-aware model for document-level

temporal relation classification. Our proposed method leverages rhetorical discourse features and

temporal arguments from semantic role labels, in addition to traditional local syntactic features,

trained through a Gated Relational-GCN. Extensive experiments show that the proposed model

outperforms previous methods by 5-18% on the TDDiscourse, TimeBank-Dense, and MATRES

datasets due to our discourse-level modeling.
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2.1 Introduction

Temporal relation extraction (TempRel) is a challenging task that involves determining the

temporal order between two events in a text (Pustejovsky et al. 2003a). Understanding the

temporal ordering of events in a document plays a key role in downstream tasks such as timeline

creation (Leeuwenberg and Moens 2018), time-aware summarization (Noh et al. 2020), temporal

question-answering (Ning et al. 2020a), and temporal information extraction (Leeuwenberg

and Moens 2019).

Prior work focuses on extracting temporal relations between event pairs (a.k.a., TLINKS)

present in the same sentence (Intra-sentence TLINKS) or adjacent sentences (Inter-sentence

TLINKS), mostly ignoring document-level pairs (Cross-document TLINKS) (Reimers, Dehghani,

and Gurevych 2016). Past works have used RNN (Cheng and Miyao 2017; Meng, Rumshisky,

and Romanov 2017; Goyal and Durrett 2019; Ning, Subramanian, and Roth 2019a; Han et al.

2019a; Han, Ning, and Peng 2019; Han et al. 2019b; Han, Zhou, and Peng 2020) and Transformer

networks (Ballesteros et al. 2020; Zhao, Lin, and Durrett 2020b) for encoding a few sentences or

a short paragraph but do not capture long-range dependencies and multi-hop reasoning at the

document-level. This shortcoming is shown in the TDDiscourse dataset (Naik, Breitfeller, and

Rosé 2019), which was designed to highlight global discourse-level challenges, e.g., multi-hop

chain reasoning, future or hypothetical events, and reasoning requiring world knowledge.

We propose TIMERS - a TIME, Rhetorical, and Syntactic-aware model for document-

level temporal relation extraction. TIMERS uses discourse features in the form of connections

from Rhetorical Structure Theory (RST) parsers (Bhatia, Ji, and Eisenstein 2015) to leverage

long-range inter-sentential relationships. It also extends existing contextual embeddings with
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DOCUMENT
<DCT> 1998-01-08 </DCT>
1. [Despite the military
conflict with Iraq,]1 [oil
prices have been
falling,]2 [because of
a worldwide glut of
oil]3 [and recession.]4
 3. [Oil prices]5 [have
come down]6 [from the
middle of October]7 
[as we see today.]8

4. [That's built up a roll
up]9 [and that it
will look to increase.]10
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structural and syntactic dependency parse connections. Lastly, it uses timex-timex relations,

dct (document creation date)-timex relations, and temporal arguments obtained via sentence-

level semantic role labeling. These rhetorical, syntactic, and temporal features are learned

through a modified version of Relational Graph Convolutional Networks (R-GCN) with a gating

mechanism (GR-GCN) (Schlichtkrull et al. 2018), which learns highly relational data relationships

in densely-connected graph networks.

Our main contribution is a document-level model that incorporates these three features

to improve temporal relationship extraction. We obtain state-of-the-art performance across three

datasets with 5-18% relative improvement, showing improvement for events that require

chain reasoning, causal prerequisite links, and future events.

2.2 Methodology

Let document D be defined as a sequence of n tokens wi ∈ W = {w1, · · · ,wn}. The entire

document is a list of m sentences V = [v1, · · · , vm]. Each document has a set of p events

E = {e1, · · · , ep} and q timexes T = {t1, · · · , tq}, where p, q ≤ n. The creation date of the

document is represented by timestamp tDCT. We denote the source and target events by es and

et , respectively. The task is to identify the temporal relation y ∈ R between the source and

target event in a multi-class classification setup, where R is the set of all possible temporal links

(TLINKs).

To solve this task, our model (Fig.2.1) builds the TIMERS-graph, which consists of a Syntactic

Graph (Sec.2.2.1), a Time Graph (Sec. 2.2.2), and a Rhetorical Graph (Sec.2.2.3). Each graph

is learned through GR-GCN to extract the embeddings used for temporal relation extraction
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(Fig.2.2, Sec.2.2.4).

2.2.1 Syntactic-Aware Graph

The syntactic graph captures the document structure and word dependency. Our syntactic-aware

graph (GSG) is made of separate nodes to represent the documentD, each of its inherent sentences

vi ∈ V , and all the constituent words wi ∈ W of each sentence. The edges of the Syntactic

Graph encode five relations: (1) Document-Sentence Affiliation and (2) Sentence-Word

Affiliation model the hierarchical structure of the document through a directed edge from the

document node to each sentence node and from a sentence node to each word in the sentence.

(3) Sentence-Sentence Adjacency and (4) Word-Word Adjacency to preserve sequential

ordering for consecutive sentence and word nodes. (5) Word-Word Dependency encodes the

syntactical nature of the word-level relationships by adding an undirected edge between two

word nodes if they share a parent-child relationship in the sentence-level dependency tree.

We use BERT to encode each wi and obtain sentence embeddings v
′
i by averaging the

second-to-last hidden layer of BERT for each token. The document vector embedding D
′
i was

calculated as the average of all sentence embedding (D
′
i =
∑m

i=0 v
′
i ).

2.2.2 Time-Aware Graph

When events are anchored to a specific time, it becomes easier to infer event relationships from

their associated date and time. The time-aware graph (GTG) exploits this intuition and propagates

relational information among events, timexes, and the Document Creation Time (DCT ). The

document node D is the node corresponding to the document creation date while the timexes

ti and events ei are characterized by their corresponding word nodes in the Syntactic Graph.

13



We design three types of edge connections: (1) DCT -Timex Association: exploit the ordering

of timexes with respect to the document creation time through directed weighted edges from

DCT to timexes. (2) Timex-Timex Association: capture inherent non-local timeline ordering

between timex pairs by a directed weighted edge. (3) Predicate-Temporal Argument: anchor

local temporal relations at the sentence level by connecting each event verb predicate to its

temporal argument with a directed edge. The connections formed between temporal entities

help navigate information from the source event to the target event while exploring interactions

with other events, timexes, dct, and temporal arguments.

We calculate timestamps for timexes and the DCT from the annotated TimeML format of

input documents. The weight of the DCT -timex and timex-timex edges is determined based on

the temporal order of the entities {After,Before, Simultaneous,None}. We added None as a relation

when one of the timestamps cannot be anchored in time.

2.2.3 Rhetorical-Aware Graph

We use discourse features based on Rhetorical Structure Theory (RST) (Mann and Thompson

1988) to leverage long-range inter-dependencies through a discourse tree. The rhetorical dis-

course tree of a document contains nodes of phrases, where each phrase (a.k.a, Elementary

Discourse Unit or EDU) is contiguous, adjacent and non-overlapping. The interdependencies

among EDUs are represented by conventional rhetorical relations (Mann 1987), e.g. Elaboration,

Span, Condition, Attribution. Prior work showed discourse features in the form of RST connec-

tions help leverage long-range document-level interactions between phrase units (Bhatia, Ji,

and Eisenstein 2015) and identify background-foreground events (Aldawsari et al. 2020).

Elementary Discourse Unit (EDU), a sub-sentence phrase unit, is the minimal selection unit

14



for discourse segmentation of a document. We generate the document vector representations at

EDU-level hi ∈ H = {h1, · · · , hd } via the Self-Attentive Span Extractor (SpanExt) from (Lee et al.

2017) over the BERT token embeddings. We use the converted dependency version of the tree to

build the Rhetorical-aware graph (GDG) by treating every discourse dependency from the i-th

EDU to the j-th EDU as a directed edge weighted by the type of the rhetorical relation.

2.2.4 Temporal Relation Extraction

Each graph is instantiated as a gated variant of Relational GraphConvolutional Networks (R-GCN)

(Schlichtkrull et al. 2018), which we term as Gated Relational Graph Convolution Network (GR-

GCN). GR-GCN propagates messages among the nodes to obtain a learned node representation

and is inspired by (Zhang et al. 2020b). Fig. 2.2 shows how the learned representations obtained

from the syntactic-aware graph forms the input to the time-aware graph. For the time-aware

graphs, the learned representations of nodes corresponding to the source event es and target

event et are extracted (OT ). In the case of the rhetorical graphs, the span representations of

the EDU span nodes corresponding to the source event (he) and target event (hs) are extracted

(OEDU ).

The output corresponding to the source and target nodes learnt by GTG (OT ) and GDG

(OEDU ) are concatenated with output of BERT based context encoder (OCE) (similar to BERT

encoding in (Zhao, Lin, and Durrett 2020a)): zG = ReLU(W [OT ;OEDU ;OCE]+b). This is followed

by a Softmax layer to predict temporal relations.
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Dataset Train Validation Test Labels
TDDMan (Naik, Breitfeller, and Rosé 2019) 4000 650 1500 a, b, s, i, ii

TDDAuto (Naik, Breitfeller, and Rosé 2019) 32609 1435 4258 a, b, s, i, ii

MATRES (Ning, Wu, and Roth 2018a) ## 231 25 20 e,a,b,v

TimeBank-Dense (Cassidy et al. 2014a) 4032 629 1427 a, b, s, i, ii, v

Table 2.1: Train/Val/Test data distribution for TDDMan, TDDAuto, MATRES, and TimeBank-

Dense; a: After, b: Before, s: Simultaneous, i: Includes, ii: Is_included, v: Vague, e: Equal. (##

(Ning, Subramanian, and Roth 2019a) use TimeBank and Aquaint for training, Platinum for test;

20% of train as validation)

Corpus Model F1

TB-Dense

(Vashishtha, Durme, and White 2019) 56.6

EventPlus (Ma et al. 2021) 64.5

CTRL-PG (Zhou et al. 2020) 65.2

DEER (Han, Ren, and Peng 2020) 66.8

TIMERS (ours) 67.8

MATRES

CogCompTime (Ning et al. 2018) 66.6

(Goyal and Durrett 2019) 68.61

BiLSTM+MAP (Han, Ning, and Peng 2019) 75.5

EventPlus (Ma et al. 2021) 75.5

(Wang et al. 2020a) 78.8

DEER (Han, Ren, and Peng 2020) 79.3

(Zhao, Lin, and Durrett 2020a) 79.6

SMTL (Ballesteros et al. 2020) 81.6

TIMERS (ours) 82.3

Table 2.2: Comparison of TIMERS with recent state-of-the-art models on TimeBank-Dense and

MATRES dataset. TIMERS outperforms all recent top-performing systems.

16



System TDDMan TDDAuto MATRES TB-Dense
P R F1 P R F1 P R F1 P R F1

B
as
el
in
es

Majority 37.8 36.3 37.1 34.2 32.3 33.2 50.7 50.7 50.7 40.5 40.5 40.5

CAEVO (Chambers et al. 2014a) 32.3 10.7 16.1 61.1 32.6 42.5 - - - 49.9 46.6 48.2

SP (Ning, Feng, and Roth 2017) 22.7 22.7 22.7 43.2 43.2 43.2 66.0 72.3 69.0 37.7 37.8 37.7

SP+ILP (Ning, Feng, and Roth 2017) 23.9 23.8 23.8 46.4 45.9 46.1 71.3 82.1 76.3 58.4 58.4 58.4

BiLSTM (Cheng and Miyao 2017) 24.9 23.8 24.3 55.7 48.3 51.8 59.5 59.5 59.5 63.9 38.9 48.4

BERT-base Transformer 36.5 37.1 37.5 62.0 61.7 62.3 65.6 78.1 77.2 59.7 60.7 62.2

RoBERTa-base 35.7 36.5 37.1 60.6 62.7 61.6 77.3 79.0 78.9 58.1 57.6 61.9

A
bl
at
io
n

TIMERS (ours) 43.7* 46.7* 45.5* 64.3* 72.7* 71.1* 81.1* 84.6* 82.3* 48.1 65.2* 67.8
TIMERS w\o Context Encoder 29.7 35.5 33.7 49.8 52.5 51.6 61.2 69.6 68.6 43.8 54.5 50.6

TIMERS w\o GDG 39.6 39.6 41.8 61.7 66.8 65.4 71.8 79.1 79.7 51.4 63.0 63.3

TIMERS w\o GSG 38.5 42.6 42.3 63.3 69.5 68.9 71.6 78.5 78.2 51.1 62.1 62.8

TIMERS w\o GTG 37.5 39.8 39.5 58.7 68.3 67.1 72.8 78.5 77.7 50.5 62.9 61.8

Table 2.3: Results comparing the performance of TIMERS with baselines and ablative components

on TDDMan, TDDAuto, MATRES and TimeBank-Dense datasets. We adopt the BERT and

RoBERTa implementation from (Ballesteros et al. 2020). * indicates statistical significance over

BERT Transformer (p ≤ 0.005) under Wilcoxon’s Signed Rank test. Darker green represents

better F1 performance in ablation studies. Bold denotes the best-performing model. TIMERS

improves substantially over all datasets. The ablation shows that context, discourse (GDG), and
time-aware (GTG) graph encoders prove to be most beneficial.

2.3 Experiments

2.3.1 Data

We train and test our proposed model using the TDDMan and TDDAuto subsets of the TDDis-

course corpus (Naik, Breitfeller, and Rosé 2019), which was designed to explicitly focus on global

discourse-level temporal ordering. We also train and evaluate our method on the MATRES and

TimeBank-Dense datasets, both of which primarily consist of local TLINKs that occur in either

the same or adjacent sentences. Table 2.1 reports the data statistics and label distributions. (Naik,

Breitfeller, and Rosé 2019) shows the distribution of the distance between event-pairs for all

TLINKs in the TDD test set and explains that nearly 53% TLINKs in the TDD dataset comprise

of event pairs that are more than 5 sentences apart. Like (Cheng and Miyao 2017), we report

results on non-vague labels of TimeBank-Dense. MATRES has no standard validation set. Hence,

we follow the split used in (Ning, Subramanian, and Roth 2019a).
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2.3.2 Experimental Settings

Token Encoding:The word-level token representations are obtained by summing the corre-

sponding BERT embeddings from the last 4 layers of pre-trained BERT-base encoder. Syntactic

Dependency Parser: The dependency parse tree of individual sentences is obtained via SpaCy
1

to form word-word dependency connections in the syntactic-aware graph. Semantic Role

Labeller: We extract semantic role labels using AllenNLP’s SRL parser
2
that internally uses

SRL-BERT (Shi and Lin 2019) to obtain the temporal arguments corresponding to each verb

event. Timex Normalization: Timex phrases are treated as a single unit for the purpose

of graph construction by average pooling their BERT tokenized representations. Microsoft

Recognizers-Text
3
is employed to normalize timexes and DCT date-time values. The normalized

timex expressions are compared through Allen’s interval algebra, where each timex has a start

and an endpoint. The comparison is then made on the basis of the endpoints of the timexes,

forming an edge going from earlier to later ending timex. RST Discourse Parser: We used the

shift-reduce discourse parser proposed by (Ji and Eisenstein 2014) to build the discourse tree
4
,

which is post-processed using discoursegraphs library5 (Neumann 2015) to build the rhetorical

dependencies graph.

1
https://spacy.io/

2
https://demo.allennlp.org/semantic-role-labeling

3
https://github.com/microsoft/Recognizers-Text

4
Implementation used: https://github.com/jiyfeng/DPLP

5
https://pypi.org/project/discoursegraphs/
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Figure 2.3: Error analysis on manually annotated discourse-level phenomena in the test set

of TDDMan. SS: SingleSent, CR: Chain Reasoning, TI: Tense Indicator, FE: Future Events,

HN: Hypothetical/Negated, EC: Event Coreference, CP: Causal/Prereq, WK: World Knowledge.

TIMERS handles CR and CP phenomena but struggles on EC and WK.

2.3.3 Results

Table 6.2 compares our work to the baseline methods reported on the TDDMan, TDDAuto,

MATRES, and TimeBank-Dense datasets. We also include results for BERT-based Transformer

(Devlin et al. 2019a) and RoBERTa (Liu et al. 2019a) following (Ballesteros et al. 2020). To

prevent truncation or memory errors otherwise caused by multi-sentence spans, we concatenate

only sentences containing source and events as input to Transformer baselines. These methods

outperform the existing reported results and provide strong benchmarks but still perform

similarly to a majority class baseline for the TDDMan dataset. Our model shows a significant

gain of 8.0 F1 and 8.8 F1 over the BERT baseline on the TDDMan and TDDAuto datasets. Table

3.6 compares TIMERS to additional rigorous state-of-the-art methods for TimeBank-Dense and

MATRES. TIMERS achieves state-of-the-art performance on all four datasets, showing that it

successfully handles intra-sentence, inter-sentence, and cross-sentence TLINK pairs through the

same architecture.
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2.3.4 Ablation Study

To assess the contribution of discourse, syntactic, and time-aware graphs, we performed an

ablation experiment with different configurations (Table 6.2). Removing the context encoder

significantly degrades performance, indicating that the graph components themselves cannot re-

place the contextual encoding. Removing any of the graph encoders hurts the model performance,

motivating the need for all the constituent graph components. We also analyzed the relative

importance of GDG , GSG , and GTG represented by color shading in the table. The results show

that the syntactic graph is least important for document level pairs in TDDMan and TDDAuto,

which we believe is due to the longer range dependencies present in this dataset. However,

removing the discourse graph for TimeBank-Dense and MATRES datasets leads to the least

performance deterioration as inter and intra-sentence pairs do not fully utilize document-level

rhetorical relations. TIMERS outperforms the BERT baseline even without GTG , demonstrating

its useful in cases where document creation date or timexes cannot be obtained easily.

2.3.5 Error Analysis

The error analysis results of TIMERS and its ablations for TDDMan are shown in Fig. 8.8. The

results provide evidence that the syntactic-aware graph (GSG) is most important for relations that

can be extracted from a single sentence (SE). The time-aware graph (GTG) plays an important role

in improving relationships requiring chain reasoning (multi-hop) and relationship determined

by future events. We also note the role of the rhetorical-aware graph (GDG) for modeling future

possibility (FE), hypothetical events (HN) and causal conditions for event occurrences (CP). This

can be attributed to rhetorical relational features that extract plausible inter-dependencies such
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as cause, explanation, contrast (Lioma, Larsen, and Lu 2012). None of the experimented models

show improved performance on TLINK pairs which depend on world knowledge (WK) or event

coreference (EC).

2.4 Conclusion

This work presents a neural architecture that utilizes local syntactic features, rhetorical discourse

features, and temporal arguments in semantic role labels through a Gated Relational-GCN for

document-level temporal relation extraction on TDDiscourse, MATRES, and TimeBank-Dense

datasets. Experiments show that TIMERS shows substantial improvement for events that require

chain reasoning and causal prerequisite links. Future work will focus on exploring real-world

scenarios in which the temporal extraction task suffers from absent or erroneous event and

timex annotations. We believe our proposed methods can also be adapted for other languages as

well by overcoming possible limitations such as dependency parsing, semantic parsing, Timex

normalization for the non-English corpora.
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CHAPTER 3

DocTime: A Document-level Temporal Dependency Graph Parser

Abstract

We introduce DocTime - a novel temporal dependency graph (TDG) parser that takes as input a

text document and produces a temporal dependency graph. It outperforms previous BERT-based

solutions by a relative 4-8% on three datasets frommodeling the problem as a graph network with

path-prediction loss to incorporate longer-range dependencies. This work also demonstrates how

the TDG graph can be used to improve the downstream tasks of temporal questions answering

and NLI by a relative 4-10% with a new framework that incorporates the temporal dependency

graph into the self-attention layer of Transformer models (Time-transformer). Finally,

we develop and evaluate a new temporal dependency graph dataset for the domain of contractual

documents, which has not been previously explored in this setting.
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3.1 Introduction

Understanding the temporal relations between events mentioned in a document is an impor-

tant natural language task with applications in downstream tasks such as timeline creation

(Leeuwenberg and Moens 2018), time-aware summarization (Noh et al. 2020), temporal question-

answering (Ning et al. 2020a), and temporal information extraction (Leeuwenberg and Moens

2019). This area of research remains important yet challenging due to several limitations such as

confounded modalities (eg. events that are certain to happen vs the ones that might happen),

event ambiguity (eg. agreeing to terms of a contract vs signing a contract) and need for complete

annotation of all event pairs for precise temporal localization (Yao et al. 2020).

Early work densely annotated all pairs of events to address this problem (Cassidy et al.

2014b), but was limited to short passages or adjacent sentences due to the

(n
2

)
complexity of the

task, especially for long documents. Recently this problem formulation was significantly simpli-

fied using temporal dependency trees (TDT) (Zhang and Xue 2019) and temporal dependency

graphs (TDG) (Yao et al. 2020) by only capturing the reference TIMEX or event to build a depen-

dency graph to capture this information. This enabled the development of temporal dependency

parsers (ross-etal-2020-exploring; Zhang and Xue 2018a) to infer temporal relationships more

robustly and efficiently.

We introduce DocTime - a state-of-the-art temporal dependency parser that parses

document-level text to produce temporal dependency graphs. Unlike previous approaches

using contextual features such as BERT (Ross, Cai, and Min 2020), our model utilizes a graph

network and a novel path prediction loss to reason over long-range multi-hop dependencies

while maintaining global consistency of temporal ordering of inter-dependent events.
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Figure 3.1: DocTime: encodes rich token level embeddings from an input document using

structural, syntactic, and semantic graphs through BERT-GCN, WR-GCN and HyperGraph Conv

layers, respectively. Token-level features are concatenated and passed through Iterative Deep

Graph Learning (IDGL) to learn a noisy dependency structure over the TIMEX and Event entities.

Graph U-net allows the model to incorporate longer-range dependencies for predicting the final

temporal dependency graph structure and relationships. The model is trained with a novel

auxiliary path prediction loss to learn multi-hop connections in TDG.

To validate the utility of DocTime and our generated temporal dependency graph, we

go one step further than prior work and explore the question of whether temporal depen-

dency graphs are useful for downstream tasks by introducing Time-Transformer. It is

a framework to incorporate temporal dependency graphs into existing transformer-based ar-

chitectures without retraining from scratch. We demonstrate the usefulness of our proposed

Time-Transformer on temporal NLI (Vashishtha et al. 2020) and time-sensitive question

answering (Chen, Wang, and Wang 2021) tasks.

Prior work on temporal relationship extraction and temporal dependency parsing have

been mostly limited to news (Zhang and Xue 2019; Yao et al. 2020; Pustejovsky et al. 2003b),

narrative stories (Zhang and Xue 2018b; Kolomiyets, Bethard, and Moens 2012) or clinical

notes (Bethard et al. 2016). In addition to experimenting with existing temporal dependency

parsing datasets, we introduce a dataset for temporal dependency graphs in a new domain -

contractual documents, where temporal reasoning over events has real world legal and monetary

implications for users.

Our main contributions include:
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• A novel document-level temporal dependency parser (DocTime) that predicts the tem-

poral dependency graph from text in an end-to-end manner with a novel path prediction

loss, which outperforms the current SOTA by a relative 4-8% on three datasets.

• Time-Transformer, a novel framework to incorporate Temporal Dependency Graphs

into transformer models for downstream tasks without needing to retrain from scratch.

Results on natural language inference and question answering with a new self-attention

module show a relative 4%-10% improvement.

• Development of new document-level (>1500 words) TDG dataset in the domain of contrac-

tual documents (ContractTDG).

3.2 Related Work

Temporal Dependency Parsing: Previous work has been devoted to pairwise classification of

relations between events and time expressions, notably TimeBank (Pustejovsky et al. 2003c)

and its extensions like (Cassidy et al. 2014b) annotated all relations. Pair-wise annotation have

multiple problems including polynomial square complexity, global inconsistencies in predictions

due to relation transitivity and forced annotation of vague relations (Ning, Wu, and Roth 2018b).

Prior work focuses on extracting temporal relations between event pairs in the same sentence

or adjacent sentences (Goyal and Durrett 2019; Ning, Subramanian, and Roth 2019a; Han et al.

2019a; Han, Ning, and Peng 2019; Han et al. 2019b; Han, Zhou, and Peng 2020; Ballesteros et al.

2020; Zhao, Lin, and Durrett 2020b). TIMERS (Mathur et al. 2021a) presented temporal relation

extraction in long document.

Temporal Dependency Parsing (TDP): Temporal dependency trees were first proposed by
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(Kolomiyets, Bethard, and Moens 2012). (Zhang and Xue 2018b) provided the the earliest TDT

corpus on news data and narrative stories, (Zhang and Xue 2019) released the first English TDT

corpus. (Yao et al. 2020) relaxed the assumption of single reference edge in dependency trees to

form the improved TDG. (Zhang and Xue 2018a) built an end-to-end neural temporal dependency

parser using BiLSTM and (Ross, Cai, and Min 2020) improved it further incorporating BERT.

Our approach improves by modeling complex dependencies and introduces a new resource for

TDG in contracts.

Linguistically-aware Transformers: Recent works have investigated using linguistic features

as a prior for Transformer models. Syntax-bert (Bai et al. 2021) uses syntactic and constituency

dependency onNLI andGLUE benchmarks. Coref-BERTCoreference-Informed Transformer (Liu,

Shi, and Chen 2021) performs coreference-aware dialogue summarization. Temporal reasoning

about event ordering can find applications in many tasks such as summarization (Noh et al.

2020), question answering (Chen, Wang, and Wang 2021; Ning et al. 2020b; Jin et al. 2020),

commonsense reasoning (Qin et al. 2021), and natural language inference (Vashishtha et al.

2020). We propose to use TDG as priors to Transformer models to make them temporally-aware

for use in downstream tasks.

3.3 DocTime: Document TDG Parsing

Task Formulation: Let document D be defined as a sequence of n tokens [x1, · · · , xn]. The

entire document can be seen as sequence of m sentences [s1, · · · , sm]. Each document has a

set of p events E = [e1, · · · , ep] and q timexes T = [t1, · · · , tq], where p, q ≤ n. The creation

date of the document is represented by timestamp tDCT. (Yao et al. 2020) defines a temporal

26



dependency graph (TDG) where each timex node always has a reference timex, which is the

most specific narrative time related to the event (Pustejovsky and Stubbs 2011). If such a

narrative time is not available, the timex should be anchored to the DCT. An event node can

either have a reference timex or be connected to a reference event, which is an event that

provides the most specific temporal location. The task of temporal dependency graph parsing

of a text document D results in a dependency graph G = (C,V ), where C represents the set of

all events, timexes and the document creation date (DCT). V is the set of all edges in the graph,

where each edge represents a temporal relationship ℜ between corresponding entity node pair

V = {(ti, tj), (ei, ej), (ei, tj)}∀i, j ∈ C.

Model Overview: Figure 3.1 shows an overview of our network architecture for temporal

dependency parsing. We first extract token level BERT features from the input document, which

are then enriched by three graph networks that encode structural, syntactic, and semantic

relationships. This is followed by Iterative Deep Graph Learning over the TIMEX and Event

entities to learn an initial dependency structure. This is passed through a Graph U-net to allow the

model to incorporate longer range dependencies before predicting the final temporal dependency

graph and relationships. The model is also trained with a novel auxiliary path prediction loss.

3.3.1 Feature Encoding

We leverage the pre-trained BERT language model to obtain the embeddings for each token as

follows: w1,w2, · · · ,wn = BERT([x1, x2, · · · , xn]), where wi is the embedding of the token xi. As

document sequence lengths can be larger than 512, we use a sliding window encoding technique

to encode whole documents. We average the embeddings of overlapping tokens of different

windows to obtain the final representations. These token representations are enriched with
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slightly enhanced variants of the structural (Gstr ), syntactic (Gsyn) and semantic (Gsem) graphs

utilized by (Mathur et al. 2021b) for document-level temporal relationship extraction. The key

differences are the use of BERT-GCN (Lin et al. 2021) to combine contextual and structural

graph features, the addition of co-reference relationships to the syntactic graph, and the use of

a hypergraph convolution (Bai, Zhang, and Torr 2021) to allow for token level features in the

semantic graph.

3.3.2 Temporal Dependency Prediction

We combine the learned representation for each entity node (timex, event, DCT) by concatenating

the node embeddings learned from structural, syntactical and semantic graphs to obtain a D-

dimensional feature vector for each of z entities in the document given by F(wi) = gstri ⊕ gsyni ⊕

gsemi , where ⊕ represents concatenation. We retain only the enriched node embeddings for each

word. We then utilize Iterative Deep Graph Learning (IDGL)
1
(Chen, Wu, and Zaki 2020) to

dynamically learn an initial dependency graph structure from the combined node embeddings.

Given a noisy graph input feature matrix F ∈ Rl∗D, IDGL produces an implicitly learned graph

structure G∗
= {A∗

, F,𭟋l} with a jointly refined corresponding graph node embeddings F′ with

adjacency matrix A∗
by optimizing with respect to downstream link prediction task 𭟋l between

entity nodes.

3.3.2.1 Graph U-net For Higher Level Features

The Graph U-net (Gao and Ji 2019) is a U-shaped graph encoder-decoder architecture contain-

ing two down-sampling graph pooling (gPool) layers and two up-sampling graph unpooling

1
Implementation: https://github.com/graph4ai/graph4nlp
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Figure 3.2: Time-Transformer is a variant of pre-trained Transformer models that aug-

ments temporal knowledge into the self-attention layer during fine-tuning of the Transformer

model on different downstream tasks. The input text is converted into a temporal dependency

graph using DocTime parser. The graph is then converted into a set of masks that encodes

the temporal relationship between each token (i.e. After, Before) using the novel Temporally-

informed Self-Attention (TISA). TISA creates K masks to represent the (k)-hop distance between

two nodes in TDG for aggregating information across longer ranges in the input. TISA uses a

hyperbolic feed-forward layer to learn the mask weights.

(gUnpool) layers with skip connections. gPool layers reduce the size of the graph to encode

higher-order features, while the gUnpool layer restores the graph into its higher resolution

structure, thereby promoting information exchange between entity pairs through an enlarged

receptive field. Each graph pooling and unpooling layer is followed by a GCN layer to implicitly

capture the topological information in the input graph. Taking the dynamically learned graph

structure G∗
, a graph embedding layer converts input node features F’ into low-dimensional

representations that are then passed through a graph U-net encoder-decoder ℧ to acquire

entity-level relation matrix Y = ℧(F’), Y ∈ Rl∗l∗D
′
.
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3.3.2.2 Temporal Dependency Link Prediction and Relation Classification

Given entity adjacency matrix A∗
and entity-level relation matrix Y, we use a bilinear function

to map them to link and relation probabilities Zl and Zr , respectively. Formally, we have

Zl = σ(YWlY + bl) and Zr = σ(A∗WrA∗
+ br ), whereWl ,Wr , bl , br ∈ RD

′∗D′
represent learnable

parameters. This is followed by a Softmax layer for link prediction and relations classification.

3.3.3 Training DocTime

Path Reconstruction Loss: In a document-level temporal parsing setup, the majority of node

pairs may not have any ground truth link or temporal relation. Graph representation learning

methods universally model relations between all entity pairs regardless of whether the entity

pair has any relationship, leading to dispersion of attention in learning most non-existent edge

connections. We propose path reconstruction loss Lpath, which forces the model to pay more

attention to learning entity pairs with relationships rather than ones without relationships.

Equation 3.1 gives the cross entropy loss over all direct edge connection between all pairs of

entities, where r ij indicates the relation between the entity pair and P(r ij ) is the probability of

relation label r . Path reconstruction loss Lpath modifies the cross entropy loss Lce function as

shown in Equation 3.2 by sampling all n2 entity pairs and maximizing the probability of the

shortest dependency path N (ϕ) between the entity pair nodes. Finally, the path reconstruction

loss and the existing classification loss are added as the training objective for DocTime, given

by L = Lpath + Lce.

Lce = –

1∑l
i=0 Ni

l∑
i=1

Ni∑
j=1

{r ij log P(r
i
j ) + (1 – r ij ) log(1 – P(r ij ))} (3.1)
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Lpath = –

1∑l
i=0 Ni

l∑
i=1

Ni∑
j=1

{r ij logN (ϕi) + (1 – r ij ) log(1 – N (ϕi))} (3.2)

Multi-task Training: Dependency link prediction and entity-level relation classification are

correlated tasks and reinforce each other. We use multi-task training to optimize both tasks

simultaneously using the path prediction cross-entropy loss. The final optimization uses a

weighted sum of the dependency link prediction loss and entity-level relation classification loss

L = λLl + (1 – λ)Lr , where the weighting factor λ is a hyperparameter.

3.4 Time-Transformer

We would also like to understand whether our temporal dependency parsing can be useful for

downstream tasks requiring temporal reasoning. Here we introduce the Time-Transformer,

which allows a TDG generated by DocTime to be combined with state-of-the-art transformer

models for temporal tasks. The Time-Transformer augments the flow of information in a

Transformer network via a temporally-informed self-attention mechanism. We first formulate

the Time-Transformer architecture in §3.4 and then construct temporally-informed attention

layers in §3.4.

Architecture: Time-Transformer was motivated by recent work incorporating syntax (Bai

et al. 2021) or co-reference graphs (Liu, Shi, and Chen 2021) into the transformer architecture to

improve downstream tasks. In each case, these approaches encode additional knowledge from the

sparse graphs as a masked self attention layer into the transformer. Figure 3.2 shows the architec-

ture of Time-Transformer incorporating temporal knowledge into the self-attention layer during

fine-tuning of the Transformer model. The input text is converted into a temporal dependency
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graph using DocTime parser. The graph is then converted into a set of masks that encodes

the temporal relationship between each entity (i.e. After) explained in more detail in the next

section: Temporally-informed Self-Attention. The input embedding (token+positional+attention

masks) is passed through the Time-Transformer model which modifies the self-attention layer

of the standard Transformer architecture with a temporally-informed self-attention layer to be

fine-tuned on downstream tasks.

TISA: Temporally-informed Self-Attention : The TDG produced by DocTime is sparse and

to effectively utilize the graph extracted by the temporal dependency parser for longer range

temporal relationships, we utilize K self-attention layers that encode the temporal relationship

if traversing K hops in the TDG as shown in 3.2. More formally starting from node A, the

minimum number of hops (k) required to reach another node B can be regarded as k-hop distance

between A and B, written as k-hop(A,B). We create K masks to represent the (k)-hop distance

between two nodes to allow the model to aggregate information across longer ranges in the TDG.

Specifically, a mask M ∈ {0, 1, 2, · · · , r}n×n
denotes if there is a relation between entity i and j,

and n is the number of tokens in the input text. The value of the mask is the relationship type for

i and j. It is found by inferring the relationship using Allen’s interval algebra (Allen 1983) and is

set to 0 if there is no relationship or set to "Overlap" if there is a conflict. We adopt a soft-mask

learning strategy to enable the self-attention layer to re-weight the importance of each mask

and avoid the problem of vanishing gradient. A hyperbolic feed-forward layer is used to learn

the mask weights as research has shown it can avoid distortion of the feature space in graph

representations (Ganea, Bécigneul, and Hofmann 2018). The value of K is a hyperparameter

that can be customized according to the nature of input dependency graph.

Training Time-Transformer: For each dataset, we optimize the hyper-parameters of
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Figure 3.3: Example of a temporal dependency graph from ContractTDG dataset annotated

using Brat Tool.

Time-Transformer through grid search on the validation data. In all our experiments, we

limit the maximum value of k-hop to 15.

3.5 Experiment

3.5.1 Temporal Graph Parsing Datasets

We train and evaluate DocTime on three datasets. First is the Temporal Dependency Graphs

(TDG) dataset (Yao et al. 2020) made up of 500Wikinews articles annotated with document-level

temporal dependency graphs. Second is the Temporal Dependency Trees (TDT) dataset

(Zhang and Xue 2019) made from 183 documents derived from TimeBank (Pustejovsky et al.

2003b) annotated with a temporal dependency tree structure. The third dataset we created as

part of this paper and is describe in more detail below.

Contract-TDG: Understanding the temporal relationship of events in contracts is an important

business problem, where understanding event timelines can have legal and monetary conse-

quences. Previous work on temporal relationships has largely focused on clinical, news, or

narrative text, whereas to the best of our knowledge, the contractual domain has not been

explored for this problem. To construct this dataset, we used 100 contracts from the Atticus con-

33



Dataset Docs Timex Events Rels
TimeBank (Pustejovsky et al. 2003c) 183 1,414 7,935 6,148

TB-Dense (Cassidy et al. 2014b) 36 289 1,729 12,715

MATRES (Ning, Subramanian, and Roth 2019b) 275 - 1,790 13,577

TDT-Crd (Zhang and Xue 2019) 183 1,414 2,691 4,105

TDG (Yao et al. 2020) 500 2,485 14,974 28,350

Contract-TDG) (Ours) 100 2354 11,752 12,909

Table 3.1: Comparison of ContractTDG data statistics to other temporal relation datasets. Con-

tractTDG has fewer documents but a comparable number of TIMEX/Events/relations.

tracts dataset
2
(Hendrycks et al. 2021), which were sourced from public domain SEC contracts.

Due to the multi-page length of these documents, we limited the annotations to the first 1500

words. We did not include definition sections, since they did not contain many events of interest

for this task. The documents have a 70-10-20 split for training, validation, and testing.

To obtain the TDG annotations required for our task, we followed the 5 steps procedure

outlined by the original TDG dataset in (yao-etal-2020-annotating): (i) TIMEX Identification

(TE), (ii) Identifying reference times for TE, (iii) Event identification, (iv) Identifying reference

times for events, (v) Identifying reference events for events. Document Creation Times (DCT)

were provided as effective dates in the ATTICUS corpus.

Similar to (yao-etal-2020-annotating) for tasks 1 (TE) and 3 (Event ID), we used the

Mechanical Turk platform to obtain two annotations to validate text spans of noisy TIMEXes

extracted by HeidelTime software
3

(Strötgen and Gertz 2013) and verbs that were possible

events. Disagreements were resolved by an expert annotator. However, for the reference tasks,

we decided against using Mechanical Turk due to the difficulty and length of the contracts as

well as the lower agreement faced by the original TDG system for the last two tasks. We instead

2
https://www.atticusprojectai.org/cuad

3
https://github.com/HeidelTime/heideltime
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Task TDG Contract TDG
(F1) (F1)

1: TIMEX ID 0.96 0.93

2: TIMEX RT 0.89 0.81

3: Event ID 0.79 0.76

4: RT ID (U) 0.67 0.83

4: RT ID (L) 0.61 0.75

5: RE ID (U) 0.59 0.85

5: RE ID (L) 0.52 0.79

Table 3.2: Inter-Annotator Agreement (IAA) for the Contract-TDG and TDG dataset. U = structure,

L = structure + labels

System
TD-Trees TD-Graphs ContractTDG

Structure-only Structure+Relation Structure-only Structure+Relation Structure-only Structure+Relation
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

B
as
el
in
es Majority Baseline 0.43 0.42 0.15 0.18 0.62 0.68 0.41 0.51 0.36 0.35 0.36 0.33

Logistic Regression Baseline (Zhang and Xue 2018a) 0.64 0.70 0.26 0.29 0.62 0.69 0.49 0.58 0.42 0.39 0.45 0.38

Neural Ranking Parser (BiLSTM) (Zhang and Xue 2018a) 0.75 0.79 0.53 0.60 0.69 0.79 0.55 0.66 0.49 0.46 0.52 0.48

BERT Ranking Parser (Ross, Cai, and Min 2020) 0.77 0.83 0.59 0.68 0.71 0.80 0.62 0.71 0.67 0.65 0.62 0.61

A
bl
at
io
n

DocTime (ours) 0.85* 0.86* 0.66* 0.72* 0.74* 0.85* 0.69* 0.77* 0.70* 0.69* 0.68* 0.64*
DocTime w\o Graph U-net 0.83 0.84 0.63 0.70 0.71 0.82 0.67 0.75 0.68 0.63 0.66 0.62

DocTime w\o Structure Graph 0.81 0.80 0.62 0.65 0.67 0.72 0.65 0.73 0.67 0.63 0.64 0.60

DocTime w\o Syntactic Graph 0.80 0.82 0.62 0.66 0.65 0.73 0.62 0.69 0.64 0.61 0.62 0.59

DocTime w\o Semantic Graph 0.76 0.78 0.55 0.65 0.62 0.70 0.60 0.67 0.59 0.57 0.59 0.57

DocTime w\ Graph Prediction 0.72 0.64 0.49 0.55 0.57 0.65 0.57 0.58 0.59 0.53 0.55 0.54

DocTime w\ Pairwise Link Prediction 0.82 0.83 0.63 0.69 0.72 0.83 0.66 0.73 0.65 0.60 0.62 0.60

DocTime w\ Path Prediction Loss 0.85 0.86 0.66 0.72 0.74 0.85 0.69 0.77 0.70 0.69 0.68 0.64

Table 3.3: Results comparing the performance of DocTime with baselines and ablative compo-

nents on TDT, TDG, and ContractTDG datasets. We use majority and logistic regression baselines

from (Zhang and Xue 2018a). * indicates statistical significance over BERT Ranking Parser (Ross,

Cai, and Min 2020) (p ≤ 0.005) under Wilcoxon’s Signed Rank test. Darker green represents

better F1 performance in ablation studies. Bold denotes the best-performing model. DocTime
improves substantially over all datasets for both dependency structure and structure+relation

prediction tasks. The ablation shows that semantic graph features prove to be most beneficial.

Our proposed path prediction loss is critical for state-of-the-art performance of DocTime
model.

used the BRAT annotation tool
4
(Stenetorp et al. 2012) with an expert annotator for tasks 2,4,

and 5, following the (yao-etal-2020-annotating) guidelines . ContractTDG is annotated for

four temporal relations - after, before, overlaps, and includes.

Table 3.1 compares the data statistics of the ContractTDG to previous temporal relationship

and temporal dependency corpora. Even though this dataset has many fewer documents than

the TDG dataset, it has a large number of TIMEX, Events, and Temporal relationships due to

the document length. Table 3.2 reports the F1 IAA metrics for ContractTDG dataset to directly

4
https://brat.nlplab.org/

35



compare to the original TDG dataset. For Tasks 1 and 3 we report IAA F1 for the two crowd

sourced worker annotations and for the relationship tagging tasks (2,4,5), we report IAA metrics

calculated on the test postion (20% of the data) that was reviewed by two experts. The agreement

is slightly lower for the TIMEX/Event identification tasks but higher for the three relationship

tasks. We evaluate DocTime for dependency structure as well as structure+relation prediction

for both development and test splits.

3.5.2 Time-Transformer Experiments for Downstream Tasks

We adopt Time-Transformer on BERT (Devlin et al. 2019a), RoBERTa (Liu et al. 2019a),

BigBird (Zaheer et al. 2020a) and FiD (Izacard and Grave 2021) for evaluation on two downstream

tasks in §3.6.2. We utilized the official checkpoint for each pre-trained languagemodel as provided

by respective authors. First, we test Time-BERT and Time-RoBERTa on Temporal NLI

dataset, which consists of 5 sub-datasets (Vashishtha et al. 2020) to study the effect of temporal

reasoning for predicting event ordering and duration. Second, we run experiments on the TimeQA

dataset (Chen, Wang, and Wang 2021) to evaluate the performance of Time-BigBird and

Time-FiD for the long-document question-answering task. We report Exact Match (EM) and

F1 scores as evaluation metrics on dev and test sets of easy and hard versions.

3.6 Results and Analysis

3.6.1 Temporal Graph Parsing

Performance of DocTimew.r.t. baselines: Table 6.2 compares the performance of DocTime

against other baseline methods on TDT, TDG and ContractTDG. We also provide a majority

36



Model UDS-duration UDS-order TempEval3 TimeBank-Dense RED
Majority 50.00 54.52 54.57 50.54 52.51

NBOW (Iyyer et al. 2015) 82.54 54.52 54.57 50.54 52.51

Infersent (Conneau et al. 2017) 92.65 73.22 62.20 68.29 63.47

RoBERTa (Liu et al. 2019b) 94.51 80.17 54.57 94.60 80.59

Time-RoBERTa (E) 95.78 82.03 60.66 95.45 82.10

Time-BERT 96.01 82.97 61.32 96.08 82.15

Time-RoBERTa 96.67 82.98 62.50 96.33 82.50

Table 3.4: Accuracy comparison on the Temporal NLI dataset test set. Time-RoBERTa fine-

tuned by utilizing temporal dependencies extract from DocTime model pre-trained on TDG

dataset outperform all baselines provided by (Vashishtha et al. 2020)(see bold).

baseline ContractTDG to evaluate whether the methods work better than a random label assign-

ment as implemented in (Yao et al. 2020). We also include the two current SOTA approaches for

temporal dependency parsing: The BiLSTM attention-based Neural Ranking Parser proposed

by (Zhang and Xue 2018a)
5
and the BERT Ranking Parser (Ross, Cai, and Min 2020) on each

dataset . We also report results for a logistic regression baseline proposed by (Zhang and Xue

2018a). Results in Table 6.2 show that DocTime outperforms both Neural and BERT Ranking

Parser by a significant margin on the TDT (2-4%) TDG (5-6%) and ContractTDG (3-4%) datasets.

We believe its primarily because they formulate temporal dependency parsing as a ranking task

designed to select the best reference event/timex for each node. However, TDG parsing requires

the model to be able to reason over multiple dependencies originating from each node while

maintaining global consistency of temporal ordering of inter-dependent events. We perform

experiments for dependency structure prediction and structure+relation prediction and find

that predicting labeled dependency edges is a much more challenging task across all datasets.

DocTime achieves state-of-the-art performance on all three datasets (see bold), and shows

that it can successfully handle document-level long-range dependencies in the challenging

ContractTDG dataset from the 6-12% relative improvement over the BERT based ranking parser.

5
Used: http://github.com/yuchenz/tdp_ranking
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Ablation Study of DocTime: To assess the contribution of structure and syntactic and

semantic graph features, we performed ablation experiments as reported in Table 6.2 highlighted

in red . We also analyzed the effect of different types of training loss. We observe that removing

the semantic graph consistently degrades performance, indicating the need for hypergraph

learning over temporal arguments and RST features to capture document-level discourse relations.

We see that removing structure graph reduced the performance to below the BERT Ranking Parser,

as DocTime leverages BERT’s contextual learning through a structural graph. Syntactic graph

adds incremental value to DocTime due to its relational learning of syntactic dependencies

within each sentence through relational GCN. We evaluated the model performance in case

all edges of the TDG are used for one forward pass and call it ”Graph Prediction”. Training

the model by evaluating a single edge in one pass (similar to temporal relation prediction in

(Pustejovsky et al. 2003c) is referred to as ”Pairwise Prediction". We explore the impact of

different training losses for the proposed model (Table 6.2, highlighted in green ). Learning

DocTime by propagating losses over the entire document graph severely deteriorates model

performance as the model has very limited training documents samples (182 for TDT, 400 for

TDG, 80 for ContractTDG). Our proposed path prediction loss shows superior performance

over pairwise link prediction as it jointly learns the relation label between a pair of nodes as

well as the shortest dependency path linking them. As a result, the model can recover from

structure prediction errors between nodes by learning an alternative path reconstructed through

multi-hop connections.
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Model Easy-mode Hard-mode
Dev Test Dev Test

EM F1 EM F1 EM F1 EM F1

FT on TimeQA
BigBird (Zaheer et al. 2020c) 16.4 27.5 16.3 27.1 11.4 20.6 11.9 20.3

Time-BigBird (E) 15.5 25.0 14.1 25.5 9.6 15.6 9.3 18.5

Time-BigBird 18.9 29.5 18.9 29.5 13.0 22.5 13.0 22.8
FiD (Izacard and Grave 2020) 15.9 27.1 15.7 28.0 10.7 19.1 10.3 19.7

Time-FiD (E) 13.8 25.2 12.1 25.6 8.9 17.3 8.8 17.6

Time-FiD 17.5 29.3 18.1 30.3 12.5 22.2 12.5 21.5
FT on TriviaQA

BigBird (Zaheer et al. 2020c) 33.4 42.5 33.7 43.0 27.7 35.9 27.7 36.2

Time-BigBird (E) 31.3 40.4 32.3 41.8 25.9 33.6 25.8 35.5

Time-BigBird 35.0 44.8 35.1 45.5 29.2 36.6 29.2 38.0
FT on NQ + TimeQA

FiD (Izacard and Grave 2020) 59.5 66.9 60.5 67.9 45.3 54.3 46.8 54.6

Temp-FiD (E) 57.9 65.6 58.5 65.2 41.1 52.6 44.5 52.8

Time-FiD 61.3 68.2 62.4 69.6 46.7 56.2 48.2 56.4

Table 3.5: Results comparing F1 score and exact match (EM) performance of Time-BigBird and

Time-FiD for QA task on easy and hard sections of TimeQA dataset. We evaluate the Transformer

models in 3 settings - fine-tune on TimeQA; fine-tune TriviaQA; and fine-tune onNQ then TimeQA. Green

shows improvement due to our proposed Time-Transformer model, while we see degradation due

to the Euclidean variant of Time-Transformer (E)

3.6.2 Application of Temporal Dependency Parsing for downstream tasks

We train the DocTime model on the TDG corpus, which can be used to infer a temporal depen-

dency graph from raw text samples. We extract events and timexes using CAEVO (Chambers

et al. 2014b) for all data samples in train,validate, and test. The temporal dependency graph ac-

quired for each document is used as a prior for Time-Transformer to perform downstream

tasks.

Performance of Time-Transformer on Temporal NLI: The temporal NLI task requires

a model to identify the semantic relationship (entailed, not-entailed) between the context and

corresponding hypothesis sentence based on temporal information from text. The temporal
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dependency graphs extracted using the DocTime trained on the TDG corpus are used as

prior for Time-BERT for entailment classification. Table 3.4 shows the test accuracies of

Time-BERT-large, Time-RoBERTa-large and other competitive baselines [ (Iyyer

et al. 2015), (Conneau et al. 2017)] reported by (Vashishtha et al. 2020). The temporal information

prior proposed in Time-Transformer helps the BERT and RoBERTa models perform much

better on the NLI task. The accuracy improved by 1.5-2.3 F1 points by applying our framework on

the RoBERTa model across the five subsets. We observe the performance gain in the case of the

Euclidean version of Time-RoBERTa to be modest as compared to its hyperbolic counterpart.

Performance of Time-Transformer on TimeQA: The TimeQA task focuses on under-

standing the time scope of facts in the long text followed by answering questions conditioned on

the query and the document using implicit temporal information. We then apply the DocTime

model output trained on the TDG corpus to the Time-Transformer framework on BigBird

and FiD language models for long document question answering task. Following (Chen, Wang,

and Wang 2021), we experiment with three variants of pre-trained settings: (1) fine-tuned on the

TimeQA training set; (2) fine-tuned on NQ/TriviaQA data (3) fine-tuned on NQ/TriviaQA data

and TimeQA.

Table 3.5 shows the effectiveness of Time-BigBird and Time-FiD in consistently

outperforming their corresponding baselines in all three settings. More specifically, we see a

realtive gain of 10-14% in F1 and exact match scores (EM) for both easy and hard sections of

the dataset. It is impressive to note that the improvements due to the Time-BigBird and

Time-FiD models are steady with different pre-training setups with the addition of only a few

extra parameters to the baseline model. An important observation here is that the Euclidean ver-

sions of Time-BigBird and Time-FiD show persistent performance deterioration across
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all settings for TimeQA. We attribute this phenomenon to our initial hypothesis behind using hy-

perbolic operations in the proposed Temporally-informed self attention (TISA) layer. As the text

length grows, the complexity of geometric operations increases, leading to vectorial distortions

in Euclidean spaces (Ganea, Bécigneul, and Hofmann 2018). This is remedied by hyperbolic

transformations of masked self-attention learning in the proposed Time-Transformer.

Our experiments provide evidence that temporal dependency graphs extracted using

DocTime and then utilized as a prior by temporally-informed Transformer architectures such

as Time-Transformer can improve the performance of several downstream tasks that

require temporal reasoning at the sentence-level as well as at the document-level.

Impact of Long-term Dependency on Time-Transformer performance: We plot Fig.

3.4 to understand the capability of Transformer models to handle the long-term dependency

in temporal reasoning on the TimeQA dataset. Plot shows the exact match (EM) accuracy vs

length of the input document for hard samples. We use BigBird and FiD models fine-tuned

on NQ + TimeQA as backbone models. BigBird’s performance degrades rapidly as the length

increases to over 5000 tokens, while the FiD’s performance is quite uniformly distributed across

different document lengths due to it’s strong capability to deal with long-term dependency.

Time-BigBird and Time-FiD follow a similar trend and maintain steady improvements

over their corresponding baseline models with increasing in input lengths.

Space complexity analysis: We choose RoBERTa-base as the base model to analyze the space

complexity. (Liu et al. 2019b) reported the number of trainable parameters in RoBERTa-Base to

be about 123 million. Time-RoBERTa introduces an additional 2 million parameters in total

due to k-hop mask learning in the TISA layer. Therefore, Time-BERT adds few parameters to

the base model without affecting its original space complexity.
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Figure 3.4: Impact analysis of long-distance dependencies on Transformer models for TimeQA

task. The plot shows the exact match (EM) accuracy vs length of input document for hard samples.

We use BigBird and FiD fine-tuned on NQ + TimeQA as backbone models. Time-BigBird
and Time-FiD maintain steady improvement over baseline models even with the increase in

input lengths.

Corpus Model Structure + Relation (F1)
te,te e,te e,e full

TD-Graphs

Heuristic 0.82 0.58 0.34 0.51

Neural Ranking Parser (Zhang and Xue 2018a) 0.93 0.66 0.58 0.66

BERT Ranking Parser (Ross, Cai, and Min 2020) 0.93 0.74 0.58 0.71

DocTime 0.96 0.75 0.72 0.77

Contract-TDG

Heuristic 0.45 0.36 0.18 0.33

Neural Ranking Parser (Zhang and Xue 2018a) 0.57 0.45 0.29 0.48

BERT Ranking Parser (Ross, Cai, and Min 2020) 0.70 0.54 0.33 0.61

DocTime 0.75 0.56 0.39 0.64

Table 3.6: Performance (F1 score) of DocTime across timex-timex, event-timex and event-

event pairs for dependency structure+relation prediction on TDG and ContractTDG datasets.

DocTime outperforms all baselines on every setting.
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Time Complexity analysis: We assume the number of tokens in each sentence to be n and

extract k-hop mask matrices from a text document is O(n2) in the online inference phase. The

time complexity of the Transformer embedding lookup layer is O(n). The TISA layer calculates

the attention score in O(KDqn2) for both QKT
and learns the mask weights using a hyperbolic

feedforward layer (MWM
), where Dq is dimension of Q and K is the number of sub-networks.

The time complexity of the Time-BERT remains the same for small enough value of k (k ≤ 15

in experiments).

3.7 Conclusion

We present DocTime, a new temporal dependency parsing approach that improves upon previ-

ous approaches by integrating longer term temporal information through a graph network with

a novel path prediction loss. Additionally, we are able to show how a TDG can be incorporated

into Transformer networks with Time-Transformer to improve on down stream tasks for NLI

and question answering. Finally we introduce a TDG dataset in a new domain (Contractual

documents) to expand research in this temporal reasoning to a new application domain. Future

works will aim to explore more ways for integrating temporal dependency graphs into neural

architectures across different application domains. In future, we would like to explore temporal

event mining to aid various social media applications such as improving hate speech detection

(Mathur et al. 2018b; Chopra et al. 2020), analyzing temporality in suicidal ideation detection

(Mishra et al. 2019; Mathur et al. 2020) and abuse detection (Gautam et al. 2020; Sawhney et al.

2021b). The proposed Time-Transformer can find applications in augmenting financial tasks

(Sawhney et al. 2020b), affective computing (Mittal et al. 2021), and AI for social good (Mathur
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et al. 2018a) with temporal common sense reasoning.
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CHAPTER 4

DocInfer: Document-level Natural Language Inference using

Optimal Evidence Selection

Abstract

We present DocInfer - a novel, end-to-end Document-level Natural Language Inference model

that builds a hierarchical document graph enriched through inter-sentence relations (topical,

entity-based, concept-based), performs paragraph pruning using the novel SubGraph Pooling

layer, followed by optimal evidence selection based on REINFORCE algorithm to identify the

most important context sentences for a given hypothesis. Our evidence selection mechanism

allows it to transcend the input length limitation of modern BERT-like Transformer models while

presenting the entire evidence together for inferential reasoning. We show this is an important
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property needed to reason on large documents where the evidence may be fragmented and

located arbitrarily far from each other. Extensive experiments on popular corpora - DocNLI,

ContractNLI, and ConTRoL datasets, and our new proposed dataset called CaseHoldNLI on the

task of legal judicial reasoning, demonstrate significant performance gains of 8-12% over SOTA

methods. Our ablation studies validate the impact of our model. Performance improvement of

∼ 3 – 6% on annotation-scarce downstream tasks of fact verification, multiple-choice QA, and

contract clause retrieval demonstrates the usefulness of DocInfer beyond primary NLI tasks.

4.1 Introduction

Natural Language Inference (NLI) is a fundamental textual reasoning task seeking to classify

a presented hypothesis as entailed by, contradictory to or neutral to a premise (Dagan et al.

2010). Prior NLI datasets and studies have focused on sentence-level inference where both the

premises and hypotheses are single sentences (SNLI (Bowman et al. 2015), MultiNLI (Williams,

Nangia, and Bowman 2018), QNLI and WNLI (Wang et al. 2018)) Document-level NLI extends

the reasoning of NLI beyond sentence granularity where the premises are in the document

granularity, whereas the hypotheses can vary in length from single sentences to passages with

hundreds of words (Yin, Radev, and Xiong 2021).

Document level NLI is an important problem for many tasks including verification of

factual correctness of document summaries, fact-checking assertions against articles, QA on

long texts, legal compliance of contracts, etc. Even so, it challenges modern approaches due

to the limited input bottleneck of modern Transformer models. Consider that the universally

used BERT model (Devlin et al. 2018) can only encode 512 input sub-tokens due to its quadratic
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self-attention complexity. Consequently, evidence in the document premise relevant to the

hypothesis can potentially be distributed in several textual spans located arbitrarily far away

from each other in long documents, and may not be simultaneously available to draw inference.

Recent approaches, notably SpanNLI (Koreeda and Manning 2021), HESM (Hanselowski

et al. 2018)) and others, have shown that chunking the premise into multiple document spans,

scoring them, and aggregating the scores helps mitigate the limited input length problem. Such

approaches do not allow the inference module to reason over the complete evidence. In contrast

to encoding the document as a set of sentences fed into a transformer for inferential reasoning,

a recent line of work, e.g. EvidenceNet (Chen et al. 2022), GEAR (Zhou et al. 2019) and HGRGA

(Lin and Fu 2022)), encodes documents as graphs and uses graph reasoning to perform textual

inference. Graphs allow encoding of various morphological and semantic relationships at various

granularities. However, these approaches use graph-based processing subsequent to evidence

selection.

We address the above challenge with a reasonable assumption that the portion of the

premise (the ground truth evidence) necessary and sufficient for inference can fit entirely into

the length limit of language model for effective representation learning. Our proposed system

achieves this by selecting sentences in the document that are contextually relevant for a given

hypothesis through pruning irrelevant paragraphs and reinforce learning based optimal sentence

selection. Ourmain contributions:

• DocInfer – a novel DocNLI model that simultaneously performs successive optimal

evidence selection and textual inference on large documents. It utilizes a novel graph

representation of the document encoding structural, topical, concept and entity-based

relationships. It performs subgraph pooling and asynchronous graph updates to provide a
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pruned, hypothesis-relevant and richer sub-document graph representation and uses a

reinforcement-learning based subset selection module to provide the contextually-relevant

evidences for inference. Experimental results show that DocInfer outperforms the cur-

rent SOTA on DocNLI, ContractNLI and ConTRoL datasets with a significant improvement

of 8-12%.

• We propose CaseHoldNLI - a new document-level NLI dataset in the domain of legal

judicial reasoning with over 270K document-hypotheses pair with maximum premise

length of 3300 words. We observe similar performance gains on this dataset.

• Application on downstream tasks: We demonstrate the usefulness of the DocInfer

evidence selection module on downstream tasks of fact verification, multiple choice QA and

few shot clause retrieval from legal texts using no or small amounts of data for supervised

fine-tuning. Results on FEVER-binary, MCTest, and Contract Discovery dataset show

significant improvement of ∼ 3-6% F1.

4.2 Related Work

Document-level NLI Datasets: (Yin, Radev, and Xiong 2021) introduced Doc-level NLI on news

andWikipedia articles. (Liu et al. 2021a) proposed the multi-paragraph ConTRoL dataset focused

on complex contextual reasoning (logical, coreferential, temporal, and analytical reasoning).

Several datasets comprising legal documents like case laws, statutes, and contracts have been

proposed. COLIE-2020 (Rabelo et al. 2020) and (Holzenberger, Blair-Stanek, and Van Durme

2020) support identification of relevant paragraphs from cases that entail the decision of a

new case. However, the combined input length of their premise-hypothesis pairs remains
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within 512 tokens with the premise lengths at paragraph-level, reasonably suited for input to

BERT-like models. (Koreeda and Manning 2021) released ContractNLI dataset for document-

level NLI task on multiple page NDA contract documents along with ground truth evidence

labeling for interpretability. We benchmark DocInfer on DocNLI, ContractNLI and ConTRoL

datasets. CaseHOLD dataset (Zheng et al. 2021) is a multiple choice QA dataset for selecting

relevant governing laws required to reason about the legal decision text. Document-scale and

Corpus-Scale Reasoning: In order to handle document-scale premises in the doc-NLI corpora,

approaches like SpanNLI (Koreeda and Manning 2021), HESM (Hanselowski et al. 2018)) chunk

the premise into multiple document spans for reasoning. A similar approach was followed by

legal languagemodels such as Legal-BERT (Chalkidis et al. 2020) and Custom Legal-BERT (Zheng

et al. 2021) for legal reasoning tasks. More recently, language models (e.g., Longformer (Beltagy,

Peters, and Cohan 2020) with 4096 token input) have been proposed to overcome the limited

input field bottleneck. Fact Extraction and Verification (FEVER) (Thorne et al. 2018) tasks require

extracting evidence and claim entailment given an input claim and the Wikipedia corpus. Prior

works in this domain address the length limitation for claim verification by relevant evidence

identification and its chunking which are individually scored and probabilistically aggregated

(Subramanian and Lee 2020; Jiang et al. 2021a). Hierarchical graph modeling may be used to

handle the large scale of the premise (Liu et al. 2019c; Zhou et al. 2019; Zhong et al. 2020; Zhao

et al. 2020; Chen et al. 2022; Lin and Fu 2022; Si et al. 2021). Context Selection for Document-

level NLP: Recent works have investigated selection of relevant context for document-level NLP

tasks such as Neural Machine Translation (Kang et al. 2020), Event Detection (Ngo, Nguyen, and

Nguyen 2020; Veyseh et al. 2021), Relation Extraction (Trong et al. 2022). Recently, some of the

work on document-level NLP has looked at temporal relation extraction (Mathur et al. 2021b) ,
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Figure 4.1: DocInfer Architecture: Document D and hypothesis H pass through BERT;

Hierarchical graph using (Rstr ), (Rtop), (Rsim) and (Rent) relations. SubGraph Pooling extracts

relevant paragraph nodes; Asynchronous graph updates learn relation-specific node embeddings.

Evidence Selection optimized by REINFORCE rewards (ϕperf ), (ϕbleu), (ϕsel), (ϕmhop).

temporal dependency parsing (Mathur et al. 2022d), and speech synthesis (Mathur et al. 2022a)

using graphs and sequence learning. However, none of them have considered an end-to-end

trainable approach for graph learning with to identify the relevant evidence extraction.

4.3 DocInfer

Given a textual hypothesisH , the task of document-level NLI is to classify whether the hypothesis

is entailed by, contradicting to or not mentioned by (neutral to) the document D. We present

DocInfer, a neural architecture (Figure 4.1) that can select a set of evidence sentences E from

document D to form a shortened document De
which is then used for NLI prediction. Here, for

the document level NLI task, we need to constrain De
to fall within the length limit of BERT-like

context encoder to enable it to consume the evidence entirely for improved representation

learning for NLI.

Our model can been seen as a sequence of four phases: (a) Representation of document D

in the presence of the Hypothesis H to form a hierarchical document graph with sentences and
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paragraphs as nodes and Structural, Topical, Entity-centric and Concept-similarity relations as

edges. (b) Paragraph node pruning using the novel Subgraph Pooling layer to select highly relevant

paragraphs. (c) Asynchronous graph update for improved node representations and finally. (d)

Optimal evidence selection using REINFORCE from the graph for the task of document-level

NLI.

Document Representation: Let premise document D be defined as a sequence of n sentences

s1, s2, · · · , sn such that D = [s1, s2, · · · , sn]. These sentences are naturally grouped into m

consecutive paragraphs P = [p1, p2, · · · , pm] such that each each sentence si belongs to only one

paragraph pj . We leverage pre-trained BERT language model to obtain the embedding of every

sentence and paragraph nodes. The final representation for each sentence si and paragraph

pj is obtained by extracting the hidden vector of the CLS token as given by Emb(si) = BERT

([[CLS];H ; [SEP]; si; [SEP]]) and Emb(pj) = BERT ([[CLS];H ; [SEP]; pj ; [SEP]]), respectively. Here

H denotes the hypothesis text which is also encoded as h =BERT([[CLS];H ; [SEP]]). [CLS] and

[SEP] are symbols that indicate the beginning and ending of a text input, respectively.

Document Graph Construction: The document is then modeled as a hierarchical graph

DG = (V , E) to capture the premise document structure. Here, V = {Vp,Vs,Vh}, where Vp,Vs,Vh

are nodes corresponding to all the paragraphs, all the sentences and the hypothesis, respectively.

The set of edges (E) of the Document Graph encodes four types of relations between the nodes

mentioned below:

(1) Structural Relations (Rstr ): Hypothesis-Paragraph edges and Paragraph-Sentence Affiliation

edges model the hierarchical structure of the document through a directed edge from the

hypothesis node to each paragraph node and from a paragraph node to each constituent sentence,

respectively. Further, Paragraph-Paragraph Adjacency and Sentence-Sentence Adjacency links
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preserve the sequential ordering for consecutive paragraph and sentence nodes through directed

edges.

(2) Topical Relations (Rtop): Sentence-Sentence Topical Consistency connections model the

topical consistency between a pair of sentences by constructing sentence-level topical represen-

tations via latent Dirichlet allocation (Blei, Ng, and Jordan 2003). Given a pair of sentences si

and sj , we extract latent topic distribution ldai, ldaj ∈ Rl for each sentence which are joined if

the Helinger H (ldai, ldaj) distance between them is greater than 0.5.

(3) Entity-centric Relations (Rent): Sentence-Sentence Entity Overlap connections explicitly

model the sentence-level interactions between entity spans by adding an undirected edge between

two sentence nodes if they share one or more named entities. Further, Sentence-Sentence Entity

Coreference connections join two sentences by an undirected edge if the sentences sharementions

referring to the same real world entity.

(4) Concept-Similarity Relations (Rsim): Sentences conceptually similar to other sentences

and the hypothesis are connected to each other to account for presence of related events and

topics in two sentences. We propose Sentence-Sentence ConceptNet Similarity using ConceptNet

Numberbatch (CN). Let Acn
i = [a1, a2, · · · , al] be the ConceptNet Numberbatch embeddings for

the words in sentence si = [w1,w2, · · · ,wM] respectively. Here, if a word wq does not have

its corresponding embedding in CN, we simply set its vector aq to zero. Further, we introduce

Hypothesis-Sentence Knowledge Similarity (using KnowBert embedding) connections that add

weighted undirected edges between sentence-sentence and hypothesis-sentence node pairs,

respectively. KnowBert representations are obtained by encoding text using the pre-trained

KnowBert language model as Akbrt
i = KnowBERT([si]). The edge weights ε(i, j) between the

input vector pairs (ai, aj) is cosine similarity between the knowledge-based semantic embeddings
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of the input texts.

ε
(
i, j) =


cosine(Acn

i ,Acn
j ) if ai, aj ∈ S

cosine(Akbrt
i ,Akbrt

j ) if ai == H , aj ∈ S

Paragraph Pruning using Subgraph Pooling: Long documents are structured as a sequence

of paragraphs such that each paragraph may be topically coherent to itself and neighboring

paragraphs. As such, paragraphs unrelated to a given hypothesis may be ignored to reduce

distractor cues. Graph pooling (Grattarola et al. 2021) is a popular method for graph coarsening.

Unlike previous methods such as gPool (Gao and Ji 2019) and SAGPool (Lee, Lee, and Kang

2019) that pool entire graph, we propose attention-based Subgraph Pooling layer which can

select top rank nodes from a predefined subset of nodes in the graph. Subgraph Pooling layer

can selectively drop irrelevant paragraph nodes while retaining the remaining paragraph nodes,

their corresponding sentence nodes and the hypothesis node in the graph.

Suppose there are N nodes in document graph DG with node embedding of size C with

adjacency matrix A ∈ ℜNxN
and feature matrix X ∈ ℜNxC

.We apply GAT (Veličković et al. 2017)

over DG to obtain self-attention scores Z for all nodes. The pooling ratio η is a hyperparameter

that determines the number of paragraph nodes to keep based on the value of Z . We want

to select the top-rank nodes only from the set of paragraph nodes. Hence, we use a hard

mask µ = {1|xi ∈ P∀X ; 0} that is 1 for all paragraph nodes P , otherwise zero. We perform an

element-wise multiplication (⊙) between attention scores and mask values to get a soft mask

ZP = Z ⊙ µ. Top-rank operation ranks returns the indices of top η paragraphs based on ZP .

Node indices corresponding to the set of selected top-η paragraphs added to the set of sentence

nodes minus those belonging to the pruned paragraphs (idxS–SP–Pη ) and hypothesis (idxH ) are
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selected as follows: idx = top-rank(ZP , η) + idxS–SP–Pη + idxH . The combined index tensor (idx)

contains the indices of all the nodes selected in the final graph D
′
G . X

′
(idx, :) and Ã = A(idx, idx)

perform the row and/or column extraction to form the adjacency matrix and the feature matrix

of D
′
G . The attention scores for selected nodes Zidx act as gating weights for node features

after filtering which controls the information flow and makes the whole procedure trainable by

back-propagation as given by: X̃ = X
′ ⊙ (Zidx ).

Asynchronous Graph Update: Graph Neural Networks (GNN) are useful for multi-hop reason-

ing on hierarchical graphs comprising of different levels of granularity (questions, paragraphs,

sentences, entities) (Fang et al. 2019; Zhang et al. 2020a; Chen et al. 2021). However, GNN’s

perform message passing synchronously at each step of the graph update, ignoring the fact

that different relationship (edge) types may have different priorities. In order to overcome this

challenge, we propose to use Asynchronous Graph Update (Li et al. 2021a) to perform sequential

graph updates corresponding to all relationship types in R ∈ {Rstr ,Rtop,Rent ,Rsim} to enhance the

effectiveness of multi-hop reasoning. Optimal Evidence Selection (ENLI ): To select the set

of most relevant evidence sentences E, we hypothesize that a sentence si from document D is

important for NLI prediction if including the corresponding sentence as part of evidence set can

improve the performance of NLI label prediction model (MNLI
). We design an iterative process

for sentence selection such that at step k + 1 in the process (k ≥ 0), a sentence sk+1i is chosen

which has not been selected previously in evidence set Ek = {s1∗, · · · sk∗} at step k. We employ

a Long Short Term Memory Network (LSTM) over previously selected k sentences to select a

relevant sentence at time step k + 1. At step 0, the initial hidden state h0 for LSTM is set to zero.

At step k + 1, we use the hidden state hk of LSTM from prior step to assign a score sck+1i for each

sentence node si ∈ S – Ek . The sentence with highest selection score is considered for selection
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at this step as given by sck+1i = sigmoid(FFN ([xi : hk])) and sk+1∗ = argmaxsi∈S–Ek (sc
k+1
i ), where

FFN is a two-layer feed-forward network. In particular, if selecting sk+1∗ causes the number

of words in the selected sentences so far to exceed the context encoder length limit (eg., 512

tokens for BERT), the selection process stops and sk+1∗ is not included in the evidence set E (i.e.,

E = {s1∗, · · · , sk∗} in this case). Otherwise, the selection process continues to the next step and

sk+1∗ will be chosen and included in E (i.e.,E = {s1∗, · · · , sk+1∗}). The hidden state of LSTM is

also updated for the current step, i.e., hk+1 = LSTM(hk , xk+1∗), to prepare for the continuation of

sentence selection.

Evidence Selection Reward Function: In order to train the evidence selection module, we

employ the REINFORCE algorithm (Williams 1992) and incorporate the following information

signals in the reward function of REINFORCE to better supervise the training process. In order

to train the evidence selection module, we employ the REINFORCE algorithm (Williams 1992).

We incorporate the following information signals in the reward function of REINFORCE to better

supervise the training process:

(1) Task Reward ϕperf : We compute this reward based on the NLI task prediction performance.

In order to measure the impact of the selected context, we use a T-5 model (Raffel et al. 2019a)

pre-trained on MNLI corpus (Williams, Nangia, and Bowman 2017) to predict the NLI label for

the given hypothesis + context pair. ϕperf (E) is set to 1 if the final prediction is correct; and 0

otherwise.

(2) Semantic Reward ϕsem: We propose that the evidence sentences should be semantically

similar to the hypothesis. Our motivation is that similar context sentences (e.g., discussing the

same events or entities) provide more relevant information for the NLI prediction. We include

the semantic similarity between the selected evidence sentences in E and the hypothesis as
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measured by the cosine similarity (i.e.,

⊙
) between their sentence embeddings computed using

SimCSE
1
(Gao, Yao, and Chen 2021).

(3) Evidence Reward ϕbleu: We seek to promote evidence sentences having a high overlap with

the target ground truth evidence. In many cases, the target evidence length may be way less

than 512 token limit. Hence, our motivation is to reward the lexical overlap while penalizing

verbosity arising at evidence selection stage. We calculate the BLEU score between the selected

evidence E and ground truth evidence Egt : ϕbleu = BLEU (E, Egt ) This reward can only be applied

for cases where ground truth evidence annotation is present.

(4) Multihop Reward ϕmhop: The motivation for this reward is that a sentence should be

preferred to be included in E by the selection process if there are common entities mentions with

the hypothesis. Moreover, connected sentences by the virtue of common entity mentions are

more likely to refer to the same events. Hence, we leverage the subgraph similarity of the learned

node embeddings of the selected evidence and their first degree node connections through

entity-centric relations with the hypothesis node in G
′′
D. We perform max-pooling operation

over the concatenated node embeddings of the corresponding evidence sentences and their first

degree node connections joined by Rent : Ê = maxpool(v1
⊕

v2, · · · , vk |si ∈ E, i ∈ {1, · · · , k}),

where

⊕
means embedding concatenation. Finally, we compute the dot-product between Ê and

node embedding of the hypothesis node h as ϕmhop = Ê.h.

4.3.1 Training DocInfer

NLI Prediction Loss: We combine the final representations corresponding to the learnt graph

structure (gout ) and selected evidence text (tout ). We aggregate the embeddings corresponding to

1https://github.com/princeton-nlp/SimCSE
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the selected sentence nodes in D
′′
G and the hypothesis node using a summation-based graph-level

readout function (Xu et al. 2018b) as gout = ρ(
∑

v∈D′′
G
WgVT

i ). The words in the evidence

sentences are joined in order of their appearance in document D and input to the context

encoder tout = Encoder([CLS]s1; s2, · · · , sk). gout and tout are concatenated and passed through

two dense fully-connected layers: z = ReLU (Dense(tout
⊕

gout). This is followed by a Softmax

layer to predict entailment/contradiction/neutral by utilizing the negative log-likelihood loss:

Lpred = –P(y|z).

Evidence Selection Loss: The overall reward function to train our evidence selection module

is ϕ(E) = ϕperf + ϕsem + ϕbleu + ϕmhop. Using REINFORCE, we seek to minimize the nega-

tive expected reward ϕ(E) over the possible choices of E as Lsent = –EE∼P(E|D,H )
[ϕ(E)], and

Lsent = –EE∼P(E|D,H )
[ϕ(E)]∇ log(P(E|H ,D)). Finally, the probability of the selected sequence E

is computed via P(E|H ,D) =
∏

k=0,··· ,K–1 P(sk+1 ∗ |H ,D, si≤k∗), which is obtained via softmax

over selection scores for sentences in S at selection step k + 1.

Joint NLI Prediction and Evidence Selection: During training, the NLI prediction modelMNLI

and the evidence selection module ENLI are trained alternatively. At each update step, ENLI first

selects optimal evidence sentences E that form a shortened document De
. MNLI

uses E to predict

the NLI label. The parameters of MNLI
are updated using the gradient of NLI prediction loss

Lpred , keeping the parameters of the evidence extraction module constant. Next, the parameters

of the evidence selection module are updated using the gradient of Lsent , keeping parameters of

MNLI
constant. This process repeats until convergence. At test time, evidence sentences are first

selected and then consumed by the prediction model to perform NLI prediction.
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4.4 Experiments

4.4.1 Datasets for Document-level NLI

We use the following three datasets to benchmark document-level NLI approaches. (1) Doc-

NLI (Yin, Radev, and Xiong 2021): A large-scale document-level NLI dataset obtained by

reformatting mainstream NLP tasks such as question answering and document summarization.

(2) ContractNLI (Koreeda and Manning 2021): NLI dataset of 607 contract documents annotated

with ground truth evidence sentences. (3) ConTRoL (Liu et al. 2021a): A passage-level NLI

dataset of exam questions that requires logical, analytical, temporal, coreferential reasoning, and

information integration over multiple premise sentences. (4) CaseHoldNLI, the fourth and novel

NLI dataset introduced in this paper, in the legal judicial reasoning domain for identifying the

governing legal rule (also called “Holding”) applied to a particular set of facts. It is sourced from

the CaseHOLD dataset (Zheng et al. 2021) comprising over 53,000+ multiple choice questions.

Each multiple choice question comprises of a snippet from a judicial decision along with 5

semantically similar potential holdings, of which only one is correct. We obtain the NLI-version

by combining the question and the positive (negative) answer candidate as a positive (negative)

hypothesis. To evaluate the dataset quality, we asked an expert to select the NLI using only the

hypothesis for 10% of the test data sampled at random. The poor performance of this human

baseline (∼ 0.24F1) validates that the dataset doesn’t suffer from hypothesis bias. CaseHoldNLI

dataset is comparable to challenging document-level NLI datasets with average premise length

at document-scale and exceeds the maximum input length limit of BERT models. We report

train/dev/test splits of each dataset.
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System DocNLI
Dev F1 Test F1

Baselines

Majority 19.7 19.9

BERT (Hypothesis-only) 21.9 22.0

BERTbase (Devlin et al. 2018) 63.1 60.1

BERTlarge (Devlin et al. 2018) 63.5 61.1

RoBERTabase (Liu et al. 2019a) 61.0 59.5

RoBERTalarge (Liu et al. 2019a) 63.1 61.3

T5 (Raffel et al. 2019b) 62.9 61.1

Longformer (Beltagy, Peters, and Cohan 2020) 46.1 44.4

GEAR (Zhou et al. 2019) 67.8 63.3

KGAT (Liu et al. 2019c) 68.5 64.8

HESM (Subramanian and Lee 2020) 68.9 65.0

DREAM (Zhong et al. 2020) 69.7 65.9

TARSA (Si et al. 2021) 70.4 66.4

EvidenceNet (Chen et al. 2022) 72.6 68.5

Ours DocInfer (w/ RoBerta) 75.5 72.3

Table 4.1: Results comparing performance of DocInfer with baselines on DocNLI dataset.

Bold denotes the best-performing model. LightCyan and Yellow show best performing base-

line and Transformer model.

System ContractNLI
Acc (%) F1 (C) F1 (E) mAP PR@80

Baselines

Majority 67.4 8.3 42.8 - -

BERTlarge (Devlin et al. 2018) 77.5 25.7 76.4 0.822 0.763

T5 (Raffel et al. 2019b) 73.2 21.2 69.1 0.786 0.575

Longformer (Beltagy, Peters, and Cohan 2020) 71.2 19.2 70.4 0.755 0.648

BigBird (Zaheer et al. 2020b) 71.5 18.8 70.9 0.776 0.630

GEAR (Zhou et al. 2019) 78.4 26.9 78.3 0.909 0.774

KGAT (Liu et al. 2019c) 78.9 27.8 79.2 0.914 0.773

HESM (Subramanian and Lee 2020) 28.2 79.5 79.9 0.916 0.789

DREAM (Zhong et al. 2020) 79.8 29.3 80.4 0.919 0.786

TARSA (Si et al. 2021) 80.4 29.4 80.5 0.916 0.783

SpanNLI-Bertlarge (Koreeda and Manning 2021) 87.5 35.7 83.4 0.922 0.793

Ours DocInfer (w/ Bert) 91.8 38.2 89.1 0.956 0.832

Table 4.2: Results comparing performance of DocInferwith baselines on ContractNLI dataset.

Bold denotes the best performingmodel. LightCyan and Yellow show best performing baseline

and Transformer model.
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System ConTRoL
Acc (%) F1 (E) F1 (N) F1 (C) F1 (O)

Baselines

Majority 40.6 57.7 0.0 0.0 19.2

BERTbase (Devlin et al. 2018) 47.4 42.4 50.2 46.0 46.2

BERTlarge (Devlin et al. 2018) 50.6 45.9 53.1 49.3 49.4

RoBERTabase (Liu et al. 2019a) 45.9 45.3 45.9 45.6 45.6

BART (Lewis et al. 2020a) 56.3 49.1 59.5 53.8 54.0

Longformer (Beltagy, Peters, and Cohan 2020) 49.8 45.6 46.8 46.2 46.2

BigBird (Zaheer et al. 2020b) 49.3 46.0 45.1 46.0 46.1

BART-NLI (Liu et al. 2021a) 57.2 49.0 60.4 54.2 54.5

BART-NLI-FT (Liu et al. 2021a) 57.5 49.3 60.6 54.6 55.0

KGAT (Liu et al. 2019c) 59.1 50.6 61.8 55.7 56.6

HESM (Subramanian and Lee 2020) 59.3 50.9 62.3 56.1 56.6

DREAM (Zhong et al. 2020) 59.8 51.1 62.0 56.1 56.3

HGRGA (Lin and Fu 2022) 60.6 52.9 62.4 58.7 58.0

EvidenceNet (Chen et al. 2022) 61.8 56.4 64.2 64.3 61.6

Ours DocInfer (w/ BART) 66.7 60.6 67.1 69.6 67.4

Table 4.3: Results comparing performance of DocInferwith baselines ConTRoL dataset. Bold
denotes the best-performing model. LightCyan and Yellow show best performing baseline

and Transformer model.

System CaseHoldNLI
P R F1

Baselines

Majority 0.0 1.0 0.0

BERTbase (Devlin et al. 2018) 42.2 46.3 44.2

RoBERTabase (Liu et al. 2019a) 42.2 46.3 44.2

T5 (Raffel et al. 2019b) 41.5 43.5 42.5

Legal-BERT (Zheng et al. 2021) 46.5 47.9 47.1

Longformer (Beltagy, Peters, and Cohan 2020) 40.1 43.3 41.6

GEAR (Zhou et al. 2019) 42.9 46.8 44.8

HESM (Subramanian and Lee 2020) 44.0 48.0 45.9

HGRGA (Lin and Fu 2022) 45.4 49.4 47.3

EvidenceNet (Chen et al. 2022) 47.3 50.5 48.8

Ours DocInfer (w/ Legal-Bert) 51.3 53.1 52.2

Table 4.4: Results comparing performance of DocInfer with baselines on CaseHoldNLI

dataset. Bold denotes the best-performingmodel. LightCyan and Yellow show best performing

baseline and Transformer model.
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4.4.2 Experiments on Downstream Tasks

(1) Fact Verification: The NLI-version of FEVER (Thorne et al. 2018) task, released by (Nie,

Chen, and Bansal 2019), considers each claim as a hypothesis while the premises consist of

ground truth textual evidence and other randomly sampled related text.

(2) Multi-choice Question Answering: The NLI-version MCTest (Richardson, Burges, and

Renshaw 2013) combines the question and the positive (negative) answer candidate as a positive

(negative) hypothesis. Presence of limited labeled data makes them both good benchmarks

to investigate the performance of document-level NLI models on annotation-scarce tasks. We

evaluate DocInfer trained on DocNLI dataset and report F1 scores for both tasks. We follow

the "FEVER-binary" and ”MCTest-NLI" settings proposed in (Yin, Radev, and Xiong 2021).

(3) Contract Clause Retrieval (Borchmann et al. 2020): is a task to identify spans in a target

document representing clauses analogous (i.e. semantically and functionally equivalent) to the

provided seed clauses from source documents. We reformulate this as an NLI task where the seed

clauses are concatenated to form the hypothesis, and the target document is the premise. We test

the evidence selection capabilities of DocInfer trained on ContractNLI dataset for identifying

relevant sentence-level spans in the premise for the clause retrieval task. The dataset has 1300

examples each for validation and test to tune and test the paragraph selection hyperparameter η.

We followed the evaluation framework specified in (Borchmann et al. 2020) of few (1-5) shot

setting and report Soft F1 score.
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4.5 Results

Table 4.1-4.4 compares the performance of DocInfer against other baselines on DocNLI,

ContractNLI, ConTRoL, and CaseHoldNLI datasets. Similar to (Yin, Radev, and Xiong 2021), we

truncate the hypothesis-premise pair sequence to the appropriate maximum input length for

input to Transformer models. BERT (Devlin et al. 2018), RoBERTa (Liu et al. 2019a), DeBERTa

(He et al. 2020), BART (Lewis et al. 2020a) show superior performance for DocNLI, ContractNLI,

and ConTRoL datasets, respectively. Legal-BERT (Chalkidis et al. 2020) outperforms other

Transformer language models on CaseHoldNLI dataset due to its high domain-specificity of

legal language. However, they are challenged by their input length restriction of 512 tokens for

contextually reasoning over long premise lengths. Consistent with observations of (Yin, Radev,

and Xiong 2021), large input Transformer models such as Longformer (Beltagy, Peters, and

Cohan 2020) and BigBird (Zaheer et al. 2020b) that can handle up to 4096 tokens underperform

traditional BERT-like models on all four datasets. We attribute this to the presence of distractors

in long documents and the inability of these models to reason in a multihop fashion. BART-NLI

which is pretrained on sentence-level NLI (Liu et al. 2021a) improves over naive Transformers

but still struggles due to limited captured context.

We also re-purpose several strong baseline methods from the Fact Extraction and Verifi-

cation (FEVER 1.0) task. by reformulating the document retrieval and claim verification steps

to paragraph retrieval and textual entailment, respectively. GEAR, KGAT, and HGRGA model

the document as a dense fully-connected graph, leading to distractor interactions confounding

the reasoning process. They are also devoid of linguistic information about entities, topics or

commonsense knowledge. HESM uses document chunking which hinders contextual reasoning
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System DocNLI ContractNLI ConTRoL CaseHoldNLI
Dev F1 Test F1 Acc (%) F1 (C) F1 (E) mAP PR@80 Acc (%) F1 (E) F1 (N) F1 (C) F1 (O) P R F1

Context Encoder RoBERTa BERT BART Legal-BERT
Ours DocInfer 75.5 72.3 91.8 38.2 89.1 0.956 0.832 66.7 63.6 67.1 69.6 67.4 51.3 53.1 52.2

A
bl
at
io
n

DocInfer w\Concept Relations 72.6 70.7 90.7 35.4 87.2 0.928 0.810 62.3 62.6 66.6 66.1 64.2 50.6 52.9 51.7

DocInfer w\Topical Relations 72.2 70.4 90.6 33.6 86.6 0.925 0.819 60.5 59.4 66.7 63.2 63.1 49.5 51.5 50.5

DocInfer w\Entity Relations 72.5 70.2 90.2 31.1 85.7 0.921 0.812 59.8 58.8 66.0 62.8 62.5 49.0 51.4 50.2

DocInfer w\o Asynchronous Graph Update 73.2 71.5 89.5 36.3 84.3 0.923 0.813 57.6 61.0 59.7 65.1 64.8 48.8 50.5 49.6

Greedy Evidence Selection 67.5 64.9 88.3 36.0 84.1 0.876 0.780 56.5 56.3 56.1 55.2 55.8 46.8 46.2 46.7

DocInfer w\o Paragraph Pruning 65.6 64.5 85.4 35.9 83.9 0.855 0.742 51.8 47.0 45.5 48.0 46.8 44.8 46.2 45.5

DocInfer w\o Evidence Selection 65.0 63.6 83.7 35.5 83.5 0.825 0.715 51.6 46.7 45.0 47.8 46.5 44.4 45.9 45.1

DocInfer w\Task Reward 70.5 68.5 90.1 33.9 86.7 0.907 0.769 61.9 61.0 64.0 65.2 63.4 47.4 47.4 47.4

DocInfer w\Evidence Reward - - 90.8 36.4 87.5 0.916 0.805 - - - - - - - -

DocInfer w\Semantic Reward 71.4 69.0 90.6 34.2 84.4 0.912 0.778 63.3 62.5 63.9 64.7 63.7 46.6 46.8 46.7

DocInfer w\Multihop Reward 71.6 69.5 90.5 35.5 85.6 0.910 0.785 61.6 62.0 63.2 64.0 63.0 46.1 46.9 46.5

Table 4.5: Results comparing ablative components of DocInfer model and analysis of using

a single reward/relation at a time. Darker green represents better F1 performance, darker red

shows negative impact. Evidence reward is applicable only for ContractNLI which has ground

truth evidence annotations.

for far-away chunks. DREAM and TARSA use semantic role labeling and topic modeling, re-

spectively, to identify phrase interaction but lack entity-level information required to resolve

coreferences across document. EvidenceNet and SpanNLI emerge as strong baseline models for

our work. DocInfer outperforms SpanNLI and EvidenceNet due to its ability to iteratively se-

lect important evidence sentences in the premise and simultaneously utilize multihop interactions

between related evidences. Impact of Input Length: DocInfer achieves SOTA performance

on all four datasets and maintains steady improvements over corresponding baseline models

with increasing in input lengths. Choice of context encoder in NLI prediction: One of the

merits of the our approach is that it is extensible and can utilize any domain-specific transformer

language models for context encoding to further augment performance. We evaluate the choice

of context encoder for different datasets. DocInfer gives SOTA performance using RoBERTa

for DocNLI, BERT for ContractNLI, BART for ConTRol, and Legal-BERT for CaseHoldNLI, in

the prediction model.

Ablation Study of DocInfer: Table 7.3 shows ablations for the document graph relations,

module components, and reward functions. We observe that concept relation is critical in

all data settings due to the need for external knowledge-based semantic representation for
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connecting related concepts across sentences. Removing any of the relations does not degrade

the performance below EvidenceNet (Chen et al. 2022) or SpanNLI baselines. This is important

for adapting our method to new domains where existing linguistic parsers maybe noisy or

non-existent. Cells in Table 7.3 highlighted in red shows the ablation of individual components

such that removing paragraph pruning mechanism severely deteriorates model performance

as the model has to evaluate an exponentially larger number of candidate evidences during

evidence selection stage. In absence of optimal evidence selection, we treat evidence extraction as

a binary classification task over each sentence node along with NLI label given by the “readout”

function similar to KGAT (Liu et al. 2019c). The severe performance drop of DocInfer

model in absence of evidence selection component highlights its importance for document

NLI task. Asynchronous graph update adds incremental value to DocInfer owing to its

relation-specific message passing. Evidence Selection and Paragraph Pruning components are

most critical for SOTA performance of DocInfer. Greedy selection instead of REINFORCE

significantly decreases performance. Concept relations are most beneficial for DocInfer,

followed by topical and entity relations. Evidence, semantic, multihop and task rewards most

help ContractNLI, ConTRoL, DocNLI, and CaseHoldNLI.

Impact of reward function: Table 7.3 shows that removing any reward component (i.e.,

task, semantic, evidence, multihop) significantly hurts the overall performance, thus clearly

demonstrating their individual importance. To assess the necessity of the multi-step selection

using REINFORCE, we eliminate the multistep selection strategy and perform a one-shot sentence

selection where the top k sentences with the highest selection scores from the first step are

selected. We call this setting greedy evidence selection and show that the elimination of multistep

selection drops performance, suggesting that selecting sentences incrementally conditioning on
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System Fine-tune FEVER MCTest
binary v160 v500

RoBERTa ✗ 88.4 90.0 85.8

EvidenceNet ✗ 88.7 90.6 86.0

DocInfer† ✗ 89.2* 91.0* 86.4*
DocInfer† w/o R ✗ 86.3 87.5 82.5

RoBERTa ✓ 89.4 91.0 91.0

EvidenceNet ✓ 89.9 90.8 90.6

DocInfer† ✓ 90.5* 91.5* 91.2*
DocInfer† w/o R ✓ 86.6 88.5 87.5

Table 4.6: Performance comparison of DocInfer† with RoBERTa (large) and EvidenceNet on

FEVER-binary and MCTest-NLI. † means using RoBERTa as a context encoder.

previously selected sentences is advantageous.

Performance of DocInfer on downstream tasks: Table 4.6 shows the evaluation of

DocInfer along with RoBERTa-large and EvidenceNet (Chen et al. 2022) baselines and

RoBERTa model from (Yin, Radev, and Xiong 2021) on FEVER-binary and MCTest tasks.

We train all models on the DocNLI dataset to benefit from cross-task transfer and to

minimize domain shift. We then infer all models in two settings: (i) without task-specific fine-

tuning, and (ii) with fine-tuning on the end task. DocInfer model consistently outperforms

baselines across both tasks in case of without fine-tuning (FEVER-binary: +0.8 F1, MCTest v160:

+1 F1, MCTest v500: +0.6 F1) and with fine-tuning (FEVER-binary: +0.9 F1, MCTest v160: +0.5

F1, MCTest v500: +0.2 F1). We observe that both tasks require the models to capture topic

coherence, knowledge-based semantics, and entity interactions as removing graph relations

severely degrades the performance.

Evidence selection for clause retrieval focuses on selecting evidence spans in the target
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Figure 4.2: Error analysis across reasoning types (accuracy%) and challenging phenomenon

(mAP) on the test set of ConTRoL and ContractNLI datasets.

document (premise) given the entailment relation with seed clauses (hypothesis). The task

is unsupervised in nature (has no training set). We test the evidence selection module (ENLI )

of the DocInfer model and its ablated variants (without paragraph pruning and reward

functions), all pre-trained on the ContractNLI dataset. Table 4.7 shows that DocInfer model

with BERT as the context encoder outperforms strong baselines by approximately 5%. Removing

paragraph pruning significantly degrades the performance, highlighting the need to prune

distractor paragraphs for retrieving relevant information. The presence of each reward function

to maintain the performance of DocInfer indicates the linguistic importance of each reward.

Formulating the task as NLI helps contextualize the seed clauses with the premise as opposed to

earlier techniques of isolated vectorization and naive aggregation by (Borchmann et al. 2020).

Qualitative Analysis: Figure 4.2 shows qualitative analysis across different reasoning types on

the test set of the ConTRoL dataset. The results provide evidence that the multihop and semantic
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System Soft F1
Tf-IDF 0.39

GloVe (300D, EDGAR) 0.41

Sentence-BERT 0.32

USE 0.38

BERT 0.35

RoBERTa 0.31

GPT-1 0.49

GPT-2 (large) 0.51

DocInfer‡(pretrain ContractNLI) 0.53*
DocInfer‡w\o Paragraph Pruning 0.42

DocInfer‡w\o Task Reward (ϕperf ) 0.48

DocInfer‡w\o Semantic Reward (ϕsem) 0.45

DocInfer‡w\o Evidence Reward (ϕbleu ) 0.45

DocInfer‡w\o Multihop Reward (ϕmhop ) 0.44

Human 0.84

Table 4.7: Performance comparison of DocInfer and its configurations pretrained on Con-

tractNLI and tested for clause retrieval without fine-tuning on Contract Discovery dataset

(Borchmann et al. 2020). ‡: BERT as context encoder.

similarity rewards are important for coreference reasoning (CR) due to reasoning over multiple

mentions and noun phrases. Multihop reward also helps improve Information aggregation (II)

which requires combining information from multiple paragraphs. Task reward benefits logical

reasoning as it focuses on logical inference of human language. DocInfer is unable to handle

temporal and analytical reasoning cases. We further analyze the evidence extraction mAP on

the ContractNLI dataset across diverse challenging phenomena. Entity relations are critical

for resolving reference to definitions (RD) as they are anchored together through common

mentions. Concept similarity links play an important role in resolving information spread out

between discontinuous spans based on commonsense reasoning. DocInfer handles evidence

identification for all studied phenomena better than SpanNLI.
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4.6 Conclusion and Future Work

We introduceDocInfer, a document-level NLI model that uses enriched hierarchical document

graph through inter-sentence relations, performs paragraph pruning using SubGraph Pooling

layer, and optimally selects evidence sentences using REINFORCE algorithm to outperform

SOTA methods on four doc-NLI datasets, including our propose CaseHoldNLI on legal judicial

reasoning.DocInfer is useful for downstream fact verification, multi-choice QA and legal

clause retrieval tasks. For future work, we intend to integrate temporal knowledge and analytical

reasoning into our model to improve the performance.
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CHAPTER 5

LayerDoc: Layer-wise Extraction of Spatial Hierarchical Structure

in Visually-Rich Documents

Abstract

Digital documents often contain images and scanned text. Parsing such visually-rich documents

is a core task for workflow automation, but it remains challenging since most documents do not

encode explicit layout information, e.g., how characters and words are grouped into boxes and

ordered into larger semantic entities. Current state-of-the-art layout extraction methods are

challenged by such documents as they rely on word sequences to have correct reading order and

do not exploit their hierarchical structure. We propose LayerDoc, an approach that uses visual

features, textual semantics, and spatial coordinates along with constraint inference to extract
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the hierarchical layout structure of documents in a bottom-up layer-wise fashion. LayerDoc

recursively groups smaller regions into larger semantic elements in 2D to infer complex nested

hierarchies. Experiments show that our approach outperforms competitive baselines by 10-

15% on three diverse datasets of forms and mobile app screen layouts for the tasks of spatial

region classification, higher-order group identification, layout hierarchy extraction, reading

order detection, and word grouping.

5.1 Introduction

Structured documents such as forms, invoices, receipts, resumes, contracts and web/app screen

interfaces are ubiquitously used in industry (Harley, Ufkes, and Derpanis 2015) and contain a

rich variety of components such as tables, check boxes, widgets, buttons, input fields. Structured

documents make use of spatial layout to convey information through potentially nested spatial

grouping. However, digital documents (eg. PDF) generally discard most structure and encode

only low-level binary information, while document images produced by a scanner or mobile

phone scan app are stored in rasterized format (as pixels). Neither of these document formats

encode spatial structure explicitly to identify which pieces of text belong together. This leads to

challenges for state-of-the-art information extraction techniques, which generally assume that

the reading order of text is known (Wang et al. 2021a).

A number of techniques–e.g., LayoutLM (Xu et al. 2020), LayoutLMv2 (Xu et al. 2021),

DocStruct (Wang et al. 2020b), Form2Seq (Aggarwal et al. 2020a)–model the textual semantics,

visual appearance, and spatial location of text to solve sequence labeling and classification tasks.

These techniques are able to model spatial information implicitly to assign semantic labels to
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Figure 5.1: Example of a scanned form document showing the true reading order using num-

bered black boxes; word grouping based on spatial arrangement; spatial document hierarchy

of elements. Reading order extracted naively in a linear fashion (top→ down, left→ right) is

incorrect (top-right). However, the document can be decomposed into a hierarchy, where text

fragments group into choice group caption, radio buttons, and choice labels grouped into choice

fields, etc. LayerDoc extracts this spatial hierarchy to group elements and assign them correct

semantic labels. The correct reading order is obtained by leaf node traversal of the hierarchy.

words, classify a sequence of words (or sub-word tokens), or predict relationships between given

regions. However, these methods do not infer the 2D grouping of individual words into semantic

elements (e.g., DocStruct assumes candidate regions are provided as preprocessed inputs), nor

do they produce the nested structure of a document as output. While LayoutLM is capable

of grouping multiple word or sub-word tokens into semantic elements via BIO encoding, the

encoding assumes that the reading order of input tokens is correct–but reading order itself is

dependent on the structure of the document and is not known, and most OCR systems cannot

infer it correctly for complex spatial structure (Clausner, Pletschacher, and Antonacopoulos

2013).

To illustrate the importance of modeling the structure of a document, consider the example

shown in Figure 5.1. For the use case of digital form authoring, where the goal is to convert a
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scanned form into a digital format, an algorithm would need to extract characters/words, group

them into semantic elements (e.g., a choice label), and further group them into larger elements (a

label and the checkbox to its left form a choice field element, multiple choice fields form a choice

group, etc). All of these nested group relationships are important since the labels need to be

displayed next to the corresponding checkboxes, and the choice group must consist of mutually

exclusive choices that affect the UI, as checking one box should cause the other boxes in the

group to be unchecked. Besides form authoring, other uses of this type of structure include re-

flowability across devices (Gupta et al. 2007; Khemakhem, Herold, and Romary 2018), adaptive

editing of user-interfaces (Murray 1999), and improving accessibility for user-interactions

(Zhang et al. 2021a)

Even for other extraction tasks, where the structure itself is not of interest, an understanding

of the hierarchical arrangement of text regions is useful for the purpose of producing sequences

with accurate reading order. This is important for modern Transformer based language models

such as BERT (Devlin et al. 2019a) and LayoutLM (Xu et al. 2020) which depend on the correct

order of the input text for downstream tasks and are sensitive to incorrect order (Hong et al.

2021). Once the hierarchical structure is extracted as in Figure 5.1, a traversal of the structure can

produce reading order that respects group structure and avoids the errors that OCR algorithms

would produce.

We propose LayerDoc, a model that uses multimodal deep learning on visual features,

textual semantics and spatial geometry as well as constraint inference to generate a complete

bottom-up ordered hierarchical arrangement of document layout structure. Within this hierarchy,

each node is a rectangular regionwhich is assigned a semantic label, with the leaf nodes consisting

of OCR tokens or embedded images. This structure is generated in a layer-wise fashion: given
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an input set of regions, LayerDoc hypothesizes candidate 2D groupings of these regions

without the need for IOB tagging, evaluates candidate parent-child links between a child region

and parent region (the group it belongs to), then commits to a global parent-child assignment

through constraint optimization. The multi-modal nature of LayerDoc benefits not only

those cases where spatial signals are effective (e.g., where layout based models excel) but also

where visual and textual signals are needed, as evident from experiments on diverse datasets of

semi-structured forms and scanned user-interfaces. Our novel contributions:

1. We propose LayerDoc for extracting hierarchical document layout in a layer-wise fashion,

recursively grouping smaller spatial regions into larger, semantic elements. We are the first

to formulate nested document hierarchy extraction using transformers.

2. We propose a multimodal contextual encoder thatmaximizes use of context by simultane-

ously modeling all possible parent-child pairs in a layer. For element type classification

and semantic grouping, this leads to a relative improvement of 10-15% across several metrics.

3. We demonstrate how our extracted nested hierarchical document structure can improve

the inferred token reading order and semantic word grouping by 8-12%.

5.2 Related Work

Document layout hierarchy extraction involves two main tasks: spatial element detection and

spatial region relationship extraction. Early works (Lebourgeois, Bublinski, and Emptoz 1992;

Simon, Pret, and Johnson 1997; Ha, Haralick, and Phillips 1995) used heuristics for both tasks

independently, which were later replaced by computer vision models (object detectors) (Yang

et al. 2017; He et al. 2017; Deng et al. 2018; Liao et al. 2017) to detect lower-level elements
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and group them based on spatial overlap. (Li et al. 2020c) utilized Faster-RCNN (Ren et al.

2015) for document object detection. Recent 2D transformer-based object detectors such as

DETR (Carion et al. 2020) do not explicitly model the visual hierarchy or leverage multimodal

(semantic, spatial and visual) information or contextual modeling. Transformer-based models

such as LayoutLM (Xu et al. 2020), LayoutLMv2 (Xu et al. 2021), LamBERT (Garncarek et al.

2021), DocFormer (Appalaraju et al. 2021), BROS (Hong et al. 2020), and TILT (Powalski et al.

2021), have been used for sequence labeling and classification of spatial regions in documents.

However, they do not reason about hierarchy or grouping in an end-to-end fashion. Form2Seq

(Aggarwal et al. 2020a) and MMPAN (Aggarwal et al. 2020b) extracted limited types of higher-

order structures (Choice Groups, Text Fields and Choice Fields) in form documents. Although

Form2Seq utilized a seq2seq network to leverage context, it could not be applied in general

settings for end-to-end document spatial hierarchy construction. Recently, DocStruct (Wang et al.

2020b) proposed a multimodal model for extracting parent-child relationships between regions.

However, it does not utilize the context of neighboring spatial regions for link prediction, nor

does it predict the parent element type, as it is designed for naive key-value pair extraction. Our

method uses Transformers to analyze multimodal contextual input from lower-level elements to

detect and classify higher-level elements, and reconstruct all layers of the layout hierarchy.

5.3 Methodology

The document hierarchy is constructed by iteratively grouping elements (“child-boxes") in the

current layer into larger regions (“parent-boxes") in the next layer. The child-boxes in the first

layer consist of elementary tokens extracted directly from a document page image: textual
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Figure 5.2: LayerDoc takes raw documents and OCR’ed text as inputs and outputs the spatial

hierarchy by grouping lower-level elements into parent boxes, predicting parent-child links and

the element type of the parent boxes. The model operates on one layer at a time, considering all

child boxes Ci in one layer and candidate parent boxes Pj in the next layer. The model encodes

the visual, textual, and spatial features of each element into a sequence to compute an encoding,

which is then used for link prediction and element type classification. Candidate parents are

generated using the child boxes Ci, the final parent set is selected via constraint optimization,

and the model is applied recursively to build the hierarchy bottom-up.

tokens are extracted by an off-the-shelf OCR system and visual regions (e.g., widgets, radio-

buttons, and embedded images in the form use case) predicted by a high-precision object detector.

For intermediate layers, our approach hypothesizes a high-recall set of geometrically feasible

“potential parent-boxes” directly from the child-boxes, such that each box can group one or more

child-boxes and form the next layer in the hierarchy. At the core of our approach is a multimodal

model (illustrated in Fig 5.2 and described in Sec 5.3.1) that predicts links between a potential

parent-box and all of its child-boxes in consecutive layers and jointly predicts the semantic

label of the parent box. Not all potential parent-boxes are actual elements, so we use constraint

inference to keep the parent-boxes that maximize the child-box link probabilities and satisfy

hierarchical constraints. This process is repeated one layer at a time, starting from the lowest

layer of elementary tokens and recursively grouping the lower-level elements into higher-level
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constructs to form a hierarchical arrangement of spatial boxes (see Sec 5.3.3). We next formalize

the problem and provide model details.

Problem Statement: Let ID represent the input document page of which elementary tokens

(OCR, embedded widgets, and icons) and their rectangular bounding boxes are extracted by

OCR and a high precision object detector, respectively. The ground truth document hierar-

chy for a scanned document comprises of spatial boxes bi, each represented by its coordinates

(x1, y1, x2, y2), where (x1, y1) and (x2, y2) are the top-left and bottom-right coordinates, respec-

tively. Each box has a predefined type label ti. The textual content (wi) present in a box is

acquired by linearly serializing OCR text tokens lying within the box boundaries. The con-

stituent bounding boxes are arranged in a tree-like format where a box in a higher layer may

be a parent of one or more boxes in the layer immediately below it. Thus, each box of the

document hierarchy tree contains the list of nested child boxes contained within such that: (i)

each child-box is grouped into one and only one parent box i.e. the parent-boxes do not mutually

overlap, and (ii) each parent-box groups together all geometrically possible child-boxes within

its bounds. Unlike previous works (Wang et al. 2020b; Wang et al. 2021b), this task does not

assume the ground truth parent bounding boxes in each layer to be previously known as part of

the input at test time.

5.3.1 LayerDoc Model

We denote the set of n child boxes serialized in a left-to-right and top-to-bottom fashion in the

kth layer as ci ∈ {c1, c2 · · · cn} and the jth potential parent box candidate under consideration as

pj . We represent each box with three input modalities: (i) Semantic Cues, (ii) Spatial Cues, and

(iii) Structural Cues. We also utilize the visual encoding of the entire scanned document image
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to augment the spatial and semantic signals with visual cues.

Semantic Cues: Using an off-the-shelf pre-trained language model (SBert), we encode the

textual content of each box (wi) into a sentence embedding s = SBert([[CLS],wi]) of dimension

1×dS , where dS is the hidden states of pre-trained language model. We concatenate the sentence

embedding of the potential parent box spj with the sequence of sentence embeddings of child

boxes (sc1 , sc2 , · · · scn) and pass them through a fully connected layer to form the semantic input

sequence Snj = σ(W1([spj ⊕ sc1sc2 · · · scn]) + δ1), where W1, δ1, σ(·), and ⊕ denote the weight

matrices, bias, Sigmoid activation function, and concatenation, respectively.

Spatial Cues: We extract the bounding box coordinates to derive the relative layout information

of each box. Each bounding box b is represented through its upper-left ([x1, y1]) and bottom-right

([x2, y2]) co-ordinates that are normalized, b = [
x1
W ,

y1
H ,

x2
W ,

y2
H ], whereH andW are the height and

width of the scanned document page. The normalized parent bounding box bpj is concatenated

with the sequence of normalized child bounding boxes (bc1bc2 · · · bcn) to form the spatial input

sequence Bjn = [bpj ⊕ bc1bc2 · · · bcn].

Structural Cues: Each child box has a box type t. The parent box type is not known at input.

Hence, it is represented by a dummy value of < PBOX > in the input sequence. We concatenate

the category types of the parent box followed by the linearly serialized child boxes to obtain the

structural input sequence Tn
j = [< PBOX >: tc1tc2 · · · tcn].

Visual Cues: Given the document image ID, we resize it to a fixed size (h,w,3). It is passed

through a visual encoder (VE) to obtain the visual feature map η = VE(ID). We utilize the same

input visual feature map across all layers and parent box configurations in a given document.

Multimodal Contextual Encoder (Λ) combines the structural, spatial and visual cues extracted

from the input potential parent box and the sequence of child-boxes through a Transformer-based
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language model. The semantic cues are concatenated with the embedding of each input box

using late fusion as denoted by

⊕
due to the limitation dictated by the LayoutLM backbone.

The final box embedding sequence is Xn
j = Λ([Bnj ; T

n
j ; η]

⊕
Snj ). The box embedding sequence

Xn
j is matrix multiplied with the parent box embedding Xn

j [: pj] as X
n
j [: pj]⊗ Xn

j vector, where

⊗ means matrix multiplication. This results in a dot product of each child box embedding with

parent box embedding to obtain [p̂j ; ĉ1, ĉ2, · · · ĉn].

LinkPrediction andElement TypeClassification: The child box representations ([ĉ1, ĉ2, · · · ĉn])

are passed through a dense fully-connected layer followed by a Sigmoid layer to generate

the link probabilities between each child box ci and a potential parent box pj : αj1, · · ·αjn =

σ(W2([ĉ1, · · · ĉn]) + δ2), where W2, δ2 and σ(·) are the weight matrices, bias and Sigmoid ac-

tivation function, respectively. The parent box representation (p̂j) is passed through a dense

fully-connected layer followed by a softmax to predict element type φj = σ(W3(p̂j) + δ3).

5.3.2 Training LayerDoc

Negative Parent Sampling: Most potential parent-boxes will be false positives, so to deal with

the sparsity of positive samples at test time, we introduce negative sampling (Mikolov et al.

2013) in the training regime inspired by (Wang et al. 2021b; Wang et al. 2020b). For each training

sample having at least one positive link between the potential parent-box and any of the input

child-boxes, we add an unrelated parent-box example to the training set for the same setting to

make the training robust to negative samples.

Multi-task Training: Element type classification uses a weighted cross-entropy loss to adjust

for class imbalance, while link prediction uses a negative sample cross-entropy loss (Wang

et al. 2021b) to account for negative data augmentation. Both tasks are correlated and reinforce
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each other, so we use multi-task training to optimize both tasks simultaneously. The final

optimization uses a weighted sum of the link prediction loss and element classification loss

L = λLLink + (1 – λ)LClass, where the weighting factor λ is a hyperparameter.

5.3.3 Inferring Document Layout Hierarchy

We recursively group child-boxes into parent-boxes such that the parent-boxes of the kth layer

become child-boxes of the k + 1
th

layer, iterating until only one parent-box remains. Each

iteration involves three steps: (i) parent-box candidate generation, (ii) candidate link prediction

and type classification, and (iii) constraint inference. The first iteration uses elementary token

boxes ti (OCR text, widgets, icons, etc) as child-boxes. Step (i) hypothesizes geometrically

feasible potential parent-boxes (m candidates with an upper limit of O(n4) due to all relevant

combinations of box co-ordinates) ensuring a high-recall collection of potential parent-boxes.

Step (ii) predicts parent-child links and element types for each candidate parent-box with all the

child-boxes as input, returning link probabilities αji∀i ≤ n; j ≤ m. Step (iii) selects the subset

of parent boxes that are mutually non-overlapping, cover all child-boxes, and maximize the

constraint optimization function described next.

Parent Box Proposal are created by utilizing the geometric constraints of the child boxes. We

obtain sets of horizontal (xmin, xmax ) and vertical (ymin, ymax ) coordinates from the child box

coordinates and merge them if lying within a threshold distance of each other to cluster closely

placed coordinates and reduce the search space of coordinates. We choose two coordinate points

from both x and y sets to form one rectangular parent box.

Constraint Inference: For the kth layer, LayerDoc predicts link probabilities αij between each

pair of potential parent box pi and child box cj . The best set of parent boxes is selected by
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solving a constraint optimization problem, maximizing the cost function Ŷ = maxyi∈Υ
∑m

i ωiyi,

where ωi = κ +

∑
j α̂ij

Ar(pi)k/Ar(∪n
j=0cj)

, α̂ij is the adjusted link probability between pi and cj such that

α̂ij = αij –1. κ is a large constant added to make all parent scores positive to avoid trivial solution

of all weights as zero. Ar(.) defines area of a box and (∪n
j=0cj) is the union of all n child boxes.

yi → 1 represents the case where the potential parent box pi is accepted as a valid parent box. The

optimization is subject to constraint spaceΥ = Υ1∩Υ2 defined over the set of all pairs of potential

parent boxes ℜm
, where Υ1 : yi ∈ {0, 1} and Υ2 : ya + yb ≤ 1 | ∀ a, b ∈ ℜ× ℜ, Ar(pa ∩ pb) > 0.

This is a typical Maximum Independent Set Problem (Tarjan and Trojanowski 1977) when

reduced to a simple linear-programming relaxation by constraining yi to be binary. It can be

solved using Integer Linear Programming (ILP). However, the number of parent boxes grow

exponentially, forcing us to further relax the ILP solution by greedily selecting one parent with

highest ωi at a time, leaving improved solutions to future work.

5.4 Experiments

Datasets: We train and test the LayerDoc model on three datasets, Hierarchical Forms, RICO

and FUNSD, which provide scanned document images as input.

(1)Hierarchical Forms (Aggarwal et al. 2020a) is a rich corpus of scanned form documents

from diverse domains like insurance, finance, and government agencies. The documents are

human-annotated with labelled bounding boxes, element type, and element relations for a set of

14 constituent elements such as Text Fields, Checkboxes, Choice Groups, Widgets, Tables, Image,

Header, Footer, etc. (2) RICO (Deka et al. 2017) is a dataset of more than 66k layout hierarchies

of mobile app screens augmented with semantic annotations of UI components. The bounding

80



boxes, element labels and nested hierarchies are from app source code. (3) FUNSD (Jaume,

Ekenel, and Thiran 2019) is a dataset of noisy scanned forms with shallow hierarchies and filled

form fields.

Training: We experimentwith four ablation settings using LayoutLM (Xu et al. 2020) (LayerDocLLM )

or LayoutLMv2 (Xu et al. 2021) (LayerDocLLMv2) in multimodal context encoder. LayoutLMv2

extracts visual cues via Detectron2 (Wu et al. 2019). We experiment with and without Sen-

tenceBERT (Reimers and Gurevych 2019) for extracting semantic cues (LayerDocLLM+SBERT

and LayerDocLLMv2+SBERT ). We use an equally balanced train-validation split. Object detector:

We utilize Faster-RCNN trained on the training set of Forms/RICO/FUNSD dataset to infer

lower-level elementary tokens such as widgets, images, etc. Box Types of elementary boxes are

obtained object detector predictions.

Evaluation Tasks: We evaluate LayerDoc on five tasks: Element Type Classification and Group

Identification for specific components of the architecture; Element Detection, Reading Order

and Grouping for full hierarchy. Element Type Classification: Evaluates the parent-box

type classification using weighted F1-score for each type, using ground truth child-boxes as

input at test time. Group Identification: Evaluates link prediction between the candidate

parent-box and child-boxes using macro F1 score using ground-truth child-boxes as input at test

time. Hierarchy Reconstruction: Elementary tokens (words+bounding boxes) are given as

input and all other layers use the predictions from the previous layer. We evaluate document

layout hierarchy predicted in Sec 5.3.3 using Mean Average Precision (mAP) (0.5 IoU threshold)

between ground truth and predicted bounding boxes using the standard teacher forcing technique

(Williams and Zipser 1989a). We also utilize the Adjusted Rand-index (Rand 1971) to measure

the similarity between two hierarchies in each layer as well as for the whole layout hierarchy
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Modality Model TableRow ChoiceGroup Footer Section ListItem Table TextRun TableCell TextBlock List Field Header Overall

B
as
el
in
e

Visual MFCN (Yang et al. 2017) – 0.0 – 0.71 0.54 – 0.11 – 0.46 0.90 – 0.69 –

Visual DLV3+ (Peng, Yin, and Yang 2020) – 0.57 – 0.55 0.75 – 0.69 – 0.86 0.48 – 0.83 –

Spatial + Text Form2Seq (Aggarwal et al. 2020a) – 0.78 – 0.67 0.90 – 0.85 – 0.91 0.93 – 0.85 –

A
bl
at
io
n

Spatial LayerDocLLM 0.36 0.74 0.65 0.57 0.74 0.20 0.61 0.57 0.41 0.35 0.42 0.15 0.43

Spatial + Text LayerDocLLM+SBERT 0.48 0.68 0.75 0.67 0.79 0.29 0.74 0.89 0.84 0.41 0.80 0.72 0.76

Spatial + Visual LayerDocLLMv2 0.69 0.89 0.90 0.76 0.94 0.96 0.82 0.97 0.97 0.93 0.94 0.35 0.89

Spatial + Visual + Text LayerDocLLMv2+SBERT 0.92 0.90 0.92 0.86 0.96 0.94 0.88 0.98 0.98 0.95 0.94 0.67 0.90

(a) Hierarchical Forms Dataset

Modality Model List Item Text Checkbox TextButton Modal Toolbar Card Drawer Multi-Tab WebView Input Button Bar Tile Overall

B
as
el
in
e Visual Faster-RCNN (Ren et al. 2015) 0.55 0.54 0.29 0.36 0.48 0.63 0.18 0.61 0.45 0.45 0.11 0.03 0.48 0.48

Visual UIED (Chen et al. 2020a) 0.62 0.61 0.35 0.41 0.62 0.83 0.27 0.74 0.51 0.45 0.19 0.10 0.60 0.71

Visual DETR (Carion et al. 2020) 0.67 0.65 0.39 0.46 0.67 0.86 0.30 0.75 0.52 0.48 0.20 0.12 0.63 0.72

Spatial + Visual + Textual LayoutLMv2 (Xu et al. 2021) 0.82 0.72 0.39 0.50 0.73 0.88 0.42 0.78 0.55 0.61 0.16 0.18 0.67 0.75

A
bl
at
io
n Spatial LayerDocLLM 0.80 0.74 0.42 0.51 0.69 0.94 0.35 0.81 0.60 0.53 0.22 0.18 0.68 0.76

Spatial + Text LayerDocLLM+SBERT 0.82 0.74 0.46 0.53 0.59 0.94 0.45 0.83 0.61 0.56 0.20 0.70 0.68 0.78

Spatial + Visual LayerDocLLMv2 0.87 0.77 0.46 0.53 0.78 0.93 0.46 0.86 0.59 0.65 0.28 0.2 0.68 0.79

Spatial + Visual + Text LayerDocLLMv2+SBERT 0.88 0.76 0.47 0.55 0.65 0.96 0.49 0.87 0.71 0.68 0.20 0.78 0.73 0.80

(b) RICO Dataset

Table 5.1: Results comparing F1 scores of LayerDoc with baselines and ablative components

for element classification task for label-wise and overall spatial elements in (a) Hierarchical
Forms and (b) RICO dataset. Our proposed approach outperforms the baselines, and ablation

analysis shows that each individual component contributes to the overall performance.

in aggregate. We consider the child-boxes in a given layer linked to the same parent-box as

one cluster and consider the predicted parent-boxes to match if the ground truth if IoU > 0.5.

Reading Order Comparison: Following (Wang et al. 2021b), we sort the predicted layout

hierarchy and traverse the bounding boxes in-order to recover the sequence of OCR tokens.

We then compare the predicted reading order sequence against the ground truth reading order

using Average Page-level BLEU (p-BLEU) and Average Relative Distance (ARD) (Wang et al.

2021a). Grouping Comparison: We evaluate the word and element grouping. Similar to (Lee

et al. 2021; Wang et al. 2021a), we utilize the word grouping metric to calculate the F1, precision

and recall of intervals in the predicted word sequence belonging to an element compared to the

ground truth sequence.
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Modality Model TableRow ChoiceGroup Footer Section ListItem Table TextRun TableCell TextBlock List Field Header Overall

B
as
el
in
e Visual MFCN (Yang et al. 2017) – 0.28 – – – – – – – – 0.19 – –

Visual DLV3+ (Peng, Yin, and Yang 2020) – 0.47 – – – – – – – – 0.51 – –

Spatial + Text Form2Seq (Aggarwal et al. 2020a) – 0.61 – – – – – – – – 0.86 – –

Spatial + Text + Visual MMPAN (Aggarwal et al. 2020b) – 0.63 – – – – – – 0.88 – 0.90 – –

Spatial + Text + Visual DocStruct (Wang et al. 2020b) 0.39 0.20 0.18 0.21 0.16 0.09 0.28 0.40 0.27 0.14 0.30 0.07 0.36

A
bl
at
io
n

Spatial LayerDocLLM 0.36 0.64 0.45 0.28 0.20 0.14 0.44 0.41 0.51 0.22 0.38 0.38 0.41

Spatial + Text LayerDocLLM+SBERT 0.38 0.68 0.51 0.48 0.33 0.68 0.52 0.78 0.65 0.45 0.56 0.45 0.55

Spatial + Visual LayerDocLLMv2 0.90 0.75 0.75 0.78 0.82 0.83 0.49 0.76 0.90 0.75 0.85 0.15 0.79

Spatial + Visual + Text LayerDocLLMv2+SBERT 0.85 0.78 0.80 0.67 0.85 0.70 0.79 0.82 0.92 0.77 0.92 0.49 0.81

(a) Hierarchical Forms Dataset

Modality Model List Item Text Checkbox TextButton Modal Toolbar Card Drawer Multi-Tab WebView Input Button Bar Tile Overall

B
as
el
in
e Visual Faster-RCNN (Ren et al. 2015) 0.20 0.24 0.29 0.36 0.28 0.31 0.15 0.21 0.25 0.18 0.21 0.15 0.35 0.27

Visual UIED (Chen et al. 2020a) 0.24 0.35 0.45 0.40 0.32 0.48 0.27 0.56 0.49 0.55 0.69 0.50 0.56 0.52

Visual DETR (Carion et al. 2020) 0.32 0.39 0.49 0.45 0.38 0.54 0.33 0.61 0.55 0.62 0.72 0.54 0.59 0.55

Spatial + Visual + Textual LayoutLMv2 (Xu et al. 2021) 0.77 0.80 0.69 0.75 0.42 0.83 0.72 0.69 0.81 0.82 0.81 0.74 0.69 0.72

A
bl
at
io
n

Spatial LayerDocLLM 0.25 0.40 0.52 0.40 0.44 0.52 0.25 0.33 0.40 0.63 0.36 0.53 0.40 0.50

Spatial + Text LayerDocLLM+SBERT 0.26 0.41 0.54 0.42 0.44 0.68 0.28 0.35 0.45 0.81 0.39 0.55 0.58 0.55

Spatial + Visual LayerDocLLMv2 0.81 0.86 0.75 0.80 0.45 0.88 0.77 0.76 0.86 0.86 0.87 0.81 0.74 0.86

Spatial + Visual + Text LayerDocLLMv2+SBERT 0.83 0.88 0.77 0.82 0.47 0.90 0.79 0.77 0.88 0.88 0.96 0.84 0.76 0.89

(b) RICO Dataset

Table 5.2: Results comparing F1 scores of LayerDoc with baselines and ablative components

for group identification task for label-wise and overall spatial elements in (a)Hierarchical
Forms and (b) RICO dataset. Our proposed approach outperforms the baselines, and ablation

analysis shows that each individual component contributes to the overall performance.

5.5 Results and Analysis

We present our experimental results, where bold in tables denotes the best performing model.

Colored text represents the proposed LayerDoc with LayoutLMv2 backbone and Sentence-

BERT for semantic cues. Values not reported by the baseline models are indicated by (–) dashes.

5.5.1 Element Type Classification

Hierarchical Forms: Table 5.1a shows element classification where we compare LayerDoc

with MFCN (Yang et al. 2017), DLV3+ (Peng, Yin, and Yang 2020), Form2Seq (Aggarwal et al.

2020a) as they report strong baseline performance for this task. Form2Seq is a competitive

baseline that uses seq2seq modeling of spatial regions for element classification and extraction.

However, it struggles to handle long-range dependencies in dense forms with large sequences

of tokens. MFCN and DLV3+ are strong convolution based baselines utilized specifically in the

83



Model Element Classification (F1) Group Identification (F1)
BERT (Jaume, Ekenel, and Thiran 2019) 0.64 0.29

GNN + MLP (Carbonell et al. 2021) 0.64 0.39

UniLMv2-large (Appalaraju et al. 2021) 0.70 –

SPADE (Hwang et al. 2020) 0.71 0.41

StrucTexT (Li et al. 2021b) 0.83 0.44

LayoutLMv1-large (Xu et al. 2020) 0.78 0.42

FUDGE (Davis et al. 2021) 0.66 0.56

SERA (Zhang et al. 2021b) – 0.65

BROS (Hong et al. 2020) 0.81 0.66

MSAU-PAF (Dang et al. 2021) 0.83 0.75

LayoutLMv2-large (Xu et al. 2021) 0.84 –

DocFormer-large (Appalaraju et al. 2021) 0.84 –

LayerDocLLMv2+SBERT (Ours) 0.86 0.78

Table 5.3: Comparison of LayerDoc (w/ LayoutLMv2 and SentenceBert) with baseline models

for element type classification (entity labeling) and group identification (linking) on
the FUNSD dataset. LayerDoc outperforms all recent top-performing systems in terms of F1

score.

document understanding domain. All three baselines were designed to work for a limited set of

elements found in the lowest layers of the hierarchy, preventing comparison between all element

types.

RICO:Table 5.1b reports results for RICO dataset. We establish a strong baseline UEID (Chen et al.

2020a) that uses a mix of text detector and traditional computer vision techniques to classify and

extract spatial elements. Inspired by (Li et al. 2020d), we compare Faster-RCNN (Ren et al. 2015)

which is a traditional object detector. We also fine-tune and evaluate recent transformer based

object detection models such as DETR (Carion et al. 2020) and Swin Transformer (Liu et al. 2021b)

on UI interfaces from RICO dataset. Visual object detectors are not able to leverage semantic

context necessary for document understanding. LayoutLMv2 (Xu et al. 2021) model utilizes

visual, spatial as well as semantic context. However, it is pre-trained for language modeling

tasks as opposed to layout hierarchy extraction objective. Performance of LayerDoc with

LayoutLMv2 backbone and SentenceBERT shows significant gains across all element types as

84



Dataset Model Reading Order Word Grouping
p-BLEU (↑) ARD (↓) P R F1

FUNSD

Heuristics 0.69 8.46 – – –

LayoutLMv1 (Xu et al. 2020) 0.89 2.54 0.82 0.88 0.85

LayoutLMv2 (Xu et al. 2021) 0.92 2.21 0.84 0.87 0.86

LayoutReader (Wang et al. 2021a) 0.98 1.75 – – –

ROPE (Lee et al. 2021) – – 0.88 0.90 0.89

LayerDocLLM 0.98 1.68 0.82 0.79 0.80

LayerDocLLM+SBERT 0.99 1.65 0.85 0.90 0.87

LayerDocLLMv2 0.98 1.63 0.86 0.92 0.89

LayerDocLLMv2+SBERT 0.99 1.60 0.92 0.93 0.92

RICO

Heuristics 0.49 1.77 – – –

Faster-RCNN (Ren et al. 2015) 0.55 1.76 0.45 0.76 0.57

UEID (Chen et al. 2020a) 0.61 1.75 0.45 0.76 0.57

DETR (Carion et al. 2020) 0.63 1.74 0.48 0.79 0.60

LayoutLMv2 (Xu et al. 2021) 0.65 1.72 0.63 0.83 0.72

LayerDocLLM 0.65 1.70 0.68 0.95 0.79

LayerDocLLM+SBERT 0.67 1.68 0.68 0.94 0.79

LayerDocLLMv2 0.69 1.62 0.73 0.95 0.83

LayerDocLLMv2+SBERT 0.70 1.60 0.77 0.97 0.87

Table 5.4: Results for reading order (p-BLEU and ARD) and word grouping (F1, P, R) for

FUNSD and RICO dataset.

it benefits from contextual modeling of spatial regions, multimodal input to the contextual

encoder, and multi-tasking objective aimed at optimizing the element type classification and

group identification simultaneously. Header type elements in Hierarchical Forms dataset are an

exception where our model underperforms the Form2Seq baseline. Lower performance of header

can be attributed to model overfitting as the header class is a minority in the dataset. LayerDoc

is trained to predict several different components simultaneously as opposed to Form2Seq and

DLV3+ baselines which are specifically trained on selective components. Moreover, visual

modality does not help element type prediction as headers are usually localized in a small part

of the document and do not benefit from contextual modeling.
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Dataset Model Hierarchy Reconstruction Rand-index Test
mAP (↑) P R F1

FUNSD
LayoutLMv1 (Xu et al. 2020) 0.27 0.51 0.54 0.52

LayoutLMv2 (Xu et al. 2021) 0.35 0.61 0.62 0.61

LayerDocLLM 0.45 0.77 0.72 0.74

LayerDocLLM+SBERT 0.48 0.72 0.81 0.76

LayerDocLLMv2+SBERT 0.50 0.78 0.83 0.80

RICO

Faster-RCNN (Ren et al. 2015) 0.15 0.32 0.33 0.33

UEID (Chen et al. 2020a) 0.21 0.35 0.48 0.39

DETR (Carion et al. 2020) 0.21 0.43 0.48 0.45

LayoutLMv2 (Xu et al. 2021) 0.23 0.55 0.54 0.55

LayerDocLLM 0.19 0.70 0.74 0.72

LayerDocLLM+SBERT 0.22 0.74 0.73 0.74

LayerDocLLMv2+SBERT 0.27 0.86 0.84 0.85

Hierarchical Forms
DocStruct (Wang et al. 2020b) 0.10 0.35 0.36 0.36

LayerDocLLM 0.10 0.33 0.51 0.40

LayerDocLLM+SBERT 0.11 0.36 0.51 0.42
LayerDocLLMv2+SBERT 0.12 0.31 0.55 0.40

Table 5.5: Results for hierarchy reconstruction (mAP and Rand-index test) for FUNSD,
Hierarchical Forms and RICO dataset.

(a) (b) (c) (d)

Figure 5.3: Example illustrations of predictions by LayerDocLLMv2+SBERT on the test set of the

Hierarchical Forms dataset. Blue boxes denote input child boxes while green boxes indicate

detected parent boxes in the hierarchy. The pink box in (b) highlights the semantically unique

spatial groups inferred from the document layout hierarchy.

(a) Field - widget pairs are detected with high precision with spatially consistent boxes being

grouped together.

(b) Non-trivial form fields aggregated based on their semantic meaning. Eg. addresses in text
fields are grouped into text block.
(c) Extracts difficult non-symmetric TextBlocks despite multiple levels of nesting.

(d) Errors in Choice fields grouping due to initial mistakes in grouping of widgets propagates to
later choice groups grouping.
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5.5.2 Group Identification

Hierarchical Forms: Table 5.2a shows group identification results where we compare against

image segmentation baselines - DeepLabV3+ and MFCN for element extraction. These models

often make mistakes in case of closely spaced text blocks and text fields, struggling to predict

complete choice fields and choice groups due to their inability to capture complete horizontal

context. Form2Seq (Aggarwal et al. 2020a) and MMPAN (He et al. 2017) baselines use LSTM-

based seq2seq models to extract multimodal hierarchical associations. We consider the settings

where ground truth is given as input to the next step of the pipeline. Results for DeepLabV3+,

MFCN, Form2Seq, and MMPAN are derived from (Aggarwal et al. 2020a) which evaluated them

to work with specific inputs (text blocks) and to give certain outputs (text blocks, choice groups,

choice fields), hence the sparsity in their results. We additionally evaluate DocStruct (Wang et al.

2020b) on Hierarchical Forms, a recent state-of-the-art method for layout structure extraction

by re-implementing it for generic semi-structured documents. RICO:We evaluate the task of

group identification on RICO using hybrid deep networks (UIED), traditional (Faster-RCNN)

as well as Transformer-based DETR for 2D object detection baselines. The input to the model

is the raw document image while the outputs are predicted bounding boxes with class labels.

LayoutLMv2 model is fine-tuned and evaluated similarly to (Li et al. 2020g). Performance of

LayerDoc: LayerDoc is significantly better compared to all baselines by a large margin for

Hierarchical Forms, except for Choice Fields. Form2Seq and MMPAN outperform in grouping text

blocks and widgets into choice field elements as they were designed to selectively handle such

elements. DocStruct severely underperforms against LayerDoc on complex hierarchical forms

due to the lack of document-level context and inability to generalize beyond simple key-value
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pair elements. For RICO, both Faster-RCNN and DETR are weaker than LayerDoc as they

do not leverage multimodal input. LayerDoc outperforms LayoutLMv2 due to its superior

recursive parent-child link prediction approach. Performance on FUNSD: Table 5.3 compares

multiple state-of-the-art methods for element classification and group identification on FUNSD.

LayerDoc outperforms all other models on extracting and classifying key-value pairs in noisy

forms. Ablation Study: We denote a darker green shade to indicate better F1 performance,

and ablation is indicated by the ”Modality” column across the tables. We observe a consistent

benefit of using both visual as well as textual modalities in LayerDoc across all tasks. Visual

cues extracted by Detectron2 in LayoutLMv2 backbone improves performance as most semi-

structured documents have visually rich elements such as tables, check boxes, widgets, buttons,

input fields. Semantic cues help improve identification of most elements, except table and sections

elements as they rely more heavily on spatial boundaries and neighbouring white spaces for

accurate extraction.

Hierarchy Reconstruction: We evaluate the predicted document layout hierarchy in Table

5.5. Elementary tokens (words+bounding boxes) are input and each layer uses the predictions

from the previous layer in a recursive manner. Unlike past hierarchy extraction techniques

applied to FUNSD (Wang et al. 2020b), we do not assume ground truth parent boxes to be a part

of the input during hierarchy inference. We evaluate using Mean Average Precision (mAP) of

predicted boxes with a 0.5 IoU threshold between ground truth and predicted bounding boxes. To

generate hierarchies from baseline models, we use the elements detected at inference to arrange

them in a bottom-up hierarchy based on geometric constraints. We show that LayerDoc with

LayoutLMv2 and SentenceBERT outperforms other configurations on all three datasets where

ablations show the usefulness of visual, spatial and textual cues.
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Reading Order: Table 5.4 compares reading order of OCR tokens based on the extracted layout

hierarchy. We implement a heuristics baseline that linearly sorts the words from left to right and

top to bottom based on OCR box coordinates. We report results on FUNSD and RICO datasets and

conclude that LayerDoc achieves the SOTA results. Comparing LayerDoc’s performance

on FUNSD with LayoutLmv1, LayoutLMv2, LayoutReader (Wang et al. 2021a) and ROPE (Lee

et al. 2021) shows competitive p-BLEU performance and reduction in ARD by approximately 10%.

For RICO, we compare the reading order derived from the layout hierarchy as extracted by UIED,

Faster-RCNN, DETR, and LayoutLMv2. LayerDoc generates better reading order compared

to competitive object detection methods. Our contribution becomes significant for RICO dataset

where reading order is complicated by deep nested hierarchies. Ablation experiments show that

both layout and textual information play equally important roles.

Word Grouping: We observe an improvement of 4% and 10% in F1-score of word grouping

performance on FUNSD and RICO datasets, respectively. LayerDoc is able to capture the

complete text layout that helps it recover missing words that flow over to the start of the next

line at line end. This is especially important for grouping check boxes and text fields into choice

groups, and table components present in deeply nested scanned forms.

Impact of SBERT and layer-wise structure on LayerDoc: We observe a 8-14% performance

drop by removing SBERT in element classification, group identification, reading order and word

grouping tasks, demonstrating its importance to LayerDoc with a LayoutLMv2 backbone.

However, even without SBERT, LayerDoc outperforms the LayoutLMv2 baselines on RICO by

10-14%, demonstrating that the layer-wise structure of LayerDoc is also important. Compu-

tational cost: On an average, LayerDoc requires ≈10 times less forward passes to generate

complete hierarchy compared to the DocStruct/LayoutLMv2 baseline as it can perform link
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prediction between a proposed parent box and all child boxes in a layer through its contextual

modeling instead of comparing all possible pairs of parent-child pairs across different layers

one at a time. This results in reduced search space. LayerDoc has comparable parameters to

LayoutLMv2, with the additional parameters from linear layers. Hence their time complexity is

comparable, yet LayerDoc outperforms due to algorithmic modifications rather than model size.

Figure 5.3 presents some illustrative exampleswith inferred layout hierarchies by LayerDoc.

Error Analysis: (i) Recursive Error Propagation: Grouping performance reduces higher up the

predicted hierarchy as elements detected in the initial layers are used for predicting elements

in the subsequent levels of the hierarchy, causing error propagation. (ii) Lack of parent-box

context: Our approach infers one parent box at a time in a given layer. Despite optimal layer-wise

parent-box selection, errors produced at this step cannot be backpropagated during training.

Restricted backtracking in future work may alleviate error accumulation at higher levels.

5.6 Conclusion and Future Work

We present LayerDoc that uses visual, textual and spatial signals along with constraint

inference to extract the documents hierarchy in a bottom-up layer-wise fashion. Extensive

experiments demonstrate the advantages of our method for extracting specific components of

the hierarchy (element type classification and group identification) as well as its downstream

applications in reading order detection and word grouping on three diverse semi-structured

document datasets. LayerDoc enables full-scale hierarchy extraction from diverse documents

to enable form authoring, document re-flow, and adaptive editing of user-interfaces. Our current

work is limited by its iterative nature and restricted to greedy optimizations. Future work can
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focus on integrating restricted backtracking in parent selection, layer embedding for different

levels, cross-dataset generalization, semi-greedy approaches. Hierarchy construction can aid

long-context document understanding for tabular parsing (Mathur et al. 2022b), layout-

enriched speech synthesis (Mathur et al. 2022a), and NLP tasks like temporal information

extraction (Mathur et al. 2021b), temporal dependency parsing (Mathur et al. 2022d), and NLI

(Mathur et al. 2022c).

91



CHAPTER 6

DocEdit: Language-Guided Document Editing

Abstract

Professional document editing tools require a certain level of expertise to perform complex

edit operations. To make editing tools accessible to increasingly novice users, we investigate

intelligent document assistant systems that can make or suggest edits based on a user’s natural

language request. Such a system should be able to understand the user’s ambiguous requests

and contextualize them to the visual cues and textual content found in a document image to

edit localized unstructured text and structured layouts. To this end, we propose a new task of

language-guided localized document editing, where the user provides a document and an open

vocabulary editing request, and the intelligent system produces a command that can be used to

automate edits in real-world document editing software. In support of this task, we curate the
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Shift the subheading "Manuscript Draft" 
and the sentence below it 10px below

Move (Text; Location;  None; +10px Down)

ACTION (COMPONENT; ATTRIBUTE; INITIAL STATE; FINAL STATE)

Check options SPO/DCA and Fund
Dividend in leftmost column Transaction

Modify (Checkbox; SPO/DCA, Fund Dividend;  Unticked; Tick)
ACTION (COMPONENT; ATTRIBUTE; INITIAL STATE; FINAL STATE)

Change the yellow heart above
"Weekend" into red circle

Replace (Image; Shape, Color; heart, yellow; cicrle, red)
ACTION (COMPONENT; ATTRIBUTE; INITIAL STATE; FINAL STATE)

DocEditorDocEditor DocEditor

--Manuscript Draft--

Neural Computing and Applications 

Named Entity Recognition via GCN

Figure 6.1: The DocEdit dataset provides natural language edit requests on PDFs and design

template documents. Each edit request is mapped to an executable command that can be used to

automatically apply edits in real-world document editing software. We propose DocEditor,
a neural architecture to generate the executable computer command and ground the region

of interest bounding box. Examples from the Hierarchical Forms dataset and the public En-

ron corpus in this figure illustrate several challenges where an intelligent system needs to (a)

interpret and localize structured components and their relative positioning in the document;

(b) match document text tokens in a text-rich document formatted in varied spatial layouts

(checkboxes, choice groups, text fields, columns, rows), (c) visually understand the objects as per

the description.

DocEdit dataset, a collection of approximately 28K instances of user edit requests over PDF and

design templates along with their corresponding ground truth software executable commands.

To our knowledge, this is the first dataset that provides a diverse mix of edit operations with

direct and indirect references to the embedded text and visual objects such as paragraphs, lists,

tables, etc. We also propose DocEditor, a Transformer-based localization-aware multimodal

(textual, spatial, and visual) model that performs the new task. The model attends to both

document objects and related text contents which may be referred to in a user edit request,

generating a multimodal embedding that is used to predict an edit command and associated

bounding box localizing it. Our proposed model empirically outperforms other baseline deep

learning approaches by 15-18%, providing a strong starting point for future work.
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6.1 Introduction

Digital documents are used extensively to help people improve business productivity (draft-

ing contract agreements, presentation decks, letterheads, invoices, resumes, form filling) and

communicate with customers through online advertisements, social media posts, flyers, posters,

billboards, web and mobile app prototypes, etc. However, modern document editing tools require

a skilled professional to work on a large screen. Challenges emerge when complex editing

operations require multiple different functionalities wrapped within the editing tools for text and

image region placement, grouping, spatial alignment, replacement, resizing, splitting, merging,

and special effects. As the creation and editing of documents become more ubiquitous and

increasingly used by novice users on mobile devices, there is an increasing need to improve the

accessibility of these tools through an intelligent assistant system that can understand user’s

intent and translate it into executable code that can be processed by the editing tool to fulfill a

user’s editing needs.

We formulate a new task for language-guided document editing and create a new dataset,

DocEdit, as illustrated in Figure 10.1, wherein an intelligent system is expected to generate

the executable commands (e.g., move components, modify attribute values and special effects,

add/delete text, etc.) and visually ground the region of interest given the natural language edit

request expressed by human users over a document image. To do so, document editing systems

should not only understand the user intent, but also extract and interpret the textual content

of the document images along with the visual cues including layout (paragraphs, lists, tables,

headers, footers), non-textual elements (marks, tick, shapes, diagrams, graphs), and style (font,

colors, size, highlighting, special effects). Departing from generic language-guided image editing
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tasks (Shi et al. 2020; Lin et al. 2020c), our task warrants a different approach to exploit the

above visual cues and high-density of textual tokens by making use of the relative positioning of

objects and text tokens.

The new dataset for this task, DocEdit, provides natural language edit requests on PDFs

and design template documents, along with the result of a human carrying out the edit request.

Each edit request is mapped to an executable command that can be simulated in real-world

document editing software. To collect such a dataset, we utilized User Interface (UI) experts

to, edit a set of input documents, provide a description of the edit, and generate the ground

truth executable command corresponding to a set of diverse and creative edit requests posed

by freelance designers. DocEdit contains more than 17k PDF and 10k design templates with

a diverse mix of edit operations (add, delete, modify, split, merge, replace, move, copy) and

reference types (direct, object referring, text referring) from the users.

Our work also takes the first step towards automating Language-guided Localized Document

Editing (LLDE) using DocEditor, a Transformer-based localization-aware multimodal (textual,

spatial, and visual) model. The model represents the visual appearance of document elements

(e.g., paragraphs, images) through their bounding boxes and document semantics (the meaning

of the text in the document) through document text tokens obtained via OCR. It uses multi-head

attention to obtain a text-enriched visual box embedding which is fused with a text embedding

and a regression token. The fused representation is provided to a Transformer decoder, which

generates the command text in an autoregressive fashion. Additionally, we employ a layout

graph to encode the relative position of boxes and document text tokens to regress the RoI

bounding box coordinates. We perform node classification as an auxiliary task for anchor box

prediction to ground the edit location in terms of relevant object and document text token boxes.
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Dataset Size OCR LE IR Doc
CAISE 6.1K ✗ ✗ ✗ ✗

DialEdit 8.8K ✗ ✗ ✗ ✗

Edit me 9.1K ✗ ✓ ✗ ✗

ILLC-IER 2.5K ✗ ✓ ✓ ✗

DocEdit (Ours) 28.3K ✓ ✓ ✓ ✓

Table 6.1: . Comparison of DocEdit with related language-guided image editing datasets. Our

dataset is the largest document-centric corpus with localized edits (LE), OCR’ed text, and indirect

references (IR) to local objects.

DocEditor proves as a strong benchmark for this task and outperforms other unimodal and

multimodal baselines. Our contributions are:

• We introduce a new task and dataset for document edit command generation for language-

guided localized document editing. The DocEdit dataset consists of document-edit

pairs on PDFs and design templates along with corresponding ground truth executable

commands.

• We propose DocEditor, a novel multimodal transformer that takes a language-based

edit request and produces a spatially localized set of edit commands. To the best of our

knowledge, no such multimodal language-guided document editing model exists, with

existing models lacking in terms of their understanding of document text and their ability

to perform localized edits. Our proposed DocEditor model empirically outperforms

other baseline deep learning approaches by 15-18%, providing a strong starting point for

future work.

6.2 Related Work

Table 6.1 shows prior tasks and datasets for language-guided image editing systems such as (Shi

et al. 2020; Lin et al. 2020c). However, most of these tasks are designed to work with natural
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images instead of documents that are usually text-rich andmay contain a wide range of structured

components in varied layouts. Recent GAN-based methods (Jiang et al. 2021b; El-Nouby et al.

2018; Wang et al. 2022; Li et al. 2020a; Jiang et al. 2021c) are popular for natural image editing tasks

as they perform end-to-end pixel-wise image generation, but are unsuitable for digital-born PDF

documents with rich text. Such methods still cannot handle spatial and semantic understanding

of embedded text present in the documents. Previous research works (Kim et al. 2022; Shi et al.

2021a; Shi et al. 2022; Chen et al. 2018) have explored language-driven image editing to map

image edits into actionable computer commands, they are largely limited to global requests where

the entire image is uniformly modified. Complex and unstructured documents, for example,

images of receipts, invoices, and forms have a large number of relatively small text objects

scattered throughout an unstructured document and surrounded by “distraction” objects which

are not of interest. Hence, there is a need to spatially localize the objects of interest by modeling

text and image content and relating it to the user’s text description. Efforts to investigate

such localized editing of spatial regions remain limited. Previous attempts at intent/action/goal

identification from user edit requests (Manuvinakurike et al. 2018a; Manuvinakurike et al. 2018b;

Manuvinakurike et al. 2018c; Lin et al. 2020a) have only explored a limited set of edit functions

constrained to changes in brightness, contrast, background color, and their numeric values.

Hence, there is a significant gap in the space of operations possible through automated document

editing, thus necessitating the development of methods that can generalize to ambiguous open

vocabulary user requests and convert them into executable commands grounded in specific

action, component, and attribute taxonomy.
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6.3 Task Description

We introduce the task of generating an executable command from a linguistic user request

for editing a document according to the user’s intent. Formally, given a document D to be

edited and the user request defined as a sequence of n tokensW = [t1, t2, · · · tl], we predict the

executable command C of the format: ACTION (< Component >, < Attribute >, < Initial_State >

, < Final_State >, [x, y, h,w]). Here, Action describes the executable function belonging to the

following taxonomy - Add, Delete, Copy, Move, Replace, Split, Merge, Modify. It is followed by

arguments corresponding to the document components to be edited, attributes to be modified,

initial state of the attributes, and the final state of the attributes expected in the edited version. The

Region of Interest (RoI) is represented by the bounding box [x, y, h,w] enclosing the components

to be edited in the input document image, such that (x, y) refers to the top-left coordinate while

h and w refer to the height and width of the bounding box, respectively. We perform end-to-end

command generation task along with the RoI bounding box regression grounded in the document

image.

6.4 DocEdit Dataset

Language-guided image editing has been studied in the past. However, there is no existing

dataset that captures language-guided editing of structured documents such as PDFs, PowerPoint

presentations, and design templates, in which the spatial arrangement of content (text, images,

etc) may be as important as the content itself, and edit operations are localized to specific

regions of a document. Such documents are rich in layout due to the presence of a high variety

of structured components such as tables, graphs, text fields, checkboxes, widgets, lists, and
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backgrounds along with the unstructured text. Therefore, we present the DocEdit dataset

which provides pairs of the document image and user edit requests along with the ground truth

edit command and the final edited version of the document. We present two variants of the

DocEdit dataset: (1) DocEdit-PDF comprising of edits performed on publicly available

PDF documents and (2) DocEdit-Design comprising of edits on design templates.

Data Acquisition: We extracted 20K anonymized PDF documents from the publicly available

Enron corpus and Hierarchical forms (Aggarwal et al. 2020a) datasets with all personally

identifiable information (PII) removed for DocEdit-PDF. We downloaded 12K publicly available

and freely distributed design templates from the Adobe Express platform for DocEdit-Design.

Document Edit Creation: We employed 15 freelance annotators fromUpworkwith verified past

experience in graphic design and Word/PDF document editing. The annotators were provided

with examples and online tutorials for editing PDF and design templates and were encouraged to

provide creative edit requests unique to each document. The edit requests are shuffled and each

annotator is asked to utilize Adobe Acrobat and Adobe Express tools for physically editing PDF

documents and design templates, respectively. We trained both sets of annotators to make them

familiar with the edit creation process so as to guarantee the quality of the dataset. In the training

session, we provided feedback for 100 practice edit requests and the corresponding edited version

of the document per annotator for consistency. We performed this training session multiple

times until the quality of the data has no obvious/critical issues. Ground Truth Collection:

We developed a taxonomy of possible actions, components, and attributes. The annotators

were asked to select the most relevant edit action along with one or more relevant options for

components and attributes. Additionally, we asked the annotators to provide ground truth labels

for the initial state of the component prior to editing, and the final state of the component post-
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editing as text inputs filled in by the annotator based on the user request description and visual

context from the document image. In order to uniquely identify the location of the component to

be edited, we asked the annotators to mark a tightly enclosed bounding box region surrounding

the corresponding component in the document image. We concatenated the labels and bounding

box coordinates to form the output command. Ground truth labels were not sourced from the

same annotator providing the edit request description. Data Quality Estimation: We report a

high degree of agreement (Krippendorff’s alpha) between annotators for the test portion (20%

of the dataset). Edit Reference Types: We further categorize the editing requests as direct,

object-referencing, or text-referencing requests. Direct requests are self-contained with specific

cues about the component to be modified. We see that a majority of samples in our dataset are

indirect requests that refer to a component or text in a document through their relative position,

making the task challenging due to the necessity to resolve indirect object references. Data

Splits: We split both DocEdit-PDF and DocEdit-Design into train, validation, and test in

the ratio of 70:10:20.

6.5 Methodology

We present DocEditor (see Figure 6.2), a neural architecture that takes in the user request

text and document image as input and predicts an executable edit command by generating the

textual functional arguments along with regressing the bounding box coordinates of the edit RoI.

Our model can be seen as a sequence of five phases: (a) multimodal feature extraction to obtain

the user request embedding, visual object embeddings, and document text token embeddings, (b)

obtaining text-enriched visual object representations, (c) generating an executable command by
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Figure 6.2: Overview of our proposed system, DocEditor: Object boxes and document

text tokens obtained by the object detector and OCR system from the document image are

combined using multi-headed attention to form text-enriched visual object embeddings. These

are concatenated with the encoded text request and [REG] token to form the multimodal input to

the Transformer model. A text decoder generates command text in an auto-regressive way. The

output hidden states of the object boxes and document text token embeddings are used to create

a Layout Graph with nodes joining Object boxes and document text boxes learned through a

Gated R-GCN. We perform node classification for anchor box prediction. The graph embedding

obtained through the readout function is combined with the [REG] token embedding to regress

the RoI bounding box coordinates.

combining the linguistic and visual input representations and passing the combination through

a Transformer encoder-decoder, and (d) a layout graph for encoding spatial relationships (e) RoI

bounding box regression of the command’s target region.

6.5.1 DocEditor Model

Multimodal Feature Extraction: Our model receives input from three modalities: textual

request description, the document’s visual objects, and document text tokens. We extract

embeddings corresponding to each modality and project them into a common d-dimensional

latent space. (1) Textual Request Embedding: Given the user request, we encode the request

words w1,w2, · · · ,wi into a sequence of T WordPiece tokens using SentencePiece (Kudo and

Richardson 2018). We use a vocabulary of 32,000 workpieces obtained from a pre-trained
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Transformer model to convert the tokens into the request text embedding, and then project them

into a d dimensional embedding, yielding zrtext ∈ Rd×T
. (2) Visual Object Embedding: Given

a document image, we use pre-trained object detectors to obtain a set of N visual objects in the

document. Inspired by (Singh et al. 2019), we extract the visual object features from the object

detector’s output. These features are linearly transformed into d-dimensional vector space to

get the object embedding as zobj ∈ Rd×N
. Further, we extract the normalized 2D-bounding

box coordinate bobjn of each object box. (3) Document Text Embedding: We obtain a set

of M document text tokens from the document image using the OCR system. We extract the

300-dimensional FastText vector (Bojanowski et al. 2017), 604-dimensional Pyramidal Histogram

of Characters (PHOC) (Almazán et al. 2014) vector, and normalized 2D bounding box coordinates

bdtextm . We concatenate all the features and linearly project them into a d-dimensional space to

get the final document text embedding as zdtext ∈ Rd×M
.

Text-enriched Visual Object Representation: Building a common embedding space for user

request text, image features, and document text is challenging because there may be hundreds

of document text tokens in a text-rich document. Fitting the entire set of document text tokens

in the input space may become infeasible due to the increasing computational complexity of

multi-headed attention that grows quadratically to the input dimension space. Moreover, not

all document text contributes equally to grounding the edit text in the image. There is a need

to better exploit the associations between bounding boxes corresponding to document objects

(e.g., paragraphs) and the nearby document text at a document level to handle such edit requests

that indirectly reference local document objects through their associated document text tokens.

Thus, we propose the Text-enriched Document Object representation module (as shown in Fig

6.2) which contextually integrates the visual objects with their overlapping document text by
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computing the position-guided attention score vector an between the nth visual object and m

document text tokens for all n = 1, · · · ,N as follows,

an = softmax((WQbobjn )
T ∗ [WKbdtext

1
, · · · ,WKbdtextM ] (6.1)

where WQ
and WK

are the query projection matrix and key projection matrix, respectively.

The document text attended embedding representation for the nth visual object is calculated as

the weighted sum of the M document text embeddings given by following equation zobj|dtextn =

[zdtext
1

, · · · , zdtextM ] ∗ aTn . Each nth object is then represented by aggregating the object feature

embedding zobjn , document text attended object representation zobj|dtextn and the linear projection

of the object bounding box coordinate W objbobjn given as: x̂objn = zobjn + xobj|dtextn +W objbobjn . The

input sequence of object embeddings is represented by ẑobj = [ẑobj
1

, · · · , ẑobjN ].

Multimodal encoder-decoder for command generation: We first fuse the multimodal

input context comprising of user request embedding zrtext and Text-enriched visual object

representation ẑobj . We further pre-append a learnable embedding (called [REG] token (Deng

et al. 2021), and denoted by r) to the multimodal input for mapping the spatial location of the edit

intent. The combined multimodal embedding input for our encoder-decoder model is formulated

as zinput = zr ⊕ ẑobj ⊕ r , where ⊕ represents concatenation. The [REG] token is randomly

initialized at the beginning of the training stage and optimized with the whole model.

We then utilize the Text-to-Text (T5) Transformer (Raffel et al. 2020) as our base encoder-

decoder architecture to take our input and generate a command sequence. We retain the

originally proposed model while modifying the input and output layers to accommodate the

additional [REG] token. The multi-head attention mechanism in the Transformer model al-

lows each pair of tokens from the joint embedding to attend to each other across modali-
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ties. As a result, the decoder’s hidden states as well as the output state of the [REG] token

can leverage a consolidated multi-modal representation for localization-aware and layout-

oriented command generation and box coordinates regression tasks. The output hidden states

from the Transformer model can be represented as hout = Transformer(zinput) such that

houtput = [hrtext
1

, · · · , hrtextT ; hobj
1

, · · · , hobjN ; hr], where hrtext , hobj , and hr refer to the output

hidden states corresponding to the request text, object, and [REG] embeddings, respectively. We

perform greedy decoding, i.e. choose the highest-probability logit at every time step, to generate

the output command text.

A Layout Graph to Encode Spatial Relationships: User requests often indirectly reference

the components relative to other neighboring objects or text in the document. We hypothesize

that the model should reason about the local layout within the region of interest for improving

its predictive performance. Hence, we build a Document Layout Graph GD = (V , E) to encode the

relative spatial relations between visual object boxes and text positions. Here, V = {V obj
,V dtext

},

where V obj
,V dtext

are the set of nodes corresponding to N object nodes V obj
1

, · · · ,V obj
N , and M

document text token nodes V dtext
1

, · · · ,V dtext
M , respectively. The node embeddings of object nodes

are extracted from the output hidden states corresponding to the object boxes hobjn ∀n ∈ {1, · · · ,N }.

In the case of document text token nodes, we directly use the document text token embedding

zdtextm ∀m ∈ {1, · · · ,M} as the node embedding. The Layout Graph contains three types of edges

E: (1) Object-Text Token Edges: directed edges for node affiliation if the document text token

box lies entirely within the object box. (2) Text-Text Token Edges: Connecting all neighboring

document text token boxes may lead to dense and isolated components, while joining adjacent

tokens in the same line may produce disconnected components. We instead build a β-skeleton of

all document text token boxes in the document image with β = 1 (Kirkpatrick and Radke 1985)
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since such edges provide a balance between connectivity within a local cluster of document

text tokens and ensure that the whole graph is one connected component (Berg et al. 1997).

The graph is constructed on peripheral points of the document text token boxes with at most

one edge between each pair of boxes. All connections in the β-skeleton graph are added as

undirected edges to the layout graph. (3) Object-Object Box Edges: directed edges weighted

by the type of spatial position between two object boxes in the document. Inspired by (Yao et al.

2018), we define ten types of spatial relations – inside, overlap, and 8-way orientations including

up, down, left, right, upper-left, upper-right, bottom-left, bottom-right.

We use the Gated Relational Graph Convolution Network (GR-GCN), a gated variant of

R-GCN to model our layout graph. GR-GCN is able to learn highly relational data relationships in

densely-connected graph networks. The layout graph is passed through two layers of GR-GCN

to obtain enriched graph node embeddings G
′′
D.

Bounding Box Prediction: Our proposed model directly infers the bounding box coordinates

of the region of interest over the document image. We aggregate the node embeddings corre-

sponding to all object and document text token nodes in G
′′
D using a summation-based graph

readout function (Xu et al. 2018b) which is mathematically denoted as gout = ρ(
∑

vi∈G
′′
D
Wgvi),

where Wg is a learnable matrix. We concatenate the output state of [REG] token from the

Transformer decoder hr and the readout output gout , and pass it through a regression block

which is implemented as an MLP with a ReLU activated fully-connected layer and a prediction

head with four outputs for each bounding box coordinate b
′
as b

′
= ReLU (Dense(hr ⊕ gout).
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System EM (%) Word Overlap F1 ROUGE-L Action (%) Component (%)

Baselines

Generator-Extractor 6.6 0.25 0.22 36.7 8.5

GPT2 11.6 0.76 0.76 79.7 27.2

BART 19.7 0.78 0.76 81.2 29.5

T5 20.4 0.79 0.76 81.4 29.8

BERT2GPT2 7.3 0.37 0.39 45.2 9.2

LayoutLMv3-GPT2 8.7 0.39 0.40 47.6 10.3

CLIPCap 8.5 0.25 0.27 44.5 9.34

DiTCap 23.6 0.81 0.80 82.5 25.5

Multimodal Transformer 31.6 0.82 0.83 83.1 32.4

Ours DocEditor 37.6 0.87 0.86 87.6 40.7

Ablation

w/o Text Embedding 6.7 0.15 0.12 6.75 6.5

w/o Visual Embedding 33.6 0.74 0.75 77.5 36.9

w/o Layout Graph 32.7 0.75 0.76 82.2 37.5

w/o Bounding Box Regression Loss 33.6 0.80 0.79 85.2 38.2

w/o Anchor Box Prediction Loss 35.8 0.84 0.83 84.4 39.5

(a) DocEdit-PDF

System EM (%) Word Overlap ROUGE-L Action (%) Component (%) Attribute (%)
Generator-Extractor 10.1 0.33 0.31 33.4 15.9 14.5

GPT2 16.6 0.78 0.76 76.4 24.5 18.2

BART 19.5 0.79 0.77 77.1 25.1 25.3

T5 20.0 0.80 0.78 77.5 25.8 25.7

BERT2GPT2 6.5 0.31 0.30 36.0 18.6 9.5

LayoutLMv3-GPT2 9.6 0.36 0.34 38.3 20.1 12.6

CLIPCap 9.3 0.24 0.25 19.78 13.6 14.2

DiTCap 18.9 0.79 0.77 77.8 25.4 25.6

Multimodal Transformer 32.8 0.83 0.81 79.5 48.6 35.2

DocEditor 38.2 0.86 0.86 84.5 52.2 43.5
w/o Text Embedding 6.1 0.13 0.11 6.4 6.9 6.5

w/o Visual Embedding 34.0 0.77 0.77 79.5 44.2 37.7

w/o Layout Graph 33.5 0.79 0.77 79.1 46.1 38.3

w/o Bounding Box Regression Loss 34.2 0.83 0.82 82.5 47.1 39.2

w/o Anchor Box Prediction Loss 35.0 0.82 0.78 83.3 49.8 41.7

(b) DocEdit-Design

Table 6.2: Results comparing the performance of DocEditor for command generation with

baselines and ablations on DocEdit-PDF and DocEdit-Design datasets. Bold represents the best-

performing model. DocEditor outperforms all baseline methods.

6.5.2 Training DocEditor

Command Generation Loss: For generating the textual part of the desired output command,

we utilize the pre-trained weights of T5 which were obtained by performing a denoising pre-

training task on 750 GB cleaned English text data from the publicly-available Common Crawl

web archive. We fine-tune the backbone Transformer architecture using standard maximum

likelihood, i.e. using teacher forcing (Williams and Zipser 1989b) and a cross-entropy loss

between predicted token t
′
i and ground truth token ti as Lgen = –

∑
i ti log(t

′
i ), where ti = 1 for
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token predicted correctly.

Bounding Box Regression Loss: To address the problem of scaling effects due to varying

sizes of the predicted boxes, we predict normalized bounding box coordinates between 0 and

1000, which are then scaled by the document image dimensions to retrieve original dimensions.

We utilize a weighted sum of the scale-invariant generalized IoU loss (GIoU) (Rezatofighi et al.

2019) and the smooth L1 loss for the standard regression problem. Let b = (x, y,w, h) denote

the prediction the normalized ground-truth box as b
′
= (x

′
, y

′
,w

′
, h

′
). The training objective

of our bounding box regression is: Lbbox = Lsmooth–l1(b, b
′
) + λLgiou(b, b

′
), where Lsmooth–l1

and Lgiou are the smooth L1 loss and GIoU loss, respectively. λ is a hyperparameter. Anchor

Box Prediction Loss: Not all object or document text token boxes are relevant to the edit

intent. Hence, the model should have the ability to select the ones that highly overlap with the

ground truth RoI. We treat each node in the layout graph as an anchor and perform binary node

classification to predict if the object or document text token box lies entirely within the ground

truth region of interest (RoI). We optimize the anchor prediction as an auxiliary task through the

binary cross-entropy loss as Lanchor = –

∑
Vi∈G

′′
D
yi logVi where yi = 1 if the object box overlaps

with RoI, else 0.

Multitask Training: Command generation, bounding box regression and anchor box prediction

tasks are all correlated as they share a common linguistic, spatial and visual latent space, and can

reinforce each other. Hence, we use multi-task training to optimize both tasks simultaneously.

The final optimization uses a weighted sum of Lgen, Lreg , Lanchor such that total loss L = λ1Lgen +

λ2Lreg + (1 – λ1 – λ2)Lanchor , where the weighting factors λ1, λ2 are hyperparameters.
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6.6 Experiments

Baselines: We compare DocEditor against several unimodal and multimodal baselines

for the command generation task:Seq2seq Text-only: We use GPT2 (Radford et al. 2019),

BART (Lewis et al. 2020b), and T5 (Raffel et al. 2020) that input only the user text description.

Generator-Extractor uses BERT+DETR with an autoregressive decoding head for command

generation. Tranformer Encoder-Decoder (Rothe, Narayan, and Severyn 2020): Combines

GPT2 decoder with LayoutLMv3 encoder (LayoutLMv3-GPT2) or BERT encoder (BERT2GPT2).

Prefix Encoding (Mokady et al. 2021): We utilize intermediate learned representations from a

pre-trained encoder (CLIP (Radford et al. 2021) and DiT (Li et al. 2022)) as a prefix to the GPT2

decoder network and fine-tune on downstream tasks. Multimodal Transformer (M4C) (Hu

et al. 2020): Combines multimodal input from user description, visual objects, and document text

with a text generation decoder instead of the copy pointer mechanism. For the RoI bounding

box prediction task, we compare DocEditor against visual grounding methods such as ReSC-

Large (Yang et al. 2020b) and TransVG (Deng et al. 2022) for direct coordinates regression.

Evaluation Metrics: We report exact match accuracy (EM %), Word overlap F1and ROUGE-L

(Lin 2004). In order to evaluate at a more granular level, we compute the exact match accuracy

for actions, components, and attributes. We evaluate bounding box prediction in terms of top-1

accuracy (%) (Jaccard overlap ≥ 0.5).

6.7 Results

Performance Comparison of command generation: Table 6.2 compares the performance

of DocEditor model against other contemporary baselines on the DocEdit-PDF and

108



System DocEdit-PDF DocEdit-Design
Top-1 Acc (%) Top-1 Acc (%)

ReSC-Large 17.04 15.89

TransVG 25.34 24.89

DocEditor 36.50 34.34
w/o Text Embedding 3.33 3.25

w/o Visual Embedding 22.45 20.47

w/o Layout Graph 14.48 15.56

Table 6.3: Results comparing the performance of DocEditor for RoI bounding box regression

with baselines and ablations on DocEdit-PDF and DocEdit-Design datasets.

Dataset GPT2 BART T5
CAISE (Kim et al. 2022) 60.1 59.5 42.8

ILLC-IER (Lin et al. 2020b) 57.7 55.8 46.9

DocEdit-PDF (Ours) 11.6 19.7 20.4

DocEdit-Design (Ours) 16.6 19.5 20.0

Table 6.4: Results comparing the difficulty of contemporary language-driven image-editing

datasets.

DocEdit-Design datasets. Our proposed model achieves significantly better performance

across both PDF and design template documents when compared to the text-only and multi-

modal baselines used in prior command generation work. We attribute this to DocEditor’s

ability to localize structured components through Text-enriched object box embeddings and

contextualize relevant visual objects and document text tokens through multi-head attention in

contrast to text-only approaches that lose these visual cues and prior multi-modal approaches

that do not leverage the document structure. Moreover, DocEditor exploits the anchor box

prediction loss to determine the mutual importance of each object and document text token

box which helps it improve over the multimodal transformer baseline. However, it can also be

observed that there is ample room for improvement in both types of document settings. We

attribute this to the inherent difficulty of the task and motivate further research by discussing

current shortcomings through error analysis.

109



Performance Comparison of RoI Prediction: We compare the RoI bounding box

prediction performance of baselines with the proposed model in Table 6.3. We re-purpose scene-

text visual grounding baselines for our task due to similarity in the input space. Transformer based

TransVG (Deng et al. 2021) model outperforms other competitive baselines as it contextual learns

the visual and linguistic information through a common embedding space. Our method further

improves this architecture by enhancing the output of [REG] token embedding by output from

the layout graph. Ablation Analysis: Table 6.2 and 6.3 analyze the ablations for each component

of the DocEditor. The textual modality of the user request is most critical–removing it yields

the random baseline. Removing any other model component does not degrade the performance

below this benchmark, which aligns with the fact that the edit command generation task cannot

be solved without the edit request descriptions. Removing the Layout Graph severely degrades

bounding box regression performance as well as text match accuracy because the model loses

the ability to spatially localize the relevant objects and document text tokens. Removing the

text-enriched object box embedding significantly affects the consistency of text being generated

and the regression box overlap as the model can no longer utilize the document text to match the

referred component in the descriptions. Comparison with contemporary tasks: We compare

the difficulty of our proposed language-guided document editing task with existing image editing

tasks through their performance on naive text generation models. We hypothesize that if the

text-only modality can provide enough information for solving the task, it will make the image

modality redundant and trivialize the overall task to seq2seq generation. Table 6.4 summarizes

the performance of GPT2, BART, and T5 across language-guided image editing datasets - CAISE

(Kim et al. 2022) and ILLC-IER (Lin et al. 2020b). We observe that text-only models achieve

a high exact match accuracy (6̃0%). We conclude that samples in these datasets contain many
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generic edit commands that are neither user-specific nor require a visual or spatial understanding

of localized components. Our dataset struggles to achieve one-third of performance (≤ 20%)

compared to other datasets, necessitating research in non-trivial multimodal methods for closing

the performance gap with expert humans. We observe that the proposed model is unable to

handle commonsense reasoning on world knowledge and makes errors when it is required to

parse several attribute modifications simultaneously for the same component.

6.8 Conclusion and Future Work

We present a dataset for language-guided document editing with instances of user edit requests on

PDFs and design templates and their ground truth executable command for real-world document

editing automation. We also present DocEditor, a Transformer-based localization-aware

multimodal model that outperforms the competitive baseline for command generation tasks and

edit RoI prediction tasks. We provide qualitative analysis with examples to gain insights on the

limitations of the proposed model to motivate future work along several interesting directions

of conversational document editing and intelligent document assistance.

111



CHAPTER 7

DocLayoutTTS: Dataset and Baselines for Layout-informed

Document-level Neural Speech Synthesis

Abstract

We propose a new task of synthesizing speech directly from semi-structured documents where

the extracted text tokens from OCR systems may not be in the correct reading order due to the

complex document layout. We refer to this task as layout-informed document-level TTS and

present the DocSpeech dataset which consists of 10K audio clips of a single-speaker reading

layout-enrichedWord document. For each document, we provide the natural reading order of text

tokens, its corresponding bounding boxes, and the audio clips synthesized in the correct reading

order. We also introduce DocLayoutTTS, a Transformer encoder-decoder architecture that
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generates speech in an end-to-end manner given a document image with OCR extracted text.

Our architecture simultaneously learns text reordering and mel-spectrogram prediction in a

multi-task setup. Moreover, we take advantage of curriculum learning to progressively learn

longer, more challenging document-level text utilizing both DocSpeech and LJSpeech datasets.

Our empirical results show that the underlying task is challenging. Our proposed architecture

performs slightly better than competitive baseline TTSmodels with a pre-trainedmodel providing

reading order priors.

7.1 Introduction

Text-to-speech (TTS) is an important task in speech language processing to enable human-

machine interaction that is intelligible and indistinguishable from human speech. Prior works in

neural TTS have achieved near human-level speech synthesis ability using recent attention-based

autoregressive methods such as Tacotron 2 (Shen et al. 2018) and Transformer-based end-to-end

speech synthesis models (eg. Transformer-TTS) (Li et al. 2019). However, synthesizing coherent

speech from text in documents remains a challeng problem due to two reasons: (1) long sequence

length of input text; (2) lack of correct reading order provided by off-the-shelf Optical Character

Recognition (OCR) engines that tend to arrange all recognized tokens in a top-to-bottom and

left-to-right manner, and disregard the layout of the long-form text (Clausner, Pletschacher,

and Antonacopoulos 2013).

The capability to perform long-context speech synthesis is needed for several tasks such

as singing voice synthesis (SVS) systems (Hono et al. 2021), document readers and screen

reading systems (Pradhan et al. 2022), reading out audio-based online content (e.g. news
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articles, audiobooks, and podcasts), and conversational speech generation (Cong et al. 2021).

Typically, the raw input text comprising of large coherent speech units such as paragraphs is

pre-processed into utterances (e.g., sentences) and are treated independently from each other,

thus discarding the original ordering. Moreover, directly concatenating parts of independently

synthesized audio units can make it unnatural due to various reasons. These include lack of

spontaneous prosodic phenomena like filled pauses, prolongations, voice modulation, variations

in fundamental frequency through time, or the speech rate peaking around the middle of a larger

unit (Cambre et al. 2020). Prosodic variation is governed by context at different levels, and

contextual information is expressed through prosody (Cole 2015).

Current TTS systems assume that the reading order sequence of input text tokens is

correct. However, the reading order itself depends on the structure of the document and is not

known apriori. In fact, current OCR systems cannot infer this correctly from complex spatial

documents. Linearizing text tokens based on bounding box coordinates is not optimal for certain

document types, such as multi-column templates, tables, forms, and invoices, where text may

be structured spatially in a layout. Synthesizing speech from a scrambled sequence of text

tokens may result in unacceptable results, thereby deteriorating the quality of human computer

interactions and making documents inaccessible for people with visual disabilities (Pradhan

et al. 2022). Recently, some deep learning-based methods have been proposed to perform reading

order detection (Wang et al. 2021a). However, pre-processing raw text sequences discards most

orthographic knowledge of the structure of the original text data, making it harder to accurately

model prosodic variations in speech. Additionally, mere reordering of text tokens followed by

synthesis of isolated short sentences distorts the natural phrasing (Klimkov et al. 2017) of text,

and may discard the larger context and structure of the long-form text.
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Main Contributions: We propose the task of document-level layout-informed text-to-speech

synthesis that aims to generate human-level speech corresponding to the correct reading order

of the text present in a semi-structured document. Furthermore, we release DocSpeech, a

benchmark dataset of 10K speech samples corresponding to Word documents with a wide variety

of semi-structured layouts.

The process of synthesizing layout-informed speech for semi-structured documents can

benefit from solving the reading order unscrambling and long-form audio generation tasks

simultaneously. Therefore, we present a strong neuralmodel,DocLayoutTTS, to jointlymodel

text reading order detection as well as speech mel-spectrogram synthesis using a Transformer

encoder-decoder. Using curriculum learning (Kong et al. 2021), our DocLayoutTTS model

demonstrates competitive performance on the task of layout-informed document-level TTS.

Some novel aspects of our work include:

1. We propose a new task for layout-informed document-level TTS to generate speech from

text present in semi-structured documents. We curate a public dataset, DocSpeech,

which consists of 10K audio clips of a single speaker reading documents with complex

layouts. We provide OCR reading order as well as unscrambled text transcription for each

clip. The resulting audio clips have a total length of approximately 830 hours, with an

average clip duration of 5 minutes, compared to 10 seconds in the LJSpeech dataset.

2. We present DocLayoutTTS, a neural baseline architecture that simultaneously learns

text reordering, newline prediction, and mel-spectrogram prediction for synthesizing

speech from documents in our proposed dataset in a multi-task fashion.

3. Our proposed model uses curriculum learning to learn increasingly long document-level
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speech synthesis, starting with short speech utterances from the LJSpeech dataset. We

compare the performance of DocLayoutTTS with other strong baselines and find that

DocSpeech is a challenging dataset for the proposed task.

7.2 Related Work

Long-form document-level TTS: Recurrent neural network models such as Tacotron (Wang

et al. 2017) use attention-mechanism to align the target text and output a spectrogram. On the

other hand, Tacotron 2 (Shen et al. 2018) system uses location-sensitive attention to extend

the alignment between the encoder and decoder to the information of the previous time step.

However, they are still limited to synthesizing few sentences of text into speech due to constraints

on long-range input sequences. Transformer-based end-to-end text-to-speech synthesis models

such as Transformer-TTS (Li et al. 2019) use multi-headed attention to solve the long range

dependency problem. However, as the sequence length of the input increases, the computational

complexity of training the Transformer model rises quadratically. (Hwang and Chang 2021)

used attention-masking along with curriculum learning to extend the maximum synthesis length

to 5 minutes. However, most of these prior works are limited by the fact that they rely on

well-formed phoneme sequences as input to generate the mel-spectrograms. We hypothesize

that a multi-task objective that simultaneously learns reading order detection, newline prediction,

and mel-spectrogram generation can help exploit latent layout signals for recovering the correct

reading order, thereby preserving the natural prosody required for human-like document-level

speech.

Reading Order Detection in Text: Several previous studies have explored reading order
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Statistics LJSpeech DocSpeech

Total Clips 13,100 10,000

Total Words 225K 1800K

Total Characters 1308K 10500K

Total Duration 24 hr 830 hr

Average Clip Duration 6.57 sec 5 min

Min Clip Duration 1.11 sec 1.05 min

Max Clip Duration 10.10 sec 10.2 min

Mean Words per Clip 17.23 156

Table 7.1: Dataset statistics comparing the proposed DocSpeech with LJSpeech dataset.

DocSpeech has fewer total speech samples but significantly larger total and mean clip dura-

tion.

prediction in text. (Aiello, Smeulders, et al. 2003) was one of the earliest works to propose a

rule-based learning method for identifying reading order sequences in text. (Malerba, Ceci, and

Berardi 2008) applied domain knowledge to determine the reading order relationship between

logical document components. More recently, deep learning-based methods have been widely

used for this task. (Li et al. 2020f) used visual layout features encoded through a graph neural

network to reorganize OCR text into a proper sequence. Most recently, (Wang et al. 2021a)

provided an seq2seq model for text reordering based on semantic, visual and spatial signals.

In contrast, our work is the first attempt in terms of studying the necessity of reading order

detection for text-to-speech tasks.
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7.3 DocSpeech Dataset

We create DocSpeech, a synthetic dataset by re-purposing the open-source ReadingBank

dataset (Wang et al. 2021a) which provides semi-structured Word documents with the reading

sequence of words as extracted from DocX files, correct reading order sequence based on

structured layout, as well as corresponding bounding boxes for each text token extracted from

the PDF versions of the DocX files. We sample a subset of 10K documents from ReadingBank

such that each file has more than 50 words.

We used the Gentle Forced Aligner
1
, a Kaldi

2
-based audio alignment tool to perform

forced alignment of words and audio snippets on LJSpeech
3
dataset. We obtain the word-level

audio alignment from the generated time-marked conversation file which is used to construct

an audio mapping of each unique word with its corresponding mel-spectrogram. We combine

mel-spectrograms corresponding to each token in the correct reading order of the document

text file. However, if simply joined, an unnatural voice may be generated due to the audio

concatenation step. To prevent this, we insert an empty m-token (mel spectrogram token)

between each consecutive word-level mel-spectrogram. The m-token, allows the speech to pause

naturally between consecutive mel-spectrograms, giving the effect of naturally linked words.

DocSpeech contains 10,000 document-speech pairs with an average clip duration of 5 minutes,

out of which 100 files are used for testing and the remaining for training. Table 7.1 summarizes

the dataset statistics about the DocSpeech dataset.

1
https://lowerquality.com/gentle/

2
https://kaldi-asr.org/

3
https://keithito.com/LJ-Speech-Dataset/
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7.4 Our Approach

In this section, we describe the problem statement, individual components of DocLayoutTTS

model as illustrated in Figure 7.1, and training paradigm for optimizing the model.

7.4.1 Problem Formulation

We formally define the document-level layout-informed text-to-speech task. Given a semi-

structured document D with words wi acquired through an OCR along with their corresponding

bounding box coordinates (x1, y1, x2, y2) (where (x1, y1) and (x2, y2) are the top-left and bottom-

right coordinates, respectively), we aim to synthesize speech mel-spectrogram S such that the

constituent words are sorted into their correct reading order in the speech output. We derive the

ground truth reading order from the embedded XML metadata of Word documents. Further, the

WORD documents are converted into the PDF format to extract the 2D bounding box of each

word using Google Tesseract
4
.

7.4.2 Textual Layout Encoder

Inspired by Transformer-TTS architecture (Li et al. 2019), we include a text-to-phoneme converter

to learn the mapping between different regularities between the text syllabi and phonemes. Each

incoming phoneme is passed through an encoder prenet to embed the phoneme input into a

trainable embedding of 512 dimensions, followed by a batch normalization, ReLU activation, and

a dropout layer. We add positional encoding (PE) (Vaswani et al. 2017) scaled by a factor of α to

the processed phoneme input to take advantage of the relative token sequence of input.

4
https://github.com/tesseract-ocr/tesseract
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Additionally, we add four 2D-positional encoding (PE2Dx0 , PE
2D
x1 , PE

2D
y0 , PE

2D
y1 ) to the phoneme

input for learning the relative spatial position in a document. The four 2D-positional embedding

layers correspond to the upper (y0), lower (y1), left (x0), and right (x1) coordinate directions,

respectively. Each input phoneme hi being fed to the encoder is represented by the following

equation:

hi = prenet(phonemei) + α ∗ PE(i) + β ∗ (PE2Dx0 (i) + PE2Dx1 (i) + PE2Dy0 (i) + PE2Dy1 (i))

7.4.3 Decoder

Reading Order Sequence Decoder: In the sequence decoding stage, the source and target are

reordered sequences. We constrain the target sequence prediction to be the correctly ordered

indices in the source sequence. Additionally, we also predict if a particular input position indicates

the start of a new line in the text document. Specifically, we perform a binary classification at

each decoding step to check if the token denotes the end of reading order line due to layout

constraints or end of page width.

Melspectrogram Decoder: Similar to TransformerTTS (Li et al. 2019), we use a Transformer

decoder using multi-head attention to integrate the encoder hidden states in multiple perspec-

tives. We experiment with a larger embedding space of d = {1024, 2048, 4096} compared to 512

embedding space of Transformer TTS to better model long-range context vectors. We employ a

WaveNet vocoder to synthesize audios from the generated mel-spectrograms.
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Figure 7.1: DocLayoutTTS model takes a sequence of text tokens as input along with their

bounding box coordinates. Encoder Prenet converts the input into a sequence of phonemes

which are passed through a phoneme embedding. Scaled Position encoding and Layout encoding

are added to the input and passed through the Transformer encoder. Mel decoder predicts the

mel spectrograms while the reading order sequence decoder predicts the indices corresponding

to each word. We also predict the newline which denotes a break in the left-to-right traversal

of reading order sequence in the document. Curriculum learning feeds increasingly long text

sequences as input to gradually train the model with more difficult input samples.
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7.4.4 Multi-task Training

We use mean absolute error (MAE) to predict the mel-spectrogram. Reordered sequence index

classification uses categorical cross-entropy loss, while newline prediction uses a weighted binary

cross-entropy loss to adjust for class imbalance. All three tasks are correlated and reinforce each

other, so we use multi-task training to optimize them simultaneously. The final optimization uses

a weighted sum of the link prediction loss and element classification loss where the weighting

factors λ and γ are hyperparameters as shown in the following Equation:

Ltotal = λLmel + γLreorder + (1 – λ – γ)Lnewline

7.4.5 Curriculum Learning

Inspired by (Hwang and Chang 2021), we utilize curriculum learning (Bengio et al. 2009) to

improve the training process for document-level TTS. Curriculum learning is a deep learning

training process where the difficulty of learning becomes gradually more complex. We apply

curriculum learning to train the encoder-decoder network to help generate longer sequence

inputs without losing long-range context. We utilize LJSpeech and our proposed DocSpeech

to achieve an increasingly difficult curriculum in terms of the input sequence length. We initially

start with sentence-level input of LJSpeech. In the subsequent iterations, we input document

text with increasing lengths, until all text input sequences have been exhausted. In order to fit

the data in the limited GPU capacity, the model was set to automatically reduce the batch size to

1/2 whenever the GPU capacity limit was reached. This process continued until the batch size

was reduced to 1 and could not go down further.
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7.5 Experiments

In this section, we detail our experiments to test the proposed DocLayoutTTS model with

the DocSpeech dataset. We compare our method with strong baselines and evaluate the

synthesized audio quality in terms of MOS score.

7.5.1 Baselines

We compare DocLayoutTTS with two state-of-the-art pre-trained TTS models - Tacotron 2

(Shen et al. 2018) and TransformerTTS (Li et al. 2019). The input to these models is the original

sequence of text extracted by the OCR. LayoutReader (Wang et al. 2021a) is a state-of-the-art

reading order detection model. We also test using a separate model for text reordering and using

the reordered output as input to TTS models. In this direction, we use a pre-trained LayoutReader

for reading order detection, followed by Tacotron 2 and TransformerTTS for TTS. This provides

an opportunity to analyze the effects of decoupling the reading order detection process from

speech synthesis. We also compare our method to DLTTS, an RNN-based document-level TTS

model.

7.5.2 Evaluation

We select 100 testing examples from the DocSpeech dataset. Each test sample consists of

the document image, extracted text tokens along with their bounding boxes, and ground truth

speech output. We evaluate the mean option score (MOS) on these 100 documents generated by

different models. We randomize the speech samples from baselines, our model, and the ground

truth, followed by equal-sized sampling to ensure that the expert testers don’t know the sources
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of speech files. MOS is performed by 5 fluent English speakers who are experts in the domain of

audio processing. MOS evaluation involves testers rating the quality of audio on a scale from 1

to 5 with 0.5-point increments. We also compare the mel-spectrograms generated by our model

with baseline models to visualize the effect of our contributions to the quality of generated audio.

7.5.3 Training Details

We used the Pytorch framework for deep learning models. We used two Nvidia Tesla P100

GPUs to train the models. We enabled multi-GPU training to enlarge the batch size. In order to

accommodate large input sequences, we used dynamic batch sizes to maximize GPU utilization.

DocLayoutTTS inputs phoneme sequence. Hence, the input text was pre-processed to get the

phoneme sequences by following sentence separation, text normalization, word segmentation

and pronunciation. Similar to TransformerTTS (Li et al. 2019), we use a WaveNet vocoder

conditioned on mel-spectrograms and trained it simultaneously using teacher forcing with a

sample ground truth rate of 16000 and frame rate of ground truth mel-spectrogram equal to 80.

Hyperparameters α, β, γ,λ were sampled between 0 and 1, with equal intervals of 0.1. We use

Adam optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10
–6

and a learning rate of 10
–3
.

7.6 Results and Analysis

ComparisonwithBaselines: Table 7.2 shows the comparison of our proposedDocLayoutTTS

with baseline models. Tacotron 2 and TransformerTTS perform poorly on the DocSpeech

dataset due to their inability to handle text sequences longer than a few sentences as well as

lack of layout information for token reordering. Hence, they suffer from missing words, and

repetitions and the output speech is unintelligible. This is also evident in the mel-spectogram
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visualizations where parts of the generated spectrogram is destroyed at multiple locations in-

dicating failure in the decoding step. Using pre-trained LayoutReader (Wang et al. 2021a) to

unscramble the reading order and feed that as input to TTS models performs significantly better.

However, the long-form text still hurts the performance despite being fed the reordered input.

Additionally, we experiment with the DLTTS model, which claims to be able to synthesize

speech sequences for up to 5 minutes. LayoutReader + DLTTS forms the strongest baseline

with a remarkable improvement in MOS score compared to others. However, it still suffers from

error propagation from decoupled reading order prediction and mel-spectrogram prediction. We

observe that DocLayoutTTS outperforms other strong baseline models. This improvement

can be attributed to its ability to encode layout information in an end-to-end fashion as well

as document-level training using curriculum learning. However, it can also be observed that

the outperformance of our architecture is not quite large in magnitude, and significantly falls

short compared to the ground truth recordings. We attribute this to the inherent difficulty of

the task. Further research in more sophisticated models may help improve the performance on

DocSpeech.

Ablation Results: We perform a detailed study the contributions of each component in our

proposed architecture to attribute the source of improvements. We experiment by training the

model by removing the newline prediction loss and reorder detection loss, one at a time. We

observe that text reorder detection is crucial for our model to successfully produce coherent

speech clips with correct word order. Newline prediction loss helps themodel to take advantage of

the geometric information provided by visually rich documents. Without the newline prediction

loss, the model struggles to generate speech samples with naturalness in pauses and voice

modulations. Finally, the addition of curriculum learning helps the model to smoothly extend
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System MOS

Tacotron2 (Shen et al. 2018) 1.75 ±0.04

TransformerTTS (Li et al. 2019) 1.82 ±0.02

LayoutReader (Wang et al. 2021a) + Tacotron2 (Shen et al. 2018) 2.05 ±0.08

LayoutReader (Wang et al. 2021a) + TransformerTTS (Li et al. 2019) 2.08 ±0.03

LayoutReader (Wang et al. 2021a) + DLTTS (Hwang and Chang 2021) 2.25 ±0.02

DocLayoutTTS (Ours) 2.32 ±0.02

GroundTruth 4.65 ±0.08

Table 7.2: Quantitative Results: Comparison of MOS score with baseline models on

DocSpeech dataset. Our proposed model improves the MOS score by 0.07 over the lay-

outReader + DLTTS.

System MOS

DocLayoutTTS (Ours) 2.32 ±0.07

w/o newline prediction loss 2.15 ±0.05

w/o curriculum learning 2.04 ±0.06

w/o reorder detection loss 1.79 ±0.04

Table 7.3: Ablation Results: Comparison of MOS score with ablation models on DocSpeech
dataset. We perform ablation experiments to show the usefulness of different components of

DocLayoutTTS model highlighted in red .

the hidden space to learn long-range text sequences, preventing catastrophic forgetting at the

decoding step.

7.7 Conclusion and Future Work

We present a new dataset titled as DocSpeech for the task of synthesizing speech directly from

semi-structured documents where the text tokens may not be present in correct reading order. We

also present DocLayoutTTS, a strong Transformer-based TTS model that can simultaneously
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learn to predict reading order of the document-level text and synthesize speech corresponding to

the same. Further, our approach uses curriculum learning to extend the self-attention based audio

alignment to long-form document-level input sequences. Although experiments on the proposed

dataset display the effectiveness of our contributions, the task is challenging due to the large gap

in speech quality between the ground truth recording and model-generated audio. In the future,

we aim to explore non-autoregressive solutions that are not impacted by the sequential inference

nature of the current approaches so as to scale well to document-level input text lengths.
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CHAPTER 8

MONOPOLY: Financial Prediction from MONetary POLicY

Conference Videos Using Multimodal Cues

Abstract

Risk prediction and price movement classification are essential tasks in financial markets. Mone-

tary policy calls (MPC) provide important insights into the actions taken by a country’s central

bank on economic goals related to inflation, employment, prices, and interest rates. Analyzing

visual, vocal, and textual cues from MPC calls can help analysts and policymakers evaluate the

economic risks and make sound investment decisions. To aid the analysis of MPC calls, we

curate the Monopoly dataset, a collection of public conference call videos along with their

corresponding audio recordings and text transcripts released by six international banks between
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Inflation is expected to remain elevated in the near term, but should ease in the
course of next year. Overall, financing conditions for the economy remain favourable.
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Figure 8.1: A sample from a Monetary Policy Call held by the Europen Central Bank. The

Governor first presents a prepared press speech, followed by a spontaneous question and answer

(Q&A) session with journalists. The meeting ended with an adverse market reaction that led to

declining currency value and a high volatility in stock prices.

2009 and 2022. Our dataset is the first attempt to explore the benefits of visual cues in addition

to audio and textual signals for financial prediction tasks. We introduce MPCNet, a competitive

baseline architecture that takes advantage of the cross-modal transformer blocks and modality-

specific attention fusion to forecast the financial risk and price movement associated with the

MPC calls. Empirical results prove that the task is challenging, with the proposed architecture

performing 5-18% better than strong Transformer-based baselines. We release the MPC dataset

and benchmark models to motivate future research in this new challenging domain.

8.1 Introduction

Predicting how the prices of a financial asset will vary over a certain period is an important

financial analysis task for investors and policymakers (Lewellen 2006). Understanding the
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sentiment of the economy and it’s associated risk perceptions can help analysts make better

decisions about investment returns, while policymakers can implement cautionary monetary

measures in order to maintain a healthy economy (Cai, Camara, and Capel 2021; Shapiro

and Wilson 2021). With unparalleled advances in multimodal learning, a massive amount of

unstructured data is accessible to investors for financial forecasting (Jiang 2021). One such rich

source of information is the Monetary Policy Conference (MPC’s) call. These hour-long, public

video conferences are held periodically where the governors of a country’s central bank
1
(eg., the

Federal Reserve Bank in the United States) meet to discuss the actions undertaken to improve the

financial conditions of the country, explain their stance on the monetary policy, and assess the

risks to economic growth. The MPC calls are a combination of a prepared press speech by the

governor followed by a spontaneous question-answering session with the journalists (Marchal

2021). The public presentation sheds light on the announcements regarding policy decisions and

gives indications about the future path of the economy. The question-answer session involves

the call participants like media reporters and market analysts engaging in a dialogue with the

governors to analyze a range of economic factors such as inflation, employment, the value of

currency, stock market growth, and interest rates on loans.

Prior works (Boukus and Rosenberg 2006; Rosa 2013) have highlighted the impact of

MPC calls on financial stock markets as evident from a “higher than normal” trading across

different financial assets. For instance, (Gómez-Cram and Grotteria 2022) gives an example

of how the volatility of S&P 500 index can be observed to be roughly three times larger on

days when the Federal Reserve Bank conducts its MPC calls in the US compared to other times.

Hence, shareholders critically analyze the multimodal MPC calls to forecast stock market indices,

1
https://www.investopedia.com/terms/c/centralbank.asp
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treasury bonds, prices of gold, and currency exchange rates post the conference call (Tadle

2022). Prior findings (Gorodnichenko, Pham, and Talavera 2021) suggest that the minutes of

the MPC calls can provide important market-relevant information for several financial assets as

mentioned in Table 8.1 and need to be assessed systematically.

There is anecdotal evidence that non-verbal cues such as complexity of language, vocal

tone and facial expressions of the speakers can be indicative and correlated with trading activities

in the financial markets (Cao 2022; Li, Wu, and Bu 2016). Although existing research has used

text and audio for financial predictions (Qin and Yang 2019a; Sawhney et al. 2020b; Sawhney

et al. 2021a; Ramachandran and DeRose Jr 2018), use of visual cues as part of multimodal input

has been largely limited. Existing NLP literature has focused on what is being said during the

press conferences while there is a need to focus on how it is being said. This can accomplished

by exploiting the visual aspects of the conferences for scrutinizing the human behavior such as

eye-movements, facial expressions, postures, and gaits (Marchal 2021). According to (Weiss

2011), behavioral clues may reflect emotions that subjects might want to hide. Variability across

different speakers makes it extremely difficult to detect these expressions in real time. For

instance, Figure 10.1 depicts an MPC call held by European Central bank where the tone of the

conference takes a more negative turn when the governor tries to evade questions on future

inflation. The textual content indicates an optimistic outlook on long-term inflation despite an

overall pessimistic vocal tone. The followup discussion depicts the speaker hesitancy in indulging

more details to the reporters, accompanied with facial expressions that could indicate stress.

Consequently, the meeting ended with an adverse market reaction that led to declining currency

value and a high volatility in stock prices. Motivated by prior works, we explore multimodal

deep learning approaches that can extract complementary information from multiple modalities
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Financial assets Impact of MPC announcements
Stock Prices Indications of healthy, steadily growing economy increases stock prices

(Large/ Small) Size of stock market - large vs. small, indicates set of all stocks vs. top performing stocks

Gold Price Rise in inflation expectations raises prices of precious metals

Treasury bond yields Higher perceived risk of recession and rising interest rates leads to price increase

(Short/Long-term) Duration of bond term (short vs. long) indicates time expectation of interest rates hike

Currency Exchange Rate Increase in employment and regulated inflation leads to appreciation in value

Table 8.1: Importance of MPC call analysis for financial forecasting.

to improve financial modeling. Our work takes the first step in multimodal financial modeling

on MPC calls by utilizing the visual, vocal, and verbal modalities simultaneously.

Our contributions in this work can be summarized as:

• We curate a public dataset, Monopoly: Monetary Policy Call Dataset, consisting of 340

video conference calls spanning over 350 hours between 2009 to 2022 extracted from 6

major English-speaking economies - USA, Canada, European Union, United Kingdom,

New Zealand, and South Africa.

• We accompany the dataset with several strong neural baselines. Our proposed methodol-

ogy, MPCNet utilizes video frames, audio recordings, and utterance-aligned transcripts,

learnt through a cross-modal transformer architecture and modality-specific attention

fusion for volatility and price movement prediction of stock market indices, gold price,

currency exchange rates, and bond prices. We provide a cumulative of 24K data points for

experimentation.

• MPCNet empirically outperforms other competitive deep learning approaches by 5-18%

in this new task domain.

8.2 Related Work

AI in Finance Traditional financial forecasting techniques have been applied in areas such as

stock markets (Rundo et al. 2019; Ariyo, Adewumi, and Ayo 2014), currency exchange markets
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(Walczak 2001; Kamruzzaman and Sarker 2003), and energy economics (Ghoddusi, Creamer,

and Rafizadeh 2019; Bento et al. 2018). Conventional financial models previously relied only on

numerical features (Nikou, Mansourfar, and Bagherzadeh 2019), which include discrete (ARIMA

(Ariyo, Adewumi, and Ayo 2014), GARCH (Bollerslev 1986), rolling regression (Peng et al.

2018)), continuous (Markov chain (Jacquier, Polson, and Rossi 2002) and stochastic volatility

(Andersen 2008)), and neural approaches (Kim et al. 2019; Luo et al. 2018). Efforts have since

shifted towards utilizing textual data such as social media posts, news reports, web searches,

etc. (Xu and Cohen 2018a; Sawhney et al. 2021c). These approaches limit their analyses to stock

markets. (Sawhney et al. 2020b) explored a multi-task setting for financial risk forecasting in

stock markets using earnings calls. However, the multi-task setting is limited to simultaneous

prediction of movement and volatility of a single target variable, and simultaneous prediction of

multiple economic variables presents a new avenue for research in financial forecasting.

Monetary Policy Calls Previous research has shown that MPC calls provide key economic

indicators that determine how the policy impacts the financial markets, and can improve financial

predictions (Boukus and Rosenberg 2006; Rosa 2013). Studies have also been carried out

exclusively for MPC calls (Ehrmann and Fratzscher 2007; Tadle 2022), which show that monetary

policy meeting minutes affect policy expectations, often exerting an even larger effect on financial

markets than the release of the policy decisions. Furthermore, the Q&A portion of the press

conference serves as a clarifier of the economic outlook, particularly during times of high

macroeconomic uncertainty (Ehrmann and Fratzscher 2007). There is, however, a gap in

leveraging neural predictive modeling using visual, verbal and vocal cues pertaining to MPC

calls for financial forecasting.

Multimodality in Financial Forecasting Existing work in the financial realm utilize vocal
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Figure 8.2: Year-wise statistics for each bank (FRB: Federal Reserve Bank of USA, BOC: Bank

Of Canada, BoE: Bank of England, BNZ: Reserve Bank of New Zealand, ECB: European Central

Bank, SARB: South African Reserve Bank).

and textual cues from earnings conference calls (Qin and Yang 2019a; Sawhney et al. 2020b), and

mergers and acquisitions calls (Sawhney et al. 2021a) for stock volatility prediction. Multimodal

architectures that use these cues for financial predictions have seen significant improvements

in their performances (Yang et al. 2020a; Sawhney et al. 2020b). However, the vision modality,

which may offer important cues that correlate with the performance of financial markets (Cao

2022) remains underexplored, which we seek to address with this work.

8.3 Problem Formulation

We consider a monetary policy meeting χ which consists of three components: χ = [v; a; t].

The sequence of textual utterances
2 t = [t1, t2, · · · , tN ] is extracted from the meeting transcript

where ti is the ith utterance of the call and N is the maximum number of utterances in any call.

Similarly, a is the sequence of corresponding audios for the textual utterances and is represented

as [a1, a2, · · · , aN ]. Finally, v corresponds to the sequence of the video frames corresponding to

each audio segment, given by [v1, v2, · · · , vN ]. Each utterance in a given call belongs to speaker

s ∈ {governor , reporter}. Our goal is to forecast predictions for the set of six principle financial

2
Due to higher complexity and noise of processing long length of videos, we segment at sentence level as

opposed to the word level.
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targets: U = {Stock Index (Small), Stock Index (Large), Gold Price, Currency Exchange Rate, Long-

term bond yield (10-years), Short-term bond yield (3-months)}. We experiment simultaneously

predicting all target variables using shared model parameters. For volatility prediction, we stack

all computed volatility values vu
[d,d+τ ],∀u ∈ U into an |U|-dimensional target vector v

[d,d+τ ]. For

the movement prediction task, we similarly stack all computed movement labels yu
[d,d+τ ],∀u ∈ U

into an |U|-dimensional target vector y
[d,d+τ ]. We will now describe the two kinds of prediction

tasks that we explore in this work i.e volatility and movement prediction.

Volatility: Following (Kogan et al. 2009a), we define volatility prediction as a regression problem.

For a given target variable u ∈ U with price pi on day i, the volatility is the natural log of the

standard deviation of return prices r in a window of τ days, given as,

vu
[d,d+τ ] = ln

√∑d+τ
i=d (ri – r̄)2

τ

 , v ∈ R (8.1)

where ri =
pi–pi–1
pi–1 is the return price on day i of the targetm, and r̄ is the average of these returns

over a period of τ days.

Price movement Following (Xu and Cohen 2018b), we define price movement y
[d,d+τ ] over a

period of τ days as a binary classification task. For a given target, whose price p can either rise

or fall on a day d + τ compared to a previous day d , we formulate the classification task,

yu
[d,d+τ ] =


1, pd+τ ≥ pd

0, pd ≥ pd+τ

(8.2)
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Bank Year Range # of Data Samples
Federal Reserve 2011-22 3804

European Central Bank 2011-22 7416

Bank of England 2015-22 1728

Bank of Canada 2012-22 2808

Reserve Bank of New Zealand 2009-22 5040

South African Reserve Bank 2016-22 3384

Table 8.2: Data distribution of conference video files for each bank. The number of data samples

corresponds to total data points in the Monopoly dataset corresponding to each bank.

8.4 Monopoly Dataset

Conference call transcripts and audios have been extensively studied in the past (Qin and

Yang 2019a; Sawhney et al. 2021a). However, there is no existing financial conference dataset

that captures the visual modality. Therefore, we present the Monopoly dataset with videos,

audio recordings and text transcripts corresponding to the monetary policy committee meetings

conducted by the central banks of sixmajor economies - United States, United Kingdom, European

Union, Canada, New Zealand, and South Africa. To limit the scope, we ensured all audios and

transcripts were in English, and had "Monetary Policy" mentioned in their titles.

8.4.1 Dataset Acquisition

We extract the conference call videos from the official websites of the respective central banks.

We used BeautifulSoup
3
Python package to web scrape the dates, video links, and transcripts

of the monetary policy calls, and download the MP4 videos and PDF transcripts using Urllib
4
.

Textual components of the PDF were extracted using PDFPlumber
5
python library. We use the

Bloomberg Terminal
6
to extract the time series of daily prices between Jan 2000 to Mar 2022

3
https://www.crummy.com/software/BeautifulSoup/

4
https://pypi.org/project/urllib3/

5
https://pypi.org/project/pdfplumber/

6
https://bba.bloomberg.net/
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corresponding to the six financial target for each conference call.

8.4.2 Dataset Statistics

Since conference calls started being reliably released post 2009, we filter and list all MPC calls

between January 2009 and March 2022. These meetings are held 8 times in a year. A total of

464 MPC conference calls were downloaded. However, we discarded conference calls where

text-audio-video alignment was not possible due to missing media or transcription files. The

final dataset comprises of 340 conference calls of a combined duration of 15, 729 minutes with the

average duration of the calls around 53 minutes. The scripted opening statement during the press

conference is on average just shy of 10 minutes long, while the Q&A session usually lasts for

about 44 minutes, with the governor answering an average of 22 questions and follow-ups. Table

8.2 shows the data distribution for conference calls originating from different banks. The mean

number of audio utterances across the calls is 587.54 ± 38.32, with a maximum of 2462 utterances.

Similarly, we observe varying lengths of conference calls with mean and maximum number of

words as 6280 and 17,258 words, respectively. Looking at year-wise trends in Figure 8.2, we see

that the availability of calls gets more consistent every year as more and more countries mandate

public release of conference recordings. We also see a positive trend of progressively increase in

all three modalities of the conference calls - total duration (visual), number of utterances (vocal),

as well as the number of words (textual) each year. The dataset is split chronologically into a

train, validation, and test set in the ratio of 70 : 10 : 20, respectively, to ensures that future data

is not used for forecasting past data.
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8.5 Methodology

8.5.1 Multi-Modal Segmentation and Alignment

Given the three modalities v, a and t, it is essential to segment them into sequences such that

they align and correspond with each other. To perform segmentation, we follow existing work

(Sawhney et al. 2021a) and use utterance-level embeddings, where we consider each sentence

or phrase as an utterance. We perform forced alignment using the library Aeneas
7
to align

the audio segments with textual utterance. Aeneas uses the Sakoe-Chiba Band Dynamic Time

Warping (DTW) (Sakoe and Chiba 1978a) forced alignment algorithm, which shows high

discrimination between words. The Forced Alignment algorithm takes as input a text file divided

into segments t = [t1, t2, · · · , tN ], an unfragmented audio file a, and returns a mapping which

associates each text fragment tj ∈ t with a corresponding time-interval in the audio file, given as

â = [a(τ1s , τ
1

e ), a(τ
2

s , τ
2

e ), · · · , a(τNs , τNe )], where âj = a(τ js , τ
j
e) is the j-th audio segment between

timestamps τ
j
s and τ

j
e . Video frames are already aligned to the audio, i.e for a given audio segment

aj with start and end times of τ
j
s and τ

j
e respectively, we obtain the corresponding video segment

vj = [v1j , v
2

j , · · · , vNj ] as a sequence of frames, given as vj = [v(ητ js ), v(ητ
j
s + 1), · · · , v(ητ

j
e)], where

v(k) denotes the k-th frame of the full video, η is the frame rate (in fps), and s < e. We use audio

sampling rate of 44kHz and video frame rate of 12 fps for audio and video time series.

8.5.2 Multi-Modal Feature Extraction

Textual Features: We compute the feature representation of each utterance using BERT (Devlin

et al. 2019b), which has shown to be an effective pre-trained language-based model for extracting

7
https://github.com/readbeyond/aeneas
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Nick Timiraos (Wall Street Journal): "...Would the lack of fiscal support compel the

Fed to provide additional accommodation...".
Chair Powell: "...We’ll take into account all external factors and, and do what we think we
need to do with the tools that we have..."

Steve Liesman (CNBC): "...why haven’t you reduced QE that you’re doing if the market is
functioning better already?"

Chair Powell: I think in the very beginning of the crisis, the main focus was, obviously,
financial, financial market function, in, you know, some of the major markets.
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Figure 8.3: We illustrate each building block in the architectural pipeline of MPCNet, starting
with (i) feature extraction (ii) locally-aware position encoding (iii) crossmodal transformer

blocks iv) sentence-level transformers v) feature-fusion, and finally vi) target-specific MLPs for

prediction.

word-embeddings. We embed each text utterance tj ∈ [t1, t2, · · · , tM] as the arithmetic mean

of all its word representations from BERT, and obtain a text encoding kj ∈ R768
, given as xjT =

BERT(tj), ∀j ∈ [1,N ]. We thus obtain a sequence of text embeddings XT = [x1T , x
2

T , · · · , x
N
T ].

Audio Features: To encode audio segments, we use wav2vec2 (Baevski et al. 2020), which has

shown shown significant potential for extracting audio features for speech language understand-

ing tasks. We embed each audio utterance aj as the arithmetic mean of the output representation

from wav2vec2, to obtain an audio encoding lj ∈ R768
, given as xjA = wav2vec2(âj), ∀j ∈ [1,N ].

The sequence of audio embeddings is represented as XA = [x1A, x
2

A, · · · , x
N
A ].

Video Features: We encode the video frames using BEiT (Bao et al. 2022), which is a pre-

trained bidirectional transformer based encoder for extracting image representations. BEiT has

shown great promise for obtaining pre-trained representations for downstream vision tasks

(Hatamizadeh et al. 2022). We embed each frame vkj in the video fragment vj as the arithmetic

mean of visual tokens representations of that frame. We then average over all the frames to obtain

the aggregated encoding xjV ∈ R768
of the segment vj , given as xjV =

1

L
∑L

k=1 BEiT(v
k
j ), ∀j ∈
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[1,N ], where L is the number of frames in the segment vj . The sequence of video embeddings is

represented as XV = [x1V , x
2

V , · · · , x
N
V ].

8.5.3 MPCNet: MPC Crossmodal Transformer

Due to the multimodal nature of the data, the model must learn the correlations and inter-

dependencies between modalities. The model needs to accurately contrast visual, auditory, and

textual information in order to characterize the speaker’s affective state (Soleymani, Pantic, and

Pun 2011; Chen, Wu, and Jiang 2016; Montacié and Caraty 2018). Hence, we leverage and build

upon crossmodal transformers (Tsai et al. 2019; Zadeh et al. 2019), which have shown to be

effective for learning fused multimodal representations through latent crossmodal adaptation.

Let the set of available modalities be represented asM = {V ,A, T }, namely Video, Audio and Text

respectively. The basic building block of the crossmodal transformer is the crossmodal attention

module, which reinforces source modality α with target modality β using their respective

locally-enriched feature sequences.

Locally-Aware Positional Encoding (Sawhney et al. 2021a): Given input sequence Xα ∈

RL×768
, where α ∈ M, we first pass this representation through a 1D temporal convolutional

layer to capture the local sequence structure (Tsai et al. 2019; Yao et al. 2015). This step

produces a locally-aware sequence of features X̂α, given as X̂α = Conv1D(Xα), ∀α ∈ M. To

enable the sequences to carry temporal information (Tsai et al. 2019; Vaswani et al. 2017),

we augment positional embedding pos to locally-aware features X̂α to yield position enriched
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features X̃α = X̂α + pos, where pos is,

posj,2l , posj,2l+1 = sin

(
j

10

8l
d

)
, cos

(
j

10

8l
d

)
(8.3)

(8.4)

Crossmodal Attention (Tsai et al. 2019): For two modalities α, β ∈ M where α ̸= β, the

crossmodal attention layer fuses crossmodal information through latent adaptation between α

and β (Tsai et al. 2019). Given position-aware features Z i–1
α→β and Z i–1

α at the (i–1)th transformer

block, the intermediate latent adaption Ẑ i
α→β is computed as,

Z̃ i–1
α→β = LN(Z i–1

α→β), Z̃
i–1
α = LN(Z i–1

α ) (8.5)

Ẑ i
α→β = softmax

(
Z̃ i–1
α→βWqW⊤

k (Z̃ i–1
α )

⊤
√
d

)
Z̃ i–1
α Wv + Z̃ i–1

α→β (8.6)

W
(·) are learnable weight matrices, and d is the feature dimension, LN means layer-norm, and

Z0

α→β = X̃β . The intermediate latent adaption Ẑ i
α→β is then passed through a feedforward (FF)

layer to yield Z i
α→β as Z i

α→β = FF(LN(Ẑ i
α→β)) + LN(Ẑ i

α→β).

Sentence-Level Transformer (Tsai et al. 2019): We concatenate Zα→β from the crossmodal

transformers sharing the same target modality β ∈ M to yield modality specific representations

Zα,∀α ∈ M, given as ZV = [ZT→V ;ZA→V ], ZA = [ZT→A;ZV→A], ZT = [ZV→T ;ZA→T ].

Next, these hidden states are passed through self-attention transformers (Tsai et al. 2019; Vaswani

et al. 2017) to collect temporal information. The temporal encodings are then concatenated and

passed through a feed forward layer to yield the ensembled temporal representation Z .

Modality Specific Attention-Fusion We propose an additional attention fusion mechanism to

capture the importance of a specific target modality representation Zα with respect to sibling

representations Zβ (α ̸= β). We first compute attention weightsWα,∀α ∈ M for video, audio
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and textual representations respectively, given as,

Wα =

W̃α∑
α′∈M W̃ ′

α

, where W̃α = softmax(ŴαZα + b̂α) (8.7)

where Ŵα and b̂α are learnable parameters, and α ∈ M. We then fuse the attention video,

audio and textual features by multiplying the computed weights with their corresponded feature

representations to yield the fused temporal representation Z
fused

=

∑
α∈MWαZα

Final Network and Prediction: Finally, we combine the ensembled temporal representation

Z with the fused temporal representation Z
fused

by using a feed-forward layer with a residual

block to yield the final hidden representation h, given as h = FF (Z
fused

) + Z . The final hidden

representation is then passed through |U| multi-layer perceptrons (MLPs) to yield the prediction

yu,∀u ∈ U as yu = σ(MLP
u
(h)), where σ represents the final activation function. We use a linear

activation for volatility prediction and a sigmoid for price movement, respectively. We use Mean

Squared Error (MSE) and Binary Cross-Entropy (BCE) for these tasks, respectively.

8.6 Experiments

Baselines: We compare MPCNet against several modern and traditional baselines across varied

domains and modalities as follows:

8.6.0.1 Price-based Baselines

: Utilizing historical price exclusively.

• HistPrice: Following (Du and Budescu 2007), we use ARIMA model to perform regres-

sion/classification on past 30-days time series.

• P-SVM (Chatzis et al. 2018): We apply Support Vector Regression (SVR) and Classi-
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Model Stock Index (Small) Stock Index (Large) Currency Exchange Rate

MSE1↓ MSE3↓ MSE7↓ MSE15↓ MSE1↓ MSE3↓ MSE7↓ MSE15↓ MSE1↓ MSE3↓ MSE7↓ MSE15↓

B
as
el
in
es

HistPrice 2.486 2.234 1.880 1.664 3.397 3.316 2.934 2.972 2.709 3.187 3.127 3.291

P-SVM Chatzis et al. 2018 2.489 2.220 1.915 1.753 2.568 2.921 1.971 2.012 2.104 2.534 1.921 2.231

P-LSTM Yu and Li 2018 2.421 2.217 1.845 1.731 2.128 2.194 2.108 1.456 1.424 1.867 1.015 1.569

MLP 2.524 2.214 1.899 1.680 1.469 1.597 0.937 0.981 1.060 1.441 0.802 1.159

LSTM Poria et al. 2017 2.290 2.210 1.750 1.680 1.346 1.304 0.724 0.779 1.219 1.296 0.762 0.558

MMIM Han, Chen, and Poria 2021 2.290 2.092 1.779 1.598 1.287 1.133 0.718 0.622 0.975* 1.081 0.500 0.510

MDRM Qin and Yang 2019a 2.065 2.511 1.748 1.597 1.281 1.578 0.683 0.612 1.183 1.627 0.769 0.512

HTML Yang et al. 2020a 2.296 2.133 1.771 1.611 1.302 1.127 0.766 0.609 0.988 1.118 0.588 0.498

MULT Tsai et al. 2019 2.073 2.179 1.768 1.605 1.288 1.133 0.672* 0.742 1.022 1.018 0.549 0.497

A
bl
at
io
n

MPCNet (T) 2.599 2.390 1.931 2.278 1.906 1.613 1.122 1.262 1.666 1.943 1.140 1.801

MPCNet (A) 2.345 2.457 1.770 2.151 1.732 1.614 1.221 0.724 1.507 1.963 1.289 1.791

MPCNet (V) 2.532 2.285 2.108 2.023 1.904 1.617 1.223 1.247 2.273 1.964 1.746 1.511

MPCNet (T+A) 2.423 2.221 2.135 1.956 1.564 1.637 1.456 1.111 1.234 2.144 1.967 1.578

MPCNet (A+V) 2.280 2.413 2.026 1.680 1.857 1.572 1.697 0.864 1.621 1.904 1.419 1.463

MPCNet (V+T) 2.257 2.321 2.002 2.108 1.477 1.596 1.195 1.398 1.087 2.017 1.819 1.407

MPCNet (V+A+T) (Ours) 2.233 2.089* 1.732* 1.594* 1.269* 1.046* 0.806 0.607 1.176 1.001 0.469* 0.470*

(a) Stock Indices and Currency Exchange Rate

Model Gold Price 10-Year Bond Yield 3-Month Bond Yield

MSE1↓ MSE3↓ MSE7↓ MSE15↓ MSE1↓ MSE3↓ MSE7↓ MSE15↓ MSE1↓ MSE3↓ MSE7↓ MSE15↓

B
as
el
in
es

HistPrice 3.193 3.039 2.675 2.683 4.132 4.020 3.472 3.334 3.899 3.665 3.063 2.913

P-SVM Chatzis et al. 2018 2.568 2.543 1.967 2.104 3.212 3.589 2.986 3.141 3.235 3.143 2.922 2.874

P-LSTM Yu and Li 2018 1.965 1.998 1.043 1.764 2.212 1.699 2.340 1.453 3.433 2.909 2.678 2.477

MLP 1.431 1.654 0.904 0.955 1.811 1.743 1.288 1.382 2.582 2.523 2.239 2.231

LSTM Poria et al. 2017 1.472 1.484 0.703 0.508 1.735 1.801 1.169 1.235 2.421 2.439 2.044 2.013

MMIM Han, Chen, and Poria 2021 1.292 1.292 0.565 0.486 1.698 1.604 1.080 1.053 2.345 2.392 1.977 1.902
MDRM Qin and Yang 2019a 1.436 1.843 0.710 0.483 1.729 1.699 1.126 1.223 2.406 2.622 2.096 1.993

HTML Yang et al. 2020a 1.277* 1.291 0.589 0.524 1.685 1.612 1.103 1.149 2.342 2.356 1.962 1.998

MULT Tsai et al. 2019 1.314 1.335 0.579 0.503 2.122 1.837 1.104 1.037* 1.174* 2.515 1.973 1.903

A
bl
at
io
n

MPCNet (T) 1.967 1.859 1.122 1.750 1.977 1.928 2.067 1.614 2.774 2.723 2.654 2.602

MPCNet (A) 1.573 1.484 1.617 1.803 2.279 1.940 1.965 1.513 2.754 3.242 2.726 2.536

MPCNet (V) 2.136 2.028 1.586 1.158 2.318 1.969 1.576 1.674 2.857 2.740 2.630 2.616

MPCNet (T+A) 1.798 1.567 0.985 1.678 2.067 1.956 1.944 1.865 2.759 2.699 2.345 2.613

MPCNet (A+V) 1.752 1.403 1.245 0.959 1.996 1.903 1.897 1.700 2.750 2.632 2.538 2.527
MPCNet (V+T) 1.681 1.959 0.864 1.428 1.756 1.874 1.511 1.366 3.135 2.678 2.457 2.564

MPCNet (V+A+T) (Ours) 1.342 1.275* 0.562* 0.477* 1.767 1.602* 0.979* 1.142 2.431 2.319* 1.948* 1.901*

(b) Gold Prices, Long-term (10-Years) and Short-term (3-Months) Bonds

(c) Performance comparison with baselines and ablations for volatility prediction in terms of MSE τ -days after the

call (τ ∈ {1, 3, 7, 15}). (T: Text, V: Video, A: Audio). Bold denotes best performance performance. Light cyan shows

second-best performance. Results are averaged over 5 independent runs. * indicates that the result is statistically

significant with respect to state-of-the-art based on Wilcoxon’s signed rank test with p < 0.001. Our proposed

approach outperforms price-based and multimodal baselines.

fiers (SVC) on 30-days historical price data for volatility and price movement prediction,

respectively.

• P-LSTM (Yu and Li 2018): We use LSTMmodel to extract predictive patterns from 30-days

historical price time-series.

8.6.0.2 Multimodal Baselines

: We present contemporary multimodal methods that utilize visual, vocal, and verbal cues.
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• MLP: A simple multi-layer perceptron where multimodal features are averaged out along

the time series and concatenated before the final prediction layer.

• LSTM (Poria et al. 2017): Multimodal time series are input to individual LSTMs and

averaged before final prediction.

• MMIM (Han, Chen, and Poria 2021): Uses LSTMs to encode the video and audio

sequence, and BERT for text. The encoded features are passed through a fusion layer for

maximizing mutual information between unimodal sequences before prediction.

• MDRM (Qin and Yang 2019a): BiLSTM layers encode unimodal sequences, which

are then fused together using another layer of BiLSTM to extract multimodal inter-

dependencies.

• HTML (Yang et al. 2020a): HTML is a transformer-based architecture that takes fuses

multimodal feature representations before passing through Transformer layers for predic-

tion.

• MulT (Tsai et al. 2019): Uses transformer encoders to align language, facial gestures,

and acoustic sequences with variable sampling rates and long-range dependencies.

Experiment Settings: MPCNet uses a hidden dimension H = 512, dropout δ = 0.1, number of

attention heads nh = 2, and number of transformer blocks nb = 2. We use a learning rate (lr)

of 1e–3 for regression, and 1e–4 for classification. We use PyTorch for all models, and optimize

MPCNet using AdamW optimizer for 30 epochs and apply early stopping with a patience of 10

on a Tesla K80 GPU. Evaluation Metrics: Similar to prior work (Qin and Yang 2019a; Yang

et al. 2020a), we evaluate predicted volatility using the mean squared error (MSE) and the price

movement classification task using F1 score, for τ ∈ {1, 3, 7, 15}.
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8.7 Results

Model Stock Index (Small) Stock Index (Large) Currency Exchange Rate

F11↑ F13↑ F17↑ F115↑ F11↑ F13↑ F17↑ F115↑ F11↑ F13↑ F17↑ F115↑

B
as
el
in
es

HistPrice 0.390 0.470 0.400 0.420 0.430 0.430 0.410 0.420 0.190 0.260 0.210 0.230

P-SVM Chatzis et al. 2018 0.400 0.480 0.340 0.530 0.433 0.490 0.338 0.500 0.190 0.270 0.190 0.370

P-LSTM Yu and Li 2018 0.410 0.473 0.291 0.546 0.399 0.391 0.421 0.442 0.123 0.232 0.165 0.341

MLP 0.349 0.435 0.209 0.539 0.267 0.319 0.331 0.351 0.101 0.201 0.124 0.311

LSTM Poria et al. 2017 0.449 0.435 0.269 0.527 0.414 0.596 0.371 0.432 0.137 0.229 0.199 0.369

MMIM Han, Chen, and Poria 2021 0.435 0.653* 0.302 0.605 0.392 0.631 0.329 0.601 0.296 0.217 0.142 0.385

MDRM Qin and Yang 2019a 0.449 0.419 0.462 0.355 0.409 0.392 0.494 0.324 0.177 0.161 0.379 0.152

HTML Yang et al. 2020a 0.490 0.645 0.458 0.541 0.431 0.504 0.557 0.482 0.484 0.531 0.298 0.626*
MULT Tsai et al. 2019 0.491 0.630 0.536 0.629 0.443 0.625 0.572 0.612 0.499 0.547 0.473* 0.521

A
bl
at
io
n

MPCNet (T) 0.393 0.423 0.241 0.263 0.361 0.304 0.419 0.396 0.332 0.215 0.252 0.378

MPCNet (A) 0.288 0.233 0.182 0.365 0.211 0.315 0.397 0.435 0.410 0.283 0.111 0.331

MPCNet (V) 0.437 0.522 0.340 0.497 0.335 0.304 0.464 0.443 0.438 0.148 0.254 0.412

MPCNet (T+A) 0.437 0.569 0.289 0.489 0.367 0.312 0.422 0.471 0.404 0.245 0.392 0.466

MPCNet (A+V) 0.415 0.565 0.290 0.465 0.388 0.321 0.455 0.463 0.434 0.186 0.374 0.511
MPCNet (V+T) 0.406 0.573 0.342 0.469 0.359 0.326 0.458 0.405 0.450 0.295 0.350 0.336

MPCNet (V+A+T) (Ours) 0.501* 0.590 0.565* 0.638* 0.460* 0.590 0.559* 0.620* 0.520* 0.570* 0.329 0.450

(a) Stock Indices and Currency Exchange Rate

Model Gold 10-Year Bond Yield 3-Month Bond Yield

F11↑ F13↑ F17↑ F115↑ F11↑ F13↑ F17↑ F115↑ F11↑ F13↑ F17↑ F115↑

B
as
el
in
es

HistPrice 0.360 0.390 0.350 0.400 0.31 0.290 0.220 0.390 0.220 0.160 0.340 0.330

P-SVM Chatzis et al. 2018 0.390 0.420 0.370 0.380 0.34 0.310 0.33 0.33 0.370 0.220 0.310 0.390

P-LSTM Yu and Li 2018 0.365 0.352 0.371 0.346 0.32 0.291 0.342 0.258 0.377 0.234 0.332 0.314

MLP 0.243 0.215 0.288 0.315 0.244 0.299 0.234 0.174 0.332 0.157 0.248 0.394

LSTM Poria et al. 2017 0.361 0.337 0.304 0.345 0.364 0.311 0.255 0.394 0.381 0.168 0.382 0.444

MMIM Han, Chen, and Poria 2021 0.209 0.508 0.412 0.318 0.411 0.318 0.345 0.138 0.417 0.306 0.417 0.379

MDRM Qin and Yang 2019a 0.434 0.383 0.214 0.317 0.287 0.242 0.314 0.149 0.346 0.198 0.478* 0.505
HTML Yang et al. 2020a 0.441 0.654 0.379 0.526 0.529 0.278 0.466 0.389 0.424 0.314 0.397 0.450

MULT Tsai et al. 2019 0.329 0.590 0.454 0.533 0.534 0.364* 0.485 0.400 0.428 0.171 0.466 0.493

A
bl
at
io
n

MPCNet (T) 0.341 0.317 0.423 0.492 0.242 0.343 0.155 0.592 0.117 0.437 0.310 0.293

MPCNet (A) 0.292 0.121 0.119 0.589 0.088 0.157 0.186 0.489 0.252 0.386 0.317 0.314

MPCNet (V) 0.239 0.414 0.519 0.595 0.373 0.436 0.542 0.610 0.503 0.520 0.314 0.375

MPCNet (T+A) 0.414 0.483 0.503 0.616 0.322 0.434 0.529 0.593 0.476 0.545 0.323 0.312

MPCNet (A+V) 0.423 0.445 0.414 0.607 0.372 0.416 0.449 0.617 0.503 0.510 0.309 0.369

MPCNet (V+T) 0.420 0.472 0.517 0.565 0.471 0.454 0.500 0.585 0.485 0.542 0.315 0.347

MPCNet (V+A+T) (Ours) 0.444* 0.668* 0.413 0.637* 0.386 0.327 0.560* 0.625* 0.493* 0.556* 0.374 0.537*

(b) Gold Prices, Long-term (10-Years) and Short-term (3-Months) Bonds

(c) Performance comparison with baselines and ablations for price prediction in terms of F1 score τ -days after the

call (τ ∈ {1, 3, 7, 15}). (T: Text, V: Video, A: Audio) Bold denotes best performance performance. Light cyan shows

second-best performance. Results are averaged over 5 independent runs. * indicates that the result is statistically

significant with respect to state-of-the-art based on Wilcoxon’s signed rank test with p < 0.001. Our proposed

approach outperforms price-based and multimodal baselines.

Performance Comparison: Tables 8.3c and 8.4c show the comparative results for the volatility

and price prediction tasks, respectively. We observe that baselines that use historical price

alone significantly underperform across all settings. Simple models like MLP and LSTM are

disadvantaged as they require feature aggregation through averaging over long sequences of time

series. Sophisticated LSTM models such as MMIM and MDRM struggle on both tasks due to their

inability to capture long-range dependencies in hour-long video calls with multiple dialogues.
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Combining multimodal context from the visual, vocal, and verbal cues using a transformer

encoder (as done in HTML and MuLT) helps improve performance across different settings. Our

proposed model achieves significantly better performance across both tasks for multiple financial

targets. MPCNet’s ability to model the inter-dependencies between the pairs of modalities

using cross-model attention and modality-specific attention fusion contributes towards its

outperformance compared to contemporary multimodal methods. Moreover, MPCNet performs

attention fusion using weights for pairs of the modalities to determine the mutual importance of

each modality which helps it improve over the MuLT baseline. However, it can also be observed

that there is ample room for improvement in both volatility and price movement prediction. We

attribute this to the inherent difficulty of the task and motivate further research by discussing

current shortcomings through error analysis in Sec-8.8.

Ablation: Impact of Multimodality: The ablation results of the proposed MPCNet model

in Tables 8.3c and 8.4c strongly suggest the potency of multimodal features over unimodal

counterparts, for both tasks, across all financial targets. We observe significant gains due to the

addition of aligned video features in the MPCNet model. We attribute this to the presence of

additional behavioral cues such as facial expressions and body language, aligned with the call

transcripts and audio signals through attention mechanisms in the temporal domain. In order

to validate the importance of combining visual, vocal and verbal cues, we conduct additional

ablation experiments for MDRM, HTML, and MuLT baselines with varying input modalities.

Figure 8.4 shows that blending video features (V) with text(T) and audio(A) leads to improvements

over the best bimodal model (T+A), evaluated in terms of time-averaged MSE and F1 scores for

MPCNet. We see a similar trend for HTML, MDRM, and MuLT, respectively. Moreover, we see

that the addition of video (V) modality to each of A, T, A+T settings shows favorable gains. This
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Figure 8.4: Ablation analysis of modalities in MPCNet for (a) Volatility and (b) Price Movement

prediction, averaged over τ = {1, 3, 7, 15}. SI(s): Stock Index (Small), SI(l): Stock Index (large),

CUR: Currency Exchange Rate, GP: Gold Price, 3MB: 3-Month Bond Yield, 10YB: 10-Year Bond

Yield. Addition of video (V) modality to each of A, T, A+T settings shows favourable gains

(increase in F1 and decrease in MSE).

provides strong empirical evidence in support of multimodal fusion of visual, vocal, and verbal

modalities for financial prediction tasks on MPC calls.

Impact of Call Length: We probe MPCNet’s sensitivity with respect to the input call length

by feeding only the first n utterances of the call to the model. As shown in Figure 8.5, we see

major performance improvements with increasing call length and achieve best performance

on incorporating the full conference call. These observations suggest that the Q&A session is

substantially beneficial than just the initial speech by the governor, as the Q&A provides an

opportunity to analyze non-verbal cues and answers to questions are not rehearsed beforehand.

Our observations reinforce prior studies which have shown the importance of Q&A sessions,

which serve as a clarifier of the overall economic outlook (Ehrmann and Fratzscher 2007).

Performance Drift over Time: Results in Table 8.3c and Figure 8.6 show that multimodal

models exhibit greater uncertainty in the short term after the MPC call. However, there is a

gradual decay in gains of multimodal models for volatility prediction as we move ahead in
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Figure 8.5: Performance variation with increasing input call lengths (#utterances) on (a) Volatility

and (b) Movement prediction. The results are averaged over τ = {1, 3, 7, 15}. Performance

improves with increasing call length (reduced MSE and increase in F1), with best results on the

full conference calls.

time after the conference call. This trend is not pronounced for price movement prediction

which remains consistent throughout as observed from Table 8.4c. Short-term stock volatility

prediction is more complex due to the erratic price fluctuations after a MPC call. We attribute

the saturation in the volatility prediction performance to the dilution of the market reaction to

the MPC calls as we "drift" away from them. These price fluctuations settle as more time elapses,

similar to the phenomenon of PEAD (Post Earnings Announcement Drift) (Bernard and Thomas

1989; Sadka 2006).

8.8 Qualitative Analysis

Video 1: Federal Reserve Meeting (2020): Following the MPC call, the SP500 suffered a

significant drop within the next 20 days. Studying the call’s video frames aligned with text

transcripts, we notice in Figure 8.7a that when asked about their plans on interest rate during

the Q&A session, the governor’s speech had sudden fillers words along with animated hand

gestures. Past research (Pérez-Rosas et al. 2015) suggests that increased use of filler words, rapid
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Figure 8.6: Drift in predicted stock volatility over time. The line graph represents the mean MSE

of MPCNet SI(s): Stock Index (Small), SI(l): Stock Index (large), CUR: Currency Exchange Rate,

GP: Gold Price. As time increases, the MSE decreases due to the PEAD phenomenon (Bernard

and Thomas 1989).

hand movements, and a closed body posture with hands crossed interlocked tightly may indicate

a lack of confidence in the speaker. It was later ascertained that the Federal Reserve convened

an emergency meeting a week later to announce interest rate cut of 0.50%. We observe how

MPCNet successfully predicts the decrease in price of stock index and increase in gold prices

for all choices of τ while it’s unimodal (A,T,V) and bimodal (text-audio) counterparts fail to do

the same each time. Though the text reveals no lack of confidence, the combination of aligned

audio-visual cues likely allows the model to make a successful prediction.

Video 2: European Central Bank (2016): Ten days post monetary policy conference, long-term

and short-term bond saw an increase in volatility by 15-25%, respectively. However, the prices of

long-term bond yield saw a downward trend contrary to the short-term bond yields. The meeting

involved the governor mentioning concerns about trade disruptions and employment reduction

due to ’Brexit’. We notice that this call in specific was longer than previous others. Anecdotally,

longer conferences are linked with turbulent economic conditions as more time is spent clarifying
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(a) Video-1: Chair of the Federal Re-

serve exhibits closed body language,

frequent interlocking of hands, and

enhanced use of filler words dur-

ing Q&A session when asked about

rising interest rates. Past research

(Abouelenien, Mihalcea, and Burzo

2016; Sen et al. 2020) suggests these

non-verbal cues indicate of lack of

confidence.
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Figure 8.7: Qualitative Analysis

journalist questions. We also observe enhanced complexity of text readability due to dense

technical discussion in Q&A dialogues (Figure 8.7b). Transformer based models such as HTML,

MuLT, and MPCNet were able to capture linguistic complexity and long-range dependencies.

Here, we observe that the above three strategies correctly make correct predictions.

Video 3: South African Reserve Bank (2022): We now analyze this MPC call as an error

analysis where MPCNet predicts incorrectly. Here, the price-based LSTM model gains a profit

by correctly predicting a 9-12% increase in the currency exchange (ZAR USD rate) for τ = 3, 7, 15.

On carefully analyzing the contents of the conference call, we notice (Figure 8.7c) that the

governor took a sudden hawkish stance on inflation due to the oil crisis propelled by the Ukraine

war and economic sanctions. Moreover, observing the visual and vocal cues, we find a great deal

of variance in the mean audio pitch and speaker’s erratic eye gaze. We attribute the erroneous

performance to the potential overfitting of the model as well as unique information about world

knowledge present at test time not seen before in the training set. We believe that future research
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in combining knowledge from alternate sources such as news and social media can benefit prediction

performance.

8.9 Ethical Considerations and Limitations

Examining a speaker’s tone and speech in conference calls is a well-studied task in past literature

(Qin and Yang 2019a; Yang et al. 2020a). Our work focuses on video conference calls for which

government institutions and financial regulatory bodies publicly release call videos, transcripts

and audio recordings. The conference call and price data used in our study is open source. We

do not collect any personalized data or violate any privacy laws in using, storing or releasing

the MPC conference calls data for financial analysis.

Limitations: We acknowledge the presence of gender bias in our study, given the imbalance

in the gender ratio of speakers of the calls. We also acknowledge the demographic bias in our

study as the central banks studied in our work are restricted to certain geographies and may not

directly generalize for other countries. We also limit our study to English-only calls, motivating

further studies on other multilingual conference calls.

Potential risks: Our contributions are meant as an exploratory research in the financial domain

and no part of the work should be treated as financial advice. All financial investments decisions

are subject to market risk and should be made after extensive testing. Practitioners should check

for various biases (demographic, gender, modeling, randomness) before attempting to use the

provided code/data/methods for real-world purposes.
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8.10 Conclusion and Future Work

We present a dataset of Monetary Policy Conference video calls to predict financial risk and

price movement. We also present MPCNet, a strong benchmark model that uses cross-modal

transformer blocks and modality-specific attention fusion on input time series for financial

forecasting on MPC calls. We further analyze the benefits of each modality, evaluate the effect

of multi-task setting for joint prediction of financial assets, examine biases due to dataset

distribution, and effect of non-verbal behavioral cues extracted from spontaneous Q&A session.

We motivate future work to explore several interesting direction including but not limited to

conversational dialoguemodeling of Q&A sessions, fine-grainedmultimodal emotion recognition,

gaits and posture analysis to identify non-verbal behavioral cues, augmenting video data with

external knowledge graphs, etc.
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CHAPTER 9

DocFin: Multimodal Financial Prediction and Bias Mitigation

using Semi-structured Documents

Abstract

Financial prediction is complex due to the stochastic nature of the stock market. Semi-structured

financial documents present comprehensive financial data in tabular formats, such as earnings,

profit-loss statements, and balance sheets, and can often contain rich technical analysis along

with a textual discussion of corporate history, and management analysis, compliance, and

risks. Existing research focuses on the textual and audio modalities of financial disclosures

from company conference calls to forecast stock volatility and price movement, but ignores the

rich tabular data available in financial reports. Moreover, the economic realm is still plagued
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with a severe under-representation of various communities spanning diverse demographics,

gender, and native speakers. In this work, we show that combining tabular data from financial

semi-structured documents with text transcripts and audio recordings not only improves stock

volatility and price movement prediction by 5-12% but also reduces gender bias caused due to

audio-based neural networks by over 30%.

9.1 Introduction

Financial risk modeling is of great interest to capital market participants for making sound

investment decisions. Earnings calls are quarterly audio conference calls wherein company

executives discuss their companies’ performance and future prospects with outside analysts

and investors (Qin and Yang 2019b). Mergers and Acquisitions (M&As) conference calls are

held preceding financial transactions involving two or more entities such that either one of

the participant companies takes over the other(s) (“acquisition”) or combines with another to

become a joint entity (“merger”) (Sawhney et al. 2021a). Both kinds of events consist of a

prepared speech delivery by company executives on analysis and future expectations followed

by a spontaneous analyst-driven question-answer session to seek additional information (Ye,

Qin, and Xu 2020). Several past works have utilized the text transcripts and audio recordings

from these calls to improve the stock forecasting (mathur2022monopoly; sawhney2020risk;

Yang et al. 2020a; Zhou, Zhang, and Yang 2020; Chen, Huang, and Chen 2020; Ye, Qin, and Xu

2020; Sawhney et al. 2021a; Sawhney, Aggarwal, and Shah 2021). However, most prior works

exclusively focus on vocal verbal information, often ignoring information from official financial

documents. Financial semi-structured documents such as 10-K and 10-Q reports are publicly
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Figure 9.1: We combine the text transcripts and audio call recording input to a neural model with

tabular text from semi-structured financial documents. Here we illustrate how M3A (Sawhney

et al. 2021a) for volatility and stock price prediction on M&A calls uses dot product attention to

extract condensed table representations relevant to text from transcripts, weight averages each

modality through softmax layer to obtain a fused embedding, combines the fused embeddings

with speaker and positional embedding, and finally passes through the Transformer model for

stock price movement and volatility prediction tasks.

available, recurrent mandatory filings made by public companies to disclose their financial

performance. These semi-structured financial documents present comprehensive financial data

in tabular format, such as earnings, profit and loss statements and balance sheets, and can

often contain more than 100’s of tables worth technical analysis. Information contained in such

financial documents also includes a textual discussion of corporate history, management analysis,

compliance, risks, and future plans about new projects relevant for investment decision-making

(Kogan et al. 2009b).

Recent studies such as (Sawhney, Aggarwal, and Shah 2021) have highlighted the downside

of utilizing audio-based multimodal approaches for financial risk prediction due to the inherent

gender bias induced in learning models due to the imbalance of speaker demographics in call

recordings . Audio features such as speakers’ pitch and intensity can vary greatly across genders.

Under-representation of female executives in conference calls is amplified by deep learning

models, leading to high error disparity between stock predictions across sensitive attributes.

We combine tabular from financial semi-structured documents input with existing vocal-
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verbal information from audio call recordings to improve stock price movement and volatility

prediction. We demonstrate that supplementing existing conference calls transcripts with the

tabular financial data substantially reduces the unintended gender bias in financial prediction

tasks and offers a robust and unbiased alternative to gender-sensitive audio features in cases

where under-representation of women speakers (only 7% female speakers in SP 500 Earnings

calls dataset (Li et al. 2020b) and 12% in Merger&Acquisition calls (Sawhney et al. 2021a)

dataset) in executive positions induces unneeded correlations in model predictions. The novel

contributions of our work are:

• We combine publicly available earnings calls (MAEC (Li et al. 2020b)) and M&A calls

(Sawhney et al. 2021a) datasets with tabular data extracted from SEC-EDGAR 10-Q and

10-K company-filing documents.

• We utilize tabular information from financial semi-structured documents with existing

textual and audio modalities to show 8-12% relative improvement in stock volatility and

price movement prediction tasks across several baseline and state-of-the-art models.

• We empirically show the extent of induced gender bias due to audio modality in the

financial prediction models and demonstrate the usefulness of tabular data extracted from

semi-structured financial documents as an alternative to audio modality for reducing

gender bias by 30% in audio-based neural networks, without significant performance

degradation.
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9.2 Methodology

Problem Formulation: We consider an input conference call recording χ = [t; a; tab], such that

each call comprises of multimodal components: N textual utterances t = [t1, t2...tN ] aligned with

their corresponding audio slices a = [a1, a2...aN ], and tab = [tab1, tab2...tabM] corresponding

to the M tables extracted from the company filings relevant to the call. Each conference call is

associated with speaker information denoted by s = [s1, s2...sN ], representing the sequence of

speakers for the utterances. We formulate volatility as a regression task (Kogan et al. 2009b)

and price movement prediction as a binary classification task (Xu and Cohen 2018b).

Measuring stock volatility : Following (Kogan et al. 2009b), we formulate volatility as a re-

gression task. For a given stock with a close price of pk on the trading day k, we calculate the

average log volatility as the natural log of the standard deviation of return prices r in a window

of τ days as.

v
[0,τ ] = ln

(√∑τ
k=1(rk – r̄)2

τ

)
(9.1)

where rk =
pk–pk–1
pk–1

is the return price on day k for a given stock, and r̄ is the average return

price over a period of τ days.

Price movement prediction : Following (Xu and Cohen 2018b), we define price movement yd–τ ,d

over a period of τ days as a binary classification task. For a given stock, we employ its close

price, which can either rise or fall on a day d compared to a previous day d – τ , to formulate the

classification task as:
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Year # of MA Calls Mean # of Utterances Mean # of Speakers Mean # of Tables
10-K 10-Q

2016 192 117.421 11.265 217.234 107.093

2017 206 96.825 11.14 216.83 101.961

2018 232 90.517 10.607 231.073 107.525

2019 133 97.413 10.39 228.624 124.248

2020 49 104.897 10.326 216.571 105.53

Table 9.1: Dataset statistics for the M&A dataset

y
[d–τ ,d] =

{
1, pd+τ > pd ,

0, pd+τ ≤ pd

(9.2)

Given a conference call χ, we experiment with several baseline and state-of-the-art mul-

timodal financial prediction models (example M3A (Sawhney et al. 2021a) in Fig. 9.1). We

predict the average negative log volatility v
[0,τ ] and price movement direction y

[0,τ ] using the

multimodal call data χ = [t; a; tab] for τ = 3, 7 and 15-day interval.

Encoding Text Transcript, Audio Call and Speakers: We process text and audio data

following earlier works on Earnings Calls (Li et al. 2020b) and M&A calls (Sawhney et al. 2021a).

Each text utterance ti is represented as a 768-dimensional encoding gi using BERT. Each audio

utterance ai is encoded into its embedding hi corresponding to the type of conference call. For

M&A calls, we extract hi as a 62-dimensional encoding described in (Eyben et al. 2016) using

OpenSMILE
1
and for Earnings Calls as a 29-dimensional low-level audio features encoding using

Praat (Boersma and Van Heuven 2001). We extract the list of speakers from the transcripts and

assign each speaker si a sequential ID in the order of listing and represent the speaker embedding

as one-hot encoding.

Encoding Tables from Company Filings: Taking inspiration from past literature (Chen et al.

2020b), we linearize each table tabi into a sentence representation. For a row i with column

1https://pypi.org/project/opensmile/

158

https://pypi.org/project/opensmile/


Year # of Calls Mean # of Utterances Mean # of Speakers Mean # of Tables
10-K 10-Q

2015 632 87.357 1.764 194.781 92.381

2016 1127 87.299 1.747 211.944 98.733

2017 469 109.396 1.886 211.217 92.974

2018 160 154.143 2.018 205.362 94.512

Table 9.2: Dataset statistics for the Earnings Call dataset

Model Volatility Prediction Price Prediction
MSE3 ↓ MSE7 ↓ MSE15 F13 ↑ F17 ↑ F115 ↑

RoBERTa + LSTM (Liu et al. 2019a) 0.78 (0.009) 0.58 (0.009) 0.47 (0.006) 0.57 0.58 0.49

GloVe + LSTM (Pennington, Socher, and Manning 2014) 0.80 (0.005) 0.60 (0.004) 0.48 (0.005) 0.55 0.56 0.42

FinBERT + LSTM + (Aracı 2019) 0.78 (0.008) 0.60 (0.004) 0.47 (0.005) 0.58 0.58 0.48

MDRM (Qin and Yang 2019b) 0.78 (0.005) 0.58 (0.003) 0.46 (0.002) 0.59 0.58 0.46

MDRM + DocEmbedding 0.76 (0.006) 0.55 (0.001) 0.43 (0.004) 0.62 0.61 0.49

M3ANet (Sawhney et al. 2021a) 0.79 (0.020) 0.61 (0.012) 0.48 (0.001) 0.61 0.62 0.54

M3ANet + DocEmbedding 0.73* (0.008) 0.54* (0.012) 0.42* (0.012) 0.66* 0.63* 0.56*

Table 9.3: Mean τ -day volatility (MSE) and price movement prediction (F1 score) results for

Merger & Acquisition calls (M&A dataset) across several models. * indicates result is signifi-

cantly better than the M3ANet under Wilcoxon’s Signed Rank test. Adding DocEmbedding
outperforms base methods across all tasks and intervals.

names cj and values vij , the row is represented as ’row i’s c1 is vi1; the c2 is vi2...’. Each row’s

representation is concatenated using punctuation to obtain a table representation which is

encoded to its 768-dimensional table encoding ki using BERT.

Combining tabular data with text - audio time series: We provide a generalized method

to process, fuse and utilize the tabular data with text-audio modality such that it is extensible

across different neural architectures. To this end, we use dot-product attention to allow each

text utterance gi to extract a condensed table representation li from the table encoding ki, such

that li = DotProdAttn(gi, ki). To fuse the encoding, we linearly transform the text and table

encoding to the size of the audio encoding and employ the use of multi-headed self-attention

(Vaswani et al. 2017). The text, audio and table features are multiplied by their softmax-ed weights

(W ′
= σ(gWwt + bwt )∀T,A,TA), summed (S = W ′

T +W ′
A +W ′

TA), and weighted averaged to get

attention weightsWT ,WA,WTA =
WT
S ,

WA
S ,

WTA
S , which are added to get the fused embeddings

Xfused = gWT +hWA+ lWTA. We augment Xfused with the speaker information s by concatenation
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Model Volatility Prediction
MSE3 ↓ MSE7 ↓ MSE15

Vpast 2.99 0.83 0.42

LSTM 1.97 0.46 0.32

HAN (GloVe) 1.43 0.46 0.31

MDRM (Qin and Yang 2019b) 1.37 0.42 0.30

MMTFR (Sawhney et al. 2021a) 0.60 0.30 0.18

MMTFR + DocEmbedding 0.58 0.28 0.15

VoLTAGE (Sawhney et al. 2020a) 0.63 0.29 0.17

VoLTAGE + DocEmbedding 0.61 0.28 0.16

M3A (Sawhney et al. 2021a) 0.59 0.29 0.18

M3A + DocEmbedding 0.57* 0.27* 0.15*

Table 9.4: Mean τ -day MSE for stock volatility prediction for Earnings Calls (MAEC dataset)

across several methods. * indicates result is significantly better than the VoLTAGE under

Wilcoxon’s Signed Rank test. Our approach of augmenting with DocEmbeddings outperform
corresponding base methods across 3,7,15-day intervals

Modality Merger & Acquisition Calls Earnings Calls
Volatility Prediction Price Prediction Volatility Prediction

Text Audio Table MSE3 ↓ MSE7 ↓ MSE15 F13 ↑ F17 ↑ F115 ↑ MSE3 ↓ MSE7 ↓ MSE15

✓ ✗ ✗ 0.79 (0.003) 0.65 (0.005) 0.49 (0.008) 0.53 0.50 0.46 1.08 0.40 0.20

✗ ✓ ✗ 0.80 (0.003) 0.64 (0.008) 0.56 (0.008) 0.53 0.53 0.44 1.41 0.45 0.38

✗ ✗ ✓ 0.85 (0.002) 0.72 (0.007) 0.63 (0.009) 0.42 0.41 0.40 1.63 0.62 0.56

✓ ✓ ✗ 0.78 (0.004) 0.61 (0.007) 0.46 (0.004) 0.59 0.56 0.49 0.75 0.32 0.21

✓ ✗ ✓ 0.77 (0.010) 0.57 (0.009) 0.47 (0.007) 0.60 0.58 0.48 0.74 0.30 0.20

✗ ✓ ✓ 0.74 (0.010) 0.55 (0.017) 0.42 (0.013) 0.64 0.61 0.51 0.63 0.27 0.19

✓ ✓ ✓ 0.69 (0.008) 0.54 (0.012) 0.42 (0.012) 0.66 0.63 0.54 0.57 0.27 0.15

Table 9.5: Ablation analysis of M3A model augmented with DocEmbedding for each modality

for volatility (MSE) and price movement prediction (F1 score) tasks across Earnings Calls and

M&A calls datasets (mean and st. dev. of 5 runs for each approach). Combining audio, text

and tabular data gives best performance (see bold). Green shade highlights that substituting

company filings instead of its audio counterpart in conjunction with text transcripts does not

significantly deteriorate model performance.

(represented by⊕) and the position embeddings pos by addition as Xfinal = (Xfused +pos)⊕ s. The

augmented document features, called DocEmbedding, can be used by an encoder (recurrent,

attention-based or Transformer) for processing to produce the task predictions.

9.3 Experiments

Datasets: We train and test several baseline and state-of-the-art models that utilize the multi-

modal input on two datasets: Multimodal Aligned Earnings Call (MAEC) Dataset (Li et al. 2020b)
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and Multimodal Multi-Speaker Merger&Acquisition Call Financial Forecasting (M3A) Dataset

(Sawhney et al. 2021a), both containing aligned text transcripts and audio recordings of their

respective types of conference calls. We collect the most recently filed 10-K and 10-Q documents

before the date of the call
2
and parse the HTML content to retrieve all tables with at least 10

rows. We describe the dataset statistics in Table 9.1 and Table 9.2. We tune all hyper-parameters

using Grid Search and implement all methods with Keras
3
. We use training/validation/testing

splits released by respective datasets.

9.4 Results and Discussion

Effect of Tabular Datat on Financial Predictions: Table 9.3 shows the performance of several

baseline and SOTA models for predicting price movement and stock volatility for Merger &

Acquisition calls on the M&A dataset. Table 9.4 reports the volatility prediction performance

on the MAEC dataset. We report average MSE and F1 scores for volatility and price movement

prediction, respectively. We observe significant gains (8-12%) in both tasks across attention based

(MDRM, VoLTAGE, MMFTR) and Transformer models (M3A) by combining tabular information

extracted from financial semi-structured documents with text-audio time series. Past works have

mostly been restricted to verbal-vocal cues obtained from the conference call recordings, lacking

the context required to verify speaker claims against technical facts as indicated by reports.

Our method helps the underlying neural architectures utilize contextualize information related

to compliance, risks, and future plans from audio-textual utterances with technical indicators

presented in financial reports. In line with previous works (Sawhney et al. 2020a), it can be seen

2
Using https://github.com/jadchaar/sec-edgar-downloader

3https://keras.io/
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Modality

Earnings Calls Merger & Acquisition Calls

∆G = MSEF –MSEM ∆G = F1M – F1F
τ = 3 τ = 7 τ = 15 τ = 3 τ = 7 τ = 15

Text (T) 0.27 0.10 0.14 0.22 0.14 0.11

Audio (A) 0.33 0.15 0.19 0.36 0.27 0.23

Table (Tab) 0.19 0.07 0.09 0.16 0.09 0.06

A + T 0.30 0.12 0.17 0.27 0.17 0.15

A + Tab 0.27 0.13 0.16 0.25 0.12 0.08

A + T + Tab 0.25 0.10 0.14 0.22 0.08 0.11

T + Tab 0.21 0.08 0.10 0.18 0.10 0.07

Table 9.6: Modality specific∆G i.e. the difference between the MSE and F1 for volatility prediction in

Earnings Calls dataset and price prediction in M&A calls, respectively for 3, 7, and 15 days over 5 runs.

We use SOTA M3A model for experiments. Here A stands for Audio only, T for Text only and Tab for

Tabular modality. We show that tabular information can substitute audio input to reduce gender bias in

multimodal financial prediction tasks.

that the performance gain is not symmetric across time intervals and tends to decrease with

increasing time delay after the release of company filings and the press release of conference

calls.

Ablation Study: Table 9.5 shows ablation across different modalities observed for the SOTA

M3A model applied to both datasets to understand the impact of varying modalities and their

correlations. Unimodal settings severely underperform across both tasks. The addition of tabular

information extracted from company filing data to verbal-vocal cues shows a gain of 10-12%

across different settings. Interestingly, utilizing text transcripts with table data from financial

documents instead of its audio counterpart does not deteriorate the model performance (Table

9.5, highlighted in green). This has important implications for proposing company filing as an

alternative to the audio input as vocal cues are noisy and processing-heavy.

9.4.1 Bias Reduction through Company Filings

We evaluate the gender bias in SOTA M3A model by quantifying the error disparity in MSE/F1

score between male and non-male speakers (∆G = MSEF –MSEM /F1M – F1F ) for individual text,

audio and table inputs and their combinations across 3, 7 and 15-day intervals in Table 9.6. We
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observe that the table modality has the least error disparity. Audio modality has consistently

higher error individually as well as in combination with either of the other modalities, while

it significantly drops when considering just text and table data. The primary reason for the

observation tends to be the imbalance in the male and female distribution in speakers of earnings

calls. In our case, since female examples are very less in comparison to the male counterparts

(only 7% in earnings calls and 12% in M&A calls identify as females), the model discriminates

between male and female examples by inferring insufficient information beyond its source and

learns imperfect generalizations between the attributes and labels.

9.4.2 Audio vs Tabular Information

While audio input modality certainly improves model performance, it adds unintendedmodel bias

due to the differences in acoustic features for males and females. Audio clips require processing-

heavy algorithms such as forced alignment (Sakoe and Chiba 1978b) to extract meaningful

features from linguistic and acoustic utterances as opposed to semi-structured information in

tables that can be utilized with minimal processing. Replacing audio clips with tabular data from

company filings leads to a reduction of data processing time and data storage requirements by

over 90% and 50%, respectively for both MAEC and M&A datasets. As evident from Table 9.5

and 9.6, tabular information preserves model performance while avoiding unwanted stereotypes

arising due to gender-specific audio features such as shimmer and jitter. Hence, we propose to

utilize tabular information as an effective substitute for audio input for multimodal financial

prediction tasks.
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9.5 Conclusion and Future Work

In this work, we show that combining tabular data from financial semi-structured documents with

text transcripts and audio recordings improves stock volatility and price movement prediction by

5-12% along with reduction in gender bias learned by audio-based neural networks by over 30%.

We empirically show that our approach is generic and extensible to recurrent, attention-based

and Transformer models. Future work can utilize advances in document-NLP to extract temporal

information extraction (Mathur et al. 2021b), temporal dependency parsing (Mathur et al. 2022d),

and NLI (Mathur et al. 2022c) for better contextual understanding of financial reports. Predicting

the correct layout can also helps align audio with transcripts (Mathur et al. 2022a).

9.6 Limitations

We acknowledge the presence of gender bias in our study, given the imbalance in the gender ratio

of speakers of the calls. We also acknowledge the demographic bias sawhney-etal-2021-empirical

in our study as the companies are organizations within the public stock market of the United

States of America and may not generalize directly to non-native speakers. At the same time, we

extensively study the components causing gender bias and propose ways to fix it in the current

contributions.

9.7 Potential risks

Our contributions are meant as exploratory research in the financial domain and no part of

the work should be treated as financial advice. All financial investment decisions should be

made after extensive testing. Practitioners should check for various biases (demographic, gender,
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modeling, randomness) before attempting real-world use cases.

9.8 Ethical Considerations

Examining a speaker’s tone and speech in conference calls is a well-studied task in past literature

(Qin and Yang 2019b; Chariri 2009). Our work focuses on conference calls for which companies

publicly release transcripts and audio recordings. The data used in our study corresponding to

M&A and Earnings conference calls is open-sourced and available for download. The company

document filings we use to extract tabular data are publicly available, open source and devoid of

human intervention at its source. We do not collect any personalized data or violate any privacy

laws in using, storing or releasing the company filing data for financial analysis.
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CHAPTER 10

PersonaLM: Language Model Personalization via

Domain-distributed Span Aggregated K-Nearest N-gram Retrieval

Augmentation

Abstract

We introduce Domain-distributed span-Aggregated K-nearest N-gram (PersonaLM) retrieval

augmentation to improve language modeling for Automatic Speech Recognition (ASR) person-

alization. PersonaLM leverages contextually similar n-gram word frequencies for recognizing

rare word patterns associated with unseen domains. It aggregates the next-word probability

distribution based on the relative importance of different domains to the input query. To achieve

this, we propose Span Aggregated Group-Contrastive Neural (SCAN) retriever that learns to
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rank external domains/users by utilizing a group-wise contrastive span loss that pulls together

span representations belonging to the same group while pushing away spans from unrelated

groups in the semantic space. We propose ASAP benchmark for ASR LM personalization that

consists of three user-specific speech-to-text tasks for meetings, TED talks, and financial earnings

calls. Extensive experiments show that PersonaLM significantly outperforms strong baselines

with a 10-16% improvement in perplexity and a 5-8% reduction in Word Error Rates on popular

Wikitext-103, UserLibri, and our ASAP dataset. We further demonstrate the usefulness of the

SCAN retriever for improving user-personalized text generation and classification by retrieving

relevant context for zero-shot prompting and few-shot fine-tuning of LLMs by 7-12% on the

LAMP benchmark.

10.1 Introduction

Language modeling is a core task in NLP with important applications in automatic speech

recognition (ASR) (Mikolov et al. 2010; Chen et al. 2015; Xu et al. 2018a). Pre-trained LMs (Irie et

al. 2019a; Li et al. 2020e) memorize a surprising amount of knowledge from their training corpora

in the underlying neural network parameters (Petroni et al. 2019; Jang et al. 2022). However,

this makes it difficult to personalize them for text generation, non-streaming ASR re-scoring,

and on-device streaming ASR models for unseen users and domains due to the existence of

user-preferred rare word patterns, facts, proper names, and other domain-specific tail words

not seen frequently in the training data (Schick and Schütze 2019; Maynez et al. 2020; Serai,

Sunder, and Fosler-Lussier 2022). Retrieval augmentation (Lewis et al. 2020c) (see Fig. 10.1) can

help personalize LMs by explicitly exposing them to external world knowledge during inference
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Figure 10.1: ASR LM Personalization: During training, the LM is pre-trained on a generic corpus

and optionally fine-tuned on the out-of-domain corpus (see dotted). For query q at inference, LM
output pLM is interpolated with the probability distribution pext retrieved from domain-specific

external corpus for next word prediction p(wt |q) and ASR re-scoring.

(Borgeaud et al. 2022). LMs leverage the retrieval mechanism to select contextually relevant

users/domains from an external corpus and then attend over that knowledge to inform their

predictions (Liu, Yogatama, and Blunsom 2022).

Prior research has explored kNN-LM memorization (Khandelwal et al. 2020), RETRO

(Borgeaud et al. 2022), and attention-based caches (Grave, Joulin, and Usunier 2017). However,

these methods give subpar performance as they do not retrieve relevant domains/users prior to

context selection from billions of candidates. Recent approaches, notably REALM (Guu et al.

2020) and RAG (Lewis et al. 2020c), incorporate a non-parametric retrieval step during LM

pre-training, thus being unable to adapt their context representation for unseen domains.

We address the challenge of capturing rare word patterns associated with specific users

/ domains by exploiting n-gram word frequencies from underlying domains. Further, we hy-

pothesize that n-gram patterns are domain/user-specific, and augmenting LM predictions with

n-gram probabilities from a subset of query-relevant users/domains may lead to better personal-

ization. We anticipate the retrieval augmentation through n-gram frequencies to have additional
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advantages of very low computational overhead, efficient caching, and asynchronous updates

for newer data without the need for re-computation from scratch.

We propose PersonaLM -Domain-distributed Span-aggregated k-Nearest N-gram Language

Model, that aggregates top-k nearest n-gram co-occurrence frequencies from each domain

weighted according to the domain’s relative importance to the input query, which is augmented

with the target word probability distribution for next word prediction and ASR second-pass

re-scoring. We utilize a novel Span Aggregated Group-Contrastive Neural (SCAN) retriever that

can learn highly discriminative semantic representations to distinguish between text spans from

the same group as opposed to random spans using a group-wise contrastive loss. SCAN retriever

assigns a relevance score to each textual document/recording from an external corpus based on

its semantic similarity with the input query to weigh their contribution to the final prediction.

Our main contributions are:

• PersonaLM retrieval augmentation for ASR personalization that leverages group-wise

contrastive loss to train Span Aggregated Group-Contrastive Neural (SCAN) retriever

for ranking query-relevant external domains/users and augments domain-distributed k-

nearest n-gram frequencies to improve LM predictions.

• ASAP - a novel benchmark for ASR LM personalization consisting of three user-

specific ASR tasks in the domains of meetings, TED talks, and financial conference calls.

PersonaLM significantly outperforms strong baselines on ASAP benchmark, UserLibri,

and Wikitext-103 corpus by ∼ 10 – 16% perplexity gain and ∼ 5 – 8% WER reduction.

• Downstream Application: SCAN retriever improves context retrieval in personalized

text generation and classification via zero-shot prompting and few-shot fine-tuning of

LLMs on LaMP corpus by 7 – 12%.
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Figure 10.2: PersonaLM: At inference, we compute the relevance score P(di|q) between the query

and domains di as the dot product of their SCAN retriever representations. We construct a

data store for each n-gram frequency matrix. k-most similar n-gram contexts wrt to the input

query are retrieved and their weighted summation based on the domain’s relevance score is

computed to get probability distribution over targets PPersonaLM (wt |q) and interpolated with LM

probabilities PLM (wt |q).

10.2 Related Work

Language Modeling for Rare Words Prediction: Earliest works explored the use of LSTM

with auxiliary pointer networks to predict rare words and long-term dependencies in language

modeling (Merity et al. 2017). Neural cache augmentation (Grave, Joulin, and Usunier 2017)

stored past hidden activations in cache memory to predict out-of-vocabulary words. Implicit

cache memorization (Li, Povey, and Khudanpur 2020) used cache to store past word occurrences

as an alternative to the attention-based pointer mechanism. For the ASR re-scoring task, cross-

sentence neural LMs proposed to use word usage in preceding sentences to re-rank n-best

hypotheses of upcoming sentences (Sun, Zhang, and Woodland 2021; Irie et al. 2019b).

Retrieval Augmentation for Language Modeling: kNN-LM (Khandelwal et al. 2020) in-

terpolated pre-trained LMs with contexts extracted from an external data store using the kNN

algorithm. REALM (Guu et al. 2020) proposed a neural retriever to leverage external knowledge

during LM pre-training. (Ram et al. 2023) augmented GPT-2 with a large episodic memory for

a zero-shot reduction in perplexity. Retrieval-Enhanced Transformer (Retro) (Borgeaud et al.

170



Figure 10.3: SCAN Retriever: Input query q followed by text spans (xs, · · · , xe) from the positive

domain (d+) and N – 1 negative domains (d–) separated by [SEP] are passed through the encoder

followed by a projector layer and an average pooling layer. SCAN retriever is trained via a

group-wise contrastive loss to force the hidden representation of the query q̂ close to its own

spans zi, while far away from other groups.
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2022) retrieved document chunks similar to preceding tokens using a cross-attention module.

Our work is the first to use domain-distributed n-gram representations over document spans to

retrieve rare word patterns from the most relevant external knowledge domains.

10.3 PersonaLM Retriever Augmentation

Fig. 10.2 describes our proposed PersonaLM retrieval augmentation approach that biases the

predictions from a base LM with the next word probabilities based on the relevance of unseen

topic/users to the input query. Given an input query q = (w1, · · · ,wt–1) at inference, autore-

gressive LMs estimate the probabilty distribution for target token wt as PLM (wt |q). To augment

the LM output with domain-specific word occurrence information, we calculate the probability

distribution of next word prediction over the vocabulary conditioned on the relevance of the

underlying domains (d1, d2, · · · , dK ) to the query (q) as:

PPersonaLM (wt |q) =
K∑
i=1

P(di|q)× P(wt |di, q)

10.3.1 SCAN Retriever

Fig. 10.3 shows the architecture of our proposed Span Aggregated Group-Contrastive Neural

(SCAN) retriever which is a Transformer encoder pre-trained with Masked Language Modeling

(MLM) as well as a novel group-wise contrastive span loss to force the semantic representations

of the input query close to its ground truth domain and away from random spans from the

different domains. During the training of the SCAN retriever, we first sample spans of varying

granularities from multiple domains and encode them using the Transformer encoder. Group-

wise contrastive loss is then applied to learn discriminative semantic presentations for enhanced
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retrieval performance.

Document Span Sampling: Different granularities of spans capture different properties of the

input text. For example, phrase-level spans can capture specific words or entities mentioned

in the text while paragraph-level spans can capture more abstract properties of the text such

as topic information. In this work, we explicitly sample a set of text spans at the phrase level,

sentence level, and paragraph level. We extract T spans for each level of granularity to obtain a

total of 3T spans corresponding to each input document D. Text spans (xs, · · · , xe) are sampled

such that their start position is taken from a uniform distribution U (1, l – 1) the span length

l = e – s + 1 is determined by a beta distribution B(a, b)× (l – s), where l denotes the number of

phrases/sentences/paragraphs in the document with a, b as hyperparameters.

Multi-domain Text Encoding: Formally, let there be a query q with an associated posi-

tive domain d+ and a pool of N – 1 negative domains (d–i ). For each domain, we concate-

nate the input query with multiple spans, add a special [CLS] token before the query text

and a [SEP] token between the multiple spans to obtain the concatenated text sequence t =

[CLS], q, [SEP], x1s · · · x1e , [SEP] · · · , xNs · · · xNe . We encode the input text sequence using a multi-

layer Transformer encoder which maps each word to a low-dimensional dense representation

h0, h1, · · · , hi = Transformer(x0, x1, · · · , xi), where hi ∈ RH with H as the size of hidden dimen-

sion. We then pass the encoded representation through a project layer which is a fully-connected

layer followed by a non-linear activation pi = Tanh(FFN (hi)) to prevent representation collapse

during contrastive learning. An average pooling operation is applied over the projected word

representations to obtain the output representations as z = AvgPool(ps · · · pe).

Group-wise Contrastive Training: We use group-wise contrastive learning that incentives for

representations of spans in a group sharing the same semantics to be similar while penalizing
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the representations of groups expressing different semantics to be distinguished from each other.

It encourages the SCAN retriever to discriminate and score related query-span pairs (from the

same domain) higher than unrelated (from different domains) pairs. Given a mini-batch with N

domains, the group-wise contrastive loss function LGC is applied over M = N ∗ (3T + 1) spans as:

LGC =
–1

3T

N∑
i=1

T∑
v∈d+

log

exp(sim(zi, zv)/τ )∑M
j=1 1i ̸=j exp(sim(zi, zj)/τ )

where sim(·) refers to the dot product and τ is the temperature parameter.

10.3.2 Retrieving Relevant Domains

At inference, we encode the concatenated query text with the document spans through the

SCAN retriever. The relevance score assigned by the retriever model to a particular domain

di based on the input query q is denoted by P(di|q) is computed via the dot product operation

between the [CLS] token embedding (zq) and the average pooled embeddings of the document

spans (zdi ) as P(di|q) = sim(zq, zdi ).

10.3.3 Constructing k-Nearest N-gram Co-occurrence Matrix

We hypothesize that words that occur together in a specific domain have a high chance to

trigger during inference. To exploit the word-level co-occurrence probabilities in text, we

construct the n-gram frequencies matrices for each target domain di for n ∈ [2, 4] over the entire

vocabulary set V as f i
[(wt–n→wt–1),wv]

. However, n-gram frequencies tend to get sparser with

higher values of n. Moreover, restricting the query n-grams to only exact matches leads to a loss

of information due to ignorance of semantically similar n-grams (Li et al. 2017). To overcome

these drawbacks, we utilize k-nearest n-grams. We construct a key-value data store with keys
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as the Bert embeddings of n-grams and values as their corresponding n-gram co-occurrence

frequencies. At inference, PersonaLM uses k-NN with euclidean distance metric to query the

datastore for top-k nearest neighbor n-grams based on their BERT representations. The top-

k probability distributions obtained from the n-gram datastore are summed over the entire

vocabulary to get f̂ i
[(wt–n→wt–1),wv]

. The next word prediction for a selected domain is calculated

as a weighted sum of k-nearest bigrams, trigrams, and 4-gram frequencies as P(wt |di, q) =∑
4

j=2 αj ∗ [f̂ i[(wt–j→wt–1),1]
, · · · f̂ i

[(wt–j→wt–1),V ]
], where αj ∈ [0, 1] are hyperparameters.

10.3.4 LM Augmentation

We compute the PersonaLM retrieved next-word probability PPersonaLM (wt |q) by summing

the normalized k-nearest n-gram co-occurrence probabilities weighted by the relevance score of

the selected domain over the target vocabulary as:

PPersonaLM (wt |q) =

K∑
i=0

sim(zq, zdi ) × (

n∑
j=2

αj ∗ [f̂ i
[(wt–j→wt–1),1]

, · · · f̂ i
[(wt–j→wt–1),V ]])

Finally, we interpolate the retrieved next-word probability distribution through PersonaLM

(pPersonaLM ) with the base LM output (PLM ) using a hyperparameter λ to produce the final next-

word probability distribution as:

P(wt |q) = λPPersonaLM (wt |q) + (1 – λ)PLM (wt |q)

10.4 Experiments

10.4.1 Training SCAN retriever

We start with a pre-trained BERT model as the encoder which is further trained using group-wise

contrastive learning objective on the following IR benchmarks: (1) MS MARCO Passage Ranking
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(MARCO Dev Passage), (2) MS MARCO Document Ranking (MARCO Dev Doc) (Nguyen et al.

2016); (3) TREC 2019 Passage Ranking (TREC2019 Passage) and (4) TREC 2019 Document Ranking

(TREC2019 Document) (Craswell et al. 2020).

10.4.2 Datasets

We evaluate the PersonaLM method on our proposed ASAP dataset and the UserLibri corpus.

ASR Language Model Personalization (ASAP) benchmark aims to evaluate the efficacy of

LMs for personalized automatic speech recognition based on user/domain-specific information

for next word prediction and ASR n-best second-pass rescoring.

(1) Personalized Meeting ASR of user’s spoken utterances in professional meetings. This

task assesses the model’s ability to capture user-preferred dialogue patterns and linguistic

characteristics. We leverage the AMI Meeting corpus (Kraaij et al. 2005) by splitting the user-

specific recordings to obtain personalized utterance-text pairs.

(2) Personalized TED Talk ASR to convert recorded TED talks delivered by a specific user into

text transcript. This task evaluates the LM’s capability to capture topics-aware word patterns in

the speeches from the TED-LIUM v3 corpus (Hernandez et al. 2018). We split the recorded TED

talks temporally with historical utterance-text pairs forming the domain-specific train set.

(3) Personalized Financial Earning Calls ASR: Perform speech-to-text for financial earnings

conference calls that include company-specific financial information. The task aims to evaluate a

language model’s capacity to extract company-specific named entities, abbreviations, facts, and

long-tail word patterns. We adopt the conference call-transcript pairs from combined Earnings-21

(Rio et al. 2021) and Earnings-22 (Del Rio et al. 2022) datasets. Additionally, we use Wikitext-103

(Merity et al. 2017) to test the LM domain adaptation in topic-specific documents. Data Prepro-
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Dataset Train Val Test Vocab Size Domain # Domains

Earnings-21+22 49.6K 7.1K 14.2K 20K Earning Call 169

AMI Meeting Corpus 17.1K 2.7K 5.8K 11K Meeting Recording 135

TED-LIUM v3 188.9K 26.6K 9.3K 46K TED Talk 2351

Wikitext-103 2M 300K 10K 200K Wikipedia Page 30k

UserLibri 6.3M 700K 10K 10K Books 107

Table 10.1: Data stats of ASAP, UserLibri, and WikiText-103.

cessing: To study personalization in language modeling, we reformulated all the listed datasets to

identify explicit users/domains. For each dataset, we combined the original train/val/test portions

and splitted user-based data in the ratio of 70:10:20 such that each user/domain appears only

in one of splits. Table 10.1 shows statistics on dataset size and distribution. UserLibri Dataset

(Breiner et al. 2022a) reformulates the Librispeech corpus into user-specific audio-transcript

pairs supplemented with personalized text-only data corresponding to each user with similar

vocabulary, character names, and writing styles as the recordings.

10.4.3 Experiments for ASR Personalization

Language Model Architecture: We experiment with both LSTM and Transformer LMs. LSTM

model has 2 layers with a 300-d embedding layer and a hidden dimension of 1500. Transformer

LM consists of 4 layers of encoder-decoder with 12 heads, 128-d hidden representations, and

a feed-forward layer of 3072-d. For generating ASR n-best hypotheses, we use a pre-trained

RNN-T ASR Model with Emformer encoder (Shi et al. 2021b), LSTM predictor, and a joiner with

80M parameters.

Pre-training LMs: LSTM and Transformer LMs are pre-trained on Librispeech (Panayotov

et al. 2015) train set for 25 epochs with batch size of 256, Adam optimizer and cross-entropy loss

for next word prediction. We select model checkpoints with least perplexity on the Librispeech
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validation.

Adaptation to Unseen Domains: We evaluate the retrieval augmentation in two settings: (1)

Without fine-tuning: LM pre-trained on generic corpus; (2) With fine-tuning: LM pre-trained on

generic corpus and fine-tuned on the entire out-of-domain train corpus. In both cases, evaluation

is performed on out-of-domain test set.

Baselines: (i) LSTM/Transformer: Language model without any augmentation, (ii) Neural

Cache Model (Grave, Joulin, and Usunier 2017) augments LM output with continuous a cache

memory of previous hidden states. The stored keys are used to retrieve the next word through

a dot product-based memory lookup with the query. (iii) kNN-LM (Khandelwal et al. 2020):

Following (Das et al. 2022), we adopt kNN-LM to memorize context vectors from representations

from out-of-domain train set in an external data store. During inference, the k-nearest neighbors

of the decoder output representations are interpolated with LM output. (iv) Unified N-gram

Co-occurrence: N-gram word frequency matrices built from the combined out-of-domain

train set of each user/domain are augmented with LM at inference. (v) PersonaLM w\ other

retrievers: Replacing SCAN retriever with DPR (Karpukhin et al. 2020) or Contriever (Izacard

et al. 2021).

Ablation Studies: (i) PersonaLM w\o SCAN retriever: We use the dot product of query and

domain context encoded through pre-trained BERT to compute the weightage of each domain;

(ii) PersonaLM w\o k-Nearest N-grams: Similar to kNN-LM, we augment the NWP with

k-nearest Bert contexts vectors extracted from individual domains. We compute relevance scores

from the SCAN retriever to get the weighted sum of the probability distributions from each

domain.

Evaluation Metrics: We utilize word-level perplexity scores to evaluate LM performance for
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next-word prediction. We also report Word Error Rate (WER) for ASR second-pass re-scoring for

ASAP corpus. For UserLibri, we evaluate WER per user for both streaming and non-streaming

ASR settings. For each model, we report results with minimal perplexity by iterating the

interpolation parameter λ between 0 to 1 in increments of 0.1.

ASR Model Architecture for UserLibri: We utilize separate architectures for streaming and

non-streaming ASR. The Conformer Hybrid Autoregressive Transducer (HAT) from (Breiner

et al. 2022a) has 86M parameter and consists of 12 encoder layers of 512-d, 4 attention heads,

convolution kernel size of 32, and a HAT decoder with a single RNN layer of 640-d. Each

label is embedded with 128-d, and inputs are tokenized with a 1k Word-Piece Model trained

on the LibriSpeech train set. The models are trained with Adam using group-norm (Wu and

He 2018). For streaming ASR evaluation, the Conformer HAT model uses causal convolution,

local self-attention, and left-sided context stacking to ensure no look-ahead. The non-streaming

version has multi-headed attention. COnformer models in both cases are trained on 960 hours of

LibriSpeech audio training set. The LSTM decoder in streaming ASR is a 2-layer RNN of size

1340 with 25M parameters. It uses a similar Word Piece model as the Conformer.

10.4.4 SCAN Retriever Experiments on LaMP

LaMP (Salemi et al. 2023) is a benchmark corpus to evaluate LM personalization on the fol-

lowing user-specific text classification and generation tasks: (1) citation identification, (2) news

categorization (3) product rating prediction, (4) news headline generation, (5) scholarly title

generation, (6) email subject generation, and (7) tweet paraphrasing. Each data sample contains

an input sequence to the model, a target output, and several text samples that encapsulate the

user profiles that can be employed for LLM personalization.
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Baselines: Inspired by (Salemi et al. 2023), we compare SCAN retriever with strong baseline

retrievers for user-specific context selection: 1) Random, (2) BM25, and (3) Contriever.

Evaluation on LLM Personalization: We evaluate different retrievers for personalized prompt

construction in following settings: (a) Zero-shot LLM prompting: Retrieve top-k most relevant

user items from external corpus to append in prompts for GPT-3.5
1
and FlanT5-XXL (Chung

et al. 2022); (b) Few-shot LM Fine-tuning: Fine-tuning FlanT5-base (Chung et al. 2022) using

top-k retrieved items from the user profile.

10.5 Results and Analysis

Perplexity Evaluation: Tables 10.2 and 10.3 compare the perplexity scores of the proposed

PersonaLM retrieval augmentation against other baselines. We observe that the Neural Cache

model (Li, Povey, and Khudanpur 2020) slightly improves over naive LM baselines but struggles

due to its inability to handle long-range dependencies through pointer mechanism. Consistent

with observations of (Wang et al. 2023), kNN-LM (Khandelwal et al. 2020) reduces perplexity by

5-10% but is still challenged by the non-parametric fuzzy nature of k-nearest Bert context vectors

selected amongst billions of stored contexts from a gigantic data store. Similar to (Drozdov et al.

2022), our experiments show that Unified N-gram Co-occurrence shows slight improvement over

kNN-LM as n-grams are better at capturing highly domain-specific rare word patterns. However,

it still suffers from sub-optimal n-gram retrievals from a mixture of domains as the target

probabilities get averaged out when computed over the entire external corpus. Our proposed

method achieves SOTA performance and improves the LM perplexity by a significant margin

on WikiText-103 (57.1 – 61.8% w\o fine-tuning, 20.0 – 25.1% with fine-tuning), Earnings21+22

1
https://platform.openai.com/docs/models/gpt-3-5

180



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

20

40

60

80

100

120

140

λ (Interpolation parameter)

D
o
m
a
i
n
A
d
a
p
t
a
t
i
o
n
P
e
r
p
l
e
x
i
t
y

WikiText-103 AMI Corpus

Earnings-21+22 TED LIUMv3

(a) LSTM
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(b) Transformer

Figure 10.4: Plot of λ (interpolation parameter) vs perplexity of PersonaLM with fine-tuned (a)

LSTM, (b) Transformer LMs on WikiText-103, Earnings-21+22, AMI Corpus, and TED LIUMv3

datasets. Curves show convex characteristics with the optimal value of λ varying with different

settings.

(46.4 – 47.2% w\o fine-tuning, 11.4 – 12.6% with fine-tuning), AMI Meeting Corpus (71.6 – 71.9%

w\o fine-tuning, 7.9 – 12.8% with fine-tuning), and TED LIUMv3 (26.6 – 30.2% w\o fine-tuning,

3.8 – 4.7% with fine-tuning) over base LMs, demonstrating that contextually matching query

with most relevant domains via SCAN retriever module boosts retrieval performance which

reinforces the next word prediction task. Replacing the SCAN retriever in PersonaLM with

other baseline retrievers like Dense Passage Retriever (DPR) or Contriever leads to degraded

performance. However, the performance does not decrease below kNN-LM or Unified N-gram

Co-occurrence Retrieval methods, signifying the marginal benefit of domain-specific retrieval to

augment LM predictions.

ASR Rescoring Analysis on ASAP dataset: Table 10.3 shows results of second-pass ASR

rescoring on AMI Meetings and TED LIUMv3 datasets where our proposed approach improves

WER relatively by ∼ 5%. Retrieval-augmented LMs when combined with the n-best hypotheses
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produced by the audio model lead to statistically significant WER reduction with respect to both

kNN-LM and PersonaLM with Contriever baselines. Combining audio model and PersonaLM

allows wins on tail words while avoiding losses on common word occurrences. Evaluation

on UserLibri dataset (Breiner et al. 2022b) shows that PersonaLM improves WER for both

streaming and non-streaming ASR. Compared to fine-tuning the LM on the entire external

personalized corpus (p13n LM), PersonaLM can selectively learn user-specific discriminative

patterns in speech text and weigh it appropriately for biasing the LM predictions.

Ablation Analysis: Tables 10.2-10.4 highlights in red show the ablation study for PersonaLM.

We observe that SCAN retriever is critical in all settings due to its enhanced ability to learn

enhanced discriminative document representations that help assign appropriate weights to

external domains. Removing the k-Nearest N-grams severely deteriorates the performance as the

LM is no longer able to exploit the personalized n-gram probability distribution from different

domains. The severe performance drop in WER for speech datasets in the absence of either of

the components underscores their significance for personalized ASR tasks.

Adaptation to Unseen Domains: Retrieval augmentation with fine-tuned LMs shows a sus-

tained relative gain of 5-18% across all settings despite having seen the same data during the

fine-tuning stage. This observation validates our our hypothesis that despite the benefits of

transfer learning for out-of-domain generalization, explicit memorization is needed to effectively

learn user-specific linguistiuc patterns not retained during fine-tuning.

Impact of Interpolation Parameter: Figure 10.4 shows that the optimal value of interpolation

parameter λ varies in different settings. λ vs perplexity curve shows convex characteristics for all

variants of PersonaLM. Perplexity scores improve with increasing λ as explicit memorization

of rare word patterns mined from matching domains benefits the next word prediction task but
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starts to drop monotonically after reaching an inflection point.

Qualitative Examples: Qualitative examples from ASAP, Wikitext, and UserLibri datasets in

Table 10.6 along with model predictions. PersonaLM is able to able to correctly predict proper

nouns, abbreviations, and homonyms mistaken by fine-tuned LM and kNN-LM baselines, while

also fixing the problem of over-prediction of domain-specific frequent words commonly observed

in Unified N-gram Co-occurrence Retrieval baseline.

Downstream Application of SCAN Retriever: Table 10.5 shows the application of different

retrievers for improving user-personalized text generation and classification on the LaMP dataset.

We aim to retrieve the most relevant user profiles that can be augmented with query context

for zero-shot prompting or few-shot fine-tuning of LLMs. SCAN retriever outperforms both

BM-25 and Contriever baselines and shows significant gains across different metrics compared

to non-personalized LMs across all subtasks, except tweet paraphrasing. As opposed to earlier

advances where retrieval augmentation was performed during LM training (Lewis et al. 2020c;

Guu et al. 2020), the core merits of our proposed SCAN retriever are that it is extensible to any

LM (LSTM, Transformer, Generative LLMs like FlanT5 and GPT-3.5), can seamlessly adapt to

new users, enable in-context retrieval augmentation without any LM-specific fine-tuning, and

requires very small memory footprint with negligible computational overhead.

10.6 Conclusion

We introduce PersonaLM retrieval augmentation for ASR personalization using SCAN - a neural

retriever trained via group-contrastive learning to rank textual documents from an external

knowledge corpus based on their semantic similarity with the input query. We aggregate the
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probability distribution of the next word prediction by utilizing domain-specific n-gram word

frequency representations weighted by the relative importance of the external domains to the

input query. Experiments on our proposed ASAP benchmark and the UserLibri dataset show

that our method achieves SOTA perplexity and WER. We show that SCAN retriever is also useful

for in-context LLM augmentation for zero-shot prompting and few-shot fine-tuning. For future

work, we intend to extend our work for multilingual ASR and speech style transfer.
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Model WikiText-103 Earnings-21+22
Perplexity (↓) Perplexity (↓)

W
it
ho

ut
Fi
ne

-t
un

in
g LSTM 1384.1 757.6

+ Neural Cache 1325.3 723.8

+ kNN-LM 1191.6 659.1

+ Unified N-gram Co-occurrence Retrieval 603.6 477.2

+ PersonaLM w \DPR 544.3 420.3

+ PersonaLM w \Contriever 539.8 412.3

+ PersonaLM 527.9 405.6
+ PersonaLM w\o SCAN Retriever 542.8 415.4

+ PersonaLM w\o k-Nearest N-gram 542.3 415.7

W
it
h
Fi
ne

-t
un

in
g

LSTM 103.9 66.2

+ Neural Cache 97.6 66.0

+ kNN-LM 91.8 65.7

+ Unified N-gram Co-occurrence Retrieval 89.2 64.5

+ PersonaLM w \DPR 84.2 63.0

+ PersonaLM w \Contriever 80.2 59.6

+ PersonaLM 77.8 57.8
+ PersonaLM w\o SCAN Retriever 82.7 61.5

+ PersonaLM w\o k-Nearest N-gram 82.3 61.9

(a) LSTM LM

Model WikiText-103 Earnings-21+22
Perplexity (↓) Perplexity (↓)

W
it
ho

ut
Fi
ne

-t
un

in
g Transformer 1322.3 834.2

+ Neural Cache 1295.3 802.4

+ kNN-LM 1150.4 717.8

+ Unified N-gram Co-occurrence Retrieval 585.3 454.8

+ PersonaLM w \DPR 578.2 452.7

+ PersonaLM w \Contriever 569.3 446.1

+ PersonaLM 567.6* 440.4*
+ PersonaLM w\o SCAN Retriever 572.9 448.2

+ PersonaLM w\o k-Nearest N-gram 572.1 447.9

W
it
h
Fi
ne

-t
un

in
g

Transformer 88.6 55.2

+ Neural Cache 86.8 54.9

+ kNN-LM 79.3 54.2

+ Unified N-gram Co-occurrence Retrieval 76.5 53.8

+ PersonaLM w \DPR 76.1 52.6

+ PersonaLM w \Contriever 72.5 49.6

+ PersonaLM 70.9* 48.2*
+ PersonaLM w\o SCAN Retriever 74.8 51.5

+ PersonaLM w\o k-Nearest N-gram 73.5 50.3

(b) Transformer LM

Table 10.2: Results comparing the performance of PersonaLM Retrieval Augmentation for

(a) LSTM and (b) Transformer LMs with baselines and ablations (in red) for the Next Word
Prediction task on WikiText-103 and Earnings-21+22 datasets. PersonaLM achieves the lowest

perplexity scores across all settings. * indicates that the result is statistically significant (5 runs)

based on Wilcoxon’s signed rank test (p < 0.001).

185



Model AMI Meeting Corpus TED LIUMv3
Perplexity (↓) WER (↓) Perplexity (↓) WER (↓)

W
it
ho

ut
Fi
ne

-t
un

in
g

Audio Model Only (Emformer) – 32.54 – 17.23

Audio Model + LSTM 1636.4 31.75 427.7 13.51

+ Neural Cache 1545.4 31.69 414.5 13.25

+ kNN-LM 1232.2 31.62 389.7 7.82

+ Unified N-gram Co-occurrence Retrieval 606.7 31.25 335.4 7.34

+ PersonaLM w \DPR 490.5 31.22 332.8 7.23

+ PersonaLM w \Contriever 471.2 31.15 315.0 7.16

+ PersonaLM 463.8* 31.01* 313.8* 7.01*
+ PersonaLM w\o SCAN Retriever 480.2 31.13 320.3 7.15

+ PersonaLM w\o k-Nearest N-gram 478.9 31.10 318.8 7.14

W
it
h
Fi
ne

-t
un

in
g

Audio Model Only (Emformer) – 32.54 – 17.23

Audio Model + LSTM 37.7 31.40 132.6 13.27

+ Neural Cache 37.5 31.36 132.2 13.03

+ kNN-LM 37.1 31.27 131.5 7.76

+ Unified N-gram Co-occurrence Retrieval 36.6 31.20 130.3 7.44

+ PersonaLM w \DPR 36.2 31.16 130.2 7.28

+ PersonaLM w \Contriever 35.1 31.14 128.7 7.03

+ PersonaLM 34.7* 31.01* 127.5* 6.90*
+ PersonaLM w\o SCAN Retriever 35.9 31.14 129.7 7.10

+ PersonaLM w\o k-Nearest N-gram 35.7 31.12 129.4 7.07

(a) LSTM LM

Model AMI Meeting Corpus TED LIUMv3
Perplexity (↓) WER (↓) Perplexity (↓) WER (↓)

W
it
ho

ut
Fi
ne

-t
un

in
g

Audio Model Only (Emformer) – 32.54 – 17.23

Audio Model + Transformer 2114.3 32.05 442.0 13.24

+ Neural Cache 1987.5 32.01 424.5 13.18

+ kNN-LM 1579.0 31.95 398.6 7.57

+ Unified N-gram Co-occurrence Retrieval 637.1 31.37 332.3 7.22

+ PersonaLM w \DPR 624.9 31.33 327.4 7.14

+ PersonaLM w \Contriever 601.4 31.25 310.1 7.05

+ PersonaLM 592.6* 31.16* 308.3* 6.92*
+ PersonaLM w\o SCAN Retriever 610.3 31.29 316.6 7.15

+ PersonaLM w\o k-Nearest N-gram 608.5 31.27 315.5 7.05

W
it
h
Fi
ne

-t
un

in
g

Audio Model Only (Emformer) – 32.54 – 17.23

Audio Model + Transformer 29.5 31.28 116.7 12.98

+ Neural Cache 29.3 31.24 116.2 12.78

+ kNN-LM 29.1 31.19 115.6 7.35

+ Unified N-gram Co-occurrence Retrieval 28.1 31.14 114.0 7.21

+ PersonaLM w \DPR 27.7 31.10 113.0 7.04

+ PersonaLM w \Contriever 26.4 31.03 112.3 6.93

+ PersonaLM 25.7* 30.88* 111.1* 6.86*
+ PersonaLM w\o SCAN Retriever 27.0 31.09 112.7 7.00

+ PersonaLM w\o k-Nearest N-gram 26.9 31.05 112.8 6.98

(b) Transformer LM

Table 10.3: Results comparing the performance of PersonaLM Retrieval Augmentation for

(a) LSTM and (b) Transformer LMs with baselines and ablations (in red) for the Next Word
Prediction and Second-Pass ASR Re-scoring tasks on AMI Meeting Corpus and TED LIUMv3

datasets. PersonaLM achieves minimum perplexity WER on both datasets. * indicates that the

result is statistically significant (5 runs) based on Wilcoxon’s signed rank test (p < 0.001).
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Model

Streaming Non-Streaming

Test-Clean Test-Other All Test-Clean Test-Other All

Conformer Transducer (Audio Model Only) 6.0 11.2 8.5 2.5 6.8 4.5

Conformer Transducer + LM (25M) 5.2 9.1 7.1 2.0 5.5 3.7

+ Fine-tuned LM (p13n) 5.2 8.7 6.9 1.9 4.6 3.2

+ Unified N-gram Retrieval 5.1 8.6 6.8 1.9 4.4 3.1

+ PersonaLM w\ Contriver 5.0 8.5 6.8 1.8 4.4 3.0

+ PersonaLM 4.8* 8.3* 6.6* 1.6* 4.2* 2.8*

+ PersonaLM w\o SCAN retriever 5.1 8.6 6.9 1.8 4.6 3.0

+ PersonaLM w\o k-Nearest N-gram 5.0 8.5 6.8 1.8 4.5 3.1

Table 10.4: Performance comparison of PersonaLM Retrieval Augmentation with baselines and abla-

tions for personalized (a) streaming ASR and (b) non-streaming ASR on the UserLibri dataset. PersonaLM

reduces the WER by 7-12% across all settings. * indicates that the result is statistically significant (5 runs)

based on Wilcoxon’s signed rank test (p < 0.001).

Dataset Metric

FlanT5-XXL GPT-3.5 FlanT5-base (fine-tuned)

Non-personalized Contriver SCAN Retriever Non-personalized Contriver SCAN Retriever Non-personalized Contriever SCAN Retriever

LaMP-1U: Personalized

Citation Identification

Accuracy 0.522 0.675 0.687 0.510 0.701 0.715 0.522 0.731 0.745

LaMP-2U: Personalized

News Categorization

Accuracy 0.591 0.598 0.608 0.610 0.693 0.702 0.730 0.835 0.843
F1 0.463 0.471 0.484 0.455 0.455 0.466 0.504 0.637 0.648

LaMP-3U: Personalized

Product Rating

MAE 0.357 0.282 0.276 0.699 0.658 0.644 0.314 0.258 0.246
RMSE 0.666 0.584 0.565 0.977 1.102 0.980 0.624 0.572 0.559

LaMP-4U: Personalized

News Headline Generation

ROUGE-1 0.164 0.192 0.211 0.133 0.160 0.172 0.158 0.201 0.212
ROUGE-L 0.149 0.178 0.187 0.118 0.142 0.155 0.144 0.185 0.192

LaMP-5U: Personalized

Scholarly Title Generation

ROUGE-1 0.455 0.467 0.475 0.395 0.398 0.409 0.424 0.453 0.470
ROUGE-L 0.410 0.424 0.433 0.334 0.336 0.342 0.382 0.414 0.425

Table 10.5: Performance comparison of zero-shot FlanT5-XXL, GPT-3.5, and few-shot fine-tuned FlanT5-

base for personalized text classification and generation results on the validation set of LaMP dataset. For

all metrics the higher the better, except for RMSE and MAE. Prompting LLMs with user-specific context

selected by the SCAN retriever consistently reports the best performance.

Win/Loss Ground Truth Fine-tuned LM kNN-LM Unified N-gram Retrieval PersonaLM Type

Win king sharr khan king sir can king sir khan king share can kingsharr khan Proper Name

Win murdoch blinked mr duck winged mom duck blink murdock blinked murdoch blinked Proper Name

Loss tied to a woman tied to a woman tied too a woman died to a woman died to a woman homonym

Win lord of baghdad lord of bag dad lord of bag dad lord baghdad lord of baghdad homonym

Win mister beale mister bell mister bell mister be elle mister beale Proper Name

Win thanks izzy thanks is he thanks is he thank is he thanks izzy homonym

Win North American Treaty Alliance North American Treaty All Hands North American Treaty Organization North American Treaty Alliance North American Treaty Alliance Abbreviation Term

Loss utterly RSVP for this our invitation utter RSVP for this our invitation utter respect for this our invitation utterly rest for this our invitation utterly respectively for this our invitation Abbreviation Term

Table 10.6: Qualitative examples: Ground truth, baseline predictions, and PersonaLM predictions

for a few samples from UserLibri and ASAP eval set. PersonaLM is able to able to correctly

predict proper nouns, abbreviations, and homonyms mistaken by fine-tuned LM and kNN-LM

baselines, while also fixing the problem of over-prediction of domain-specific frequent words

commonly observed in Unified N-gram Co-occurrence Retrieval baseline.
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CHAPTER 10

Conclusion and Future Directions

We now take a step back to understand how all our proposed methodologies connect to our

bigger picture. Our main contribution has been the development and implementation of auto-

mated techniques for document information extraction, document structure understanding, and

manipulations. We also saw multiple applications of these methodologies for downstream tasks

and adjacent domains. We have delved into both semantic and structural aspects of information

processing for document understanding. Our methods show promising abilities to learn from

large-scale document datasets which we developed as part of the research.
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10.1 Summary of Our Work

We began with the development of techniques that combined the multihop capability of graph

neural networks with Transformer models to reason beyond a fixed context length in long-

form documents. Departing away from chucking of context followed by merging of reasoning

mechanism, we demonstrated that end-to-end methods can benefit from the backpropagation

of losses across the Transformer encoders and graph convolutions pipelines. Beyond this,

Transformers models encompassing layout information showed remarkable efficiency for spatial

understanding tasks over multimodal document representations. Models such as LayerDoc

helped solve the grouping, reading order, and hierarchy reconstruction tasks in an end-to-

end fashion in a multi-task learning setup. Hierarchical information also aided document

editing and position-aware TTS models, further providing evidence in support of structure

understanding. We further demonstrated that document-level information extraction and long-

context multimodal understanding aid several non-trivial downstream tasks. An important

learning from our research has been on the effect of fine-tuning pretrained language models

with multi-task losses to customize their applications in non-standard domains.

10.2 Future Work

An important future work that remains to be realized is the extension of the proposed methods

to low-resource settings such as low-resource languages, specific domains, and unseen user

groups. Such efforts will require extensive data collection as well as recalibration of necessary

processing steps which remains to be a non-trivial challenge. With the advent of Large Language

Models, few-shot and zero-shot capabilities of the proposed tasks and systems need to be re-
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evaluated. LLMs such as ChatGPT and GPT-4 provide promising new directions to extend our

work by leveraging stronger Transformer networks for information extraction. Recent works

necessitate experimental evaluation to compare how supervised training stands up to few-shot

prompting for information extraction tasks. With improvements in context length limitations

of pre-trained decoder-only Transformer models, the challenge of attention sparsity in long-

context input still remains to be evaluated. Bias and fairness in neural training have been a

long-standing problem that necessitates that any deployment of our proposed methodologies be

evaluated for possible harm to the under-served communities. As future work, we motivate the

community to undertake extensive studies to analyze the new methods that may be made more

robust to adversaries. Following the proposed work, we invite researchers to explore methods

to incorporate expectant human values into the language modeling paradigms for document

information extraction, structure parsing, and user-based document manipulations.

Potential Applications to Legal Documents: Our research finds immense applications

for legal work involving information retrieval from large collection of documents Sansone

and Sperlí 2022. In the legal domain, many of the documents may be unstructured or semi-

strcutured with loosely defined meta-data Sancheti et al. 2022. Such cases are frequent during

the information discovery process and for collecting evidences as part of the FOIA (Freedom

of Information Act) from previously unreleased document sets controlled by the United States

government. Our proposed document selection algorithm - DocInfer an be repurposed for

such application use cases where the requested information query can be seen as an NLI task

over a collection of long documents. Chunking these documents into a hierarchy of small

paragraphs and sentences, we can apply Paragraph selection module and optimal evidence

retrieval mechanism to access the most relevant pieces of information for answering the input
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query. Such a process will make the lives of lawyers much easier and free them to focus on more

important aspects of the job such as legal reasoning and case preparation. Our work in no way

advocates the replacement of legal professional, rather pushes AI technologies to make them

more efficient and cut down mundane work. However, further research needs to be conducted to

make these methodologies more robust and interpretable. One of the current disadvantages of

our system is that it is prone to errors based on legal fine-print due to lack of domain-specialized

reasoning modules for context understanding. Another relevant use case in this domain is

filtering down documents related to a specific case or type Nguyen et al. 2022. Lawyers indulge

in challenging work settings where they may have to select a subset of document based on a

certain judicial ruling or legal law from hundreds of thousands of past cases Schumann, Meyer,

and Gomez 2022. To solve such problems, our proposed SCAN retriever can be best purposed for

this task. SCAN retriever is trained to contrastively select a group of documents that share a

particular characteristic with a seed document. In this manner, it can retrieve and rank the most

relevant subset of documents, significantly reducing the load of manual grunt work for lawyers.

One important modification that may be needed to make this application more successful can

be to use a specialized Transformer models pre-trained in legal-language to make the SCAN

retriever robust to domain shift.

Potential Applications to Enhance Accessibility: The proposals presented as part

of this thesis aim to enhance user accessibility to make document consumption, creation and

modifications more efficient for people facing mental or physical challenges. DocLayoutTTS is

one of the first attempts of its kind that enables screen readers for structured documents such

as forms, websites, and academic articles. Prior works in text-to-speech research were limited

to converting text to spoken words. Our methodology addresses the pain point of organizing
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text in the correct reading order which can then be utilized for speech generation and help

people with reading challenges overcome their lack of agency in interacting with legal forms,

contracts, web interfaces, posters, and many more (semi-)structured digital documents. Through

DocEdit, we showed how verbal requests can be used to automate visual document editing

without the need to manually execute the editing process. This workflow is especially useful for

people with physical disabilities such as carpal tunnel syndrome, arthritis, neuropathy, and even

amputations that may restrict their locomotor movements. Lastly, our work on Language Model

personalization takes a step towards helping people achieve complex linguistic tasks using LLMs

in a way that the LLM can adapt to a user’s style, tone and identity specifics to aid them in their

creative workflows. This can be potentially be helpful for patients suffering from partial dementia

who may need writing assistance according to their unique needs and preferences (Wood et al.

2023). Further, our line of research sheds light on how PDFs when created from source files

often lose the tagging metadata present in the authoring application related to the content type

and order (Jembu Rajkumar et al. 2020). Manually tagging elements, extracting the reading

order, and repairing tables and structured content loss is very time-consuming for an average

content creator (Pradhan et al. 2022). Moreover, this metadata cannot be easily added back due

to the complexity of the PDF format (Jembu Rajkumar, Jordan, and Lazar 2020). Our work on

LayerDoc provides a comprehensive solution to enrich PDF documents with descriptive metadata

such as OCR recovered text along with the logical structure of content, marking heading level

tags, organization of the content in pages, sections, and paragraphs. This is an essential step

for remediating a PDF document for accessibility for blind people and those with low vision

disabilities.
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