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ABSTRACT
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With the immense popularity of the Web, the world is witnessing an unprece-

dented demand for on-line data services. A growing number of applications require

timely data delivery from information producers to thousands of information con-

sumers. At the same time, the Internet is evolving towards an information super-

highway that incorporates a wide mixture of existing and emerging communication

technologies, including wireless, mobile, and hybrid networking.

For this new computing landscape, this thesis advocates creating highly scal-

able data services based on adaptive hybrid data delivery. It introduces air-caching,

a technique that effectively integrates broadcasting for massive dissemination of

popular data, and unicasting for upon-request delivery of the rest. It describes

the special properties, performance goals, and challenges of air-caching. Then, it

presents adaptive cache management techniques for three different settings: servic-

ing large numbers of data requests over a heavily accessed databases, propagating
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data updates to mobile clients intermittently connected to information sources, and

implementing publish/subscribe services again in the context of mobile computing.

In all cases, performance experiments demonstrate the scalability, efficiency, and

versatility of this technique, even under rapidly changing data access patterns.
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son Padua-Pérez, Manuel Rodriguez-Martinez, Yannis Sismanis, Tolga

Urhan, and Byoung-Kee Yi. They all contributed to the stirring and

fun working environment I enjoyed for the last few years. Björn, Yannis

Kotidis, and Alex deserve special thanks for taking the extra time to

discuss about and help me with any problem I had. Björn also deserves

extra credit for providing his “semi-automatic results compiler” that

proved to be a great time (and sanity) saver.

I have to also thank all my friends that filled my Maryland days with

nothing but good memories. The members of the Greek community

in and around this university were a great and fun group of people to

spend a few years with. Among all these, I would like to name and

especially thank a few. First, my close friend Fotis Stamatelopoulos

iv



for all the wonderful student years we had together, starting long be-

fore we came to Maryland. Then, my roommates Christos Seretis, and

Yannis Manolopoulos. Finally, the special group of friends that I share

the most memories with, including Pavlos Christofilos, George Ioan-

nou, Eleni Kassotaki, Yannis Kotidis, Alex Labrinidis, and Spyridoula

Varlokosta.

However, this endeavor would not have been possible without the un-

conditional love and support of my family. First and foremost, I need to

express my deepest gratitude to my parents. Ever since I can remem-

ber, they have been offering me limitless encouragement and support.

They have taught me (and keep reminding me) that no goal is too

high when you are determined to succeed. I feel that I cannot thank

enough my wife, Evi, for being by my side and enduring with me the

hardships of this long and difficult journey. Often, when I was looking

at her, I could not help but wonder whether it is more difficult doing a

PhD, or being married to someone doing a PhD! I also want to thank

my son, Andreas, whose smile was enough to carry us through the last

and hardest part of the journey. Last, I am grateful to the rest of my

big and loving family. Each and every one of them has contributed in

his/her own special way to my success. This thesis is dedicated to all

of them.

v



TABLE OF CONTENTS

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Information Consumption . . . . . . . . . . . . . . . . . . . 3

1.1.2 Emerging Communication Technologies . . . . . . . . . . . . 4

1.1.3 Mobile Computing . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Survey 11

2.1 Data Broadcasting . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Broadcast Scheduling . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Client Caching and Data Updates . . . . . . . . . . . . . . . . . . . 17

2.3 Publish/Subscribe Services . . . . . . . . . . . . . . . . . . . . . . . 19

vi



3 Hybrid Data Delivery 21

3.1 Hybrid Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Data Delivery Alternatives . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Pull/Unicast Delivery . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Push/Broadcast Delivery . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Hybrid Delivery . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Air-Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.5 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.6 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Demand Driven Air-Caching 56

4.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 The Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 Practical Considerations about Workloads . . . . . . . . . . 60

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Vapor, Liquid and Frigid Data . . . . . . . . . . . . . . . . 63

4.2.2 Air-Cache Implementation . . . . . . . . . . . . . . . . . . . 64

4.2.3 Adaptation Based on Marginal Gains . . . . . . . . . . . . . 65

4.2.4 Temperature Probing . . . . . . . . . . . . . . . . . . . . . . 69

4.2.5 Monitoring Overhead . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



4.3.2 Static Workloads . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.3 Tuning Parameters . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.4 Dynamic Workloads . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Disseminating Updates to Mobile Clients 87

5.1 Hierarchical Air-Cache . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Hierarchical Log Air-Caching . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.2 Performance Model . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.3 Cache Optimization . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Hybrid Log Dissemination . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Soft Cache Misses . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.2 Workload Estimation . . . . . . . . . . . . . . . . . . . . . . 105

5.3.3 Air-cache Adapter . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.1 Fixed Size Air-Cache, No Hard Misses . . . . . . . . . . . . 112

5.4.2 Variable Size Air-Cache . . . . . . . . . . . . . . . . . . . . 122

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Publish/Subscribe Services 127

6.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.1 Sharing the Air-cache . . . . . . . . . . . . . . . . . . . . . . 135

6.2.2 Sharing the Server . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.3 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

viii



6.2.4 Workload Estimation . . . . . . . . . . . . . . . . . . . . . . 143

6.2.5 Air-cache indexing . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3.1 Weight-based Bandwidth Allocation . . . . . . . . . . . . . . 149

6.3.2 Scalability & Adaptation . . . . . . . . . . . . . . . . . . . . 154

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 Conclusions 161

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Bibliography 166

ix



LIST OF TABLES

3.1 Summary of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Index information for log air-caching . . . . . . . . . . . . . . . . . 105

6.1 Index entry for view Vk . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 View group specification . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Client group specification . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 PO and PU client groups . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 View groups for adaptation & scalability experiment . . . . . . . . 155

6.6 Client groups for adaptation & scalability experiment . . . . . . . . 155

x



LIST OF FIGURES

3.1 Typical performance of pull/unicast systems . . . . . . . . . . . . . 28

3.2 Typical performance of push/broadcast systems . . . . . . . . . . . 31

3.3 Target performance for hybrid delivery systems . . . . . . . . . . . 36

4.1 Balancing data delivery methods . . . . . . . . . . . . . . . . . . . 59

4.2 Example of a skewed data access pattern . . . . . . . . . . . . . . . 61

4.3 Graphical representation of marginal gains . . . . . . . . . . . . . . 67

4.4 Example execution of adaptation algorithm . . . . . . . . . . . . . . 68

4.5 Examples of demotions without and with probing . . . . . . . . . . 69

4.6 HotColdUniform distribution . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Gaussian distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Experiment 1: HotColdUniform distribution . . . . . . . . . . . . . 76

4.9 Experiment 2: Gauss distribution, fixed size hot-spot . . . . . . . . 77

4.10 Experiment 3: Gauss distribution, fixed standard deviation . . . . . 78

4.11 Experiment 4: Effects of probing parameters . . . . . . . . . . . . . 80

4.12 Experiment 5: Dynamic workloads . . . . . . . . . . . . . . . . . . 82

5.1 Hierarchical air-caching . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Effect of the useful segment on performance . . . . . . . . . . . . . 96

5.3 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi



5.4 Examples of possible soft cache misses . . . . . . . . . . . . . . . . 102

5.5 Distributions of client refreshes . . . . . . . . . . . . . . . . . . . . 113

5.6 Fixed size air-cache - Normal distribution . . . . . . . . . . . . . . . 116

5.7 Fixed size air-cache - Uniform distribution . . . . . . . . . . . . . . 119

5.8 Fixed size air-cache - Bipolar distribution . . . . . . . . . . . . . . . 121

5.9 Variable size air-cache . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1 Server architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Adaptive algorithms for view air-caching . . . . . . . . . . . . . . . 141

6.3 PO/PU client group mixture for 80/20 view popularities . . . . . . 152

6.4 Performance of bandwidth allocation policies . . . . . . . . . . . . . 152

6.5 Scalability and adaptability . . . . . . . . . . . . . . . . . . . . . . 156

xii



Chapter 1

Introduction

At the doorstep of the 21st century, the world is witnessing an unprecedented

demand for on-line data services. With the pervasive role of the Internet in our

lives and the immense popularity of the World Wide Web, there is an exponentially

growing interest in electronic access to all sorts of information for many different

purposes. This creates a tremendous request load, which often well exceeds the

capabilities of information servers and the capacity of network resources. On top

of that, the increasing availability of powerful, inexpensive portable computers

combined with the proliferation of wireless communication services has enabled

mobile computing and the access of information virtually from any place and at

any time. This convenience of mobility imposes even more stringent requirements

on the supporting infrastructure.

At the same time, the Internet is evolving towards an Information Superhigh-

way that incorporates a wide range of existing and emerging communication tech-

nologies, including wireless and hybrid networking [ABF+95, KB96, BG96, Kha97].

These technologies provide users with a variety of options for connecting to infor-

mation sources and retrieving the desired information.

This new, fast evolving computing and communications environment presents
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several interesting challenges to the deployment of large scale data services. But,

it also creates opportunities for exploring alternative approaches to address these

challenges. New types of information services are surfacing as practical solutions to

the anticipated explosion of user demands [FZ96]. Among these, broadcast-based

services have the potential of meeting such workload requirements, as they can

efficiently disseminate information to any number of receivers.

This thesis advocates the development of efficient, adaptive, and highly scal-

able information systems based on hybrid data delivery. The main theme is the

dynamic integration of data broadcasting for massive information dissemination

with traditional interactive data services for selective upon-request data delivery.

1.1 Motivation

The size and the population of the Internet are growing at an exponential rate.

More and more people are using information technology at work, school, and at

home. The amazing number of advertisements, articles, and business cards that

include a URL on the Web is clearly attesting to the significance of electronic

access to information sources. Reports estimate that both the number of hosts

and the number of users almost doubled in the last year alone. For example, [IS98]

reports that from January 1997 to January 1998 the number of people accessing

the Internet worldwide rose from 57 to 102 million. This number is estimated to

reach 707 million by 2001. At the same period, the number of hosts connected to

the Internet grew by about 88%.

This phenomenal growth rate is by far surpassing the growth of Internet re-

sources, i.e., data server capacities and the network bandwidth. The huge work-

loads are exposing the scalability limitations of the currently employed data distri-
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bution mechanisms. Often, users experience long delays when accessing informa-

tion sources, and occasionally fail to retrieve the desired information all together.

A source for these problems is that, typically, data services use connection-oriented

point-to-point protocols, which scale at best linearly with server capacity and net-

work bandwidth.

These problems are severely aggravated in the course of special events when

several million of requests are made during peak periods. For example, in the 1998

Winter Olympics, the peak request rate was reported to exceed 100 thousand per

minute [Las98]. Similar bursty workloads may occur in crisis management appli-

cations, both civilian and military, which rely on rapid information distribution

for responding to emergencies, natural disasters, and other “panic situations”. In

such cases, the demand during peak periods can be much higher than the average.

This means that expanding the infrastructure to meet peak demand is wasteful and

uneconomical, as it requires big investments in equipment that would be underuti-

lized and wasted for most of the time. Instead, an alternative data dissemination

approach is needed that can adapt and scale to unpredictable and bursty user

demands.

1.1.1 Information Consumption

Along with the Web, a new class of information-centered applications is attracting

a lot of interest [FZ96]. These applications follow the information consump-

tion model, where there is a set of consumers retrieving and using information

made available by one or more producers. Examples of such applications in-

clude news delivery [Poi98], financial market information, commuter and traveler

services [SFL96], software distribution, as well as entertainment delivery.
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An interesting property of this kind of applications is that they exhibit two

types of asymmetry. First, there is almost exclusively a one-way information flow

from the producers to the consumers. Typically, consumers send small requests

(e.g., a get URL request) and in response may receive large amounts of data,

possibly including graphics and video. Because of this asymmetry, the careful

management of the downstream bandwidth (i.e., the network bandwidth from the

producers to the consumers) is much more critical to the successful deployment

of such services. Second, the number of consumers is significantly higher than

the number of producers. It is often the case where a single provider provides

information which is of interest to a very large audience (e.g., CNN and news

updates). As a result, the server providing the information may receive enormous

amounts of requests that it is unable to service. This phenomenon is particularly

grave during peak periods following, for example, important breaking news or

special announcements.

1.1.2 Emerging Communication Technologies

The ever increasing demand for high bandwidth links to the office, the home, as

well as on the road has spawn a fierce industrial competition in the market arena

of broadband data services. Combined with recent advances in technology, the

communications industry is offering a wide range of options for connecting to the

Internet, both wireline and wireless. Because of technological as well as economical

reasons, none of these is expected to dominate over the rest. According to [Blu97],

“the search for the Holy Grail of information infrastructure does not lead anywhere,

but everywhere.” As result the Internet is evolving towards a hybrid information

superhighway that combines many technologies, especially at its “last mile” (i.e.,
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the link between the backbone and the office or the home) [BG96, KB96, Kha97].

Some of the technologies that the industry is trying to capitalize on are:

• Variations of digital subscriber lines (xDSL) over existing copper twisted pair

wires [Kha97, Law98].

• Cable television (CATV) using hybrid fiber coax (HFC) networks [BMSS96,

Law98].

• “Wireless cable” offered by local and multichannel multipoint distribution

service (LMDS and MMDS) [Kha97].

• Cellular and personal communication networks [PGH95, Pan95].

• Direct broadcast satellites (DBS), mobile satellite systems (MSS), and hybrid

satellite/terrestrial networks [ABF+95, Gol98].

There are at least three interesting observations to be made about these com-

munication alternatives. First, the conception and design of some of these were

influenced by the asymmetric nature of information consuming. Thus, they are

asymmetric in the sense that they offer different transmission rates in each direc-

tion. For example, HFC offers a maximum rate of 38 Mbps to the subscribers,

while the rate from the subscribers does not exceed 4 Mbps [Kha97]. Second,

most wireless technologies enable user mobility, and generally, the ability to ac-

cess information from any place at any time. Last, but not least, some of these

techniques are broadcast-based (e.g., CATV, DBS) which means that they inher-

ently support efficient information broadcast to many users, possibly spread in a

large geographic area, over a globally shared link and without any intermediate

switching. In the face of the scalability problems experienced on the Web today,
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this capability opens the door for the deployment of new scalable broadcast-based

data services.

1.1.3 Mobile Computing

We are in the midst of an important change in the way people access informa-

tion systems. Empowered by wireless communications and powerful portable

computers, more and more users carry their work “on the road”, away from

their base computing environment. The trend towards mobile computing is re-

flected in the fast growing market of laptop computers. But, the mobility of

users, the wireless connectivity, and the portability of computing devices are

generating several new research challenges, which do not occur, and thus were

never addressed, in the context of stationary (fixed) distributed computing sys-

tems [AK93, FZ94, IB94, Sat95]. Some of the problems that rise in this new

computing environment are the tracking of mobile users, dynamic system configu-

ration, variable connectivity, battery powered devices, and different communication

tariffs.

From the data management perspective, a host of interesting problems stem

from intermittent connectivity and disconnected operation [KS91]. Mobile

users often stop using their communication devices and prohibit all network ac-

cesses, either to minimize cost and energy consumption, or simply because they

happen to be located in an area where there is no network coverage. The effects of

disconnection are typically masked by hoarding, caching, or replicating data from

central repositories into the portable units. Occasionally, users reconnect and re-

integrate their data. This involves uploading to repository data updates made in

the portable unit as well as downloading to the unit relevant updates registered
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at the repository. While both parts exhibit a set of difficulties (e.g., consistency

checking, conflict resolution), the propagation of updates to mobile units can be a

big data distribution problem, especially in the presence of large user populations.

1.2 Contributions

Driven by the ever increasing demand for on-line data services, the asymmetric

nature of information consumption, and the capabilities of emerging networks,

this thesis broadly addresses the problem of large scale data dissemination. It

capitalizes on the scalability potential of broadcast communication for efficient

delivery of data from an information server to thousands of clients.

Broadcast-based data delivery has been investigated by several researchers,

along with a number of related issues.1 This thesis focuses on push/broadcast

data delivery, i.e., data broadcast regulated by the server and not by explicit client

requests. So far, all the techniques that have been proposed for this type of data

delivery follow a common thread: they assume that the server is fully aware of the

global access pattern of the client population, which is used to produce static data

broadcast schemes. The premise of these approaches is that users register with

the system and provide profiles of their interests, which are compiled to derive the

global data access pattern. While this may be suitable in some applications, it is

not applicable when the interests of clients change continuously and even abruptly

as in the case of “panic situations”.

Instead, in this thesis we expand and complement broadcast delivery with

traditional interactive data services to create highly scalable data dissemination

1For a survey refer to Chapter 2.
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technique, adaptive to dynamic and unpredictable user demands. This technique

is generally called adaptive hybrid data delivery as it dynamically integrates

two different data delivery mechanisms.

In the following, we outline the key contributions of this thesis:

• We compare and contrast two popular data delivery techniques: the tradi-

tional request/response (pull/unicast) and the rather novel push/broadcast.

After discussing their advantages and disadvantages, we make a case for

adaptive hybrid data delivery, i.e., the combination of the two techniques in

a dynamic and complementary manner.

• We introduce the concept of air-caching, a convenient abstraction that es-

sentially disguises the problem of adaptive hybrid data delivery to a cache

management problem [SRB96]. Air-caching is the temporary storage of popu-

lar data in a broadcast channel through repetitive transmissions. We identify

the special properties of this type of data caching, discuss its performance

goals, and set its basic management principles. The general goal of a hy-

brid system is to air-cache popular data to satisfy the bulk of the clients’

demands, and leave only a small number of requests for unpopular data to

be serviced by the server itself. A unique characteristic of the air-cache is

that, contrary to typical caches, it must be managed relying exclusively on

cache misses because the server does not have at its disposal any information

about cache hits.

• We consider the problem of servicing very large numbers of user requests

over a given database [SRB97a]. Assuming that these requests exhibit high

degrees of skewness towards parts of the database, we propose a set of algo-

8



rithms that dynamically detect and air-cache the hot-spots, even when they

are rapidly changing.

• We propose to use the air-cache mechanism for propagating data updates

from a central repository to mobile disconnecting clients. We describe a

hierarchical version of the air-cache that adds the flexibility of multiple access

latencies. In this case, we describe techniques that detect the (dis)connection

pattern of the clients, and establish their needs for updates. Based on that,

the server air-caches recent updates in a way that matches this pattern.

• In the context of mobile computing, we also consider the deployment of pub-

lish/subscribe services. Mobile clients subscribe to multiple, semantically

different, data services. Every time they reconnect they need to retrieve any

newly published data that matches their subscription. The server employs

air-caching for the dissemination of the published information. For this appli-

cation, multiple air-caches are realized in a single broadcast channel, one for

each of the provided services. To this end, we propose a composite air-cache

structure that multiplexes several simple air-caches in a single broadcast

channel, and develop techniques for managing these air-caches independently

from each other.

• All the proposed algorithms are validated with experimental results drawn

from a detailed simulation model of the systems. In all cases, these results

demonstrate the scalability, adaptiveness, and efficiency of air-caching, and

establish its potential as a versatile and practical method for large scale data

dissemination.
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1.3 Organization

The rest of this thesis is organized as follows: Chapter 2 presents a literature survey

of research work closely related to this thesis. In Chapter 3, we first make a case

for hybrid data delivery, and then introduce the air-cache mechanism and discuss

its properties, tradeoffs, and performance goals. Chapters 4, 5, and 6 constitute

the main body of this thesis. They present three different sets of algorithms and

techniques used to manage the air-cache in three different data intensive applica-

tions. Last, Chapter 7 summarizes the contributions and results of our work, and

indicates some possible future research directions.
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Chapter 2

Literature Survey

Broadly, our work falls in the general research area of wireless and mobile comput-

ing. For the interested reader, [IK96] presents a number of research projects that

deal with a broad range of issues in mobile computing, including networking, op-

erating systems, power management, and information services. Data management

issues, which are of more interest to us, are discussed in [PS97]. Problems and

challenges with respect to data management are also listed in [AK93] and [IB94].

Furthermore, different aspects of data dissemination are covered in [Fra96a].

In the following, we present a more focused survey of the literature in research

areas, which are closely related to our work.

2.1 Data Broadcasting

The idea of broadcasting data from some information source to a large number of

receivers has been explored for more than a decade. Several researchers have rec-

ognized its scalability potential, and tried to apply it in varied contexts. Teletext

and videotex systems were the first to be considered for broadcast data deliv-

ery [WA85, AW85, Won88]. The focus of this work was on optimized data trans-
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mission schedules for interactive, broadcast, and hybrid systems. The Datacycle

project at Bellcore developed an alternative architecture for a database machine

based on the same idea [HGLW87, BGH+92]. Data was periodically broadcast

through a high bandwidth communication channel from the storage pump to

an arbitrary large number of access managers. The managers relied on custom

made VLSI data filters to perform associative searches over the broadcast data.

A pioneering project that used wireless data broadcasting for large scale infor-

mation delivery was the Boston Community Information System (BCIS) [GBBL85,

Gif90]. Gifford et al. proposed, built, and field-tested a flexible and cost-effective

polychannel system, i.e., a system that combines simplex (broadcast) and du-

plex (interactive) communication channels, to provide up-to-the-minute access

to information sources (e.g., New York Times, Associated Press) to an entire

metropolitan area. The system used an FM channel to periodically broadcast

updates (news articles) to locally maintained user databases. User queries were

answered by the local database whenever possible. If the requested information

were not locally available, the system would query the server through a regular

modem connection.

More recently, due to the ever increasing popularity of mobile computing, this

area has gained much more attention by the research community. The most notable

examples are the Dataman [Imi96] and the Broadcast Disks [AFZ95] projects.

The Dataman group at Rutgers University has focused on channel indexing for

wireless data publishing [Vis94]. The broadcast disks project is based on the idea

of hierarchical data broadcast. Their work addresses a wide range of problems

including broadcast scheduling, client cache management and prefetching, and

update dissemination.
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2.1.1 Broadcast Scheduling

Typically, in a broadcast-based information system, the quality of the service pro-

vided to the users depends mainly on the data access latency, i.e., the time a user

has to wait before the needed information appears on the channel. Assuming the

available amount of bandwidth is fixed, this latency depends on the scheduling

policy adopted by the server. In case the demand is uniformly distributed over all

the items in a database, a periodic broadcast of all these items yields the mini-

mum expected latency. However, in real life situations demand patterns are usually

skewed, making broadcast scheduling a harder problem to solve.

Generally, broadcast scheduling algorithms can be classified into two groups.

The first group of algorithms addresses the problem in the case of “data push”,

i.e., when clients do not send any requests to the server. Typically, the server relies

on some a priori knowledge of the data access patterns to schedule the broadcast.

The second group deals with scheduling in the presence of explicit client requests

(on-demand or pull scheduling).

For push scheduling, researchers have proposed two types of algorithms: prob-

abilistic and periodic. The probabilistic algorithms select data to broadcast one

at a time, based mainly on their respective probabilities of being requested [IV94].

The main disadvantage of this approach is that latency can be arbitrary large for

some items (starvation problem). There have been proposed techniques that rem-

edy this by considering, along with the access probabilities, the time elapsed since

the last item was broadcast [ST97, HV97a]. The advantage of these approaches

is that they can very easily accommodate changing workloads. Periodic schemes,

on the other hand, pre-compute an optimal schedule, which is continuously re-

peated [AW85, AW87, Chi94, AAFZ95]. Such optimal schedules are expensive
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to compute, and therefore less resilient to change. But periodic schemes exhibit

some nice properties such as guaranteed maximum latency and minimum variance

in inter-arrival times for the different items. This second property is very impor-

tant for a number of reasons: First, high variance tends to increase the average

latency [JW95]. Second, from the clients’ point of view, minimum variance means

that the appearances of data in the channel are more predictable. This can have

a significant impact to client cache management and power savings [AAFZ95].

Examples of cache management techniques that rely on such predictability are

described in [AFZ96b, TS97a].

Scheduling the broadcast based on client requests is a different problem. This

problem was first studied in [DAW86] where they showed that, under skewed ac-

cess patterns, the standard FCFS scheduling policy performs poorly. Instead,

they proposed an algorithm, called Longest Wait First (LWF), that schedules

broadcast items in decreasing order of aggregate waiting time of pending requests.

This algorithm yields the minimum average response time, but it is very expen-

sive. In [ST97], the authors propose a more efficient algorithm that, given the

data access probabilities, performs similarly to LWF. More recently, [AF98] de-

fined a set of performance criteria for scheduling algorithms, including overhead

and robustness to workload changes. With these in mind, they also proposed a

parameterized algorithm that, depending on the values of the parameter, can per-

form as well as or close to LWF without, however, requiring the knowledge of data

access distributions.
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2.1.2 Hybrid Approaches

Since the main theme of this thesis is hybrid delivery, in this section we review

other hybrid approaches. For clarity, we will classify each approach based on

the taxonomy of data delivery options presented in [FZ96].1 According to this

taxonomy, data delivery mechanisms can be distinguished along three dimensions:

(1) client initiated pull vs. server initiated push, (2) periodic vs. aperiodic, and (3)

unicast vs. broadcast (or multicast) communication. Obviously, hybrid approaches

combine two or more of these options.

The Boston Community Information System [GBBL85] was the first such hy-

brid system. It combined push-periodic-broadcast for news updates and pull-

aperiodic-unicast for querying parts of the database not found in the client cache.

According to [Gif90], the major conclusions of their experiments were that users

valued both components of the hybrid architecture, and that this approach is in-

deed a very economic way to building large scale information systems.

A hybrid teletext-videotex architecture was proposed in [WD88]. Their ap-

proach involved only broadcast delivery, but for both periodically pushed with

aperiodically pulled data. They evaluated the performance of the system based

on some ad hoc partition of the data into two groups (one for each delivery op-

tion). Their results emphasize the need for an algorithm that adaptively selects

the appropriate delivery modes. The same combination of delivery options was

considered in [AFZ97] for the broadcast disks environment. The main difference of

their work is that data are not partitioned into push and pull groups. Instead, data

pull was adopted for expeditious delivery, as a performance improvement over the

regular push mode of broadcast disks. In that work, they explore the efficacy of a

1This taxonomy is better explained in Section 3.2.
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back-channel in a broadcast-only environment and discuss the involved tradeoffs.

In [IV94], Imielinski and Viswanathan propose an adaptive algorithm for hybrid

delivery that combines push-aperiodic-broadcast and pull-aperiodic-unicast. Their

goal is to optimally assign data and bandwidth to the two delivery modes in a way

that expected response time remains below some threshold. However, the proposed

algorithm is computationally expensive and relies on fairly static workloads.

Last in [DCK+97], they consider mobility of users between cells of a cellular

network, and propose two variations of an adaptive algorithm that statistically

selects data to be broadcast based on user profiles and registrations in each cell.

2.1.3 Indexing

Under a data broadcasting scheme, clients are expected to get the needed informa-

tion by filtering the broadcast channel. This means that they have to be monitoring

the channel until they find what they need. For self-powered mobile computers,

this yields a considerable energy waste since the receiver (and probably the CPU

as well) has to be in active mode for long periods. Thus, in terms of power con-

sumption, the ideal scenario would be for the clients to operate most of the time

in doze mode, and switch into the power demanding active mode only when data

they actually need are being broadcast. That would minimize the clients’ tuning

time [IVB94b, IVB94a].

Obviously, this is possible only if the clients have enough advance information

about the broadcast schedule. This is easy under fixed periodic schemes; clients

can, for example, get the schedule upon registering with the system use it there-

after. Under non-fixed schedules the problem is not so trivial. A natural solution

is to publish some sort of index information along with the actual data. But, such
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index information takes up some of the broadcast bandwidth, penalizing the ac-

cess time to the data. Therefore, when power consumption is critical, a tradeoff

between access time and tuning time comes into the picture.

There have been several proposals about how to efficiently address this issue.

The main idea is to structure the index information and distribute it within the

broadcast schedule in a way that optimally balances the involved tradeoff. For

example, in [IVB94a], they present ways of interleaving the nodes of a B-Tree

with the broadcast data in order to support power-efficient filtering based on some

key attribute. In [IVB94b] they discuss how the same can be achieved through

hashing. Their work has been extended in [TY96, YT97] for non-uniform broadcast

schedules. Finally, some alternative techniques based on the idea of Huffman

encoding have also appeared in the literature [SV96, CYW97].

Although in this thesis we are not directly addressing power management issues,

in Section 3.3.5 we explain the impact of indexing to our work.

2.2 Client Caching and Data Updates

Client data caching was introduced as a performance improvement for client-server

systems (e.g., [HKM+88, FC94]). But with the advent of mobile computing, it

became indispensable as it enables disconnected operation for clients not able

or willing to remain connected to main data repositories [KS91, Sat95].

A primary concern for client caching is the dissemination of updates to clients

holding relevant data in their local caches. Basically, there are two basic techniques

for dealing with updates: propagation and invalidation. Propagation means

that the server sends the actual updated data to the clients. Invalidation, on the

other hand, means that the server sends to the clients only notifications about the
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updates. The clients invalidate the stale data in their caches and, if necessary,

request the new values from the server. For database systems, several algorithms

that use one or both of these techniques have been proposed and evaluated, mainly

as part of a cache consistency protocol [Fra96b].

Update dissemination has been considered from several other perspectives. For

example, in [DR94] the authors compare five update propagation methods (on-

demand and the combinations of immediate/periodic broadcast/multicast) for in-

crementally updating cached query results. The use of minimum spanning trees

for pushing updates to a large number of networked nodes is discussed in [Ng90]

and [WM91]. In another interesting study, the idea of quasi-caching, which al-

lows controllable divergence in the values of cached data, is presented as a means

of reducing the update propagation overhead [ABGM90].

The problem has also been studied in a broadcast environment. The dis-

semination of updated items in the broadcast disks architecture is investigated

in [AFZ96a]. There, the authors explore several alternatives for propagating up-

dated data (pages) within the broadcast disk program, and study their effects on

client caching and prefetching under different consistency models.

In a mobile context, a key problem is the efficient (in)validation of data cached

in reconnecting clients. This is usually addressed by periodically broadcasting

some form of invalidation report [BI94, WYC96, JEHA97]. By examining these

reports, clients can check the correctness of their cached data with respect to the

main data repository. From the server’s point of view, the problem is creating

invalidation reports of small size that can be useful to a wide range of clients.

Finally, in [CTO97], the authors investigate the tradeoffs involved in incremen-

tally updating views cached in mobile clients, for different types of periodically
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broadcast update reports. Issues concerning view maintenance for the mobile en-

vironment are also discussed in [WSD+95].

2.3 Publish/Subscribe Services

In the literature, the term “information dissemination” has been extensively used

to refer to publish/subscribe services. These services allow users (information

consumers) to have a passive role in the delivery of data. They do not ask for

information; instead, they define a set of interests, i.e., a profile, and submit it

once2 to a server (information producer or broker) expecting to automatically

receive any newly published information that matches that profile. The server, or

more generally the supporting infrastructure, is responsible to make sure that this

actually happens.

This kind of interaction has been used in several different applications, in-

cluding news delivery, mailing lists, web publishing, messaging systems, software

distribution, and decision support systems. Depending on the nature of the ap-

plication and the operating environment, different aspects of this model may be

defined and implemented in different ways [Loe92]; often it even appears under

different names (e.g., information filtering, document dissemination, event-driven

delivery).

The filtering aspect of such services, i.e., the matching of subscriber profiles

to published data is discussed in [LT92]. Along these lines, [TGNO92] describes

a system that defines profiles as continuous queries over a database using a

relational model. Users are notified whenever data in the database matches these

2The profile may be occasionally updated or refined
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queries. The Stanford Information Filtering Tool (SIFT) [YGM96] proposes a set

of indexing techniques to efficiently match a large number of documents against a

large number of profiles. They also propose a distributed architecture for selectively

disseminating documents over a wide area network [YGM94].

An early publish/subscribe system was the BCIS, described earlier in Sec-

tion 2.1. Under this system, users defined keyword-based profiles, which were used

by the client software to filter the information that was being broadcast by the

server over a wireless network.

Furthermore, under the umbrella of event-driven delivery, publish/subscribe

services have also been used commercially by financial institutions, manufactur-

ing companies, and so forth [OPSS93, Cha98]. Finally, this model has recently

gained popularity on the WWW with the—occasionally misleading—name “Inter-

net push” [DeJ97, FZ98]. For example, several products offer personalized news

delivery (e.g., [Poi98, Air98]), and automatic software distribution (e.g., [Mar98]).
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Chapter 3

Hybrid Data Delivery

Electronic access to information sources is fast becoming an indispensable part of

our lives. More and more people connect to the Internet every day for a wide

array of reasons, both professional and personal. At the same time, many re-

cent technologies, notably light-weight portable computing devices and wireless

communications, enable users to carry out their on-line activities practically from

anywhere and at anytime. In this emerging world of computing, one of the most

important burdens for information providers is to deliver data in very large scale,

possibly over different communication media.

Undoubtedly, the prevailing distributed computing model for the last two

decades is the client/server model; and within this model, the traditional data

delivery mechanism has been request/response. A client sends a message to a

server requesting some information. The server processes the request and responds

by sending back to the client the requested information (assuming the client made

a valid request). However, the host of new applications and technologies are of-

ten exposing the limitations of this mechanism. To overcome these limitations,

researchers and practitioners are now exploring alternative data delivery mecha-

nisms [FZ96]. Among these, data push and data broadcast are receiving a lot of
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attention, mainly because of their scalability potential.

In this chapter, we introduce hybrid data delivery, the combination of the

traditional request/response mechanism with data broadcasting. To put the tech-

nical issues in perspective, we start with a description of the presumed computing

environment and the underlying assumptions. Then, we make a case for hybrid

data delivery, and delineate the goals we want to achieve. In Section 3.3, we

propose air-caching as an abstract vehicle for hybrid delivery adaptive to user

demands. Last, we present the algorithms used to actually realize an air-cache

over a broadcast medium.

3.1 Hybrid Networks

In this section, we present the necessary setting for the discussion that follows, as

well as for the rest of this thesis. We give some basic definitions and identify the

major underlying assumptions.

The key element for the techniques presented herein is a hybrid communications

environment. Generally, this suggests a networking infrastructure where comput-

ing devices may or have to communicate over more than one communication media.

Examples include hybrid fiber coax (HFC), fiber to the curb (FTTC), and hybrid

satellite/terrestrial networks [KB96, BG96, Kha97, Gol98]. For our purposes, a

hybrid network has a more specific definition:

Definition 1 A hybrid network is any communications infrastructure that al-

lows a server to both establish point-to-point conversations with any individual

client as well as broadcast information to all (active) clients.

In a hybrid network we identify two communication channels: the unicast
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channel and the broadcast channel. As the names imply, the unicast channel

is used by the clients and the server to exchange data on a point-to-point basis,

while the broadcast channel is the medium through which the server broadcasts

messages to the clients.

These definitions refer to the logical view of the network and do not necessarily

imply networks that are physically hybrid. In fact, there may be many different

configurations of the underlying communications media. These include:

Single medium (non-hybrid) networks All communication is done over the

same medium that supports both unicasting and broadcasting (e.g., Ether-

net, two-way cable networks)

Separate unicast/broadcast networks The medium used for broadcasting is

different from that used for point-to-point connections between the server

and the clients. An example would be the case where the server uses a

satellite channel to broadcast data, while point-to-point conversations are

carried over some tethered network.

Separate upstream/downstream networks One medium is used for informa-

tion flow from the server to the clients (both broadcast and unicast) and

another is used for the opposite direction. For example, a cable network may

be used for downstream and regular telephone lines for upstream data flow.

A hybrid network that falls under the above definition is an essential require-

ment for the techniques and results presented in this thesis to be applicable. In

addition, the scope of the thesis is also limited by three basic assumptions:

• The broadcast and unicast channel are logically independent and there is

a predetermined amount of bandwidth allocated to each one. This as-
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sumption obviously holds for networks with separate broadcast and uni-

cast media. If however, the two channels share the same medium, they are

properly multiplexed using some bandwidth allocation policy (e.g., TDMA,

FDMA [Tan96]).

• Upstream traffic is negligible. The premise of this assumption is that, for

information consuming applications, clients send small request messages to

the server (e.g., get a data page or a URL), and in return, they may get

much larger amounts of data. As a result, management of the downstream

traffic becomes a primary concern; upstream traffic is often much less of a

burden. Moreover, as a central performance goal of this thesis is to control the

number client requests for any workload, this observation is expected to hold

even in very large scale. The essence of this assumption is two fold: First,

we can ignore the ramifications of congested upstream channels. Second,

for cases where the upstream and downstream flows share the same unicast

channel, we can conjecture that, practically, all of the unicast bandwidth is

used downstream.

• We assume reliable communications and ignore the effects of transmission er-

rors. In practice, data transmissions are error-prone (especially with wireless

media) and necessitate some mechanism for re-transmitting corrupted data.

However, there are techniques that help combat errors at the receiver, obviat-

ing re-transmissions. They are called forward error correction techniques,

and use redundancy to allow receivers to reconstruct any damaged block of

data [Tan96]. They are particularly important in one way communication

environments (e.g., satellite networks) and can be implemented either at the

network or the application layer (e.g., [BB97]).
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Relaxing any or all of these assumptions generates many interesting questions.

For example, could we get better even better performance with dynamic (instead

of static) bandwidth allocation? Or, how should the algorithms be modified to

account for possible communication errors? These questions and more are chal-

lenging directions for future work.

3.2 Data Delivery Alternatives

In a client/server information system, a server is the central data repository that

makes information available to interested clients. In other words, the server is

the information provider and the clients are the information consumers.

Between the two, some data delivery model is engaged that regulates the infor-

mation flow as necessary. For many years, “one-to-one request/response” has been

the predominant model for this purpose. When a client needs some piece of infor-

mation, it sends a request to server and the server replies with the information to

the requesting client. Recently, alternatives to this model are emerging, mainly as

an effort to accommodate the size explosion of the Internet, information overload,

as well as special requirements imposed by mobile computing.

In [FZ96, FZ97], the authors propose a taxonomy of data delivery mechanisms.

They differentiate the possible mechanisms along three dimensions:

Pull vs. Push Pull-based delivery refers to the cases where the client initiates

the data transfer by sending a request to the server, i.e., the client pulls in-

formation from the server. In contrast, with push-based delivery the transfer

is initiated by the server without any specific client request. In other words,

the server pushes information to the client(s).
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Aperiodic vs. Periodic Aperiodic delivery refers to unscheduled data transfers

caused by (random) events like a client request or the generation of new

data. On the other hand, periodic delivery is repetitive transfer performed

in a orderly manner according to some schedule.

Unicast vs. 1-to-N This distinction pertains the communication method used to

actually transmit the data, and reflects the number of potential recipients.

With unicast, only one client can receive data the server transmits. 1-to-N

delivery suggests multicast or broadcast communication and the ability for

multiple clients to receive the same server message.

According to this taxonomy, request/response is classified as a pull-aperiodic-

unicast model. Other combinations correspond to less popular delivery mecha-

nisms, like polling (pull-periodic-unicast), triggers (push-aperiodic-unicast), etc.

In our study, we concentrate on two models: pull-aperiodic-unicast and

push-periodic-broadcast. These two models are on the antipodes of the tax-

onomy; they stand apart in all three dimensions. In principle, they are designed

to serve different purposes as they exhibit different properties and performance

characteristics. With this in mind, the theme of this thesis is to combine them in

a hybrid method, where each one complements the other to yield an effective and

very scalable data delivery mechanism. The merit of the other models, as well as

the possibility of more types of hybrid approaches are indeed worth investigating,

but beyond our current scope.

In the following sections, we first review the two models and discuss their

advantages and disadvantages. Based on that, we then make a case for hybrid

delivery.

Before proceeding with the discussion, we must make an important note on the
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terms used throughout this thesis. Given the focus of our work on the two partic-

ular models, we use a looser terminology, hopefully, without causing any confusion

for the reader. Specifically, the term push/broadcast as well as the terms push

and broadcast individually, are used to refer to push-periodic-broadcast. Simi-

larly, the terms pull/unicast, pull, and unicast refer to pull-aperiodic-unicast.

Occasionally, the latter is also called on-demand delivery.

3.2.1 Pull/Unicast Delivery

The client/server computing model has been founded on the very simple idea of

a client requesting some kind of service from a server, and the server providing

the requested service. When the service includes delivery of data to the client,

this naturally translates to the request/response delivery model. Typically, the

client establishes a connection with the server and sends a request message. The

server processes the request, and replies with the requested data, assuming a valid

client request. The client receives the data and drops the connection. This simple,

straight-forward mechanism has been used almost exclusively since the earliest

information systems.

This simplicity is a strong enough reason to believe that it will remain the

most popular mechanism in the years to come. However, with the ever increasing

popularity of the web, these systems are now being put under hard stress tests. In

several occasions servers are called to handle huge waves of user requests. Often,

they fail to perform; clients cannot get the requested data or, at best, they get

it with very long delays. When that happens, we suspect that either the server

cannot process requests as fast, or (probably more often) the available network

bandwidth is not enough.
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Figure 3.1: Typical performance of pull/unicast systems

These are clear demonstrations of the fact that the pull/unicast model suffers

from scalability problems. The root of these problems is that the performance

of such systems depends on the workload imposed on the server. The workload

is usually expressed in terms of the request rate, i.e., the rate at which client

requests arrive at the server. Figure 3.1 plots a typical performance curve for a

pull/unicast server. The expected response time is a hyperbolic function of the

workload. More importantly, every server has an upper limit as to how fast it can

process client requests. If the request rate is sustained at higher levels for prolonged

periods of time, the server cannot keep up with the demand. As a result, response

times grow arbitrary large.1 This limit defines the server capacity and reflects

the maximum rate at which the server can service client requests.

The capacity of a server is determined by the hardware configuration (i.e.,

number and type of processors, main or secondary memory) as well as the network

connections. For a system to perform acceptably at all times, it has to be designed

1Practically, because of limited input queue sizes, a lot of requests are not accepted by the

server, and therefore they are never serviced.
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with a capacity higher than the maximum anticipated workload. However, this is

not practical for two reasons: First, it is not always easy—if possible at all—to

predict what the maximum workload may be. Second and more important, even if

a good prediction can be made, the maximum workload (as observed for example

during “rush” hours, special events, or emergencies) can climb up to hundreds

times the average. Therefore, designing a system to handle peak demand is very

uneconomical, as it requires huge investments in equipment that would remain

underutilized for most of the time. Naturally, the broader the difference between

the maximum and the average workload, the more wasteful such investments are.

A related phenomenon is often the cause for wasteful usage of resources by

pull/unicast data delivery. For many applications, a significant part of the infor-

mation consumers are requesting exactly the same information. As a result, some

pieces of information tend to be extremely popular, especially during peak periods.

Examples are the last day’s top news stories, stock market information, traffic on

major highways, etc. What happens in such cases is that the server keeps process-

ing the same request, and keeps sending the same data through the network over

and over again. All this redundancy squanders a lot of processor cycles and, more

importantly, high amounts of valuable network bandwidth.

But, what could we do to address these issues? How can we build scalable

systems and avoid unnecessary expenditures in infrastructure? A proposal that

has received a lot of attention lately is push/broadcast data delivery. In the next

section we explain why this proposal is so attractive, but also discuss its vulnera-

bilities.
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3.2.2 Push/Broadcast Delivery

Push-periodic-broadcast is the inverse approach for data delivery. To a large ex-

tent, it has been motivated by the fact that modern broadcast networks, both

wireless and wireline, can be used to efficiently distribute information in very large

and/or geographically wide scale. In principal, it is the same idea that has been

very successfully used for distribution of radio or television programs.

Under this approach, clients do not request data from the server; instead, the

server pro-actively sends data “towards” the clients. Broadly, this works as follows:

the server repeatedly transmits a set of data items over a broadcast medium (e.g.,

satellite channel, cable network). When a client needs any of these items, it starts

monitoring the broadcast medium until the item of interest gets transmitted. Using

the terminology of [Vis94], the client listens to (or tunes in) the broadcast

channel and filters the data it needs.2

Through repetition, the server keeps the data circulating in the broadcast chan-

nel. Data are continuously passing by the clients which just “grab” whatever they

need, without making any requests. In some sense, this allows the broadcast

medium to be perceived as a memory space for storing data. It can be thought

of as a special type of a storage device, which any client can read from at any

time. In its simplest form (i.e., “flat” broadcast), it functions like a one-cylinder

disk or a closed-end tape. More complex forms can be achieved by employing

proper broadcast scheduling techniques that result in more sophisticated storage

organizations.

The merit of this approach has been under research investigation for more

than a decade. Probably, the most important examples or research along this line

2[Vis94] refers also to this delivery mode as publishing
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Figure 3.2: Typical performance of push/broadcast systems

are the Datacycle database machine [BGH+92], the work carried by the Dataman

group [Imi96], and the Broadcast Disks project [AFZ95]. In the context of the lat-

ter, [Ach98] presents a thorough examination of push/broadcast delivery. It builds

a case for it with several supportive arguments and studies a number of related

issues and tradeoffs (e.g., broadcast organization, client caching and prefetching)

Let us now sort out some of the important advantages of push/broadcast de-

livery:

Scalability Broadcasting can be used to efficiently reach huge, and possibly

widely dispersed, client populations. This is exactly what prescribes it as an

attractive approach for large scale data dissemination. The number of recipients

of broadcast messages can grow arbitrary large without any additional impact on

the network. Given that, storing data in a broadcast channel through repetition

creates a memory space with a unique and important property: it exhibits no access

contention. Practically, this means that it can be accessed by any number of clients

concurrently without any performance degradation. As shown in Figure 3.2(a), the

size of the workload, i.e., the client demands for data, has no effect on the average
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data access time. If we contrast this to the performance of a pull/unicast system

(Figure 3.1), we can easily see that push/broadcast has a significant potential as

a scalable data delivery mechanism.

Bandwidth savings Compared to unicasting, broadcasting yields significant

savings in terms of network bandwidth when a single message is intended for or

expected by multiple clients. In fact, the more the recipients of the message the

greater the savings are. In that respect, broadcasting is the most “bandwidth

conscious” method of distributing popular content.

Asymmetry The information consumption model followed by many applications

generates a unidirectional information flow from the server to the clients. Server-

initiated (i.e., push) delivery is a natural match for this purpose. It eliminates the

need for client requests, avoiding the associated overheads and costs. On one hand,

the server avoids the computing overhead of servicing the requests as well as the

communications overhead of connection-oriented protocols that are typically used

for making the requests. One the other hand, at least in the mobile environment,

clients save money and battery life since wireless connections are typically expen-

sive and message transmissions consume significant amounts of power. In any case,

push delivery actually eliminates the requirement for an uplink altogether.

Support for disconnection Repetitive broadcast also serves as a convenient

way to disseminate data to clients that are not reachable at all times. These

are clients that choose or have to stop using their communication devices, and

operate in disconnected or sleep mode [KS91]. For example, this is the typical

operation mode for mobile users. In such case, if data are kept rotating in the
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broadcast channel, a client can just pick up whatever it needs at any time, just by

reactivating the communication device and filtering the incoming data stream.

In order to take advantage of these benefits, push/broadcast delivery needs

to be very carefully designed and deployed. The reason is that the benefits may

be offset by its two major weaknesses: sequential data access and lack of usage

feedback. Let us examine each one separately.

Sequential access A client that wants to retrieve one of the data items that the

server broadcasts, starts listening to the channel and waits until the specific item

is actually broadcast. The client’s response time or access time, i.e., the time

it has to wait, depends on the amount of data that are being broadcast. Using the

storage device analogy, data in the broadcast channel are accessed sequentially. As

a direct consequence, the more data are stored the higher the data access latency.

This is shown in Figure 3.2(b) where the average access time grows proportionally

with the volume of data being broadcast.3 On average, the access time for any

data item is equal to half its repetition period in the broadcast. Thus, we must

be really frugal in selecting data to broadcast so that the repetition periods, and

therefore the access times, do not get prohibitively long.

No usage feedback The absence of clients requests has, however, a negative

consequence: the server cannot have explicit information about what data the

clients want exactly (“the burden of push” [FZ97]). This may lead to either or

both of the following two unfortunate scenarios: First, the server may never deliver

data that clients actually want. Unless clients have an alternative way to get that

data, their needs will never be satisfied. Second, the server may be broadcasting

3The slope of this performance line depends on the bandwidth of the broadcast channel.
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data that no client needs. Sending irrelevant data has an adverse effect not only

because it is a waste of network bandwidth, but also because it unnecessarily

increases the access time for useful data. On top of that, the server cannot know

whether it is actually making either mistake, as the clients never acknowledge the

usefulness of the broadcast content. In contrast, with pull-based delivery, the server

makes use of the requests to build a “fully-informed” model4 of the clients’ needs

and, obviously, transmits only useful data. i.e., data that a client requested. For

a push-based model, the server relies on implicit information to predict what the

clients want. For example, users may subscribe with the server and provide profiles

of interests. Based on this information, the server can decide what data to push

(e.g., [OPSS93, AAFZ95, DCK+97]). In any case, the success of push/broadcast

delivery depends on the server to create a clear picture of the clients’ needs.

Besides these two weaknesses, the organization of the broadcast itself is a cru-

cial factor for the success of such a system. In its simplest form, the broadcast

storage is “flat”. This means that data items are broadcast one after the other in

a round-robin fashion. The repetition period, and thus the average access latency,

is the same for all items. However, it has been recognized that this is not always

the best approach. Instead, in many cases it is advantageous to be broadcasting

some items more often than other (e.g., [Won88, IV94, AAFZ95, ST97, HV97b]).

Compared to a flat broadcast, this decreases the latency for frequently broadcast

items, but increases the latency of the rest. This “unfair treatment” is justified

by the fact that, typically, not all data are equally popular. In fact, data access

patterns often exhibit high degrees of skewness [DYC95, ABCdO96]. Therefore,

by decreasing the latency for items in high demand, we decrease the overall ex-

4Assuming no client requests are dropped from the server’s input buffer
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pected latency. The optimal broadcast organization depends on the data access

distribution [AW87]. Obviously, the performance gain from non-uniform schemes

becomes more important as the volume and/or the popularity skewness of data

increases.

3.2.3 Hybrid Delivery

As the name implies, hybrid data delivery is the combined use of two (or more)

different mechanisms for delivering data from a server to a set of clients. In our

case, the two mechanisms are pull/unicast and push/broadcast.5 The goal is to

create an integrated delivery mechanism that can efficiently support large scale

information consumption in a modern networking environment.

According to the preceding discussion, each of these two delivery methods

has limitations that may render it inappropriate for achieving this goal. Most

notably, pull/unicast suffers from scalability problems as the server and/or the

(adjacent) network links often become a bottleneck, while push/broadcast suffers

from long response times when too much data have to be broadcast. Hybrid

delivery aspires to overcome these limitations by combining them in a synergistic

and complementary manner. The idea is to use each one for what it is best

at, and the same time, exploit the advantages of the one to help overcome the

limitations of the other. Push/broadcast is an effective way of distributing popular

content, but it is wasteful to use it for data that very few clients need. Pull/unicast,

on the other hand, can handle any type of data as long as the server is not saturated

with requests. Therefore, in order to make the best use of both of them, we should

be broadcasting only popular data, and unicasting the rest only when they get

5For the interested reader, some other hybrid approaches are briefly discussed in Section 2.1.2.
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pulled by clients. In other words, push/broadcast should be used to disseminate

information satisfying the bulk of clients’ needs, while pull/unicast should take

over the (significantly reduced) request load for unpopular information.

Figure 3.3 attempts to provide some insight on the benefits of the hybrid ap-

proach. In the figure, we show the kind of performance we hope to achieve with a

hybrid system, and compare it to the performance of both the individual methods

(Figures 3.1 and 3.2). Our intention here is to make a qualitative comparison; the

relative sizes of the curves may be quite different, depending on the application

and the underlying infrastructure. What we see in the figure is that hybrid deliv-

ery aspires to improve the performance of either basic method. On one hand, by

pushing popular data, it relieves the server from a heavy load of requests (those

for popular data). As a result, access contention at the server is reduced dramati-

cally, allowing the system to operate on a scale much larger than its (pull) capacity

(the “Hybrid” line in Figure 3.3 extends well to the right of the “Pull/Unicast”

line). On the other hand, when data can also be delivered on demand, the server

does not have to broadcast any data item that any one client might need at any
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time. Instead, it can concentrate on broadcasting only popular data, reducing

the response time of the push/broadcast delivery (the “Hybrid” line runs below

the “Push/Broadcast” line). This response time is determined by the amount of

data that are considered popular and need to be broadcast, and depends on the

workload parameters (volume of requests and access distribution). At extreme

cases of high workloads where all data receive a considerable amount of requests,

the system has to broadcast all the data, performing like a push/broadcast only

system.

Beyond this performance advantage, hybrid delivery also makes a better use

of the available resources. This argument has two sides: First, the broadcast

bandwidth is used for popular content only. This means that every broadcast

message is expected to have a substantial number of recipients. Ideally, none of

these messages will turn out to be superfluous. Second, as it handles requests only

for less frequently requested information, the server does not have to process the

same request and transmit the same data over and over again. Thus, redundancy

is extenuated to a big extent, saving both processing cycles and unicast bandwidth.

Nonetheless, in order to successfully employ a hybrid delivery approach, we

need to address a number of crucial issues: How we can classify data as popular

or unpopular? How can we measure this popularity? How exactly do we decide

what to broadcast and what to service on demand? Can we get good performance

for all workloads? The answers to these questions depend on the applications and

the underlying infrastructure (e.g., network bandwidth). For every situation, we

need to develop techniques that take into account the involved parameters and

the desired performance characteristics. In many situations, however, we need

to answer one more question: Can we get this performance even under dynamic
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workloads, i.e., request loads with varying intensity and patterns? This question is

becoming ever more critical for the success of information dissemination systems

as user demands can be very dynamic and often unpredictable. Possible causes for

this behavior include:

• Client interests may shift over time. For example, in the morning users

usually need information about traffic delays and the weather, while in the

evening they may want to know about movie showing times or table avail-

ability in local restaurants.

• Real life events may generate bursty requests for relevant information. These

can be either scheduled (e.g., elections, sports) or unscheduled (e.g., breaking

news, emergencies). The latter are typically more difficult to respond; often

they are referred to as “panic situations”.

• In mobile settings, clients unpredictably connect to and disconnect from the

information sources. Also, in cellular networks, they arbitrarily join and

leave coverage areas.

Therefore, we need not only techniques that can implement the advantages of

hybrid delivery, but also techniques that can adapt to clients’ demands. With this

in mind, the main proposal of this thesis is adaptive hybrid data delivery.

Broadly, the goal is

Fast and scalable data dissemination, responsive to dynamic workloads

with prudent usage of (server and network) resources

In the next section we introduce air-caching, the central concept of our work,

as a general framework for achieving the above goal. We present its goals and basic
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principles, as well as define the general operating guidelines. These will serve as

the basis for the applications described in the following chapters.

3.3 Air-Caching

Generally, the goals set for adaptive hybrid delivery in the previous section can be

rephrased as follows:

• Increase system throughput in terms of requests satisfied or serviced per unit

of time.

• Reduce contention at the shared resource, i.e., the server.

• Adapt according to the users data access patterns.

Stated this way, these goals are very familiar; they are the main goals set

by data caching and cache management techniques employed in several (dis-

tributed) computing systems. Caches are memory layers placed between data

providers and data consumers to decrease access latency and increase throughput.

Examples include memory hierarchies of computer systems [HP96], main memory

buffering in operating systems [SG94] and database management systems [EH84],

client caching for client/server database systems [Del93, Fra96b], and more re-

cently, proxy caching for web content [CDN+96, GRC97]. Following this pattern,

our approach to hybrid data delivery is based on the notion of data caching. Specif-

ically, we use the available broadcast channel to create a global cache lying between

the server and the clients. Driven by the fact that on most occasions the carrier
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of a broadcast channel is a wireless medium, we call this cache an air-cache.6

As we have seen earlier, repetitive broadcasting creates the effect of storing data

in the broadcast channel. The air-cache builds exactly on this idea. Generally, it

works as follows: The server selects a set of data that deems as popular which it

broadcasts repeatedly. That appears as caching (i.e., storing) the most popular

data on the air (i.e., broadcast channel). When a client needs a data item, it starts

listening to the broadcast to find out whether the item of interest is air-cached

(i.e., being broadcast). This is facilitated by some indexing information that is

being broadcast along with the actual data. If the item is indeed in the air-cache,

the client retrieves it from there as soon as it gets broadcast. This constitutes an

air-cache hit. If however, the client determines that the item is not air-cached,

then it sends a request to the server asking for it. Correspondingly, this is an

air-cache miss.7 The server processes the request and unicasts the reply back to

the client.

The air-cache is a very convenient abstraction for describing and implementing

hybrid data delivery. The main reason is that it allows the problem of adaptive

hybrid delivery to be expressed—and addressed—as a cache management problem.

Generally, the goal is to maintain an air-cache able to satisfy most of clients re-

quests, leaving the server to handle a small volume of cache misses. The questions

raised in the previous section can now take the following form: Which of the data

should be air-cached? When should a data item be air-cached? When should it

be removed form the air-cache?

6Obviously, this name does not preclude such a cache from being realized over a wired broad-

cast medium

7In the rest of the thesis, air-cache hits and air-cache misses will be referred just as hits and

misses respectively.
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Despite its similarities to more traditional caches, none of the existing man-

agement techniques can be applied in the case of air-caching. The reason is that

the air-cache has a number of unique properties that require a completely different

approach. Thus, management techniques have to be tailored to these special prop-

erties. Chapters 4, 5, and 6 are devoted to the presentation of such techniques used

for this purpose. Below, we list the special characteristics of air-caching, as well

as the performance tradeoffs that are involved. All these stem from the fact that

air-caching is based on storage of data in a broadcast channel, and therefore apply

to all similar architectures. For the interested reader, most of these are discussed

extensively also in [Ach98].

3.3.1 Properties

First of all, the air-cache is not a fixed latency memory. Because of the sequential

nature of the broadcast, the actual latency for retrieving a data item depends on the

next transmission of the item relatively to the moment a client starts monitoring

the channel. This is unlike main memory caches, where every access bears the

same delay. It resembles more disk storage where the actual latency depends on

the location of the disk heads and the rotation of the platters at the moment of

the request. Therefore, similarly to disks, in the case of air-caching we use the

average access latency as a performance metric. As we have mentioned earlier,

the average access time for any item in the cache is equal to half the repetition

period of that item. But, what makes this characteristic unique is that for air-

caching even the average access latency is not fixed; instead, it can be dynamically

adjusted. In fact, it is determined by the size and the structure of the air-cache as

described below.
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Contrary to traditional caches, the air-cache can be optimized in more than

one way. Generally, an air-cache manager has the flexibility of modifying three

decision variables:

Contents This variable is common to all types of caches. Actually, in most cases

this is the only variable. Data are moved in to and out of the cache to better

accommodate the consumers’ demands. Naturally, this is a primary function

of the air-cache as well.

Size Caches implemented in real (physical) memory (main memory, disk, etc.)

are limited by the size of the memory space allocated to them. The cache

management algorithm does not have the luxury of taking up more space

if necessary.8 The air-cache, however, does not have this limitation. Being

a software construct, the cache manager can dynamically change its size.

In other words, it can cache (i.e., broadcast) more or less data as it deems

appropriate. This flexibility comes with a price though. Caching more data

results in increased average access latency as it actually translates to having

to broadcast more data.

Structure As it was discussed in Section 3.2.2, push/broadcast systems can ad-

just the data repetition frequencies to better match the clients demands.

Similarly, the air-cache has many options for organizing the broadcast data.

These range from a flat to a very fine-tuned scheme. In the former, all items

are broadcast with the same frequency. In the latter, a separate, properly

8A system administrator can increase the size of memory used for caching by, for example,

installing more memory to a system or adding another disk. However, this is an off-line process,

beyond the control of the cache management algorithm.
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selected, frequency is used for each individual item. In between, items are

partitioned into groups, with each group having its own broadcast frequency,

following the “multi-disk” model introduced in [ZFAA94]. In any case, the

structure of the air-cache directly affects the average time to access the cached

data.

Moreover, the air-cache mechanism differs in the way misses are handled. Typ-

ically, caches are intermediate levels in a memory hierarchy. Within such hier-

archies, the consumer (e.g., processor, client, web browser) looks for data in the

closest (in terms of access latency) cache level. Should this result in a miss, the

cache manager takes over the task of retrieving the data from lower levels. The

retrieved data are brought into the cache and then delivered to the consumer. If

the cache happens to be full, some previously cached data have to be evicted first,

to make space for the new data. The victim data are selected by the cache replace-

ment policy. Except for some increased latency, this whole process is transparent

to the consumer. For air-cache misses, however, the scenario is different. The

client is responsible to detect a miss as well as request the missed data from the

server. In addition, the requested data do not have to be delivered to the client

through the air-cache; and even if they do they do not have to replace other cached

data, as the size of the cache can easily change. In this thesis, we examine only the

case where missed data are unicast to the clients. The implications of delivering

requests through the air-cache (i.e., through the broadcast) are beyond our scope.

To some extent, the involved tradeoffs for that case are studied in [AFZ97] in the

context of Broadcast Disks.

The last, but very important, distinctive property has to do with the fact that

the server does not get any feedback about the air-cached data. Clients do not

43



acknowledge the retrieval any of the broadcast data. In other words, cache hits are

not reported to the server. The only information available to the server is cache

misses, i.e., requests for data not in the air-cache. Obviously, this unique property

renders all the traditional (hits-based) cache management techniques (e.g., LRU,

MRU) inapplicable in this case. Instead, we need to develop effective algorithms

that rely solely on misses. But, as we explain below, this forces us to reconsider

the problem of cache management along a different train of thought.

3.3.2 Management

Broadly, cache management techniques aim at solving a basic optimization prob-

lem: “Given the size of the cache, select (to cache) the set of data that minimizes

the number of cache misses.” The intuition behind this objective is that misses are

expensive; they incur higher latencies by accessing lower level memories, and, where

applicable, engage valuable shared resources (e.g., system bus, server). Therefore,

a smaller number of misses yields lower average access time, less contention for

shared resources, and therefore, higher throughput.

In practice, it is not possible to solve this problem optimally, as this would

require perfect knowledge of future data accesses. Instead, the conventional ap-

proach is to employ a cache replacement policy that tries to assess the importance

of data items based on the recent history of data accesses.9 Therefore, such policies

tend to keep in the cache data that have been accessed recently and/or frequently,

and remove data that have not, on the premise that this behavior is likely to con-

tinue, at least for the near future. In other words, given the recent hits and misses

9In some cases, application specific “hints” can help the cache manager take more insightful

decisions.
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they assess the current workload, i.e., the consumers demands, and maintain the

part of the cache expected to be more useful.

However, air-cache management is a slightly different problem. A first indica-

tion attesting to the peculiarity of the problem is that with air-caching the above

objective, i.e., minimize the misses, is trivial to accomplish. As the air-cache does

not have a size constraint, misses can be completely eliminated simply by caching

all the available data. Nonetheless, this is not at all advisable since it may have

disastrous effects on the cache performance. Except for small size databases, the

access latency may increase beyond the point of any practical use. This makes

obvious that we need to set an alternative optimization goal for air-caching.

This new goal is basically dictated by three observations. The first has to

do with the role of the misses. A deficiency of air-caching is that the server

does not receive information about cache hits. This impedes cache management

considerably. The server can neither appraise the usefulness of the air-cache nor

draw a clear picture about the workload. The only indication of any client activity

is the misses sent to the server. But, these make up only for part of all the requests,

offering an incomplete picture of the system’s workload. Still, the server has to

resort to them for all the related decisions. Therefore, misses now play a vital role

for the system. In fact, the more the misses the better the workload statistics.

This leads to the counterintuitive conclusion that misses are welcome.

The second observation enforces this conclusion even more, at least to some

extent. Unlike conventional misses, the air-cache misses are not necessarily more

expensive than the hits. In many cases, getting data from the server might be

almost as fast as (if not faster than) getting it from the air-cache. However, this

happens only if the server is not heavily loaded and can respond quickly to client
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requests. If the volume of misses is too big for the server to handle, then it

becomes a serious bottleneck and fails to respond promptly. Miss service times

grow arbitrarily high at a very fast rate (hyperbolically). Consequently, misses are

indeed welcome as long as they do not swamp the server.

The final observation is that the latency of the air-cache is an increasing func-

tion of its size. This clearly suggests an optimization direction towards small size

caches. In an ironic manner, the fastest cache is the almost empty cache. Albeit,

an almost empty cache is of almost no use. Most clients cannot find what they

need in the cache and are forced to generate misses, i.e., send requests to the server.

Again, if too many, these misses can overload the server. Thus, the server must

make sure that the air-cache holds enough data to limit the volume of misses at

a tolerable level. At the flip side of this, the server must make sure that it is not

caching any data that hardly any client needs. Such data obviously do not save

the server from any serious load of requests. Instead, they unnecessarily increase

the size and the latency of the cache. Hence, the server must be caching not only

enough data, but also the right set of data. It turns out that this is the trickiest

part of air-cache management, as the server cannot explicitly know whether cached

data are actually used or not.

In the light of the above observations, we can now phrase the basic principle

of air-caching:

Cache the minimal data set that results in the maximum load

of misses the server can handle

The maximum tolerable load is determined by the server’s processing capabil-

ities and its network connections. In other words, it is determined by the rate the

server can process requests, and the rate it can transmit data to the clients. De-
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pending on the application, the workload, and the operating environment, either

one can be the limiting factor that ultimately defines the system’s pull capacity.

For a server to follow the above principle, it needs algorithms that can estimate

the popularity of the available data, as well as predict the effects of caching or not

caching them. The way this can be achieved depends on the application under

consideration and the data being managed. In the chapters that follow, we present

a set of such techniques we have developed for three different applications. Through

these techniques, and the experimental results that accompany them, our primary

intention is to establish the viability and versatility of air-caching as an efficient

and scalable data dissemination technique. At the same time, we want to highlight

some of the subtle points and the related design tradeoffs. Hopefully, these can

serve as the guidelines for an actual deployment of the proposed ideas.

3.3.3 Structure

In the previous section, we overlooked one of the decision variables of the air-

cache, its structure. The reason was that the discussion was concentrated on

the tradeoffs of hybrid data delivery. The structure was not intertwined as it

affects only broadcast delivery. It is, however, an important variable that can have

a significant impact on the overall system performance. As such, it should be

appropriately selected in the system design or set by the cache manager.

In this thesis, we define two general structures for the air-cache, a simple and

a composite:

Definition 2 A simple air-cache AC follows a flat broadcast scheme where data

get broadcast successively one after the other.
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Definition 3 A composite air-cache is a combination of C simple air-caches

AC1,AC2, . . . ,ACC in a single broadcast channel. For a given set of non-negative

numbers φ1, φ2, . . . , φC and Φ =
C∑
i=1

φi, data broadcasts are multiplexed so that

1. data cached in ACk take up at least φk/Φ of the broadcast bandwidth, and

2. the interval between successive broadcasts of the same item is fixed

A flat air-cache is used in cases where a finer approach is not expected to yield

any significant performance benefit. That may happen, for example, if the rela-

tive importance of the cached data does not vary significantly, or if the size and

the latency of the cache are small with slim margins for improvement. A com-

posite air-cache, on the other hand, is a more flexible structure that can be used

in more intricate situations. It enables the partitioning of data into groups ac-

cording to some application specific criteria, and the creation of a separate simple

air-cache for each such group. In effect, it is a generalization of the “multi-disk”

broadcast model [ZFAA94]. These simple air-caches can be managed either col-

lectively or independently. In other words, there can be either a single composite

air-cache manager, or multiple (independent) simple air-cache managers. The for-

mer method is used in Chapter 5 with popularity-based grouping of the data. The

latter is used in Chapter 6 where data are semantically partitioned and managed

independently.

In the above definition of the composite air-cache, we require fixed intervals

between successive broadcasts of the same items.10 This is a well known prop-

erty for repetitive broadcasting [Chi94, AAFZ95, VH96] that originates from the

“residual life paradox” [Kle75]. In particular, it has been shown that, for a given

10This trivially holds for flat air-caches.
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mean repetition period, the average access time for any item in the broadcast

is minimized when the variance of this period is zero, i.e., when the period is

fixed [JW95]. Furthermore, this repetition regularity can be also exploited by the

clients to make better use their resources. For example, if they know the exact

arrival time of any item, clients can manage their local cache more effectively, and

can save battery by turning off their receivers until an item of interest is scheduled

to be broadcast [AAFZ95].

The parameters φ1, φ2, . . . , φC determine the relative importance of the indi-

vidual air-caches. The higher the value of φk the more bandwidth is allocated to

ACk and, thus, the more frequently data cached in it get broadcast. Note that

φk/Φ is not the exact share of bandwidth allocated to ACk; it the minimum share

guaranteed to it. The exact share may be higher if one or more of the other air-

caches are empty and not using their shares. If we define uk to be 1 when ACk is

actually used (i.e., it is not empty) and 0 when it is not used (i.e., it is empty),

then the actual share for ACk is bk =
ukφk∑C
i=1 uiφi

.

In the next section, we present how both simple and composite air-caches with

the abovementioned characteristics can be realized over a broadcast channel.

3.3.4 Implementation

The effect of caching data in a communication channel is created by repetitive

broadcasting. With that in mind, a flat air-cache is straightforward to realize.

Our implementation uses a queue Q to keep cached data, and works as follows:

We append all the cached items to Q. Each time the broadcaster (the process

responsible for actually broadcasting the data) selects to transmit the item at the

head of the queue. After it does, the item is removed from the head of the queue
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and gets re-queued back to the tail. This process repeats forever resulting in a flat

periodic broadcast of all the items in Q. Occasionally, while this is happening, we

need to either add data to the cache or remove from it. But, this is again quite

simple. To cache more data, we just append the new data to the tail of the queue.

To remove a data item, we wait until the item gets broadcast. When it does, we

remove it from Q as usual, but we do not re-queue it, leaving it out of the loop.

A composite air-cache is realized by extending the above method to include

multiple queues (Q1, Q2, . . . , QC). Each queue operates exactly as described above.

However, only one item can be broadcast at a time. Therefore, the broadcaster

needs an algorithm to decide each time the proper queue to broadcast from. The

task of the broadcaster is to produce a schedule that adheres to the definition of

the composite air-cache. It turned out that a perfect match for this purpose is

a worst-case fair weighted fair queueing algorithm [BZ96]. This algorithm

was designed to provide quality of service guarantees in packet switched networks.

It propagates over a network link packets from several competing streams (input

queues) according the bandwidth share allocated to each one of them. This obvi-

ously is in accord with the first requirement of composite air-caches. Furthermore,

from the worst case analysis presented in [BZ96], it follows that it approximates

the second requirement very well, yielding repetition intervals with minimum—but

not always zero—variance. The complexity of the algorithm is O(log(C)) which

means that it is very efficient for reasonable number of air-caches. Last but not

least, it can accommodate on-line changes in the structure of the air-cache, only

with a simple adjustment of the parameters φk. The actual algorithm we used is

a slightly modified version of that presented in [HV97b].
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3.3.5 Indexing

An important question that we have not addressed so far is how the clients can

find out what is being broadcast. For a hybrid delivery system, this is a crucial

question since clients have to decide whether, when, and what for they should

contact the server. The answer to this question lies on channel indexing. In the

context of data broadcasting, an index is some sort of directory information about

upcoming data. Typically, it lists the contents of the broadcast program, and it is

repeatedly broadcast—either in parts or as a whole—interleaved with the actual

data [IVB94a]. Often, it also contains detailed timing information that indicates

the exact time each item is scheduled to be broadcast. This information usually

comes in the form of offset units, i.e., the number of broadcast units (e.g., pages,

buckets) following the index [IVB94a].

In the air-caching parlance, the index provides the necessary information to

discriminate hits from misses. When accessing the air-cache through an index,

a client tunes to the channel and waits for the next instance of the index to be

broadcast. The time it spends waiting for the index is called probe wait or

probe time [Vis94]. When it does receive the index, the client checks whether

what it needs is listed or not. If it is, we have a cache hit, and the client keeps

on monitoring the channel until the needed data get broadcast. Optionally, if the

index contains timing information, the client can save energy by turning off the

receiver until just before the data is actually transmitted. On the other hand,

when (some of) the needed data are not listed in the index we have a cache miss,

which means that the client has to send a request to the server.

This use of an index bears a performance tradeoff. According to the above

description, the probe time is part of the client’s response time. It affects mostly
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the misses because it precedes, and hence delays, the request/reply phase. The

time clients have to wait for the index depends on how frequently it is repeated in

the broadcast; the higher the repetition frequency the smaller the average probe

time. But, in order to broadcast the index, we are “stealing” bandwidth from the

actual data. Therefore, if we transmit the index very often we may reduce the

effective bandwidth considerably. As a result, air-cached data take much longer

to arrive, yielding worse access times. This means that very frequent transmission

of the index works in favor of misses and against hits; it reduces probe time (i.e.,

the time to detect a miss and make a request) but increases the air-cache latency.

Naturally, this counteraction is affected by the size of the index, as compared to

that of the actual data. If it is very small, even very frequent index broadcasts

have negligible effect on the cache latency. If, on the other hand, the index is long

the system will be very sensitive to its broadcast frequency.

Notice that this tradeoff is similar to one discussed in Section 2.1.3. There, the

concern was to save battery life for mobile units. The difference is that access time

was traded for tuning time, i.e., the time a client has to be listening to the broadcast

channel in order to locate and download the item of interest. Nevertheless, the

nature of the tuning time, which consists of multiple small non-contiguous intervals,

is different from the probe time discussed here.

In our work, we touch upon on indexing from the air-caching perspective.

Specifically, we focus on what kind of information should be included in the index

so that the clients can promptly decide whether they have to contact the server to

request any data. In all cases we examine, the size of the index is not big enough

to raise any serious concern about its broadcast frequency. Thus, we arbitrary

choose rather high frequencies that yield small probe times. Last, we do not di-
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rectly address the issue of energy conservation. However, the proposed indexing

schemes can be extended with detailed timing information, enabling the clients to

tune selectively.

3.3.6 Definitions

In the last section of the chapter, we present a set of definitions that will be used

throughout this thesis to describe the structure and performance characteristics

of an air-cache. The definitions are given in the context of composite air-caches.

However, they are also applicable to flat air-caches as those can be considered

degenerate cases of composite air-caches.

In our work, we follow the established convention for (simulation-based) broad-

cast systems of measuring time in broadcast units [Vis94, Ach98]. Generally, a

broadcast unit is defined as the time required to broadcast a data item of some

reference size (e.g., disk page, fixed size packet). The benefit of this abstract mea-

surement method is that it factors out environment and application specific details

(i.e., bandwidth and data sizes). The obtained results can easily be projected later

to any actual setting.

The following definitions assume a composite air-cache consisting of C simple

air-caches AC1,AC2, . . . ,ACC . We define:

Definition 4 The bandwidth factor φk ≥ 0 of ACk determines the minimum

share of broadcast bandwidth allocated to ACk.

Definition 5 The bandwidth share bk of ACk is the exact share of broadcast

bandwidth allocated to ACk. As we saw earlier bk =
ukφk∑C
i=1 uiφi

.
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Definition 6 The cardinality nk of ACk is the number of data items cached in

ACk. The cardinality of all the air-cache is N =
C∑
k=1

nk.

Definition 7 The size sk of ACk is the total size of the nk items in ACk. The

size of all the air-cache is S =
C∑
k=1

sk.

Definition 8 The period Tk is the minimum time interval during which all items

cached in ACk are guaranteed to be broadcast at least once. Similarly, the period

T of all the air-cache is the minimum time interval during which all cached items

(in all C simple air-caches) are guaranteed to be broadcast at least once. It follows

that T = max
1≤k≤C

{Tk}.

The fact that air-cache ACk uses bk of the broadcast bandwidth means that a

item of unit length cached in ACk takes, on average, 1/bk broadcast units to be

broadcast. Given that the total size of items cached in ACk is sk, we can derive

that, on average, the period Tk is
sk
bk

broadcast units. The value of Tk reflects

the average latency of ACk. This means that the latency of a simple air-cache is

not completely determined by the bandwidth allocated to it; it also depends on

the amount of data cached in it. A related performance indicator is the broadcast

frequency, which we define next.

Definition 9 The broadcast frequency fk of ACk is the average number of

times any item in ACk gets broadcast within a period T of the air-cache. It easily

follows that fk =
T

Tk
≥ 1.

The broadcast frequencies are not an absolute performance metric of the air-

cache. Instead, they are only used in a relative sense to compare different com-

ponents of a composite air-cache. For example, we can infer that ACk broadcasts
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its data fk/fm times more (or less) frequently than ACm. This also means that

ACk is fk/fm times faster (or slower) than ACm. Finally, note that
Tk

Tm
=
fm

fk
.

Table 3.1 contains a summary of the symbols defined thus far and can be used as

a reference for the rest of the thesis.

For each ACk For entire air-cache

Bandwidth factor φk Φ =
C∑
k=1

φk

Bandwidth share bk 1 =
C∑
k=1

bk

Cardinality nk N =
C∑
k=1

nk

Size sk S =
C∑
k=1

sk

Period Tk T = max
1≤k≤C

{Tk}

Broadcast frequency fk -

Table 3.1: Summary of symbols
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Chapter 4

Demand Driven Air-Caching

Over the last few years the number of people accessing information electronically

over the Internet has been growing very fast, and it expected to continue to grow

at a similar pace. This trend creates unprecedented requirements on information

services in terms both of the networking infrastructure and server capacity. This

phenomenon is aggravated during special events, such as the Olympics, national

elections, and so forth. For example, [Las98] reports that during the 1998 Winter

Olympics the official web site received about 450 million requests, with a peak rate

exceeding 100 thousands requests per minute.

In this chapter, we show how hybrid data delivery can be used to address

such huge workloads of user requests. Several studies of web access traces have

identified that, typically, within popular information sources there is a relatively

small number of data items that receive most of the user requests [ABCdO96,

DMF97, AW97]. In other words, there are few items that are extremely popular

and attract a massive number of requests. The set of these items is usually called

the hot-spot of the database. The majority of data outside the hot-spots get

accessed only occasionally, if at all. This high degree of skewness in the data

access pattern makes hybrid delivery a suitable alternative for efficiently handling
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very high request rates. If the database hot-spot is kept in an air-cache, most of

the user requests can be serviced without any interaction with the server. This

leaves the server with the significantly easier task of servicing requests only for

unpopular data not found in the air-cache.

Obviously, the key issue for this scheme is the identification of the database hot-

spots. There are at least two major obstacles that we have to overcome: First, user

needs can be neither characterized nor predicted a-priori because of the dynamic

nature of the demand. In the extreme cases, for example, emergency or weather

related situations may cause abrupt shifts in demand. Second, as we discussed

in the previous chapter, with air-caching the server gives up a lot of invaluable

information about data accesses, and cannot directly assess the actual user needs.

In this chapter, we propose a technique that, driven by the partially observed

user demands, adjusts the air-cache contents to match the hot-spot of the database.

We show how this hot-spot can be accurately obtained by monitoring the limited

number of air-cache misses. We develop an adaptive algorithm that relies on

marginal gains and probing to identify the popular data. With this technique, the

overall performance of this hybrid system can surpass the capacity of a traditional

unicast-only server by multiple orders of magnitude. The advantage of hybrid

delivery is that its performance is not directly affected by volume of the workload;

instead, it is determined by the size of the database hot-spot, i.e., the amount of

frequently requested data. Thus, it exhibits significant scalability margins, even

for rapidly changing access patterns.
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4.1 Performance Analysis

In this section, we develop a simplified analytical model for hybrid data delivery,

which provides some intuition behind the algorithms presented later in the chap-

ter, and illustrates the involved tradeoffs. Based on this model, we discuss how

broadcast and unicast can work synergistically to yield high data service rates. In

this study, we consider only simple (flat) air-caching. The main premise of this

decision is that hot-spots are relatively small, and therefore, require small size

air-caches. Because small size air-caches have also small average access latency, a

more elaborate air-cache structures is not expected to bring any significant perfor-

mance improvement. However, as part of our future work we intend to investigate

the implications of large and more sophisticated air-caches to the results presented

herein.

4.1.1 The Hybrid Model

In a hybrid scheme, we can exploit the characteristics of each of the data delivery

modes and integrate them in a way that better matches the clients’ demands. The

objective is to deliver the needed data with minimum delay to very large numbers

of clients. Striving for that goal, we can look for solutions that range between pure

push/broadcast and pure pull/unicast.

Consider a database containing M data items of equal size. Assume that the

demand for each item i forms a Poisson process of rate λi with the items numbered

such that λ1 ≥ λ2 ≥ . . . ≥ λM . A server, modeled as an M/M/1 system, services

requests for these items with mean service time 1/µ. In addition, this server can

broadcast data over a channel, at a rate of one item per time unit. Also assume

that, for some reason, the server decides to broadcast (i.e., air-cache) the N first
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Figure 4.1: Balancing data delivery methods

items, and offer the rest on-demand. If we define Λk =
k∑
i=1

λi, then the expected

response time for requests serviced by the server is Tpull =
1

µ− (ΛM − ΛN)
, while

for those satisfied by the broadcast it is Tpush =
N

2
, half the time required to

broadcast all N items. The expected response time T of the hybrid system is the

weighted average of Tpull and Tpush.

Figure 4.1 plots a representative example of how T , Tpull and Tpush vary with

respect to the number of items being broadcast. To the left, all items are repeatedly

broadcast; to the right, all are unicast on demand. We have assumed that the total

workload is greater than µ, which is a safe assumption for large scale systems with

huge client populations. Henceforth, we refer to µ as the system’s pull capacity.

The first thing to note in this figure is that the performance of the pull service

Tpull is a hyperbolic function of the imposed load. It is evident that with too little

broadcasting, the volume of requests at the server may increase beyond its capacity,

making service practically impossible (right side of the graph). On the other hand,

the response time for pushed data is a straight line, growing proportionally to

59



the volume of the broadcast data. Hence, too much broadcasting is not desirable

either. Obviously, for best performance, we must look for solutions in the area

around point G, where we can maintain the best balance between data push and

pull.

4.1.2 Practical Considerations about Workloads

The discussion of the previous section suggests that it is possible to balance data

delivery modes in order to obtain optimal response time. However, this optimal

solution depends on the shape and size of the imposed workload. In what follows,

we explore hybrid delivery from a practical perspective and give a qualitative

answer to how a combination of broadcasting and unicasting can be advantageous.

Intuitively, data broadcasting is helpful when its content is useful to multiple

receivers. The benefit is twofold: first, with each broadcast message the server saves

several unicast messages that otherwise would have to be sent individually, and

second, the satisfied receivers avoid sending requests that might end up clogging the

server. On the other hand, broadcast data that are useful to hardly any receivers do

not yield any benefit,1 but instead harm overall performance by occupying valuable

bandwidth. This implies that broadcasting is effective when there is significant

commonality of reference among the client population. Ideally, we would like to

detect and exploit that commonality.

Consider, for example, a data set of M items and assume that they get re-

quested according to the skewed access pattern of Figure 4.2. For clarity, we

assume that items are sorted according to their respective request rates. From the

discussion so far, it becomes clear that we are looking for the optimal point G to

1Assuming there is another way to satisfy those very few receivers
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draw the line between data that should be pushed and data that are left to be

pulled. The area to the left of G (the head of the distribution) represents the vol-

ume of requests satisfied by the broadcast. The shaded area to the right of G (the

tail of the distribution) represents the volume of the explicit requests directed to

the server. According to the model presented in the previous section, the response

time depends on the area of the tail and the width of the head (i.e., the number

of broadcast items). The height of the head reflects the savings of broadcasting.

Generally, the selection of G should satisfy two constraints:

1. The tail should be maintained below the pull capacity.

2. The head should be wide enough to accommodate all popular data but should

not include rarely requested data.

While the first constraint is intuitive, the second deserves some clarification,

as it is critical to the practicality of a hybrid solution. Consider a case where

the tail is a very long area of very small, but not zero, height. That represents a

large number of items that get requested very infrequently. If this area is larger

than the pull capacity, we need to move the point G even more to the right. But,
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since each item contributes very little to the total area, the optimal G would be

found deep into this tail. This means that the quality of the broadcast content

would substantially deteriorate by including lots of rarely requested items, yielding

unacceptably high response time, which nonetheless would be optimal according

to our model. Consequently, under such workloads, slightly increased pull capacity

is a more favorable solution than inordinate broadcasting.

Bearing this in mind, we consider cases where the optimal solution does not

require broadcasting rarely requested data. It is assumed that the pull capacity is

at least such that it can handle the aggregate load imposed by requests for such

data. Under this assumption, we propose an air-caching mechanism that, in a near

optimal way, exploits broadcasting to take the load of hot data off the server which

is left with a tolerable load imposed by infrequently requested data.

4.2 Methodology

In this section we elaborate on the proposed methodology for managing the air-

cache according to the client demands. First, we propose a dynamic classification

of the available data into three groups depending on the rate they get requested.

Then, we present some details on the implementation of the air-cache through

repetitive broadcasting. Section 4.2.3 describes the algorithm used to actually

modify the contents of the air-cache, while Section 4.2.4 presents a technique that

helps the system avoid disastrous effects of erroneous decisions. Finally, in Sec-

tion 4.2.5 we discuss how the server can reduce the overhead of the required book-

keeping.
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4.2.1 Vapor, Liquid and Frigid Data

For each item in the database, we define a temperature that corresponds to its

request rate λi. In addition, each item can be in one of three possible states:2

Vapor: Items deemed as heavily requested which are therefore broadcast, i.e., put

in the air-cache.

Liquid: Items currently not broadcast for which the server has recently received

a moderate or small number of requests, but not enough to justify broad-

casting.

Frigid: Items that have not been requested for a while and their temperature λi

has practically dropped to zero.

In the proposed adaptive scheme, the server dynamically determines the state

of the database items, relying on air-cache misses. These can be considered as the

“sparks” that regulate the temperature and state of the data. Specifically:

• Vapor data are retrieved from the air-cache, and the server does not get any

feedback about their actual temperature. As they are not heated by requests,

they gradually cool down and eventually turn into liquid. The duration of

the cooling process depends on the temperature that initially turned them

into vapor.

• Liquid data items that continue being requested either turn into vapor or

remain liquid, depending on the intensity of the requests. If they stop being

requested they eventually freeze.

2For a more intuitive presentation, we borrow terminology from the analogy to the physical

states of water
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• Frigid data items that start being requested turn into liquid or even vapor,

again depending on the intensity of the requests. Obviously, as long as they

get no requests they remain frigid.

The hardest part of this process is distinguishing vapor from liquid data, and

this is the focus of this chapter. The distinction between liquid and frigid data

items is the same to that achieved by a buffer manager of a database system us-

ing a frequency-based replacement policy [RD90, OOW93]. Likewise, the server

should maintain liquid items in main memory anticipating new requests in the

near future, and can retrieve frigid items from secondary memory only when nec-

essary. In practice, the distinction of frigid data plays an important role in terms

of overhead, especially in the case where frigid data make up the largest part of the

database. With a default zero temperature, the server is off-loaded from tracking

their demand statistics, and can also safely ignore them when looking for candidate

vapor items.

4.2.2 Air-Cache Implementation

As we have already discussed, the effect of caching on the air is realized through

repetitive broadcasting. In Section 3.3.4 we described the technique used to imple-

ment a simple (flat) air-cache. In this section, we discuss how this basic technique

is actually used in this case. Basically, there is a queue Q that stores all air-cached

data, i.e., all vapor data. The server picks the next item to broadcast from the head

of Q. After an item gets broadcast, it is removed from the head and gets appended

back to tail of Q. At the same time, in order to reflect the cooling process of vapor

data, its temperature is multiplied by a predetermined CoolingFactor ∈ (0, 1).

The contents ofQ are modified once every cycle, the end of which is identified by
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a vapor item specially assigned as a placeholder. Once this placeholder is broadcast,

the server re-evaluates the state of data and updates the queue accordingly. In this

adaptation process, described in detail in the next section, it pinpoints vapor items

that should be demoted to liquid, and liquid items that need to be promoted to

vapor. Vapor items selected for demotion are marked, so that after their next

broadcast they will be removed from the queue. New vapor items are placed on

the tail of queue. Finally, the (new) item on the tail of Q is assigned as the next

placeholder. The result is a repetitive broadcast scheme with evolving size and

content.

An integral part of the hybrid delivery scheme is the indexing of the air-cache.

Since clients are expected to select between the two data delivery paths, the server

needs to make them aware of items forthcoming in the broadcast channel. Here, we

have adopted a simple technique that uses the signature of Q (i.e., the list of data

identifiers in the queue) as an index that is broadcast interleaved with the data.

The clients examine the index and decide whether to wait for the required item to

arrive or to make an explicit request for it. The broadcast frequency of the index

can be adjusted to trade overhead for the maximum time clients are willing to wait

before making the decision. Note that, depending on the size and the number of

vapor items, it is possible that this simple indexing scheme will yield considerable

overhead. For such cases, more elaborate indexing schemes could be used, such as

bit-vectors or a variation of those proposed in [IVB94a] and [IVB94b].

4.2.3 Adaptation Based on Marginal Gains

In this section, we present the algorithm that adapts the contents of the broadcast.

As we already mentioned, in the adaptation phase, the server needs to make two
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kinds of decisions: which of the vapor data have cooled down enough to be demoted

to liquid, and which of the liquid data have become hot enough to be promoted to

vapor. A straightforward approach of establishing absolute temperature thresholds

cannot be applied because the state of an item depends also on the aggregate

workload, i.e., the relative temperature of the other items. To account for that,

we have developed an algorithm that makes these decisions based on the expected

marginal gain of each possible action.

Let us first present how the expected marginal gain is computed when consid-

ering an item i for promotion to vapor state or demotion to liquid. Note that this

is computed similarly in both cases, except for the sign of the involved quantities.

Therefore, to avoid duplication in the presentation, we use the variable A which

takes the value −1 if the item i is vapor and considered for demotion to liquid,

and +1 if it is liquid and considered for promotion to vapor. The computations

are based on the model described in Section 4.1.1. The only difference is that now

we also take into account the overhead of broadcasting the index. The additional

variables used here are the aggregate request rate for liquid data ΛL, the aggregate

request rate for vapor data ΛV , the number of vapor items N , and the size of each

index entry sI. The expected overall marginal gain dT is given by the weighted

average of the marginal gains dTpush and dTpull. If we define dΛV = Aλi these are:

dTpush = A
1 + (2N +A) sI

2

dTpull = Tpull
dΛV

µ− ΛL + dΛV

Figure 4.3 depicts these computations graphically. Ideally, the system should

try to reach and operate at the minimum point of the curve T . However, it turns
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out that in practice this is not the best thing to do. This is explained by the fact

that to the right of this minimum point the response time grows very fast. As

a result, under a dynamic workload it is very probable that even a small change

can have a very bad effect on the system. Therefore, operating at or too close

to the minimum can make the system very unstable. This was indeed verified by

our experiments. Instead, we have to force the system to operate in a suboptimal

area to the left of the minimum, safely avoiding instability. We achieve this by

establishing some small (but not zero) threshold θ0 for the angle θ = tan−1 dT

dλV
.

The actual algorithm that updates the contents of the air-cache consists of

three simple steps: First, it demotes to liquid all vapor data with temperature

lower than the hottest liquid item. Then, using the respective marginal gains, it

continues demoting vapor items in increasing order of temperatures while θ > θ0.

Last, it takes the opposite direction, and as long as θ < θ0, it promotes liquid data

to vapor in decreasing order of temperature. Note that if at least one vapor item

is demoted in the second step, then no liquid item will be promoted in the third
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step. Also, it is possible that vapor items that get demoted in the first step will

be re-promoted in the third. If data items are sorted by their temperatures, the

complexity of this algorithm is in the order of the number of items that change

state.

Figure 4.4 presents an example of how the algorithm works. We assume that

initially items B, C, and E are vapor, item D is liquid, and that λB ≤ λC ≤

λD ≤ λE. In this case, the algorithm firsts demotes items B and C since their

temperature is lower than that of the liquid item D. Then, it checks whether item

E should be also demoted. It computes the effects of this demotion, and decides

not to demote it as that would hurt performance. So, it skips the second step.

At the third step it promotes three items D and C (C was demoted in the first

step), and stops before promoting B, having decided that no more promotions are

necessary.
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Figure 4.5: Examples of demotions without and with probing

4.2.4 Temperature Probing

A potential weakness in what has been described so far is the artificial cooling of

vapor data. It was introduced for the sole purpose of giving the server a chance

to re-evaluate the temperature of vapor data regularly, Thus, it is not expected to

reflect the actual evolution of data demand, and may very well result in a situation

where a very hot item is demoted to liquid. Should that happen, the server would

be swamped with hundreds or thousands of requests for that item. Although

the adaptive algorithm will eventually correct this by re-promoting the item, the

reaction time lag may be big enough to cause serious performance degradation.

This is better explained in Figure 4.5(a) where we present the time line of

events after a decision to demote a hot vapor item at time t0. This decision is

reflected in the next broadcast of the index that reaches the clients at t1. From

that point on, all the requests for that item are directed to the server. If the
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item is still hot, the server decides to re-promote it to vapor at t3, and includes it

at the next index broadcast, received by the clients at t4. But, considering data

transmission and server inertia delays (i.e., the time to re-promote the item), the

interval between t1 and t4 could be substantial. The shaded area in the figure

represents the total request load that this wrong decision may generate. The

cumulative penalty of consecutive improper demotions can be heavy enough to

make the system practically unusable.

This section introduces temperature probing as a way of preventing any

disastrous effects by premature demotions of vapor data. The algorithm that

we propose remedies potential errors by a “double clutch” approach, which is

illustrated in Figure 4.5(b). Soon after the decision to convert an item from vapor

to liquid at t0, and before it is actually heated up by misses, the item is re-promoted

at time t2. This creates a controllably small time window (from t1 to t3) that limits

the expected number of client requests for the demoted item, but still can provide

the server with concrete information about the actual demand. In effect, through a

small number of misses, we give the server the opportunity to probe for the actual

temperature of the data, before committing to its decision. After the re-promotion

of the item at t2, the server waits for requests generated during the period [t1, t3] in

order to re-evaluate the item’s actual temperature. Considering the time required

for client messages to reach the server, we delay this re-evaluation at least until

t5. Finally, depending on the result of the probing, the item is either demoted or

reinstated to the broadcast queue with corrected temperature at t6.

A critical factor for this double-clutch approach is the probing interval [t0, t2].

If it is too short, hardly any requests will be generated to help the server in the

re-evaluation. If it is too long, it essentially defeats its purpose. Therefore, it

70



should be selected very carefully, and should preferably be dynamically adjusted

to the intensity of the workload. For these reasons, we found that a very good

selection can be based on the average request rate of vapor data. More specifically,

we set the probing time to be ProbingFactor ×
N

ΛV

, where
N

ΛV

is inverse of the

average temperature of vapor data. Essentially, with this demand-adjusted probing

window, the ProbingFactor determines the expected number misses generated per

probe, and allows the system to explicitly control the total probing overhead.

4.2.5 Monitoring Overhead

The implementation of our hybrid scheme requires some considerable bookkeeping,

which may impose by itself a heavy computational load on the server. The server

needs to monitor the temperature of liquid items, keep them sorted so that each

time the next candidate for promotion can be identified instantly, as well as detect

those that have not received any attention for a period long enough to freeze.

To keep this overhead down to a minimum, we chose to organize bookkeep-

ing around the idea of slotted time, which considers time as divided into slots

D0, D1, D2, . . ., each taking time ts. During each slot, we record the total num-

ber of requests for every item that gets requested. We then compute the request

rate of each item using a moving average over time slots exponentially weighted

by a factor α. Formally, the request rate of item i at the end of slot Dj is

λi,j = α
ri,j

ts
+ (1 − α)λi,j−1, where ri,j is the number of requests for item i made

during Dj.

The computational benefits of this approach are two-fold. First, note that

for the items that were not requested during the last slot we have ri,j = 0, and

therefore λi,j = (1−α)λi,j−1. In practice, the server does not even need to update
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these values, since for an item last requested during Dj−k it holds that λi,j =

(1 − α)k λi,j−k. This way we avoid many computations that are performed only

when (if ever) needed. The second benefit is that the relative order of temperatures

for items not requested during the last slot does not change. This is exploited to

significantly reduce the overhead of keeping a list of liquid items in decreasing

order of temperatures. Only the items requested in the last slot need to be sorted

according to their new computed temperatures and then quickly merged with the

rest.

Last, with the time slots it is straightforward to identify when liquid items

become frigid. Assume that an item freezes if it is not requested for k slots, i.e.,

for the last k ts time units. Then, at the end of slot Dj, the items that were last

requested during Dj−k turn into frigid. As a result, each time we need to keep

information only about the last k time slots.

4.3 Experiments and Results

4.3.1 Simulation Model

In order to establish the potential of hybrid data delivery and investigate the

involved tradeoffs, we have built a simulation model of the proposed system. We

assume that the provided information is a collection of self-identifying data items

of equal size. For the results presented herein, we set the size of this collection

to 10000 items. Clients generate requests for data that are satisfied either by

the broadcast or by the server upon explicit request. Under this assumption, we

have modeled all the client population as a single module that generates the total

workload, a stream of independent requests for data items. The exact number
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of clients is not specified but instead it is implicitly suggested by the aggregate

request rate. For the data access pattern we used two different distributions:

HotColdUniform and Gaussian (Figures 4.6 and 4.7). The first one is only

used as an ideal case where there is a clearly defined hot-spot in the database.

The second is more realistic, but at the same time it allows explicit customization

through the same four parameters: the aggregate request rate Λ, the aggregate

request rate for cold data ΛC , the width of the hot-spot in terms of data items

W , and the center of the hot-spot H. In order to create the effect of dynamic

workloads, the value of these parameters can vary in the course of an experiment.

For example, by changing the value of H we can simulate workloads with moving

hot-spots.

For the server we have used a simple data server model, enhanced with a trans-
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mitter capable of broadcasting, and the functionality required to implement our

adaptive algorithm. Even though it is modeled in detail through several parame-

ters (e.g., cache size, I/O characteristics, etc.), the presentation and interpretation

of our results is based only on one parameter, the system’s pull capacity µ, which

corresponds to the maximum rate at which requests can be serviced. Depending

on the experimental setup, this is determined by (a combination of) the processing

power of the server, and the available bandwidth. For the network, since we want

to capture hybrid environments, we need to specify the characteristics of three

communication paths: (1) the broadcast channel, (2) the downlink from the server

to the clients, and (3) the uplink from the clients to the server. For simplicity, we

assume that all clients use similar but independent paths for establishing point-

to-point connections with the server. Also, because of the small size and limited

number of requests we do not consider the possibility of congestion in the uplink.

The downlink, on the other hand, is a shared resource that is used for all server

replies. Similarly to the broadcast channel, the downlink can transmit one item

per time unit. Finally, assuming enough computing power at the server, this band-

width also determines the system’s pull capacity. In other words, we assume that

µ = 1.

4.3.2 Static Workloads

For the first set of experiments we used static workloads, even though they can-

not demonstrate the system’s adaptiveness. The reason is that they can provide

a solid base for comparison, since for those we can easily determine the optimal

behavior of a hybrid delivery system. Actually, the graphs in this section in-

clude two baselines for comparison. The first, marked “Optimal”, represents the
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theoretically optimal performance, based on the model of Section 4.1.1. For the

second, marked “PerfectServer”, we used a stripped version of our server that does

not adapt, but instead, broadcasts periodically the optimal set of data, obtained

through exhaustive search. For static workloads, the line “PerfectServer” is the

ultimate performance goal of our system.

In order to test the behavior of the system in different scales, we vary the

volume of the total workload from light (Λ < µ) to very heavy (Λ = 100µ).

We intend to demonstrate that, under the assumptions discussed in Section 4.1.2,

our approach performs close to the optimal, and exhibits very high scalability.

The main performance property of this system is that, contrary to pull/unicast

systems, the expected response time does not directly depend on the intensity of

the workload. Instead, it is determined by the size of the hot-spot, i.e., the amount

of frequently requested data. In other words, it depends on the workload only as

a function of the data access distribution. This important property can yield a

significant performance advantage, especially under highly skewed distributions

exhibiting small hot-spots.

First, we present the results we obtained under the ideal HotColdUniform work-

load distribution. In order to highlight the above mentioned property, the size of

the hot-spot W is constant (100 items) for all values of Λ. Practically, this means

that the popularity of items outside the hot-spot of the 100 items remains low

(ΛC < µ) for any scale. In Figure 4.8, we show the average response time as a

function of the request rate Λ. In this graph, we include the performance of the

pure pull system, which, as expected, cannot accommodate workloads higher than

its capacity (1 request per time unit). Contrast this to the performance of the

hybrid system (curve marked “Adaptive”). Under very light loads (Λ < µ = 1)),
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Figure 4.8: Experiment 1: HotColdUniform distribution

the system does not broadcast any item and performs like a pull only system since

it can efficiently handle all the client requests. But, as the request rate increases

beyond the pull capacity (Λ > 1), the server starts air-caching some of the popular

data to accommodate the additional demand. At the same time, more and more

of the requests become air-cache hits, and the average response time is dominated

by the performance of the hits. As a result, the overall performance of the system

is determined by the number of air-cached items, i.e., by the number of frequently

requested items. The load incurred by air-cache misses is maintained below the

pull capacity, consistently yielding fast responses. Therefore, the response time

increases with the average number of air-cached items. This increase is noticeable

until the workload reaches about 10 requests per unit. At this point almost all 100

items of the hot-spot are air-cached, and the average response time is 50 units,

i.e., half the time it takes to broadcast 100 items. For even heavier workloads,

the response time practically remains constant. Note that the horizontal axis is
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Figure 4.9: Experiment 2: Gauss distribution, fixed size hot-spot

in logarithmic scale and extends up to 100 times the pull capacity of the system.

This shows that, under skewed workloads, the hybrid delivery approach can effi-

ciently scale to workloads many times its nominal capacity. Finally, observe that

under this ideal separation of hot and cold data, our approach performs optimally,

matching both the theoretically minimum response time and that of the perfect

server.

Next, in order to test our system under more realistic workloads, where the

boundaries of the hot-spot are not clearly defined, we performed a set of experi-

ments using the Gaussian distribution. All the system parameters are the same as

in the previous case. However, here we present the results obtained for two varia-

tions of the workload. In the first variation, the number of popular items remains

constant throughout the scale of the experiment so that the results are comparable

to the previous experiment. This means that as the workload increases so does

the skewness of the distribution. This is easily achieved with a proper decrease of
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the distribution’s standard deviation. In the second variation, the standard devia-

tion does not change. Therefore, when the intensity of the workload increases the

popularity of all the data increases with it.

Figure 4.9 shows the performance results for the first variation (fixed number of

popular items). The results and conclusions are similar to the previous experiment.

Again, the hybrid system can efficiently accommodate workloads at least 100 times

the pull capacity of the system. However, compared to the HotColdUniform dis-

tribution, there is one small difference. This time there is a discrepancy between

the performance of our system (“Adaptive” curve) and the optimal. The reason is

that our system selected to air-cache, on the average, a few more items over what

both the theoretical model and the “PerfectServer” suggest as optimal. This is an

artifact of the threshold θ0 (see Section 4.2.3) which urges the adaptive algorithm

to slightly favor broadcasting. Contrary to the previous case and because of the

continuous distribution, the algorithm now detects outside the optimal vapor set
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items hot enough to be considered for promotion.

Figure 4.10 presents the results for the second variation. In this case, the

skewness of the distribution does not change; when the workload increases, the

popularity of all items increases. This means that more and more items need to be

air-cached so that the miss workload is kept below the pull capacity. This is evident

from the two baselines in the graph (“Optimal” and “PerfectServer”), where we

can see that the optimal vapor set—and consequently the optimal response time—

is indeed growing with Λ. Nevertheless, even in this case our system scales very

well, in the sense that it manages to follow the optimal performance very closely.

4.3.3 Tuning Parameters

In Section 4.2, we introduced three tuning parameters, namely θ0, CoolingFactor,

and ProbingFactor. While the first is used just to keep the system at a safe

distance away from instability, the other two are essentially the knobs that control

its adaptiveness and overhead. Here, we concentrate on the effects of the latter two

parameters. For θ0, we have established from previous experiments that a good a

selection is such that
dT

dΛV

= tan θ0 ≥ 0.1 [SRB97b].

Temperature probing was introduced to prevent the detrimental consequences

of early demotions of vapor items. But, the probing window needs to carefully se-

lected; if it is either too small or too big, it is essentially the same as no probing at

all. In Section 4.2.4, we defined the probing window to be dynamically adjusted by

the ProbingFactor and the average request rate for vapor items. This way, we di-

rectly control the number of expected misses per probe, i.e., for a ProbingFactor=4

we get an average of 4 requests per probe. The CoolingFactor (Section 4.2.1) is also

closely related to probing, and must be carefully selected as well. A small value
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Figure 4.11: Experiment 4: Effects of probing parameters

causes the temperature of vapor data to drop quickly, yielding frequent probing,

and thus, high overhead in terms of probed misses. But, on the positive side, a

small value also allows the system to adapt faster to changes in the demand. Large

values have the opposite effect; they cause less probing but hinder the adaptiveness

of the system.

Figure 4.11 shows how the ProbingFactor affects the system’s performance, for

two different values of the CoolingFactor. For this experiment, and the rest of the

experiments presented hereafter, we used the Gaussian access pattern with Λ=20

requests per unit, and W=100 items. The first thing we note is that, without prob-

ing (ProbingFactor=0), the system cannot recover from the incorrect demotions,

and the response time grows arbitrarily large. But, even a very small number of

probed misses (≥ 2) are sufficient to correct the temperatures of vapor data, thus

allowing the system to operate close to the optimal. As the ProbingFactor increases

further, so does the volume of the probed misses. The rate at which this happens
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depends on the frequency of the probing (i.e., the CoolingFactor) and the number

of items being probed (i.e., the number of vapor items). Beyond some point, the

overhead of probed misses becomes too big for the server to handle, leading again

to very slow responses. In other words, with a very large ProbingFactor, probing

causes the problem that it was supposed to solve in the first place. Naturally, this

happens earlier when probing is more frequent (CoolingFactor=0.8).

4.3.4 Dynamic Workloads

For the last set of experiments, we used dynamic workloads in order to evaluate the

adaptiveness of our system in cases when the focus of the clients changes. Such a

change was modeled as an elimination of a hot-spot and a generation of a new one

in another (randomly selected) part of the database. This process was not instant,

but instead it was taking a transient period of TP units to complete. Every new

hot-spot persisted for Duration units. For easier interpretation of the results, all

the hot-spots were similar, and the total workload remained constant (Gaussian

access pattern with Λ=20 requests per unit, and W=100 items).

In Figure 4.12, we present the obtained results as a function of Duration. The

workload in these graphs is more dynamic on the left side, since with smaller

Duration changes occur more often. We used two different values of TP for compar-

ing fast (white marks, TP=4000 units) and more gradual (black marks, TP=10000

units) changes. In addition, we give results for two values of the CoolingFactor

(CF=0.9 and CF=0.8) which determines the adaptation speed of the system. For

better comprehension of the results, we plot the total average response time (Fig-

ure 4.12(a)), the average response time for pulled data (Figure 4.12(b)), and the

average number of vapor items (Figure 4.12(c)). For all these experiments, we used
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Figure 4.12: Experiment 5: Dynamic workloads
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ProbingFactor=5 and tan θ0 = 0.1.

The most significant observation is that the system adapts very well to changing

access patterns (Figure 4.12(a)). Even on the left side where changes occur very

frequently, the response time remains small. In most cases, performance lies within

30 units of that achieved under the static workload (Figure 4.9). This means that

the server is very effective in detecting shifts in the clients demand, and thus

can react promptly. As expected, the system adapts and performs better with a

smaller CoolingFactor. But, an unexpected result shown in Figure 4.12(a) is that

the system appears to perform better under more abrupt changes (TP=4000).

However, this will be justified in the following where we discuss how the system is

affected by dynamic workloads.

Changing hot-spots impact the performance of both the pull (Figure 4.12(b))

and the push (Figure 4.12(c)) part of the system. First, an item that suddenly

becomes hot can generate a large number of requests before the server is able to

react and append it to the air-cache. The cumulative effect of these requests may

cause significant build-up in the server’s input queue, and therefore increase the

average response time for pulled data. This build-up is worse when the changes are

faster and more frequent. Indeed, in Figure 4.12(b) we see that the average pull

response time increases when the changes occur more often (left side) and when

new hot-spots are heating up faster (white marks). Second, in transient periods

the server actually perceives two hot-spots, the old and the new. Thus, in order to

meet the demand during those periods, it has to expand the vapor set to include

them both. This explains why in Figure 4.12(c) the average number of vapor

items increases as the Duration decreases. With decreasing Duration, the transient

periods make up more and more of the total time. Consequently, the server appears
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to be broadcasting, on the average, more data. Note that for Duration=TP=10000

the workload is continuously in transient state and the server almost always detects

two hot-spots. Therefore, the size of vapor set is close to double that of the static

case. We also observe that this phenomenon is worse with longer transient periods

(black marks) as the server spends more time broadcasting both hot-spots. Since,

in these experiments, the average response time is dominated (≈90%) by broadcast

accesses, this also explains why the system appears to perform better under more

abrupt changes (TP=4000).

Finally, here we can also notice the effects of the CoolingFactor to the adap-

tiveness of the system. On one hand, the smaller value (CF=0.8) harms the pull

response time since it causes more frequent probing and, thus, more misses (Fig-

ure 4.12(b)). But, on the other hand, it limits unnecessary broadcasting and re-

duces the “double hot-spot” phenomenon since it allows the server to detect faster

loss of interest for vapor data (Figure 4.12(c)). Consequently, the CoolingFactor

should be selected as small as it causes tolerable probing overhead. Note that

the probing overhead can be estimated (and controlled) by the CoolingFactor, the

ProbingFactor, and the number of vapor items. Also, it is even possible to employ

a self-tuning strategy for the system. In other words, the system can monitor the

workload behavior and use the outcome of its previous actions to learn how it

should be operating more efficiently. As an example, if after a series of probings

the outcome is always the same, it may be good idea to increase the CoolingFactor

and sample less frequently. Overall, one of the strongest features of this approach

is that, with a proper combination of two parameters, we can explicitly control

fairly accurately the adaptiveness of the system, the effectiveness of the probing,

and the incurred overhead.
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4.4 Conclusions

In this chapter, we described how adaptive hybrid data delivery can be address the

ever increasing demands for on-line information access. We proposed to use the

air-cache mechanism to disseminate data from heavily accessed data sources. This

mechanism takes advantage of the skewness of user requests towards a small (but

possibly changing) subset of the available information, and combines data broad-

cast for massive dissemination of the popular data with upon-request individual

delivery of the rest.

Initially, we analyzed the performance of a hybrid delivery scheme under skewed

access patterns, and laid out the goals and tradeoffs of our approach. Then, the

main problem we addressed was the identification of the data items to be air-

cached, i.e., the detection of the database hot-spot. We presented an algorithm

that, based on expected performance marginal gains and data temperature probing,

recognizes heavily requested data and continuously adapts the air-cache contents

accordingly. We showed that the database hot-spot can be accurately obtained by

monitoring the air-cache misses and therefore no other implicit knowledge on the

actual usage of the broadcast data is necessary. This is one of the major distinc-

tions between the work presented here and other push/broadcast schemes, which

are dependent on accurate, comprehensive, but not readily available statistics on

workload access patterns.

Our simulation experiments have demonstrated both the scalability and versa-

tility of the proposed technique. Under the assumption that the server’s capacity

is sufficient for servicing the demand for cold data, the proposed technique per-

forms very close to the optimal, even under dynamic, rapidly changing workloads.

An important result is that the performance of this hybrid system is not directly
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affected by the volume of the workload, but instead it depends on the amount of

frequently requested data as defined by the data access distribution. Because of

this characteristic, we believe that hybrid data delivery can be the basis of very

scalable data dissemination systems.
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Chapter 5

Disseminating Updates to Mobile Clients

The remarkable sales increase of portable computers and the proliferation of wire-

less communication technologies are strong evidence that mobile computing is be-

coming ever more important. Today, rapid technological advances offer laptop

computers comparable to desktop workstations with significant processing power

and large disk capacity. Such machines enable a wide range of applications to be

carried away from the office desk. As a result, many organizations today—and

many more in the future—have a portion of their workforce accessing corporate

information on the road, from their home, or from other remote locations. Most of

the time they operate off-line, i.e., not connected to the corporate network, relying

on local data replicated from a central repository. While replication masks the ef-

fects of disconnection, it also brings about the problem of staleness and the need to

refresh data regularly and efficiently. In other words, any data updates occurring

at the repository must sooner or later be propagated to the mobile clients.

This model of operation is important for any corporation in which business

transactions may occur outside the office. For instance, sales agents visiting po-

tential customers need information about new products or services, new pricing

policies, special offers, product availability, etc. Money managers need the lat-
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est stock and bond indexes. Realtors accompanying potential buyers need new

house listings, possibly together with photographs, directions, and other related

information. The growing market for these mobile applications has already been

recognized by the database industry. Several products are emerging that support

off-line operation, offering data replication and update propagation between a cen-

tral database and “lite” DBMSs running on mobile computers (e.g., Oracle Lite,

Sybase SQL Anywhere Studio).

Update propagation techniques typically rely on the transaction log, where the

server records changes committed in the database [RK86, GWD94, BDD+98]. Log

entries are sent to the clients, where they are “replayed” to refresh the local copies.

For such a refresh in the mobile environment, a client needs to reconnect to the

network and receive all the updates that were committed while it was off-line. This

requires reviewing the part of the log that was appended since its previous refresh,

finding all relevant updates, and applying them to the local data.

In this chapter, we address the problem of propagating logged updates to large,

widely deployed mobile workforces. Generally, updates exhibit very high locality

of reference. All clients want the updates since they went off-line, making the

recent part of the log an extremely hot spot [DR92]. This makes broadcast-based

dissemination of the log very appealing in this case. Driven by this, we propose

using the air-cache mechanism to disseminate the log to the clients. The server

acts merely as a “pump” of updates. Each client individually takes over the task

of filtering out the updates that affect its data. Client-side filtering of the updates

has been shown to be preferable in large scale systems since it avoids contention at

the server [DR98]. When combined with broadcasting, the benefits are multiplied

since data transmission cost is amortized over many clients.
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The key issue with the proposed idea is identifying what part of the log is pop-

ular enough to be air-cached. This cannot be a one time decision as the popularity

of the updates is time-dependent and continuously changing. They start very hot,

but as they age their popularity drops. Thus, we need an adaptive algorithm that

manages the air-cache according to the clients’ needs and the age of the data. The

main complication we have to address is the unique property of the air-cache that

it must be managed exclusively based on cache misses.

What makes the problem even more intricate in this case is that not all clients

have the same habits, in terms of connecting to and disconnecting from network.

Borrowing the terminology from [BI94], clients can range from workaholics, who

stay connected most of the time, to sleepers, who only connect sporadically.

Therefore, upon reconnection, workaholics usually need a small part of the log,

while sleepers tend to require much longer parts. In order to accommodate this

diversity in the clients’ needs, we employ a hierarchical air-cache which provides

multiple levels of data caching, each with different performance characteristics.

This gives us the flexibility to air-cache the log in a way that suits different client

groups.

In the rest of the chapter, we first describe the hierarchical version of the air-

cache. Next, in Section 5.2, we develop a performance model for broadcasting the

log through the hierarchical air-cache. This model serves as the foundation for

the proposed hybrid system presented in Section 5.3. Finally, Section 5.4 contains

several experimental results obtained from a detailed simulation.
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5.1 Hierarchical Air-Cache

A hierarchical air-cache is a flexible cache structure that supports different

broadcast frequencies, and therefore, different access latencies. It is a special case

of a composite air-cache that adopts the “multi-disk” model of the broadcast

disks architecture [AAFZ95] to create a memory hierarchy on the air. Generally,

a hierarchical air-cache consists of C cache levels, named AC1,AC2, . . . ,ACC . The

average latency of each level ACk is determined by the frequency fk at which data

cached in ACk are repeated in the broadcast. More popular data are cached in the

faster (lower latency) levels and are broadcast more often; less popular data are

cached in the slower (higher latency) levels. Note that the repetition frequencies

have only a relative meaning. This means that the value of fk only suggests that an

item cached in ACk is being broadcast fk/fj times more (or less) often than an item

in ACj. Put another way, between two consecutive broadcasts of an item in ACj

there are on average fk/fj broadcasts of an item in ACk. As a convention, we select

ACC to be the fastest cache and AC1 to be the slowest, i.e., fC > fC−1 > . . . > f1.

These frequencies are not restricted to integer values, and since they are important

only in a relative sense, we can always set them so that f1 = 1.

For our purposes, we assume that data are organized into equal size pages. The

size of such a page is the reference data size, and thus, a broadcast unit in this

case is the time required to broadcast a page. Figure 5.1 presents an example of

a 3-level hierarchical air-cache and a portion of the broadcast stream it generates.

Each level ACk is characterized by its frequency fk and the number of data pages nk

it contains. In this example, AC1, AC2, and AC3 contain 4, 6, 2 pages respectively.

Furthermore, their frequencies are 1, 2, and 4. This means that pages in AC3 get

broadcast twice as often as pages in AC2, which in turn get broadcast twice as
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Figure 5.1: Hierarchical air-caching

often as those in AC1.

The actual latency of ACk is determined not only by its own size and frequency

but also by the sizes and frequencies of all other levels. The period T of the air-

cache is the minimum time interval during which all cached pages are broadcast

at least once. Because AC1 is the slowest level, this period is equal to the interval

between two consecutive broadcasts of any one page in AC1. On average, within

each period there must be f1 = 1 broadcast of each page in AC1, f2 broadcasts of

each page in AC2, and so forth. Thus, the period of the air-cache lasts T =
C∑
k=1

nkfk

page broadcasts, or broadcast units. Similarly, the period Tk of level ACk is the

average interval between two consecutive broadcasts of any one page in it. Since

within every T there must be fk broadcasts of the pages in ACk, we can infer that

Tk = T/fk. This also means that TC < TC−1 < . . . < T1 = T.

In terms of implementation, the hierarchical air-cache can be realized with the

general algorithm for the generation of composite air-caches (see Section 3.3.4),

given the right selection of broadcast factors φk’s. Remember that if bk is the

bandwidth share for a level ACk, and sk is its size, then the period of that level is
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Tk =
sk

bk
. Also, because each level contains nk pages of size 1, its size is sk = nk.

So, we have

fk
fj

=
Tj
fk

=
sjbk
skbj

=
njbk
nkbj

⇒
bk
bj

=
nkfk
njfj

which means that in order to achieve the desired effect of hierarchical air-caching,

it suffices to set the bandwidth factors so that φk = fknk. Notice that these factors

are not fixed; they vary with the size of each level. This, however, is not a problem

for the air-cache multiplexing algorithm since changes in the broadcast factors can

be accommodated on-line with no overhead.

5.2 Hierarchical Log Air-Caching

In this section, we present an analytical performance model for a system that uses

a hierarchical air-cache to disseminate logged updates to mobile clients. We are

restricting the model to a broadcast-only case in order to show how the structure

of the air-cache affects the refresh time of the clients. Our ultimate goal is to define

an optimization problem that relates the structure of the air-cache to a given log

access pattern. This will be the base for the adaptive technique, presented later in

the chapter.

5.2.1 Definitions

Let us consider a set of mobile clients that operate on data replicated from some

data server. This server is the central site that records all updates and enforces

data consistency. All committed updates are recorded in a log. This log consists

of equal size pages `1, `2, . . . ,, where `1 is the oldest page, `2 the second oldest, and

so forth. The subscript corresponds to the page’s log sequence number (LSN).

92



Suppose that at some point the server keeps in a hierarchical air-cache log

pages `c, `c+1, . . . , `z, with `c being the oldest page in the cache, and `z is currently

the most recent page. Because the popularity of log pages decreases with their

age, more recent pages are cached in higher levels, and older pages in lower levels.

We put the nC most recent pages in the highest air-cache level ACC , the next

nC−1 pages in ACC−1, and so forth. Within each level, log pages are broadcast

in decreasing order of age (i.e., older pages first). Figure 5.1 is an example of log

air-caching, where pages `12 through `23 are cached in three levels.

A mobile client is said to be in sleep mode (off-line) when it is neither listening

to the broadcast channel nor connected to any network. At times, it “wakes up”

and comes on-line, i.e., starts monitoring to the broadcast stream and possibly

connects to the network, in order to refresh its data. This requires that it retrieves

all the updates that occurred while it was sleeping. In other words, it has to

download all log pages created after its previous refresh.

Definition 10 A client requires an (m)-refresh if, in order to get up to date,

it needs to download all the recent log pages starting with `m. If z is the LSN

of the currently most recent log page, an (m)-refresh requires retrieving pages

`m, `m+1, . . . , `z.

For the sake of the analysis, let us assume that all the pages required for an

(m)-refresh can be found in the air-cache. If page `m is cached in level ACk, the

client needs to download some pages from level ACk (at least `m) plus all the pages

cached in the higher levels ACk+1, . . . ,ACC . None of the pages cached in the lower

levels AC1, . . . ,ACk−1 is of interest since they are older than `m.

Definition 11 For a given air-cache structure, a client refresh results in a (k, u)-

hit if it requires downloading the u most recent log pages cached in ACk, as well
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as all the pages cached in the higher levels ACk+1, . . . ,ACC. The u pages of ACk

required by a (k, u)-hit are called the useful segment of the hit.

Going back to the example in Figure 5.1, a (18)-refresh results in a (2, 4)-hit

as it requires 4 pages from AC2, and all the pages from AC1. Pages `18, `19, `20,

and `21 are the hit’s useful segment.

From the description of the air-cache, we know that all the pages cached in ACk

are broadcast exactly once every Tk units, in decreasing order of age. According to

its definition, the useful segment of a (k, u)-hit consists of the u most recent pages

in ACk. This means that the client discerns two separate parts within any interval

of Tk units: the part during which the pages of the useful segment are broadcast,

and the part during which the rest pages from ACk are broadcast (both interleaved

with pages from other levels). Because the client needs u contiguous pages out of

the nk pages cached in ACk, we can infer that the first part lasts Tu =
u

nk
Tk units.

The second obviously lasts Tk − Tu units. As we will see in the next section, this

observation is critical for the performance of a (k, u)-hit.

5.2.2 Performance Model

Here we compute the time required for an (m)-refresh to be satisfied by the air-

cache. Let refresh time Rm be the time elapsed from the moment the client wakes

up and starts monitoring the air-cache until it retrieves all the pages it needs. Let

x be the number of pages required for the (m)-refresh. In terms of broadcast units,

Rm is the total number of pages the client scans from the broadcast until every

one of the x pages it needs is broadcast at least once. Usually Rm is greater than

x for two reasons: First, older pages that the client does not need are broadcast,

and second some of the pages it does need may be broadcast more often. From
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the client’s perspective, the optimal performance, i.e., minimum refresh time, is

Rm = x.

In the following, given the structure of the air-cache, we compute the expected

refresh time E[Rm] for an (m)-refresh. This refresh will be satisfied by means of

a (k, u)-hit for the proper values of k and u. Therefore, in order to compute the

desired result, we generally examine the performance of a (k, u)-hit.

The first thing to note is that we can identify lower and upper bounds for the

refresh time. On one hand, since the client needs all the pages from ACk+1, it will

take at least Tk+1 units, which is the minimum time to download all the pages

of that level. At the other extreme, it cannot take more than Tk units since in

this time all the pages it needs (and probably more) must be broadcast at least

once. The actual time the client will take to download the x pages depends on the

broadcast time of the useful segment relatively to the arrival time of the client, i.e.,

the moment it starts monitoring the broadcast. Let X be a random variable that

represents the time the first broadcast of the useful segment ends after the client

wakes up. With the help of X, we can compute the expected refresh time E[Rm].

Since the useful segment is broadcast once every Tk units and a client can wake up

at any moment, the variable X is uniformly distributed over the interval [0, Tk).

It turns out that we need to consider three cases. These are depicted in Figure 5.2

where the thick vertical line corresponds to the moment the client wakes up, and

the grey box represents the useful segment.

Case a: [0 ≤ X ≤ Tu] The client starts monitoring within a broadcast of the

useful segment (Figure 5.2(a)). This means that it just missed a portion of the

useful segment and it has to wait for its next broadcast. The probability of that
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Figure 5.2: Effect of the useful segment on performance

happening is p1 = Pr[0 ≤ X ≤ Tu] =
Tu

Tk
. Because the client has to wait until the

next broadcast of the useful segment, the refresh time will be equal to a full period

of ACk, i.e., Rm = Tk. 2

Case b: [X > Tu and X ≤ Tk+1] The client starts listening outside the

useful segment which, however, completes in time less than Tk+1 (Figure 5.2(b)).

Note, this case is possible only if Tu < Tk+1. Also, this case is not possible either

if k = C, simply because there is no level ACC+1 (by convention TC+1 = 0 and

fC+1 = ∞). With this in mind, the probability of the second case occurring is

p2 = Pr[Tu < X ≤ Tk+1] = max
(
0,
Tk+1 − Tu

Tk

)
. Here, the pages cached in ACk+1

delay more than the useful segment of ACk, and therefore the refresh time is equal

to the period of level k + 1, i.e., Rm = Tk+1. 2
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Case c: [X > Tu and Tk+1 < X < Tk] For the last case, the client wakes up

outside the useful segment, which completes after level k + 1 (Figure 5.2(c)). The

probability of this third case occurring depends on the relative sizes of Tu and Tk+1.

More specifically, p3 = Pr[max {Tu, Tk+1} < X < Tk] =
Tk −max {Tu, Tk+1}

Tk
.

Now, the refresh time is determined by the end of the useful segment. Therefore

Rm = X, where X is uniformly distributed over (max {Tu, Tk+1} , Tk). 2

From the above model, we can compute that the expected refresh time of an

(m)-refresh is E [Rm] = Tk Φ(k, u), where

Φ(k, u) =


1

2
+

u

nk
−

2u

nk

fk
fk+1

+

(
fk
fk+1

)2

if u <
nkfk
fk+1

1

2
+

u

nk
−
(
u

nk

)2

if u ≥
nkfk
fk+1

(5.1)

5.2.3 Cache Optimization

In the previous section we computed the expected time for an (m)-refresh to be

satisfied, given the structure of the air-cache. The air-cache, however, is created

to serve a large number of clients with different needs in terms of number of log

pages. Hence, in order to optimize it for the whole client population we need a

performance metric that normalizes over the size of clients’ demands. A natural

choice for such a metric is the refresh factor Fm =
Rm

x
. This intuitive metric

gives the number of pages a client examines for every page it actually needs. More

important, it gives a better indication as to how good the air-cache is for any

client irrespectively of its disconnection time and the volume of updates it needs.

Obviously, in the best case Fm = 1, which means that a client examines only the

pages it needs, no more than once each.

Using this metric we can now formulate the air-cache optimization problem.
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Our goal is to structure the air-cache in a way that minimizes the expected refresh

factor over all clients. The inputs to the problem are the range of pages to be

cached (`c to `z), the maximum number of cache levels to be created C, and the

log access pattern. The last is expressed in terms of the a probability vector

P = (pc, . . . , pz), where pm is the probability that a reconnecting client needs a

(m)-refresh. Formally, we have to solve the following optimization problem:

Given c, z, C,P

find f2, . . . , fC , and n1, n2, . . . , nC

that minimize
z∑
i=c

pi E [Fi] (5.2)

under the constraints fC > fC−1 > . . . > f1 = 1,

n1 ≥ 1,

nk ≥ 0 for 2 ≤ k ≤ C,

and
C∑
k=1

nk = z − c + 1

The expected refresh factor E [Fm] used in the objective function can be com-

puted from Equation 5.1 since E [Fm] =
E [Rm]

z −m+ 1
. Notice that in the formulation

of the problem, we do not allow AC1 to be empty (n1 ≥ 1). The reason behind

this constraint is that for any optimal solution that AC1 is empty we can get an

equivalent solution where it is not empty, by removing all lower levels that are

empty, and properly adjusting the relative frequencies. Finally, in practice, we

also need to decide what range of the log should be air-cached, i.e., determine the

parameter c. However, this is an orthogonal problem that we address in the next

section.
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5.3 Hybrid Log Dissemination

In the previous section, developed a performance model for hierarchical air-caching

of logged updates. Here, we propose a hybrid system that builds on this model to

efficiently disseminate updates to large populations of mobile/disconnecting clients.

The term “hybrid” reflects the fact that we use a broadcast channel to air-cache

some recent part of the log, but also allow clients to directly connect to the server,

and pull data in case of air-cache misses.

Basically, the proposed system has three major objectives: efficiency, scalabil-

ity, and adaptiveness. In our context, efficiency translates to small refresh factors

for reconnecting clients. When serving many clients with different needs, this calls

for a solution to the abovementioned optimization problem. Scalability requires

that the system performs equally well for a very large number of clients. As it

was demonstrated in our previous work, such a hybrid system achieves scalability

with a careful balance of broadcast and unicast data delivery. On one hand, the

goal is to air-cache enough data to serve the bulk of clients needs, and let the

server handle only a tolerable volume of cache misses. This prevents the server

from becoming a performance bottleneck. On the other hand, we do not want to

cache more than we have to, since that would unnecessarily increase the broadcast

size. Last, adaptiveness requires that the system is efficient and scalable under

any (possibly changing) workload. This requirement emphasizes the pivotal role

of air-cache misses. As they are the only indication of the clients’ activity, the

server relies on them to assess the system’s workload, and adapt accordingly.

The overall system architecture is shown in Figure 5.3. Clients can connect and

disconnect at any time. A reconnecting client first tunes into the broadcast channel

to determine how many log pages have been created since its last connection, and
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Figure 5.3: System overview

whether it should get them all from the air-cache or not. If yes, it does not contact

the server; otherwise it sends a request for one or more log pages.

The server consists of five modules:

1. The Log records all the data updates, grouped in equal size pages. When

new log pages are created, it notifies the other modules as necessary.

2. The Broadcaster creates the air-cache by broadcasting log pages in the

proper sequence.

3. The Request Manager handles client requests, and collects the necessary

statistics on the misses.

4. The Workload Estimator uses the miss statistics to assess the clients’

activity and log access pattern.

5. The Air-cache Adapter controls the contents and structure of the air-

cache, based on the output of the workload estimator.

Next, we present the key components of this hybrid system. First, we introduce

a new twist to the idea of air-cache misses, then we show how the estimator can
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estimate the workload from those misses, and finally, describe how the adapter

dynamically modifies the air-cache.

5.3.1 Soft Cache Misses

Naturally, a client is expected to generate a cache miss when (some of) the updates

it requires are not air-cached, i.e., when it needs more log pages than it can get

from the air-cache. In this case, it will get all the pages it can from the broadcast,

and request the remaining from the server.1 Note that the size of the miss, i.e.,

the number of pages the client requests from the server, is variable.

We can, however, relax the notion of a cache miss and, sometimes, allow clients

to generate misses even for air-cached data. The rationale behind this idea is that

such misses may yield significant savings in terms of the refresh time. Consider,

for example, the scenario in presented in Figure 5.4(a). This particular refresh

translates into a (k, u)-hit with a small useful segment Tu (grey box) that will

start being broadcast S units later. As we have seen, the refresh time R for the

client is determined by the end of the useful segment. For the first Tk+1 units after

it wakes up, the client downloads pages from ACk+1, . . . ,ACC . After that, it has to

wait for another D units until it can download the useful segment; no other page

that it needs or it does not already have is broadcast in that period. Therefore,

within the refresh time R there is a lengthy “dead interval” D which the client

spends just waiting. It is not hard to see that if it did not have to wait for the

delayed useful segment, the refresh time R′ would be only Tk+1. But of course,

1Alternatively, for big requests, the client could scrap its local replica and rebuild it from

scratch. Although not considered in this study, such an option could be easily supported by the

system.
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Figure 5.4: Examples of possible soft cache misses

this would be possible only if the client could get the useful segment in another

way, i.e., directly from the server.

In cases like the above, and from the client’s perspective, it pays off to actually

generate a miss even for pages that can be found in the air-cache. Since such a

miss is only a performance enhancement and not a functional requirement we call

it a soft miss. In this example, the soft miss turns the (k, u)-hit into a faster

(k + 1, nk+1)-hit. Another similar scenario where a soft miss can make significant

difference is shown in Figure 5.4(b). This time, the client wakes up within a

broadcast of the useful segment, which means that it will wait for R = Tk to get

the pages that were just missed. That includes a long dead interval D. If it could

get those few pages by means of a soft miss, the refresh time would be cut down

to R′ = Tk+1.
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But there is also a downside to soft misses; they add up to the server’s load.

However, exactly because they are “soft”, it can be left to the server’s discretion

which of them (if any) to serve. For example, consider the example of Figure 5.4(c).

Again, the client wakes up within a broadcast of the useful segment, but towards

the end of it. A soft miss in this case would indeed reduce the refresh time sub-

stantially. However, its size would be quite big, and, depending on its load, the

server might be reluctant to serve it.

For the server to be able to decide which soft misses it can accommodate and

inform clients when to send one or not, we need to quantify the “importance” of

a miss. The above examples suggest that we must give preference to small size

misses with big potential to reduce the clients’ refresh time. Based on that, we

define the merit of a (k, u)-hit to create a soft miss to be M =
S − Tk+1

Tu
, where S

is the time when the useful segment starts being broadcast after the client tunes in

the channel. Intuitively, this metric favors situations with a small useful segment

that starts being broadcast long after the client wakes up, causing lengthy dead

intervals. Note that if the useful segment starts before Tk+1, there is no dead

interval and M is negative. Also note that this definition applies even for the top

level ACC where TC+1 = 0.

The server establishes and broadcasts a merit threshold θk to instruct clients

to send soft misses only if their merits exceed it. This way it can explicitly control

the volume of such misses it receives. When it is fairly busy it should select a

high threshold in order to limit the “performance misses” to a minimum. On the

contrary, when not loaded, it can lower the threshold and offer more performance

improvement chances to clients. In Section 5.3.3 we explain how exactly the server

regulates that. However, the less obvious but more important advantage of this
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technique is that, based on the analysis of Section 5.2.2, we can compute both the

probability b(k, u) that a (k, u)-hit will cause a soft miss as well as the expected

size g(k, u) of that miss. As we will see later, this provides the grounds for accurate

estimation of the workload. If we define

h(k, u) = 1−
θku

nk
−

fk
fk+1

then the probability that a (k, u)-hit will create a soft miss, i.e., its merit will be

higher than a threshold θk, is

b(k, u) =


h(k, u) if u <

nk
θk

(
1−

fk
fk+1

)

0 if u ≥
nk

θk

(
1−

fk

fk+1

) (5.3)

The expected size of such a miss is

g(k, u) = u−
u2

2nkh(k, u)
(5.4)

The last piece of the picture is a suitable indexing scheme for the broadcast

channel. In other words, along with the log pages, we need to broadcast information

about the cache contents and structure so the clients can figure out how many pages

they need, estimate how long it will take to download them, and compute their

merit to send a miss to the server. In Table 5.1, we present the information that

the clients need to do that. Assuming a small number of levels, the volume of this

data is quite small. Thus, we choose to broadcast this index along with every log

page.

An enhancement over this simple scheme would be to extend index entries with

more detailed information about the updates being broadcast. For example, bit-

vectors could be used to indicate the data that were updated by the log entries
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For the Air-Cache
C : Number of air-cache levels
T : Period of air-cache

old : The oldest page in the air-cache

For every level ACk

fk : Frequency (if not fixed)
θk : merit threshold

newk : most recent page
nextk : page to be broadcast next

Table 5.1: Index information for log air-caching

in each page [JEHA97]. These would allow clients to detect which of the log

pages affect their data, and possibly, save time and power by downloading pages

selectively. Depending on the size of the additional information, such enhancement

would require a more sophisticated indexing technique [IVB94a].

5.3.2 Workload Estimation

In this section we describe how we can assess the actual workload of the system

from the relatively small number of misses that reach the server. For our purposes,

the workload is expressed as the rate L = (λ1, . . . , λz), where λm is the rate at

which clients require (m)-refreshes. This is the output of the workload estimator

that is passed on to the air-cache adapter. Note that the size of L grows as new

log pages are created. But, at the same time more and more of the early log pages

stop being accessed, zeroing the respective elements of L. Therefore, in practice

we only need to keep a reduced version of L starting with the oldest log page that

got accessed over the last adaptation period.

The way λm is estimated depends on the whether page `m is air-cached or not.

If it is not, then all (m)-refreshes yield hard misses since at least one of the required

pages (`m) cannot be found in the air-cache. Therefore, these hard misses are the

actual number of clients that required an (m)-refresh.

If, however, `m is air-cached the problem is a little more complicated. In this
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case, a client request for an (m)-refresh will result in some (k, u)-hit with the

proper values of k and u. The server does not get any information about this

hit, unless a soft miss is created. This means that it receives feedback for only

a fraction of the actual (m)-refreshes. But, here is where the knowledge of the

soft miss probabilities can be of service. If (m)-refreshes, resulting in a (k, u)-hit,

create soft misses with probability b(k, u), then the actual number of (m)-refreshes

can be computed by dividing the number of soft misses by this probability.

Still, not all elements of L can be computed in this way. A small difficulty arises

for computing the value of an λm when the corresponding miss probability b(k, u)

is zero or close to zero. In such a case, clients do not send any soft misses, and thus,

the server has absolutely no information about those (m)-refreshes. To overcome

this problem, we estimate such missing values by interpolating on the ones that are

available. Obviously, there is no way of knowing whether these estimates reflect

the real workload. However, our experiments confirm that this procedure yields a

quite accurate estimation of the workload.

5.3.3 Air-cache Adapter

The air-cache adapter is the core of the system which makes the critical operating

decisions. It has to provide answers to three questions: how many log pages

should be air-cached, what is the best way to structure the air-cache for the given

log access pattern, and when clients are allowed to send soft misses. Naturally,

the answers to these questions are based on the output of the estimator. As it is

shown in Figure 5.3, the adapter consists of three separate modules that operate

in sequence, each deciding on one of abovementioned issues.

The adapter is invoked periodically at predefined intervals. In between adapta-
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tions, new log pages may be created. These are placed in a separate level of their

own. In other words, if the last adaptation phase created an air-cache of C levels,

all new pages created before the next adaptation phase will be placed in ACC+1.

This way, new pages do not affect the relative structure of the other levels, as this

was last determined by the adapter.

Next, we elaborate on the three modules of the air-cache adapter.

Air-Cache Contents

The first decision the system has to take is the extent of the log that needs to be

air-cached. The issue here is that we need to satisfy two contradicting goals. On

one hand, we would prefer to select as few log pages as possible so that we end

up with a small broadcast period and, therefore, small air-cache latency. But, on

the other hand, the less pages we select the more refreshes will span beyond the

air-cache, and cause hard misses to be sent to the server. So, in order to prevent

the server from overflowing, we have to make sure that it does not receive more

misses than it can handle.

We define the capacity (or throughput) µ of the server to be the maximum rate

at which it can unicast log pages. This is determined by the server’s processing

power and/or the available network bandwidth. Our goal is to limit the workload

imposed by the misses below that capacity. But, an important aspect of the

system is that server must handle two types of misses. For this reason, we divide

the server’s capacity into two parts, µh and µs, and allocate them to hard and soft

misses respectively (µh + µs = µ).

The number of log pages in the air-cache affects only hard misses. Therefore,

the goal of the first module of the adapter is to find what is the minimum number
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of log pages that should be air-cached so that the workload of hard misses does

not exceed the allocated capacity µh. Bear in mind that misses can be of different

sizes, i.e., different misses request different number of log pages. As a consequence,

besides the estimated rate of the misses, we need to take into account the load

that each miss generates in terms of the number of pages it requires. Formally, the

problem is to find the maximum c for which

∑
i<c

(c− i)λi < µh

This is rather easy problem; the proper value of c can be found with a single scan

of the vector L. This value determines the oldest page `c to be put in the air-cache.

Air-Cache Structure

Having selected the range of log pages to broadcast, we need to decide how to

structure the air-cache so that we minimize the refresh time for the clients. As we

discussed earlier, this calls for a solution of the optimization problem presented

in Section 5.2.3. The problem was formulated in its most general form. However,

the adapter is required to make fast on-line decisions for the structure of the air-

cache. Thus, for practical solutions to the problem, we limit the number of decision

variables. Specifically, we preselect the broadcast frequencies to be fk = 2k−1. This

means that each cache level is twice as fast as the next lower level, i.e., fk+1 = 2fk

and Tk+1 =
Tk

2
. Under these assumptions, our problem is reduced to finding the

nk’s to distribute the cached pages in the C levels so that the objective function

is minimized.

But even this is a hard combinatorial problem that we cannot afford to solve

optimally online. Instead, we have developed a greedy algorithm that finds a good

solution by minimizing an approximation of the objective function. The inputs to
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the algorithm are the rate vector L provided by the workload estimator, and the

range of log pages to be cached as determined by the first module of the adapter.

Formally, given that pages `c through `z should be cached, we have find the

nk’s that minimize the objective function

z∑
i=c

pi E [Fi]

where pi is the probability that a client that wakes up requires a (i)-refresh.

Note that this probability can be computed from the rate vector L since pi =

λi/
z∑
j=c

λj. Our algorithm is based on the following approximation of the objective

function:

z∑
i=c

piE [Fi] =
z∑
i=c

pi
E [Ri]

z + 1− ii = c+
k−1∑
q=1

nq + j − 1

 =
C∑
k=1

nk∑
j=1

pi
TkΦ(k, j)

z + 1− i(
Φ(k, j)

z + 1− 1
≈

1

z + 1− i

)
≈

C∑
k=1

nk∑
j=1

pi
Tk

z + 1− i

=
C∑
k=1

Tk

nk∑
j=1

pi
z + 1− i(

πi ≡
pi

z + 1− i

)
=

C∑
k=1

Tk

nk∑
j=1

πiΠk ≡
nk∑
j=1

πi

 =
C∑
k=1

TkΠk = T
C∑
k=1

Πk

fk(
fk = 2k−1

)
= 2T

C∑
k=1

Πk

2k

The algorithm starts by assigning all the pages to the lower level, and computes

an initial value for the objective function. Then, it examines if the pages can be

split into two parts so that if the most recent part is moved to the higher level,
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the value of the function is decreased. If there is not such a split then it stops.

If there is, it splits the pages in the way that yields the minimum value for the

objective function, and assigns the most recent part to the higher level. Then, it

recursively applies the same check for the next level, i.e., it checks whether some

of the pages that were moved in that level can be raised to even higher levels.

The recursion stops when there is no split that can further reduce the value of the

objective function.

Defining Soft Miss Thresholds

The last part of the adaptation process is the selection of merit thresholds for soft

misses. The tradeoff here is similar to that of hard misses. We want to allow as

many soft misses as possible without, however, swamping the server. The limiting

factor here is µs, the server capacity allocated to soft misses.

The approach we adopt is to control the volume of soft misses on a per-level

basis. We establish a merit threshold θk for each level ACk, limiting the number

of soft misses for pages in this particular level. Also, ACk is allocated a capacity

µk, a portion of µs proportional to the number of pages cached in it.

Given the structure of the air-cache, we can compute the probability b(k, u)

that a (k, u)-hit will generate a soft miss, for any value of the merit threshold θk.

In addition, we can compute the expected size g(k, u) of such a miss. Therefore, as

we also have an estimate for the rate of (k, u)-hits, we can compute the expected

soft misses load for level ACk. This is our basis for selecting the merit thresholds.

Specifically, if q is the LSN of the most recent log page cached in ACk, then θk is

assigned the minimum value for which

nk∑
u=1

g(k, u)b(k, u)λq−u+1 < µk
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5.4 Experiments

In this section we present the most important results that we obtained from a

detailed simulation of the proposed system. In the presentation of the experiments,

time measurements as well as simulation parameters are expressed in terms of

broadcast units.

The simulation model consists of a server, a variable number of mobile clients,

and the network interconnecting them. This network is hybrid in the sense that

there are three separate communication paths:

1. The broadcast channel with a fixed bandwidth capable of delivering 1 page

per time unit.

2. The unicast downlink from the server to the clients which is a shared re-

source used for all server replies. We have assume that this link has similar

characteristics with the broadcast channel, i.e., it too can transfer 1 page per

unit.

3. The uplink(s) from the clients to the server. Because of the small size of

requests from the clients, we do not consider the possibility of congestion in

the uplink channels.

The server model implements the architecture shown in Figure 5.3. We assume

that the processing power of the server is sufficient to utilize the full bandwidth of

the downlink. This means that the server can unicast log pages at a maximum rate

of µ = 1 page per unit. The generation of updates is simulated through a separate

module running at the server. Its function is to create new log pages, and notify

the air-cache adapter every time it does. This process is governed by the “inter-

arrival” time distribution of log pages, i.e., the distribution of the interval between
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the generation of successive pages. For all the experiments presented herein, we

used exponential inter-arrival time with mean 1000 time units. The adaptation

period of the server was also set to 1000 units.

The client model we used is quite simple. Basically, the only characteristic of

the clients is the distribution of their sleep time. At the end of a sleep period, a

client wakes up, retrieves all log pages created during this period, and then goes

back to sleep. We assume that clients do not remain awake after they receive the

updates they need. For this kind of operation, the only state information requires

for each client is the most recent log page it received the last time it woke up.

5.4.1 Fixed Size Air-Cache, No Hard Misses

For the first set of experiments we consider a (probably unrealistic) scenario where

the server maintains a fixed number of log pages in the air-cache. Essentially, we

relieve the server from the first part of the adaptation procedure, i.e., from having

to decide how many pages to air-cache. In addition, clients that wake up require

log pages only within the range of these pages (following some given distribution),

regardless the last log page they received before they went to sleep. This means

that no hard misses are sent to the server because clients never require refreshes

beyond what is air-cached. Consequently, all the server capacity is allocated to soft

misses. The reason we used this hypothetical scenario is that it constitutes some

sort of a static case for which we can compute the theoretically optimal air-cache

performance. This provides a solid baseline to compare our system against.

For the results presented here, the server always air-caches the last 200 pages.

Clients always require refreshes that start with any of these pages. We tested the

system for three different distributions for the range of the refreshes, which are
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Figure 5.5: Distributions of client refreshes

depicted in Figure 5.5:

Normal The clients’ refresh size follows a normal distribution with mean 100 and

standard deviation 10. This is close to a best case situation where all clients

need approximately the same number of pages.

Uniform The sizes of refreshes are uniformly distributed over all 200 pages. For

the server, this is a worst case scenario, since it has to equally satisfy a very

wide range of client needs.

Bipolar This reflects the situation where clients are partitioned into two equal

size groups: workaholics who sleep only a little and usually need few log

pages (normally distributed with mean 30 and standard deviation 5), and

sleepers who tend to sleep more and require many more updates (normally

distributed with mean 150 and standard deviation 20).

Our goal is to show that the system can efficiently disseminate updates even
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in very large scale, adapting to the (dis)connection habits of the client population.

Efficiency is measured in terms of the clients’ refresh factors. In the rest of this

section, we present the results we obtained for the above three types of workload

at a variable scale, i.e., a variable number of clients.

For these experiments, we plot up to four different curves to emphasize different

aspects of the system’s performance. In particular, we want to demonstrate the

effectiveness of the cache optimization algorithm, the accuracy of the workload

estimation procedure, and the performance benefit of soft misses:

Optimal Broadcast Only The first curve corresponds to the theoretically opti-

mal performance of the air-cache, when only broadcast delivery is used (i.e.,

there are no misses). Basically, it is the solution to the optimization prob-

lem of Section 5.2.3 for the given frequencies, and serves as our comparison

baseline. These results were obtained with exhaustive search over all the

possible air-cache configurations. Keep in mind that the performance for all

“Broadcast Only” scenarios depends only on the log access pattern and not

on the number of clients. Therefore, it is the same at any scale.

Broadcast Only / Adapt On Hits This and the next two curves were obtained

from the simulation, each under a different setup. In this one, log pages are

delivered only through the air-cache, and clients do not generate any misses.

Instead, we (magically) provide the server with all the information about the

clients air-cache hits. This way, the server has a complete picture about the

activity and the needs of the clients. Its only task is to structure the air-

cache to according this picture. Compared to the “Optimal Broadcast Only”

curve, this case demonstrates the effectiveness of the air-cache optimization

algorithm, without any possible side effects of the miss-based workload esti-
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mation.

Broadcast Only / Adapt On Misses For this curve, we allow clients to send

soft misses to the server. The server uses the misses to estimate the work-

load, but it does not reply to the clients; clients still get the data from the

broadcast. Compared to the previous curve, this time the server has the

additional task to compose a picture of the workload just from the misses.

Therefore, this curve shows the ability of the server to estimate the workload.

Hybrid The last curve corresponds to the performance of the system under nor-

mal operation. Clients send soft misses which the server does service, helping

them download the required log pages faster. This result shows the perfor-

mance improvement from soft misses over the broadcast-only cases.

Normal Distribution Figure 5.6 presents the results for the normal distribution

of client refreshes. First, in Figure 5.6(a) we show the refresh factor for different

sizes of the client population which vary from 500 clients to 20000 clients. The

clients sleep time is uniformly distributed with mean 15000 units, and the mean

size of each refresh is 100 pages. With simple arithmetic, we can compute that at

the low end of the scale the clients request, on average, about 3 pages per time

unit, while at the high end about 130 pages per unit. Notice that, considering both

the unicast and the broadcast channel, the server can transmit only two pages per

unit. This means that, for these experiments, the rate at which clients request

data is 65 times larger than the available network bandwidth.

The first thing to note from this figure is that, for the most part, the three

“Broadcast Only” curves are virtually indistinguishable. They all yield the same

average refresh factor. This result suggests two things: first, the proposed greedy
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Figure 5.6: Fixed size air-cache - Normal distribution
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air-cache optimization algorithm generates a near optimal air-cache structure, and

second, the workload estimator can accurately assess the clients needs relying

only on the misses. An interesting observation is that there seems to be a slight

performance degradation at the left end of the graph, i.e., under a light workload.

The reason behind this surprising behavior is that under very small request rates,

it is harder for the server to detect a pattern in the clients’ demands. Note that

this happens even when the server adapts on the hits, which means that it should

not be attributed to the workload estimation.

Probably more interesting is the fact that the performance of the full fledged

hybrid system is better than the broadcast-only setups. Obviously, this is a re-

flection of the performance advantage soft misses bring to the system. We defer

the discussion on this issue for the next set of experiments where this performance

difference is more meaningful.

As we mentioned earlier, this normal distribution is almost a best case scenario

for disseminating the log. The reason is that all clients need approximately the

same number of pages. Thus, the system can structure the air-cache to match

these types of requests really well, yielding an average refresh factor (1.34) close

to 1. To demonstrate how this is actually achieved, in Figure 5.6(b) we present

a break down of the average refresh factor for different refresh sizes. The solid

line gives the average refresh factors. To put things into perspective, we have also

superimposed the log access pattern, at no particular vertical scale. Clearly, the

air-cache is optimized to yield minimum factors where the bulk of refreshes are

(for sizes between 80 and 120) at the expense of very rare refresh sizes outside this

range.
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Uniform Distribution Under a uniform distribution of refresh sizes the system

has the hardest possible task: structuring the air-cache to serve a very wide range

of client demands without giving preference to any one group in particular. This

means that it cannot undermine the performance for one type of refreshes in order

to improve performance for another, as it did in the previous case. Instead, it tries

to level off the performance of everyone as much as possible. The result is a higher

average refresh factor. This shown in Figure 5.7(a) where we plot the average

refresh factors for this type of workload. The other parameters of the experiment

are the same as in the previous one. This time, the optimal performance for a

broadcast-only delivery is 2.92, more than double the factor obtained under the

normal distribution. Nonetheless, even in this case, the broadcast-only version of

our system performs very close to the optimal.

Here, because of the higher refresh factors, there is also a higher margin for

improvement with soft misses. Indeed, in Figure 5.7(a), the gap between the

broadcast-only curve and the hybrid is wider. The reason is that soft misses al-

leviate the delays of lengthy broadcast refreshes. The extent of the performance

improvement depends on the volume and size of soft misses the server can accom-

modate. The lighter the workload the more and bigger soft misses it can service,

and thus, the bigger the refresh time savings.

The performance savings are better illustrated Figure 5.7(b), where we present

the average refresh factors for only those refreshes that actually generated a soft

miss. The line labeled “Broadcast Only” reflects their performance when the misses

were not serviced by the server, and the clients eventually received the data from

the broadcast. The other line shows the performance of the same clients when the

soft misses were served by the server. The improvement from soft misses is clear;
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Figure 5.7: Fixed size air-cache - Uniform distribution
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the average refresh factor drops between 30% and 40%. This big difference also

implies that the generated soft misses indeed exhibited high merits.

It is also interesting to observe the behavior of these two lines with respect to

the scale of the experiment. As the workload to the system increases, soft misses

affect higher refresh factors. This is an artifact of the dynamic selection of merit

thresholds. When the workload increases, the server has to be more selective as to

what soft misses it is willing to serve. Thus, it raises the merit thresholds, limiting

the ability to create soft misses to refreshes with high refresh factors.

Bipolar This distribution reflects an in-between scenario where the system opts

to satisfy two groups of clients with very different needs for updates. As it was

expected, in this case the air-cache can do a better job delivering the log pages

than under the uniform case, but not as good as the normal case. This time the

optimal average refresh factor for broadcast-only delivery is 2.35 (Figure 5.8(a)).

As far as our system is concerned, once again we achieve optimal performance for

the broadcast-only versions, and similar improvements with the hybrid version.

Figure 5.8(b) plots the performance of the system for the different refresh sizes.

Again, with the help of the superimposed log access pattern, we can see that the

algorithm allocated the log pages into cache levels so that the smallest refresh

factors fall under the two bells of this bipolar distribution. In other words, it

structured the air-cache to satisfy both sleepers and workaholics alike.

Finally, this experiment revealed another significant aspect of the system. Even

though the broadcast-only version of our system matches the theoretically op-

timal performance, it does so using an apparently different air-cache structure.

The exhaustive search indicated that the optimal structure is to allocate the

200 pages in four levels so that (n1, n2, n3, n4) = (19, 141, 1, 39). On the other
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hand, with the adaptive algorithm the average number of pages in each level were

(159.6, 2.5, 37.9, 0); yet they both yield the same performance. In order to ensure

that this was not an error in our algorithm or the simulation model, for this partic-

ular workload, we computed and compared the theoretical expected refresh factors

for all the possible allotments of the 200 pages in up to four cache levels. What

we found was that there is a considerable number of combinations that yield per-

formance very close to the optimal, including one similar to that produced by our

algorithm. The explanation for that is that even though they may appear quite

different, in practice they produce very similar broadcast sequences. In this case,

for example, the optimal structure puts the 39 most recent pages in AC4 where

they get broadcast 4 times more often than the bulk of the rest pages (141) cached

in AC2. Our system created a similar effect in a different way: it placed almost

the same number (37.9) of the most recent pages in AC3 where again they get

broadcast 4 times more often than the bulk of the rest pages (159.6) placed, in

this case, in AC1.

5.4.2 Variable Size Air-Cache

For the second set of experiments we used a more realistic scenario, where the size

of the air-cache is not fixed. This time the decision of how many log pages to

air-cache rests with the server, as it would in a actual deployment of the system.

Clients also operate in a more natural way. In other words, every time they

wake up, they ask for all the log pages generated while they were sleeping. After

they get all these pages, they go back to sleep for a random period. Sleep times are

chosen to create a mixed sleepers/workaholics client population. Half of the clients

are characterized as workaholics with sleep time normally distributed with mean
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30000 units and standard deviation 5000 units. The other half are sleepers with

sleep time normally distributed with mean 150000 units and standard deviation

20000 units. These parameters were chosen so that we obtain a workload similar

to the bipolar distribution of the previous section; on average a workaholic requires

30 pages, and a sleeper 150.

Contrary to the previous case, now clients may also generate hard misses, if

they happen to need old pages that have been dropped out of the air-cache. As

it was described in Section 5.3.3, in this case the capacity µ of the server must be

split to µh for hard misses, and µs for soft misses. The actual split is specified by

the parameter SoftMissesShare which corresponds to the portion of µ allocated to

soft misses. For example, a value of 0.2 for this parameter means that µs = 0.2µ

and µh = 0.8µ.

The results of this experiment are shown in Figure 5.9. Again, the number

of client ranges from 500 to 20000. In order to show the effects of the capacities

allocated to each part of the system, we plot the results for two different values of

the parameter SoftMissesShare. For SoftMissesShare=0.2, most of the capacity of

the server is allocated to hard misses; the opposite holds for SoftMissesShare=0.8.

For each value of this parameter, we also include the results of a test where the

system uses the hits to adapt on. These contrast the performance of the system to

the ideal, but unrealistic, scenario where the server has perfect knowledge about

the workload.

The first conclusion from this graph is that the system exhibits the same sig-

nificant scalability. Under all configurations, it can efficiently service at least up to

20000 clients, yielding small refresh factors. In fact, the resulting factors are even

smaller than those in the previous experiment (Figure 5.8(a)). This is because in
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the previous experiment the server was forced to always air-cache 200 pages, even

though it was not necessary. This time the server could decide for itself, and indeed

chose to keep a smaller air-cache. It is important to point out that the system not

only performs and scales very well, but also exceeds its nominal throughput by

many times. At the highest scale, it delivers data at a rate 65 times the available

network capacity. In other words, by exploiting the commonality between multiple

clients, we achieve a manyfold increase of the effective bandwidth.

Furthermore, by comparing the four curves in the figure, we see that the system

performs better for the large value of the parameter SoftMissesShare, i.e., when

it allocates more resources to soft misses. There are two reasons for that: First,

the server can accommodate more soft misses, and thus, help more clients improve

their refresh times. Second, more misses provide a better picture of the clients’

needs and help the server make more informed decisions. This is evident by the fact

that, for SoftMissesShare=0.8, the performance curve of the system when adapting
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on the misses follows very closely the ideal curve of hits-based adaptation. On the

contrary, the gap between hits-based and misses-based adaptation is wider for

SoftMissesShare=0.2, especially in large scale when the server cannot afford to

serve many misses.

These results suggest that most of the server capacity should be allocated to

soft misses. In order to see whether there is more benefit allocating even more than

0.8 of the server’s capacity, we also ran experiments with µs = 0.9µ, and µs = 1µ.

In the first case the results almost matched those for µs = 0.8µ. However, when all

the server was allocated to soft misses, the refresh times of the clients more than

doubled. But, this was an expected result. When we allocate all capacity to soft

misses, we effectively prohibit hard misses. This means that the server has to make

sure that it receives no hard misses. The only way this can happen is by air-caching

all the log, or at least a very big part of it. Naturally, the result is high broadcast

periods and, consequently, high refresh factors. Given these observations, a value

of 0.8 appears to be a good and safe choice for the SoftMissesShare parameter.

5.5 Conclusions

In this chapter, we addressed the problem of propagating updates from a data

server to a large number of mobile clients. Such clients typically operate off-line

on data replicated from the central database, but occasionally they need to refresh

their data with changes committed at the server. We proposed a system that

employs adaptive hybrid data delivery, i.e., air-caching, to disseminate the log of

updates to the clients.

First, we described a hierarchical form of air-caching that supports multiple

cache levels. each with different average access latency. We analyzed the per-
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formance for broadcasting a log of updates using the hierarchical air-cache, and

formulated the optimization problem of structuring the air-cache according to the

clients’ access pattern. Then, we described the proposed adaptive hybrid system,

and elaborated on its key components. We also introduced the notion of soft air-

cache misses, i.e., misses for cached data, that allow clients to improve performance

over broadcast delivery.

The experimental results confirmed our performance expectations. The system

can detect the clients request patterns, and adapt the structure of the air-cache

almost optimally to match the sleeping habits of the clients. Also, the dissem-

ination of updates was very efficient. The refresh times for clients was almost

constant across a wide scale (up to 20000 clients). The system exploits the com-

monality of among clients needs and uses the broadcast capability very efficiently,

yielding a throughput many times higher than its nominal capacity. Moreover,

the results demonstrated the important double role of soft misses for the system:

they provide information on the clients sleep time habits, and in some cases help

improve performance over broadcast only delivery, especially under not very heavy

workloads.
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Chapter 6

Publish/Subscribe Services

Publish/subscribe services are been used as alternative data distribution mecha-

nisms for a number of applications including mailing lists, Netnews [YGM96], doc-

ument dissemination [LT92], and financial systems [OPSS93, Gla96]. Typically,

in such systems, there is a server (publisher)1 that generates and/or collects in-

formation of potential interest to a client population. Each client (subscriber)

specifies a set of interests, and expects to receive any pertinent information gen-

erated thereafter. This set of interests is often referred to as the client’s profile.

The goal of the system is to match the generated information with client profiles,

and deliver it accordingly.

This kind of interaction between publishers and subscribers raises (at least)

the following question: Where in the system should data be matched to profiles?

In other words, which side should take over the task of filtering the information?

There are three possible answers to this question: the publisher, the subscriber,

1In the general case there may be several publishers. Here, we limit the discussion to cases of

a single publisher. Depending on the application and the setting, the publisher can either be the

original source of the information, or a broker that collects and relays information from multiple

sources

127



or both [Loe92]. In the first case, the publisher filters the data and sends it only

to interested clients. Ideally, clients receive exactly what they want, which means

that neither client resources nor network bandwidth is wasted on processing and

transmitting irrelevant information. On the downside, the server carries all the

filtering load, which is proportional to the number of clients as well as the rate at

which new data are generated. Hence, in large scale systems the server can easily

become a bottleneck. In the second case, the server merely acts as a pump of

unclassified data to the clients which are responsible to distill any useful content.

In some sense, the dissemination of updates, as it was explored in the previous

chapter, corresponds to this extreme case of a publish/subscribe service. The

main advantage is that the server avoids the filtering load which is now distributed

among the clients. Furthermore, each client has complete control over what is

useful and what is not. Obviously, a requirement is that the clients are capable

of performing this task. The pitfalls of this approach are that clients may have

to process an overwhelming amount of information, and that too much network

bandwidth may be wasted for data destined to be rejected.

A compromise between the two approaches is to split the filtering task between

the server and each client. Initially, the server makes some coarse classification

of the generated information, and a similar classification of the client profiles.

Thereafter, it propagates data items only to those clients whose profiles intersect

semantically with the items’ class. The clients again have to filter the incoming

data. However, this time the probability of a match can be significantly higher.

In this chapter we turn our attention to this last type of publish/subscribe data

services. Similarly to the previous chapter, we place the problem in the context of

mobile computing and intermittently connected clients. We are proposing to use
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the air-cache mechanism to disseminate information to mobile subscribers.

Generally, there are a number of applications that can fall under this general

model. Below we describe two motivating examples:

Decision Support Systems In the corporate world, the number of mobile

decision-makers is increasing fast. One of their main weapons is on-the-road access

to enterprise data warehouses, such as datamarts and desktop OLAP (DOLAP)

tools. To alleviate problems of mobility and disconnection, they need to store in

their portable computers materialized views which are pertinent to their work.

These, however, have to be kept up-to-date with respect to the main warehouse.

A possible approach is for mobile users to register their views with the server,

expecting to receive any relevant updates. To reduce processing overhead, the

server can collect the subscriptions, aggregate them, and select to materialize and

maintain a set of basic views that cover all clients subscriptions. In the litera-

ture, there are a number of algorithms that can be used for this purpose (e.g.,

[Rou82, RCK+95, RSS96, Gup97, TS97b]). It also provides each client with a set

of rewrite rules that can be used to derive the specific client views. Thereafter,

the server disseminates changes to the basic views, which are used by the clients

to refresh their own views.

Selective Information Dissemination Systems that selective disseminate in-

formation are becoming an attractive answer for the information overload of the

WWW. With such systems, instead of distressingly searching for information, users

effortlessly receive information (mainly documents) relevant to their interests, ac-

cording to their pre-specified profile. As we mentioned earlier, very fine matching

between the profiles and the generated documents limits the scalability of the sys-
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tem [YGM94]. Instead, the server can classify the user profiles according to some

crude similarity criteria, and disseminate a document to all clients in a matching

profile class. Each one of these clients completes the filtering process in order to

actually establish the relevance of the document. This kind of information dis-

semination is being used in commercial systems offering news services, like the

PointCast Network [Poi98], or AirMediaLive [Air98]. Typically, these products

organize information into channels based on the originating source (e.g., CNN,

the Sports Channel) and a general subject (e.g., world news, basketball). Users

subscribe to one or more of these channels and selectively examine the information

they receive.

In the rest of the chapter we explain how the concept of air-caching can be

used for disseminating data to mobile subscribers. We consider cases where clients

subscribe to rather general data services, and thus are responsible for filtering or

personalizing the received information. For clarity, the description is based on the

example of decision support systems and materialized views. However, the methods

and the results can be easily projected to any other application by drawing simple

analogies (e.g., a news channel corresponds to an append-only table, and a new

story is a new tuple).

6.1 Problem Definition

In this section we define the problem more formally. We consider a server that

maintains and publishes a data warehouse consisting of a specific set of C mate-

rialized views V = {V1, V2, . . . , VC}. The server collects updates in batches from

the original data sources and refreshes these views. Each refresh produces a new

version (or snapshot [AL80]) of the view either by fully recomputing the view
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or by generating a proper view increment. Generally, the refresh method can

be selected dynamically based on server policies, type of view, volume of updates,

and so forth [Vis97]. Here we restrict our study to cases where the refresh method

is decided a priori. We must note, however, that the proposed methodology can be

extended to incorporate a more flexible scheme at the expense of implementation

complexity.

Let Vk,i be the i-th version of view Vk generated at time tk,i. For recomputed

views, once a new version Vk,i is generated, the previous version Vk,i−1 is dropped

from the server and replaced by the new one. On the other hand, for incrementally

maintained views, an increment δk,i is generated which is then applied to the

previous version Vk,i−1 to yield the new version. Again, the old version is replaced

by the new one. But in this case, the server stores the increments as well. This

way, the current version of the view can be computed from any older version by

successively applying all younger increments, i.e., Vk,i = Vk,j + δk,j+1 + . . . + δk,i,

for any j < i. Note that the size of a view is not fixed and can vary from version

to version. We define Lk,i to be the size of view Vk,i, and lk,i the size of increment

δk,i.

Each mobile client selects to maintain in a portable computer its own set of

views. Initially, it goes through a registration process to provide the server with a

set of definitions for the views it wants to store. The server checks these definitions

and determines how these views can be derived from those in the set V. It generates

a set of rewrite rules and a subscription vector s = (s1, s2, . . . , sC), where sk = 1

if Vk is involved in at least one of these rules, and sk = 0 if not. The rewrite rules

and the subscription vector are sent back to the client, along with the current

version of every Vk for which sk = 1. The client uses this information to derive
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a first version for its own views. It also stores the set of rewrite rules and the

subscription vector. Given this vector, the client is considered to be subscribed to

all the views Vk for which sk = 1. Here, we assume that client subscriptions do not

change very frequently, and therefore, do not address reorganization issues dealing

with such changes.

Most of the time, a mobile client operates in sleep mode, i.e., with its com-

munication device(s) turned off. During those periods it relies on whatever data

are found in its local storage. Occasionally, it wakes up to refresh that data. This

requires to refresh the copies of the views it has subscribed to. Let us assume that

Vk,j is the most recent version of Vk stored in the client, while Vk,i is the latest

version at the server (i ≥ j). If Vk is incrementally maintained, the client needs

to download all the increments that were generated while it was sleeping, i.e., in-

crements δk,j+1, . . . δk,i. If, on the other hand, Vk is recomputed, the client needs

to download the latest version Vk,i of the view. In both cases, if i = j then Vk has

not changed, and therefore, no data need to be downloaded.

The goal of this chapter, is to show how air-caching can be applied for large scale

publish/subscribe services that fit the above description. For such applications, it

is expected that the fresh increments or recently recomputed versions will be in

very high demand, specially for the most popular views. As we have shown so far,

the air-cache is an excellent technique to efficiently disseminate such data. But, in

order to make it work also in this case, we need to decide which data are worth air-

caching, and how should those be structured in the air-cache. In the next section,

we describe a methodology that addresses these issues. The effectiveness of the

proposed techniques is demonstrated by the experimental results that follow.

132



6.2 Methodology

The proposed methodology is based on the idea of autonomous view managers. A

view manager M is a process running at the server, responsible for disseminating

one of the views. For a server that maintains C views, we define C of those

managers M1,M2, . . . ,MC . Manager Mk gets a share of the system resources, and

takes over the task of propagating updates of view Vk. Practically, this means

servicing client requests for (increments of) it, and air-caching it as necessary.

Figure 6.1 depicts an overview of a server with C view managers. One of these,

manager Mk, is shown in more detail to better illustrate their functionality.

Multiplexer

M
C

M
1

M
k

k
AC

Request
Processor

Unicast unicast

Dispatcher
Request

Composer
Air-Cache

. . .
. . .

requests

broadcast

Figure 6.1: Server architecture

Each manager Mk creates and manages its own air-cache ACk where it can

store (increments of) view Vk. It also services clients requests (i.e., air-cache misses)

related to this view. The actual use of this air-cache depends on the refresh method

of the view:

• If Vk is recomputed, the manager may cache the latest version of the view for

as long it remains popular. When its popularity drops enough, it is removed
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from ACk leaving it empty, typically, until a new view version is created.

While the view is cached, subscribed clients always retrieve it from the air-

cache, and the manager receives no requests for it. On the contrary, when

it is not cached all subscribed clients have to ask the server for the latest

version of it.

• If Vk is incrementally maintained, the manager Mk may cache a number of

recent increments δk,j, . . . , δk,i−1, δk,i, where δk,i is the most recent increment.

As the popularity of these increments decreases, they are removed from the

air-cache in decreasing order of age. When clients subscribed to Vk wake

up, they retrieve from the air-cache most (maybe all) of the increments they

need. In case they do need older increments not found in the air-cache, they

have to contact the server to get them.

Each ACk follows a flat broadcast scheme which, as we have already discussed,

is implemented through a cyclic queue Qk. In total, there are C such air-caches

sharing the same broadcast channel, multiplexed to form a composite air-cache

structure. This multiplexing is carried by the air-cache composer who schedules

the broadcast in a way that adheres to the properties of the composite air-cache

(see Section 3.3.3).

Managers also share the server resources to service air-cache misses, i.e., client

requests for versions or increments of views not found in the air-cache. Each

manager has an input queue for requests, and an output queue for replies to those

requests. When a request related to view Vk arrives to the server, it goes through

the request dispatcher who directs it to the input queue of Mk. From there,

it gets processed (in FIFO order) by Mk, and the result is placed in the output

queue, where it waits to be transmitted to the requesting client. At this stage,
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results from different managers may be waiting as well. For this reason, there is a

unicast multiplexer who coordinates the transmissions and regulates the use of

the unicast link.

The advantage of this technique is decreased complexity by decomposing the

problem of managing the air-cache. Instead of having to globally optimize the air-

cache over all the views, each Mk takes a local decision for the view it is responsible

for, given the evolution of the view, the air-cache misses generated by interested

clients, and the system resources allocated to it. In this way, view managers

operate independently from one another and, as we will see later, share very little

information.

Nonetheless, in order to make this scheme work, we need to answer two basic

questions: How do view managers share (or compete for) the system resources,

and how do they use and adapt their air-caches? From our perspective, the system

resources in question are the broadcast bandwidth, and the server capacity. In the

following sections, we provide answers to these questions and discuss the details of

our approach. We start by discussing the broadcast bandwidth distribution among

the air-caches. Then, we explain how view managers share the server resources.

Section 6.2.3 describes the adaptive part of the system, i.e., the management of the

individual air-caches. Last, we present the broadcast indexing method adopted in

this case.

6.2.1 Sharing the Air-cache

According to the above description, the broadcast bandwidth is shared by all view

managers of the server through a composite air-cache structure. As we saw in

Section 3.3.3, a composite air-cache is regulated by a set of factors φ1, φ2, . . . , φC .
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These determine the minimum bandwidth allocated to the different simple air-

caches, and therefore, their performance characteristics (i.e., average latency). In

this section, we discuss the selection of these factors.

There are two parameters that can affect the performance of the air-cache,

and thus, the selection of the bandwidth factors: the popularity of each view,

and the size of each air-cache. A well known result in the context of repetitive

broadcast systems is the square root rule. According to this rule, the clients’

expected response time is minimized when the repetition frequency of any item in

the broadcast is proportional to the square root of its access probability (i.e., its

popularity) [AW85, AW87]. This rule applies to data items of equal size. General-

ized to data of various sizes, it also prescribes that the optimal frequency for each

item is inversely proportional to the square root of its size [VH96]. In our case,

the popularity of a view is expressed by the number of clients that have subscribed

to it. Let rk be the number of subscribers to view Vk. The size sk of air-cache

ACk is determined by the amount of data manager Mk has decided to cache. For

recomputed views, if the latest version Vk,i is cached then sk = Lk,i; otherwise ACk

is empty (sk = 0). For incremental views, the size sk is the sum of the sizes of the

cached increments, i.e., sk = lk,j + . . . + lk,i−1 + lk,i. Given that, the square root

rule suggests that the relative repetition frequencies of data in any two caches ACk

and ACm should be such that

fk

fm
=

√
rk

rm

√
sm

sk
(6.1)

Nonetheless, this result is not directly applicable to our setting. The reason is

that the square root rule aims at minimizing the response time of client requests

for a single item. Here, however, a client may be subscribed to more than one
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view. This means that every time it wakes up it attempts to retrieve from the

air-cache updates for all the views it has subscribed to.

Early in our experimentation, we made the observation that the average re-

sponse time of requests for multiple items depends on the repetition period of the

slowest of these items. The repetition frequencies of the other items have very little

effect, since on an average case clients have to wait for the slowest item anyway.

This bears an important consequence: the expected response time of a re-

quest for multiple items is minimized when all these items are repeated

with the same period. The intuition behind this claim is that if we decrease

the period for any one of the items, we necessarily increase the period of the rest,

which translates to higher expected response time.

Driven by this observation, we characterize a client as bound by view Vk when

Vk is the less popular view it has subscribed to. According to the above claim,

the expected air-cache latency for clients bound by Vk depends on the repetition

period of (the cached increments of) that view. In other words, it depends on the

broadcast frequency of ACk. Practically, this implies that the number of clients

bound by each view is more crucial than the number of clients actually subscribed

to it. Therefore, instead of the popularity, a new metric based on the number

of clients bound by a view can better quantify the “importance” of the view with

respect to the air-cache performance. We have defined such a new metric which we

call the weight of a view. If we number the views in increasing order of popularity,

i.e., r1 ≤ r2 ≤ . . . ≤ rC , and let dk be the number of clients bound by view Vk,

then we define the weight wk of view Vk to be

wk = max{d1, d2, . . . , dk}

Essentially, the weight of a view actually reflects the number of clients bound
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by it, with the additional constraint that no view should have weight smaller than

any less popular view. Notice that if the dk’s are non decreasing then wk = dk for

all k. In the extreme case where every client subscribes to only one view, we have

wk = dk = rk for all k. Also note that, in terms of implementation, computing the

weights requires two scans of the clients subscription vectors to compute the rk’s

and the dk’s, followed by one iteration over the dk’s.

These weights, being better “importance quantifiers” in this case, are used

replace the popularities in the square root rule. This means that instead of Equa-

tion 6.1, the air-cache is governed by the following rule

fk
fm

=

√
wk
wm

√
sm
sk

(6.2)

This last rule also dictates the selection of the bandwidth factors. It can be

easily shown that the composite air-cache follows this desired behavior if, for every

view Vk, we set the bandwidth factor to be φk =
√
wksk.

6.2.2 Sharing the Server

Besides the broadcast bandwidth, view managers also share the server resources.

They compete for the total pull capacity of the system in order to accommodate

air-cache misses generated by the clients. Each manager services misses related

only to its own view.

The approach we take here is to apportion the pull capacity of the system

according to number of clients each manager has to deal with. In other words, we

allocate to each Mk a share proportional to the number of subscribers rk to view

Vk. This share is the minimum guaranteed to each manager. The actual share

may be occasionally higher, since not all managers consume the full of their share
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at all times. For example, a manager will not be receiving any misses if it decides

to keep latest version of its view air-cached.

As in previous chapters, the resources that define the pull capacity of the system

are the processing time of the server and the unicast bandwidth. For both of these,

we need management techniques that can actually yield the desired sharing effect.

Processing time can be distributed to view manager processes by an appropriate

CPU scheduling policy [SG94]. Alternatively, in a multi-threaded system, we can

achieve the same effect by assigning a proper number of threads to each manager.

On the other hand, the sharing of the unicast bandwidth is controlled by the unicast

multiplexer. This module, similarly to the air-cache composer, it implements a fair

queueing algorithm to propagate packets from the view manager to the clients. As a

final remark, the experimental results showed that the system is not very sensitive

to the allocation of the server resources. Thus, any technique that just grossly

approximate the desired allotment could be employed for this purpose.

6.2.3 Adaptation

In this section we present the technique that each view manager employs to control

its air-cache. Basically, we will describe how it decides to move view versions or

increments in to and out of the cache. As usual, the performance goal is to be

broadcasting the minimum amount of information, while making sure that the

server does not get swamped by client requests. At the same time, we exploit

cache misses to assess the workload, i.e., the clients needs.

The performance metric that each manager uses to regulate its air-cache is

the probability of it being idle. The idle probability pk of view manager Mk

corresponds to the portion of time Mk does not have any request to process or any
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reply to transmit. Basically, this is an indication of how busy the manager is, and

is a measure of the request arrival rate compared to the manager’s service rate. If

pk = 1 then the manager is idle, meaning that it does not receive any requests. At

the other end, if pk = 0 then the manager is always busy because requests arrive at

a rate it cannot keep up with. Any value in between, indicates that the manager

does get some requests, but at a safe rate that does not exceed its capacity.

According to the general air-caching principle, a view manager should be nei-

ther too busy nor idle. Driven by this principle, each manager periodically executes

an algorithm that attempts to avoid both situations by properly adapting the con-

tents of its air-cache. Basically, the algorithm uses the current estimate of the idle

probability pk and decides whether data should be added to or removed from the

air-cache. When pk = 1 (i.e., when the manager is not getting any requests) it

considers removing (increments of) the view from its air-cache, since it may be

capable of handling the extra misses. On the other hand, when pk = 0 (i.e., when

the manager is very busy servicing requests) it air-caches more data in order to

reduce the misses. If pk lies somewhere in between, we conclude that the manager

is busy enough, and the air-cache is left unmodified.

The exact algorithm depends on the refresh method of the view it manages.

In Figure 6.2.3 we present two faces of the algorithm, one for recomputed views

(Figure 6.2(a)) and one for incrementally maintained views (Figure 6.2(b)). Their

differences stem from two facts: First, when it comes to air-caching decisions, a

manager has different options for each type of view. For recomputed views, it

can only choose either to cache or not to cache the entire view. With incremental

views, it has to decide how many—if any—increments to cache. Second, when a

recomputed view is air-cached, clients do not send any miss for it, and thus, the
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if Vk,i ∈ ACk then /∗ Is Vk,i air-cached? ∗/

if λk,i < µk then /∗ Can Mk handle misses for Vk,i? ∗/

Remove Vk,i from ACk

end if

else if pk = 0 then /∗ Is Mk getting too many misses? ∗/

Air-cache Vk,i

end if

(a) Recomputed views

/∗ If j ≤ i then ACk contains increments δk,j, . . . , δk,i ∗/

/∗ If j = i+ 1 then ACk is empty ∗/

if pk = 1 then /∗ Is Mk idle? ∗/

if j ≤ i then /∗ Is there at least one increment in ACk? ∗/

if λk,j > µk then /∗ Can Mk handle misses for δk,j? ∗/

Remove δk,j from ACk

end if

end if

else if pk = 0 then /∗ Is Mk getting too many misses? ∗/

repeat /∗ Air-cache more increments ∗/

j = j − 1

pk = pk + λk,j/µk

Air-cache δk,j

until pk > 1

end if

(b) Incremental views

Figure 6.2: Adaptive algorithms for view air-caching
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manager is idle. For incremental views, the manager may be getting misses for old

increments even when several increments are in the air-cache.

The inputs to both versions of the algorithm are:

• The status of the view, i.e., the most recent version Vk,i or increment δk,i.

• The contents of the air-cache.

• The current idle probability pk of manager Mk.

• The average service rate µk of manager Mk. This is dynamically computed

as a moving average over the recently processed air-cache misses.

• The workload for view Vk. This is expressed as the estimate of the rate λk,i

at which each version Vk,i or each increment δk,i gets requested by clients.

Note that these are the total request rates and should account both air-cache

hits and misses. In the following section, we discuss how a manager can get

these estimates only from the misses.

The adaptive steps are based on the queuing theory result that the idle prob-

ability for M/M/1 systems is 1 − λ/µ, where λ/µ is the traffic intensity of the

server [Jai91]. In our case, this means that requests arriving at a rate λk,i add to

the traffic intensity of manager Mk a factor of λk,i/µk, and therefore, decrease its

idle probability by λk,i/µi. Using this result, both versions of the algorithm try to

appraise the effect of an air-caching decision before committing to it.

Beyond these adaptive algorithms, there is one more issue related to the man-

agement of the air-cache in this case: What happens when new view versions are

generated? Here, we follow the “safer” for the manager approach to directly air-

cache new view versions or new increments, even if the corresponding air-cache

142



is currently empty. For recomputed views, if the current version is air-cached it

is immediately replaced by the new one in the air-cache. For incremental views,

the new increment is just added to the air-cache. In this way, all new data start

being disseminated through the broadcast. Thereafter, the manager will decide

the proper dissemination method in the regular way we just described.

6.2.4 Workload Estimation

In the air-caching context, the problem of estimating the workload refers to draw-

ing conclusions about the hits from the available misses. Here, a view manager

gets requests for view versions or increments not in the air-cache, but has no infor-

mation about accesses for those in the air-cache. Therefore, while it can accurately

compute the request rates for the former, it needs to guess the rates for the latter.

This is where a view manager is not alone; it can turn for help to the other

managers. Other managers may be able to help because misses they collect for

their own views can convey useful information about hits of that manager. We

make this possible through a simple trick. We assume that the request rate for

view version Vk,i or increment δk,i is λk,i = rk•H(tk,i), where rk is the number of

subscribers to view Vk, and H is a some global function that captures the sleeping

habits of the clients with respect to the age of Vk,i or δk,i. With this assumption, if

we know function H, we can compute the request rate for any view version based

only on its creation time.

Obviously, our problem is that we do not know what the function H is. We do

know, however, the value of H at some points. This is because miss rates should fall

under this model as well. If, for example, the measured miss rate for a non cached

increment δk,i is λk,i then we can conclude that H(tk,i) =
λk,i
rk

. Each manager may
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compute the value of H for one or more points from client misses. Furthermore, if

we compile these values from all the managers, we can have enough sample points

to derive a good model for the function H. In some sense, managers can cooperate

to derive a model of the workload.

Practically, this means that we can get a rather accurate estimate of the func-

tion’s value at any point. If tmax and tmin are the most recent and the oldest sample

points respectively, we can compute the value of H(t) for any t as follows:

• If t < tmin then H(t) = 0, meaning that old versions or increments do not get

requested.

• If tmin ≤ t ≤ tmax we compute the value of H(t) with polynomial interpolation

over the sample points [PTV93].

• If t > tmax then H(t) = tmax. This selection is driven by the fact that the

function H must be non decreasing, because generally λk,i ≥ λk,i−1 (a client

that needs increment δk,i−1 definitely needs increment δk,i as well)

This way, a view manager can get an estimate of the request rate for any air-

cached version or increment. We must note that such estimates are required only

for air-cached data. For the rest, a manager knows exactly what the request rate

is. Consequently, estimates are used only when a manager is considering to remove

data from the air-cache. Hence, a manager does not have to blindly take data off

the air-cache. Instead it uses these estimates as “hints” to take more informed and

cautious decisions. Essentially, this technique eliminates the need for probing, as

it was used in Chapter 4.

144



6.2.5 Air-cache indexing

To complete the picture of the proposed system, in this section we present the air-

cache indexing technique. Basically, in this case the index is a list of C entries, one

for each view. Each entry contains the view identifier, the current version number

of the view, the refresh method (recomputed or incremental), and the number of

versions or increments currently in the air-cache. Table 6.1 shows index entries for

both incremental and recomputed views, along with their possible values.

Recomputed Views Incremental Views

View ID (k) 1, 2, . . . , C 1, 2, . . . , C

Current Version Number (i) 1, 2, . . . 1, 2, . . .

Air-Cached Versions/Increments 0, 1 0, 1, . . . , i

Refresh Method R I

Table 6.1: Index entry for view Vk

It is possible that no data are air-cached for certain views. In this case the

index is used just to inform the clients about the most recent version of the view

in the server. If it is more recent than the one cached at the client, the client has

to send a request to the server for the new version or increments of the view.

Besides the above information, the index could also include precise timing

data about when each increment is scheduled to be broadcast so that clients can

selectively tune in the channel, and thus conserve energy [IVB94a]. However, the

details of such an implementation are beyond our current scope.

More important for our work is the repetition frequency of the index in the

broadcast channel. As we explained in Section 3.3.5, there is a performance trade-

off involved in the selection of this design variable. Broadcasting the index very
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often works in favor of misses (clients can detect them quickly) but against hits

(broadcast data are delayed more). Here, to battle this tradeoff, we exploit the

composite air-cache structure to implement a tunable scheme for broadcasting the

index. Specifically, we regard the index as a special view that is permanently stored

in its own simple air-cache. This air-cache, called ACI, always contains one item,

the index, and gets multiplexed in the existing composite air-cache. In this way,

the repetition frequency of the index is now regulated the broadcast bandwidth

allocated to ACI.

In order to enforce a regular repetition frequency for the index, and avoid

variations or side-effects from changes in the other air-caches, we assign a fixed

portion β of the bandwidth to ACI. This portion is a basic design parameter

of the system. It controls the average probe wait, i.e., the time clients have to

wait for the first appearance of index, and the overhead of the index itself for the

broadcast. With our technique, both these can be easily computed analytically

and predicted at system design time. If sI is the size of the index (and the size of

ACI) then the average probe wait is
sI

2β
broadcast units. The index overhead is

β

1− β
which means that, for every byte of information in the broadcast program

there are
β

1− β
bytes of index.

6.3 Experiments

In this section we present a representative set of experimental results that validate

the proposed methodology. Again, these results were drawn form a detailed sim-

ulation model of the system. This model consists of one server that maintains C

views, and K mobile clients that subscribe to some of these views. Let us describe
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each part of the simulation in more detail. Bear in mind that data sizes are given

in terms of some abstract size unit, and time is measured in broadcast units,

i.e., the time it takes to broadcast an item of unit size.

Views: In order to model views with different characteristics, we partition them

into view groups and create each view according to the specifications of the

group it belongs to. A view group is specified in terms of the five parameters

shown in Table 6.2. The first two parameters define the name of the group, and

the number of views that belong to the group (out of a total of C views). The

third parameter indicates the method used to refresh the view with new updates

(recomputation or incremental). Recall that the refresh method for each view is

fixed throughout every experiment. RefreshDistr describes the distribution of time

intervals between refreshes of the view. It can be set to constant for views that

are periodically updated, or some other distribution (e.g., exponential) if updates

happen randomly. For each distribution the necessary parameters (e.g., mean,

variance) need to be specified. The last parameter, SizeDistr, defines the size of

the result of a refresh. For recomputed views, this corresponds to the size of new

versions. For incrementally maintained views, SizeDistr determines the size of each

new increment.

Clients: Similarly to views, clients are also partitioned in client groups to

model a diverse population. Again, five parameters are used to describe each

group (Table 6.3). Name is the name of the client group. ClientsPortion specifies

the portion of clients that belong to the group. Here, we use the portion instead of

the actual number of clients to facilitate the scaling of an experiment to different

client population sizes. The third parameter, SleepDistr, expresses the “sleeping

147



Parameter : Description

Name : Name of the group

NumViews : Number of views in the group

RefreshMethod : Recomputation or Incremental

RefreshDistr : Distribution of new version generation time

SizeDistr : Distribution of view/increment size

Table 6.2: View group specification

habits” of clients, i.e., the distribution of their disconnection periods. The last

two parameters specify the interests of the clients in the group. SubscrSizeDistr

defines the number of views a client subscribes to. If set to constant, all clients

in the group subscribe to the same number of views. The last one dictates which

views a client subscribes to. For our experiments, we used this parameter to relate

client groups to view groups. Specifically, SubscriptionDistr is defined as a list of

pairs (X, Y ), each indicating that a portion Y of a client’s subscriptions are for

views in group X. Given the specifications of the groups, each client generates

a subscription vector according to the distributions of its group. This vector is

generated once, and remains the same throughout each experiment.

Server: The simulation model for the server implements the architecture shown

in Figure 6.1. Following the pattern of the last two chapters, we select the unicast

bandwidth to be equal to the broadcast bandwidth. For implementation simplicity

and comparison purposes, we assume that the server throughput is bound by the

unicast bandwidth. Besides the bandwidth, there are two parameters that affect

the operation of the server. The first is the portion β of bandwidth assigned to
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Parameter : Description

Name : Name of the group

ClientsPortion : Percent of clients belonging to the group

SleepDistr : Distribution of sleep time

SubscrSizeDistr : Distribution of number of subscriptions

SubscriptionDistr : Distribution of subscriptions

Table 6.3: Client group specification

the broadcast index, as it was described in the previous section. For the results

presented herein, we set β = 0.02, meaning that the index increases broadcast

response times by 2%. The other is the adaptation period which determines how

often each manager re-examines the performance of its air-cache. This period is the

same for all managers. Nevertheless, we do not allow them to adapt all together

at the same time. Instead, we choose to spread the adaptation phases of different

managers over time. There are two reasons why we prefer this approach. First, the

computation load is portioned out over time, and second, we avoid abrupt changes

in the state of the system, and reduce the risk of unstable behavior by limiting the

number of changes that can occur at any point in time.

6.3.1 Weight-based Bandwidth Allocation

The first experiment we present was designed to demonstrate the merit of weight-

based broadcast bandwidth allocation to the individual air-caches. As it was dis-

cussed in Section 6.2.1, the bandwidth allocated to each air-cache controls the

repetition frequency of data cached in it.

This experiment deals only with the structure and the performance of the air-
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cache, and has no effect on the hybrid part of the system. Thus, we created a

static (non-adaptive) scenario where clients retrieve data only from the broadcast

channel. In this scenario, there are 100 views which are partitioned into two groups.

Views in these two groups are identical except for their popularity. They are all

incrementally maintained, and all generated increments are of size 1. In addition,

we force each view manager to always air-cache the last 5 increments of its view

so that all air-caches have the same size. Every time a client wakes up, it retrieves

all the cached increments of the views it has subscribed to. This, in conjunction

with the fact that we consider only broadcast delivery, renders the actual number

and sleeping habits of the clients irrelevant for this experiment.

In terms of popularity, we used a 80/20 rule to differentiate the two view groups.

In other words, clients subscribe in a way that 80% of their subscriptions are for

20% of the views. The 20 popular views form the first group which is called PV;

the other 80 form the second which is called UV. Within each group, views are

equally popular.

Name PO PU

ClientsPortion α 1− α

SubscrSizeDistr Constant(10) Constant(25)

SubscriptionDistr [(PV, 1)]

[(
PV,

20− 22α

25(1− α)

)
,

(
UV,

5− 3α

25(1− α)

)]

Table 6.4: PO and PU client groups

In order to demonstrate the differences between weight-based and popularity

based bandwidth allocation, we keep the view popularities fixed throughout the

experiment, and modify only the number of clients bound by each view. For this
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purpose, we define two client groups. The first group, called PO (Popular Only),

consists of very selective clients that subscribe only to 10 of the popular views.

The second group, called PU (Popular/Unpopular), consists of less selective clients

that subscribe to 25 views, both popular and unpopular. The specification of these

groups is shown in Table 6.4. The values of some parameters in this table are given

in terms of variable α which determines the mixture of the client population. Out

of total K clients, αK belong to group PO, and the rest belong to PU. By varying

this variable, we essentially vary the number of clients bound by each view.

Note that, for maintaining the 80/20 ratio for all values of α, the subscription

distribution of PU clients must also be a function of α. This is better explained

in Figure 6.3. The area of the “L” shaped polygon represents all the clients sub-

scriptions. The left (tall) part of it corresponds to subscriptions for views in PV.

The right (flat) part corresponds to subscriptions for views in UV. Also, the whole

area is divided in two parts: one for the subscriptions of PO clients, and one for

the subscriptions of PU clients. The dividing line is anchored by the variable α,

which ranges from 0 to 0.91. Note that, because PO clients do not subscribe to

unpopular views, a 80/20 popularity ratio cannot be achieved unless at least 0.09K

clients are in the PU group.

Figure 6.4 presents the performance of the air-cache with respect to the variable

α. The performance metric we use is the average refresh time, i.e., the average time

clients have to spend monitoring the broadcast in order to retrieve all the data they

need. The three lines plotted in this figure correspond to three different policies

for allocating bandwidth to the individual air-caches. The “Flat” policy assigns

exactly the same amount of bandwidth to all air-caches. The “Popularity-based”

uses the original square root rule, i.e., Equation 6.1. Last, the “Weight-based”
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Figure 6.3: PO/PU client group mixture for 80/20 view popularities
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Figure 6.4: Performance of bandwidth allocation policies
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policy uses the weights of the views according to Equation 6.2.

Let us first compare the first two policies. A first observation is that under

the flat policy the air-cache performs the same for all values of α. This was

expected since this policy is not considering client subscriptions at all. A rather

surprising result is that, in some cases, the flat policy performs better than the

popularity-based, even though there are significant popularity discrepancies among

the views. This occurs on the left part of the graph (small values of α) where most

clients belong to the PU group, and is explained by the fact that these clients are

bound by unpopular views. As a result, no matter how often the popular views

get broadcast, most client have to wait for some of the unpopular ones. In fact,

broadcasting the popular views more often makes things worse by delaying the rest

even more; thus the bad performance of the popularity-based policy. Therefore,

when the performance of most clients depends on unpopular views the flat policy

appears to be a better choice.

Things change, however, as the percentage of PO clients increases. As we move

towards the right part of the graph, we notice that the popularity-based policy is

winning over the flat policy. The reason is that for large values of α there are

many clients bound only by popular views. These are the clients that can benefit

from non-uniform repetition frequencies and favorable treatment of popular views.

Hence, in such cases popularity-based bandwidth allocation is preferable.

Clearly, none of these two policies is an all-around winner. However, the third

policy seems to be one. Figure 6.4 shows that weight-based allocation is, in all

cases, at least as good as any of the other two. It captures the performance de-

pendencies of client subscriptions and yields (almost) the best refresh times across

the range of the graph. For small values of α, it recognizes that, no matter how
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popular, no view is particularly important with respect to the performance of the

air-cache. On other hand, it also recognizes cases (large α) where view popularities

can indeed have an impact on the performance, and allocates bandwidth accord-

ingly. Note that for 0.1 < α < 0.35, it is not performing as good as the flat policy.

This is because it does allocate some extra bandwidth to some of the views, even

though a flat scheme is still a better choice. However, even there the difference is

too small to raise any serious concern. This means that the weight-based policy is

still the safest choice for allocating broadcast bandwidth to individual air-caches

over any mixture of clients and subscription interests.

6.3.2 Scalability & Adaptation

In this section we test the scalability and the adaptiveness of the proposed system.

Here, we create again 100 views that follow the 80/20 popularity ratio. This

time, however, in order to test all the aspects of the system, not all the views are

incrementally maintained. Half of them are completely recomputed every time a

new batch of updates arrives at the server. In total, we define four view groups

which correspond to the four combinations of popularity and refresh method, as

shown in Table 6.5. There are 10 popular incremental views (PI), 10 popular

recomputed (PR), 40 unpopular incremental (UI), and 40 unpopular recomputed

(UR). For all views, the interval between refreshes are exponentially distributed

with mean 5000 units.

Clients are split into two groups similar to those used in the previous section.

The specifications of the groups are given in Table 6.6. This time half of the clients

are in the PO group and the other half are in the PU group. The disconnection

times of all clients follow a normal distribution with mean and standard deviation
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Name PI PR UI UR

NumViews 10 40 10 40

RefreshMethod I R I R

RefreshDistr Exp(5000) Exp(5000) Exp(5000) Exp(5000)

SizeDistr Normal(2, 0.4) Normal(5,1) Normal(2, 0.4) Normal(5,1)

Table 6.5: View groups for adaptation & scalability experiment

10000 and 2000 units respectively. The distribution of subscriptions is selected

properly (parameter SubscriptionDistr) to yield the desired 80/20 popularity ratio.

The main result of the experiment is presented in Figure 6.5. In this graph

we show the performance of the system, i.e., the average clients refresh time, as a

function of the number of clients which ranges from 500 to 20000. We show the

results for two configurations. The first (“Adapt on Hits”) corresponds to the ideal,

but unrealistic, scenario where all the information about client requests is given

to server. In this way, the server adapts based on a fully informed model of the

workload. The second (“Adapt on Misses”) corresponds to the normal operation

of the system where the server relies solely on misses for managing the air-cache.

Name PO PU

ClientsPortion 50 50

SleepDistr Normal(10000, 2000) Normal(10000, 2000)

SubscrSizeDistr Constant(10) Constant(25)

SubscriptionDistr [(PI, 0.5), (PR, 0.5)] [(PI, 0.36), (PR, 0.36),

(UI, 0.14), (UR, 0.14)]

Table 6.6: Client groups for adaptation & scalability experiment
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Figure 6.5: Scalability and adaptability

These results lead to two important conclusions, but also reveal an odd, at

a first look, behavior. First of all, here again air-caching yields a very scalable

data dissemination system, in the sense that average refresh time of the clients is

affected very little by the size of the population. The server detects and exploits

the commonality among the clients needs to service thousands of them with an

effective combination of the two delivery methods. In fact, the larger the number

of clients, the greater this commonality and the bigger the benefit of air-caching.

Second, by comparing the two curves of the graph, we see that adaptation based

on the misses is almost as good as the ideal case of adaptation based on the

hits. The average refresh time for the former configuration is at most 7% worse

than the latter. This means that the workload estimation procedure described

in Section 6.2.4 is very effective. The difference in performance is attributed to

the fact that this procedure actually slightly overestimates the workload. Thus, it

forces the managers to air-cache data for a little more than necessary, increasing
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the average size of the air-cache (up to 7%), and consequently, the average refresh

time of the clients.

The odd result is that, in small scale, the system appears to be performing

better when it has limited information (misses) than when it has all the information

(hits) about the clients’ requests. This strange behavior is explained by the fact

that, under small request loads, the refresh time of the clients is mostly affected

by the responsiveness of the server, and not the latency of air-cache. Let us

elaborate on this subtle issue. When there are not many clients in the system, view

managers air-cache little data since the server can handle a significant portion of

their requests. As a result, the air-cache is rather small, meaning that its latency

is also small. At the same time, most of the client refreshes (almost up to 100% for

500 clients) are hybrid, in the sense that not all of the needed data are downloaded

from the air-cache; at least some are retrieved from the server. As the air-cache

latency is small, many of these hybrid refreshes may be delayed by the unicast

delivery of the data not found in the air-cache. But, unicast delivery time depends

on the load imposed on the server. This is exactly where miss-based adaptation

“coincidentally” wins over hits-based adaptation. As we discussed above, when

relying on the misses, the workload is overestimated. This makes view managers

to air-cache more data in anticipation of the supposedly higher client demands.

However, as the actual demand is lower, a smaller number of requests reach the

server. Consequently, the server ends up handling a lighter load of requests which,

naturally, are serviced faster.

Above, we characterized the system as very scalable based on the observation

that it performs about the same for any number of clients. Nonetheless, the results

presented in Figure 6.5 are not at all enlightening as to how good this performance
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is. The problem is this case is that we do not have a comparison measure like, for

example, a theoretical optimal performance similar to those we used in the previous

chapters. Hence, we cannot directly verify the efficiency of the proposed system.

We can, however, resort to indirect indications to draw some insightful conclusions.

These are some related performance metrics as observed in our experiments:

• Each broadcast message was, on average, useful to 1 out of every 7.25 awake

clients. If, say, 1000 clients were awake at some point a broadcast message

would have on average 138 recipients. This means that the broadcast band-

width is used very effectively for data that are indeed popular.

• On average, only about 5% of a client’s refresh time was wasted on scanning

“old” data in the air-cache, i.e., data that the client already had retrieved in

a previous refresh. This is an indication that view managers can successfully

detect when the popularity of views or increments drops, and avoid keeping

old data in the air-cache.

• The average utilization of the server ranged between 0.81 and 0.89. In other

words, the server was getting almost as many misses as it could handle, which

is in accord with the general air-caching principle. This also suggests that

the managers were not air-caching more data than they had to.

• Last, but more importantly, at the highest scale the hybrid system is achiev-

ing an effective data throughput about 70 times its nominal capacity. This

means that it would require at least 70 times the resources (bandwidth and/or

processing power) to achieve similar levels of performance with a traditional

pull-only system. Instead, once again, the air-cache mechanism detects and
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exploits the commonality of client demands, making a very effective use of

the broadcast capability.

6.4 Conclusions

In this chapter, we proposed to use the air-cache mechanism to implement pub-

lish/subscribe services for mobile users. We considered cases where users provide

coarse subscription profiles, specifying their general interests. For example, these

can be sets of view definitions over a central data warehouse, or selections of in-

formation channels like, say, world news. The server is responsible for delivering

to them any published data that match these general profiles, such as new view

versions generated in the warehouse, or breaking news stories from around the

world. Being mobile, the clients operate most of the time in sleep mode. From

time to time, they come on-line and wish to retrieve pertinent new data. This

requires getting all newly published information that matches their profiles, and

further personalize it by filtering out exactly what is of interest to them.

Our approach was to define a set of independent managers, each managing a

separate view or information channel. Each manager is allocated a part of the

system resources and takes over the task of disseminating the data it is responsible

for. For that, it creates its own simple air-cache to cache data as it deems necessary,

as well as service misses for data kept outside this air-cache. All these air-caches

are multiplexed in the same broadcast channel to form a composite air-cache. For

that purpose, we proposed a bandwidth allocation scheme that regulates the use

of the broadcast channel based on the client subscriptions. We also explained

how the managers share the server resources for servicing cache misses. Under

this approach, each manager decides how to best use its air-cache independently
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from the other managers. Then, we presented the algorithm that managers use to

adapt their air-caches. The algorithm relies on a manager’s idle probability which

is a measure of the miss load it receives with respect to its service rate. Last, we

proposed a method for managers to “share” information from misses and help each

other derive good estimates about hits, i.e., estimate the request rates for cached

data.

The experimental results showed that air-caching can serve as a very effective

data dissemination mechanism in this case as well. First, we showed that the

proposed bandwidth allocation policy can correctly evaluate the effects of clients

subscriptions to the performance of the air-cache, and distribute the broadcast

bandwidth appropriately, under any mixture of client interests. We also demon-

strated the adaptiveness and scalability of this technique. The air-cache mecha-

nism was able to detect the commonality among user needs, and efficiently deliver

data in very large scale (in our experiments up to 20000 clients, with effective

throughput 70 times the nominal capacity of the system).

In closing, we must note that, beyond these significant performance results,

this chapter is an example of how multiple (almost independent) air-caches can

be implemented in one broadcast channel. We believe that similar techniques can

be used to combine different data services, possibly from different servers, in an

integrated manner.
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Chapter 7

Conclusions

Over the last few years there has been an astonishing increase of the demand for

on-line data services. An exponentially growing number of people are using the

Internet, craving for access to all kinds of information. This trend imposes a heavy

data distribution load on the information infrastructure. Internet resources, i.e.,

network bandwidth and data servers, often fail to carry this load, exposing the

scalability limitations of data services. A major source of the problem is that

typically these services employ the request/response (pull/unicast) data delivery

model which scales at best linearly with network bandwidth and server capacity.

To overcome these problems, this thesis capitalizes on the asymmetric nature

of information-centered applications and the broadcast capabilities of emerging

communication networks, and proposes adaptive hybrid data delivery as the basis

of highly scalable data dissemination services, responsive to dynamic and unpre-

dictable user demands. Adaptive hybrid data delivery refers to the dynamic inte-

gration of two data delivery mechanisms, namely the traditional request/response

(or pull/unicast) and the rather novel push/broadcast.

In this thesis, we first contrasted the two basic mechanisms, and discussed their

advantages and disadvantages. We argued that these can be combined in a syner-
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gistic manner, and made a case for adaptive hybrid data delivery by presenting its

potential performance and scalability benefits. Then, we introduced the concept

of air-caching, i.e., the temporary storage of popular data in a broadcast channel

through repetitive transmissions. Requests for data in the air-cache (i.e., air-cache

hits) are satisfied without contacting the server. The rest (i.e., air-cache misses)

are serviced by the server. The air-cache serves as an abstract vehicle for pursuing

and implementing adaptive hybrid data delivery because it disguises the problem

as a cache management problem. We identified the special properties of this new

type of caching, discussed its performance goals, and laid its basic management

principles. The general goal of a hybrid system is to air-cache popular data ex-

pecting to satisfy the bulk of the clients’ demands so that only a small number

of requests (for unpopular data) are left to be serviced by the server itself. A

unique characteristic of the air-cache is that, contrary to typical caches, it must

be managed relying exclusively on cache misses because the server does have at its

disposal any information about cache hits.

Based on that, we presented three sets of algorithms and techniques for using

and managing the air-cache in three different applications. First, we considered the

problem of servicing data requests over heavily accessed databases. Assuming that

these requests exhibit high degrees of skewness towards parts of the database, we

proposed a technique that dynamically detects and air-caches the hot-spots, even

when these are rapidly changing. This approach uses the expected performance

marginal gains and data temperature probing to effectively balance the two delivery

modes.

The second application was the propagation of data updates from a central

repository to several mobile, often disconnecting, clients. We described a hierar-

162



chical version of the air-cache, that adds the flexibility of multiple access latencies.

In this case, we proposed techniques that detect the (dis)connection pattern of the

clients, and establish their needs for updates. Based on this pattern, the server

air-caches recent updates in a way that matches the clients’ needs. We also intro-

duced the notion of soft air-cache misses, i.e., misses for cached data, that allow

clients to improve response time over broadcast delivery.

Last, we tackled the deployment of publish/subscribe services, again in the

context of mobile computing. We considered a population of mobile clients that

subscribe to multiple, semantically different, data services, and a server that em-

ploys air-caching to disseminate newly published information. In this case, our

approach used multiple air-caches, one for each of the provided services. We pro-

posed a composite air-cache structure that multiplexes all these simple air-caches in

a single broadcast channel, and developed techniques for managing the air-caches

independently from each other.

All the proposed algorithms were validated with experimental results drawn

from a detailed simulation model. In all cases, the results demonstrate the scal-

ability, adaptiveness, and efficiency of air-caching. We showed that the proposed

algorithms can very effectively detect and air-cache the data hot-spots relying only

the cache misses, even under fast changing access patterns. As a result, the per-

formance of hybrid systems is not directly affected by the volume of the workload,

but instead it depends on the amount of frequently requested data (i.e., the size

of the hot-spot) which is a function of the data access distribution. This means

that, under highly skewed workloads, such a system can exploit the commonality

of among clients needs, and use the broadcast capability very efficiently to yield

an effective data throughput many times higher than its nominal capacity.
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7.1 Future Work

We believe that the results of the thesis have far reaching implications, as they

suggest an effective way of deploying large scale wide area information systems.

Therefore, there is a lot of interesting research work to be done in the future. In

the following, we highlight some possible directions.

First of all, air-caching could be employed in more applications, with different

data dissemination requirements. For instance, an interesting area to look into is

“on-time” data delivery and, more generally, real time applications. Also, related

to these are the problems imposed by the delivery of multimedia content, for

applications like video-on-demand.

Several interesting problems are surfacing if we relax one or more of the basic

assumptions made in this thesis. For example, in our work we assumed that

data transmission is error-free. Often, this is not a valid assumption in practice,

especially in wireless communications. Thus, the proposed algorithms need to be

extended to account for possible communication errors. Then, we also assumed

that the broadcast and the unicast channels are independent, with a fixed amount

of bandwidth allocated to each one. This assumption limits the decision variables

and the complexity of the system. However, in settings where the two channels

share the same link, there may be an performance advantage in taking a more

dynamic approach. In other words, the bandwidth allocated to each channel could

be an additional optimization parameter left to the discretion of the adaptive

algorithms.

Furthermore, in our work we considered only two specific data delivery meth-

ods. However, as it was discussed in Section 3.2, there are more data delivery alter-

natives. Generally, each one serves a different purpose, and has its own advantages

164



and disadvantages. While individually these have more or less been studied, the

merit of other hybrid approaches are indeed worth investigating, similarly to the

approach taken in this thesis.
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Caching Issues in an Information Retrieval System. ACM Transac-

tions on Database Systems, 15(3), September 1990.

166



[Ach98] Swarup Acharya. Broadcast Disks: Dissemination-based Data Man-

agement for Asymmetric Communication Environments. PhD thesis,

Computer Science Department, Brown University, 1998.

[AF98] Demet Aksoy and Michael Franklin. Scheduling for Large-Scale On-

Demand Data Broadcasting. In Proceedings of IEEE INFOCOM Con-

fenerence, San Francisco, CA, March 1998.

[AFZ95] Swarup Acharya, Michael J. Franklin, and Stanley B. Zdonik.

Dissemination-Based Data Delivery Using Broadcast Disks. IEEE

Personal Communications Magazine, 2(6), December 1995.

[AFZ96a] Swarup Acharya, Michael J. Franklin, and Stanley B. Zdonik. Dis-

seminating Updates on Broadcast Disks. In Proceedings of the 22th

International Conference on Very Large Data Bases, pages 354–365,

Mumbai (Bombay), India, September 1996.

[AFZ96b] Swarup Acharya, Michael J. Franklin, and Stanley B. Zdonik.

Prefetching from Broadcast Disks. In ICDE [ICD96], pages 276–285.

[AFZ97] Swarup Acharya, Michael J. Franklin, and Stanley B. Zdonik. Bal-

ancing Push and Pull for Data Broadcast. In Proceedings of the 1997

ACM SIGMOD International Conference on Management of Data,

pages 183–194, Tucson, Arizona, May 1997.

[Air98] AirMedia. AirMedia Live. http://www.airmedia.com, 1998.

[AK93] Rafael Alonso and Henry F. Korth. Database System Issues in No-

madic Computing. In SIGMOD [SIG93], pages 388–392.

167



[AL80] Michel E. Adiba and Bruce G. Lindsay. Database Snapshots. In

Proceedings of the 6th International Conference on Very Large Data

Bases, pages 86–91, Montreal, Quebec, Canada, October 1980.

[AW85] Mostafa H. Ammar and John W. Wong. The Design of Teletext

Broadcast Cycles. Perfomance Evaluation, 5(4):235–242, December

1985.

[AW87] Mostafa H. Ammar and John W. Wong. On the Optimality of Cyclic

Transmission in Teletext Systems. IEEE Transactions on Communi-

cations, 35(1):68–73, January 1987.

[AW97] Martin F. Arlitt and Carey L. Williamson. Internet Web Servers:

Workload Characterization and Performance implications. IEEE

Transactions on Networking, 5(5):631–645, October 1997.

[BB97] Sanjoy Baruah and Azer Bestavros. Pinwheel Scheduling for Fault-

Tolerant Broadcast Disks in Real-time Database Systems. In ICDE

[ICD97], pages 543–551.

[BDD+98] Randall G. Bello, Karl Dias, Alan Downing, James Feenan,

William D. Norcott, Harry Sun, Andrew Witkowski, and Mohamed

Ziauddin. Materialized Views in Oracle. In Proceedings of the 24th

International Conference on Very Large Data Bases, pages 659–664,

New York, NY, USA, August 1998.

[BG96] Gordon Bell and Jim Gemmell. On-ramp Prospects for the Informa-

tion Superhighway Dream. Communications of the ACM, 39(7):55–61,

July 1996.

168



[BGH+92] Thomas F. Bowen, Gita Gopal, Gary E. Herman, Takako M. Hickey,

K. C. Lee, William H. Mansfield, John Raitz, and Abel Weinrib. The

Datacycle Architecture. Communications of the ACM, 35(12):71–81,

December 1992.
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In M. Tamer Özsu, Umeshwar Dayal, and Patrick Valduriez, editors,

171



Distributed Object Management. Morgan Kaufmann, San Francisco,

CA, 1994.

[Fra96a] Michael Franklin, editor. Special Issue on Data Dissemination. Bul-

letin of the Technical Committee on Data Engineering. IEEE Com-

puter Society, September 1996.

[Fra96b] Michael J. Franklin. Client Data Caching: A Foundation for High

Performance Object Database Systems. Kluwer Academic Publishers,

Boston, MA, February 1996.

[FZ94] George H. Forman and John Zahorjan. The Challenges of Mobile

Computing. IEEE Computer, 27(4):38–47, April 1994.

[FZ96] Michael J. Franklin and Stanley B. Zdonik. Dissemination-Based In-

formation Systems. IEEE Bulletin of the Technical Committee on

Data Engineering, 19(3):20–30, September 1996.

[FZ97] Michael J. Franklin and Stan Zdonik. A Framework for Scalable

Dissemination-Based Systems. In International Conference Object

Oriented Programming Languages Systems (OOPSLA 97), Atlanta,

GA, October 1997. (Invited Paper).

[FZ98] Michael Franklin and Stan Zdonik. “Data in Your Face”: Push Tech-

nology in Perspective. In SIGMOD [SIG98]. (Invited Paper).

[GBBL85] David K. Gifford, Robert W. Baldwin, Stephen T. Berlin, and

John M. Lucassen. An Architecture for Large Scale Information Sys-

tems. In Proceedings of the Tenth ACM Symposium on Operating

172



System Principles, pages 161–170, Orcas Island, Washington, Decem-

ber 1985.

[Gif90] David K. Gifford. Polychannel Systems for Mass Digital Communica-

tions. Communications of the ACM, 33(2):141–151, February 1990.

[Gla96] David Glance. Multicast Support for Data Dissemination in Or-

bixTalk. IEEE Bulletin of the Technical Committee on Data Engi-

neering, 19(3):31–39, September 1996.

[Gol98] Leonard S. Golding. Satellite Communications Systems Move into

the Twenty-first Century. Wireless Networks, 4(2):101–107, February

1998.

[GRC97] Syam Gadde, Michael Rabinovich, and Jeff Chase. Reduce, Reuse,

Recycle: An Approach to Building Large Internet Caches. In Pro-

ceedings of the Sixth Workshop on Hot Topics in Operating Systems,

pages 93–98, May 1997.

[Gup97] Himanshu Gupta. Selection of Views to Materialize in a Data Ware-

house. In 6th International Conference on Database Theory, pages

98–112, Delphi, Greece, January 1997.

[GWD94] Alex Gorelik, Yongdong Wang, and Mark Deppe. Sybase Replication

Server. In SIGMOD [SIG94], page 469.

[HGLW87] Gary E. Herman, Gita Gopal, K. C. Lee, and Abel Weinrib. The

Datacycle Architecture for Very High Throughput Database Systems.

In Proceedings of the 1987 ACM SIGMOD International Conference

173



on Management of Data, pages 97–103, San Francisco, California,

May 1987.

[HKM+88] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A.

Nichols, M. Satyanarayanan, Robert N. Sidebotham, and Michael J.

West. Scale and Performance in a Distributed File System. ACM

Transactions on Computer Systems, 6(1):51–81, February 1988.

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture :

A Quantitative Approach. Morgan Kaufman Publishers, 2nd edition,

1996.

[HV97a] Sohail Hameed and Nitin H. Vaidya. Efficient Algorithms for Schedul-

ing Single and Multiple Channel Data Broadcast. Technical Report

97-002, Department of Computer Science, Texas A&M University,

February 1997.

[HV97b] Sohail Hameed and Nitin H. Vaidya. Log-time Algorithms for Schedul-

ing Single and Multiple Channel Data Broadcast. In The 3rd Annual

ACM/IEEE International Conference on Mobile Computing and Net-

working, Budapest, Hungary, September 1997.

[IB94] Tomasz Imielinski and B. R. Badrinath. Wireless Mobile Comput-

ing: Challenges in Data Management. Communications of the ACM,

37(10):18–28, October 1994.

[ICD96] Proceedings of the 12th International Conference on Data Engineer-

ing, New Orleans, Louisiana, February 1996.

174



[ICD97] Proceedings of the 13th International Conference on Data Engineer-

ing, Birmingham, U.K., April 1997.

[IK96] Tomasz Imielinski and Henry F. Korth, editors. Mobile Computing.

Kluwer Academic Publishers, Boston, MA, 1996.

[Imi96] Tomasz Imielinski. Mobile Computing: Dataman Project Perspective.

Mobile Networks and Applications, 1(4):359–369, 1996.

[IS98] Matrix Information and Directory Services. Ma-

trix Maps Quarterly MMQ 501: Internet State.

http://www.mids.org/mmq/501/pages.html, January 1998.

[IV94] Tomasz Imielinski and S. Vishwanathan. Adaptive Wireless Informa-

tion Systems. In Proceedings of SIGDBS (Special Interest Group in

DataBase Systems) Conference, Tokyo, Japan, October 1994.

[IVB94a] Tomasz Imielinski, S. Viswanathan, and B. R. Badrinath. Energy

Efficient Indexing on Air. In SIGMOD [SIG94], pages 25–36.

[IVB94b] Tomasz Imielinski, S. Viswanathan, and B. R. Badrinath. Power Ef-

ficient Filtering of Data on Air. In 4th International Conference on

Extending Database Technology, pages 245–258, Cambridge, United

Kingdom, March 1994.

[Jai91] Raj Jain. The Art of Computer Systems Performance Analysis: Tech-

niques for Experimental Design, Measurement, Simulation, and Mod-

eling. John Wiley & Sons, 1991.

[JEHA97] Jin Jing, Ahmed Elmagarmid, Abdelsalam (Sumi) Helal, and Rafael

Alonso. Bit-Sequences: An adaptive cache invalidation method in

175



mobile client/server environments. Mobile Networks and Applications,

2(2):115–127, October 1997.

[JW95] Ravi Jain and John Werth. Airdisks and AirRAID: Modeling and

scheduling periodic wireless data broadcast. Technical Report 95-11,

Center for Discrete Mathematics and Theoretical Computer Science

(DIMACS), 1995.

[KB96] Randy H. Katz and Eric A. Brewer. The Case for Wireless Overlay

Networks. In SPIE Multimedia and Networking Conference, San Jose,

CA, January 1996.

[Kha97] Bhumip Khasnabish. Broadband To The Home (BTTH): Archi-

tectures, Access Methods and the Appetite for it. IEEE Network,

11(1):58–69, Jan./Feb. 1997.

[Kle75] Leonard Kleinrock. Queueing Systems: Theory. John Wiley & Sons,

January 1975.

[KS91] James J. Kistler and M. Satyanarayanan. Disconnected Operation in

the Coda File System. In Proceedings of the Thirteenth ACM Sympo-

sium on Operating System Principles, pages 213–225, Pacific Grove,

California, October 1991.

[Las98] Edwin R. Lassettre. Olympic Records for Data at the 1998 Nagano

Games. In SIGMOD [SIG98], page 537.

[Law98] George Lawton. Paving the Information Superhighway’s Last Mile.

IEEE Computer, 31(4):10–14, 1998.

176



[Loe92] Shoshana Loeb. Architecting Personalized Delivery of Multimedia

Information. Communications of the ACM, 35(12):39–47, December

1992.

[LT92] Shoshana Loeb and Douglas B. Terry. Guest Editors. Special Sec-

tion on Information Filtering. Communications of the ACM, 35(12),

December 1992.

[Mar98] Marimba. Castanet. www.marimba.com, 1998.

[Ng90] Tony P. Ng. Propagating Updates in a Highly Replicated Database. In

Proceedings of the 6th International Conference on Data Engineering,

pages 529–536, Los Angeles, California, February 1990.

[OOW93] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The

LRU-K Page Replacement Algorithm For Database Disk Buffering.

In SIGMOD [SIG93], pages 297–306.

[OPSS93] Brian M. Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The In-

formation Bus - An Architecture for Extensible Distributed Systems.

In Proceedings of the Fourteenth ACM Symposium on Operating Sys-

tem Principles, pages 58–68, Asheville, North Carolina, December

1993.

[Pan95] Raj Pandya. Emerging Mobile and Personal Communication Systems.

IEEE Communications Magazine, 33(6):44–52, June 1995.

[PGH95] Jay E. Padgett, Christoph G. Gunther, and Takeshi Hattori. Overview

of Wireless Personal Communications. IEEE Communications Mag-

azine, 33(1), January 1995.

177



[Poi98] PointCast, Inc. The PointCast Network. http://www.pointcast.com,

1998.

[PS97] Evaggelia Pitoura and George Samaras. Data Management for Mobile

Computing. Kluwer Academic Publishers, Boston, MA, 1997.

[PTV93] William H. Press, Saul A. Teukolsky, and William T. Vetterlin. Nu-

merical Recipes in C : The Art of Scientific Computing. Cambridge

University Press, 2 edition, January 1993.

[RCK+95] Nick Roussopoulos, Chungmin Melvin Chen, Stephen Kelley, Alexis

Delis, and Yannis Papakonstantinou. The ADMS Project: Views R

Us. IEEE Bulletin of the Technical Committee on Data Engineering,

18(2):19–28, June 1995.

[RD90] John T. Robinson and Murthy V. Devarakonda. Data Cache Man-

agement Using Frequency-Based Replacement. In ACM SIGMET-

RICS Conference on Measurement and Modeling of Computer Sys-

tems, pages 134–142, University of Colorado, Boulder, Colorado, May

1990.

[RK86] Nick Roussopoulos and Hyunchul Kang. Principles and techniques in

the design of adms+/-. IEEE Computer, 19(12):19–25, 1986.

[Rou82] Nick Roussopoulos. View Indexing in Relational Databases. ACM

Transactions on Database Systems, 7(2):258–290, 1982.

[RSS96] Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. Material-

ized View Maintenance and Integrity Constraint Checking: Trading

178



Space for Time. In Proceedings of the 1996 ACM SIGMOD Interna-

tional Conference on Management of Data, pages 447–458, Montreal,

Quebec, Canada, June 1996.

[Sat95] Mahadev Satyanarayanan. Fundamental Challenges in Mobile Com-

puting. In 14th ACM Annual Symposium on Principles of Distributed

Computing, Ottawa, Ontario, Canada, August 1995.

[SFL96] Shashi Shekhar, Andrew Fetterer, and Duen-Ren Liu. Genesis: An

Approach to Data Dissemination in Advanced Traveler Information

Systems. IEEE Bulletin of the Technical Committee on Data Engi-

neering, 19(3):40–47, September 1996.

[SG94] Abraham Silberschatz and Peter B. Galvin. Operating System Con-

cepts. Addison-Wesley, 4 edition, 1994.

[SIG93] Proceedings of the 1993 ACM SIGMOD International Conference on

Management of Data, Washington, DC, may 1993.

[SIG94] Proceedings of the 1994 ACM SIGMOD International Conference on

Management of Data, Minneapolis, Minnesota, May 1994.

[SIG98] Proceedings of the 1998 ACM SIGMOD International Conference on

Management of Data, Seattle, WA, June 1998.

[SRB96] Konstantinos Stathatos, Nick Roussopoulos, and John S. Baras.

Adaptive Data Broadcasting Using Air-Cache. In WOSBIS [WOS96],

pages 30–37.

179



[SRB97a] Konstantinos Stathatos, Nick Roussopoulos, and John S. Baras.

Adaptive Data Broadcast in Hybrid Networks. In VLDB [VLD97],

pages 326–335.

[SRB97b] Konstantinos Stathatos, Nick Roussopoulos, and John S. Baras.

Adaptive Data Broadcast in Hybrid Networks. Technical Report

CSHCN 97-11 / ISR 97-40, Center for Satellite and Hybrid Com-

munication Networks, Institute for Systems Research, University of

Maryland, College Park, Maryland, April 1997.

[ST97] C.-J. Su and Leandros Tassiulas. Broadcast Scheduling for Infor-

mation Distribution. In Proceedings of IEEE INFOCOM’97, Kobe,

Japan, April 1997.

[SV96] Narayanan Shivakumar and Suresh Venkatasubramanian. Efficient

Indexing for Broadcast Based Wireless Systems. Mobile Networks

and Applications, 1(4):433–446, 1996.

[Tan96] Andrew S. Tanenbaum. Computer Networks. Prentice Hall Press,

1996.

[TGNO92] Douglas B. Terry, David Goldberg, David Nichols, and Brian M. Oki.

Continuous Queries over Append-Only Databases. In Proceedings of

the 1992 ACM SIGMOD International Conference on Management

of Data, pages 321–330, San Diego, California, June 1992.

[TS97a] Leandros Tassiulas and Chi-Jiun Su. Optimal Memory Management

Strategies for a Mobile User in a Broadcast Data Delivery System.

180



IEEE Journal on Selected Areas in Communications, 15(7):1226–

1238, 1997.

[TS97b] Dimitris Theodoratos and Timos K. Sellis. Data Warehouse Config-

uration. In VLDB [VLD97], pages 126–135.

[TY96] Kian-Lee Tan and Jeffrey Xu Yu. Energy Efficient Filtering of Nonuni-

form Broadcast. In Proceedings of the 16th IEEE International Con-

ference on Distributed Computing Systems, pages 520–527, Kowloon,

Hong Kong, May 1996.

[VH96] Nitin H. Vaidya and Sohail Hameed. Data Broadcast in Asymmetric

Wireless Environments. In WOSBIS [WOS96], pages 38–52.

[Vis94] Subramaniyam R. Viswanathan. Publishing in Wireless and Wireline

Environments. PhD thesis, Department of Computer Science, Rutgers

University, November 1994.

[Vis97] Dimitra Vista. Optimizing Incremental View Maintenance Expres-

sions In Relational Databases. PhD thesis, Department of Computer

Science, University of Toronto, 1997.

[VLD97] Proceedings of the 23rd International Conference on Very Large Data

Bases, Athens, Greece, August 1997.

[WA85] John W. Wong and Mostafa H. Ammar. Analysis of Broadcast

Delivery in a Videotex System. IEEE Transactions on Computers,

34(9):863–866, September 1985.

181



[WD88] John W. Wong and H. D. Dykeman. Architecture and Performance

of Large Scale Information Delivery Networks. In 12th International

Teletraffic Congress, Torino, Italy, 1988.

[WM91] Ouri Wolfson and Amir Milo. The Multicast Policy and Its Relation-

ship to Replicated Data Placement. ACM Transactions on Database

Systems, 16(1):181–205, March 1991.

[Won88] John W. Wong. Broadcast Delivery. Proceedings of the IEEE,

76(12):1566–1577, December 1988.

[WOS96] 1st International Workshop on Satellite-based Information Services,

Rye, New York, November 1996.

[WSD+95] Ouri Wolfson, Prasad Sistla, Son Dao, Kailash Narayanan, and

Ramya Raj. View Maintenance in Mobile Computing. SIGMOD

Record, 24(4):22–27, December 1995.

[WYC96] Kun-Lung Wu, Philip S. Yu, and Ming-Syan Chen. Energy-Efficient

Caching for Wireless Mobile Computing. In ICDE [ICD96], pages

336–343.

[YGM94] Tak W. Yan and Hector Garcia-Molina. Distributed Selective Dis-

semination of Information. In Proceedings of the Third International

Conference on Parallel and Distributed Information Systems, pages

89–98, Austin, Texas, September 1994.

[YGM96] Tak W. Yan and Hector Garcia-Molina. Efficient Dissemination of In-

formation on the Internet. IEEE Bulletin of the Technical Committee

on Data Engineering, 19(3):48–54, September 1996.

182



[YT97] Jeffrey Xu Yu and Kian-Lee Tan. An Analysis of Selective Tuning

Schemes for Nonuniform Broadcast. Data & Knowledge Engineering,

22(3):319–344, May 1997.

[ZFAA94] Stanley Zdonik, Michael Franklin, Rafael Alonso, and Swarup

Acharya. Are ’Disks in the Air’ Just ’Pie in the Sky’? In IEEE Work-

shop on Mobile Computing Systems and Applications, Santa Cruz,

CA, December 1994.

183


