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ABSTRACT

The (optimal) design of many engineering systems can be adequately recast as a Markov
decision process, where requirements on system performance are captured in the form of
constraints. In this paper, various optimality results for constrained Markov decision processes
are briefly reviewed; the corresponding implementation issues are discussed and shown to
lead to several problems of parameter estimation. Simple situations where such constrained
problems naturally arise, are presented in the context of queueing systems, in order to illustrate

various points of the theory. In each case, the structure of the optimal policy is exhibited.

I. INTRODUCTION

Controlled queueing systems constitute a natural class of models for a variety of engineer-
ing applications, such as the ones arising in computer communication networks and in manu-
facturing environments [9,10,23]. The theory of Markov decision processes (MDP’s) provides
one of the main tools to analyze performance optimality for many such stochastic systems. In
recent years, these methods were successfully used on several simple queueing systems, to ob-

tain an explicit form for the optimal control strategy [8,12,25,31]. The model considered here
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is one operating in discrete time; this reflects the increasing use of digital implementation in
many of today’s systems; moreover, under standard assumptions the analysis of some classes
of continuous-time MDP’s reduces to the analysis of an embedded discrete-time MDP [16,27].
A large body of knowledge is available in the literature on this class of problems, ranging from
optimality conditions to structural properties of the optimal strategies to algorithmic results.
The discussion is typically carried out under the assumption that system performance may
be captured through a single cost criterion based on an instantaneous cost which depends on
the state, the control action and perhaps time. Standard performance measures include the
finite-horizon criterion, as well as the discounted and long-run average costs, both being taken

over the infinite horizon.

However, in many practical situations, conflicting goals need to be taken into considera-
tion, a requirement that often cannot be adequately captured through a single cost function.
Typical examples arise in computer communication applications where it may be desirable to
maximize throughput, while keeping delays small, or in manufacturing systems where resources
are allocated so as to maximize the so-called line throughput and yet prevent inventories to
build-up.

Such trade-off considerations require that the standard formulation for MDP’s be modified
so as to accomodate the conflicting objectives. One possible way to achieve this would be to
define several cost functions, one for each objective identified by the designer, and to focus
attention on the corresponding multi-objective optimization problem. Here instead, conflicting
requirements inherent to the (optimal) design problem at hand are incorporated through
constraints. Such an approach was considered by Ross [26] in the context of finite-state
MDP’s under an objective criterion and a constraint function, each being given in the form of
a long-run average functional asociated with an instantaneous cost, and the goal is to maximize
the first criterion subject to a bound on the constraint. As will become apparent from the
discussion given in forthcoming sections, constrained MDP’s form a rich class of stochastic
optimization problems whose solution leads to a variety of interesting questions of both a

theoretical and practical nature.

This paper, which is devoted to a brief survey of recent work in this area, is organized
as follows: In Section 2, the single constraint optimization problem is precisely formulated, a

solution technique via Lagrangian arguments is then outlined and general results on the struc-
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ture of optimal policies are summarized. Extensions to more complex (i. e., non-Markovian)
dynamics as well as to the more difficult situation where several constraints are enforced, are
briefly considered in Section 3. Also discussed in Section 3 are various implementation issues
which are inherent to the very form of the optimal policies identified in Section 2, and which
lead naturally to specific problems of combined estimation and control for Markov chains.
Most of the literature on this topic [11] is concerned with indirect adaptive control problems
[7]. For constrained MDP’s, the situation is somewhat different in that some control param-
eters may not be available to the decision-maker in practice, even if the model parameters
were known. This suggests viewing the design of implementable constrained optimal policies
as a direct adaptive control problem [7]. The various ideas and proposals of Section 3 are
illustrated in two specific situations of independent interest, which are discussed in Sections
4 and 5, respectively. The first situation centers around a problem of resource sharing, where
several discrete-time queues with geometric service requirements compete for the service at-
tention of a stngle server. The second example is essentially a problem of optimal flow control
for a discrete-time M|M|1 queue.
2. MDP’S WITH A SINGLE CONSTRAINT
2.1 The problem formulation

In [26], Ross considers the following version of the constrained optimization problem for
Markov chains: Let {X(n)}{° denote a controlled Markov chain, with countable state space
S, compact metric action space U and transition probabilities (pzy(u)) assumed continuvous in
u. Following the usual formulation of MDP’s as given in [13], an admissible policy m generates
at time n an action U(n) on the basis of the information H(n) := (X(1),U(1),:+-,X(n —
1),U(n — 1),X(n)). For a given initial state distribution (held fixed hereafter), the policy =
induces a probability measure P™ on the natural o-field that equips the canonical sample space
0 := (S x U)*, with corresponding expectation operator E™. The notation P is reserved for
the collection of all admissible policies. The class of (possibly randomized) Markov stationary
policies is then denoted by 7, while § stands for the subclass of all non-randomized policies
in 7. Clearly g C ¥ C P.

Given are two mappings r,¢: S X U — IR, which are assumed continuous in the variable
u and which are interpreted as the instantaneous reward and cost functions, respectively. For

every admissible policy 7 in P, pose



n

J(r) := lim,, %E” > r(x(,U () (2.1)
and
K(r) == Tm, %E > e(x(),U (), (2.2)

and for every V in IR, define
Pri={rin P: K(n)<V}. (2.3)
Of interest here is the constrained problem (CPy) defined as

(CPy): maximize J(r) over Py.

2.2 A Lagrangian methodology

A Lagrangian methodology is now described for studying this constrained problem; it

requires the introduction of a family of auxiliary problems: For every v > 0, let the mapping
b7:S x U — IR be given by

b7 (z,u) := r(z,u) — ve(z,u) (2.4)
for all (z,u) in S X U, and define the corresponding Lagrangian functional by
1 n
B"(r) := lim,, ~E" ;b”(X(t),U(t)) (2.5)

for every policy m in P. As it occurs in Mathematical Programming, the solution of the
constrained MDP (CPy) is closely related to various properties of the unconstrained MDP
(LP,) associated with (2.5), where

(LP,): maximize B7(w) over P.

To see this, observe that for any policy 7 in P, the inequality BY(x) > J(w) — vK(w)
holds, whereas if the policy 7 yields (2.1) and (2.2) as limits, then BY(r) = J(w) — vK (7). If,
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in addition to this property, a policy m* meets the constraint, i. e., K(r*) =V, and is optimal

for the MDP (LP,), then necessarily for all = in P,
BY(r*) = J(n*) —yK(x*) > B?(r) > J(x) — vK(x). (2.6)

Since K(w) <V for any policy  in Py, the inequality (2.6) and the fact v > 0 readily imply
that
J(r*) = J(r) + 4[K(n*) = K(r)] = I (r) +2(V — K(7)) = J(m) (2.7)

for every policy 7 in Py, whence the policy n* solves the constrained optimization problem
(CPy).

From this discussion, it should be clear to the reader in what sense the Lagrangian prob-
lems {(LP,),y > 0} are useful for solving the original constrained problem. Indeed, as the
arguments given above indicate, any policy #* in P which

(R1): yields the expressions J(7*) and K (n*) as limits,

(R2): meets the constraint with K(r*) =V, and

(R3): solves the unconstrained MDP (LP,) for some v > 0,
necessarily solves the constrained problem (CPy). This approach can be used either directly
on specific problems mutatis mutandis, as illustrated in Sections 4 and 5, or it can provide a
convenient theoretical framework for establishing general results on the existence and struc-
tural form of solutions to the constrained optimization problem.

To simplify the discussion, it is convenient to assume that S is finite and that the controlled
chain has a single ergodic class under each policy f in . In that case, under any policy f
in 7, the expressions (2.1), (2.2) and (2.5) exist as limits and are independent of the initial
condition. Moreover, it is well known that an optimal policy for problem (LP,) can always
be selected to be a pure strategy in §. This follows by standard arguments based on the
corresponding Dynamic Programming equation (2.8), which states here that for all z in S, the

relation

BY + R (z) = szg}c[b"(m, u) + Z Py ()R (¥)] (2.8)

yeS

holds for some real constant B and some mapping h7: S — IR. Their existence is guaranteed

under the assumed conditions [13], with B” identified with the optimal value of problem (LP,).
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It is also well known that if 7 denotes the class of policies g7 in § with the property that
for each z in S, the action » = ¢g7(z) attains the maximum in the Dynamic Programming
equation (2.8), then any policy in §” is optimal for the problem (LP,).

2.3 Optimality via randomized policies

In [26], it is shown under the simplifying assumptions stated earlier, that whenever the

problem is “feasible”, there exists a constrained optimal policy with a simple structure.

Theorem [26]: If for some 0 < v < oo, at least one policy g7 in GV has the property
that K(g7) < V, then there exists a constrained optimal policy f* in ¥ defined by a simple

randomization between two pure Markov stationary policies g and g in §.
More precisely, there exist 0 < 4* < oo, and policies g and g in G such that
K(g) <V < K(g). (2.9)

If the randomsized policies f;,0 < g < 1, are defined by
fei=q7+ (1 - q)g, (2.10)
then f* = fg+, where the optimal bias ¢* is determined as the solution to the equation
K(f)=V, 0<q<L. (2.11)

The discussion of this result can be summarized as the search for a policy in ¥ that
satisfies the requirements (R1)-(R3) for some value 4* > 0 of the Lagrangian parameter. The
reader is referred to [26] for details.

2.4 Optimality via mixing policies

The existence of policies g and g in 7" with the property (2.9) can be further exploited
to generate an alternate solution to the constrained MDP (CPy) in the one-parameter family
of mizing policies {m(p),0 < p < 1}. For every p in the unit interval [0, 1], consider a two-sided
coin biased so that the events Head and Tail occur with probability » and 1 — p, respectively.
To define the mixing policy m(p), throw this biased coin exactly once at the beginning of
times, before starting to operate the system. The policy 7 (p) is defined as the policy in P that
operates according to g (resp. g) if the outcome is Tail (resp. Head). It is not difficult to see

that for such a policy, the relations
J(r(p)) = (1 - p)J(g) + pJ(3) (2.120)
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and

K(n(p)) = (1~ p)K(g) +pK(9) (2.12b)

hold true.

Now, under the non-degeneracy assumption K (g) # K(g), pose p* := [V — K(g)]/[K(7) -
K(g)] > 0, (owing to (2.9)). Observe from (2.12) that the policy m(p*) steers (2.2) to the
value V, yields (2.1) and (2.2) as limits and that BY" (n(p)) = (1—p)B" (¢) +pB" (7) = B".
In other words, the policy m(p*) meets the requirements (R1)-(R3), and consequently solves
the constrained problem (CPy). It should be noted, in contrast with the policy f* obtained
by randomization in Section 2.3, that the evaluation of the optimal mixing parameter p* is

immediate, if the values K(g) and K (g) are available.
3. MORE ON CONSTRAINED OPTIMIZATION
3.1 Generalizations

It is possible to generalize the discussion of Section 2 in several directions:

Firstly, it is of interest to consider system dynamics where more complex probabilistic
mechanisms are allowed for state transitions and/or where the state processes live in more
general spaces. Beutler and Ross [4] consider a version of (CPy) for general semi-Markov
decision processes with finite state space and compact action space. Nain and Ross [21] study
a specific constrained MDP with countable (non-finite) state space. In both cases, similar
results on the structure of the constrained optimal policy are reported. However, more work
seems needed as no general theory is available to date in the case of non-finite state spaces.

Secondly, as pointed out in the introduction, the main practical motivation for studying
constrained optimization problems arises from the desire to handle situations with multiple
(conflicting) objectives. The next natural step would consist in formulating constrained MDP’s
with multiple constraints as a nonlinear programming problem in the space of policies. More
precisely, with the notation of Section 2, let J(m) be the cost associated with the policy x in
P, and let K*(w) denote the corresponding value of the i** constraint, 1 < ¢ < I. For every

vector V = (Vi,-++,V1) in IR', pose
Pri={rin P: K*(r) < V;,1<i<I} (3.1)

and define the multiple constraint problem (C'Py) as in Section 2. Very little is known on the

existence and structure of optimal solutions for problems of this type. This probably could
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be traced back to the fact that the relationship of the corresponding Lagrangian problem to
the original problem (CPy) is far more subtle in the multiple constraint situation. In fact,
as of the writing of this paper, it is not clear on how to obtain in general an optimal policy
through randomization and/or mixing procedures similar to the ones presented in Section 2.
Results are available only in particular instances; Altman and Shwartz [1] establish existence

of a solution to a problem with multiple constraints for the competing queue model considered

by Nain and Ross [21].
3.2 Implementation issues

Even if the policies g and g, and the value v* were readily available, the computation
of the optimal bias ¢* may prove to be a non-trivial task, for it requires solving for ¢ in the
implicit equation K(f;) = V on the interval [0,1], and makes it necessary to evaluate the
expression K (f;) for each 0 < ¢ < 1. Both steps usually turn out to be highly difficult ones in
many applications, and are often possible only via numerical methods; this difficulty is clearly

illustrated on the competing queue model discussed in Section 4.

The optimal bias ¢* acts as an tnternal parameter; it is available in principle if the ezternal
(or model) parameters (i. e., the entries in the transition matrix) are known, but may not
be easily available in practice owing to computational difficulties. Of course, this difficulty of
implementation is further compounded when some of the external parameters are not known,
since “on line” identification of the external parameters does not provide a feasible means
to evaluate ¢*. In any case, this points to adaptive methods for directly estimating ¢*, now
treated as an unknown parameter, and this specifically for the purpose of generating an optimal
control; in the terminology of adaptive systems, this is referred to as direct adaptive control
[7]. This suggests broadening the notion of adaptive control for Markov chains to view it as
a procedure for recursively updating the control to meet the performance criterion. Although
this is a well-known problem in the general theory of adaptive systems, it seems to have not

been studied much in the context of MDP’s, at least to the authors’ knowledge.

The reader’s attention should be drawn to the fact that direct adaptive control ideas, with
q* regarded as an unknown parameter, do not always lead to implementable policies. This
was illustrated by Shwartz and Makowski [28,30] on the competing queue problem of Section
4.



The implementation issues discussed above can be addressed in the somewhat more gen-
eral context of steering the cost (2.2) to a prespecified value V: Given is a parametrized family
{f4,0 < g < 1} of Markov stationary policies, and assume, with the notation g = fo and
7 = f1, that K(g) <V < K(g). The problem is then to find a policy f* in the parametrized
family {f;,0 < ¢ < 1} that steers the cost (2.2) to the value V, i. e., K(f*) = V. If the map-
ping ¢ — K (f,) is continuous, this can be achieved by selecting f* to be f,+, with the bias ¢*
being determined as the solution to the equation K(f,) =V, 0 < ¢ < 1. Although most of
the ideas discussed in this paper apply mutatis mutandis to this more general situation, the

discussion will be carried out only in the context of constrained MDP’s for sake of clarity.
3.3 A time-sharing implementation

Although the optimal mixing policy 7(p*) of Section 2.4 has a very simple structure,
it is not stationary and ergodic. Indeed, under such a policy w(p*), the sample averages
corresponding to K (m(p*)) do not satisfy the constraint since on a set of probability p* (resp.
1 — p*), these limits will be K(g) (resp. K(g)). This somewhat unappealing feature can be
eliminated through the following time-sharing implementation of mixing policies. Assume the
existence of a privileged state to which the system returns to infinitely often under each one
of the policies g and g, and define a cycle as the time T between consecutive visits to that
state. Denote the expectation of a cycle duration under policies g and § by EZ(T') and E9(T)
, respectively. For every p in the unit interval [0, 1], the mixing policy m(p) has a time-sharing
implementation ars(p) which is now defined: Let p be the element of [0, 1] uniquely defined
through the relation

_ pE?(T)
T - HELT) + 5E9(T)

(3.2)

and consider two sequences of non-negative integers {n;}$° and {7;}° with the property that

. . mlJ) .
= = 3.3
limyn(J) =00 and llmJn(J) Dy (3.3)
where the notations
J J
n(J) = Zﬁj, n(J) = Zﬁj and n(J):=n(J)+7(J) (3.4)
j=1 =1
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are used for every J in IN. The discrete-time axis is divided into contiguous control frames;
the (J + 1)"** such control frame starts upon completion of the n(J)** cycle and is made up
of ny,; +7%s41 cycles. The policy aTs(p) is defined as the policy in P that during the Jt*
frame operates policy g for n; cycles, and then policy g for @ cycles, J = 1,2,---. Under the
condition (3.3), well-known properties of first return times for Markov chains readily imply
that

Hans(p) = DTS B EEE) — stato) (350

and

Kons(s) = AT AT IR0 (et (5.5)

where the second equality is justified through (2.12) by the definition of §. In fact, the
convergence (3.5) takes place for the sample averages as well. Note that if § were rational,

_n_

n+n

say of the form p = for some integers n and %, then the conditions (3.3) would be

automatically satisfied upon choosing n; =n and n; =7 for all 7 in IN.

The reader will readily see that the time-sharing implementation arg(p*) of the optimal

mixing policy m(p*), satisfies the requirements (R1)-(R3) and thus solves the constrained

problem (CPy).

In Section 4, this approach is shown to be useful for identifying a solution to a multiple

constraint problem.
3.4 A Certainty Equivalence implementation

A possible solution to the difficulties mentioned in Section 3.2 would be to estimate
directly the optimal bias ¢* and then use the Certainty Equivalence Principle at each step.
More precisely, this suggests using a possibly recursive estimation scheme that generates a
sequence of bias values {q(n)}{° converging to ¢*. At step n, the RV g¢(n) constitutes an
estimate of the bias value ¢*, which is thus interpreted as the (conditional) probability of
using g (given available information H(n)), and it is thus natural to select the control action
U(n) according to fy(n); the adaptive policy so generated by the sequence {q(n))}$° is denoted
by «.

There are as many such adaptive schemes as there are schemes for estimating the optimal

10



bias value ¢*. In each specific case, optimality of the adaptive policy a will be concluded if it
can be established that policy «

(A1): yields (2.1) and (2.2) as limits,

(A2): meets the constraint, i. e., K(a) =V, and

(A3): yields the same cost as f*, i. e., J(a) = J(f*).

This is done via a separate analysis and typically proceeds by showing that

limp|fo(m) (X (n)) - f*(X(n))| =0, (3:6)

the convergence taking place under P either almost surely or in probability, a property which
readily follows from the (weak) consistency of the estimation scheme. Under (3.6) and possibly
additional structural model assumptions, a method of proof due to Mandl [19] can be extended
to show that J(a) = J(f*) and K(a) = K(f*). Examples of this approach are given in

Sections 4 and 5.
At this point, the reader may wonder as to how such an estimation scheme is selected.

(1): Sometimes, it is feasible to compute the optimal bias ¢* as a function ¢*(f) of the
external parameters 6. In that case, the designer may want to consider using the Certainty
Equivalence Principle in conjunction with a parameter estimation scheme, say based on the
Mazimum Likelihood Principle. This approach is illustrated in Section 5 on a problem of flow

control.

(ii): In many applications, the function ¢ — K (f,) turns out to be continuous and strictly
monotone, say increasing for sake of definiteness. In that case, the search for ¢* can be
interpreted as finding the zero of the continuous, strictly monotone function K(f;) — V and
this brings to mind ideas from the theory of Stochastic Approzimations [24]. Here, this circle

of ideas suggests generating a sequence of bias values {g(n)}$° through the recursion

gn+1)=[ ¢(n) + an(V — ¢(X(n+1),U(n + 1))) ](1) n=1,2,.--(3.7)

with ¢(1) given in [0,1]. Here [z]{ :=0V (z A1) for all z in IR and the sequence of step sizes
{an}{° satisfies

00 oo
0<anl0,2an=oo,z|an+1—an|<oo. (3.8)

n=1 n=1
.
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The corresponding policy aga is structurally simple and easy to implement on-line; this sim-
plicity of implementation is derived from the fact that the difficult step of directly solving for

*

¢* is completely bypassed.
4. OPTIMAL RESOURCE ALLOCATION
4.1 Model

Consider the following system of K + 1 infinite-capacity queues that compete for the use
of a single server: Time is slotted and the service requirement of each customer corresponds
exactly to one time slot. At the beginning of each time slot, the controller gives priority to
one of the queues. If the k** queue is given service attention during that slot, then with
probability ur the serviced customer (if any) completes service and leaves the system, while
with probability 1 — p, the customer fails to complete service and remains in the queue. The
arrival pattern is modelled as a renewal process, in that the batch sizes of customers arriving
into the system in each slot are tndependent and identically distributed from slot to slot. Under
these assumptions, the evolution of the system is fully described by an IN¥*'.valued process
{X(n)}$°, with Xz (n), 0 < k < K, representing the number of customers in the k** queue at
the beginning of the slot [n,n + 1).

The mean number of customers arriving to the k* queue is denoted by Ai. Define the

A

Y and assume henceforth that p < 1; this guarantees system

traffic intensity p := Zf:o
stability [2].

For some mapping ¢: IN¥+! — IR, the cost to be minimized is defined by
1 n
J(r):= limn;E"r Z c(X(¢)) (4.1)

t=1

for every policy 7 in P. A special case abundantly treated in the literature is the one where ¢

is linear and positive, i.e. for all z in INKT1,

c(z) = Z CkTk, (4.2)

with ¢ > 0,0 < k < K. For this case, several authors have discussed the problem of selecting

a service allocation strategy that minimizes (4.1) over the class P of all admissible service
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allocation strategies [3,5]. They all show the optimality of the uc-rule, i. e., the fixed priority
assignment policy that orders the customer classes in increasing order of priority with the

values urcr,0 < k< K.
4.2 Single constrained queue

In [21], Nain and Ross considered the situation where several types of traffic, e.g., voice,
video and data, compete for the use of a single synchronous communication channel. They
formulate this situation as a system of K + 1 discrete-time queues that compete for the
attention of a single server, and solve for the service allocation strategy that minimizes the
long-run average of a linear expression in the queue sizes of the K customer classes {1,---, K}
under the constraint that the long-run average queue size of the remaining customer class 0
does not exceed a certain value V. Thus for any policy m in P, define J(r) by (4.1) with ¢
given by (4.2) where co = 0, and pose

K(r) i= T E" 3 Xolt). (4.3)

Nain and Ross [21] extend some of the optimality results from [3,5] to show that if the
constraint can be met in a non-trivial fashion, then an optimal policy with a very simple

structure can be identified.

Theorem [21]: If the problem is feasible, there ezists a constrained optimal policy f* in ¥

which randomizes between two work-conserving static priority assignment policies.

This result is derived through a Lagrangian argument in the following way: For v > 0,

let the mapping b7: IN¥ ! — IR be given by b7(z) = ¢(z) + vzo and pose

BY(r) = mn%E" f: b7(X(2)) (4.4)

for every policy 7 in P. The unconstrained MDP (LP,) is now defined as
(LP,): minimize B7(m) over P,

and solving the constrained problem (CPy) reduces to finding a policy n* in P which meets

the requirements (R1)-(R3).
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If the constraint is not satisfied while giving highest priority to the constrained queue (i.
e., the 0th queue), then there is no solution. On the other hand, if the constraint is satisfied
while giving lowest priority to the constrained queue and ordering the other queues according
to the uc-rule, then this policy is optimal for the constrained problem (CPy). The proof in the
remaining case is available in [21], the main idea being that each one of the problems (LP,) is
solved by a fixed priority assignment policy which admits a description as the pc-rule based

on poy and prer, 1 < k< K.

The dynamics of this problem were generalized by Nain and Ross to a semi-Markov
decision process [22]. Another generalization, given by Altman and Shwartz [1], involves a
more general constraint (4.3) associated with an instantaneous cost d: IN¥T1 — IR which is

also an arbitrary linear function with positive coefficients (as in (4.2)).

Theorem [1]: If the problem is feasible, then there is a constrained optimal policy fq+ which

randomizes between two work-conserving static priority assignment policies.
4.3 Single constraint - An adaptive implementation

Even with (4.3), the function ¢ — K (f,) is not easy to compute, in spite of the linearity of
the instantaneous cost. Indeed, as pointed out by Nain and Ross [21], computing the quantity
K(f,) amounts to studying a coupled-processor problem whose solution can be obtained via

a reduction to a Riemann-Hilbert problem [6].

The stochastic approximation algorithm that generates the sequence of bias estimates

{g(n)}§° here takes the special form
g(n+1) = [ ¢(n) +an(V - Xo(n+1)) ], n=1,2,--(4.5)

with ¢(1) given in [0,1].

For K = 1, there are only two fixed priority assignment policies, and therefore no a
priori knowledge of the various statistics is required in order to implement this algorithm. As
such, the proposed policy is implementable and constitutes an adaptive policy in the restricted
technical sense understood in the literature on the non-Bayesian adaptive control problem for
Markov chains [11]. However, for K > 1, aga is implementable only if g and § have been

determined.
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The basic results assume finite third moments on the initial queue sizes and on the statis-
tics of the arrival pattern. Under these additional conditions,

Theorem [30]: The sequence of biases {q(n)}$° converges in probability (under Ps4) to the
optimal bias g*.

The derivation of this result makes combined use of results by Kushner and Shwartz [14]
on the weak convergence of Stochastic Approximations via ODE methods and on moment
estimates obtained for the queue size process in [30]. The condition (3.6) now holds and
implies
Theorem [30]: The policy asa solves the constrained optimization problem (CPy) with
J(asa) = J(f*) and K(asa) = K(f*).

4.4 Multiple constraint - A time-sharing implementation
In this section, a special version of the multiple constraint problem (CPy) is studied. For

every policy 7 in P, pose
. 1 n
Ki(r) :=Tm,—E" ) X;(t), 0<i<K, (4.6)
n
t=1

and for every vector V = (Vq,---,Vk) in IRX consider the constrained problem
(CPy): minimize K°(x) over Py, (4.7)
with Py defined by (3.1).

There are exactly L := (K + 1)! non-idling policies in § which act as fixed priority
assignments, the [** such policy being denoted throughout by g;, 1 < I < L. An element
p=(p1,-++,pL) in IRT lies in the L-dimensional simplex whenever 0 < p; < 1forall 1 <[ < L,
with Z,L:l p1 = 1. The mizing policy 7(p) associated with any element p in the L-dimensional
simplex is defined through a procedure that generalizes the one discussed in Section 2.4:
Consider an L-sided coin that yields the I** side with probability p;, 1 <! < L and throw the
coin exactly once at the beginning of times, before starting to operate the system. The policy
7(p) is the one that operates according to the fixed priority policy g; if the outcome of the

throw is the I** side, 1 < < L. For every p in the L-dimensional simplex, the relations

Ki(n(p)) =) _»K'(g), 0<i<K, (4.8)



hold true and suggest the following Linear Program (LP), where

Minimize Z 21 K°(g1) (4.90)
=1
subject to the constraints
Y aKi(g)<Vi, 0<i<K, (4.95)
=1
and
L
0<%<1,1<I<L, and Y z=1 (4.9¢)

The relationship between the Linear Program (LP) and the original constrained problem

(CPy) is formalized in the following result.

Theorem [1]: If the Linear Program (LP), has a solution, say p*, then the policy w(p*) solves
the multiple constraint problem (CPy). Conversely, if problem (CPy) has a solution, then it
can always be tmplemented by a mizing policy.

The solution of problem (CPy) via mixing policies has the clear advantage of requiring
only the solution of the Linear Program (LP); this is to be contrasted with the difficult
queueing problem that is required to find the optimal randomized policy [21]. A dynamic
or time-sharing implementation can also be provided in the spirit of Section 3.3. Here the
empty state is taken to be the privileged state and a cycle thus coincides with a busy cycle
for the queueing system. For sake of brevity, the discussion is restricted to the case where
the element p in the L-dimensional simplex has all its components rattonal with p; = ]%[,
1 <1 < L, for some n = (ny,---,nz) in INL, where |n| = Zf ni. Define the policy #(n) in
P as the one that operates the fixed priority assignment g; over n; cycles. With the help of
results on busy periods [2,29], it is a simple exercise to show, in analogy with (3.5), that the

relations

L
n] .
“(ars(p Z -7;— ‘(¢1), 0<i<K, (4.10)
hold true. The more general situation can be treated exactly as in Section 3.3.
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5. OPTIMAL FLOW CONTROL
5.1 Model and constrained problems

Consider the following flow control model for discrete-time M|M|1 queueing systems
[17,18]: At the beginning of each time slot, the controller decides either to admit or reject
the arrivals during that slot. An admitted customer joins the queue while a rejected customer
is immediately lost. A customer (if any) that completes service in a slot leaves the system
at the end of that slot with probability u, and fails to complete service in that slot with
probability 1 — u, in which case it remains at the head of the line to await service in the next
slot. The arrival pattern is modelled as a Bernoulli sequence with parameter A, independent of
the service process which is modelled as another Bernoulli sequence with parameter y. Under
these assumptions, the evolution of the system is fully described by an IN-valued process
{X(n)}$°, with X(n) representing the number of customers in the queue at the beginning of

the slot [n,n + 1).

The problem considered here is formulated as the search for a policy that maximizes the
throughput under the constraint that the long-run average queue size does not exceed a certain

value V, where the throughput and the average queue size are expressed as

T(r) = lim, L B7 3 p1(X(0) £ 0) (51)
and
K(r) = Hn%E" 3 x0), (5.2)
t=1

respectively, for every admissible policy 7 on P.

A threshold policy is a Markov stationary policy in ¥, with a simple structure determined
by two parameters L and ¢ in IN and [0, 1], respectively, whence a threshold policy is denoted
hereafter by (L, g). According to the threshold policy (L, ¢), an incoming customer is admitted
or rejected wether the queue size is < L or > L; if the queue size is exactly L, a biased coin
with bias ¢ is flipped and the outcome then determines whether or not the incoming customer
can access to the queue. The adopted convention interprets g as the (conditional) probability

of accepting an incoming customer.
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The policy that admits every single customer is denoted by (00,1). If K((c0,1)) <V,
then the problem (C Py ) corresponding to (5.1)-(5.2) is trivially solved by (c0,1). On the other
hand, if K((c0,1)) > V, then the problem has a non-trivial solution, which can be shown to
be of threshold type. This result is derived again through a Lagrangian argument: For v > 0,
let the mapping b7: IN — IR be given by b7(z) = pl(z # 0) — vz and define for every policy
min P, B7(m) as in (2.5). The unconstrained MDP (LP,) is now defined as Section 2, and as
in previous instances where this technique was used, solving the constrained problem (CPy)

reduces to finding a policy 7* in P which meets the requirements (R1)-(R3).

The unconstrained Lagrangian problem (LP,) can be solved through a tedious Dynamic

Programming argument that shows concavity of the corresponding value function.

Theorem [17]: For every v > O, there exists a threshold policy (L., q,) that solves the
unconstrained Lagrangian problem (LP,). Moreover, for each threshold value L in IN, there
always exists y(L) > 0 so that any threshold policy (L, q), with q arbitrary in [0, 1], solves the
Lagrangian problem (LP,,(L)).

Threshold policies are thus unconstrained optimal. For any threshold policy (L, g), the
quantities (5.1) and (5.2) exist as limits. Moreover, K ((L, g)) tncreases as L increases, whereas
for fixed L in IN, the mapping ¢ — K((L,q)) is continuous and strictly monotone increasing
on [0,1]. Since K((00,1)) >V, there exists L* in IN such that K((L*0)) < V < K((L*,1)),
and the continuity and the strict monotonicity of ¢ — K((L*,¢)) then imply the existence of
¢* such that K((L*,¢*))=V.

Theorem [17]: If the constrained problem (CPy) has a non-trivial solution, it can be taken

to be a threshold policy f* = (L*,q*).

The quantities L* and ¢* are determined by the arrival and service rates A and g, and by

the constraint value V; they can be computed as the unique solution to the equation
K((L,¢))=V, L=0,1,--rand 0<¢g<1. (5.3)

This result represents the discrete-time analog of results obtained by Lazar [15]. In
contrast with the competing queue problem, a closed-form expression is available here for the
quantity K((L,q)) for all L in IN and ¢ in [0,1]. However, as in Section 4, it is still reasonable

to seek on-line implementations of such a threshold policy.
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5.2 A Stochastic Approximation implementation

Asin Section 3.4, the two policies ¢ = (L*,0) and § = (L*, 1) are assumed available, which
presumes only knowledge of L*. The following stochastic approximation algorithm generates

the sequence of bias estimates {g(n)}$° through the recursion

gn+1)=[g(n) +an(V - X(n+1))]; n=1,2,---(5.4)

with ¢(1) given in [0,1], where in addition to the conditions (3.8), the step sizes {a, }$° satisfy
Y2, a? < co. The RV g(n) constitutes an estimate of the bias value ¢* and is interpreted
as the conditional probability of using g, or equivalently, of giving admission to a potential
customer during the slot [, 7+ 1) when the queue size X(n) is equal to L*. With this scheme,
the control action to be implemented is simply generated according to the optimal threshold

policy f* when the queue size is not equal to L*.

The key result is obtained under a fourth moment assumption on the initial queue size, and
is proved using ideas proposed by Metivier and Priouret [20] on the almost sure convergence

of Stochastic Approximation algorithms.

Theorem [18]: The sequence of biases {q(n)}§° converges almost surely (under P*sA) to the
optimal bias g*.

The condition (3.6), which is now seen to hold, can then be used to show that
Theorem [18]: The policy asa solves the consirained optimization problem (CPy) with
J(asa) = J(f*) and K(asa) = K(f*).

5.3 The time-sharing implementation

Since the quantity K((L, g)) is computable for all values of its arguments, the values L*,
K(g) and K (g) are thus readily available. The optimal mixing parameter p* can then be
immediately evaluated, and the optimal mixing policy m(p*) considered in Section 2.4 is thus
easily implementable. Here, the threshold nature of the policies g and § suggests level L* as
a privileged state, and a cycle is thus defined as the time duration between consecutive visits
to level L*. The time-sharing implementation arg(p*) corresponding to m(p*) is defined as
in Section 3.3 and provides an easy way to implement an optimal constrained policy. The

discussion is similar to the one of Section 3.3 and will be omitted.
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5.4 An indirect adaptive control implementation

All previous implementation schemes require the knowledge of the optimal threshold L*.
In case the external parameters, A and u, are unknown, the parameter L* is certainly not

available and all previously considered policies are thus not implementable in their given form.

In such cases, it is natural to consider a scheme that uses Certainty Equivalence principle in
conjunction with maximum likelihood estimators. The sequence of estimates {(A(n), u(n))}°
of the true parameter (A, i) is generated based on all the past available information by invoking
the principle of maximum likelihood, and the sequence {(L(n), ¢(n))}$° is then determined by
the estimates A(n) and p(n) by solving the equation (5.3). In case there is no solution to the
equation (5.3) for a pair (A(n), u(n)), simply set L(n) = co and ¢(n) = 1. The control action
to be implemented in the slot [n,n + 1) is then generated according to (L(n),¢(n)), and the

corresponding adaptive policy is denoted by amy.
The estimation procedure relies on a information pattern I(n), richer than H(n) and
given by
I(n) = {X(1),U(t), A(t), B(t),1 < t < n} n=1,2,-(5.5)

where the {0, 1}-valued RV’s U(n), A(n) and B(n) represent the control action implemented
in the slot [n,n + 1), the arrival during that slot and service completion at the end of that

slot, respectively.

Using the Strong Law of Large Numbers and results from the theory of Large Deviations,
the appropriate version of condition (3.6) is shown to again take place [18], the rate of con-
vergence being ezponentially fast; this last fact is crucial to the basic result, which is obtained

under a fourth moment assumption on the initial queue size.

Theorem [18]: The policy amy solves the constrained optimization problem (CPy) with
J(omp) = J(f*) and K(amL) = K(f*).

It is not clear at this time on how to design direct adaptive control schemes when the
optimal threshold L* is not available. A stochastic approximation algorithm for generating
recursively a sequence of estimates for L* similar to the one used for ¢* naturally comes to
mind; however, the corresponding scheme fails to work owing to its sensitivity to variations of

the integer-valued threshold [18].
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