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Chapter 1

Introduction

The concept of modern portfolio theory was developed by Harry M. Markowitz in

1952. Markowitz measured the risk for various kinds of securities and developed

methods which optimized the trade-off between the return and the risk. The theory

shows that the portfolio risk comes from the covariance of the assets in the portfolio.

Investors should not consider the prospects of a single security individually, but instead

look at how each investment fits into the overall portfolio. Markowitz constructed a

model which showed that the risk of a portfolio was lower thanthe average of the

risks of each individual asset. He also gave quantitative evidence of the advantage of

diversified investment. The theory was shown to be consistent with expected utility

maximization for exponential utility with Gaussian returns.

Prices of assets are generally modelled as continuous functions of time. Black-

Scholes[6] and Merton[31] built a stock price model using geometric Brownian mo-

tion. Discontinuities of stock price models have been considered as an additional

orthogonal compound Poisson process[32, 3]. This type of model is called a jump-

diffusion model. A purely discontinuous stock price process called the variance gamma

(VG) process was proposed by Madan and Seneta in 1987[28]. The VG process has no

continuous component. The VG model has infinitely many jumpsand finite variation.
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The VG processXV G(t) is defined as follows:

XV G(t) = θg(t) + σW (g(t)),

whereg(t) is a gamma process with unit mean and varianceν, andW (g) is Gaussian

with zero mean and varianceg. The risk free process for the VG stock priceS(t) at

time t is modelled as follows,

S(t) = S(0)
exp(rt+XV G(t))

E[exp(XV G(t))]
,

such that the mean rate of return equals to the continuous compounded interest rater,

that is,E(S(t)) = S(0) exp(rt).

As two stock price processesS1 andS2 are often driven by the same factors, we

model the two-factor VG stock price model as follows. Denote

S1(t) =
exp(m1t+B1X1(t) +B2X2(t))

E[exp(B1X1(t) +B2X2(t))]
(1.1)

and

S2(t) =
exp(m2t+ C1X1(t) + C2X2(t))

E[exp(C1X1(t) + C2X2(t))]
, (1.2)

whereX1 andX2 are independent VG processes,m1,m2 are continuous compounded

interest rates, andB1, B2, C1, andC2 are coefficients of the linear combination of the

log of the stock prices,S1 andS2. Let

B(t) = E[exp(B1X1(t) +B2X2(t))]

C(t) = E[exp(C1X1(t) + C2X2(t))].

The quantitiesB(t) andC(t) are the convexity correction factors ofS1 andS2. We

may see that the mean rate of returns ofS1 andS2 equal the continuous compounded

interest ratesm1 andm2, respectively.
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We construct a multivariate VG portfolio which assumes thatthe asset returns are

driven by independent VG components. We apply independent component analysis

(ICA) to transform the observed daily return data into independent components. And

these independent components are assumed to follow the zeromean VG process in

our analysis. ICA is a method which transforms a set of observed multi-dimensional

data into components that are as statistically independentas possible. We compare

our model with the Gaussian portfolio. The observed data notonly fits the VG model

better, but the investment strategy built by VG also performs better.

Chapter 2 briefly presents the Markowitz portfolio theory. The VG process is in-

troduced in Chapter 3. In Chapter 4, we construct the multivariate VG asset pricing

model. We describe the independent component analysis in Chapter 5. In Chapter 6,

we discuss the solution of multivariate portfolio problems. We implement independent

component analysis in Chapter 7. Chapter 8 presents the results of the VG investment.

3



Chapter 2

Markowitz portfolio theory

The Markowitz portfolio theory deals with individual agents in portfolio selection.

Probability theory and optimization theory are used to model the behavior of individual

economic agents. Under rational behavior, the agents are assumed to seek for a balance

between maximizing the return and minimizing the risk of theportfolios. Return is

measured by the mean, and risk is measured by the variance of the portfolio. The

solution will depend on the risk level that the investors would take. A probability

distribution of security prices is assumed to be known in theMarkowitz model later by

followers. The variance is presented as a quadratic approximation to a utility function

[29, 30].

2.1 Utility function

Portfolio theory was developed to solve any decision problems in investment in an

uncertain future. Under the rules of rational behavior, onehas to define an opportunity

set and a preference function. The preference function is called the utility function.

Investors prefer having more to having less, and are consistent with their choices.

The growth rate of the utility function is always positive. The utility function gives
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each situation a value based on the expected return and the risk of the portfolio. A

utility functionU can represent an investor’s attitude toward risk. The utility function

conserves the order, that is, the utility of more return is higher than the utility of less

return. The expected utility of an investor’s wealthW is defined as follows[13, 14]:

E(U(W )) =
∑

i

piU(wi),

wherepi is the probability of obtaining the final wealthwi. One commonly used utility

function is called exponential utility function. The general form of the exponential

utility function is

U(W ) = 1 − exp(−ηW ),

whereW is the final wealth, andη is the risk aversion coefficient. Each investor has

different degree of tolerance towards risk. The choice of how to adjust a portfolio is

made by maximizing the investor’s expected utility function.

2.2 Certainty equivalent

The utility of a risk-free portfolio is the rate of return on the portfolio. Investors can

compare the utility value of a risky portfolio with the risk-free return rate when making

a decision between a risky portfolio and a safe one. We may define a portfolio utility

value as its certainty equivalent rate of return. In other words, the certainty equivalent

CE of a portfolio is the rate that the risk-free portfolio has toprovide with certainty to

be considered as attractive as the risky portfolio[36]. Mathematically, we may write

U(CE) = E(U).
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That is, the utility of the certainty equivalent equals the expected utility. Using the

exponential utility function, we get

1 − exp(−η × CE) = E(U).

The optimal strategy of an investor is the one with the highest certainty equivalent.

The certainty equivalent depends on the investor’s attitude toward risk.

2.3 The Markowitz model

Let xi be the proportion invested in securityi in the Markowitz model, where1 ≤ i ≤

n, andRi is the return for theith security. Denoteµi = E(Ri) as the expected return

of securityi. The return of the portfolio isR′x =
∑n

i=1Rixi with expected return

E(R′x) = µ′x =
∑n

i=1 xiµi, whereR = (R1, R2, . . . , Rn)′, x = (x1, x2, . . . , xn)′,

andµ = (µ1, µ2, . . . , µn)
′. Let Σ be the variance-covariance matrix of the random

vectorR. Then the variance of the portfolio isx′Σx. Investors are assumed to prefer

return and avoid risk. Thus, given a fixed level of risk, the investors will select a

portfolio which maximizes the return. Or equivalently, fora fixed level of return, the

investors will select a portfolio which minimizes the risk.A portfolio which follows

this condition is called an efficient portfolio. The set of all efficient portfolios is called

the efficient frontier[29]. The mathematical formulation of the Markowitz model is

maximizeE(R′x)

subject tox′Σx ≤ γ
n
∑

i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

6



whereγ is the maximum of risk level the investor would take. Equivalently, the model

may be formulated as

maximizex′Σx

subject toE(R′x) ≥ κ
n
∑

i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

whereκ is the minimum return the investor would take.

2.4 Expected utility maximization for

exponential utility and Gaussian returns

Let the certainty equivalent for wealthW follow the gaussian distribution with meanµ

and varianceσ2 in the case of exponential utility. The density functionp(W ) of wealth

is

p(W ) =
1

σ
√

2π
exp

(

−(W − µ)2

2σ2

)

,

and the utility function is

U(W ) = 1 − exp(−ηW ), (2.1)

whereη is risk aversion coefficient. The certainty equivalent,CE, is defined by the

equation

U(CE) = E(U),

or equivalently

1 − exp(−η × CE) = E(U).
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The expected utility is evaluated as follows,

E(U) =

∫ ∞

−∞
U(W )p(W )dW

=

∫ ∞

−∞
(1 − exp(−ηW ))p(W )dW

= 1 −
∫ ∞

−∞
exp(−ηW )p(W )dW

= 1 −
∫ ∞

−∞
exp(−ηW )

1

σ
√

2π
exp

(

−(W − µ)2

2σ2

)

dW.

Make the change of variable for the above integral as follows,

z =
W − µ

σ

W = µ+ σz

dW = σdz,

We then have

E(U) = 1 −
∫ ∞

−∞
e−η(µ+σz) 1√

2π
exp

(

−z
2

2

)

dz

= 1 − e−ηµ

∫ ∞

−∞
eησz 1√

2π
exp

(

−z
2

2

)

dz

= 1 − e−ηµ+ η2σ2

2

∫ ∞

−∞

1√
2π

exp

(

−(z + ησ)2

2

)

dz

= 1 − e−ηµ+ η2σ2

2 . (2.2)

Combine equations 2.1 and 2.2, we get

1 − e−η×CE = 1 − e−η×(µ−η σ2

2
).

Finally, we see that

CE = µ− η
σ2

2
.
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Chapter 3

Long-tailed returns

While the Black-Scholes model remains widely used in the financial world, it has

known biases. The financial data shows that the log returns ofmost assets are not nor-

mally distributed. We often find some skewness and excess kurtosis from the empirical

distribution. Thus, more flexible distributions than normal are necessary. In order to

model asset prices over time, we need more flexible stochastic processes as well.

Over a long period of time, there are many independent effects on asset prices.

Thus, the independent and stationary increments properties of the Brownian motion

seem reasonable for economic assumptions. We would like to work with processes

which not only have the independent and stationary increments properties, but also

can have skewness and excess kurtosis.

To keep the independent and stationary increments properties of a stochastic pro-

cess, the distribution needs to be infinitely divisible. Such processes are called Lévy

processes. In financial literature, models which are able tocapture the characteristics of

infinitely divisible distributions as well as the skewness and excess kurtosis were pro-

posed. The first Lévy process financial model proposed was the symmetric variance

gamma model by Madan and Seneta[28], and Madan and Milne[27]. The symmetric

variance gamma model controls for kurtosis and volatility.Madan, Carr, and Chang
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[8] generalized the process proposed in[28, 27] which addresses the skewness as well.

3.1 Lévy processes and infinitely divisible laws

We start with a few definitions in this section. General references on infinitely divisible

distributions and Lévy processes are in[4, 5, 35].

Definition 3.1. A stochastic processX = {X(t) : t ≥ 0} is said to be a Ĺevy process

if the following conditions are satisfied.

1. X has independent increments: for any choice ofn ≥ 1 and 0 ≤ t0 < t1 <

· · · < tn,X(t0),X(t1)−X(t0), · · · ,X(tn)−X(tn−1) are independent random

variables.

2. X(0) = 0 almost surely.

3. X has stationary increments: the distribution ofX(t + s) − X(s) does not

depend ons.

4. X is stochastically continuous: for everyt ≥ 0 andǫ > 0,

lim
s→t

P [|X(s) −X(t)| > ǫ] = 0.

5. X is right continuous with left limits almost surely.

Definition 3.2. The characteristic functionφ(u) of the distributionF (x) = P (X ≤ x)

of a random variableX is denoted by

φX(u) = E[exp(iuX)] =

∞
∫

−∞

exp(iux)dF (x).
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Definition 3.3. A probability distribution with a characteristic functionφ(u) is in-

finitely divisible if, for any positive integern,

φn(u) = φ(u)1/n

is also a characteristic function.

The following theorem gives the characteristic functions of infinitely divisible dis-

tributions. The representation is called the Lévy-Khintchine formula.

Theorem 3.4. (i) If a probability distribution with a characteristic function φ(u) is

infinitely divisible, and letψ(u) = log φ(u), then

ψ(u) = iγu− 1

2
σ2u2 +

∞
∫

−∞

(exp(iux) − 1 − iux1{|x|<1})ν(dx), (3.1)

whereγ ∈ R, σ2 ≥ 0, andν is a measure onR\{0} with

∞
∫

−∞

(1 ∧ x2)ν(dx) <∞. (3.2)

(ii) The representation ofψ(u) in (i) by γ, σ, andν is unique.

(iii) Conversely, ifγ ∈ R, σ2 ≥ 0, andν is a measure satisfying (3.2), then there ex-

ists an infinitely divisible distribution whose log characteristic function is given

by (3.1).

The measureν is called the Lévy measure of the process. When the measure has

the formν(dx) = k(x)dx, we callk(x) the Lévy density. In (3.1), we observe that

the Lévy-Khintchine formula has three components: a linear deterministic component

with the drift coefficientγ, a Brownian component with the diffusion coefficientσ, and

a pure jump component. The Lévy measure describes the jump process; that is,k(x)

11



specifies the arrival rate of jumps of sizex. If σ2 = 0 and
∫

|x|≤1

ν(dx) < ∞, the Lévy

process is a pure jump process with finite arrival rate of jumps. On the other hand, a

pure jump Lévy process has infinite arrival rate ifσ2 = 0 and
∫

|x|≤1

ν(dx) = ∞; that is,

the process has infinitely many jumps in any bounded interval.

If σ2 = 0 and
∫

|x|≤1

|x|ν(dx) <∞, then the process is of pure jump finite variation.

In this case, the exponent of the Lévy-Khintchine formula can be written as

ψ(u) = iγ′u+

∞
∫

−∞

(exp(iux) − 1)ν(dx), (3.3)

for someγ′. A finite variation Lévy process can be expressed as the difference of two

increasing processes. The converse is also true.

3.2 The variance gamma process

The variance gamma (VG) process is a pure jump Lévy process with finite variation

and infinite arrival rate of jumps. The VG process may be written as time-changed

Brownian motion or as the difference of two independent gamma processes[17].

3.2.1 The VG process as time-changed Brownian motion

Although the VG process is a pure jump process, Geman, Madan,and Yor[16] gener-

alized the result of Clark (1973)[10] and verified that it may be viewed as a continuous

process with a stochastic clock.

Definition 3.5. A real-valued Ĺevy process is called a subordinator if it has almost

surely nondecreasing paths.

A subordinator is a nondecreasing Lévy process, and thus has no diffusion part

and has finite variation. Clark[10] gave examples of subordinated processes in which
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prices were evaluated by a geometric Brownian motion with its time given by another

independent geometric Brownian motion. In general, the time process need not be

independent of the price process. The VG process evaluates Brownian motion with

drift at a random time change given by a gamma process. Let

Y (t; σ, θ) = θt+ σW (t)

whereW (t) is a standard Brownian motion. The processY (t; σ, θ) is a Brownian

motion with drift θ and variance rateσ2.

Definition 3.6. The gamma processG(t; ν) is a Lévy process whose incrementsG(t+

h; ν) −G(t; ν) = g have the gamma density with meanh and varianceνh:

fh(g) =
gh/ν−1 exp(−g/ν)

νh/νΓ(h/ν)
.

Its characteristic function is:

φg(u) =

(

1

1 − iuν

)h/ν

,

and forx > 0, its Lévy density is:

kg(x) =
exp(−x/ν)

νx
.

The gamma process is a pure jump process with no drift. Note that
∞
∫

0

kg(x)dx =

∞ and
∞
∫

0

xkg(x) < ∞, so that the gamma process is of infinite activities and finite

variation.

The VG processXV G(t; σ, ν, θ) is defined by

XV G(t; σ, ν, θ) = Y (G(t; ν); σ, θ)

= θG(t; ν) + σW (G(t; ν))

13



with the mean rate ofg to be unity. The characteristic function of the VG process may

be evaluated by conditioning on the gamma process. This is because, givenG(t; ν),

XV G(t) is Gaussian. Therefore

E[exp(iuXV G(t))|G(t; ν)] = exp(iuθG(t; ν) − σ2u2

2
G(t; ν)).

We then may obtain the characteristic function of the VG processφXV G
(u) by uncon-

ditioning the expectation. Thus,

φXV G
(t; u) = E[exp(iuXV G)]

=

(

1

1 − iuθν + σ2ν
2
u2

) t
ν

. (3.4)

The moments of VG process may be calculated by differentiating the characteristic

function. We shall observe thatθ controls skewness andν controls kurtosis.

3.2.2 The VG process as a finite variation process

Consider two independent gamma processesGp andGn with mean rateµp, µn, and

variance rateνp, νn, respectively. The VG process is a finite variation process and may

be represented as the difference of two independent increasing processes,Gp andGn.

That is,

XV G(t) = Gp(t) −Gn(t).

The characteristic functions of the two gamma processes are

φGp
(u) =

(

1

1 − iuνp/µp

)µ2
pt/νp

,

and

φGn
(u) =

(

1

1 − iuνn/µn

)µ2
nt/νn

.
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Let νp/µ
2
p = νn/µ

2
n = ν. Then the characteristic function of the difference of the two

gamma processesGp andGn is

φGp−Gn
(u) =





1

1 − iu
(

νp

µp
− νn

µn

)

+ u2 νp

µp

νn

µn





t/ν

. (3.5)

Note thatφGp−Gn
(u) = φXV G

(u), by comparing the two equations (3.4) and (3.5). We

then have

µp =
1

2

√

θ2 +
2σ2

ν
+
θ

2
,

µn =
1

2

√

θ2 +
2σ2

ν
− θ

2
,

νp = µ2
pν,

νn = µ2
nν.

The Lévy density of the VG model is then easily obtained fromthis representation

via the Lévy density of the gamma process. The Lévy densityof the VG process is

kV G(x) =











1
ν|x| exp(−µn

νn
|x|) for x < 0

1
ν|x| exp(−µp

νp
|x|) for x > 0

. (3.6)

To express the VG Lévy density in terms of the original parameters,θ, σ, andν, we

have,

kV G(x) =
exp (θx/σ2)

ν|x| exp

(

−|x|
σ

√

2

ν
+
θ2

σ2

)

. (3.7)

3.3 Moments of the VG process

The moments of the VG process may be easily obtained by differentiating its charac-

teristic function.
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Theorem 3.7. [25] If E[|X|k] <∞, thenφ(k)
X exists and

E[Xk] = i−kφ
(k)
X (0).

Madan, Carr, and Chang[8] showed that

E[X(t)] = θt,

E[(X(t))2] = (θ2ν + σ2)t+ θ2t2,

E[(X(t) − E[X(t)])2] = (θ2ν + σ2)t,

E[(X(t) − E[X(t)])3] = (2θ3ν2 + 3σ2θν)t,

E[(X(t) − E[X(t)])4] = (3σ4ν + 12σ2θ2ν2 + 6θ4ν3)t+

(3σ4 + 6σ2θ2ν + 3θ4ν2)t2.

Definition 3.8. For any random variableX withE|X|4 <∞, define

s =
E[(X(t) −E[X(t)])3]

(E[(X(t) −E[X(t)])2])3/2
,

k =
E[(X(t) − E[X(t)])4]

(E[(X(t) −E[X(t)])2])2
.

The quantity s is known as the coefficient of skewness and is used as a measure of

asymmetry, and k is known as kurtosis and is used to measure the peakedness of a

distribution.

In particular, the coefficient of skewnesssV G and the coefficient of the kurtosis

kV G of the VG process are evaluated as follows:

sV G =
θνt(2θ2ν + 3σ2)

(σ2 + θ2ν)3/2t3/2
,

kV G = 3 +
3ν

t

(

2 − σ4

(θ2ν + σ2)2

)

.
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We observe that in the VG process, skewness is zero ifθ = 0. Also, whenθ = 0,

k = 3(1 + ν
t
). We see that the parametersθ andν control skewness and kurtosis. If

θ 6= 0, ν affects skewness.θ also affects kurtosis.

3.4 Simulation of the VG process

Since a VG process may be seen either as a time-changed Brownian motion or as the

difference of two independent gamma processes, a VG processcan be simulated either

as a time-changed Brownian motion or as the difference of twoindependent gamma

processes.

3.4.1 Simulation of VG as a time-changed Brownian motion

A VG processXV G with parametersθ, ν, andσ can be written as

XV G = θg + σW (g),

whereW (g)
d
= g1/2Z,Z is a standard normal random variable andZ is independent of

g. A sample path of the VG process may be obtained by simulatinga gamma process

g with shape parameter1/ν, and scale parameterν; and by independently simulating a

standard Brownian motion, that is, by simulating normal random numbers with mean

0 and varianceσ2g.

3.4.2 Simulation of VG as the difference of two gamma processes

A VG processXV G(t) can be written as the difference of two independent gamma

processesGp(t) andGn(t), that is,

XV G(t) = Gp(t) −Gn(t).

17



Gp andGn are two independent gamma processes with mean rateµp, µn, and variance

rateνp, νn, respectively. A sample path of VG process may be obtained bysimulating

Gp with the shape parameterµp
2

νp
, and the scale parameterνp

µp
; andGn with the shape

parameterµn
2

νn
, and the scale parameterνn

µn
.

3.5 The VG stock price model

The VG stock price is constructed by replacing the Brownian motion in the Black-

Scholes geometric Brownian motion model by the VG process, and define the risk free

process for the VG stock priceS(t) at timet, such that the mean rate of return equals

the continuous compounded interest rater. We have

S(t) = S(0)
exp(rt+XV G(t))

E[exp(XV G(t))]
,

so thatE(S(t)) = S(0) exp(rt). In particular,

exp(−wt) = E[exp(XV G(t))] = φXV G
(−i) = exp

(

− t

ν
ln

(

1 − θν − σ2ν

2

))

.

ThenS(t) = S(0) exp ((r + w)t+XV G(t)) for w = 1/ν ln(1 − θν − σ2ν/2). We

callw the convexity correction factor. We may derive the characteristic function of the

ln(S(t)) from that of theXV G(t). Thus,

φln(S(t))(u) = E[exp(iu ln(S(t)))]

= e

“

iu(ln(S(0))+rt+ t
ν

ln(1−θν−σ2ν
2

))
”

φXV G
(u)

= e

“

iu(ln(S(0))+rt+ t
ν

ln(1−θν−σ2ν
2

))
”

(

1 − iuθν +
σ2ν

2
u2

)− t
ν

. (3.8)

The VG density may be found by applying Fourier inversion to the characteristic func-

tion of thelog of the stock price.
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Chapter 4

Multivariate asset pricing

Two stock price processes are often driven by the same factors. In this chapter, we

would like to investigate thelog of the stock prices in terms of the linear combinations

of two independent VG processes. The two independent VG processes are treated as

the common factors of two stock prices.

4.1 Multivariate VG process

Let X1 andX2 be two independent VG processes with parametersθi, νi, andσi, for

i = 1, 2. According to equation (3.3), the characteristic functionof a VG process may

be written as

φV G(u) = exp





∞
∫

−∞

(exp(iux) − 1)k(x)dx



. (4.1)

Here, we suppose both the absence of a continuous martingaleand a deterministic

drift rate. A deterministic drift rate may easily be added inapplications, we are mainly

concerned with the stochastic component. We then have the characteristic function

φX1
, φX2

of X1,X2 as,

φX1
(u) = exp (

∞
∫

−∞

(exp(iux1) − 1)k1(x1)dx1),
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and

φX2
(v) = exp (

∞
∫

−∞

(exp(ivx2) − 1)k2(x2)dx2),

where

ki(xi) =
exp (θixi/σi

2)

νi|xi|
exp



−|xi|
σi

√

2

νi

+
θi

2

σi
2



 , for i = 1, 2.

Definition 4.1. The joint characteristic functionΦX1,X2
(u, v) of two random variables

X1 andX2 is denoted by

ΦX1,X2
(u, v) = E[exp(iuX1 + ivX2)].

Lemma 4.2. LetX1 andX2 be two independent random variables. LetφX1
(u) and

φX2
(v) be the characteristic functions ofX1 andX2, respectively. The joint charac-

teristic functionΦX1,X2
(u, v) ofX1 andX2 is

ΦX1,X2
(u, v) = E[exp(iuX1 + ivX2)]

= E[exp(iuX1)]E[exp(iuX2)] (4.2)

= φX1
(u)φX2

(v). (4.3)

Fact 4.3. The Ĺevy-Khintchine representation of the joint characteristic function of

two VG processesX1(t) andX2(t) is denoted as

ΦX1,X2
(u, v) = exp (t

∞
∫

−∞

∞
∫

−∞

(exp(i(ux1 + vx2)) − 1)k(x1, x2)dx1dx2). (4.4)

Definition 4.4. The indicator function of a subsetA of a setX is a function fromA

into {1, 0} defined as follows

1A(x) =











1 if x ∈ A

0 if x /∈ A
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Theorem 4.5.LetX1(t) andX2(t) be two independent VG processes with parameters

θ1, ν1, σ1 andθ2, ν2, σ2, respectively. The characteristic functionφX1
(u) ofX1(t) is

φX1
(u) = exp (t

∞
∫

−∞

(exp(iux1) − 1)k1(x1)dx1),

and the characteristic functionφX2
(u) ofX2(t) is

φX2
(v) = exp (t

∞
∫

−∞

(exp(ivx2) − 1)k2(x2)dx2),

where the Ĺevy densitieski(xi) are

ki(xi) =
exp

(

θixi

σi
2

)

νi|xi|
exp



−

√

2
νi

+ θi
2

σi
2

σi

|xi|



 , for i = 1, 2.

Then the joint characteristic functionΦX1,X2
(u, v) ofX1 andX2 is

ΦX1,X2
(u, v) = exp (t

∞
∫

−∞

∞
∫

−∞

(exp(i(ux1 + vx2)) − 1)k(x1, x2)dx1dx2),

where

k(x1, x2) = 1x2=0k1(x1) + 1x1=0k2(x2).
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Proof. LetX1 andX2 be two independent VG processes. Then

ΦX1,X2
(u, v)

= E[e(iuX1+ivX2)]

= e
(t

∞
R

−∞

∞
R

−∞

(exp(i(ux1+vx2))−1)k(x1,x2)dx1dx2)

= E[e(iuX1)]E[e(iuX2)]

= φX1
(u)φX2

(v)

= e
(t

∞
R

−∞

(exp(iux1)−1)k1(x1)dx1)

e
(t

∞
R

−∞

(exp(ivx2)−1)k2(x2)dx2)

= e
(t((

∞
R

−∞

(exp(iux1)−1)k1(x1)dx1)+(
∞
R

−∞

(exp(ivx2)−1)k2(x2)dx2)))

= e
(t((

∞
R

−∞

[
∞
R

−∞

(exp(i(ux1+vx2))−1)(1x2=0k1(x1))dx2]dx1)+(
∞
R

−∞

(exp(ivx2)−1)k2(x2)dx2)))

= e
(t(

∞
R

−∞

[
∞
R

−∞

(exp(i(ux1+vx2))−1)(1x2=0k1(x1))dx1+(exp(ivx2)−1)k2(x2)]dx2))

= e
(t(

∞
R

−∞

[
∞
R

−∞

(exp(i(ux1+vx2))−1)(1x2=0k1(x1))dx1+
∞
R

−∞

(exp(i(ux1+vx2))−1)(1x1=0k2(x2))]dx2))

= e
(t(

∞
R

−∞

∞
R

−∞

(exp(i(ux1+vx2))−1)(1x2=0k1(x1)+1x1=0k2(x2))dx1dx2))

.

We then have

k(x1, x2) = 1x2=0k1(x1) + 1x1=0k2(x2).

The functionki(x) specifies the arrival rate of jumps of sizex, for i = 1, 2. Since

X1(t) andX2(t) are independent processes,k1(x1) andk2(x2) are also independent

of each other. From Theorem 4.5, we see that almost surely thetwo independent

processesX1(t) andX2(t) do not have joint jumps.
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4.2 Two-factor VG stock price model

LetX1 andX2 be two independent VG processes. LetS1 andS2 be two stock prices

given by the following processes:

S1 =
exp(m1t+B1X1(t) +B2X2(t))

E[exp(B1X1(t) +B2X2(t))]
(4.5)

and

S2 =
exp(m2t+ C1X1(t) + C2X2(t))

E[exp(C1X1(t) + C2X2(t))]
, (4.6)

wherem1, m2 are continuous compounded interest rates, andB1, B2, C1, andC2 are

coefficients of the linear combination of thelog of the stock prices,S1 andS2. Hence

S1 andS2 are two factor VG processes. Let

B(t) = E[exp(B1X1(t) +B2X2(t))], (4.7)

C(t) = E[exp(C1X1(t) + C2X2(t))]. (4.8)

B(t) andC(t) are the convexity correction factors ofS1 andS2. We may see that the

mean rate of returns ofS1 andS2 equal the continuous compounded interest ratesm1

andm2, respectively.

Lemma 4.6. AssumeX1 andX2 are two independent VG processes with parameters

θ1, ν1, σ1, andθ2, ν2, σ2, respectively. LetS1 andS2 be the two stock prices described

in equations 4.5 and 4.6, respectively. We have

lnS1 = m1t+B1X1(t) +B2X2(t) − lnB(t),

lnS2 = m2t+ C1X1(t) + C2X2(t) − lnC(t),

where

B(t) = E[exp(B1X1(t) +B2X2(t))],

C(t) = E[exp(C1X1(t) + C2X2(t))],
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m1, m2 are continuous compounded interest rates, andB1, B2, C1, andC2 are con-

stant coefficients of the linear combination oflnS1 and lnS2. Then the joint charac-

teristic functionΦln S1,lnS2
(u, v) of lnS1 andlnS2 is

Φln S1,ln S2
(u, v) = E[exp(iu lnS1 + iv lnS2)]

= exp(i(m1u+m2v)) ·

[1 − θ1ν1B1 −
σ1

2ν1

2
B1

2]
iut
ν1 · [1 − θ2ν2B2 −

σ2
2ν2

2
B2

2]
iut
ν2 ·

[1 − θ1ν1C1 −
σ1

2ν1

2
C1

2]
ivt
ν1 · [1 − θ2ν2C2 −

σ2
2ν2

2
C2

2]
ivt
ν2 ·

[1 − iθ1ν1(uB1 + vC1) +
σ1

2ν1

2
(uB1 + vC1)

2]
− t

ν1 ·

[1 − iθ2ν2(uB2 + vC2) +
σ2

2ν2

2
(uB2 + vC2)

2]
− t

ν2 .

Proof. See A.1.

Proposition 4.7. Let Φln S1,lnS2
(u, v) be the joint characteristic function oflnS1 and

lnS2 whereS1 andS2 are defined in equations 4.5 and 4.6. Then the marginal char-

acteristic functionsφln S1
(u) of lnS1 and φlnS2

(v) of lnS2 are Φln S1,lnS2
(u, 0) and

Φln S1,lnS2
(0, v), respectively.

Proof. See A.2.

4.3 Moments of VG stock price process

If Xi are VG processes, from Theorem 3.7, we have

E[Xi(t)] = θit

E[Xi
2(t)] = t2θ2

i + tθ2
i νi + tσ2

i

for i = 1, 2.
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Theorem 4.8.X1 andX2 are two independent random variables, then

Cov(X1, X2) = E(X1X2) −E(X1)E(X2) = 0.

Corollary 4.9. If X1(t) andX2(t) are two independent VG processes, then

E(X1(t)X2(t)) = θ1θ2t
2

Proof. X1 andX2 are two independent VG processes, then

Cov(X1(t), X2(t)) = E(X1(t)X2(t)) − E(X1(t))E(X2(t)) = 0.

Thus,

E(X1(t)X2(t)) = E(X1(t))E(X2(t))

= θ1θ2t
2.

Proposition 4.10. LetX1(t) andX2(t) be two independent VG processes. IfS1 and

S2 are defined in equations 4.5 and 4.6, andB(t) andC(t) are defined in 4.7 and 4.8,

respectively, then

E(lnS1) = m1t+B1θ1t+B2θ2t− lnB(t)

E(lnS2) = m2t+ C1θ1t+ C2θ2t− lnC(t).

Proof.

E(lnS1) = E(m1t+B1X1(t) +B2X2(t) − lnB(t))

= m1t+B1θ1t+B2θ2t− lnB(t),

and similarly,

E(lnS2) = m2t+ C1θ1t+ C2θ2t− lnC(t).
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Proposition 4.11.LetX1(t) andX2(t) be two independent VG processes. SupposeS1

andS2 are defined in equations 4.5 and 4.6, respectively. Then

V ar(lnS1) = B2
1t(θ

2
1ν1 + σ2

1) +B2
2t(θ

2
2ν2 + σ2

2)

V ar(lnS2) = C2
1 t(θ

2
1ν1 + σ2

1) + C2
2 t(θ

2
2ν2 + σ2

2).

Proof. See A.3.

Proposition 4.12.LetX1(t) andX2(t) be two independent VG processes. SupposeS1

andS2 are defined in equations 4.5 and 4.6, respectively. Then

Cov(lnS1, lnS2) = B1C1t(θ
2
1ν1 + σ2

1) +B2C2t(θ
2
2ν2 + σ2

2).

Proof. See A.4.

We see that the variance oflnS1, the variance oflnS2, and the covariance oflnS1

andlnS2 are all proportional tot.

4.4 Conditional expectation of VG stock price process

Theorem 4.13. [34] Suppose thatX1 andX2 are bivariate normal random variables

with meanµ1, µ2, and varianceσ2
1, σ2

2 , respectively. The correlation coefficientρ of

X1 andX2 is denoted as

ρ =
Cov(X1, X2)

σ1σ2
.

ThenX2|X1 is a normal distribution with meanµ2 +β(X1−µ1), and varianceσ2
2(1−

ρ2), whereβ = ρσ2/σ1.

Theorem 4.14.If X1 andX2 are independent normally distributed random variables

with meansµ1, µ2, and variancesσ2
1, σ2

2, respectively, thenX1 +X2 is also a normally

distributed random variable with mean(µ1 + µ2) and variance(σ2
1 + σ2

2).
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Let X1(t) andX2(t) be two independent processes. SupposeBi andCi are con-

stants fori = 0, 1, 2. Suppose

Y1(t) = B0 +B1X1(t) +B2X2(t),

Y2(t) = C0 + C1X1(t) + C2X2(t).

By Theorem 4.14, ifX1 andX2 are Gaussian processes, thenY1 andY2 are Gaussian

processes as well. According to Theorem 4.13, the conditional expectationE(Y2|Y1)

is a linear function ifX1 andX2 are normal random variables. We would like to

investigate the conditional expectationE(Y2|Y1) whenX1 andX2 are two independent

VG processes.

Theorem 4.15.SupposeX1 andX2 are two independent VG processes thatg1 andg2

are two independent gamma processes and thatW1 andW2 are standard Brownian

motions. Suppose

X1 = θ1g1 + σ1W1(g1)

X2 = θ2g2 + σ2W2(g2)

and

Y1 = B0 +B1X1(t) +B2X2(t)

Y2 = C0 + C1X1(t) + C2X2(t),

whereBi andCi are constants fori = 0, 1, 2. We then have

E(Y2|Y1) = E(αt|Y1) + E(βt|Y1)Y1,

where

βt =
B1C1σ

2
1g1 +B2C2σ

2
2g2

B2
1σ

2
1g1 +B2

2σ
2
2g2

αt = C0 + C1θ1t+ C2θ2t− βt(B0 +B1θ1t+B2θ2t).
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Proof. By Theorem 4.13,

E[Y2|Y1, g1, g2] = αt + βtY1,

where

βt =
Cov(Y1, Y2|g1, g2)

V ar(Y1|g1, g2)
.

Cov(Y1, Y2|g1, g2) = E(Y1Y2|g1, g2) −E(Y1|g1, g2)E(Y2|g1, g2),

V ar(Y1|g1, g2) = E(Y 2
1 |g1, g2) − (E(Y1|g1, g2))

2.

E(X1|g1, g2) = θ1g1,

E(X2|g1, g2) = θ2g2,

E(X2
1 |g1, g2) = V ar(X1|g1, g2) + (E(X1|g1, g2))

2

= σ2
1g1 + θ2

1g
2
1.

Similarly,

E(X2
2 |g1, g2) = σ2

2g2 + θ2
2g

2
2.

E(Y1Y2|g1, g2) = B0C0 +B0C1θ1g1 +B1C0θ1g1 +B0C2θ2g2 +

B2C0θ2g2 +B1C2θ1θ2g1g2 +B2C1θ1θ2g1g2 +

B1C1(σ
2
1g1 + θ2

1g
2
1) +B2C2(σ

2
2g2 + θ2

2g
2
2), (4.9)

E(Y1|g1, g2)E(Y2|g1, g2) = (B0 +B1θ1g1 +B2θ2g2)(C0 + C1θ1g1 + C2θ2g2)

= B0C0 +B0C1θ1g1 +B1C0θ1g1 +B0C2θ2g2 +

B2C0θ2g2 +B1C2θ1θ2g1g2 +B2C1θ1θ2g1g2 +

B1C1θ
2
1g

2
1 +B2C2θ

2
2g

2
2. (4.10)
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Subtract equation (4.9) by equation (4.10), we get

Cov(Y1, Y2|g1, g2) = B1C1(σ
2
1g1 + θ2

1g
2
1) +B2C2(σ

2
2g2 + θ2

2g
2
2) −

B1C1θ
2
1g

2
1 +B2C2θ

2
2g

2
2

= B1C1σ
2
1g1 +B2C2σ

2
2g2.

V ar(Y1|g1, g2) = E(Y 2
1 |g1, g2) − (E(Y1|g1, g2))

2

= V ar(Y1|g1, g2) + (E(Y1|g1, g2))
2 − (E(Y1|g1, g2))

2

= B2
1σ

2
1g1 +B2

2σ
2
2g2.

Hence,

βt =
B1C1σ

2
1g1 +B2C2σ

2
2g2

B2
1σ

2
1g1 +B2

2σ
2
2g2

αt = E(Y2) − βE(Y1)

= C0 + C1θ1t+ C2θ2t− βt(B0 +B1θ1t+B2θ2t).

E(Y2|Y1) = E(E(Y2|Y1, g1, g2)|Y1)

= E(αt + βtY1|Y1)

= E(αt|Y1) + E(βtY1|Y1)

= E(αt|Y1) + E(βt|Y1)Y1.

We may see that whenX1 andX2 are two independent VG processes, then the

conditional expectationE(Y2|Y1) is approaching to a linear function.
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Chapter 5

Independent component analysis

Independent component analysis (ICA) is a technique for finding underlying factors

for the observed multivariate data. The observed multivariate data are assumed to

be linear or nonlinear combinations of some unknown latent variables. The mixing

system is also to be determined by the technique. The latent variables are assumed

statistically independent and nongaussian. Namely, the latent variables are the inde-

pendent components of the observed data. The details of ICA can be found in[23], [1],

and[7]. This chapter follows the guidelines of[23].

5.1 Second-order methods

One can treat ICA as an extension to the classical principal component analysis (PCA)

and factor analysis (FA). Both PCA and FA are second-order methods. The second-

order methods require only the information contained in thevariances and the covari-

ances of the observed data. The second-order methods often assume that the observed

data are normally distributed so that the higher moments areirrelevant.
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5.1.1 Principal component analysis

Principal components are linear combinations of random variables which have spe-

cial properties associated with variances. The first principal component is the linear

transformation with maximum variance[24, 26].

Suppose matrixC is the covariance matrix of the random vectorX with n com-

ponents. Furthermore, we assume that the mean of the vectorX is zero. Letw be a

n-component scalar column vector such thatw′w = 1, and supposeY = w′X. Denote

y1 as the first principal component ofX. That is,

y1 =
n
∑

i=1

wi1xi = w′
1x.

The variance ofw′X is

E(w′X)2 = E(w′XX ′w) = w′Cw,

whereC = E(XX ′). To find the linear transformationw′X with maximum variance,

we need to findw which maximizes the variance ofw′X subject to the constraint

w′w = 1. From the facts of linear algebra[15], the PCA problem is solved in terms

of the unit-length eigenvectorse1, ..., en of the covariance matrixC. Let d1, ..., dn be

the corresponding eigenvalues of the eigenvectorse1, ..., en with d1 ≥ d2 ≥ · · · ≥

dn. The solution that maximizes the variance ofw′X so thatw′w = 1 is given by

w1 = e1, and the first principal component ofX is y1 = e′1X. To find the rest of the

principal components, we need to find a combinationw′X that has maximum variance

and is uncorrelated to the previously found principal components. For example, second

principal componenty2 satisfies the condition

E(y2y1) = E((w′
2X)(w′

1X)) = w′
2Cw1 = d1w

′
2e1 = 0.

The solution is given byw2 = e2. This procedure is continued, and it follows that

wi = ei. Then theith principal component isyi = e′iX.
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5.1.2 Factor analysis

The general model for factor analysis is

x = As+ n (5.1)

wherex is the observed data,s is the vector of factors that cannot be observed,A is a

constant matrix, andn is the noise vector. Boths andn are assumed to be Gaussian.

The dimension ofs is assumed to be lower than the dimension ofx. Factor analysis

is a modification of PCA. However, factor analysis results are invariant under rescal-

ing, but PCA results are not. Assume the covariance matrixE(nn′) of the noisen is

known. The factors are found by processing PCA using the modified covariance ma-

trix E(xx′)−E(nn′) [2]. Thus the vectors is the vector of principal components ofx

without noise. Equation (5.1) does not uniquely define the factors. One must impose

extra conditions to get a unique model.

5.2 Definition of ICA

Second-order methods often assume that the observed data are Gaussian, which is

usually not true for the real data. ICA takes the higher-order moments into account.

ICA is the process of finding the linear combination of a set ofstatistically independent

vectorsy that determines the multivariate observed datax. The vectorsy are called the

independent components, which are the estimates of the original factors and are mixed

to form the observed data[23].

Assume we observe multivariate datax1, ..., xn. Furthermore, we assume thatx is

a linear function of the independent components,

xi = ai1s1 + ai2s2 + ...+ ainsn, for all i.
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Or equivalently, we use vector-matrix notation so that the above system of equations

is written as

x = As, (5.2)

whereA is the unknown mixing matrix. For simplicity, we assume there are as many

observed signals as their original sources. ThusA is an × n square matrix. Without

loss of generality, we center the observed data by subtracting the sample mean, so that

the model is zero-mean. The goal of ICA is to find a demixing matrix W such that

y = Wx

= WAs.

If W = A−1, theny = s. It is hard to find the perfect separationy = s. In general, it’s

possible to findW such thatWA = PD whereP is a permutation matrix, andD is a

diagonal matrix.

5.3 Principles of ICA

The first assumption of ICA is that the componentssi are statistically independent.

Independence among random variables is a much stronger requirement than lack of

correlation. Independence implies zero covariance, but zero covariance does not al-

ways imply independence of random variables. In PCA and FA, the random variables

are assumed to be Gaussian. For Gaussian random variables, independence and zero

covariance are equivalent. For PCA and FA, it is enough to usezero covariance. For

ICA, zero covariance is not enough. Note that, if two random variabless1 and s2

are independent, then any nonlinear transformationsg1(s1) andg2(s2) are indepen-

dent. ICA is a method for finding the demixing matrixW by decorrelation. That is,
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one finds the matrixW such that the componentssi andsj are uncorrelated and the

nonlinear transformationg1(si) andg2(sj) are also uncorrelated.

The second assumption of ICA is that the independent components are nongaussian

distributions. The observed data cannot be separated if thecomponents are Gaussian.

For example, assume that two independent componentss1 ands2 are Gaussian. The

joint density ofs1 ands2 is

p(s1, s2) =
1

2π
exp(−s

2
1 + s2

2

2
) =

1

2π
exp(−‖ s ‖2

2
).

Assume also that the mixing matrixA is orthogonal. The joint density of the observed

signalsx1 andx2 is

p(x1, x2) =
1

2π
exp(−‖ A′x ‖2

2
)|detA′| =

1

2π
exp(−‖ x ‖2

2
).

The equality holds because of the orthogonality of the mixing matrixA. For an or-

thogonal matrixA, ||A′x||2 = ||x||2 and |detA| = |detA′| = 1. The independent

components and the observed signals have the same distribution. The ICA model is

not well defined ifs1, s2, · · · , sn are jointly Gaussian. For Gaussian random variables,

independence and zero covariance are equivalent. Also, thehigher-order cumulants

of Gaussian distribution are zero. ICA is a process that utilizes the information of

higher-order cumulants. The information of higher-order cumulants is important.

5.4 Maximize the nongaussianity of ICA

One of the main assumptions of ICA is that the independent components are nongaus-

sian. Thus we would like to maximize the nongaussianity of ICA. The Central Limit

Theorem is one of the most important results in probability theory. It states that un-

der certain conditions, the sum of a large number of independent random variables is
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approximately gaussian. Loosely speaking, the sum of independent random variables

has a distribution that is more gaussian than the original random variables.

Recall the ICA model in equation 5.2. The goal is to find the latent variabless

and the mixing matrixA. To find the independent components, let us consider a set of

linear combinations of the multivariate observed datax. We writey = Wx = WAs.

We see thaty is a linear function ofs. Under regularity conditions onWA and the

distribution ofs, the Central Limit Theorem suggests thaty = WAs is more Gaussian

thans. However, ify = WAs has only one nonzero component, theny equal to one

of the independent components. That is, ifW = A−1, theny = s.

5.5 Objective function of ICA

Negentropy is introduced in information theory to measure nongaussianity. Negen-

tropy is based on entropy. Entropy is a quantity which can be interpreted as the degree

of information that the observation of the random variable gives. The larger the en-

tropy, the more random is the variable. A fact in informationtheory indicates that the

Gaussian variable has the largest entropy among all random variables of equal variance

[12]. Thus, we can use Entropy to measure nongaussianity. Entropy H of a discrete

random variableY is defined as

H(Y ) = −
∑

i

P (Y = ai) logP (Y = ai),

whereai are the possible values ofY . The entropyH of continuous random variables

and vectors is called differential entropy, and is defined as

H(y) = −
∫

f(y) log f(y)dy,

wheref(y) is the density of the random vectory.
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The negentropyJ is defined as follows from the differential entropy:

J(y) = H(ygauss) −H(y),

whereygauss is a Gaussian random vector and the vectorsy andygauss have the same

covariance matrix. Since a gaussian random variable has thelargest entropy among

all the random variables with the same variance, negentropyis always nonnegative.

Negentropy is zero if and only if the random vectory is gaussian. Negentropy is

invariant under invertible linear transformation.

The mutual informationI is a quantity which measures the dependence between

random variablesyi, for i = 1, ..., n. The mutual informationI is defined as

I(y1, ..., yn) =

n
∑

i=1

H(yi) −H(y).

The measure of mutual information is always nonnegative. Itis zero if and only if the

yi are statistically independent. For an invertible linear transformationy = Wx, we

have

I(y1, ..., yn) =
∑

i

H(yi) −H(x) − log |detW |.

In context, we assume theyi are uncorrelated and of unit variance. That isE(yy′) =

I = WE(xx′)W ′. Observe that

detI = 1 = det(WE(xx′)W ′) = (detW )(detE(xx′))(detW ′),

we see thatdetW is a constant sincedetE(xx′) does not depend onW . With the

constraint thatyi is unit variance, entropy and negentropy differ by a constant, and the

sign. We have[11],

I(y1, ..., yn) = J(y) −
∑

i

J(yi)

= C −
∑

i

J(yi), (5.3)
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whereC is a constant. Equation 5.3 shows the relation between negentropy and mutual

information. We also see that determining the matrixW which minimizes the mutual

information is equivalent to maximizing the negentropy.

5.6 Approximation of the objective function

To be able to evaluate the negentropy efficiently using the definition of ICA, approxi-

mations were developed in[21], [11]. For the simplest case, the approximations are as

follows:

J(yi) ≈ c (E(G(yi)) − E(G(ygauss)))
2 ,

whereG is a non-quadratic function,c is a constant, andygauss is a standard gaussian

random variable. For the ICA model, one needs to maximizeJG to find one indepen-

dent componentyi = w′x, where

JG(w) = (E(G(w′x)) − E(G(ygauss)))
2
,

with the constraintE((w′x)2) = 1. Or equivalently,

maximize
n
∑

i=1

JG(wi), i = 1, ..., n

such that E((w′
ix)(w

′
jx)) = δji. (5.4)

Hyvärinen gives the following practical selections of thenon-quadratic functionG:

G1(x) =
1

c1
log cosh(c1x),

G2(x) =
1

c2
exp(−c2x2/2),

G3(x) =
1

4
x4,
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with their derivativegi, i = 1, 2, 3, as follows:

g1(x) = tanh(c1x), (5.5)

g2(x) = x exp(−c2x2/2), (5.6)

g3(x) = x3, (5.7)

wherec1 andc2 are constants, with1 ≤ c1 ≤ 2, andc2 ≈ 1.

5.7 Preprocessing the data for ICA

Preprocessing the data will make the ICA algorithm simpler.It reduces the computa-

tional cost significantly.

5.7.1 Centering

Centering of the observed data means that the mean of the observed data is subtracted

from the observed data. This procedure makesx a zero-mean variable. This also

implies thats is also zero-mean. This can be verified by taking the expectation to both

of the equation 5.2. We see that

E(x) = AE(s).

This procedure simplifies the ICA algorithms.

5.7.2 Whitening

The strategy of whitening the observed data vectorx is to linearly transform the ob-

served data into a new vectorx̃. The expectation of

E(x̃x̃′) = I.
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In other words, the components ofx̃ are uncorrelated, and the variances are equal to

unity. Or equivalently, the covariance matrix ofx̃ is the identity matrix.

One way to whiten the data is to use the eigenvalue decomposition of the covari-

ance matrixC of x. That is,

C = E(xx′) = EDE ′,

whereE is the orthogonal matrix of the eigenvectors of matrixC, andD is diagonal

matrix of the corresponding eigenvalues. We denoteD = diag(d1, ..., dn), and that

D− 1

2 = diag(d
− 1

2

1 , ..., d
− 1

2
n ). Whitening gives us

x̃ = ED− 1

2E ′x. (5.8)

It follows that

E(x̃x̃′) = I.

From equations 5.2 and 5.8, we then have

x̃ = ED− 1

2E ′x = ED− 1

2E ′As = Ãs.

Note that

E(x̃x̃′) = ÃE(ss′)Ã′ = ÃÃ′ = I,

so that the new mixing matrix̃A is an orthogonal matrix. Estimating the orthogonal

matrix Ã is computationally simpler than estimating the original mixing matrixA.

5.8 The FastICA algorithm

The FastICA algorithm was developed in[20, 22]. FastICA is a fixed point iteration

which is used to solve for the optimization problem defined in(5.4). The algorithm

consists of the following steps:
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1. Assign an initial weight vectorw0 randomly.

2. Letw+ = E(xg(w′x)) − E(g̃(w′x))w.

3. Letw1 = w+/ ‖ w+ ‖ .

4. If |1 − w′
0w1| > ǫ, go back to 2,

whereg is defined in equations 5.5, and 5.6, andg̃ is derivative ofg. The convergence

means that the dot product of the old and new values ofw is close to 1.

The derivation of FastICA is as follows. Using the Lagrange multiplier λ, the

optimization problem defined in (5.4) can be written as

F (w) = E(xg(w′x)) − λw = 0. (5.9)

Applying Newton’s method to solve equation 5.9, we get the Jacobian matrixJF (w)

as

JF (w) = E(xx′g̃(w′x)) − λI. (5.10)

Since the data is whitened, in[20], the following approximation is applied to make the

Jacobian matrix diagonal:E(xx′g̃(w′x)) ≈ E(xx′)E(g̃(w′x)) = E(g̃(w′x))I. The

approximative Newton iteration is then

w+ = w − (E(xg(w′x)) − λw) / (E(g̃(w′x)) − λ) . (5.11)

Multiply both sides of equation 5.11 byλ−E(g̃(w′x)) to obtain the FastICA iteration.
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Chapter 6

Solution of multivariate portfolio problems

6.1 Gaussian portfolio

Suppose we investy dollars in a zero cost cash flow with a Gaussian distribution for

the investment horizon of lengthh with mean(µ − r)h. We may write the zero cost

cash flow accessed asX where

X = (µ− r)h+ Z.

Note thatZ is a zero mean random vector.

We assume the Gaussian parameters are for the holding periodh of length 1. We

also assume thatµ andr have been adjusted for the length of the period, which we take

to be unity in what follows. Denote the covariance matrix ofZ as follows:

E[ZZ ′] = Σ.

The final period wealth is

W = yX,

whereX is normally distributed with meanµ − r and covariance matrixΣ. We con-

sider the certainty equivalent for the wealthW in the case of exponential utility. The
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exponential utility function is

U(W ) = 1 − exp(−ηW ), (6.1)

whereη is the risk aversion coefficient. The certainty equivalent,CE, is defined by

the equation

U(CE) = E(U),

or equivalently

1 − exp(−η × CE) = E(U).

We choose the investment vectory to maximize expected exponential utility for the

risk aversionη. The objective is therefore that of maximizing

1 − e−ηy′(µ−r)E[e−ηy′Z ].

The expectation is then given by

E[e−ηy′Z ] = exp

(

η2

2
y′Σy

)

.

It follows that the certainty equivalent is

CE = y′(µ− r) − η

2
y′Σy. (6.2)

We take the first derivatives of equation 6.2 with respect to the components ofy, and

set them equal to zero. Then the solution ofy is given by

y = Σ−1µ− r

η
. (6.3)

6.2 Exponential utility and investment in

zero cost VG cash flows

Suppose we investy dollars in a zero cost cash flow with a VG distribution for the

investment horizon of lengthh with mean(µ − r)h. We may write the zero cost cash
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flow accessed asX

X = (µ− r)h+ θ(g − 1) + σW (g), (6.4)

whereg is gamma distributed with unit mean and varianceν, andW (g) is Gaussian

with zero mean and varianceg. The density ofg is

f(g) =
g

1

ν
−1e−

g
ν

ν
1

ν Γ( 1
ν
)
, g > 0.

We suppose the VG parameters are for the holding periodh as the unit period. We also

suppose thatµ andr have been adjusted for the length of the period and take this to be

unity in what follows.

The final period wealth is

W = yX.

We employ the exponential utility and write

U(W ) = 1 − exp(−ηW ), (6.5)

whereη is the coefficient of risk aversion. The certainty equivalent CE solves

E(U(W )) = 1 − exp(−ηCE).

The goal of the investment is to maximize the expected utility function. The expected

utility is

E(U(W )) = E(1 − exp(−ηW ))

= 1 − E(exp(−yηX)). (6.6)

To determiney which maximizes the expected utility is equivalent to minimizing the

following expression with respect toy:

E(exp(−yηX)).
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Theorem 6.1.Suppose we investy dollars in a zero cost cash flow with a VG distribu-

tion described in equation 6.4 for the investment horizon oflengthh. And suppose that

we employ the exponential utility function as in equation 6.5. The optimal solution for

the investment is

ỹ =

(

θ

σ2
− 1

(µ− r − θ)ν

)

+sign(µ− r)

√

(

θ

σ2
− 1

(µ− r − θ)ν

)2

+
2(µ− r)

(µ− r − θ)νσ2

whereỹ = ηy andη is the risk aversion coefficient.

Proof. To find the optimal solution for the investment, our goal is tomaximize the

expected utility function as in equation 6.6. It is equivalent to minimizing

E(exp(−yηX))

overy.

E(exp(−yηX))

= exp(−yη(µ− r − θ))E

(

exp

(

−
(

yηθ − y2η2σ2

2

)

g

))

= exp

(

−yη(µ− r − θ) − 1

ν
ln

(

1 + ν

(

yηθ − y2η2σ2

2

)))

.

Minimizing the above expression is equivalent to maximizing

z(y) = yη(µ− r − θ) +
1

ν
ln

(

1 + ν

(

yηθ − y2η2σ2

2

))

.

Supposeα, β ∈ R andα < 0 < β. Let

q(y) = 1 + ν

(

yηθ − y2η2σ2

2

)

,
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andq(α) = q(β) = 0. The functionq(y) > 0 for y ∈ (α, β) andq is differentiable on

(α, β) and continuous on[α, β]. We have

z(0) = 0

lim
y→α+

z(y) = −∞

lim
y→β−

z(y) = −∞

so that a maximum of z(y) exists on the interval(α, β). The first order condition with

respect toy leads to

z′(y) = η(µ− r − θ) +
ηθ − η2σ2y

1 + νηθy − νη2σ2y2/2
.

Furthermore, assumey1 andy2 are two roots forz′(y) = 0, andy1 < 0, y2 > 0. That

is, z′(y1) = z′(y2) = 0. Settingz′(y) = 0, we obtain

(µ− r − θ)

(

1 + νηθy − νη2σ2

2
y2

)

+ θ − ησ2y

= µ− r + ((µ− r − θ)νθ − σ2)ηy − (µ− r − θ)
νη2σ2

2
y2 (6.7)

Observe thatz′(0) > 0 if µ > r. We havez(y1) < 0 andz(y2) > 0. According to

the mean value theorem,y2 is the root which gives the optimal solution. Similarly, if

µ < r, thenz′(0) < 0. We havez(y1) > 0 andz(y2) < 0 so thaty1 gives the optimal

solution in this condition. Let̃y = yη and solve for this magnitude, noting thaty is

thenỹ/η. Hence we rewrite equation 6.7 as

ỹ2 − 2
(µ− r − θ)νθ − σ2

(µ− r − θ)νσ2
ỹ − 2(µ− r)

(µ− r − θ)νσ2

= ỹ2 − 2

(

θ

σ2
− 1

(µ− r − θ)ν

)

ỹ − 2(µ− r)

(µ− r − θ)νσ2

= 0.
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Hence we have

ỹ =

(

θ

σ2
− 1

(µ− r − θ)ν

)

+sign(µ− r)

√

(

θ

σ2
− 1

(µ− r − θ)ν

)2

+
2(µ− r)

(µ− r − θ)νσ2
.

Wheny is positive, we have a long position. Wheny is negative, a short position

is taken.

6.3 Multivariate VG portfolio

We take an investment horizon of lengthh and wish to study optimal portfolio for

investment in a vector of assets with zero cost excess returns or financed returns over

this period ofR− rh. We suppose all parameters are adjusted for the time horizonand

take this to be unity in what follows.

Let the vectory denote the dollar investment in the collection of assets. Wesuppose

the mean excess return isµ− r and hence that

R− r = µ− r + x,

wherex is the zero mean random asset return vector.

Our structural assumption is that there exist a vector of independent zero mean VG

random variabless of the same dimension asx and a matrixA such that

x = As.

The law ofsi is that of

si = θi(gi − 1) + σiWi(gi),
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where theW ′
is are independent Brownian motions, and thegi are gamma variates with

unit mean and varianceνi.

The strategy for estimating this structure is to organize the expectation

E[xx′] = I.

This is possible by applying the whiting technique described in section 5.7.2. Under

the assumption that the observed datax is whitened, we apply independent component

analysis to get the mixing matrixA. We then construct the data for the independent

componentss by

s = A−1x.

The VG parameters can be estimated on these series by univariate methods.

Theorem 6.2.Let the vectory denote the dollar investment in the collection of assets.

We suppose the mean excess return isµ − r and the zero cost excess return isR − r,

hence that

R− r = µ− r + x,

wherex is the zero mean random asset return vector and assume thatE[xx′] = I. Let

x = As

and assume the law ofsi is

si = θi(gi − 1) + σiWi(gi),

whereA is the mixing matrix, theW ′
is are independent Brownian motions, and thegi

are gamma variates with unit mean and varianceνi. Denote

ζ = A−1µ− r

η
− θ

η
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and

y =
1

η
A−1ỹ,

wherey = (y1, y2, · · ·, yn)
′, ỹ = (ỹ1, ỹ2, · · ·, ỹn)

′, andη is the risk aversion coefficient.

Then the solution of̃yi, for i = 1, 2, · · ·, n, is given by

ỹi =
|ζi|θiνi − sign(ζi)

σ2
i

η

|ζi|σ2
i νi

±
√

(

|ζi|θiνi − sign(ζi)
σ2

i

η

)2

+ 2
(

|ζi| + sign(ζi)
θi

η

)

|ζi|σ2
i νi

|ζi|σ2
i νi

=
θi

σ2
i

− 1

ηζiνi
±

√

(

θi

σ2
i

− 1

ηζiνi

)2

+ 2
ζi + θi

η

ζiσ2
i νi

, (6.8)

Proof. We choose the investment vectory to maximize expected exponential utility

for the risk aversion coefficientη. The objective is therefore that of maximizing

1 − e−ηy′(µ−r)E[e−ηy′x] = 1 − e−ηy′(µ−r)E[e−ηy′As].

The expectation is then given by

E[e−ηy′As] = exp

(

n
∑

i=1

η(y′A)iθi −
1

νi
ln

(

1 + θiνiη(y
′A)i −

σ2
i νi

2
η2(y′A)2

i

)

)

.

It follows that the certainty equivalent is

CE = y′(µ− r) +
n
∑

i=1

(−y′A)iθi +
1

ηνi
ln

(

1 + θiνiη(y
′A)i −

σ2
i νi

2
η2(y′A)2

i

)

.

We may write equivalently

CE = η(y′A)

(

A−1µ− r

η
− θ

η

)

+
n
∑

i=1

1

ηνi

ln

(

1 + θiνiη(y
′A)i −

σ2
i νi

2
η2(y′A)2

i

)

.

Now define

ỹ′ = ηy′A,

ζ = A−1µ− r

η
− θ

η
,
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and write

CE =
n
∑

i=1

[

ζiỹi +
1

ηνi

ln

(

1 + θiνiỹi −
σ2

i νi

2
ỹi

2

)]

=
n
∑

i=1

ψ(ỹi).

We have additive functions in the vectorỹi and these may be solved for using univariate

methods in closed form. We then determine

y =
1

η
A−1ỹ.

First observe that the argument of the logarithm is positiveonly in a finite interval

for ỹi. Hence theCE maximization problem has an interior solution forỹi.

The first order condition yields

ψ′(ỹi) = ζi +

θi

η
− σ2

i

η
ỹi

1 + θiνiỹi − σ2
i νi

2
ỹi

2
= 0.

It is clear that

ψ′(0) = ζi +
θi

η

and the optimal value for̃yi is positive whenψ′(0) > 0 and negative otherwise.

We may write the condition as

|ζi| +
sign(ζi)

(

θi

η
− σ2

i

η
ỹi

)

1 + θiνiỹi − σ2
i νi

2
ỹi

2
= 0.

The argument of the logarithm must be positive and so we write

|ζi|
(

1 + θiνiỹi −
σ2

i νi

2
ỹi

2

)

+ sign(ζi)

(

θi

η
− σ2

i

η
ỹi

)

= 0.

We may rewrite this expression as the quadratic

(

|ζi| + sign(ζi)
θi

η

)

+

(

|ζi|θiνi − sign(ζi)
σ2

i

η

)

ỹi −
|ζi|σ2

i νi

2
ỹi

2 = 0,
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or equivalently that

|ζi|σ2
i νi

2
ỹi

2 −
(

|ζi|θiνi − sign(ζi)
σ2

i

η

)

ỹi −
(

|ζi| + sign(ζi)
θi

η

)

= 0.

The solution forỹi is given by

ỹi =
|ζi|θiνi − sign(ζi)

σ2
i

η

|ζi|σ2
i νi

±

√

(

|ζi|θiνi − sign(ζi)
σ2

i

η

)2

+ 2
(

|ζi| + sign(ζi)
θi

η

)

|ζi|σ2
i νi

|ζi|σ2
i νi

=
θi

σ2
i

− 1

ηζiνi
±

√

(

θi

σ2
i

− 1

ηζiνi

)2

+ 2
ζi + θi

η

ζiσ2
i νi

.

We take the positive or the negative root depending on the sign of
(

ζi + θi

η

)

. When

y is positive we have a portfolio in which one is taking a long position. If y is negative

then the short position is taken. If we wish to describe the portfolio weights we may

normalize the vectory by the sum of its entries.
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Chapter 7

Implementation of ICA

7.1 ICA in finance

There are many factors that drive the movements of asset returns. It is not unusual to

assume that a set of different asset returns are driven by some common factors. ICA

is a process which takes a set of multivariate observed data,x, and extracts from them

a new set of statistically independent components,s. ICA assumes that the observed

data vectorsx are the result of a mixing process

xi(t) =
n
∑

j=1

aijsj(t).

sj(t) are assumed to be statistically independent. They can be sources from wide range

which affect the asset returns. Using matrix notation, the model can be written as

x = As,

whereA is the unknown mixing matrix.

Another key assumption of ICA is that the independent componentss are nongaus-

sian. Option pricing theory was introduced by Fischer Blackand Myron Scholes [18].

In order to value options, Black and Scholes derived a partial differential equation
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via a hedging argument. The Black-Scholes model evolves a stock pricep from the

geometric Brownian motion model. The stock price model is given by

dp = µpdt+ σpdw,

whereµ denotes the drift rate,σ is the volatility, andw is the standard Brownian mo-

tion. While the Black-Scholes model remains the most widelyused in the financial

world, it has known biases, such as volatility smiles. The variance gamma model pro-

posed in [8] replaces the diffusion process in the Black-Scholes model by a pure jump

process. Bakshi and Chen show the importance of a jump component in modelling

stock prices and argues that a diffusion model has difficulties in explaining smile ef-

fects [3]. The VG process is a nongaussian process. While ICArequires no knowledge

about the distributions of the independent componentss, we assume thats follows the

nongaussian VG process. We then estimate VG parameters on these series by univari-

ate methods described in [9]. We use ICA to decompose the multivariate stock return

data into statistically independent components. We hope toinvestigate the common

factors for the multivariate stock price returns. The VG model provides the informa-

tion of higher order statistics. The Gaussian model gives only second order statistics.

Non-gaussian models require ICA algorithms to process the information of higher or-

der statistics.

7.2 Description of the data

We create three portfolios, with five, ten, and twenty stocks, respectively. We choose

five, ten, and twenty stocks for each portfolio at random fromthe S&P 500 to perform

our analysis. First, we get the time series stock price data for these five chosen stocks

for fifteen years, starting from 1990. We apply ICA to the multivariate financial time
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series. The goal is to decompose the observed multivariate time series into a linear

combination of statistically independent components. We use daily adjusted closing

prices from five companies in the S&P 500. For the five stock portfolio, we choose 3M

Company, Boeing Company, International Bus. Machines (IBM), Johnson & Johnson,

McDonald’s Corp., and Merck & Co. We take the first 1000 time series data since

January 1990 for our first analysis. We then move forward one month to get the second

set of 1000 time series data for our second time period analysis. We repeat the same

methodology for 125 time periods of our analysis. The same procedures are applied

to the ten and the twenty stock portfolios. For the ten stock portfolio, we choose 3M

Company, Boeing Company, International Bus. Machines (IBM), Johnson & Johnson,

McDonald’s Corp., Merck & Co, Bausch & Lomb, Du Pont (E.I.), FedEx Corporation,

Merck & Co., and Wal-Mart Stores. For the twenty stock portfolio, we choose the

above ten companies plus Goodyear Tire & Rubber, PepsiCo Inc., McGraw-Hill, Ford

Motor Co., Phizer, Apple Computer, Lockheed Martin Corp, Caterpillar Inc., Colgate-

Palmolive, and Xerox Corp. We include the figures for the fiftieth time period of each

of the three portfolios to demonstrate the visual results.

We are interested in daily relative returns. We transform the nonstationary stock

pricep(t) to the stationary relative daily returns as follows,

x(t) =
p(t) − p(t− 1)

p(t− 1)
.

Figure 7.1 displays the relative daily returns for the fiftieth time period of the five stock

portfolio.
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Figure 7.1: The Daily Returns for 5 Stocks of the 50th Time Period. (The five stocks

are 3M, Boeing, IBM, Johnson & Johnson, and McDonald’s.)

7.3 Preprocessing the data

Before we apply the ICA algorithms, it is useful to do some preprocessing for the

observed data. The preprocessing procedures make the ICA estimation simpler. The

preprocessing procedures consist of three steps: we obtainthe relative daily returns

as described in the previous section, subtract the mean of each stock, then whiten the

data. We are using the FastICA [19] algorithm to process the data.
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7.3.1 Centering

Centering of the observed data means that the mean of the observed data is subtracted

from the observed data. This procedure makesx a zero-mean variable. This also

implies that the independent componentss are also zero-mean. This can be verified by

taking the expectation to both of the equation 5.2. We see that

E(x) = AE(s).

This procedure simplified the ICA algorithms.

7.3.2 Whitening

The strategy of whitening the observed data vectorx is to linearly transform the ob-

served data into a new vectorx̃ so that

E(x̃x̃′) = I.

In other words, the components ofx̃ are uncorrelated, and the variances are equal to

unity. Or equivalently, the covariance matrix ofx̃ is the identity matrix.

We use the eigenvalue decomposition of the covariance matrix C of x to whiten

the data. That is,

C = E(xx′) = EDE ′,

whereE is the orthogonal matrix of the eigenvectors of matrixC, andD is the diagonal

matrix of the corresponding eigenvalues. We denoteD = diag(d1, ..., dn), so that

D− 1

2 = diag(d
− 1

2

1 , ..., d
− 1

2
n ).

Whitening gives us

x̃ = ED− 1

2E ′x. (7.1)
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Figure 7.2: The Whitened Daily Returns for 5 Stocks of the 50th Time Period

It follows that

E(x̃x̃′) = I.

From equations 5.2 and 7.1, we then have

x̃ = ED− 1

2E ′x = ED− 1

2E ′As = Ãs.

Note that

E(x̃x̃′) = ÃE(ss′)Ã′ = ÃÃ′ = I,

we see that the new mixing matrix̃A is an orthogonal matrix. Estimating the orthogo-

nal matrixÃ is computationally simpler than estimating the original mixing matrixA.

Figure 7.2 displays the whitened signals of the observed data of the fiftieth time period

for the five stock portfolio.
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7.4 Independent VG components

We take an investment horizon of lengthh and wish to study optimal portfolio for

investment in a vector of assets with zero cost excess returns or financed returns over

this period ofR− rh. We suppose all parameters are adjusted for the time horizonand

take this to be unity in what follows.

We suppose the mean excess return isµ− r and hence that

R− r = µ− r + x,

wherex is the zero mean random asset return vector.

Our structural assumption is that there exist a vector of independent zero mean VG

random variabless of the same dimension asx and a matrixA such that

x = As.

The law ofsi is that of

si = θi(gi − 1) + σiWi(gi),

where theW ′
is are independent Brownian motions, and thegi are gamma variates with

unit mean and varianceνi.

We apply the FastICA algorithm described earlier to obtain the statistically inde-

pendent VG random variabless. We choose the nonlinear functionG(x) = 1
4
x4 which

corresponds to the fourth power as in kurtosis. We then construct the data ofs by

s = A−1x,

and estimate VG parameters on these series by univariate methods. Figure 7.3 gives

the signals of the independent components of the fiftieth time periods for the five stock

portfolio. In each time period of our analysis, we assume theobserved data is the linear

combination of independent components.
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Figure 7.3: The Signal of 5 ICs of the 50th Time Period

7.5 The statistical estimation of VG parameters

For each underlying asset, we form the time series of daily relative returns described

earlier. We apply ICA to the preprocessed time series data. We assume the indepen-

dent componentss follow the nongaussian VG process. We then estimate the VG

parametersν, σ, andθ from the independent componentss. Using maximum like-

lihood estimation to evaluate the VG parameters is computationally inefficient. The

Fourier inversion needs to be applied to each data point to find the density. To find the

parameters, one needs an optimization algorithm for the inversions.

The fast Fourier transform (FFT) is used to invert the characteristic function once

for each parameter setting. The method obtains the probability density function at the
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pre-specified values fors. We take .25 as the integration spacing. The density ofs

then has the spacing of8π/N , whereN is a power of 2. We takeN = 16384. We bin

s into 100 cells. Recall that

s = θ(g − 1) + σW (g)

whereW is Brownian motion, andg is a gamma variate with unit mean and variance

ν. The characteristic function ofs is

φ(u) = E(eius)

= exp

(

−iuθ − 1

ν
ln

(

1 − iuθν +
σ2ν

2
u2

))

.

The density function ofs is

f(s) =
1

2π

∫ ∞

−∞
e−iusφ(u)du.

By FFT, we getf(s).

With the density evaluated at the pre-specified points, we bin the vectors by count-

ing the number of observationsni at each pre-specified pointzi. We find the parameter

estimates which maximize the likelihood of the binned data.That is, we maximize

L =
∑

i

ni ln f(zi; σ, ν, θ).

7.6 Chi-square goodness-of-fit test

We apply the chi-square goodness-of-fit test to our binned data. The data is divided

into k cells. LetOi denote the observed number of data for celli, andEi denote the

expected number of data for celli, assuming the data have a VG distribution. The test

statistic is given by[33]

χ2 =

k
∑

i=1

(Oi − Ei)
2

Ei
.
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Let c be the number of parameters in the model. The test statistic follows approxi-

mately a chi-square distribution with degrees of freedomd = k − c− 1. We reject the

hypothesis if

χ2 > χ2
α,d

whereχ2
α,d is the chi-square percent point function with degrees of freedomd, and a

level of significantα. In our model,k = 100, c = 3, and we useα = .01. The three

parameters areσ, ν, andθ. Thusχ2
.01,96 = 131.14. We assess the goodness of fit of

the VG model for the independent components of each time period by calculating the

chi-square goodness-of-fit test.

Tables 7.1 to 7.5 give the mean, the standard deviation, the minimum, and the

maximum of the VG parameters for the five independent components over the 125 time

periods of the five stock portfolio. The complete results of the parameter estimates for

the five independent components of each time period are givenat the end of Chapter 8.

The summary of the ICs over the 125 time periods for the ten stock portfolio and the

twenty stock portfolio are given in appendix B. Table 7.6 shows the chi-square statistic

of the half annually investment for the twenty stock portfolio at the first and the second

time periods.

Figures 7.4 to 7.8 demonstrate the estimated density obtained from the maximum

likelihood estimation for the five independent components of the five stock portfolio

at the 50th time period, where the circles denote the binned data, the solid line denotes

the VG process, and the dash-dot line denotes the Gaussian process.

60



Statistical Estimation

σ ν θ

mean 0.9573 0.5986 -0.0022

standard deviation 0.0189 0.1322 0.1368

minimum 0.9128 0.2585 -0.4088

maximum 1.0274 1.1564 0.3656

Table 7.1: The First Independent Component

Statistical Estimation

σ ν θ

mean 0.9639 0.5579 0.0190

standard deviation 0.0198 0.1612 0.1792

minimum 0.9162 0.1535 -0.4552

maximum 1.0532 1.0816 0.6411

Table 7.2: The Second Independent Component

Statistical Estimation

σ ν θ

mean 0.9738 0.5318 0.0464

standard deviation 0.0144 0.1414 0.1485

minimum 0.9373 0.2296 -0.3358

maximum 1.0028 0.9340 0.4834

Table 7.3: The Third Independent Component
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Statistical Estimation

σ ν θ

mean 0.9806 0.4232 0.0287

standard deviation 0.0112 0.1277 0.2205

minimum 0.9386 0.1332 -0.4790

maximum 0.9962 0.7287 0.7248

Table 7.4: The Fourth Independent Component

Statistical Estimation

σ ν θ

mean 0.9833 0.3634 0.0079

standard deviation 0.0100 0.1270 0.2876

minimum 0.9569 0.0977 -0.8482

maximum 1.0056 0.6856 0.8324

Table 7.5: The Fifth Independent Component
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12/93 06/94

ICs χ2(VG) χ2 (Gauss) ICs χ2(VG) χ2 (Gauss)

1st 136.2482 2.2776e+031 1st 70.8492 3.1820e+009

2nd 84.0193 1.3617e+005 2nd 0.5841 1.7578e+006

3rd 0.6055 8.9314e+005 3rd 68.3350 4.9341e+010

4th 76.2664 6.7052e+005 4th 120.2310 3.5071e+032

5th 129.2998 3.6943e+011 5th 79.1577 2.7214e+012

6th 77.0964 2.1348e+013 6th 0.3245 151.6225

7th 82.0128 5.5169e+007 7th 0.7302 623.8396

8th 82.6927 9.9940e+005 8th 63.8533 6.1312e+023

9th 0.4872 322.3800 9th 83.6321 3.6894e+005

10th 91.3730 8.7305e+008 10th 0.9306 7.3505e+004

11th 0.1550 20.9039 11th 0.6507 5.4653e+004

12th 3.5015 4.9703e+004 12th 88.8289 7.0872e+008

13th 0.3264 669.6947 13th 0.1151 6.2102

14th 0.1895 131.6822 14th 0.1701 31.7546

15th 0.1885 5.9786 15th 0.1483 3.7325

16th 0.1855 42.4625 16th 1.9673 6.5628e+003

17th 0.2498 93.5152 17th 0.2638 15.7981

18th 0.3312 8.5085e+003 18th 0.1599 2.7688

19th 0.1024 0.1734 19th 0.1163 3.9716

20th 0.1268 0.1675 20th 0.0895 0.1658

Table 7.6:χ2 of the 1st and the 2nd Time Periods
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Figure 7.4: 1st IC Density Fit of the 50th Time Period

7.7 Arbitrary horizon growth

In the previous sections, we assume the VG parameters are forthe the holding period

h as the unit period. We now wish to incorporate an investment arbitrary horizonh.

Let Xd be the daily VG with parametersνd, σd, θd. We postulate a scaling law and

say that the distribution ofXh is that of
√
hXd. We are not summing the independent

increments but instead using a scaling law. Under this hypothesis the characteristic

function ofXh is

E(eiuXh) = E(eiu
√

hXd)

=

(

1

1 − iu
√
hθdνd +

σ2
d
νd

2
u2h

)
1

νd

=

(

1

1 − iuθhνh +
σ2

h
νh

2
u2

)
1

νh

.
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Figure 7.5: 2nd IC Density Fit of the 50th Time Period

HenceXh is V G with parameters

νh = νd,

σh = σd

√
h,

θh = θd

√
h.
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Figure 7.6: 3rd IC Density Fit of the 50th Time Period

−6 −4 −2 0 2 4 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Figure 7.7: 4th IC Density Fit of the 50th Time Period
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Figure 7.8: 5th IC Density Fit of the 50th Time Period
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Chapter 8

Conclusion

We have derived the solution of the multivariate portfolio problem by assuming that

the risky assets follow either the VG process or the Gaussianprocess. We chose five

stocks from the S&P 500 to include in our risky portfolio. We analyzed the data using

the relative daily returnx(t). Note that

x(t) =
p(t) − p(t− 1)

p(t− 1)

wherep(t) is the stock price for timet. The five stocks chosen were 3M Company,

Boeing Company, International Bus. Machines, Johnson & Johnson, McDonald’s

Corp., Merck & Co, with ticker symbols mmm, ba, ibm, jnj, and mcd, respectively.

We took the first 1000 time series data since January 1990 for our first analysis. We

then moved forward one month to get the second set of 1000 timeseries data for our

second time period analysis. We repeated the same methodology for 125 time periods

of our analysis from January 1990 to May 2004. Thus, we had 125different 5 by 1000

matricesxi, i = 1, 2 . . . , 125 of the relative daily returns. Our structural assumption

was that there exists a vector of independent zero mean VG random variabless of the

same dimension asx, and a matrixA such that

x = As.

68



The law ofsi is that of

si = θi(gi − 1) + σiWi(gi),

where theW ′
is are independent Brownian motions, and thegi are gamma variates with

unit mean and varianceνi. We applied independent component analysis to get the

mixing matrixA. We then constructed the data for the independent componentss by

s = A−1x.

The VG parameters,σ, ν, andθ were then estimated on these series by univariate

methods for each time period. We performed the chi-square goodness-of-fit test for

each independent component. After we obtained the VG parameter values, we used

equation 6.8 to compute the vector of dollars,y, invested in each stock of the VG

process. We also computed dollar amounts invested for the Gaussian process using

equation 6.3. We repeated the analysis for the 125 investments.

At the end of each investment time period, we invested an amount of moneyy

according to our analysis. When an element ofy is positive, we take a long position.

When an element ofy is negative, a short position is taken. We forward the investment

for one month, and calculate the cash flowCF at the end of the month for each time

period. The formula is as follows:

CF = y ·
(

p(t+ 21) − p(t)

p(t)
− r

)

wherep(t) is the initial price of the investment,p(t + 21) is the price at the maturity,

andr is the 3-month treasury bill monthly interest rate. Note that we usedp(t+21) as

the maturity price, because there are 21 trading days in a month on average. The same

procedures were applied to the ten stock portfolio and the twenty stock portfolio. The

results of cash flow for the five stock portfolio were shown at the end of the chapter.

The plots of cumulated cash flow of both VG and Gaussian processes were also given.
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The the Sharpe ratio, the certainty equivalent and the gain-loss ratio of both processes

were calculated.

The Sharpe ratio is a measure of the risk, but not the amount ofthe return, you

take by pursuing the return. Generally speaking, it doesn’trepresent the relative per-

formance of an individual asset, but it represents the risk-adjusted return of the entire

portfolio of many assets, and higher values are considered better [14].

The formula is as follows:

Sharpe ratio=
mean of cash flow

standard deviation of cash flow
.

The numerator represents the net return realized by taking the risk, and the de-

nominator represents the risk. The formula as a whole measures how efficiently you

have gained the return by taking the risk. The larger the value, the more efficient it is

considered.

The general form of the exponential utility function is

U(CF ) = 1 − exp(−ηCF )

whereη is the risk aversion coefficient. Note that

U(CE) = E(U).

Using the exponential utility function, we get

1 − exp(−η × CE) = E(U)

=
1

n

n
∑

i=1

(1 − e−ηCFi)

wheren = 125 in our analysis. We then have

CE = −1

η
ln

(

1 − 1

n

n
∑

i=1

(1 − e−ηCFi)

)

.
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Performance Measures

VG Gauss

Sharpe Ratio 0.2548 0.2127

CE (η = .0005) 47.6883 0.0230

Gain-Loss Ratio 2.3909 1.4536

Table 8.1: 5 Stock Portfolio

Performance Measures

VG Gauss

Sharpe Ratio 0.1995 0.2106

CE (η = .0005) 117.2754 0.0306

Gain Loss Ratio 4.3234 1.4845

Table 8.2: 10 Stock Portfolio

The gain-loss ratio is a measure between the positive cash flows and the negative

cash flows of all the investment time periods. LetCF+ andCF− be vectors which

include all the positive elements and all the negative elements of the cash flows of the

entire investment time periods, respectively. The formulaof the gain-loss ratio is as

follows,

gain-loss ratio=
E[CF+]

|E[CF−]| .

Tables 8.1 to 8.3 present the three performance measures, the Sharpe ratio, the

certainty equivalent, and the gain-loss ratio of both the VGand the Gaussian processes

for the three portfolios.

Figures 8.1 to 8.6 plot the cumulated cash flows through the 125 investment time

periods of our analysis for the VG and the Gaussian processesof the three portfolios.
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Performance Measures

VG Gauss

Sharpe Ratio 0.2910 0.3513

CE (η = .0005) 282.6599 0.1204

Gain Loss Ratio 3.7869 1.9502

Table 8.3: 20 Stock Portfolio

The complete tables of the estimated independent VG components parameters, the

dollar amounts invested, and the cash flow of both the VG and the Gaussian processes

of each time period for the five stock portfolio, are providedat the end of the chapter.
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Cumulated Monthly Cash Flow over 125 Time Periods for VG Process

Figure 8.1: VG Cumulated Cash Flows (5 Stock Portfolio)
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Figure 8.2: Gaussian Cumulated Cash Flows (5 Stock Portfolio)
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Figure 8.3: VG Cumulated Cash Flows (10 Stock Portfolio)
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Figure 8.4: Gaussian Cumulated Cash Flows (10 Stock Portfolio)

74



0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

9
x 10

4

Time Period

C
um

ul
at

ed
 C

as
h 

F
lo

w

Cumulated Monthly Cash Flow for 20 Stock Portfolio (VG)

Figure 8.5: VG Cumulated Cash Flows (20 Stock Portfolio)
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Figure 8.6: Gaussian Cumulated Cash Flows (20 Stock Portfolio)

75



The following tables present the statistical estimation ofthe three independent

components parameters of the entire 125 investment periods. The dollar amounts in-

vested, and the monthly cash flow in each investment time period of both the VG and

the Gaussian processes are listed. The three-month treasury bill interest rates are also

given. The investment is re-balanced monthly from December1993 to April 2004.

The cumulated cash flow plots and the performance measures provide evidence which

shows that the VG process investment is a better strategy than the Gaussian process

one.

Statistical Estimation 12/93

σ ν θ

1st IC 0.9755 0.5494 -0.0610

2nd IC 0.9600 0.8693 -0.0951

3rd IC 0.9522 0.6331 0.1421

4th IC 0.9874 0.2340 -0.2867

5th IC 0.9827 0.2359 0.3936

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.1602 -0.8040 -1.1543 0.8404 0.2606

$ invest(Gauss) 1.1532 -0.1344 -0.0627 0.6714 0.7154

cash flow(VG) -2.4589 -25.5172 80.7858 -21.7710 2.3236

cash flow(Gauss) 0.0177 -0.0043 0.0044 -0.0174 0.0064

% T-bill rate 3.08
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Statistical Estimation 01/94

σ ν θ

1st IC 0.9506 0.6438 0.1489

2nd IC 0.9737 0.5574 -0.0767

3rd IC 0.9493 0.7548 0.1651

4th IC 0.9820 0.2653 -0.3815

5th IC 0.9870 0.2153 0.3003

ticker mmm ba ibm jnj mcd

$ invest(VG) 847.59 845.24 136.13 -600.33 -67.99

$ invest(Gauss) 1.2860 -0.1291 -0.1140 0.6438 0.7624

cash flow(VG) -9.3426 53.0208 -1.9441 -3.5361 -3.1967

cash flow(Gauss) -0.0142 -0.0081 0.0016 0.0038 0.0358

% T-bill rate 3.02

Statistical Estimation 02/94

σ ν θ

1st IC 0.9497 0.6805 -0.1559

2nd IC 0.9746 0.5765 0.0836

3rd IC 0.9525 0.7566 -0.1569

4th IC 0.9899 0.2379 0.2570

5th IC 0.9828 0.2649 -0.3495

ticker mmm ba ibm jnj mcd

$ invest(VG) 863.84 713.51 159.90 440.92 377.11

$ invest(Gauss) 1.1829 -0.1144 -0.2067 0.7042 0.8384

cash flow(VG) -54.6490 -20.8176 10.3848 -30.6657 7.7397

cash flow(Gauss) -0.0748 0.0033 -0.0134 -0.0490 0.0172

% T-bill rate 3.21
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Statistical Estimation 03/94

σ ν θ

1st IC 0.9521 0.7658 0.1764

2nd IC 0.9580 0.7400 0.1226

3rd IC 0.9724 0.5561 -0.0618

4th IC 0.9885 0.2540 0.2572

5th IC 0.9837 0.2595 -0.3534

ticker mmm ba ibm jnj mcd

$ invest(VG) -120.61 -261.66 -475.38 512.79 352.34

$ invest(Gauss) 1.0771 -0.1771 -0.1237 0.5991 0.8329

cash flow(VG) 8.3864 14.8688 -11.2115 22.2099 -26.6283

cash flow(Gauss) -0.0749 0.0101 -0.0029 0.0259 -0.0629

% T-bill rate 3.52

Statistical Estimation 04/94

σ ν θ

1st IC 0.9743 0.5504 0.0809

2nd IC 0.9564 0.7110 0.1066

3rd IC 0.9613 0.7730 0.0457

4th IC 0.9879 0.2386 0.2766

5th IC 0.9820 0.2518 0.3653

ticker mmm ba ibm jnj mcd

$ invest(VG) 527.21 -330.21 -160.14 388.84 489.08

$ invest(Gauss) 0.9892 -0.2619 -0.1502 0.6395 0.7863

cash flow(VG) 53.3611 -6.5945 -14.4564 43.7086 5.6442

cash flow(Gauss) 0.1001 -0.0052 -0.0136 0.0719 0.0091

% T-bill rate 3.74
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Statistical Estimation 05/94

σ ν θ

1st IC 0.9560 0.7142 0.0221

2nd IC 0.9631 0.7875 0.1147

3rd IC 0.9738 0.5584 -0.0584

4th IC 0.9904 0.2488 0.2654

5th IC 0.9845 0.2890 0.3399

ticker mmm ba ibm jnj mcd

$ invest(VG) -93.28 -323.32 -455.26 430.67 454.84

$ invest(Gauss) 1.0964 -0.4266 -0.1187 0.6295 0.6513

cash flow(VG) 1.0259 -25.2269 17.9238 -5.3709 18.8745

cash flow(Gauss) -0.0121 -0.0333 0.0047 -0.0078 0.0270

% T-bill rate 4.19

Statistical Estimation 06/94

σ ν θ

1st IC 0.9738 0.5785 0.0601

2nd IC 0.9745 0.8860 0.0463

3rd IC 0.9443 0.7123 0.1907

4th IC 0.9830 0.3161 0.3281

5th IC 0.9904 0.2469 -0.2634

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 2.0852 -0.3664 -0.3995 -0.4946 0.1564

$ invest(Gauss) 0.9348 -0.3616 -0.1329 0.5438 0.6907

cash flow(VG) -7.3217 15.6604 -7.7635 -37.8312 -5.3603

cash flow(Gauss) -0.0033 0.0155 -0.0026 0.0416 -0.0237

% T-bill rate 4.18
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Statistical Estimation 07/94

σ ν θ

1st IC 0.9696 0.5820 -0.0539

2nd IC 0.9758 0.8130 0.0931

3rd IC 0.9630 0.7296 -0.0663

4th IC 0.9861 0.2782 -0.2886

5th IC 0.9716 0.2476 -0.4962

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.0124 -1.1764 -0.0952 0.3103 0.3805

$ invest(Gauss) 1.0468 -0.3103 -0.0524 0.6640 0.8430

cash flow(VG) 1.1812 42.3877 -9.5108 19.6183 -32.5044

cash flow(Gauss) 0.0994 0.0112 -0.0052 0.0420 -0.0720

% T-bill rate 4.39

Statistical Estimation 08/94

σ ν θ

1st IC 0.9368 0.6966 0.2085

2nd IC 0.9588 0.6718 -0.0949

3rd IC 0.9767 0.5177 0.0053

4th IC 0.9864 0.2708 -0.2788

5th IC 0.9766 0.2807 -0.4193

ticker mmm ba ibm jnj mcd

$ invest(VG) 89.66 -324.67 -908.14 352.74 425.60

$ invest(Gauss) 1.2969 -0.2604 -0.0583 0.6487 0.8256

cash flow(VG) 0.6672 5.8528 -23.2961 1.4317 11.2660

cash flow(Gauss) 0.0097 0.0047 -0.0015 0.0026 0.0219

% T-bill rate 4.50
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Statistical Estimation 09/94

σ ν θ

1st IC 0.9380 0.6936 0.2344

2nd IC 0.9553 0.4332 0.1502

3rd IC 0.9627 0.6923 0.0728

4th IC 0.9880 0.2844 -0.2797

5th IC 0.9792 0.2875 -0.3966

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 1.3783 -0.0015 0.5991 0.5715 0.3280

$ invest(Gauss) 1.2863 -0.2124 -0.0011 0.6537 0.9228

cash flow(VG) 1.4260 -0.0026 40.8956 63.1721 -8.7092

cash flow(Gauss) 0.0013 -0.0004 -0.0001 0.0723 -0.0245

% T-bill rate 4.64

Statistical Estimation 10/94

σ ν θ

1st IC 0.9628 0.7337 -0.0848

2nd IC 0.9610 0.7040 -0.1173

3rd IC 0.9561 0.4192 -0.1427

4th IC 0.9761 0.3281 -0.3833

5th IC 0.9885 0.3022 0.2802

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 1.2074 -0.1119 0.3176 -0.3981 -0.4982

$ invest(Gauss) 1.2198 -0.2033 -0.0294 0.7342 0.9646

cash flow(VG) -56.1421 -4.0487 -4.5500 -2.3106 -35.1258

cash flow(Gauss) -0.0567 -0.0074 0.0004 0.0043 0.0680

% T-bill rate 4.96
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Statistical Estimation 11/94

σ ν θ

1st IC 0.9368 0.6914 -0.2114

2nd IC 0.9785 0.5114 -0.1345

3rd IC 0.9779 0.3288 0.3666

4th IC 0.9633 0.6493 -0.0718

5th IC 0.9864 0.2965 -0.2881

ticker mmm ba ibm jnj mcd

$ invest(VG) -314.44 517.82 -427.37 -509.39 903.46

$ invest(Gauss) 0.8462 -0.1271 -0.0790 0.6468 0.8983

cash flow(VG) 3.8039 33.7604 -2.5014 -1.7764 -6.1491

cash flow(Gauss) -0.0102 -0.0083 -0.0005 0.0023 -0.0061

% T-bill rate 5.25

Statistical Estimation 12/94

σ ν θ

1st IC 0.9675 0.7251 0.0782

2nd IC 0.9606 0.7042 -0.1243

3rd IC 0.9782 0.4874 0.1053

4th IC 0.9773 0.3318 -0.3824

5th IC 0.9878 0.3138 0.2622

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 1.3838 -0.5300 -0.5013 -0.6937 -0.0748

$ invest(Gauss) 0.9882 -0.1136 -0.0313 0.6921 0.8631

cash flow(VG) 6.8446 9.3562 -1.7627 -15.7371 -0.6639

cash flow(Gauss) 0.0049 0.0020 -0.0001 0.0157 0.0077

% T-bill rate 5.64
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Statistical Estimation 01/95

σ ν θ

1st IC 0.9632 0.6338 0.0839

2nd IC 0.9765 0.4871 0.1158

3rd IC 0.9642 0.7404 0.1228

4th IC 0.9878 0.3451 0.2745

5th IC 0.9816 0.2667 0.3944

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 1.0415 -0.0823 -0.0879 0.5262 0.6036

$ invest(Gauss) 0.9267 -0.2316 -0.1584 0.6055 0.9820

cash flow(VG) 28.8789 1.4782 -0.7888 16.4938 93.3628

cash flow(Gauss) 0.0257 0.0042 -0.0014 0.0190 0.1519

% T-bill rate 5.81

Statistical Estimation 02/95

σ ν θ

1st IC 0.9641 0.6377 -0.0632

2nd IC 0.9644 0.8546 -0.1133

3rd IC 0.9739 0.4776 0.1606

4th IC 0.9814 0.3117 0.3694

5th IC 0.9901 0.2962 0.2173

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 2.0387 -0.4788 0.1865 0.4856 -0.0271

$ invest(Gauss) 0.9040 -0.1530 -0.1200 0.5096 1.0066

cash flow(VG) 118.8279 -27.4549 22.0231 35.159 -1.3470

cash flow(Gauss) 0.0527 -0.0088 -0.0142 0.0369 0.0500

% T-bill rate 5.80
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Statistical Estimation 03/95

σ ν θ

1st IC 0.9406 0.7024 0.2313

2nd IC 0.9585 0.6513 -0.0458

3rd IC 0.9752 0.4782 -0.1599

4th IC 0.9940 0.3377 -0.1640

5th IC 1.0033 0.2017 0.3355

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.0229 -0.9092 5.7354 0.0808 1.1834

$ invest(Gauss) 1.1032 -0.1095 0.0755 0.4570 0.9634

cash flow(VG) -1.3435 -139.2297 667.1110 3.4050 -26.3376

cash flow(Gauss) 0.0647 -0.0168 0.0088 0.0193 -0.0214

% T-bill rate 5.73

Statistical Estimation 04/95

σ ν θ

1st IC 0.9449 0.6215 0.0530

2nd IC 0.9671 0.6643 -0.0538

3rd IC 0.9755 0.4757 -0.1693

4th IC 0.9928 0.3530 -0.1506

5th IC 0.9823 0.2425 0.3886

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.4721 -2.1155 3.1264 0.2132 0.9143

$ invest(Gauss) 1.0669 0.0365 0.1785 0.5228 1.0153

cash flow(VG) 4.8334 -9.2199 145.5187 5.7679 58.1586

cash flow(Gauss) -0.0109 0.0002 0.0083 0.0141 0.0646

% T-bill rate 5.67
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Statistical Estimation 05/95

σ ν θ

1st IC 0.9435 0.6179 0.0453

2nd IC 0.9761 0.4902 0.1773

3rd IC 0.9810 0.3240 0.3449

4th IC 0.9690 0.6694 0.0553

5th IC 0.9946 0.3237 -0.1008

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.0154 0.3554 -2.2729 1.8230 -1.8628

$ invest(Gauss) 0.8896 0.0597 0.2161 0.6033 1.0423

cash flow(VG) 0.1416 45.8981 4.4832 171.4126 -8.2759

cash flow(Gauss) -0.0082 0.0077 -0.0004 0.0567 0.0046

% T-bill rate 5.70

Statistical Estimation 06/95

σ ν θ

1st IC 0.9710 0.6991 -0.0526

2nd IC 0.9449 0.6750 -0.1762

3rd IC 0.9717 0.4721 0.2030

4th IC 0.9829 0.3043 -0.3526

5th IC 0.9960 0.3438 -0.1060

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 2.1204 -0.6769 -0.2552 2.4010 0.9930

$ invest(Gauss) 0.8955 0.2957 0.2488 0.6843 1.1472

cash flow(VG) -18.0059 8.2771 -24.9783 -57.7309 25.6875

cash flow(Gauss) -0.0076 -0.0036 0.0243 -0.0165 0.0297

% T-bill rate 5.50
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Statistical Estimation 07/95

σ ν θ

1st IC 0.9809 0.7467 0.0912

2nd IC 0.9649 0.5980 0.0660

3rd IC 0.9733 0.4640 -0.2002

4th IC 0.9962 0.3845 0.0795

5th IC 1.0056 0.2003 -0.2684

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.5978 0.0614 -1.8050 2.1152 0.7413

$ invest(Gauss) 1.0393 0.2767 0.2796 0.5963 1.2115

cash flow(VG) 37.2686 1.0174 -10.0934 -23.6855 -1.2130

cash flow(Gauss) -0.0648 0.0046 0.0016 -0.0067 -0.0020

% T-bill rate 5.47

Statistical Estimation 08/95

σ ν θ

1st IC 0.9642 0.6407 0.0492

2nd IC 0.9720 0.4375 0.2278

3rd IC 0.9690 0.7058 0.0955

4th IC 0.9822 0.2900 -0.3511

5th IC 0.9951 0.3585 -0.0663

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 3.8092 -0.4714 0.7311 9.1693 0.9487

$ invest(Gauss) 0.8740 0.1251 0.2884 0.6305 1.2071

cash flow(VG) 14.1148 -46.8998 -93.3282 737.1091 -23.3421

cash flow(Gauss) 0.0032 0.0124 -0.0368 0.050 -0.0297

% T-bill rate 5.41
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Statistical Estimation 09/95

σ ν θ

1st IC 0.9752 0.4572 0.2254

2nd IC 0.9814 0.7535 -0.1102

3rd IC 0.9818 0.3138 -0.3358

4th IC 0.9650 0.6715 0.0448

5th IC 0.9969 0.3542 0.0556

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.4785 0.3076 0.1856 -0.0790 2.2536

$ invest(Gauss) 0.7520 0.3518 0.1937 0.7397 1.1345

cash flow(VG) -12.1475 -24.4708 1.1365 -6.0505 95.8706

cash flow(Gauss) 0.0191 -0.0280 0.0012 0.0567 0.0483

% T-bill rate 5.26

Statistical Estimation 10/95

σ ν θ

1st IC 0.9658 0.6584 -0.0566

2nd IC 1.0532 0.7748 0.0538

3rd IC 0.9728 0.4212 -0.2433

4th IC 0.9846 0.3289 -0.3187

5th IC 0.9953 0.3362 0.0383

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 1.9370 -0.3084 -1.3527 0.2527 -0.8125

$ invest(Gauss) 0.7830 0.2557 0.1773 0.7437 1.1530

cash flow(VG) 273.9084 -33.7270 25.9058 15.5813 -58.5204

cash flow(Gauss) 0.1107 0.0280 -0.0034 0.0459 0.0830

% T-bill rate 5.30
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Statistical Estimation 11/95

σ ν θ

1st IC 0.9624 0.3212 -0.4088

2nd IC 0.9413 0.5760 0.2207

3rd IC 0.9627 0.6393 -0.0816

4th IC 0.9794 0.3185 0.3558

5th IC 0.9960 0.3664 0.0340

ticker mmm ba ibm jnj mcd

$ invest(VG) -412.15 -968.36 559.89 -140.71 355.89

$ invest(Gauss) 1.0209 0.5678 0.2411 0.6999 1.2690

cash flow(VG) -12.2332 -58.3592 -24.3407 -5.4349 32.0511

cash flow(Gauss) 0.0303 0.0342 -0.0105 0.0270 0.1143

% T-bill rate 5.35

Statistical Estimation 12/95

σ ν θ

1st IC 0.9965 0.5218 0.0262

2nd IC 0.9598 0.5960 0.1542

3rd IC 0.9676 0.6212 -0.1226

4th IC 0.9815 0.2489 0.3628

5th IC 0.9755 0.3625 -0.3293

ticker mmm ba ibm jnj mcd

$ invest(VG) 607.79 61.06 436.91 -328.1702 -441.73

$ invest(Gauss) 0.9710 0.4956 0.1897 0.6214 1.2082

cash flow(VG) -30.2880 0.6188 61.1164 3.2807 17.6524

cash flow(Gauss) -0.0484 0.0050 0.0265 -0.0062 -0.0483

% T-bill rate 5.16
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Statistical Estimation 01/96

σ ν θ

1st IC 0.9600 0.6807 -0.1383

2nd IC 0.9696 0.2908 -0.3957

3rd IC 0.9614 0.6851 0.0711

4th IC 0.9952 0.4517 -0.0038

5th IC 0.9810 0.2509 -0.3798

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -1.2242 0.3178 -0.3749 0.1097 0.4637

$ invest(Gauss) 0.9003 0.5226 0.2789 0.7163 1.0872

cash flow(VG) -51.9611 16.3247 -68.3071 11.4705 88.8624

cash flow(Gauss) 0.0382 0.0268 0.0508 0.0749 0.2083

% T-bill rate 5.02

Statistical Estimation 02/96

σ ν θ

1st IC 0.9664 0.6962 0.0484

2nd IC 0.9641 0.2806 -0.4552

3rd IC 0.9621 0.6532 -0.1321

4th IC 0.9751 0.3115 0.3881

5th IC 0.9942 0.4753 0.0277

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 3.2643 0.6935 0.7561 0.2930 0.8170

$ invest(Gauss) 0.9120 0.7163 0.4075 0.8598 1.4042

cash flow(VG) -38.3911 35.7859 -37.1179 -3.6066 -33.0775

cash flow(Gauss) -0.0107 0.0370 -0.0200 -0.0106 -0.0568

% T-bill rate 4.87
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Statistical Estimation 03/96

σ ν θ

1st IC 0.9638 0.6375 -0.1546

2nd IC 0.9947 0.5152 0.0343

3rd IC 0.9831 0.2687 0.3172

4th IC 0.9617 0.6453 0.0995

5th IC 0.9589 0.3210 -0.4508

ticker mmm ba ibm jnj mcd

$ invest(VG) -544.19 935.35 -225.75 -517.53 81.95

$ invest(Gauss) 0.8760 0.8101 0.3447 0.8331 1.2604

cash flow(VG) 1.2157 -61.3034 15.8514 24.6694 -7.0362

cash flow(Gauss) -0.0020 -0.0531 -0.0242 -0.0397 -0.1082

% T-bill rate 4.96

Statistical Estimation 04/96

σ ν θ

1st IC 0.9672 0.6686 -0.0456

2nd IC 0.9574 0.2975 0.4721

3rd IC 0.9658 0.6400 -0.1082

4th IC 0.9817 0.3206 -0.3150

5th IC 0.9952 0.4721 -0.0209

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 3.2135 0.7310 0.2210 0.3804 0.8077

$ invest(Gauss) 0.8014 0.6897 0.1966 0.8303 1.0830

cash flow(VG) 253.0302 16.4611 9.8582 28.6827 12.0655

cash flow(Gauss) 0.0631 0.0155 0.0088 0.0626 0.0162

% T-bill rate 4.99
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Statistical Estimation 05/96

σ ν θ

1st IC 0.9630 0.5985 0.1221

2nd IC 0.9621 0.3067 -0.4393

3rd IC 0.9638 0.6117 0.0402

4th IC 0.9817 0.3316 0.3019

5th IC 0.9961 0.4582 -0.0108

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 5.2965 0.6929 1.1423 0.3698 -0.1278

$ invest(Gauss) 0.8617 0.7084 0.2382 0.9470 0.9971

cash flow(VG) -24.6926 25.9944 -110.6701 -1.0030 -0.7204

cash flow(Gauss) -0.0040 0.0266 -0.0231 -0.0026 0.0056

% T-bill rate 5.02

Statistical Estimation 06/96

σ ν θ

1st IC 0.9648 0.6241 0.0541

2nd IC 0.9600 0.2956 0.4656

3rd IC 0.9646 0.6246 -0.1035

4th IC 0.9818 0.3513 0.3053

5th IC 0.9944 0.4742 -0.0053

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 2.2083 0.0329 0.6288 0.1700 -0.7820

$ invest(Gauss) 0.7585 0.9157 0.1009 0.9114 0.9959

cash flow(VG) 34.7862 -0.5172 -54.0781 2.8453 54.5939

cash flow(Gauss) 0.0119 -0.0144 -0.0087 0.0153 -0.0695

% T-bill rate 5.11

91



Statistical Estimation 07/96

σ ν θ

1st IC 0.9515 0.5795 0.1089

2nd IC 0.9635 0.6194 -0.1537

3rd IC 0.9806 0.3277 0.3249

4th IC 0.9606 0.2676 0.4926

5th IC 0.9939 0.5279 -0.0286

ticker mmm ba ibm jnj mcd

$ invest(VG) 933.46 -144.49 110.67 -416.80 -209.82

$ invest(Gauss) 0.6635 0.8259 0.0712 0.7976 0.9629

cash flow(VG) 44.4536 -9.3351 22.7744 -25.7861 -13.8004

cash flow(Gauss) 0.0316 0.0534 0.0146 0.0493 0.0633

% T-bill rate 5.17

Statistical Estimation 08/96

σ ν θ

1st IC 0.9993 0.6632 -0.0348

2nd IC 0.9553 0.5502 -0.1078

3rd IC 0.9634 0.2555 0.4834

4th IC 0.9815 0.3253 -0.3140

5th IC 0.9941 0.5090 -0.0200

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.9896 4.3197 -0.9535 0.5252 0.3304

$ invest(Gauss) 0.6549 1.0019 0.2058 0.8067 1.1004

cash flow(VG) -39.3138 11.3071 -108.1622 -19.8800 -3.2552

cash flow(Gauss) 0.0260 0.0026 0.0234 -0.0305 -0.0108

% T-bill rate 5.09
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Statistical Estimation 09/96

σ ν θ

1st IC 0.9559 0.5476 -0.0957

2nd IC 0.9551 0.2086 0.6411

3rd IC 0.9541 0.6900 -0.1459

4th IC 0.9924 0.3300 0.2920

5th IC 0.9948 0.5033 -0.0504

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 1.3090 0.2199 0.1145 -0.2177 -0.5303

$ invest(Gauss) 0.7245 1.0631 0.3152 0.9238 1.0746

cash flow(VG) 31.8112 13.0300 4.9533 -7.2435 13.6923

cash flow(Gauss) 0.0176 0.0630 0.0136 0.0307 -0.0277

% T-bill rate 5.15

Statistical Estimation 10/96

σ ν θ

1st IC 0.9516 0.5623 -0.1184

2nd IC 0.9676 0.2909 0.4056

3rd IC 0.9500 0.6530 -0.1518

4th IC 0.9814 0.3177 0.2902

5th IC 0.9953 0.5111 -0.0527

ticker mmm ba ibm jnj mcd

$ invest(VG) 974.18 295.57 199.40 -167.75 -551.06

$ invest(Gauss) 0.6478 1.1367 0.4359 0.8718 0.9987

cash flow(VG) 128.4532 -14.5618 28.3986 3.5531 -6.6285

cash flow(Gauss) 0.0854 -0.0560 0.0621 -0.0185 0.0120

% T-bill rate 5.01
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Statistical Estimation 11/96

σ ν θ

1st IC 0.9513 0.6518 0.1579

2nd IC 0.9531 0.5923 -0.1040

3rd IC 0.9951 0.5351 -0.0811

4th IC 0.9842 0.3054 0.2354

5th IC 0.9631 0.3006 0.4107

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -1.5457 -0.4868 -0.6481 0.5452 -0.8183

$ invest(Gauss) 0.8660 1.0939 0.5406 0.7218 0.9590

cash flow(VG) 11.7898 -41.0659 -49.5529 -18.3301 -22.6917

cash flow(Gauss) -0.0066 0.0923 0.0413 -0.0243 0.0266

% T-bill rate 5.03

Statistical Estimation 12/96

σ ν θ

1st IC 0.9519 0.5609 -0.1258

2nd IC 0.9939 0.5750 0.0844

3rd IC 0.9411 0.5586 0.2863

4th IC 0.9951 0.3045 -0.2250

5th IC 0.9856 0.3493 0.3401

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 1.1972 -0.7262 0.5797 -0.1267 2.0727

$ invest(Gauss) 0.8414 0.9797 0.8265 0.8180 0.8937

cash flow(VG) 48.6458 -32.6798 28.2523 -4.2939 -186.8711

cash flow(Gauss) 0.0342 0.0441 0.0403 0.0277 -0.0806

% T-bill rate 4.87
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Statistical Estimation 01/97

σ ν θ

1st IC 0.9498 0.5726 0.1307

2nd IC 0.9928 0.5491 0.0920

3rd IC 0.9380 0.5836 -0.2688

4th IC 0.9866 0.2939 -0.2508

5th IC 0.9618 0.3443 -0.3916

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.4947 -0.5441 0.1622 0.3023 -2.2746

$ invest(Gauss) 0.7309 1.2635 0.7509 0.8678 0.8362

cash flow(VG) 1.9432 -17.8778 -22.0774 63.9700 -61.7505

cash flow(Gauss) 0.0029 0.0415 -0.1022 0.1836 0.0227

% T-bill rate 5.05

Statistical Estimation 02/97

σ ν θ

1st IC 0.9502 0.5674 -0.1255

2nd IC 0.9666 0.3529 0.3707

3rd IC 0.9861 0.3389 -0.2631

4th IC 0.9386 0.5567 0.2838

5th IC 0.9880 0.5173 -0.1395

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.7189 0.2882 1.3355 -0.1095 -0.2884

$ invest(Gauss) 0.6436 1.2175 0.5329 1.0866 0.8067

cash flow(VG) 33.1001 -13.978 -68.2270 8.4703 6.2271

cash flow(Gauss) 0.0296 -0.0591 -0.0272 -0.0840 -0.0174

% T-bill rate 5.00
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Statistical Estimation 03/97

σ ν θ

1st IC 0.9393 0.5775 0.2725

2nd IC 0.9557 0.5469 0.1022

3rd IC 0.9826 0.4669 0.2134

4th IC 0.9774 0.4591 0.2833

5th IC 0.9862 0.3329 0.2502

ticker mmm ba ibm jnj mcd

$ invest(VG) 351.71 78.64 203.08 907.26 579.92

$ invest(Gauss) 0.6342 1.0967 0.5335 1.1765 0.6529

cash flow(VG) -23.3376 -5.0231 -0.1228 -1.6798 59.6511

cash flow(Gauss) -0.0421 -0.0700 -0.0003 -0.0022 0.0672

% T-bill rate 5.14

Statistical Estimation 04/97

σ ν θ

1st IC 0.9595 0.6040 -0.0722

2nd IC 0.9353 0.5674 -0.2919

3rd IC 0.9843 0.3685 -0.2334

4th IC 0.9847 0.3527 0.2455

5th IC 0.9780 0.4806 -0.2676

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 1.3932 0.2695 -0.6072 -0.5980 0.2055

$ invest(Gauss) 0.5444 0.9140 0.5893 1.1399 0.9144

cash flow(VG) 138.3567 3.7658 -158.1432 -39.8164 15.8034

cash flow(Gauss) 0.0541 0.0128 0.1535 0.0759 0.0703

% T-bill rate 5.17
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Statistical Estimation 05/97

σ ν θ

1st IC 0.9622 0.6286 0.0934

2nd IC 0.9301 0.5798 0.3140

3rd IC 0.9678 0.3823 0.3012

4th IC 0.9836 0.3330 0.2344

5th IC 0.9956 0.4015 0.0971

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
4 -0.0715 -0.1048 0.1224 1.3423 0.1213

$ invest(Gauss) 0.5329 0.9236 0.6673 1.1243 1.0096

cash flow(VG)×10
3 -0.0694 -0.1319 0.0332 1.0162 -0.0964

cash flow(Gauss) 0.0517 0.1162 0.0181 0.0851 -0.0802

% T-bill rate 5.13

Statistical Estimation 06/97

σ ν θ

1st IC 0.9634 0.4257 -0.1852

2nd IC 0.9378 0.5923 0.2765

3rd IC 0.9925 0.5753 -0.1801

4th IC 0.9826 0.4555 0.2698

5th IC 0.9878 0.3400 0.2377

ticker mmm ba ibm jnj mcd

$ invest(VG) 834.84 -356.98 -197.35 766.94 431.60

$ invest(Gauss) 0.7644 1.0202 0.7238 1.3084 0.9289

cash flow(VG) -14.5242 14.8738 -30.3363 -62.1657 -1.7837

cash flow(Gauss) -0.0133 -0.0425 0.1113 -0.1061 -0.0038

% T-bill rate 4.92
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Statistical Estimation 07/97

σ ν θ

1st IC 0.9256 0.5654 -0.3384

2nd IC 0.9630 0.4258 -0.1797

3rd IC 0.9901 0.3283 0.1851

4th IC 0.9959 0.5603 -0.1531

5th IC 0.9840 0.4310 0.2740

ticker mmm ba ibm jnj mcd

$ invest(VG) -698.08 177.15 500.06 729.06 -752.31

$ invest(Gauss) 0.6822 0.8797 0.8815 1.2684 0.8520

cash flow(VG) 42.6174 9.4812 19.9140 -16.5439 -37.8863

cash flow(Gauss) -0.0416 0.0471 0.0351 -0.0288 0.0429

% T-bill rate 5.07

Statistical Estimation 08/97

σ ν θ

1st IC 0.9217 0.5506 0.3656

2nd IC 0.9666 0.4261 -0.1418

3rd IC 0.9957 0.5842 0.1184

4th IC 0.9832 0.4343 -0.2715

5th IC 0.9883 0.3064 0.1870

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 1.2112 -0.4863 -0.7929 0.4204 1.0216

$ invest(Gauss) 0.5570 0.8389 0.8902 1.1025 0.8041

cash flow(VG) -62.9949 38.1367 70.8346 -11.6791 -102.4763

cash flow(Gauss) -0.0290 -0.0658 -0.0795 -0.0306 -0.0807

% T-bill rate 5.13

98



Statistical Estimation 09/97

σ ν θ

1st IC 0.9234 0.5464 -0.3784

2nd IC 0.9681 0.4141 0.1249

3rd IC 0.9812 0.4188 0.2805

4th IC 0.9894 0.3234 -0.1947

5th IC 0.9978 0.5308 -0.1081

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.6487 -0.3782 -0.8928 2.6576 -0.6162

$ invest(Gauss) 0.4849 0.7596 0.8570 1.1077 0.6780

cash flow(VG) -48.2144 10.4880 33.6709 14.4590 -10.9161

cash flow(Gauss) 0.0360 -0.0211 -0.0323 0.0060 0.0120

% T-bill rate 4.97

Statistical Estimation 10/97

σ ν θ

1st IC 0.9666 0.3700 -0.1381

2nd IC 0.9329 0.5560 -0.3280

3rd IC 0.9994 0.5353 0.1118

4th IC 0.9899 0.3058 -0.1914

5th IC 0.9788 0.4206 0.2927

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.6880 -2.3596 -0.7761 -0.2766 -0.1311

$ invest(Gauss) 0.6219 0.7893 0.7236 0.9989 0.6533

cash flow(VG) 0.6465 102.5013 -65.5614 -25.4123 4.3704

cash flow(Gauss) 0.0006 -0.0343 0.0611 0.0918 -0.0218

% T-bill rate 4.95
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Statistical Estimation 11/97

σ ν θ

1st IC 0.9366 0.3989 0.0812

2nd IC 0.9751 0.4885 -0.1452

3rd IC 0.9813 0.4345 0.2798

4th IC 0.9921 0.3441 0.1697

5th IC 0.9569 0.3506 0.3380

ticker mmm ba ibm jnj mcd

$ invest(VG) -169.33 -257.01 756.33 423.93 376.80

$ invest(Gauss) 0.5241 0.5192 0.6383 0.9393 0.4822

cash flow(VG) 16.8600 -3.4002 -14.1754 17.8124 12.6990

cash flow(Gauss) -0.0522 0.0069 -0.0120 0.0395 0.0163

% T-bill rate 5.15

Statistical Estimation 12/97

σ ν θ

1st IC 0.9467 0.5392 0.1431

2nd IC 0.9369 0.6020 -0.2595

3rd IC 0.9910 0.3148 0.1066

4th IC 0.9960 0.5563 -0.0041

5th IC 0.9651 0.2555 0.5050

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.7122 -1.0243 0.3509 -0.4528 0.1600

$ invest(Gauss) 0.4159 0.4429 0.5382 1.0776 0.6104

cash flow(VG) -16.6166 147.3747 20.3835 -18.0911 -4.5302

cash flow(Gauss) -0.0097 -0.0637 0.0313 0.0431 -0.0173

% T-bill rate 5.16
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Statistical Estimation 01/98

σ ν θ

1st IC 0.9451 0.5083 0.1702

2nd IC 0.9411 0.3775 -0.0132

3rd IC 0.9809 0.5199 -0.1218

4th IC 0.9696 0.3256 -0.4104

5th IC 0.9920 0.3126 0.1434

ticker mmm ba ibm jnj mcd

$ invest(VG) 449.78 -54.74 669.22 334.43 965.55

$ invest(Gauss) 0.3104 0.2930 0.5860 1.2111 0.4919

cash flow(VG) 27.0630 -9.1450 -35.0441 6.7702 51.8003

cash flow(Gauss) 0.0187 0.0489 -0.0307 0.0245 0.0264

% T-bill rate 5.09

Statistical Estimation 02/98

σ ν θ

1st IC 0.9376 0.4028 -0.0414

2nd IC 0.9788 0.4916 0.0983

3rd IC 0.9465 0.5261 0.1733

4th IC 0.9696 0.3132 0.4269

5th IC 0.9946 0.2890 0.1358

ticker mmm ba ibm jnj mcd

$ invest(VG) -920.06 -358.14 -199.18 108.78 987.38

$ invest(Gauss) 0.3666 0.2649 0.6208 1.2828 0.5938

cash flow(VG) -61.0836 -17.0101 2.1939 7.5196 138.4850

cash flow(Gauss) 0.0243 0.0126 -0.0068 0.0887 0.0833

% T-bill rate 5.11
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Statistical Estimation 03/98

σ ν θ

1st IC 0.9396 0.6043 0.2298

2nd IC 0.9488 0.4802 -0.1768

3rd IC 0.9903 0.5414 0.0054

4th IC 0.9931 0.3083 0.0940

5th IC 0.9635 0.2597 0.5124

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.3904 -0.1988 -0.2394 0.2562 1.9732

$ invest(Gauss) 0.5323 0.2948 0.5520 1.4130 0.7722

cash flow(VG) -12.5971 2.2735 -36.3999 -17.9907 214.4314

cash flow(Gauss) 0.0172 -0.0034 0.0839 -0.0992 0.0839

% T-bill rate 5.03

Statistical Estimation 04/98

σ ν θ

1st IC 0.9408 0.4099 -0.0608

2nd IC 0.9872 0.3763 -0.1672

3rd IC 0.9950 0.3091 0.1043

4th IC 0.9552 0.5250 0.1772

5th IC 0.9907 0.3920 -0.1225

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.0848 0.5475 -1.1454 0.2489 -1.5968

$ invest(Gauss) 0.5731 0.3422 0.6045 1.2039 0.8367

cash flow(VG) -0.3560 -53.0828 -53.0903 2.2464 25.9246

cash flow(Gauss) -0.0024 -0.0332 0.0280 0.0109 -0.0136

% T-bill rate 5.00
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Statistical Estimation 05/98

σ ν θ

1st IC 0.9381 0.4343 0.0722

2nd IC 0.9485 0.5036 -0.1847

3rd IC 0.9907 0.4802 0.0139

4th IC 0.9926 0.3042 0.0858

5th IC 0.9712 0.2819 0.4170

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.3060 0.3908 0.1709 0.2604 2.5993

$ invest(Gauss) 0.5565 0.1710 0.6387 1.1212 0.8436

cash flow(VG) 41.1714 -42.8633 -24.7830 15.1476 193.4907

cash flow(Gauss) -0.0749 -0.0187 -0.0926 0.0652 0.0628

% T-bill rate 5.03

Statistical Estimation 06/98

σ ν θ

1st IC 0.9524 0.5708 0.1028

2nd IC 0.9403 0.3827 0.0631

3rd IC 0.9896 0.4892 0.0276

4th IC 0.9915 0.3092 -0.1166

5th IC 0.9628 0.2845 0.4581

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 1.5101 5.1775 8.1817 0.0988 -2.7000

$ invest(Gauss) 0.3501 0.0928 0.6331 1.2658 0.8691

cash flow(VG)×10
3 -0.0334 0.6111 1.6635 0.0004 -0.2779

cash flow(Gauss) -0.0077 0.0109 0.1287 0.0053 0.0895

% T-bill rate 4.99
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Statistical Estimation 07/98

σ ν θ

1st IC 0.9515 0.5789 -0.0875

2nd IC 0.9396 0.3782 -0.0585

3rd IC 0.9939 0.3829 0.0158

4th IC 0.9955 0.2797 -0.1948

5th IC 0.9772 0.1503 -0.4505

ticker mmm ba ibm jnj mcd

$ invest(VG) 604.45 89.37 -822.04 527.383 570.43

$ invest(Gauss) 0.1898 0.2730 0.7089 1.1504 1.2075

cash flow(VG) -27.8152 -21.3255 -11.0227 -0.9435 -77.5261

cash flow(Gauss) -0.0087 -0.0651 0.0095 -0.0021 -0.1641

% T-bill rate 4.96

Statistical Estimation 08/98

σ ν θ

1st IC 0.9516 0.5364 -0.1006

2nd IC 0.9191 0.3447 0.0419

3rd IC 0.9791 0.4722 0.0989

4th IC 0.9613 0.1332 0.7248

5th IC 0.9912 0.2660 -0.2134

ticker mmm ba ibm jnj mcd

$ invest(VG) 713.78 0.59 840.83 732.99 867.30

$ invest(Gauss) 0.1465 -0.0120 0.7259 1.1115 1.0017

cash flow(VG) -62.5029 -0.0398 -37.5096 4.7816 -18.7382

cash flow(Gauss) -0.0128 0.0008 -0.0324 0.0073 -0.0216

% T-bill rate 4.94
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Statistical Estimation 09/98

σ ν θ

1st IC 0.9583 0.5746 0.0641

2nd IC 0.9205 0.4461 0.0089

3rd IC 0.9511 0.2998 0.1363

4th IC 0.9822 0.5149 -0.0371

5th IC 0.9780 0.1494 0.5437

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 2.2691 0.4141 0.6327 -4.0792 -7.7670

$ invest(Gauss) 0.0610 -0.0878 0.6832 1.1354 0.8395

cash flow(VG) 429.1849 -1.6488 72.0346 -305.6420 30.9252

cash flow(Gauss) 0.0115 0.0003 0.0778 0.0851 -0.0033

% T-bill rate 4.74

Statistical Estimation 10/98

σ ν θ

1st IC 0.9230 0.4939 -0.0025

2nd IC 0.9430 0.3270 0.1530

3rd IC 0.9570 0.5923 0.1102

4th IC 0.9847 0.5146 0.0127

5th IC 0.9620 0.1059 0.8324

ticker mmm ba ibm jnj mcd

$ invest(VG) -792.50 285.19 -191.57 324.13 -225.90

$ invest(Gauss) 0.2889 -0.0345 0.6563 1.0325 0.8342

cash flow(VG) 50.3140 68.9404 -25.5936 8.9358 -24.4640

cash flow(Gauss) -0.0183 -0.0083 0.0877 0.0285 0.0903

% T-bill rate 4.08
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Statistical Estimation 11/98

σ ν θ

1st IC 0.9231 0.5077 0.0202

2nd IC 0.9625 0.5970 0.0955

3rd IC 0.9547 0.3835 0.2292

4th IC 0.9825 0.5343 0.0309

5th IC 0.9644 0.0977 -0.8482

ticker mmm ba ibm jnj mcd

$ invest(VG) 540.41 -91.35 -548.29 122.75 248.60

$ invest(Gauss) 0.2246 0.0091 0.7562 1.0797 0.8788

cash flow(VG) -38.2737 23.4296 -25.9234 -7.4825 9.2341

cash flow(Gauss) -0.0159 -0.0023 0.0358 -0.0658 0.0326

% T-bill rate 4.44

Statistical Estimation 12/98

σ ν θ

1st IC 0.9161 0.5766 -0.0933

2nd IC 0.9712 0.6634 0.0788

3rd IC 0.9679 0.4947 0.178

4th IC 0.9568 0.3816 0.2219

5th IC 0.9699 0.1741 -0.3864

ticker mmm ba ibm jnj mcd

$ invest(VG) -623.75 -889.90 333.73 -730.51 -482.54

$ invest(Gauss) 0.0534 -0.1843 0.8756 1.0291 0.8845

cash flow(VG) 30.9404 -60.7815 55.8893 -6.2787 -58.4730

cash flow(Gauss) -0.0026 -0.0126 0.1466 0.0088 0.1072

% T-bill rate 4.42
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Statistical Estimation 01/99

σ ν θ

1st IC 0.9193 0.6241 -0.0745

2nd IC 0.9881 0.7366 -0.0071

3rd IC 0.9580 0.3870 0.2122

4th IC 0.9772 0.4879 0.1401

5th IC 0.9877 0.2452 0.3193

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.0752 1.2318 0.3442 0.4222 1.0542

$ invest(Gauss) 0.1292 -0.1746 0.9603 0.9159 0.9168

cash flow(VG) -8.3411 52.3752 -40.8898 30.5433 -6.8866

cash flow(Gauss) 0.0143 -0.0074 -0.1141 0.0663 -0.0060

% T-bill rate 4.34

Statistical Estimation 02/99

σ ν θ

1st IC 0.9207 0.6269 0.0624

2nd IC 0.9733 0.4517 0.1383

3rd IC 0.9884 0.4766 -0.0162

4th IC 0.9890 0.7264 -0.0287

5th IC 0.9860 0.2575 -0.3323

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.6929 0.5366 0.3882 -2.2408 3.9343

$ invest(Gauss) 0.1429 -0.0654 0.7533 0.9840 0.8364

cash flow(VG) -41.4175 -14.2534 -11.9190 -121.0981 442.0010

cash flow(Gauss) -0.0085 0.0017 -0.0231 0.0532 0.0940

% T-bill rate 4.45
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Statistical Estimation 03/99

σ ν θ

1st IC 0.9409 0.6583 0.0461

2nd IC 0.9892 0.7054 0.0302

3rd IC 0.9598 0.4246 0.2186

4th IC 0.9778 0.4912 0.1015

5th IC 0.9825 0.2294 0.3802

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -1.3942 -0.4538 0.3776 -0.2620 1.1886

$ invest(Gauss) -0.0052 -0.1934 0.7097 1.0681 0.8612

cash flow(VG) -190.7332 -69.9513 9.6040 -25.0965 27.2054

cash flow(Gauss) -0.0007 -0.0298 0.0181 0.1023 0.0197

% T-bill rate 4.48

Statistical Estimation 04/99

σ ν θ

1st IC 0.9128 0.6479 0.1407

2nd IC 0.9868 0.4901 0.0698

3rd IC 0.9925 0.7959 0.0502

4th IC 0.9789 0.5709 -0.2168

5th IC 0.9860 0.2875 0.2884

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 3.8410 0.2495 0.0063 0.0370 -0.8306

$ invest(Gauss) 0.1118 -0.0870 0.6536 1.0282 0.9162

cash flow(VG) 356.1563 26.2141 2.2313 -2.0343 76.6390

cash flow(Gauss) 0.0104 -0.0091 0.2316 -0.0566 -0.0845

% T-bill rate 4.28
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Statistical Estimation 05/99

σ ν θ

1st IC 0.9888 0.5098 -0.0138

2nd IC 0.9397 0.6858 0.0654

3rd IC 0.9524 0.5228 0.1356

4th IC 0.9865 0.6160 0.0850

5th IC 0.9812 0.2572 0.3694

ticker mmm ba ibm jnj mcd

$ invest(VG) -383.99 512.85 521.44 -217.17 863.95

$ invest(Gauss) 0.2563 -0.1060 0.7859 0.8040 0.7432

cash flow(VG) -2.1076 -20.6058 35.2344 12.1466 0.4293

cash flow(Gauss) 0.0014 0.0043 0.0531 -0.0450 0.0004

% T-bill rate 4.51

Statistical Estimation 06/99

σ ν θ

1st IC 0.9506 0.6154 -0.2709

2nd IC 0.9162 0.6670 -0.1292

3rd IC 0.9861 0.6162 -0.1034

4th IC 0.9882 0.4560 0.0599

5th IC 0.9799 0.2673 0.3736

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 1.9189 1.1877 2.0791 0.5740 9.4543

$ invest(Gauss) 0.2714 -0.1515 0.7752 0.7720 0.6947

cash flow(VG) -13.1049 47.1504 62.9420 44.8717 428.6694

cash flow(Gauss) -0.0019 -0.0060 0.0235 0.0603 0.0315

% T-bill rate 4.59
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Statistical Estimation 07/99

σ ν θ

1st IC 0.9479 0.6233 0.2561

2nd IC 0.9176 0.6742 -0.1393

3rd IC 0.9882 0.5959 0.1097

4th IC 0.9822 0.4458 -0.1067

5th IC 0.9761 0.2666 0.4046

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.6888 0.1451 0.5737 -0.3300 -1.4191

$ invest(Gauss) 0.3463 -0.1294 0.7087 0.7949 0.7187

cash flow(VG) 54.3003 0.9094 -28.6690 4.8703 140.9414

cash flow(Gauss) 0.0273 -0.0008 -0.0354 -0.0117 -0.0714

% T-bill rate 4.60

Statistical Estimation 08/99

σ ν θ

1st IC 0.9387 0.6909 0.0043

2nd IC 0.9807 0.5023 0.1271

3rd IC 0.9907 0.6636 0.0888

4th IC 0.9620 0.4943 0.2049

5th IC 0.9712 0.2194 -0.4943

ticker mmm ba ibm jnj mcd

$ invest(VG) 471.22 -418.34 -153.16 316.13 -400.71

$ invest(Gauss) 0.4167 -0.1652 0.7243 0.7783 0.6524

cash flow(VG) 7.2029 23.0545 -8.3439 0.9847 -27.1185

cash flow(Gauss) 0.0064 0.0091 0.0395 0.0024 0.0442

% T-bill rate 4.76
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Statistical Estimation 09/99

σ ν θ

1st IC 0.9420 0.7537 -0.0011

2nd IC 0.9795 0.5005 0.1448

3rd IC 0.9655 0.5271 0.1801

4th IC 0.9885 0.5542 0.1114

5th IC 0.9685 0.2125 -0.5466

ticker mmm ba ibm jnj mcd

$ invest(VG) -327.89 -319.05 213.99 -145.71 -751.76

$ invest(Gauss) 0.3762 -0.1701 0.8235 0.6147 0.6354

cash flow(VG) 29.0168 2.2313 -38.6876 -4.3347 -10.3713

cash flow(Gauss) -0.0333 0.0012 -0.1489 0.0183 0.0088

% T-bill rate 4.73

Statistical Estimation 10/99

σ ν θ

1st IC 0.9545 0.5715 -0.2450

2nd IC 0.9509 0.8689 0.0733

3rd IC 0.9884 0.5595 0.1090

4th IC 0.9791 0.4572 -0.1175

5th IC 0.9620 0.2338 -0.5633

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.7759 0.0586 0.0689 0.3563 1.0177

$ invest(Gauss) 0.3276 -0.1689 0.6954 0.6666 0.6575

cash flow(VG) -106.9764 -0.3142 -8.7973 21.5518 84.1729

cash flow(Gauss) 0.0452 0.0009 -0.0888 0.0403 0.0544

% T-bill rate 4.88
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Statistical Estimation 11/99

σ ν θ

1st IC 0.9405 0.7585 -0.0287

2nd IC 0.9381 0.5098 -0.1861

3rd IC 0.9882 0.5456 0.0934

4th IC 0.9770 0.4873 0.1530

5th IC 0.9717 0.2387 -0.4878

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.3817 -0.9621 -1.6962 -0.4961 -0.5745

$ invest(Gauss) 0.3466 -0.2015 0.6388 0.6311 0.6207

cash flow(VG) -25.6653 100.1656 -286.8018 52.5396 31.0325

cash flow(Gauss) -0.0233 0.0210 0.1080 -0.0668 -0.0335

% T-bill rate 5.07

Statistical Estimation 12/99

σ ν θ

1st IC 0.9372 0.7654 0.0158

2nd IC 0.9382 0.5421 -0.1807

3rd IC 0.9740 0.4847 0.1718

4th IC 0.9911 0.5825 0.1094

5th IC 0.9748 0.2308 -0.4683

ticker mmm ba ibm jnj mcd

$ invest(VG) -475.16 -288.28 -279.12 -29.21 -672.64

$ invest(Gauss) 0.2276 -0.2917 0.7909 0.5317 0.5706

cash flow(VG) -16.3852 -68.8424 -22.8887 1.1316 73.7100

cash flow(Gauss) 0.0078 -0.0697 0.0649 -0.0206 -0.0625

% T-bill rate 5.23
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Statistical Estimation 01/00

σ ν θ

1st IC 0.9484 0.8237 -0.0169

2nd IC 0.9907 0.6227 0.0971

3rd IC 0.9373 0.4834 -0.2014

4th IC 0.9768 0.2083 -0.4790

5th IC 0.9753 0.4505 -0.1634

ticker mmm ba ibm jnj mcd

$ invest(VG) 507.03 93.84 367.06 424.54 482.10

$ invest(Gauss) 0.2698 -0.1557 0.7110 0.4006 0.3939

cash flow(VG) -49.4030 -20.1365 -9.7340 -56.8218 -45.3004

cash flow(Gauss) -0.0263 0.0334 -0.0189 -0.0536 -0.0370

% T-bill rate 5.34

Statistical Estimation 02/00

σ ν θ

1st IC 1.0068 0.7735 -0.0733

2nd IC 0.9349 0.5221 0.2016

3rd IC 0.9749 0.4946 0.1152

4th IC 0.9873 0.5800 -0.1337

5th IC 0.9807 0.2250 -0.4129

ticker mmm ba ibm jnj mcd

$ invest(VG) -399.85 519.24 -404.34 -165.83 478.91

$ invest(Gauss) 0.2450 -0.2746 0.6842 0.2727 0.2312

cash flow(VG) 8.4694 -9.2596 15.7342 0.5486 -62.4161

cash flow(Gauss) -0.0052 0.0049 -0.0266 -0.0009 -0.0301

% T-bill rate 5.57
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Statistical Estimation 03/00

σ ν θ

1st IC 0.9444 0.7653 0.0416

2nd IC 0.9774 0.5088 -0.1379

3rd IC 0.9893 0.6925 0.1093

4th IC 0.9436 0.5115 -0.1798

5th IC 0.9818 0.2284 0.3981

ticker mmm ba ibm jnj mcd

$ invest(VG) -240.16 -253.01 66.24 -596.09 -426.86

$ invest(Gauss) 0.2546 -0.2990 0.6767 0.3190 0.1760

cash flow(VG) -6.7108 16.6120 -1.0548 -13.6169 -60.1358

cash flow(Gauss) 0.0071 0.0196 -0.0108 0.0073 0.0248

% T-bill rate 5.72

Statistical Estimation 04/00

σ ν θ

1st IC 0.9458 0.7409 0.0382

2nd IC 0.9348 0.5080 0.2600

3rd IC 0.9915 0.4370 0.0830

4th IC 0.9815 0.5181 -0.1507

5th IC 0.9922 0.3018 -0.0699

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.1713 -0.1383 -0.2457 3.9910 -0.0806

$ invest(Gauss) 0.2288 -0.2256 0.6544 0.3659 0.3468

cash flow(VG) -4.0029 -11.3341 12.8763 324.3831 -4.5988

cash flow(Gauss) -0.0053 -0.0185 -0.0343 0.0297 0.0198

% T-bill rate 5.67
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Statistical Estimation 05/00

σ ν θ

1st IC 0.9476 0.7629 -0.0370

2nd IC 0.9388 0.5034 0.2441

3rd IC 0.9908 0.4233 0.0742

4th IC 0.9774 0.5981 0.1516

5th IC 0.9918 0.3321 -0.1152

ticker mmm ba ibm jnj mcd

$ invest(VG) -152.70 -166.69 -497.03 -955.85 -223.69

$ invest(Gauss) 0.1212 -0.2405 0.6736 0.3485 0.3140

cash flow(VG) 6.9980 -5.2766 -64.6177 -20.5675 37.2947

cash flow(Gauss) -0.0056 -0.0076 0.0876 0.0075 -0.0523

% T-bill rate 5.92

Statistical Estimation 06/00

σ ν θ

1st IC 0.9351 0.5372 -0.2783

2nd IC 0.9566 0.8558 -0.0187

3rd IC 0.9721 0.3763 0.1674

4th IC 0.9904 0.3295 -0.1215

5th IC 0.9852 0.5171 0.0806

ticker mmm ba ibm jnj mcd

$ invest(VG) -688.54 -168.54 -838.46 849.09 524.49

$ invest(Gauss) 0.0901 -0.2514 0.7479 0.3300 0.2247

cash flow(VG) -21.4080 -28.8709 85.0298 24.1077 -16.7687

cash flow(Gauss) 0.0028 -0.0431 -0.0758 0.0094 -0.0072

% T-bill rate 5.74
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Statistical Estimation 07/00

σ ν θ

1st IC 0.9468 0.5281 -0.2412

2nd IC 0.9554 0.8058 0.0253

3rd IC 0.9950 0.4118 0.0655

4th IC 0.9835 0.6187 -0.1241

5th IC 0.9950 0.3057 -0.1057

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.0774 1.2824 -0.0359 1.4153 0.5599

$ invest(Gauss) 0.0965 -0.1688 0.6858 0.3469 0.2224

cash flow(VG) 7.4422 -2.7316 -4.4043 50.6348 31.5273

cash flow(Gauss) 0.0093 0.0004 0.0841 0.0124 0.0125

% T-bill rate 6.14

Statistical Estimation 08/00

σ ν θ

1st IC 0.9594 0.8619 -0.0155

2nd IC 0.9501 0.5286 -0.2249

3rd IC 0.9952 0.4266 0.0622

4th IC 0.9833 0.5933 0.1334

5th IC 0.9956 0.2856 0.1193

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.1875 -0.5807 -1.6920 1.4459 -1.6701

$ invest(Gauss) 0.1373 -0.1806 0.6513 0.3891 0.2239

cash flow(VG) -22.7645 -136.8968 -1.4096 -71.2329 317.7448

cash flow(Gauss) -0.0167 -0.0426 0.0005 -0.0192 -0.0426

% T-bill rate 6.28

116



Statistical Estimation 09/00

σ ν θ

1st IC 0.9555 0.7593 -0.0257

2nd IC 0.9504 0.4949 0.2331

3rd IC 0.9726 0.5534 0.1775

4th IC 0.9935 0.4203 -0.0545

5th IC 0.9946 0.2863 -0.1287

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.5876 1.0522 -1.3068 0.0767 2.4601

$ invest(Gauss) 0.0333 -0.0650 0.6344 0.3103 0.1065

cash flow(VG) -53.0773 60.2865 115.4632 3.7011 133.6639

cash flow(Gauss) 0.0030 -0.0037 -0.0561 0.0150 0.0058

% T-bill rate 6.18

Statistical Estimation 10/00

σ ν θ

1st IC 0.9768 0.5658 0.1575

2nd IC 0.9780 0.6223 0.0539

3rd IC 0.9533 0.7041 0.0424

4th IC 0.9957 0.4272 0.0062

5th IC 0.9910 0.3036 0.1445

ticker mmm ba ibm jnj mcd

$ invest(VG) 657.80 -987.26 59.19 261.87 238.33

$ invest(Gauss) 0.0358 -0.0092 0.4481 0.3894 0.1761

cash flow(VG) 27.1933 -46.9369 -7.3843 -6.9297 35.1090

cash flow(Gauss) 0.0015 -0.0004 -0.0559 -0.0103 0.0259

% T-bill rate 6.29
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Statistical Estimation 11/00

σ ν θ

1st IC 0.9769 0.5503 -0.1680

2nd IC 0.9578 0.7300 0.0538

3rd IC 0.9816 0.5885 0.0388

4th IC 0.9691 0.3197 0.2352

5th IC 0.9928 0.3002 0.1255

ticker mmm ba ibm jnj mcd

$ invest(VG) -708.50 739.77 0.2357 606.81 -353.82

$ invest(Gauss) 0.0092 0.0372 0.3560 0.3537 0.2119

cash flow(VG) -131.5019 11.3902 -0.0287 23.8372 22.5860

cash flow(Gauss) 0.0017 0.0006 -0.0433 0.0139 -0.0135

% T-bill rate 6.36

Statistical Estimation 12/00

σ ν θ

1st IC 0.9766 0.5747 0.0170

2nd IC 0.9693 0.3501 0.0983

3rd IC 0.9825 0.5813 0.0348

4th IC 0.9874 0.2685 0.2315

5th IC 0.9855 0.4452 -0.0927

ticker mmm ba ibm jnj mcd

$ invest(VG) 150.95 281.64 -707.45 457.43 749.98

$ invest(Gauss) 0.1306 -0.0038 0.3295 0.4460 0.2288

cash flow(VG) -5.0566 -33.9400 -161.6828 -23.4025 68.4012

cash flow(Gauss) -0.0044 0.0005 0.0753 -0.0228 0.0209

% T-bill rate 5.94
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Statistical Estimation 01/01

σ ν θ

1st IC 0.9571 0.6513 0.0647

2nd IC 0.9821 0.5240 0.1143

3rd IC 0.9738 0.6483 0.0315

4th IC 0.9756 0.5055 0.2439

5th IC 0.9855 0.2473 -0.3220

ticker mmm ba ibm jnj mcd

$ invest(VG) 346.65 -238.71 -245.50 603.06 -278.14

$ invest(Gauss) 0.1441 -0.0902 0.4303 0.3306 0.3060

cash flow(VG) 11.8784 -10.5698 -14.3631 4.6864 40.9837

cash flow(Gauss) 0.0049 -0.0040 0.0252 0.0026 -0.0451

% T-bill rate 5.29

Statistical Estimation 02/01

σ ν θ

1st IC 0.9708 0.2868 -0.1104

2nd IC 0.9694 0.6221 0.0555

3rd IC 0.9866 0.4579 0.0939

4th IC 0.9826 0.5499 0.0469

5th IC 0.9885 0.3032 0.2048

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 1.1195 -0.0127 -0.0500 -2.8849 -0.4623

$ invest(Gauss) 0.1229 -0.0091 0.4539 0.3349 0.2253

cash flow(VG) -72.4531 1.1064 11.8306 125.6027 45.3285

cash flow(Gauss) -0.0080 0.0008 -0.1073 -0.0146 -0.0221

% T-bill rate 5.01
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Statistical Estimation 03/01

σ ν θ

1st IC 0.9619 0.6127 0.0600

2nd IC 0.9827 0.5081 0.1272

3rd IC 0.9734 0.6058 0.0215

4th IC 0.9798 0.4613 -0.2137

5th IC 0.9855 0.2486 -0.2961

ticker mmm ba ibm jnj mcd

$ invest(VG) 295.96 -259.83 -259.86 -930.34 278.28

$ invest(Gauss) 0.1482 -0.0354 0.4034 0.3295 0.1256

cash flow(VG) 30.5568 -25.5930 -76.0216 -17.4437 5.9258

cash flow(Gauss) 0.0153 -0.0035 0.1180 0.0062 0.0027

% T-bill rate 4.54

Statistical Estimation 04/01

σ ν θ

1st IC 0.9721 0.2585 -0.1679

2nd IC 0.9845 0.4377 -0.0946

3rd IC 0.9669 0.4771 0.0599

4th IC 0.9758 0.5756 -0.0192

5th IC 0.9876 0.3486 -0.1711

ticker mmm ba ibm jnj mcd

$ invest(VG) -17.31 532.16 -538.36 -957.41 -198.05

$ invest(Gauss) 0.1756 0.0087 0.4174 0.2759 0.1184

cash flow(VG) -1.1029 67.5252 -12.8733 -88.2804 -3.2051

cash flow(Gauss) 0.0112 0.0011 0.0100 0.0254 0.0019

% T-bill rate 3.97
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Statistical Estimation 05/01

σ ν θ

1st IC 0.9726 0.2715 -0.1538

2nd IC 0.9860 0.4604 0.0834

3rd IC 0.9765 0.5635 0.0061

4th IC 0.9662 0.4786 0.0363

5th IC 0.9875 0.3836 -0.1608

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -3.5007 0.4514 0.2520 1.3250 -1.5845

$ invest(Gauss) 0.1942 0.0217 0.4090 0.3684 0.1561

cash flow(VG) 87.3523 -44.6144 -6.3708 68.7891 -50.9861

cash flow(Gauss) -0.0048 -0.0021 -0.0103 0.0191 0.0050

% T-bill rate 3.70

Statistical Estimation 06/01

σ ν θ

1st IC 0.9759 0.4973 0.2412

2nd IC 0.9564 0.1535 0.4440

3rd IC 0.9761 0.5523 0.0231

4th IC 0.9879 0.3927 0.0856

5th IC 0.9640 0.5478 0.0678

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.1318 0.7468 0.1256 1.1697 0.4237

$ invest(Gauss) 0.1288 -0.0299 0.3674 0.4227 0.1854

cash flow(VG) 6.6458 -67.6298 -12.2245 16.7511 -15.4030

cash flow(Gauss) -0.0065 0.0027 -0.0358 0.0061 -0.0067

% T-bill rate 3.57

121



Statistical Estimation 07/01

σ ν θ

1st IC 0.9587 0.5782 0.0948

2nd IC 0.9734 0.6014 0.0300

3rd IC 0.9808 0.5237 -0.1518

4th IC 0.9952 0.3159 0.0141

5th IC 0.9874 0.3896 -0.1747

ticker mmm ba ibm jnj mcd

$ invest(VG) -81.16 -401.69 359.23 262.72 -464.39

$ invest(Gauss) 0.1605 -0.0908 0.2940 0.4862 0.1309

cash flow(VG) 4.4755 17.0982 1.4214 -2.1138 -11.4898

cash flow(Gauss) -0.0088 0.0039 0.0012 -0.0039 0.0032

% T-bill rate 3.59

Statistical Estimation 08/01

σ ν θ

1st IC 0.9732 0.6281 0.0260

2nd IC 0.9763 0.4562 -0.2463

3rd IC 0.9939 0.2296 -0.0687

4th IC 0.9862 0.4073 0.0919

5th IC 0.9634 0.5427 0.0478

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -2.2472 0.6435 -0.9126 1.5621 -0.1380

$ invest(Gauss) 0.1462 -0.1082 0.2982 0.5475 0.2029

cash flow(VG) 336.7749 -254.3927 88.0805 -43.3923 5.7885

cash flow(Gauss) -0.0219 0.0428 -0.0288 -0.0152 -0.0085

% T-bill rate 3.44
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Statistical Estimation 09/01

σ ν θ

1st IC 0.9740 0.6261 0.0075

2nd IC 0.9502 0.7378 -0.0174

3rd IC 0.9664 0.2359 0.3095

4th IC 0.9877 0.4499 0.1009

5th IC 0.9863 0.4112 -0.1701

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.8807 -3.3011 0.5592 0.1332 -1.3492

$ invest(Gauss) 0.0899 -0.2274 0.2996 0.5929 0.1867

cash flow(VG) 139.4116 -101.7648 63.7209 16.0659 -56.3906

cash flow(Gauss) 0.0142 -0.0070 0.0341 0.0715 0.0078

% T-bill rate 2.69

Statistical Estimation 10/01

σ ν θ

1st IC 0.9395 0.6017 0.0722

2nd IC 0.9859 0.4511 0.1582

3rd IC 0.9638 0.6171 -0.0062

4th IC 0.9918 0.2603 -0.0895

5th IC 0.9883 0.4264 0.0982

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.7207 -0.1664 0.0133 2.3163 0.1026

$ invest(Gauss) 0.1732 -0.2016 0.3805 0.6940 0.2256

cash flow(VG) 67.4199 -4.5570 1.0687 81.6898 -1.7943

cash flow(Gauss) 0.0162 -0.0055 0.0305 0.0245 -0.0039

% T-bill rate 2.20
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Statistical Estimation 11/01

σ ν θ

1st IC 0.9575 0.7013 0.0029

2nd IC 0.9945 0.3118 0.1240

3rd IC 0.9779 0.6516 -0.0239

4th IC 0.9856 0.4000 0.1784

5th IC 0.9887 0.4053 0.0536

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.0461 0.2344 0.1557 -0.5798 2.7775

$ invest(Gauss) 0.2258 -0.2248 0.3536 0.6322 0.2175

cash flow(VG) -1.4648 26.1773 10.1792 11.7509 -173.8142

cash flow(Gauss) 0.0072 -0.0251 0.0231 -0.0128 -0.0136

% T-bill rate 1.91

Statistical Estimation 12/01

σ ν θ

1st IC 0.9592 0.6944 0.0082

2nd IC 0.9737 0.6597 -0.0204

3rd IC 0.9833 0.5017 0.1416

4th IC 0.9891 0.4049 -0.1627

5th IC 0.9939 0.3432 0.1150

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.4012 -0.8317 1.7413 -5.1082 -1.7641

$ invest(Gauss) 0.3452 -0.1780 0.3908 0.5614 0.2063

cash flow(VG) 33.3628 -28.1381 -192.1211 150.8831 -40.4956

cash flow(Gauss) -0.0287 -0.0060 -0.0431 -0.0166 0.0047

% T-bill rate 1.72
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Statistical Estimation 01/02

σ ν θ

1st IC 0.9722 0.6672 0.0231

2nd IC 0.9567 0.6712 -0.0028

3rd IC 0.9846 0.5181 0.1245

4th IC 0.9874 0.4027 -0.1799

5th IC 0.9945 0.3624 0.1052

ticker mmm ba ibm jnj mcd

$ invest(VG) -400.18 -129.86 827.04 184.61 -519.05

$ invest(Gauss) 0.2588 -0.1263 0.3779 0.5171 0.2212

cash flow(VG) -44.5096 -16.4626 -79.4390 5.6059 -2.0592

cash flow(Gauss) 0.0288 -0.0160 -0.0363 0.0157 0.0009

% T-bill rate 1.68

Statistical Estimation 02/02

σ ν θ

1st IC 0.9866 0.7961 -0.0110

2nd IC 0.9695 0.2692 0.2688

3rd IC 0.9893 0.4595 -0.0789

4th IC 0.9866 0.3927 0.1913

5th IC 0.9787 0.6318 -0.0303

ticker mmm ba ibm jnj mcd

$ invest(VG) 204.05 599.58 -211.79 -27.64 -689.45

$ invest(Gauss) 0.2831 -0.1217 0.3272 0.4871 0.1484

cash flow(VG) -6.7502 10.5369 -9.5949 -2.2827 -5.8304

cash flow(Gauss) -0.0094 -0.0021 0.0148 0.0402 0.0013

% T-bill rate 1.76
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Statistical Estimation 03/02

σ ν θ

1st IC 0.9614 0.7049 0.0379

2nd IC 0.9732 0.6497 0.0046

3rd IC 0.9659 0.2648 0.2580

4th IC 0.9837 0.3735 0.2100

5th IC 0.9898 0.4376 -0.0658

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.0862 -0.2769 0.6867 0.4679 1.1865

$ invest(Gauss) 0.2377 -0.1104 0.3251 0.5286 0.1652

cash flow(VG) 7.4790 23.9721 -109.0739 -10.1830 46.6579

cash flow(Gauss) 0.0206 0.0096 -0.0516 -0.0115 0.0065

% T-bill rate 1.83

Statistical Estimation 04/02

σ ν θ

1st IC 0.9827 0.5755 -0.1731

2nd IC 0.9808 0.8022 0.0606

3rd IC 0.9572 0.6494 0.0074

4th IC 0.9845 0.4028 0.1802

5th IC 0.9945 0.4012 0.0616

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -2.2700 -0.2823 0.0186 -0.6843 0.5209

$ invest(Gauss) 0.2782 -0.1272 0.2005 0.5835 0.1140

cash flow(VG) -37.0408 -10.4176 -0.7665 20.3997 34.8350

cash flow(Gauss) 0.0045 -0.0047 -0.0083 -0.0174 0.0076

% T-bill rate 1.75
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Statistical Estimation 05/02

σ ν θ

1st IC 0.9764 0.7348 -0.0392

2nd IC 0.9577 0.6236 -0.0045

3rd IC 0.9713 0.3004 0.1891

4th IC 0.9861 0.3884 -0.1862

5th IC 0.9879 0.4612 -0.0857

ticker mmm ba ibm jnj mcd

$ invest(VG) 351.47 99.27 -309.18 -157.76 952.06

$ invest(Gauss) 0.3068 -0.0749 0.1837 0.5629 0.0820

cash flow(VG) -15.2033 -1.2427 54.4062 20.9277 -39.6325

cash flow(Gauss) -0.0133 0.0009 -0.0323 -0.0747 -0.0034

% T-bill rate 1.76

Statistical Estimation 06/02

σ ν θ

1st IC 0.9674 0.3735 -0.1779

2nd IC 0.9862 0.5004 -0.1135

3rd IC 0.9735 0.4880 -0.0980

4th IC 0.9772 0.6761 0.0334

5th IC 0.9810 0.3801 -0.2402

ticker mmm ba ibm jnj mcd

$ invest(VG) -329.52 280.89 -311.18 -112.72 225.23

$ invest(Gauss) 0.4089 -0.0905 0.1190 0.3823 0.0229

cash flow(VG) 7.6337 0.0689 -2.9563 9.9863 -56.1376

cash flow(Gauss) -0.0095 -0.0000 0.0011 -0.0339 -0.0057

% T-bill rate 1.73
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Statistical Estimation 07/02

σ ν θ

1st IC 0.9819 0.6323 -0.1609

2nd IC 0.9517 0.4344 -0.1614

3rd IC 0.9638 0.6134 -0.0271

4th IC 0.9829 0.4385 0.2248

5th IC 0.9750 0.5797 0.0101

ticker mmm ba ibm jnj mcd

$ invest(VG) -57.09 -345.82 -388.93 30.99 -46.46

$ invest(Gauss) 0.4463 0.0110 0.0314 0.2261 -0.1118

cash flow(VG) -3.5169 45.9025 -62.4230 3.9809 -4.8164

cash flow(Gauss) 0.0275 -0.0015 0.0050 0.0290 -0.0116

% T-bill rate 1.71

Statistical Estimation 08/02

σ ν θ

1st IC 0.9746 0.6581 0.0122

2nd IC 0.9815 0.6215 0.1610

3rd IC 0.9479 0.3968 0.2121

4th IC 0.9622 0.5420 0.0106

5th IC 0.9789 0.4080 -0.2703

ticker mmm ba ibm jnj mcd

$ invest(VG) -233.92 -274.91 -17.30 -212.97 -6.69

$ invest(Gauss) 0.5079 -0.0266 0.1332 0.3234 -0.0794

cash flow(VG) 13.7907 9.1534 125.3355 -21.8949 10.6011

cash flow(Gauss) 0.0596 -0.0015 0.0091 0.0231 -0.0122

% T-bill rate 1.65
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Statistical Estimation 09/02

σ ν θ

1st IC 0.9759 0.6738 -0.0200

2nd IC 0.9520 0.4145 -0.1224

3rd IC 0.9617 0.5292 -0.0006

4th IC 0.9837 0.5539 -0.1359

5th IC 0.9772 0.4028 0.2755

ticker mmm ba ibm jnj mcd

$ invest(VG) 97.13 -74.33 507.00 -275.73 143.29

$ invest(Gauss) 0.4201 0.0120 0.0367 0.2905 -0.1646

cash flow(VG) 13.7907 9.1534 125.3355 -21.8949 10.6011

cash flow(Gauss) 0.0596 -0.0015 0.0091 0.0231 -0.0122

% T-bill rate 1.66

Statistical Estimation 10/02

σ ν θ

1st IC 0.9721 0.6478 0.1801

2nd IC 0.9498 0.4065 -0.1793

3rd IC 0.9855 0.5395 -0.1237

4th IC 0.9749 0.6274 -0.0228

5th IC 0.9777 0.4031 0.2710

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.2249 2.1505 -0.6374 0.1926 1.0039

$ invest(Gauss) 0.4842 -0.1294 0.0343 0.3139 -0.2318

cash flow(VG) -4.7565 131.2729 -88.4831 5.4994 -16.3973

cash flow(Gauss) 0.0102 -0.0079 0.0048 0.0090 0.0038

% T-bill rate 1.61
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Statistical Estimation 11/02

σ ν θ

1st IC 0.9510 0.4469 0.1759

2nd IC 0.9786 0.6985 0.0132

3rd IC 0.9646 0.4726 0.0097

4th IC 0.9829 0.5641 -0.1088

5th IC 0.9784 0.4126 -0.2487

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -1.6224 9.5002 4.1960 0.5445 -0.3709

$ invest(Gauss) 0.4884 -0.1037 0.0416 0.3311 -0.2705

cash flow(VG) 93.5497 92.5669 -233.8221 -46.1194 62.8395

cash flow(Gauss) -0.0282 -0.0010 -0.0023 -0.0280 0.0458

% T-bill rate 1.25

Statistical Estimation 12/02

σ ν θ

1st IC 0.9502 0.4256 0.1803

2nd IC 0.9842 0.6371 0.0658

3rd IC 0.9744 0.7031 -0.0284

4th IC 0.9649 0.4218 0.1367

5th IC 0.9835 0.4528 0.1929

ticker mmm ba ibm jnj mcd

$ invest(VG) 607.60 321.80 30.42 -3.46 210.69

$ invest(Gauss) 0.5721 -0.0367 -0.0177 0.2337 -0.4280

cash flow(VG) 13.0422 -17.8119 -0.5102 0.0605 -9.0216

cash flow(Gauss) 0.0123 0.0020 0.0003 -0.0041 0.0183

% T-bill rate 1.21
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Statistical Estimation 01/03

σ ν θ

1st IC 0.9855 0.6179 -0.0635

2nd IC 0.9666 0.5004 -0.0715

3rd IC 0.9721 0.6072 0.0583

4th IC 0.9501 0.3510 0.2031

5th IC 0.9848 0.4659 0.1686

ticker mmm ba ibm jnj mcd

$ invest(VG) -517.07 742.40 34.10 340.45 188.65

$ invest(Gauss) 0.5819 -0.0856 0.0010 0.2119 -0.4426

cash flow(VG) -2.2185 -64.6024 0.0663 -4.3226 -22.3076

cash flow(Gauss) 0.0025 0.0075 0.0000 -0.0027 0.0523

% T-bill rate 1.19

Statistical Estimation 02/03

σ ν θ

1st IC 0.9874 0.5903 -0.0472

2nd IC 0.9664 0.4909 -0.0716

3rd IC 0.9716 0.6370 0.0397

4th IC 0.9495 0.3516 0.2165

5th IC 0.9843 0.4647 0.1666

ticker mmm ba ibm jnj mcd

$ invest(VG) -539.77 705.59 34.57 306.13 184.86

$ invest(Gauss) 0.6260 -0.1339 0.0171 0.1751 -0.5846

cash flow(VG) -25.3797 -45.5739 1.0511 22.3248 14.9466

cash flow(Gauss) 0.0294 0.0087 0.0005 0.0128 -0.0473

% T-bill rate 1.19
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Statistical Estimation 03/03

σ ν θ

1st IC 0.9706 0.7382 -0.0195

2nd IC 0.9525 0.4189 -0.1647

3rd IC 0.9636 0.4300 -0.1503

4th IC 0.9818 0.4732 0.1734

5th IC 0.9837 0.5709 0.0761

ticker mmm ba ibm jnj mcd

$ invest(VG) 237.89 -528.97 430.91 56.92 -32.06

$ invest(Gauss) 0.7063 -0.1690 0.0028 0.1673 -0.5184

cash flow(VG) -16.1689 -15.5000 11.8498 -0.5075 -3.5393

cash flow(Gauss) -0.0480 -0.0050 0.0001 -0.0015 -0.0572

% T-bill rate 1.15

Statistical Estimation 04/03

σ ν θ

1st IC 0.9539 0.3867 0.1627

2nd IC 0.9677 0.3836 -0.0769

3rd IC 0.9768 0.6610 -0.0326

4th IC 0.9827 0.4938 -0.1229

5th IC 0.9810 0.5992 0.1066

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.3951 0.3503 1.0382 -1.0656 0.1893

$ invest(Gauss) 0.5097 -0.2042 -0.0113 0.2215 -0.4213

cash flow(VG) -14.2382 36.7383 48.2191 49.5464 23.2808

cash flow(Gauss) 0.0184 -0.0214 -0.0005 -0.0103 -0.0518

% T-bill rate 1.15
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Statistical Estimation 05/03

σ ν θ

1st IC 0.9539 0.4424 -0.1342

2nd IC 0.9878 0.6447 -0.0315

3rd IC 0.9707 0.3924 0.0687

4th IC 0.9835 0.5243 -0.0996

5th IC 0.9749 0.6156 0.0013

ticker mmm ba ibm jnj mcd

$ invest(VG) 985.97 7.80 -27.32 363.00 803.62

$ invest(Gauss) 0.5286 -0.1466 -0.0383 0.1599 -0.3073

cash flow(VG) 24.0423 1.1704 1.6452 -6.7737 201.3197

cash flow(Gauss) 0.0129 -0.0220 0.0023 -0.0030 -0.0770

% T-bill rate 1.09

Statistical Estimation 06/03

σ ν θ

1st IC 0.9810 0.4371 0.0055

2nd IC 0.9824 0.6555 0.0894

3rd IC 0.9541 0.4125 0.1122

4th IC 0.9857 0.5389 0.0576

5th IC 0.9747 0.6219 0.0088

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.8592 0.0172 2.2416 -0.6504 -0.7319

$ invest(Gauss) 0.5909 -0.0962 -0.1281 0.0839 -0.2173

cash flow(VG) 79.7754 -0.8794 26.9750 3.5455 26.9801

cash flow(Gauss) 0.0549 0.0049 -0.0015 -0.0005 0.0080

% T-bill rate 0.94
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Statistical Estimation 07/03

σ ν θ

1st IC 0.9510 0.4561 -0.1227

2nd IC 0.9719 0.5607 0.1740

3rd IC 0.9734 0.6629 -0.0028

4th IC 0.9886 0.6924 0.0453

5th IC 0.9883 0.4351 0.1696

ticker mmm ba ibm jnj mcd

$ invest(VG) 61.93 -722.25 -31.72 234.30 -411.05

$ invest(Gauss) 0.6654 -0.1688 -0.0971 0.0991 -0.2640

cash flow(VG) 1.3944 -61.3367 0.5678 -11.0640 -14.2862

cash flow(Gauss) 0.0150 -0.0143 0.0017 -0.0047 -0.0092

% T-bill rate 0.92

Statistical Estimation 08/03

σ ν θ

1st IC 0.9510 0.4784 -0.1073

2nd IC 0.9882 0.7066 -0.0482

3rd IC 0.9707 0.5444 0.1742

4th IC 0.9738 0.7287 0.0055

5th IC 0.9753 0.3744 0.0594

ticker mmm ba ibm jnj mcd

$ invest(VG) 74.92 77.23 -679.40 -341.52 137.96

$ invest(Gauss) 0.6452 -0.0889 -0.1271 -0.0044 -0.2256

cash flow(VG) -1.2155 -2.4571 -61.1269 1.1171 10.6172

cash flow(Gauss) -0.0105 0.0028 -0.0114 0.0000 -0.0174

% T-bill rate 0.97
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Statistical Estimation 09/03

σ ν θ

1st IC 0.9692 0.4047 -0.0539

2nd IC 0.9512 0.4599 -0.0936

3rd IC 0.9864 0.6944 -0.0210

4th IC 0.9823 0.5885 -0.0364

5th IC 0.9828 0.6514 0.0383

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.9874 0.0080 -1.3523 1.3647 -0.1770

$ invest(Gauss) 0.6064 -0.1061 -0.0634 0.0644 -0.2363

cash flow(VG) 74.0468 0.4006 19.9509 22.4189 -0.3832

cash flow(Gauss) 0.0455 -0.0053 0.0009 0.0011 -0.0005

% T-bill rate 0.96

Statistical Estimation 10/03

σ ν θ

1st IC 0.9512 0.4766 0.0795

2nd IC 0.9590 0.7626 0.0846

3rd IC 0.9868 0.7383 0.0260

4th IC 0.9670 0.5342 0.2011

5th IC 0.9753 0.3685 0.0305

ticker mmm ba ibm jnj mcd

$ invest(VG) 405.73 -186.73 49.16 782.03 -169.82

$ invest(Gauss) 0.6748 -0.1109 -0.0030 -0.0433 -0.2117

cash flow(VG) 9.9123 -15.9050 0.3201 12.1588 -9.4962

cash flow(Gauss) 0.0165 -0.0094 -0.0000 -0.0007 -0.0118

% T-bill rate 0.94
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Statistical Estimation 11/03

σ ν θ

1st IC 0.9516 0.4794 -0.0768

2nd IC 0.9870 0.7493 -0.0098

3rd IC 1.0028 0.7810 -0.0770

4th IC 0.9692 0.4011 0.1125

5th IC 0.9818 0.6189 -0.0391

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -0.7121 -0.1391 -0.3764 -0.3954 1.1365

$ invest(Gauss) 0.6868 -0.0440 -0.0458 -0.0203 -0.2493

cash flow(VG) -64.6814 -10.9019 -17.3443 2.8264 13.2021

cash flow(Gauss) 0.0624 -0.0034 -0.0021 0.0001 -0.0029

% T-bill rate 0.95

Statistical Estimation 12/03

σ ν θ

1st IC 0.9511 0.5317 -0.0796

2nd IC 0.9735 0.6597 -0.0947

3rd IC 0.9768 0.9340 0.0230

4th IC 0.9750 0.3956 0.0739

5th IC 0.9824 0.6856 -0.0139

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -1.1087 1.1391 0.3775 -0.5918 0.1091

$ invest(Gauss) 0.6885 -0.0282 -0.0641 0.0368 -0.2189

cash flow(VG) 29.0052 12.8269 28.4598 -34.0580 -0.0834

cash flow(Gauss) -0.0180 -0.0003 -0.0048 0.0021 0.0002

% T-bill rate 0.91
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Statistical Estimation 01/04

σ ν θ

1st IC 0.9485 0.5265 -0.0749

2nd IC 0.9569 0.8490 0.0780

3rd IC 0.9902 0.8307 -0.0302

4th IC 0.9678 0.4248 -0.1047

5th IC 0.9804 0.6440 -0.0074

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.6557 -1.1604 -0.0209 0.3671 0.9850

$ invest(Gauss) 0.6982 -0.0713 -0.0590 0.1741 -0.1898

cash flow(VG) -28.6543 -41.5892 0.6791 5.1949 102.9030

cash flow(Gauss) -0.0305 -0.0026 0.0019 0.0025 -0.0198

% T-bill rate 0.90

Statistical Estimation 02/04

σ ν θ

1st IC 1.0274 1.1564 0.0279

2nd IC 0.9462 0.5264 0.0886

3rd IC 0.9879 0.7720 0.0081

4th IC 0.9698 0.4648 -0.0807

5th IC 0.9833 0.5918 -0.0253

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 0.6728 -1.1624 -0.0796 -1.1576 -1.1178

$ invest(Gauss) 0.6591 -0.0065 -0.0748 0.2922 -0.0116

cash flow(VG) 20.4522 109.6453 3.4834 83.5690 -19.5208

cash flow(Gauss) 0.0200 0.0006 0.0033 -0.0211 -0.0002

% T-bill rate 0.94
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Statistical Estimation 03/04

σ ν θ

1st IC 0.9412 0.4499 0.1591

2nd IC 0.9950 1.0816 0.0857

3rd IC 0.9872 0.7264 0.0266

4th IC 0.9694 0.4799 0.0528

5th IC 0.9817 0.5164 0.0041

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 1.6205 1.6682 0.2377 -0.0548 0.0346

$ invest(Gauss) 0.7580 -0.0668 -0.1626 0.3039 -0.0740

cash flow(VG) 133.3004 146.3336 -5.2179 -3.9926 -1.4014

cash flow(Gauss) 0.0624 -0.0059 0.0036 0.0222 0.0030

% T-bill rate 0.95

Statistical Estimation 04/04

σ ν θ

1st IC 0.9607 0.9400 0.0430

2nd IC 0.9407 0.4342 -0.1197

3rd IC 0.9651 0.5057 0.0358

4th IC 0.9833 0.5265 -0.0014

5th IC 0.9832 0.5698 -0.0703

ticker mmm ba ibm jnj mcd

$ invest(VG)×10
3 -5.1623 0.4588 0.6105 -2.0190 -0.3986

$ invest(Gauss) 0.9517 -0.0565 -0.1678 0.1678 -0.1729

cash flow(VG) 224.5537 17.3253 -10.9775 -63.8887 27.6037

cash flow(Gauss) -0.0414 -0.0021 0.0030 0.0053 0.0120

% T-bill rate 0.96
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Appendix A

Proofs of some results

A.1 Proof of Lemma 4.6

LetX1 andX2 be two independent VG processes. Then

Φln S1,lnS2
(u, v)

= E[e(iu ln S1+iv lnS2)]

= E[e(iu(m1t+B1X1(t)+B2X2(t)−ln B(t))+iv(m2 t+C1X1(t)+C2X2(t)−ln C(t)))]

= E[e(iu(m1t−ln B(t))+iv(m2t−ln C(t)))ei(uB1+vC1)X1(t)ei(uB2+vC2)X2(t)]

= e(iu(m1t−ln B(t))+iv(m2t−ln C(t)))E[ei(uB1+vC1)X1(t)]E[ei(uB2+vC2)X2(t)]

= ei(m1u+m2v)tB(t)−iuC(t)−ivφX1
(uB1 + vC1)φX2

(uB2 + vC2),

where

B(t) = E[exp(B1X1(t) +B2X2(t))]

= E[exp(B1X1(t))]E[exp(B2X2(t))]

= E[exp(i(−iB1)X1(t))]E[exp(i(−iB2)X2(t))]

= (1 − θ1ν1B1 −
σ1

2ν1

2
B1

2)
− t

ν1 (1 − θ2ν2B2 −
σ2

2ν2

2
B2

2)
− t

ν2 ,
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C(t) = E[exp(C1X1(t) + C2X2(t))]

= E[exp(C1X1(t))]E[exp(C2X2(t))]

= E[exp(i(−iC1)X1(t))]E[exp(i(−iC2)X2(t))]

= (1 − θ1ν1C1 −
σ1

2ν1

2
C1

2)
− t

ν1 (1 − θ2ν2C2 −
σ2

2ν2

2
C2

2)
− t

ν2 ,

φX1
(uB1 + vC1) = [1 − iθ1ν1(uB1 + vC1) +

σ1
2ν1

2
(uB1 + vC1)

2]
− t

ν1 ,

φX2
(uB2 + vC2) = [1 − iθ2ν2(uB2 + vC2) +

σ2
2ν2

2
(uB2 + vC2)

2]
− t

ν2 .

A.2 Proof of Proposition 4.7

Assume that

B(t) = E[exp(B1X1(t) +B2X2(t))]

C(t) = E[exp(C1X1(t) + C2X2(t))].

According to the definition of characteristic function, we calculateφln S1
(u) and

φlnS2
(v) as follows:

φlnS1
(u)

= E[eiu ln S1 ]

= e(iu(m1t−ln B(t)))E[eiuB1X1 ]E[eiuB2X2 ]

= eium1t · [1 − θ1ν1B1 −
σ1

2ν1

2
B1

2]
iut
ν1 · [1 − θ2ν2B2 −

σ2
2ν2

2
B2

2]
iut
ν2 ·

[1 − iθ1ν1(uB1) +
σ1

2ν1

2
(uB1)

2]
− t

ν1 ·

[1 − iθ2ν2(uB2) +
σ2

2ν2

2
(uB2)

2]
− t

ν2

= Φln S1,lnS2
(u, 0).
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Similarly,

φln S2
(v)

= E[eiv lnS2 ]

= e(iv(m2t−ln C(t)))E[eivC1X1 ]E[eivC2X2 ]

= eivm2t · [1 − θ1ν1C1 −
σ1

2ν1

2
C1

2]
ivt
ν1 · [1 − θ2ν2C2 −

σ2
2ν2

2
C2

2]
ivt
ν2 ·

[1 − iθ1ν1(vC1) +
σ1

2ν1

2
(vC1)

2]
− t

ν1 ·

[1 − iθ2ν2(vC2) +
σ2

2ν2

2
(vC2)

2]
− t

ν2

= Φln S1,ln S2
(0, v).

A.3 Proof of Proposition 4.11

X1(t) andX2(t) are two independent VG processes.

Let

B(t) = E[exp(B1X1(t) +B2X2(t))]

C(t) = E[exp(C1X1(t) + C2X2(t))].

The definitions of the variance oflnS1 and the variance oflnS2 are

V ar(lnS1) = E2(lnS1) − (E(lnS1))
2

V ar(lnS2) = E2(lnS2) − (E(lnS2))
2.

We calculate the above equations term by term. We first calculate the termE2(lnS1),

then we calculate the term(E(lnS1))
2, to get the variance oflnS1. The variance of

lnS2 is obtained using the same method.
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E2(lnS1) = E(m2
1t

2 +B2
1X

2
1 (t) +B2

2X
2
2 (t) + ln2B(t) +

2m1tB1X1(t) + 2m1tB2X2(t) − 2m1t lnB(t) +

2B1B2X1(t)X2(t) − 2B1X1(t) lnB(t) − 2B2X2 lnB(t))

= m2
1t

2 +B2
1E(X2

1 (t)) +B2
2E(X2

2 (t)) + ln2B(t) +

2m1tB1E(X1(t)) + 2m1tB2E(X2(t)) −

2m1t lnB(t) + 2B1B2E(X1(t)X2(t)) −

2B1E(X1(t)) lnB(t) − 2B2E(X2(t)) lnB(t)

= m2
1t

2 +B2
1(t

2θ2
1 + tθ2

1ν1 + tσ2
1) +B2

2(t
2θ2

2 + tθ2
2ν2 + tσ2

2) +

ln2B(t) + 2m1tB1θ1t+ 2m1tB2θ2t− 2m1t lnB(t) +

2B1B2θ1θ2t
2 − 2B1θ1t lnB(t) − 2B2θ2t lnB(t) (A.1)

(E(lnS1))
2 = (m1t+B1θ1t+B2θ2t− lnB(t))2

= m2
1t

2 +B2
1θ

2
1t

2 +B2
2θ

2
2t

2 + ln2B(t) +

2m1B1θ1t
2 +m1B2θ2t

2 − 2m1t lnB(t) +

2B1B2θ1θ2t
2 − 2B1θ1t lnB(t) − 2B2θ2t lnB(t). (A.2)

Hence,

V ar(lnS1) = E2(lnS1) − (E(lnS1))
2

= B2
1t(θ

2
1ν1 + σ2

1) +B2
2t(θ

2
2ν2 + σ2

2),

similar,

V ar(lnS2) = E2(lnS2) − (E(lnS2))
2

= C2
1 t(θ

2
1ν1 + σ2

1) + C2
2 t(θ

2
2ν2 + σ2

2).
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A.4 Proof of Proposition 4.12

Denote

B(t) = E[exp(B1X1(t) +B2X2(t))]

C(t) = E[exp(C1X1(t) + C2X2(t))].

Note that

Cov(lnS1, lnS2) = E(lnS1 lnS2) − E(lnS1)E(lnS2).

We calculate the above equation term by term. We first calculateE(lnS1 lnS2), then

we calculateE(lnS1)E(lnS2).

E(lnS1 lnS2) = E(m1m2t
2 +m2tB1X1(t) +m2tB2X2(t) +

m1tC1X1(t) +m1tC2X2(t) −

m2t lnB(t) −m1t lnC(t) +

B1C1X
2
1 (t) +B2C2X

2
2 (t) +

B1C2X1(t)X2(t) +B2C1X1(t)X2(t) −

B1X1(t) lnC(t) −B2X2(t) lnC(t) −

C1X1(t) lnB(t) − C2X2(t) lnB(t) + lnB(t) lnC(t))

= m1m2t
2 +m2tB1θ1t+m2tB2θ2t−m2t lnB(t) +

m1tC1θ1t+m1tC2θ2t−m1t lnC(t) +

B1C1(t
2θ2

1 + tθ2
1ν1 + tσ2

1) +B2C2(t
2θ2

2 + tθ2
2ν2 + tσ2

2) +

B1C2(θ1θ2t
2) +B2C1(θ1θ2t

2) −

B1θ1t lnC(t) − B2θ2t lnC(t) − C1θ1t lnB(t) −

C2θ2t lnB(t) + lnB(t) lnC(t), (A.3)
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E(lnS1)E(lnS2) = (m1t+B1θ1t+B2θ2t− lnB(t)) ·

(m2t+ C1θ1t+ C2θ2t− lnC(t))

= m1m2t
2 +m2B1θ1t

2 +m2B2θ2t
2 −m2t lnB(t) +

m1C1θ1t
2 +m1C2θ2t

2 −m1t lnC(t) +

B1C1θ
2
1t

2 +B2C2θ
2
2t

2 +B1C2θ1θ2t
2 +B2C1θ1θ2t

2 −

B1θ1t lnC(t) − B2θ2t lnC(t) − C1θ1t lnB(t) −

C2θ2t lnB(t) + lnB(t) lnC(t).

Hence,

Cov(lnS1, lnS2) = E(lnS1 lnS2) − E(lnS1)E(lnS2)

= B1C1t(θ
2
1ν1 + σ2

1) +B2C2t(θ
2
2ν2 + σ2

2).
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Appendix B

Summary of the ICs

B.1 Summary of the ICs for the ten stock portfolio

Statistical Estimation 1st IC

σ ν θ

mean 0.9536 0.9589 0.0267

standard deviation 0.0918 1.0040 0.1457

minimum 0.6919 0.1817 -0.3180

maximum 1.2941 4.3327 0.4709

Statistical Estimation 2nd IC

σ ν θ

mean 0.9441 0.5801 0.0072

standard deviation 0.0313 0.2575 0.1397

minimum 0.8202 0.1573 -0.3278

maximum 1.0832 2.2201 0.2927
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Statistical Estimation 3rd IC

σ ν θ

mean 0.9551 0.5397 -0.0129

standard deviation 0.0253 0.1792 0.1487

minimum 0.8687 0.1351 -0.4299

maximum 1.0193 1.4800 0.4654

Statistical Estimation 4th IC

σ ν θ

mean 0.9608 0.5349 0.0005

standard deviation 0.0234 0.1464 0.1464

minimum 0.8782 0.1511 -0.4262

maximum 0.9936 0.9730 0.3313

Statistical Estimation 5th IC

σ ν θ

mean 0.9744 0.5017 0.0008

standard deviation 0.0176 0.1662 0.1625

minimum 0.8916 0.1692 -0.4142

maximum 0.9957 1.2870 0.4178

Statistical Estimation 6th IC

σ ν θ

mean 0.9795 0.4449 -0.0015

standard deviation 0.0148 0.1320 0.1771

minimum 0.9323 0.1040 -0.5119

maximum 0.9981 0.7839 0.4302
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Statistical Estimation 7th IC

σ ν θ

mean 0.9847 0.4644 -0.0114

standard deviation 0.0121 0.1479 0.1726

minimum 0.9431 0.2356 -0.4819

maximum 1.0031 0.9420 0.4377

Statistical Estimation 8th IC

σ ν θ

mean 0.9893 0.3833 0.0035

standard deviation 0.0086 0.1180 0.1905

minimum 0.9587 0.1882 -0.4882

maximum 1.0042 0.7215 0.5514

Statistical Estimation 9th IC

σ ν θ

mean 0.9926 0.3769 0.0211

standard deviation 0.0077 0.1207 0.1755

minimum 0.9594 0.1171 -0.3997

maximum 1.0066 0.7199 0.5339

Statistical Estimation 10th IC

σ ν θ

mean 0.9940 0.3317 0.0190

standard deviation 0.0061 0.1007 0.2046

minimum 0.9737 0.1525 -0.4104

maximum 1.0041 0.6409 0.4736
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B.2 Summary of the ICs for the twenty stock portfolio

Statistical Estimation 1st IC

σ ν θ

mean 0.8529 0.5696 0.0186

standard deviation 0.0985 0.4999 0.1710

minimum 0.4577 0.1667 -0.4093

maximum 1.1271 4.3020 0.3856

Statistical Estimation 2nd IC

σ ν θ

mean 0.9112 0.5790 0.0360

standard deviation 0.0584 0.4863 0.1627

minimum 0.7239 0.1530 -0.3214

maximum 1.1879 3.6313 0.6654

Statistical Estimation 3rd IC

σ ν θ

mean 0.9251 0.5911 -0.0086

standard deviation 0.0417 0.4828 0.1745

minimum 0.7941 0.1280 -0.3846

maximum 1.1488 3.5823 0.7255
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Statistical Estimation 4th IC

σ ν θ

mean 0.9318 0.4954 -0.0021

standard deviation 0.0356 0.2043 0.1440

minimum 0.8000 0.1283 -0.3116

maximum 0.9911 1.2827 0.3706

Statistical Estimation 5th IC

σ ν θ

mean 0.9465 0.5207 0.0063

standard deviation 0.0539 0.2798 0.1506

minimum 0.8385 0.1372 -0.3860

maximum 1.4760 2.0024 0.3770

Statistical Estimation 6th IC

σ ν θ

mean 0.9484 0.5182 0.0020

standard deviation 0.0249 0.3273 0.1380

minimum 0.8387 0.1174 -0.3228

maximum 1.0315 2.7857 0.3476
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Statistical Estimation 7th IC

σ ν θ

mean 0.9561 0.5112 -0.0068

standard deviation 0.0378 0.3829 0.1446

minimum 0.8730 0.1796 -0.5975

maximum 1.2522 3.4784 0.2912

Statistical Estimation 8th IC

σ ν θ

mean 0.9562 0.4869 0.0224

standard deviation 0.0487 0.2601 0.1712

minimum 0.8625 0.1555 -0.5710

maximum 1.4399 2.6289 0.5990

Statistical Estimation 9th IC

σ ν θ

mean 0.9637 0.5150 -0.0036

standard deviation 0.0317 0.3257 0.1607

minimum 0.8797 0.1614 -0.4516

maximum 1.2173 3.2210 0.3733
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Statistical Estimation 10th IC

σ ν θ

mean 0.9682 0.4662 0.0013

standard deviation 0.0163 0.1504 0.1329

minimum 0.9151 0.1269 -0.3277

maximum 0.9952 0.8334 0.3439

Statistical Estimation 11th IC

σ ν θ

mean 0.9735 0.4480 -0.0190

standard deviation 0.0167 0.1748 0.1834

minimum 0.9166 0.1483 -0.6892

maximum 0.9975 1.3679 0.4830

Statistical Estimation 12th IC

σ ν θ

mean 0.9749 0.4400 -0.0124

standard deviation 0.0163 0.1619 0.1830

minimum 0.9290 0.0623 -0.5340

maximum 0.9975 0.9178 0.5830
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Statistical Estimation 13th IC

σ ν θ

mean 0.9833 0.4325 -0.0183

standard deviation 0.0123 0.1334 0.1607

minimum 0.9446 0.1017 -0.4703

maximum 0.9982 0.7997 0.4769

Statistical Estimation 14th IC

σ ν θ

mean 0.9859 0.4193 0.0068

standard deviation 0.0136 0.1254 0.1530

minimum 0.9303 0.1254 -0.6305

maximum 1.0010 0.7448 0.4425

Statistical Estimation 15th IC

σ ν θ

mean 0.9878 0.3901 0.0103

standard deviation 0.0111 0.1197 0.1921

minimum 0.9423 0.1291 -0.6446

maximum 1.0040 0.7392 0.6230
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Statistical Estimation 16th IC

σ ν θ

mean 0.9911 0.3625 0.0022

standard deviation 0.0090 0.1188 0.1946

minimum 0.9382 0.1313 -0.8125

maximum 1.0026 0.8130 0.4107

Statistical Estimation 17th IC

σ ν θ

mean 0.9922 0.3384 -0.0043

standard deviation 0.0081 0.1062 0.1921

minimum 0.9492 0.1550 -0.6747

maximum 1.0039 0.6938 0.4749

Statistical Estimation 18th IC

σ ν θ

mean 0.9942 0.2922 -0.0101

standard deviation 0.0075 0.0876 0.1754

minimum 0.9559 0.0977 -0.5490

maximum 1.0039 0.6450 0.4873
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Statistical Estimation 19th IC

σ ν θ

mean 0.9961 0.2406 -0.0128

standard deviation 0.0055 0.0984 0.1970

minimum 0.9520 0.0382 -0.4711

maximum 1.0039 0.5366 1.0925

Statistical Estimation 20th IC

σ ν θ

mean 0.9959 0.1585 0.0240

standard deviation 0.0082 0.0837 0.3192

minimum 0.9412 0.0000 -0.7904

maximum 1.0025 0.5296 1.9422
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