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Abstract

n

Let X be a finite set, P a stochastic matrix on X, and P = nli.moo% Zl P*. Let
G = (X, E) be the weighted directed graph on X associated to P, with weighfs Pij.- An
arborescence is a subset @ C E which has at most one edge out of every node, contains
no cycles, and has maximum possible cardinality. The weight of an arborescence is the
product of its edge weights. Let A denote the set of all arborescences. Let A;; denote the
set of all arborescences which have j as a root and in which there is a directed path from i
to j. Let || A|], resp. ||Aij||, be the sum of the weights of the arborescences in A, resp. A;;.

The Markov chain tree theorem states that p;; = ﬂ”"i—;"n-"- We give a proof of this theorem
which is probabilistic in nature.
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A Proof of the Markov Chain Tree Theorem *

1. Introduction

Let X be a finite set of cardinality n, and P a stochastic matrix on X. Let x =
(Xn,n 2 0) denote the canonical Markov chain on X with transition matrix P. Let
G = (X, E) be the weighted directed graph with vertex set X associated to P. This means
that given ¢,j € X there is a directed edge from ¢ to j iff p;; > 0, and this edge has weight
pij.

An arborescence is a subset a C E which has at most one edge out of every node,
contains no cycles, and has maximum possible cardinality. The nodes which have outdegree
0 in the arborescence are called its roots. It is easy to see that if there are @ communicating
classes in x, then every arborescence has precisely one root in each communicating class
and n — a edges. In particular, if P is irreducible then every arborescence has precisely
one root and n — 1 edges. For basic facts about the decomposition of the state space of a
Markov chain into communicating classes and transient states, see e.g. Freedman, (1983),
Section 1.4.

The weight of an arborescence is the product of its edge weights. Let A denote the
set of all arborescences and ||.A|| the sum of the weights of the arborescences in A. Let A;
denote the set of all arborescences which have j as a root, and ||.A4;|| the sum of the weights
of the arborescences in Aj. Let A;; denote the set of all arborescences in A; in which there
is a directed path from i to j, and [|A;;|| the sum of the weights of the arborescences in
A;;. We take A;; to mean A;.

If the Markov chain x is started in the state i € X, then it is well known that the
long run average number of visits to any state j converges to a number p,; given by the ij
entry of

. n—1
P= " 1y-pr,
n—oon &=~
The existence of this limit is standard, see e.g. Freedman, (1983), Section 1.7. If x is
irreducible all rows of the limit are identical and give the unique initial distribution from
which x is stationary.

It turns out that there is a way to compute the entries of P in terms of the weights of
arborescences in G. For irreducible P this fact appears to have been to originally discov-
ered in the context of certain models for biological systems, see Kohler and Vollmerhaus,
(1980), where it is called the diagram method, and attributed to Hill, (1966). It was
also independently discovered by Shubert, (1975). This technique was extended to general
Markov chains by Leighton and Rivest, (1983) and (1986), who call it the Markov chain
tree theorem :

Theorem : Let the stochastic matrix P on the finite state space X determine the Markov
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chain x with long run transition matrix P. Then

= _ Al

L= . 1
bij HAH ( )
If P is irreducible, then
- _ 45l
L= 2
Pij 4]l (2)

for all :.
e

Remark : To be precise we must assume that A # @, i.e., at least one of the states of x is
not isolated, where a state is called isolated if it cannot be accessed from any other state.
One can avoid this assumption if (1) and (2) are interpreted suitably in this situation.

At first sight there does not appear to be an intuitive reason why the long run tran-
sition probabilities should be related to arborescences in the underlying directed graph.
In fact, all proofs of the theorem that have appeared in the literature are algebraic or
combinatorial in nature, and none of them provides a clear probabilistic reason for this
unexpected connection. The purpose of this letter is to provide a simple proof of the theo-
rem which is probabilistic in nature and makes the connection between long run transition
probabilities and arborescences seem natural.

2. Proof

The probabilistic idea of our proof works for irreducible chains. From this we will get
the general theorem by additional arguments at the end of this section.

Suppose P is irreducible, and let X = (X ,—00 < n < o0) be the canonical two
sided chain with the stationary distribution. The basic probabilistic idea is to construct
from this chain, in a canonical fashion, an A valued process ¥ = (Y,,~0co0 < oo) that
is a function of the past at any time. Define f : X — A as follows : The root of f(X)
is Xo. To find out where any other state i1 € X attaches we look for its most recent
occurrence before time 0 and attach it to the succeeding state at that time. Formally, let
7(i) = sup{m < 0: X,, =1}, and for i # X, attach { to X (;)4;. Clearly f is well defined
almost surely. Then we define

Yo=f(T"(X)), —o<n<oo,

where T denotes the left shift operator, T(X)n = Xn41.

We check that ¥ is Markov. Indeed, given {Ynitm,m < 0}, Y,4; is got from ¥, by
the following procedure : Let Y, have root i. To Y, attach the directed edge (i,j) with
probability p;; This creates a unique directed loop which contains ¢ and j (possibly a self
loop at i). Delete the unique directed edge out of j which breaks this loop. The resulting
arborescence rooted at j is Y, 41. The reader can easily write down the formal details. Let
us call this procedure the forward procedure.
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It is easy to see that an arborescence b € A can be constructed from an arborescence
a € A by the forward procedure iff a can be constructed from b by the following procedure,
called the reverse procedure : Let b have root j. To b attach the directed edge (7, k). This
creates a unique directed loop containing j and k (possibly a self loop at j). To break
this loop delete the unique edge directed into j which lies in this loop. The result is an
arborescence (whose root need not be either j or k). If b can be constructed from a by
the forward procedure there is a k such that a can be constructed from b by the reverse
procedure on attaching (j, k).

Let § = (Y,,, —00 < n < o) denote the time reversal of the Markov process ¥. For
the definition of time reversal see e.g. Ross, (1983), Section 4.7. Let j denote the root
of Y. Then Y, is got from Y, by attaching (j,k) to ¥, with probability pjk and then
applying the reverse procedure. This is immediately obvious from applying the following
well known lemma, which is sometimes called Kelly’s lemma, see e.g. Walrand, (1988),
Lemma 2.8.5 :

Lemma : Let ¥ be a finite state Markov chain with stochastic transition matrix Q and
state space A. Suppose one can find a distribution 7 on A and a stochastic matrix Q such
that

WaQab = "béba (3)

for all a,b € A. Then the time reversal of y has transition matrix Q and y has stationary
distribution proportional to 7.

S

In our situation, let @ and b be arborescences such that b can be got from a by the
forward procedure and a from b by the reverse procedure. If a has root 7 and b has root
J, then Qap = pi;. To get b from a we first attached (7,7) and then deleted the unique
outgoing edge (j,k) from j. To get a from b we would attach (7, k) to b and delete (¢, j).
A moment’s thought shows that (3) holds when we take n(a) and n(b) to be the weights
of the arborescences a and b respectively and Q;, = Dik-

This verifies that the time reversal of ¥ is indeed as described. However it also verifies
that the stationary distribution of ¥ is proportional to the weights of arborescences. But
X is a function of ¥, given by the function that takes arborescences to their roots. Under
this map the preimage of j is the set of arborescences which have j as a root, namely A;.
the theorem for irreducible P follows immediately. .

I P is reducible, write X as a disjoint union, X = U§_,Co U T, where C4,1< 6 <0
are communicating classes and T is the set of transient states. If j € T, then A;; = 0
and ,;; = O for each i by standard theory, see e.g. Freedman, (1983), Section 1.4, so the
theorem holds for such j. If i € Cy and j € Cgr with 8 # ', then again A;; = Qand p;; =0
by standard theory, so the theorem holds for such i and j. If i,5 € Cy, then A;; = A;
by standard theory, so the theorem holds for such ¢ and j as a direct consequence of the
theorem for irreducible P.

It remains to consider the case 1t € T, j € Cy. To deal with this we proceed by
induction on the number of transient states. We have already proved that the theorem
is true for finite Markov chains without transient states. Let T have cardinality m and
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suppose the theorem is true for all finite Markov chains with m — 1 or less transient states.
From x we construct a modified Markov chain with state space Z = X\{i} U {i°,i*} and
with transition matrix P* having the following description : Think of Z as constructed
from X by splitting the state ¢ into two states i and i*. Every transition out of 7 in P is
a transition out of 0 in P*, while every transition into ¢ in P is a transition into % in P*.
To make P* stochastic we also introduce a transition from ¥ to itself, with probability 1.

z has m transient states and one more communicating class than x, namely {i“}.
Let A denote the set of arborescences in the weighted directed graph assocxated to P*.
Similarly define Ay, and Ay;. Let |lA]], ||Ax]|, and || Ax]| stand for the sums of the weights
of arborescences in A, Ay, and Ay respectively.

_We note that there is a one to one weight preserving correspondence between A and
A\Ajo;.. Given a € A, split i into i° and i, peel off the portion of a flowing into 7 as being
rooted at :* and think of the unique directed edge out of ¢ as being out of i°. Conversely,
given a € A\Aioiw, coalesce :0 and :“ into i to get an element of A. Note that under this
correspondence Ao ; j corresponds to A;j.

Let P~ = lim Z P**. Then for any k € Ug_ Cy, we clearly have

n—oo 71

Piox = Pik[l = Piosu] -

This means that if 7 is fixed, P;; is proportional to P}, as k runs over US_ Cy. Now
consider the Markov chain got from z by erasing the row and column corresponding to

(The resulting matrix is stochastic because the column corresponding to i° is zero).
Tlus has m — 1 transient states. Let A denote the set of arborescences for this chain. By
ignoring the edge out of i° we get a map from A to A. The preimages of any @ € A under
this map differ by the different ways of going out of :°. From this observation, and by
induction hypothesis we see immediately that

. I Aull _ JAisi

Pioy = pilplk Dl = =
SRR D s T VT .
_ 4l

1A

This means that if i is fixed, P;; is proportional to ||.Ai|| as k runs over U§._,Cq. This
concludes the proof of the theorem.
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