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Abstract

We consider the problem of designing a bandwidth-efficient, power-limited digi-
tal communication system for transmitting information from a source with known
statistics over a noisy waveform channel. Each output vector of the source is en-
coded by a block encoder to one of a finite number of signals in a modulation signal
set. The received waveform is processed in the receiver by an estimation-based
decoder. The goal is to design an encoder, decoder and modulation signal set so
as to minimize the mean squared-error (MSE} betwesn the source vector and its
estimate 10 the receiver. For highly noisy Gaussian channels we justify restricting
the estimator tc the class of linear estimators. With this restriction, we derive
necessary conditions for optimality of the encoder, decoder and the signal set and
develop a convergent algorithm for solving these necessary conditions. We prove
that the MSE of the digital system designed here is bounded from below by the
MSE of an analog modulation system. Performance results for the digital system
and signal constellation designs are presented for first-order Gauss-Markov sources
and a white Gaussian channel. Comparisons are made against a standard vector
quantizer (VQ)-based system, the bounding analog modulation system and the opti-
mum performance theoretically attainable. The results indicate that for a correlated
source, a sufficiently noisy channel and specific source block sizes and bandwidths,
the digital system performance coincides with the optimum performance theoreti-
cally attainable. Further, significant performance improvements over the standard
VQ-based system are demonstrated when the channel is noisy. Situations in which
the linearity assumption results in poor performance are also identified.

*This work was supported in part by National Science Foundation grants NS¥D MIP-86-57311
and NSFD CDR-85-00108, and in part by a grant from Martin Marietta Laboratories.






I Introduction

We consider the problem of communicating information from a continuous alphabet
source over a noisy waveform channel using a digital communication system. Our
objective is to study the best performance that can be achieved by a block-structured
digital communication system. In this paper we consider a simple communication
system which consists of an encoder that maps the output of a vector source to one
of a given number of modulation signals. The decoder, based on the output of the
waveform channel forms an estimate of the transmitted source vector. We formulate
the problem as an optimization problem in which the objective is to minimize the
overall average distortion by suitably selecting a signal set, an encoder and a decoder,
while maintaining constraints on the transmitted signal energy and bandwidth.

The problem that we consider here is a joint source-channel coding problem.
Recent interest in this area appears to have begun with the work of Modestino and
Daut [1], in which it was demonstrated that for noisy channels the joint design
of a source and channel encoder and decoder can lead to dramatic performance
improvements. These improvements were obtained by lowering the rate of the source
encoder (thus increasing the distortion introduced by the source encoder), and using
the available bandwidth to judiciously provide channel error protection.

One of the earliest formulations of the joint source-channel coding broblein as
an optimization problem appears to have been by Fine [2], who developed necessary
conditions for an optimum digital encoder/decoder pair, for the transmission of con-
tinuous amplitude data over a digital channel. Kurtenbach and Wintz [3] using a
less general approach, considered a simple zero-memory quantizer and a binary sym-
metric channel (B.SC) for which optimum quantizer thresholds and reconstruction
levels were determined for a fired codeword assignment to the quantization levels.
The mean squared-error (MSE) criterion was used in both these papers.

It was later shown in [4] that the algorithm proposed in [3] need not converge, and



that it is necessary to impose a realizability constraint on the quantizer thresholds
in order to guarantee convergence. Further, in [4] the codeword assignment problem
was also solved. A key observation here was that not all the available codewords are
used for transmission in an optimal system. On the one hand this can be interpreted
as a form of channel coding, but on the other it can be interpreted as a weakness of
the discrete alphabet channel that results from the signal constellation being used.
The work in [4] has been extended to vector quantizers (VQ’s) in [5].

Ayanoglu and Gray [6] applied the generalized Lloyd algorithm to design joint
source and channel optimized trellis and predictive trellis waveform coders for a
variety of distortion criteria. They demonstrated significant improvements in per-
formance over a codebook designed for a noiseless channel, and improvements in
highly noisy situations over separately optimized source and channel coding schemes
connected in tandem. They noted that the jointly optimized trellis coding system
is simpler to implement than a trellis source coder connected in tandem with a
convolutional channel coder.

All the work that we have made reference to so far, considérs the joint design
of source and channel encoders, but assumes a fixed modulation system. The main
contribution of this paper consists of including the modulation signal set in the joint
design process. The problem of signal design is an old one. A majority of the work
has considered the problem of optimizing the signal constellation so as to minimize
a probability of error criterion, e.g., [7], [8], [9], to name a few. It is usually assumed
that the significant error event is a demodulation error to the closest signal in the
signal constellation. Such an assumption becomes necessary because of difficulties in
integrating Gaussian densities over irregular regions of multi-dimensional space and
is good only for relatively high values of the channel signal-to-noise ratio (CSNR). It
is also usually assumed that signals in the signal set are used with equal probability.
This assumption is debatable since most real source coding schemes do not produce

equally likely symbols. Finally, two signal constellations having the same average



error probability could have a different MSE performance, since the MSE depends
on the individual entries of the channel transition probability matrix.

Several authors have considered the problem of designing signal sets in order to
improve the MSE performance of zero-memory quantizers over a noisy waveform
channel. Bedrosian [10] assumes a linear PCM system and a uniform source distri-
bution in which each bit of the PCM codeword is transmitted by an antipodal signal
set whose energy varies with the significance of that bit. He considers single bit er-
rors as the significant error events. For 7-bit linear PCM, he reports an extension
of 1.9 dB in the usable CSNR. Sundberg [11] extended this work to include general
source distributions and nonlinear PCM and more general modulation formats such
as QAM. His approach is to define for each transmitted bit position, an A-factor,
which is a measure of the sensitivity of that bit position to a specific channel error
pattern averaged over all possible source outputs. By varying the energy allocated
for the transmission of each bit, it is possible to reduce the error probability for
the highly sensitive bits at the expense of the less sensitive bits in such a way that
the overall distortion is minimized. He reports extensions in usable CSNR of 1.85
dB for 8-bit speech PCM. He also reports larger gains for higher dimensional signal
constellations such as 16-level QAM (16-QAM) than for antipodal signaling. Note
that the results presented in [11] assume a high CSNR so that only single bit errors
are significant. The A-factor analysis mentioned earlier is accurate only when bi-
nary signaling is employed. Specifically, the problem arises in non-binary signaling
formats because the probability of a specific bit error pattern depends on the signal
transmitted and hence on the source symbol.

In order to overcome this problem, the so called D-factors were introduced by
Steele, Sundberg and Wong in [12] and employed to derive weighted QAM con-
stellations for 8-bit PCM in [13]. In [13] extensions of 3 to 5 dB in usable CSNR
are reported for 8-bit logarithmic PCM transmitted using 16-level and 256-level
weighted QAM, respectively.



It turns out that the problem we treat here has close links to a series of amplitude
modulation and block filtering problems that have appeared in the literature. The
similarity arises primarily because the MSE distortion measure suggests the use
of estimation-based demodulation rather than detection-based demodulation in the
receiver. Lee and Peterson [14] consider (what we refer to as) a block pulse amplitude
modulation system (BPAM) in which information from a vector source is to be
communicated over a noisy vector channel. The encoder and decoder are assumed
to be linear transformations from the source space to the channel space and vice-
versa, respectively. An energy constraint is imposed on the transmitted signal, and
the encoder and decoder maps are jointly optimized for a weighted MSE criterion.

Tufts considers a classical PAM system [15] in which it is assumed that the in-
formation from a discrete-time source is to be communicated over a noisy waveform
channel. Two cases are treated, the first being the design of transmitter and re-
ceiver filters subject to a constraint on the transmitted power and an additional
constraint of zero intersymbol interference (ISI). The second case treats the same
problem as the above, except that the restriction of zero ISI is dropped. The joint
optimization problem is solved for the restrictive case of time-limited transmitter
signals. Berger and Tufts [16] consider the same problem as in [15] without any
constraints on the ISI, and develop a general solution for the joint design problem.
They also make comparisons against the optimum performance theoretically attain-
able (OPTA), which is obtained by using information theoretic arguments. A key
observation is that for the special case of an independent and identically distributed
(iid) Gaussian source, transmitted over an ideally bandlimited, additive white Gaus-
sian noise channel, at a signaling rate equal to the Nyquist rate of the channel, the
OPTA and PAM performance curves coincide. To the best of our knowledge, a sim-
ilar comparison to the OPTA has not been made for BPAM systems and correlated
sources. We present such results here.

Our main objective in this paper is to include the signal constellation in the joint



optimization problem. We consider lincar estimator-based decoders and demon-
strate that such digital systems can be treated as optimum, finite encoding rate
approximations to the BPAM system, and that in the limit of infinite source encod-
ing rates, while maintaining a fixed energy and transmission bandwidth, their MSE
performance converges to that of the BPAM system from above.

The paper is organized into six sections as follows. In Section 1I, a general com-
munication system model is described, notation is developed and the design problem
is formulated as an optimization problem with bandwidth and energy constraints.
The nature of the bandwidth constraint is made precise and a formula is developed
for the optimum nonlinear estimator-based decoder. Finally justification is provided
for restricting the decoder to the class of linear estimators.

In Section III, necessary conditions for optimality are developed for the system
that uses a linear estimator-based decoder. An algorithm for iterative system design
is presented. The structure of the optimum encoder and its effect on encoding
complexity is also discussed.

In Section IV, a lower bound on the MSE performance of the class of digital
systems that we propose is derived and it is proved this bound is asymptotically
tight in the limit of infinite encoding rates. An iterative algorithm for system design
is presented. The structure of the optimum encoder and its effect on the encoding
complexity is also discussed.

In Section V, numerical results are presented for the performance of the optimum
system for a range of correlated Gaussian sources and channel signal-to-noise ratios.
These results are compared to the performance of a standard communication system,
as well as against_the BPAM performance and the OPTA. Finally in Section VI a
summary of the paper is provided, conclusions are drawn regarding the systems

designed in this paper and several open issues are discussed.



IT Problem Formulation

II.1 Preliminaries and Notation

It is desired to transmit information from a discrete-time, continuous-amplitude
source over a noisy, bandlirnited, waveform channel using a power-limited transmit-
ter. It is assumed that the source emits a sample every 7, seconds and is represented
by a zero-mean, finite-variance, stationary, ergodic random process, {X,, n € 7Z}.
Let {X,} be an L-dimensional vector random process constructed from {X,} ac-
cording to X, = (XnL, XnL+15---» X(ns1)r-1)7. Assume that X, has a known
L-fold probability distribution Px and density px. We regard the vector rather
than the scalar process as our primary source and assume that a vector is produced
at the fixed rate of one every T' = L, seconds. We will represent the source encoder,
channel encoder and modulator by the single encoder map 4(-), and the source de-

coder, channel decoder and demodulator by the decoder map ¢(-), as illustrated in

Fig. I1.1.

Z(t)
X S(t) U(t) X
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R” te0,7) RE

Figure II.1: General System Block Diagram

The encoder maps the L-dimensional source vector X, to a modulation signal in
the signal set § = {s;(t), 1 =1,2,..., N, t € [0,7)}. The output of the encoder is
represented by the random process {S(t), t € [0,7)}. The modulator signal S(¢) is

transmitted over an additive white Gaussian noise (AWGN) channel having a one-



sided power spectral density Ny. The received waveform, U(t) = S(t) + Z(t), ¢ €
[0,T), is mapped by the decoder g(-) to an L-dimensional vector X.

We denote by Aj, the inverse image of s;(t), ¢ € [0,7"), under the encoder map
v(+). The encoder partitions R” into N encoding regions; we denote the partition
by A= {A;, ¢ =1,2,..., N} and the probability of the set A;, under the source
distribution by P, : = 1,2,..., N.

The problem we wish to solve is that of minimizing the per sample MSE,
E(IX - 5(\|I2)/L, by suitably selecting the encoder and decoder maps, subject to
constraints on the average transmitted power E(sz(t)dt)/T and the transmitted
signal bandwidth?!. :

We mention certain notational details before leaving this section. In the following
we will use || - || and (-,-) to denote the Euclidean norm and the inner product,
respectively. We will assume that all vectors are column vectors and will denote the
trace of a square matrix by tr(-). The null space and the range space of a linear
map I' will be represented by /(') and R(T), respectively. Upper case characters
will be used for random quantities and boldface characters for vectors and matrices.
We will use 0 for both the vector as well as the scalar zero; the meaning will be clear
from the context. We will write X > 0 if each component of X is non-negative and
X < oo if each component of X is finite. Rxy will be used to denote the covariance
matrix of two random vectors X and Y. Finally, we will use the superscript L to
denote the orthogonal complement of a linear subspace and the operator @ for the

direct sum of two linear subspaces.

I1.2 Bandwidth Constraint

Our goal is to design a signal set, each signal of which has a duration of T’ seconds

and is bandlimited in some sense. Since these signals are time-limited they cannot

'We will be more precise about the nature of the bandwidth constraint in Section I11.2.



be strictly bandlimited. Several methods of imposing bandwidth constraints do exist
in the literature. In [17] it is suggested that a signal set be designed subject to a
constraint on the fractional out of band energy, i.e., if S(f) is the Fourier transform
of a transmitted signal s(t), 0 < ¢ < T and H(f) (h(t)) is the frequency (impulse)
response of a given bandpass filter, then the bandwidth constraint should have the

form

[ s
[ is(yrds

where 0 < n < 1 is a suitably chosen constant.

>, (1L.1)

The response of a general bandlimited filter to a time-limited signal is not time-
limited. However, our decoder uses only that portion of the channel output which lies
in the same interval as the transmitted signal. Hence, assuming that the transmitted
signal lies in the interval [0, T'), the received SNR will be maximized if the energy of
the channel filter response that lies in [0, T ), is maximized. Therefore, rather than
maximize the energy in the frequency band as in (IL.1), we seek to maximize the
energy of the filter output that lies in the interval [0,T).

We will now proceed to show that for this viewpoint of the signal bandwidth it
suffices to consider a finite dimensional representation for the signal set, and that the
bandwidth increases as the dimension of the signal set increases. Our development
is based on Theorexﬁ 8.4.1 in [18].

Define A(t,7) by

Mtﬂ:{ha—ﬂ,tmemﬂj )

0, elsewhere,

and define R(m,72) by

T
7'1,7'2 /h t 7'1 t Tg dt (113)
0

TT
Assume that [ [ A%(¢,7)dr dt < oo, i.e., h(t,T) is square integrable. There exists a
00

sequence of orthonormal functions ¢;(t), i € ZZ*, t € [0,T) and a sequence of real

8



numbers 1 > py > pz ... > 0, in one-to-one correspondence with these functions,

such that r
/R (11, 72)$i(T2)dry = pichi(m), &€ Z". (I1.4)
0

Further, there exists another sequence of orthonormal functions 6,(t), t € [0,T),

such that r
/htrqﬁ, (r)dr = JEb0(t), i€ Z*. (IL5)
[}

It follows that if any signal s(t), t € [0,T) can be expressed as

K
s(t) = Zs;gﬁ,’(t), (11.6)

then the output of the filter y(¢) in the interval [0,7'), corresponding to an input

s(t), can be expressed as
K
= si/Eibi(t). (IL.7)
t=1
For a given input signal s(t), t € [0,T'), expressed by (I1.6) and having energy &,
let £,u¢t be the energy at the output of the filter in the interval [0, 7). Then,

X 2
gout Z si #i

— i=1
gz’n K 2
2 S

i=1

2 KK 1[11.8)

Hence if we restrict the signal set to lie in the span of {4(t), : = 1,2,..., K},
it is guaranteed that the fraction px of the signal energy will be recovered in the
interval [0, T). Hence for a given value of T the received signal energy in the interval
[0,T) will increase (or, equivalently, the bandwidth will decrease) as the value K
decreases. Since T is proportional to L, we will use the ratio K/L as a measure of
the signal bandwidth. We emphasize at this point that the ratio K/L is not a linear
measure of the signal bandwidth expressed in Hz.

We can now represent the signal S(t), noise Z(t) and received waveform U(t)
by 8 = (§%,8%,..., SO, Z = (2, 2%..., ZK)T and U = (U, U%,...,-UK)T,
respectively. Here S*, Z* and U* denote the projections of S(t), Z(t) and U(t) onto



the ith basis function ¢;(t), respectively. The signal set S will now be considered

1

10

to consist of vectors s; = (s!,s%,...,sM)T that represent projections of the signals
si(t), 1=1,2,..., N, on the basis functions. It is a well-known fact that the above
finite dimensional representations are sufficient for the problem that we wish to
solve. |

We note here that, in the sequel, we will ignore the effects of ISI by assuming
that a ‘genie’ provides the receiver with the actual interfering portion of the filter
output, thus allowing the receiver to subtract off the effects of ISI. In the real world
the ‘genie’ can take the form of any of the ISI cancellation algorithms available
[19]. The bandwidth constraint that we have imposed does, in a sense, restrict the
effect of ISI since it minimizes the energy in the filter output that lies outside the

signaling interval. Further, if 1/7T is small as compared to the filter bandwidth, we

would expect the effects of ISI to be small.

I1.3 Problem Statement

Given an L-dimensional, stationary, zero-mean vector source {X}, an additive white
Gaussian vector channel having a variance of Ny/2 per channel dimension, and N,
the cardinality of the signal set S, we wish to minimize the MSE, E{||X - X|?}/L,

subject to the average energy constraint
£(S)= —E(STS)<& = =PR,T, (11.9)

and the bandwidth constraint

dim(S) < K, (I1.10)

by suitably selecting the encoder 4(-), the decoder g(-) and the signal set S. It is
assumed that the value of K in (I1.10) has been selected as described in Section I1.2.

The parameters N, K and L can be easily related to parameters commonly used

in the communications literature. For a given bandpass filter and constant source

10



sample generation rate, the ratio K/L is a measure of the transmitted signal band-
width. The source encoder rate is given by R, = log N/L. This rate places a fun-
damental lower limit on the average distortion that a source encoder can achieve.
One is accustomed to interpreting R, as a measure of the bandwidth required to
transmit the source data. This is not the case here since for a fixed ratio K/L, the
bandwidth is independent of R,. The cardinality of the signal set, as we shall see

later, is an indication of the encoding complexity.

II.4 Optimum Decoder and Approximations

From estimation theory it is well-known that for the squared-error distortion crite-
rion, the optimum decoder must compute the conditional expectation of the source

vector based on the channel output, i.e.,
g(u) = E(X|U =u). (11.11)

It is also known that the optimum estimator is unbiased, i.e., E(g(U)) = F(X) = 0.
By conditioning on the event that s; is transmitted, it is easy to see that g(u)
can be expressed as a convex combination of the centroids of the encoding regions,
ie.,
N
=Y E(X|i)P(si|u), (1IL.12)
1=1 i
where F(X]|7) is the centroid of the region A; and P(s;{u) is the probability that s; is
transmitted, given the channel output u. Equation (II.12) can further be expressed

as

ZE X5 “és; (11.13)

where the lower case p’s are used to represent probability density functions.
In order to compute the performance of this estimator and in order to be able
to optimize the signal set, it is necessary to compute the variance of the estimnate.

The variance of ”}i, is given by
var(X) = E(g"(U)g(U))

11
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The evaluation of the integral in (H.M) is the main bottleneck in evaluating the

Il
—

=1 =1

estimator variance.
Fortunately, for very noisy Gaussian channels, the optimum nonlinear estimator

can be well approximated by a linear estimator. We now prove a result which is

motivated by an earlier result due to Gardner [20], in order to make the above

statement precise.

Theorem 2.1: Assume that E(X) = 0, E(S) = 0 and E(STS) = £. Let Z be a zero
mean, Gaussian, K-dimensional noise vector with autocovariance matrix (No/2) L.
The optimum estimate of the transmitted vector X, based on the received vector u,

can be expressed as,
g(u) = GTu + o(VE, u), (11.15)
where |Jo(VE€,u)||/VE€ — 0as £ — 0, and G7 is a linear map, GT : R¥ — RF.

Proof: Rewrite (11.13) as

5 B(Xi)pup, (uls:) P
g(u) = == , (IL.16)
Y puss,(uls;) P

where we use the subscript on p to identify the density being used. Now use the
fact that pys, (uls;) = pz(u —s;) and expand p;(u —s;) in a Taylor series around u
to get

Pu};.(ulsi) = pz(u —s;) = pz(u) — é1—7-(-12—1(1225,- + o(s;, u), (I1.17)

where |o(s;, u)|/||si]| — 0 as |[s;]] — 0. Since Z is Gaussian with covariance matrix

(No/2) 1, it follows that

dpa(u) = (-—g-) pz(u)ul. (11.18)



Now substitute (11.18) and (II.17) into (I1.16) and use the fact that F(X) = 0 and
L(S) = 0 to get,

N N
9 ; P.E(X|i)sTu/Ny + ; PE(X[i)o(si,u)/ps(u)

glu) = N
1+ El Pio(si,u)/ps(u)

fl

2 i PE(X[i)s]u/No + 0 (VE,u). (I1.19)

=1

By identifying GT = 2 g:l P,E(X|s)sT /Ny, the theorem is proved. The details that
lead to the last step ha,:/_e been proved in Appendix A.

We also present evidence to support our claim in II.2. We consider a uniformly
distributed scalar source (L = 1) encoded by an N-level uniform scalar quantizer
and transmitted by an N-level PAM signal set (K = 1). The map from the quantizer
output to the signal set preserves the order, i.e., the leftmost quantizer output is
“mapped to the leftmost signal and so on. In both Figs. [1.2a and I1.2b the optimum
estimator output, as given by I1.12 is plotted as a function of the channel output
over a region having a probability of 0.99. The estimator output was obtained by
computing its value at 25 equally spaced points in the above mentioned region.
In Fig. I1.2a, N = 4 and the curves are presented for three values of the CSNR
(= 10log(E/LNy)): It is clearly seen that the optimum estimator tends to become
linear as the CSNR decreases. In Fig. I1.2b, CSNR= 7.0dB and curves are plotted for
N = 2,4 and 8. Here we notice that the optimum estimator tends to become linear
as IV increases. The results of this section provide the motivation for restricting

attention to the class of linear estimator-decoders, and we do so in the sequel.
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ITI Optimum Signal Design for Linear Estimator-

Based Decoders

=
Y
RN
y

GT e
X S U X
RE RX R*

Figure III.1: System Block Diagram

We will now proceed to develop necessary conditions for optimality for the prob-
lem stated in Section II.3 with the restriction that the decoder be a linear map
GT : R¥ — RL. In order to do so we first state, without proof, some useful
formulae that are simple to derive, and write a general expression for the MSE in
terms of the parameters to be optimized.

With reference to Fig. IIL.1, assume that X and Z are independent and have

zero means. The following relationships are easily verified:

N
Rxuy = Rxs = ZP,E(XMST, (I11.1)

i=1
Ry ¢ = RxsG, (IIL.2)
- Ryu = Rss + Rzz, (II1.3)
Rg¢g = G"RyuG = G”(Rss + Rzz)G, (I1L.4)

and
N

Rss =Y _ Ps;s]. (I1L.5)

=1

15



The MSE is given by
1 e oy
TEr(X = X)X - X)) = 7tr (Rxx - 2Ryg + Rgg)

1 N N
= St (Rxx ~ 23 PE(X[i)sTG + G (Z Pisisl + Rzz) G) . (T11.6)
=1

=1

For completeness we state the energy constraint

%E(STS) < &, (I11.7)

where it is assumed that & = P,T/L, for a given constant transmitter power P,.
Necessary conditions for optimality are to be developed with respect to the encoder
map v(-) and the linear decoder map G7. The encoder map 7(-) can be expressed

as

y(x) = ih‘ (%)s:, (I11.8)
where I4; is the indicator function of the set A,-; From (IIL.8) it follows that the
encoder is fully specified by the partition A={A; i=12,..., N} and the signal
set S = {s;, 1 =1,2,..., N}. Therefore it suffices to develop necessary conditions
for optimality with respect to the partition 4, the signal set S and the decoder
G7. In the sequel, the MSE per source sample and the average energy per source
sample for the system in Fig. III.1 will be denoted by D(A4,S,GT) and £(A4,S),

respectively?.

IT11.1 Optimum Encoder Partition

Assume that the signal set S and the decoder GT are fixed. Our goal is to minimize
(I11.6) subject to_the energy constraint (IIL.7), by suitably choosing an encoder

partition 4. Note that the encoder partition affects the energy constraint through

2For notational brevity we will frequently suppress the fixed arguments of D and £. For example,
if the signal set and decoder are fixed, we will use the notation D(.A) and £(A) to represent the

MSE and the average energy, respectively.
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the probabilities of the sets A;, 1 = 1,2,..., N; hence the energy constraint mus!
be imposed.

In order to make the discussion in this section clear, we make explicit the de-
pendence of the transmitted signal vector on the source vector by writing s(x). The

first step is to construct the Lagrangian
L(A,B) = D(A) + B(E(A) - &), (111.9)
which can be written in integral form as

LAB) =+ [ FlxBpx(x)dx, (11L.10)
]R,L

where
F(x,8) = E(tr(x = X)(x = X)T|X = x) + B(tr(s(x)s(x)T) — LE,).  (IIL11)

A well-known sufficient condition for optimality [21], states that if there exists a

partition 4* and a multiplier #* > 0, which together satisfy
LA, B) S L(A",B") S L(A,B"), V¥B820,VA, (I11.12)

then A* is a globally optimum partition subject to the imposed energy constraint.
For a given value of § > 0, we will determine in Theorem 3.1, a partition A(f), for

which
L(A(B),B) < L(A,B), VA. (I11.13)

We will then prove in Theorem 3.2, that 3 8* > 0 such that

L(A(B*),B) < L(A(),8"), VB=0. (111.14)

Therefore, upon defining A* = A(3*), where §* is chosen to satisfy (III.14), it follows
that (II1.12) is satisfied by the pair (A%, 3*) and hence A* is a globally optimum

partition.
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Theorem 3.1: Given f > 0, define 4;(8),¢=1,2,...,N, by

Ai(B) = {x: 2%, G"(5: - 8;)) 2 IG”sil|* ~ |G s[I* + BUllsill® — lIs;1%), ¥ j # i}.
(I11.15)
Let A(B) = {A:i(B), 1 =1,2,..., N} Then A(B) and p together satisfy (111.13).
Proof: Tor a given § > 0, we wish to determine a partition A that minimizes
L(A, B). Since px(x) > 0 for all x, it suffices to minimize F(x, ) for all x € R¥,
For each x € RY, F(x, ) can take on one of N different values depending on the
signal to which x is mapped by the encoder®. Denote by F;(x, 8) the value of F(x, )
under the assumption that x is mapped to s;. Since the optimum encoder must map

x to's;, where 1 is the index that minimizes F;(x, §), it follows that
Ai(B) = {x: Fi(x, B) < Fj(x, 8), V j # i}. (111.16)
It is easy to see that Fi(x, ) is given by,
Fi(x,8) = |Ixl|* - 2(x, G"s:) + | G, + tr(G” Rgz G) + B(|lsi|* — LE.). (IL17)
Simple algebra then yields (II1.15), thus proving the theorem.

It can be proved using (III.17) that the sets A;(8) are convex sets that are
separated from each other by hyperplanes. To see this, define A;;(8) by

Aii(B) = {x: 2(x,GT(si=s;)) 2 |GTs:||> = |Gs; 1>+ B(lIsill* — [Is;1I*)}. (111.18)
Then

Ai(B) = () A5(8), (II1.19)

and A;;(f) as defined in (I11.18) is an open half space of R”, the separating hyper-
plane, H;;(f), of which is defined by,
Hy(8) = {x : 2(x,G"(si = 5;)) = | GTsil|* = ||GTs;||> + B(|lsil|* — Is; 1)} -
(111.20)

3We assume here that the map from the source sample to the modulation signal is non-random;

it 1s easy to show that the optimum map is deterministic.
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Since the A;;(3) are convex, it follows from (I11.19) that A;(B) is also convex. Equa-
tion (I11.20) is the equation of a hyperplane that is perpendicular to the line joining
the points GTs; and GTs; and whose shortest distance to the origin is given by
(IG7si1? = IGTs, 17 + Bllsil> = l15;11)) /201GT (s, — s,)ll. Hence, for a fixed de-

coder and signal set, the only effect that the multiplier 8 has on the separating

hyperplane H;;(8) is that of moving the hyperplane without changing its orienta-
tion, i.e., H;;(B3) and H;;(f’) are parallel hyperplanes separated by a distance that
is proportional to (8 — #).

We now wish to prove the existence of a * > 0 for which (III.14) holds. This
result is proved in Theorem 3.2, but in order to prove this theorem we will need the
following Lemma. For a given S, GT and 8 > 0, let £(8) and D(8) be the average

transmitted energy and the MSE, respectively, corresponding to the partition A(S).

Lemma3.1: £(f)isa non-increasing continuous function of the Lagrange multiplier
B3, under the assumption that the source distribution Px is absolutely continuous.
Proof: (i) (£(8) is non-increasing in f)

For a fixed signal set S, let § > f3'. Since (A(5),5) and (A(F"), §') satisfy (IIL.13),
it follows by using (II1.9) that

D(B) + B(E(B) — &) < D(B') + B(E(B) — Eu), (Im.21)

and that
D(B) + B'(E(B') — &) < D(B) + B(E(B) ~ &)- (111.22)

Equations (II1.21) and (II1.22), in turn, imply that

- B(E(B) - E(B)) 2 B(E(B) - £(B)), (111.23)

and since § > B’ it follows that £(3') > £(B), which proves that £(J) is a non-
increasing function of g.
(Remark: This result is useful in the implementation of an algorithm to determine

the optimum partition.)
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(ii) (continuity of the £(B))
It suffices to prove that the probabilities of the partition sets A;(8) are continuous
functions of 3.

The proof proceeds as follows:

|P(Ai(B)) = P(A(B")] < P(A(B)AA(S)), (111.24)

where A denotes the symmetric difference between two sets. Then, it follows from

(111.19) that
A(B)AA(B) c U(A5(8)AA4(8"). (111.25)

I
Aij(B)AA;;(B) is a region in R sandwiched between two parallel hyperplanes whose
separation, as we have already mentioned, is proportional to (8 — 8'). It is easy to
see, assuming that Px is absolutely continuous, that given ¢ > 0, a § > 0 can be
chosen such that |8 — 8| < & implies P(Ai;(B)AAi;(B)) < ¢/N, Vj # 4. Hence
from (II1.24) and (II1.25) it follows that |P(Ai(8)) — P(Ai(8))| < e, thus proving
continuity of P(A;(8)) w.r.t. S.

Theorem 3.2: Assume S is such that rrggl lIs||> < L&, and that the conditions of
8

Lemma 3.1 hold. Then 3 §* > 0 that satisfies (II1.14).

Proof: For 8 = 0 either £(8) < &, or £(8) > &,. If £(0) < &, then (IIL1.14) holds
for g* = 0. If £(0) > &,, then 3 By > 0 such that £(By) < &,. In order to prove
this assume that k is the index of the minimum energy signal in §. To simplify the
details of the proof we will assume that no other signal in S has the same energy;

this assumption is not necessary for the theorem to hold. By Theorem 3.1,

A(B) = {x: 20x,GT(s; —si)) < 1GTs; 12 = G syl + B(lls, 12— llsell), ¥ 5 # k).
(111.26)
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Define*

- min ([|G”s, " = G sell” + B(Js;|* ~ llsclf*))
AP) ——{ L 2max [|GT(sj — sy }
(111.27)

It is clear that Ax(B) C Ak(B). Further, since (||s;||2 — [Isk]|2) > 0, ¥j # k, it
follows that for any § > 0, 3 B(6) such that g > B(6) implies P(Ax(8)) > 1 — & and
hence £(8) < ||sif|® + 6(max; ||s;]|*). On the other hand, since ||si||? < L&,, it is
possible to find a § > 0 such that (||s¢||* + 6(max; ||s;]|*)) < LE,, which implies that
E(B) < &, for B> B(6). This establishes the existence of o > 0.

Since £(B) is continuous and £(0) > & > &(fy) for some fy, it follows that
38" € (0, Bo) such that £(5*) = &,. For this value of §*, L(A(8"), 8) = D(A(8")) =
L(A(B*), ) and hence (II1.14) holds.

It is instructive to study the constraint that the linear decoder places on the opti-
mum encoder partition. As we prove in the next theorem, it turns out that in some
cases the optimum partition is equivalent to the partition of a lower dimensional
Euclidean space.

Theorem 3.3: For a given decoder GT and signal set S, let A be the optimum
partition and let 3 be the corresponding Lagrange multiplier. Then the null space

of G, N(G) C A;, where ¢ is the index that satisfies
IGTs:|* + Blis:|I® < I1GTssl|* + BlisslI?, V5 # 1. (111.28)

Further, if x is mapped by the encoder to s;, then so is x + x/, Vx’ € N(G), Vj.
Proof: Assume x € M(G). Then since (x,GT(s; — 5;)) = (Gx,(s; — 5;)) = 0,
it follows from (IIL.15) that x € A;(8), for the index ¢ which satisfies (II1.28).
Further, assume that x € Ay and let x' € N(G). Since (x + x', GT(s; — s;)) =
(G(x+x),(sk—s;)) = (GX, (sk —s;)) = (x,GT (s —s;)) it follows by using (I11.15)
that x + x’ € Ax(B).

*As we will see later (Lemma 3.2), it suffices to choose s;, i = 1,2,..., N, so that they lie in

N(GT)L hence max IIGT(s; — s¢)l| # 0.



This theorem indicates that the encoder partition is insensitive to translations of
the source vector along the basis vectors of N(G), i.e., it is impossible to cross the
boundary of any of the encoding regions by traversing a path parallel to vectors in
N(G). Due to this it is possible to significantly reduce the computation required
during the encoding procedure in cases where dim(N(Q)) is large, as the following
example illustrates.

Suppose we wish to design an encoder for a source vector of dimension 2 and
a signal set of dimension 1. Then N(G) has a dimension of 1. Assume that it

is oriented as shown in Fig. II1.2. The above theorem implies that the encoder

Encoder Cells

Figure II1.2: Optimum Encoder Partition

partition boundaries are lines parallel to A'(G), i.e., in this case the source encoder
partition is equivalent to that of a scalar quantizer operating on a source vector that
has been transformed using a linear transformation, hence a less complex search is

required than would be for a general 2-D VQ.
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III.2 Optimum Signal Set

Assume that the partition A and the decoder G” are fixed. We wish to minimize
the average distortion given by (II1.6) subject to the energy constraint (IIL.7), by
suitably choosing a signal set S.

The Lagrangian for the optimization problem is given by

L(S,¥) = D(§ (5(5)—5)

= 1t7‘ (Rxx QZPE Xz )STG + GT(RSS + Rzz)G>

(tr( 5 Pl ) - 6.). (111.29)

Differentiate L(S, ) with respect to s;, ¢ =1,2,..., N, and set the derivatives to

zero in order to arrive at the following necessary conditions for optimality:
(GGT + ¢1)s; = GE(X[i), i = 1,2,..., N, (111.30)

% >0, (111.31)

( ( ZPs, )- )_0 (111.32)

It is important to note that E(X|z) is the centroid of A; and hence (II1.30)

and

implies that the optimum signals used to transmit the source vectors in A; are

linearly related to the centroids of the region A;. Hence there exists a linear map®

I': RY - R, such that,
s; =TE(X]i), i=1,2,..., N. (111.33)

Thus the problem of optimum signal design is equivalent to that of selecting

an optimal linear map I as in (II1.33). From (II1.30), it follows that the optimum

5This is a non-trivial statement. If ¥ > 0 then (GGY + ¢I) is nonsingular, hence invertible
and the existence of T follows. If ¥ = 0, then (GG7T 4 ¢I) may not be invertible. However, it is
possible to show that there exists an optimal signal set that lies in N(GT)% from which follows

the existence of .



linear map I', must satisfy (GGT +41)I' = G. We also note here that the optimum
encoder can be factored into a vector quantizer (VQ) followed by a linear map
from the VQ centroids to the modulation signal set, thus allowing us to depict

the optimum system as in Fig. IT1.3. Note that as a consequence of (111.33), the

GT

vQ

\ 4

A 4

ér_

Figure I11.3: Optimum System

signal set lies in the range space of the linear map I'. Since the dimension of the
range space of I' satisfies dim(R(T")) < L, it follows that if we had chosen K > L
then at least K — L dimensions of the signal space would not be utilized, which in
turn implies that the optimum signal set is incapable of resulting in a bandwidth
expansion. Needless to say, this restriction on the bandwidth arises due to the linear

decoder assumption. In the sequel, we will therefore assume that K < L.

II1.3 Optimum Decoder

Assume that the encoder partition A and the signal set S are fixed and that we
wish to determine the optimum decoder G. Note that the choice of the decoder
does not affect the energy constraint, hence we have an unconstrained optimization
problem to solve. The solution to this problem is well known in linear estimation

theory and is obtained by using the orthogonality principle which states that

E(X -GTu)(cu)T) =, (111.34)



for any £ in the space of linear maps from R* to R*. The optimum decoder matrix

is obtained by solving (I11.34), and is given by
G = RxuRgy, (111.35)
from which it follows by using (II1.1) and (II1.3) that
G” = Rxs(Rss + Rzz)™ (I11.36)

Our next goal is to simultaneously solve the necessary conditions developed in
Sections II1.1-II1.3, in order to determine a solution to the necessary conditions for
optimality. It turns out that the necessary conditions for the optimum signal set
and decoder can be solved analytically; we shall do so in the next section, following
which we will describe an iterative algorithm for determining a system that satisfies

all the necessary conditions for optimality.

II1.4 Simultaneous Solution of the Optimum Signal Set

and the Optimum Decoder

In this section we will simultaneously solve (II1.30)-(II1.32) and (II1.36). We will
do so by first stating and then solving a problem which has an identical solution.
With reference to Fig. 1114, let Y be an L-dimensional random vector which takes
values in the discrete set {E(X]:), i = 1,2,..., N} with corresponding probabilities
P, v =1,2,..., N. We wish to determine an optimum linear encoder I’ and a
linear decoder GT so as to minimize E(tr(Y — Y)(Y = Y)T), subject to an energy
constraint tr(TRyyI7T) < LE,.

Theorem 3.4: Let T' and G, as described above, minimize D’ = E(tr(Y —
?)(Y - ?)T) subject to tr(CRyyI'T) < LE,. Then I and GT simultaneously
satisfy (I111.30)~(111.32) and (I11.36).

Proof: We can write
1 i
D'= Zir (Ryy —2Ryg + Rgg), (II1.37)
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Figure I11.4: An Equivalent System

which simplifies to

N N
D= %tr (RYY ~23 PEX[))s]G+GT(Y PsisT + RZZ)G) . (IIL38)

i=1 i=1

where s; = TE(X[{), 1 = 1,2,..., N. Except for the first term, ¢tr(Ryy), which
does not depend on I' and G, (IIL.38) is identical to (III.6). Further, the average
transmitted energy is identical for the two problems. Hence I' and G simultaneously
satisfy (II1.30)—(111.32) and (I11.36), thus proving the theorem.

We will now proceed to determine the optimum linear encoder map I' and de-
coder GT that minimize E||Y — Y\Hz for the system in Fig. II1.4 subject to an
average energy constraint. For future reference, the MSE expression for the system
in Fig. I11.4, is given by

D = 2ir (Ryy - 2RyyI”G + G'(TRyyI” + Rzz)G), (111.39)

where D and D’ are related by
- D=D"+ %tr (Rxx — Ryy). (I11.40)

We define the source encoder distortion by —}:tr(Rxx — Ryy) and the channel

distortion by D’. The energy constraint is given by
1
—tr (TRyyI") < &.. (I1L.41)
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The optimum encoder map, for a given decoder G is obtained by solvin
p g g

(GGT+¢1) T =G, (111.42)
Y 20, (111.43)

and
¢ (tr (TRyyIT) - LE,) = 0. (111.44)

The optimum decoder map for a given encoder is given by
GT = Rys(TRyyI'7 + Rzz)™. (111.45)

Our goal, now, is to solve (I11.42)-(I11.44) and (III.45) simultaneously. In order
to solve these equations we will proceed as follows. We will first show that R(G) =
R(T') and N(G) = N(T'), where I is the optimum encoder for a given decoder GT.
This fact and (II1.42) will enable us to show that there exist bases for RX and R” ,
called the singular bases of GT, in which GT, GGT and T, thevoptimum encoder for
the given decoder GT, have zero off-diagonal terms. Finally, we will prove that if
GT is the optimum decoder map, the singular basis for R” is the set of eigenvectors
of Ryy. This will enable us to express the overall distortion as a summation, each
term of which is a convex {J function of the average energy transmitted on a given
channel dimension. By determining the optimum distribution of energy among
the channel dimensions, we will bvc;* able to determine the optimum encoder map,
following which the optimum decoder map will be determined..The solution to the
optimization problem is developed in the sequence of theorems that follow.
Lemma 38.2: For a given linear decoder GT, 3 an optimum encoder map I' that

satisfies:

(i) M(T) c N(G) = R(GT)*, (I11.46)

and

(ii) R(T) C R(G) = M(GT)™. (111.47)
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Proof: (i) Based on (II1.42) we can write
(GGT 4+ ¢I)I'x = Gx . (111.48)

Let x € N(T). The left side of (I11.48) is zero, from which it follows that Gx =0
and hence V(') C N(G). The equality in (II1.46) is a well known fact in linear
algebra and hence is not proved here.

(ii) It is always possible to decompose the encoder map as I' = I'° + I'", where
R(I°) C M(GT)* and R(I™) C N(GT), since R® = M(GT)* & N(GT). We
now prove that if T is replaced by I'°, the MSE remains unchanged and the energy

constraint continues to be satisfied. Substitute I' = (I'* + I'") in the expression for

the MSE given by (I11.39). Thus

D = %tr (Ryy — 2Ryy(I° + ") G+
GT(I° 4+ I™)Ryy(I° + I")7G + G'RzzG) . (111.49)
Since R(I™) C N(GT), it follows that GTI™ = 0 and hence I"'G = 0 which
implies that D’ in (111.39) is unchanged when I is replaced by I'.

The energy constraint states that tr(TRyyI'?) < L&. But tr(TRyyI7) =
tr(TTRyy) = tr(T°"T°Ryy) + tr(I™ T"Ryy), the terms containing "I and
™" I being zero because R(I°) C R(I™)* = N (") and similarly R(I™) C
N(T°"). Finally, tr(0" T"Ryy) = tr(T"Ryyl™") > 0 since Ryy is po.sit‘ive
semi-definite, hence L&, > tr(TRyyI7T) > tr(T°Ryy[®"). We therefore do not

lose optimality if we replace I' by I'*, which, by construction, satisfies (i1).

An immediate consequence of Lemma 3.2 is that, R(I') = R(G) and N(T) =
N(G). This is so.because,

dim R(I) + dim M(I') = L = dim R(G)+ dim NV(G), (I11.50)
which implies that
dim R(T) — dim R(G) = dim M(G) — dim A(T), (I1L51)
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which can be true only if R(I') = R(G) and N(T') = N (G).

As we mentioned earlier, a natural set of basis vectors for RX and R” are the so-
called singular bases associated with the decoder map G7, since both G and GGT
have a convenient representation with respect to these bases. We now construct the
singular bases with respect to G7. Details and proofs can be found in basic linear
algebra texts such as [22].

GGT is a positive semi-definite operator, hence it has an orthonormal set of
eigenvectors {ey,. .., ex } that span R®. Let {¢?, i = 1,2,..., K} be the associated
set of eigenvalues and assume, without loss of generality, that g2 > ¢2 > ... > g2 > 0
and that g7, =... =g, =0, for some ¢, 0 < ¢t < K. Then {ey,..., €} lies in and
spans M (GGT)* and hence also V(GT)*, whereas, {e:41,...,ex} spans N(GT).
Let v; = GTe;/g; ,1 <1 < t. Then {v:i,1 <1 < t} forms an orthonormal basis for
R(GT) C RE. To complete the construction of an orthonormal basis for R” choose
{Ve+1,..., v} as an arbitrary basis that spans R(GT)*. Here, {e;,...,ex} and
{v1,...,vL} are called the singular bases of GT. With respect to the singular bases,

the map GT has the representation

9

GT = ' , (11L.52)
gt

and GGT has the representation

GGT = . (111.53)

0

L. .

Theorem 3.5: For a fixed decoder map GT, an optimum encoder map I’ which

satisfies Lemma 3.2 has a zero off-diagonal (ZOD) representation with respect to
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the singular bases of GT i.e., I' is of the form,

r b

N
0
I'= : (111.54)
Tt
L 0 0
Proof: From (II11.42) it follows that
IT[GGT + ¢Ije; = GTe,. (I11.55)

Now use the fact that for 1 < i < t, GGTe; = g’e; and GTe; = g;v; to get
I7e;, = g;/(g? +¢)vi, 1 <1<t Fort <i < K, I'Te; = 0 since e; € N (GT)
which equals N(I'7T) as a direct consequence of Lemma 3.2. Hence if we define
v = gi/(g2 +¢), 1 < i <t it follows that I' has a representation of the form
(IIL54).

So far we have succeeded in deriving a representation for the optimum I' for
a given G7 in terms of the singular bases of GT. However, the optimum decoder
map GT is itself unknown, hence we do not as yet have a representation for the
singular bases of G7, in terms of absolute bases for R¥ and R”. We now derive a
representation for the basis vectors {vy,..., vy} for R’ with respect to an absolute
basis i.e., the eigenvectors of Ryy. We will at this point assume that Ryz =
(No/2)L )
Theorem 3.6: 3 an optimum decoder G7 for which the basis vectors {vy,..., v}

are the eigenvectors of Ryy, the covariance matrix of Y.

Proof: Using the fact that Rgzz = (No/2)I, rewrite (1I1.45) as,

N,
GT(FRyyIT + -2—01) = Rys. (111.56)

Postmultiply (I11.42) by RyyI'?, premultiply (IIL.56) by G and use the fact that

Rvys = RYYrT to get
Ny

yITRyyI" = ->GGT. (111.57)
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Substitute (II1.57) in (II1.56) and postmultiply by e; to get (assuming 1 # 0),

N ,
GT (%GGT + 7"1) e; = Ryse; = RyyI7e; . (111.58)

Now use the facts that I'Te; = v;v;, GGTe; = gle; and GTe; = g;v;, 1 <i <t to
get

No 92 . .
RYYV,’ = [ + 1 givi, 1 S ? S t. (11159)
2 \ ¢

Hence, {v;, 1 < 1 < t} are the eigenvectors of Ryy. For ¢t < : < L, v; was
chosen arbitrarily so that {v;, ¢ = 1,2,..., L} spanned RY. Hence it suffices to
choose v;, t <1 < L as the remaining eigenvectors of Ryvy, since Ryy is positive
semi-definite and thus has an orthogonal set of eigenvectors that span RY.

To recapitulate, we have proved so far that if we use the eigenvectors of Ryy
to represent R*, 3 a basis for R¥ such that the optimum GT and T have ZOD
representations. Note that the covariance matrix of the noise process is unaffected by
the choice of a basis for R¥ because of the white noise assumption. Even though we
do know that it suffices to choose the set of vectors {v1,..., vp} as the eigenvectors
of Ryy, we do not know how the correspondence between this set and the set of
eigenvectors is to be made. This is equivalent to determining how the eigenvalues
of Ryvy should be indexed. For the moment we will assume that the eigenvalues of
Ryvy have been indexed arbitrarily. It is not possible to deduce the best indexing
of the eigenvalues of Ryy based solely upon the necessary conditions of optimality.
The reason is that there exist locally optimal solutions for every possible indexing
of the eigenvalues. In order to determine the best indexing it is therefore necessary
to evaluate the objective function at the locally optimum solutions and then choose
the indexing that Tesults in the globally optimum solution.

Since we have chosen the eigenvectors of Ryy as the basis for R”, the matrix
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representation of Ryy in this basis is

F/\I

Ryy =

AL

(111.60)

Further, we use the fact that K < L and that GT and I’ have ZOD representations

in the chosen bases for R¥ and RY to write

[ 91

Gt = :
[2):¢

and

B!

1K

Now use the fact that Rys = RyyI'T and substitute (I11.60)-(I11.62) in

(the optimum decoder condition) to obtain,

I U
gi AyE 4+ Noj/2’

Use (I11.63) in the expression for the distortion (II1.39) to get

i=1,2,... K.

K )\22

N VRN o A 1 S—
; ; Aiy? + No/f2
The energy constraint states that

K
Z /\1712 S Lga.,

i=1

(111.61)

(111.62)

(I11.45)

(111.63)

(I1L.64)

(111.65)

and we wish to minimize (I11.64) subject to (III.65), by suitably selecting v;, 1 <7 <

K. Upon defining & = A\;7? (the average energy in dimension :), (I11.64) becomes

L 5 &N

LD =) X\ -
2N TN ET N
Koo\ N0/2 L
= /\i7
Z &+ No/2 _;H
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and (II1.65) becomes
K
Y &< LE, . (I11.67)

=1

The problem has thus been reduced to an energy allocation problem. The op-
timum solution can be arrived at in a very intuitive way by using an incremental
energy allocation technique quite similar to the incremental bit allocation techniques

used in block transform coding systems. The derivatives, 9L D'/9E;, given by,

LD’ —NNoJ2 .
= (5-+Nz;2)2 L i=1,2..., K, (111.68)

are sketched in Fig. IIL.5 and are convex N, nonpositive, increasing functions of &;.

If we start off with a zero energy assignment to every signal (or channel) dimension

=2\
No

|

114
0¢&;

-2

-2*1
No

Figure I11.5: OLD'/3E; vs. &;.

and assign an infinitesimal amount of energy along the coordinate i for which the
derivative %g—' has the largest magnitude until the total allocated energy equals
LE&,, we should arrive at an optimum energy allocation. At this point the following

conditions would be satisfied by £;, 1 <7 < K for some ¢ > 0:

/
R oy, i &>, (I11.69)
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aLD'

5% >~ 1 & =0, (111.70)
and
1 K
Z,Zg" =E,. (111.71)
1=1
Theorem 3.7: An energy allocation &;, ¢ = 1,2,..., K, that satisfies (I111.69)-

(I11.71) minimizes (111.66) subject to (II11.67).

Proof: The proof follows from the fact that &M, /(& + No/2) is a convex N function
of &. Let D’ be the average distortion corresponding to the energy allocation that
satisfies (I11.69)-(II1.71), and let D’ be the average distortion corresponding to some
other energy allocation &, i=1,2,..., K, such that Zfil & < LE,. Then

LD -D)>Y (& -&) 22— S (&-&) >0, (I11.72)

thus proving our claim.

The solution that satisfies (II1.69)-(II1.71) is an optimal solution for a given
indexing of the eigenvalues and is only a locally optimal solution for the problem we
set out to solve. We now prove that the giobally optimum solution is obtained by

computing the optimum energy allocation using the K largest eigenvalues of Ryy.

Theorem 3.8: Let the eigenvalues be indexed such that the first K eigenvalues are
the K largest eigenvalues of Ryy. The globally optimum distortion is obtained by
determining the optimum energy allocation for this indexing of the eigenvalues.

Proof: It suffices to prove that if the eigenvalues are arranged in such a way that
A < Ajfor e < K and j > K, the optimum distortion will decrease by exchanging
Ai and Aj. Without loss of generality and to avoid generating unnecessary notation
assume that Ay € Agyy. Let D' be the corresponding optimum distortion and
&, 1 =1,2,..., K, the corresponding energy allocation. Define the reordering,
J(@), by 5(#) = 1, 1 # LK +1; (1) = K + 1 and j(K + 1) = 1. Consider

the reordered eigenvalues, \;;j and let D” be the corresponding distortion.” From
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(I11.66) it follows that

g e ANy /2 L
L(D'—D)=Zm+ Z /\i

=1~ 1=K41
E NoNo/2 &
- ; &+ N0/2 - i=§l1 A](z)
_ Alo/2 et ~ Acs1No/2
&1+ No/2 e+ N2 !
_ Pk = A)&
& + No/2

>0, (1IL.73)

thereby proving our claim.

An explicit solution for the optimization problem can now be developed as fol-
lows. The first step is to arrange the eigenvalues of Ryy in descending order, i.e.,
A1 2> A2 2> ... 2 A > 0. Let ¢ be the number of dimensions to which strictly positive
energies have been allocated. From (II1.69) and (II1.70) it follows that if £; > 0 then
& > 0for¢ < j, which in turn implies that for some integer¢t > 0, & >0, 1 <: < t.
Further, from (1IL.70) it follows that if &41 = 0, then —% < OLD'/0&+1 |, - and
since &, increases as — increases, it follows that the value of &, that corresponds to
~¢ = OLD'[0E 1 |g, =0 i the largest value of the energy constraint for which &1
is zero. Define this value of the energy constraint to be the t-th energy breakpoint
denoted by &!.

Since OLD'[0&;41 |6z+1=0= —Xi+1/(No/2), we can use (II1.68) to determine
£, 1 < j < t, where €} is the energy &; corresponding to the slope —3 =
—A1/(No/2). Hence
5‘:5‘1( i"——l), 1<j<t. (111.74)
At

By summing (II1.74) over j, 1 < j <t we then obtain

&= \z/v;\)%z(\/_ \/A:) (111.75)

For &1 < LE, < &Y exactly t channel dimensions are allocated positive energies

and we have
aLD'

Sem =¥, 1<i<t. (111.76)
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Use (II1.76) in (II1.68), multiply the result by — (& + Ny/2)? for each i, compute

t
the square-root of both sides and sum over ¢, 1 <1 <t, using 3 & = LE&,, to get
=1

2

> VA
W = Not &7 (111.77)
2 | LE, +tNp/2 | '
from which it easily follows by using (1I11.68) that
1/2
o= No [ VA A2LE/ND) (| oy (IIL78)

2X ¢
: Ajft
BN
The optimum decoder can then be determined using (II1.63). Finally for £~! <
LE, < £, the minimum MSE is obtained by using (II1.78) in (IIL.66) to get

No (Z \/_—) L
2L (tNo/2 + LE,) + = 2 A (IIL.79)

:—t+1

DI

Note that the MSE for the overall system (VQ, encoder, decoder) is given by (II1.40).

Unfortunately it is not possible to jointly determine the optimum VQ partition
along with the optimum signal set and the optimum decoder and we must therefore
use an iterative algorithm for obtaining a locally optimum solution. The algorithm

is presented in what follows.
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ITI.5 The Design Algorithm

The basic idea is to iteratively solve the necessary conditions for optimality, suc-
cessively decreasing the MSE at each step until the algorithm reaches a stationary

point. The algorithm is stated below.

1. Initialization: Set D©® = A (a large constant). Select an initial encoder

partition A®. Set the termination threshold § > 0. Set iteration index j =

2. Compute the partition set probabilities P,-(j), 1 =1,2,..., N, and the centroids

yfj), t=1,2,..., N, and the covariance matrix R%]()Y

3. Compute the optimum linear encoder I'") and the optimum linear decoder

GW” using (I11.78) and (I11.63), respectively.

4. Set j « j+ 1. Compute the average overall distortion D using (II1.79) and
(I11.40). If (DU-D — DU/ DU-1 < §, then stop, else continue.

5. Compute the optimurn partition AY) using (II1.15). Return to Step 2.

The algorithm converges since it produces a sequence of nonincreasing distor-
tions, which are bounded below by zero. Due to computational problems in inte-
grating functions over irregular regions of multidimensional Euclidean space, it is
necessary to use a training sequence approach in order to compute the optimum
partition using (II1.15) and its associated probabilities and centroids. This is a
commonly used technique in vector quantizer design [23] and we will not elaborate
on the details here. We will refer to the system designed using the above algorithm
as the BPLE system (Block encoder-, Projection demodulation-, Linear estimator

decoder-based system).
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IV A Bound on the System Performance

Our main goal in this section is to study the performance of the BPLE system
as a function of the encoding rate {or equivalently, the signal set cardinality) while
maintaining a bound on the average transmitted energy, for fixed K and L. Further,
we wish to make comparisons against a simple analog modulation scheme, which
we call BPAM (Block Pulse Amplitude Modulation). This system is illustrated in

Fig. IV.1 and is described below. A source vector X of dimension L is mapped by

Z
X S U X
r {4 -+ GT e
RE REX - RL

Figure IV.1: BPAM System

the linear encoder I' : RY — RX to a K-dimensional signal S. The received vector
U = S +7Z is mapped by the decoder G7, to form an estimate X of X. An optimum
BPAM system is a pair (I', GT) that minimizes the MSE, E(||X — X]?)/L subject
to the energy constraint E(STS) < LE,. The MSE of the optimum BPAM system
will be denoted by Dg(&,, L, K). We denote the performance of the BPLE system
with energy constraint &,, source dimension L, channel dimension K and signal set
cardinality N, by D(&,, N, L, K). It turns out that the MSE obtained by the BPAM
system forms a lower bound on the MSE of any BPLE system. This result is proved

in the next theorem.



Theorem 4.1: For a given and fixed source dimension L, channel dimension K and
energy constraint &,, the following results are true:

(i) D(&,N,L,K) > Dg(€,,L,K), VN,

(i) D(&,N,L,K) > D(E,,M,L,K), N<M,
and

(iii) imy_eo D(&, N, L, K) = Dp(&,, L, K).
Proof: (i) The main idea behind the proof is the fact that the signal set cardinality
imposes a constraint on the signal set. Hence, if we remove this constraint while
assuming that the decoder is linear and determine the optimum encoder, the per-
formance so obtained will form a lower bound to D(&,, N, L, K). As we will see,
the system obtained by removing the cardinality constraint is a BPAM system, and,

assuming for the moment that this result is true, it follows that,
Dp(&,L,K) < D(&,,N,L,K), VN. (Iv.1)

It now remains to prove that for a given linear decoder, G7, the optimum signal
set obtained after removing the cardinality constraint is linearly related to the source
output. This is equivalent to proving that the optimum map, 7(-), from the source
output space to the channel space, is linear. The MSE for a system with a decoder

GT and encoder ~(-) is given by

D- %tr (foe B (=R = R)T1X = x) dPx)
- —E—tr ( /]RL pxT - 2x77 ()G + GT(x)rT ()G + 2GTG] dPx) L (IV.2)
We wish to determine the encoder map v(-), that minimizes (IV.2) subject to
‘ BT (X)1y(X) < L& (1v.3)
The Lagrangian for the optimization problem, L(v, ), is given by

L) = 1 fou fir (o7 — 207()G + GT3(x)97(x)G + 2£GTG)
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+9 (77 (x)y(x) — £)] dPx, (Iv.4)
and it suffices to minimize

F((x),%) £ tr (xxT ~ 2277 (x)G + GTy(x}y"(x)G) + ¥ (47 (x)r(x) ~ &) ,
(IV.5)
for all x € RY. Differentiate (IV.5) with respect to v(x) and set the derivative to

zero in order to arrive at the result,
(GG +¢1) v(x) = Gx, Vx, (IV.6)

thus proving our claim that v(x) is linear in x.

(i) The proof of this statement is straightforward. The class of cardinality M linear
estimator decoder-based systems includes the class of cardinality N linear estimator
decoder-based systems, for N < M. Since the minimum distortion over a given

class of systems cannot exceed the minimum distortion over a subset of this class,

it follows that D(&, N, L, K) > D(€,,M,L,K), N < M.

(iii) Let (T, GT) constitute an optimum BPAM system. The MSE for this system,
Dg(&,, L, K), is given by,

Dy(Ea, L, K) = % /IR’“ tr (xxT — 2xxTTTG + GTTxx"TTG + ]—gEGTG) dPx.
: (IV.7)
Define the set E by
E={x: |x|<r}. (IV.8)
Since Dg(€,) < o0, it follows that for any € > 0,3 r such that
1 ; TpT T T No .1 € ]
[ [ o = 25T + GTTx TG + S GTG)dP S 5. (IV.9)

Each of the four terms of the integrand in (IV.7) is a continuous function, F is a
bounded set; hence the integral of the last three terms over E can be approximated

by the integral of a step function on F. In other words, for N sufficiently large, 3
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agrid A={A;, i=1,2,..., N}, where A; C E, that partitions F such that the
_ N N

step functions ¢r (Z x,-xiTIA‘(x)FTG) and tr (GTI‘ > xix;rIAl,(x)I‘TG), X; € A;
1= i=1

satisfy,

, N,
/ i (xxT — 9%xxTTTG + GTrxx'T7G + 39(;7*(;) dPx
E

N N
—/Etr (XXT -2 (Z x,-xiTIA,.(x)> I''G + GTT (Z X x 14, (x)) I'’G
1=1 i=1

Le

+ %GTG) dPx |< 5 (1V.10)

Now consider a system in which the encoder imposes a partition {E°, A;, ¢ =
1,2,..., N} on RL and in which if x € E°, it is transmitted using signal sy4+; = 0.
If we set x; = E(X|X € A;) 8, the average distortion for this system will be given by
the second integral on the left hand side of (IV.10) 7. Further, this system satisfies

the energy constraint as we now prove. Since syy; = 0 it suffices to prove that
N .
tr /E (I‘xxTI‘T -T (E xixI 1y, (x)) I‘T) dPx >0, (IV.11)
=1

where x; = E(X|X € A;), 1=1,2,..., N. To do this, consider the inequality,
N
tr ( [E r (Z(x —x)(x — x;)T1,, (x)) I‘TdPX> >0, (IV.12)
1=1
which holds, because the integrand is always non-negative. Equation (IV.12) can

be written as

ir ( /E I‘ix(x — %) T4, (x)TTdPx — /E r (é xi(x — x:) Ty, (x)) I‘TdPx> > 0.
(IV.13)

SWe have used the definition of the Reimann integral over a bounded region here, rather than
the definition of the Iebesgue integral. The reason is that in the definition of the Lebesgue integral
the sets of the partition of IR may not be convex in which case E(X|X € A;) need not lie in A4;
due to which the approximation in (IV.10) need not be true with x; = E(X|X € 4;).

"It is necessary to prove that ||E(X|X € E°)| is finite. But E(X) = f: E(X|X € A))Pr(4;) +
E(X|X € E°)Pr(E°) and since E(X) < oo and so is E(X|X € 4;), {::1 1,2,..., N, it follows
that [|E(X|X € E9)|| < co.
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It is easily verified that the second term in (IV.13) is zero and that the first term
is identical to (IV.11) which proves our claim. Hence we have now determined
a (possibly non-optimal) system which satisfies the energy constraint and whose
distortion, D, satisfies,

|D — Dg(&,, L, K)| < e (1V.14)

But by part (i) of this theorem we know that D > Dp(&,,L, K), hence by us-
ing the fact that the distortion for the BPLE system, D(€,, N + 1, L, K), satisfies
Dp(&,L,K) < D(&,N+1,L,K) < D, it follows that,

0< D(E,N+1,L,K) - Dp(€., LK) < ¢, (IV.15)

which proves (iii).

The proof of part (iii) indicates that when the encoding rate is high enough, the
precise selection of the encoder partition is relatively unimportant. It also demon-
strates clearly that the BPLE systems that we design are finite rate approximations
of the BPAM system.

The second result (ii), though straightforward, is somewhat surprising, for, by
studying simple detection-based demodulation systems one might have expected
otherwise. To be specific, consider a system in which source samples are encoded by
a scalar quantizer which has a rate R, bits/sample and transmitted using a 27-PAM
modulation sys’cem.‘ Let T be the modulation symbol duration and assume we have
a transmitter with an average power constraint of P,. Symbol error probabilities for
this signal constellation are given in terms of energy per bit Ej, ([19], Fig. 4.2.24)
which in this case is given by E, = P,T/R,. For fixed P, and T, as R, increases,
E, decreases. Further since the symbol error probability increases with increasing
number of signals in the signal constellation and with a decrease in CSNR [19], it
follows that the average symbol error probability will have increased. Hence we can
expect the contribution of the channel error to the overall mean squared-error to

increase as the encoding rate increases. In fact, it is fairly simple to verify this fact
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by direct computation. Based on this one might have expected the MSE of our
system to increase, or at least eventually increase, as the encoding rate is increased.
For the BPLE system, since the signal set is optimally chosen, the rate of increase
of the channel MSE can be made smaller than the rate of decrease of the source
encoder MSE. This explains why the MSE does not increase as the encoding rate is

increased.
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V Performance Results

We present performance results for the BPLE system. Results are presented for
a first-order Gauss-Markov source for a variety of correlation coefficients, channel-
signal-to-noise ratios, encoding rates and bandwidths. Comparisons are made against
the BPAM bound as described in Section IV, against a Linde-Buzo-Gray vector
quantizer (LBG VQ)-based system in which a QAM signal set is used in the modu-
lator and against the OPTA obtained by evaluating the distortion-rate function of
the Gaussian source at the channel capacity. Tabulated performance results corre-

sponding to the graphs presented in this section are provided in Appendix C.

V.1 Source and Channel Description

The source is assumed to be modeled by a zero-mean, unit-variance, stationary,
first-order, Gauss-Markov random process with correlation coefficient p, described
by

X = pXor +Wa, ne7 (V.1)

where W, is an i.i.d. Gaussian process with variance EW? = (1 —p?). For the above

source the L x L covariance matrix, RI)’CX, is given by

[ 1 p P pL"l N
p 1 “ e pL"2
Rgcx = . 3 (Vz)
.PL—l pL—Z 1 |

where the entry in the (7, 7) position is EX;X;. We will denote by {X%} a Gaussian
independent vector process of dimension L, with covariance matrix Ré‘(x, and will
simply refer to this source as the vector source. The dimension of the vector source
will be obvious from the context.

The channel is modeled by a zero-mean, stationary, independent, vector Gaussian

random process of dimension K with a covariance matrix (No/2)I. Performance
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results are presented for various values of the CSNR, which is described by

CSNR = 10log,o( ESTS/LN,). (V.3)

V.2 BPAM bound

Let Ay > Ay > ... 2 A > 0, be the eigenvalues of R)L(X. Let Dg(€p,L,K)
denote the MSE per source sample of a BPAM system that maps source vectors of
dimension L to channel vectors of dimension K and uses an average energy g per

source sample. From (II1.79) the MSE is given by

1| N (Zf> L

LK)=— | e ok v
Dg(€p, L, K) L 2 tNo/2+ L +i=tz+1 Y

where, from (II1.75), ¢t = min(K,t') and ¢’ is the smallest integer which satisfies

No/2 (_ > (Vi - Jﬁ{)) > LEp. (V.5)

t'+1
In order to make comparisons against bounds from information theory it is more
convenient to express the MSE and average energy parametrically. From (II1.66),
(IT1.68), (I11.69) and (II1.70) it follows that the distortion Dg and the average trans-
mitted energy g can be expressed parametrically® in terms of 6 as follows:
Dp(6,L,K) = (Zrmn@)\ + Z /\) (V.6)
i=K+1
and

Ep(0, L, K) = A;‘)If{ ( Zmax [A:/6,1] — 1) (V.7)

V.3 Optimum Performance Theoretically Attainable (OPTA)

The OPTA is determined by evaluating the distortion-rate function of the source

at a rate equal to the channel capacity. The channel capacity of a Gaussian vector

A derivation is provided in Appendix B
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channel of dimension K and covariance matrix (No/2)I, for an average energy per

source sample &,,, is given by [18§],

K ( - 2LEp

C = 5T log, KN, ) , bits/source sample. (V.8)

The distortion-rate functions for the Gauss-Markov source described by (V.1)

and for the Gaussian vector source { XL} having covariance matrix Ry are denoted

by Dope(R) and D,y (R, L), respectively. As is well-known [24],
Llim Dopi(R, L) = Dope(R). (V.9)

Both D, (C, L) and Doy (C) serve as upper bounds on the SNR performance of the
BPLE system and the BPAM system where it is assumed that both systems operate
on source vectors of length L.

The rate-distortion function for the vector source can be described parametrically

in terms of 6 by [24],

D,+(0,L) Ermn [, A (V.10)
z.-l
and
Rope(6, L) Zmax [ —log, )(;] bits/source sample. (V.11)
z—l

By equating the channel capacity given by (V.8) to R,p:(6, L) as given by (V.11),

the OPTA for the vector source is given parametrically in terms of 6 by,
D,(0,L) = me [0, \] (V.12)

and

i/K
Eopt(0, L, K) = ]\g’f ((H max [\;/9, 1]) - 1) . (V.13)

Let ®(w) denote the power spectral density of the first-order Gauss-Markov source.
The rate-distortion function for this source is evaluated by applying a theorem on the
asymptotic distribution of the eigenvalues of a Toeplitz form [25] (hereafter referred

to as the Toeplitz distribution theorem, following [26]) to evaluate the limits of
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(V.10) and (V.11). The rate-distortion function for the Gauss-Markov source can

also be described parametrically in terms of 6 by [24],

1 Lis
= — i A
Da(6) = 5= */ min [, ®(w)] dew, (V.14)
and
r o
Rop(0) = 21-7; / max [O,log2 ——%)—)} dw, bits/source sample. (V.15)

-1

Analogous to the procedure used for the vector source, the OPTA for the first-order
Gauss-Markov source is obtained by equating the channel capacity given by (V.8)

to Rop(0) as given by (V.15) and can be expressed parametrically as follows:

1 kis
= — ' V.
Daye(6) 2/ min [6, $(w)] de, (V.16)
and
1 o)
Sopt(G,B) - N;B (22#3 —r Max [D,logz ] ] dw _ 1) : (\/17)

where B, the bandwidth expansion factor, is the number of channel dimensions per

source dimension.

V.4 The Linde-Buzo-Gray Vector Quantizer-Based Sys-

tem

For purposes of comparison, we consider a simple communication system in which
the source encoder consists of a VQ designed optimally for the given source (and a
noiseless channel) using the Linde-Buzo-Gray algorithm [23]. It is assumed that the
source encoding rate and the source vector dimension are the same as for the BPLE
system designed in Section III. The output of the VQ is then transmitted across a
Gaussian waveform channel. Standard signal constellations as listed below in Ta-

ble V.1 are used in the transmitter. Here (M PAM)K denotes the K-fold cartesian

product of the M-ary PAM signal constellation with itself. The receiver consists of a

conventional maximume-likelihood detection-based demodulator followed by a source
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decoder, that maps the decoded signal back to the centroid of the corresponding cell.
It turns out that a critical part of this communication system is the mapping from
the VQ codewords to the signalsr in the modulation signal set. We have developed a
heuristic algorithm for determining this mapping, details for which can be found in
(27]. Results for the LBG VQ-based system have been computed based on mappings
obtained via this algorithm. In cases where not all the signals in the signal set have
the same energy, the average transmitted energy depends on t‘he probability of usage
of the signals. In these cases the levels of the PAM signal set have been scaled so
as to satisfy the energy constraint. In all cases the performance results presented
are based on the actual average transmitted energy. We refer to the LBG VQ-based
system as the LBGDC system (D for Detection, C for Centroids, which are used as

the reconstruction vectors by the decoder).

K- 8 4 2 1
K/L 1.0 0.5 0.25 0.125
Signal

Constellation | (2 PAM)® | (4 PAM)* | (16 PAM)? | (256 PAM)

Table V.1: Modulation Signal Constellations for 1 bit/sample LBGDC Systems.

V.5 Description of Graphs.

BPLE systems have been designed for various combinations of the source correlation
p = 0.0, 0.5, 0.9 and 0.95, source vector dimension L = 1,2,4 and 8, channel
signal-to-noise ratio, CSNR = —6.0 dB to 15.0 dB in steps of 3 dB and various
source encoding rates, with the restriction that the number of signals in the signal
constellation given by N = 2LR« satisfies N < 256. All results have been computed
based on a training sequence of length 48,000 source vectors. The restriction N <

256 was imposed because it was felt that larger constellation sizes would result in
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a loss of accuracy due to the restricted size of the training sequence. We have
considered bandwidth expansions of 1.0, 0.5, 0.25 and 0.125.

We will use the term “performance” for the output SNR® of the communication
system. Performance results are presented in graphical form in Figs. V.1-V.11. A
bandwidth expansion of 1.0 is assumed for Figs. V.1-V.4. In Figs. V.5-V.8 various
values of bandwidth expansion are considered, but the source block size is held fixed
at L = 8. In Figs. V.9 and V.10 comparisons are made against LBGDC systems, for
L = 8, R, = 1.0 and various bandwidth expansions. In Fig. V.11 the source, channel
and overall MSE!? are plotted as a function of the source coding rate R,. Finally,
in Fig. V.12 optimum two-dimensional 16-ary signal constellations are displayed for
L =2, K/L = 1.0 and various source correlation values.

The curves in the performance graphs have been labeled in the following manner:
OPTA and OPTA(L) correspond to the OPTA for the Gauss-Markov source and the
vector source, respectively. BPAM stands for the performance of the BPAM system,
BPLE for the performance of the BPLE system and LBGDC for the performance
of the LBGDC system.

V.6 Discussion of the Results

We now discuss the performance of the BPAM system relative to the OPTA and
the performance of the BPLE system relative to the BPAM system, the LBGDC
system and the OPTA.

V.6.A Comparisons of BPAM Performance to OPTA

We begin by discussing the performance of the BPAM system for a bandwidth

expansion of unity (Figs. V.1-V.4). If we compare the parametric representations

9The output SNR is given by 10log,o D/c?, where D is the per-sample distortion and o is the
source variance.

'%The terms, source and channel MSE are defined after (111.40).

49



for the BPAM system performance (V.6-V.7) with those of the OPTA for the vector
source with the same dimension (V.12-V.13) under the assumption that K = L, we
notice that for a given value of the parameter #, the average distortion achieved
is the same in both cases. However, the average transmitted energy in the case
of BPAM is a function of the arithmetic mean of the terms A;/6, 1 = 1,2,...,L,
whereas the OPTA has exactly the same functional form in terms of the geometric
mean of the above terms. Hence, with L = K, the BPAM performance and the
OPTA will coincide for all values of the CSNR only when all the eigenvalues of the
source are equal or when L = K = 1. For all other cases with K = L the energy
required for a given distortion with a BPAM system 1is strictly greater than the
energy that an optimum system would require.

Hence, when the source correlation, p = 0 and K/L = 1.0, the BPAM bound
for any value of L > 1 coincides with the OPTA for the vector source for all values
of CSNR. We remark that in this case the OPTA for the vector source is identical
to the OPTA for the Gauss-Markov source for L > 1. As the source correlation
increases the bounding curves begin to separate. For example, when p = 0.95 the
BPAM curve lies approximately 6 dB below the OPTA for the Gauss-Markov source
and approximately 5 dB below the OPTA for the vector source.

We now consider more restricted bandwidths, i.e., K/L < 1.0. The parametric
representations for the BPAM system performance and the OPTA for the vector
source point to yet another case in which the two coincide, though only over a range
of CSNR values. This case occurs when K = 1 and the CSNR 1s low enough so that
Aif0 <1, for all i > 1 or, equivalently, for CSNR< 10log,o((A1/A2 — 1)/(2L)). In
this case again the BPAM system provides an optimal code, in the sense that for the
given value of CSNR its performance cannot be improved upon by any other block-

structured system with identical values of L and K. For example, from Fig. V.8
(p = 0.95), when K/L = 0.125, we see that the BPAM system is optimum for CSNR

values below (0 dB. As the source correlation decreases the value of the CSNR below



which the BPAM system becomes optimal, decreases.

For K/L < 1.0 and high values of the CSNR, the BPAM curve saturates. This
is because the BPAM system becomes dimension-limited. As is evident from (V.6),
the second term in the parentheses represents the residual distortion due to the
uncoded source dimensions. While the first term can be made arbitrarily small by
increasing the transmitted energy (i.e., by increasing ), the second term remains
unchanged and determines the saturation value of the BPAM performance as the
CSNR becomes large and is given by 10log;o(S% 41 Ai/(Lo?)), where o2 is the
source variance. The dimension limitation is severe when the source correlation
is low, since the residual term in (V.6) is large. This fact is also evident from
Figs. V.5-V.8. For example, from Fig. V.5 (p = 0.0), when K/L = 0.25, the
BPAM performance curve is saturated for CSNR values above 6.0 dB. However,
from Fig. V.8 (p = 0.95), and for the same value of K/L, the BPAM curve begins
to saturate for CSNR values above 9 dB.

V.6.B Performance of the BPLE System

Even though the BPAM system performance serves as an upper bound on the per-
formance of the BPLE system, our results indicate that when the channel is noisy,
we can design BPLE systems with a performance close to that of the BPAM sys-
tem. For example, when p = 0:0, L = 1 and K/L = 1.0, it is possible to design
for any given value of the CSNR in the range that we consider, a scalar quantizer
with R, = 8.0, that performs within 0.15 dB of the BPAM bound (and in this case
the OPTA as well). For a highly correlated source with p = 0.95, our computations
indicate that we can design a BPLE system whose performance is within 0.5 dB of
the BPAM bound for CSNR= 0.0 dB. The difference between the performance of a
BPLE system and the BPAM system gets smaller as the block size is increased for
a given R,, CSNR and p. A similar trend can be observed as the source correlation

is increased for a fixed block size L and encoding rate R, and when the bandwidth
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is reduced for a fixed rate, block size and source correlation. For example at a
CSNR of 0 dB, L = 8 and R, = 1.0, there is a 2 dB diflerence in performance for
p = 0 whereas for p = 0.95 this difference is less than 0.5 dB. At high values of
the CSNR, the performance of a BPLE system becomes rate-limited, rather than
capacity-limited and hence it saturates.

It is interesting to note that for small block sizes, significant improvements in
performance can be obtained by increasing encoding rate beyond the capacity of
the channel. For example, with p = 0.0 and K = L =1, at a CSNR of 9.0 dB, the
channel capacity is approximately 2 bits/source sample. From Fig. V.1a, we see that
roughly 5.5 dB can be gained by increasing the encoding rate above 2 bits/source
sample.

For K/L < 1.0, the BPLE system is subject to both a dimension limitation and
a rate limitation and it is easy to tell, by inspection, which effect is the dominant
one. For example, from Fig."V.7 (p = 0.9), we see that the R, = 1.0, L = 8, BPLE
system becomes rate-limited before it becomes dimension limited, when K/L = 0.5,
since it saturates at a lower SNR than the BPAM system does. However, when
K/L = 0.25 it.is the dimension limitation, rather than the rate limitation, that
determines the saturation performance of the BPLE system, since the performance of
~ the two systems stay close togethef over the entire range of CSNR values considered.

Relative to the LBGDC system, the BPLE system can result in significant per-
formance improvements for low CSNR values. For example, at a CSNR of 0 dB,
K/L=05,L=8,p=0.0and p = 0.9, the BPLE system results in gains of 2.0
dB and 3.7 dB, respectively. For intermediate values of the CSNR, we note that the
LBGDC system outperforms the BPLE system. Clearly, for these CSNR values, the
linearity assumption is a poor one, especially for the i.i.d. source and K/L < 1.0.
We would like to note that when L = K and the channel is relatively noiseless,

the performance of the BPLE system is very close to that obtained by the LBGDC

system.
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The optimum signal constellations displayed in Fig. V.12 As the source corre-
lation is increased for fixed IV, greater amounts of energy are transmitted along
one channel dimension at the expense of the other. This is a direct consequence of
(I11.68-1I1.71) and the fact that there is a greater spread in the eigenvalues as the

correlation coefficient is increased.

V.6.C Open Issues

We have demonstrated that the OPTA for the vector source can be achieved by
an analog block communication system in certain cases. It would be interesting
to determine whether this is true in more general situations. However, it will be
necessary for the encoder to be a nonlinear map from the source space to the channel
space and for the decoder to be a nonlinear map from the channel space to the
source space. If such a system can be designed, the next issue would be that of
determining good finite rate approximations to this system, in order to get close to
the OPTA using digital communication systems. It would also be useful to design
such nonlinear analog communication systems when the source is non-Gaussian,
because the BPAM performance for any source is determined by the second-order
statistics of the source and hence is no different from the BPAM performance for
a Gaussian source. On the other hand the OPTA for a non-Gaussian source will
increase, and hence so will the gap between the OPTA and the BPAM performance.
Finally, even in the linear case the encoding complexity places an upper bound on
the rate for which a BPLE system can be designed or implemented. In order to
achieve the performance promised by the BPAM system for high values of CSNR,

a more structured approach to VQ design would be useful.
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Figure V.1: Performance Results for the BPLE System; Memoryless Gaussian
Source, K/L = 1.0; R,: Encoding Rate of the BPLE System (bits/sample).
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VI Summary and Conclusions

We have considered the problem of designing block source codes and modulation
signal sets that are both energy and bandwidth constrained. We have demonstrated
that the class of linear estimator based decoders is asymptotically optimal in the
limit of low CSNR. Based on this fact, we have derived necessary conditions for
optimality for the encoder, decoder and modulation signal set. An algorithm that
iteratively solves these necessary conditions to converge to a locally optimum solu-
tion has been developed.

By studying the performance of the above class of digital communication systems
in the limit of infinite encoding rates, we have demonstrated that the MSE of a
bandwidth and energy constrained digital system is bounded from below by that of
a block pulse amplitude modulation system. This bound is readily computable in
terms of the eigenvalues of the source and channel covariance matrices.

Our performance calculations indicate that it is possible to design digital systems
whose performance is close to that of the BPAM bound in selected cases. We have
demonstrated that in selected cases good performance can be achieved, as compared
to the OPTA, and that significant improvements in performance can be achieved as

compared to an LBGDC system.
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A Final Step of Theorem 2.1

Our goal is to prove the last step of Theorem 2.1. Specifically, we wish to prove

that (see I1.19).
N
llg(w) =2 5 AE(Xi)s! u/Noll

Proof: From (I1.19) it follows that
N
lg(u) =2 35 PRE(X[i)sTu/No]|
=1 = (A.2)

Ve

| & PB(X[0)o(sisw)/pu(u) = 2 PE(XIi)sTu)( £ Pofsi,w))/Nops ()]

1+ & Pols,w)/p(w)VE

(A.3)
N . N - N
B R o)+ 2 (£ agecistal) (£ Riotsi ) 1o
1=1 =1 =1
< I (A.4)
P=(u)VEIL + & Pio(si, u)/p:(u)]
It suffices to prove that |o(s;,u)|/vE — 0 as £ — 0, Vi and Yu. But
lo(si, u)] _ lo(si, u)] |Is:|
= Ab
VE Tl VE (42)
|O(S,‘,ll)l 1
1 A6
ST VP, 9
Hence %in% 2 S‘éu = 0, and this proves the last step of Theorem 2.1.
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B Parametric Representation of BPAM Perfor-
mance

We derive a parametric representation for the MSE of a BPAM system as a function
of the transmitted energy. The MSE of a BPAM system, Dp(€p, L, K), for average

transmitted energy g, is given by

1 (& NNy/2 L
Dp(€s, L, K) = ¢ (; 3 +No/_5+,-=%f‘ , (B.1)

where Y% | £;/L = £p and &; is the optimum value of the average energy transmitted
along channel dimension :. Let —%, the value of LD/0E;, for £ > 0 be a free
parameter. Then, given a value of ¢ > 0, & > 0 iff 2);/Ny > %, in which case
¥ = A\ No/(2(€; + No/2)?) holds. Equivalently, we can write

w2 (B.2)

otherwise.

. { NN _ Nao i 90 /Ny > b,
0

which in turn can be written more compactly as & = max ( ‘\-;%’Q - —Nj’-, 0). Substi-

tute this expression for &; in (B.1) and define parameter 6 = 1/A; No#/2, in order to

arrive at the desired parametric representation, namely,

K L
De(0,L,K) = =[S min[d, M+ 3 A, (B.3)
L t=1 i=K41
and
N, 1 X
€0, K) = 2o (LS~ e g6, — 1) (B.4)
QL A 1=1
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C Tables of Selected Performance Results

CSNR(dB)
~6.0(—3.0] 00 | 30 | 6.0 | 90 | 120 | 150
BPLE(R, = 8.0) | 1.77 | 3.01 | 4.77 | 6.97 | 9.50 | 12.23 | 15.07 | 17.96

BPAM 1.77 | 3.02 | 4.77 | 6.98 | 9.52 | 12.28 | 15.15 | 18.08
OPTA(L) 1.77 | 3.02 | 4.77 {1 6.98 | 9.52 | 12.28 | 15.15 | 18.08
OPTA 1.77 1 3.02 | 4.77 | 6.98 | 9.52 | 12.28 | 15.15 | 18.08

Table C.1: Performance Results for the BPLE System; Memoryless Gaussian Source,
L=1,K/L=10.

CSNR(dB)
~6.0|—3.0]00 {3060 90 | 120 | 150
BPLE(R, = 4.0) | 1.73 | 2.95 | 4.64 | 6.75 | 9.10 [ 11.50 | 13.81 | 15.80

BPAM 1.77 | 3.02 | 4.77 | 6.98 | 9.52 | 12.28 | 15.15 | 18.08
OPTA(L) | 1.77 | 3.02 | 4.77 | 6.98 | 9.52 | 12.28 | 15.15 | 18.08
OPTA 1.77 | 3.02 | 4.77 | 6.98 | 9.52 | 12.28 | 15.15 | 18.08

Table C.2: Performance Results for the BPLE System; Memoryless Gaussian Source,
L=2K/L=1.0.
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CSNR(dB)
6.0 30100 | 30|60 90 | 120 | 150

BPLE(R, =2.0) | 1.54 | 2.58 | 3.95|5.47 | 6.93 | 8.16 | 9.01 | 9.56
BPAM 1.77 | 3.02 | 4.77 | 6.98 | 9.52 | 12.28 | 15.15 | 18.08

OPTA(L) 1.77 | 3.02 | 4.77 | 6.98 | 9.52 | 12.28 | 15.15 | 18.08

OPTA 177 1 3.02 | 4.77 1| 6.98 | 9.52 | 12.28 | 15.15 | 18.08

Table C.3: Performance Results for the BPLE System; Memoryless Gaussian Source,
L=4,K/L=1.0.

CSNR(dB)
~6.0|-30]00|30]60] 90 |120] 150

BPLE(R, =1.0) | 1.12 | 1.80 | 2.62 | 3.42 | 4.04 | 445 | 4.67 | 4.79
LBGDC(R, =1.0) | -0.88 | -0.06 | 1.37 | 3.41 | 4.76 | 4.95 | 4.96 | 4.96

BPAM 1.77 | 3.02 | 4.77 1 6.98 | 9.52 | 12.28 | 15.15 | 18.08
OPTA(L) 177 | 3.02 [ 4.77 {6.98 | 9.52 | 12.28 | 15.15 | 18.08
OPTA 1.77 | 3.02 { 4.77 1 6.98 | 9.52 | 12.28 | 15.15 | 18.08

Table C.4: Performance Results for the BPLE and LBGDC Systems; Memoryless
Gaussian Source, L = 8, K/L = 1.0.

CSNR(dB)
—6.0{-30} 0.0 | 3.0 | 6.0 | 9.0 |12.0] 15.0

BPLE(R, =1.0) | 1.11 | 1.54 | 1.93 | 2.22 | 2.39 | 2.49 | 2.54 | 2.57
LBGDC(R, =1.0) | -1.08 | -0.70 | -0.10 | 1.05 | 2.92 | 4.55 | 4.94 | 4.96

BPAM_ 1.25 | 1.76 | 2.22 | 2.55 | 2.76 | 2.88 { 2.94 | 2.98
OPTA(L) 1.51 | 239 | 3.49 [ 4.77 | 6.14 | 7.58 | 9.04 | 10.53
OPTA 1.51 | 239 | 3.49 | 4.77 | 6.14 | 7.58 | 9.04 | 10.53

Table C.5: Performance Results for the BPLE and LBGDC Systems; Memoryless
Gaussian Source, L =8, K/L = 0.5.
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CSNR(dB)
—6.0|-30] 00 | 3.0 | 60 | 9.0 | 120 | 15.0
BDCE(R, = 4.0) | 1.24 | 1.93 | 2.72 | 3.87 | 4.91 | 5.74 | 7.07 | 8.59
LBGDC(R, = 4.0) | -2.48 | -1.73 | -1.20 | -0.86 | -0.65 | -0.53 | -0.43 | -0.3:

BPAM 1.25 | 1.76 | 2.22 | 2.55 | 2.76 | 2.88 | 2.94 | 2.98
OPTA(L) 1.51 | 239 | 349 | 4.77 | 6.14 | 7.58 | 9.04 | 10.53
OPTA 1.51 | 2.39 | 3.49 | 4.77 | 6.14 | 7.58 | 9.04 | 10.53

Table C.6: Performance Results for the BDCE and LBGDC Systems; Memoryless
Gaussian Source, L =2, K/L = 0.5.

CSNR(dB)
~6.0|-3.0] 0.0 | 3.0 | 6.0 | 9.0 | 120|150

BDCE(R, =2.0) | 0.81 | 1.17 | 1.69 | 2.25 | 2.86 | 3.48 | 3.96 | 4.69

BPAM 0.79 | 0.97 11.09|1.16|1.21]1.23]1.24 | 1.24
OPTA(L) 1.20 | 1.75 | 2.39 | 3.07 | 3.79 | 4.52 | 5.27 | 6.01
OPTA 1.20 | 1.75 | 2.39 | 3.07 | 3.79 | 4.52 | 5.27 | 6.01

Table C.7: Performance Results for the BDCE and LBGDC Systems; Memoryless
Gaussian Source, L =4, K/L = 0.25.

CSNR(dB)
~6.0|~30| 00 | 3.0 | 60 | 9.0 | 120 150
BDCE(R, =1.0) | 0.57 | 0.78 | 1.02 | 1.30 | 1.61 | 1.91 | 2.21 | 2.52
LBGDC(R, =1.0) | -1.86 | -1.84 | -1.81 | -1.78 | -1.73 | -1.66 | -1.56 | -1.41

BPAM _ 0.46 | 0.51 | 0.54 | 0.56 | 0.57 | 0.58 | 0.58 | 0.58
OPTA(L) 088 | 1.19 | 1.54 | 1.90 | 2.26 | 2.63 | 3.01 | 3.38
OPTA 0.88 | 1.19 | 1.54 | 1.90 | 2.26 | 2.63 | 3.01 | 3.38

Table C.8: Performance Results for the BDCE and LBGDC Systems; Memoryless

Gaussian Source, L = 8, K/L = 0.125.
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CSNR(dB)
~6.0|-30] 00 | 3.0 | 60 | 9.0 | 120 | 15.0
BPLE(R, = 4.0) 2.71 | 4.26 | 6.10 | 8.22 |10.65 | 13.17 | 15.64 | 17.86

BDCE(R, =4.0) | 2.61 | 4.24 | 6.31 | 8.36 | 10.56 | 12.74 | 14.75 | 16.62
LBGDC(R, =4.0) | -1.52 | 0.41 | 2.44 | 445 | 6.40 | 8.23 | 9.96 | 11.75

BPAM 281 | 436 | 6.21 | 842 |10.96 | 13.71 | 16.58 | 19.52
OPTA(L) 3.27 | 542 | 8.08 | 10.59 | 13.13 | 15.88 | 18.75 | 21.68
OPTA 7.83 | 9.90 | 11.97 | 14.19 | 16.74 | 19.49 | 22.36 | 25.29

Table C.9: Performance Results for the BPLE, BDCE and LBGDC Systems; 1st-
Order Gauss-Markov Source, p =0.9, L =2, K/L = 1.0.

CSNR(dB)
-6.0] -3.0] 0.0 3.0 6.0 9.0 12.0 | 15.0
BDCE(R, =4.0) | 2.78 | 4.34 | 6.16 | 8.02 | 9.67 | 10.94 | 11.86 | 12.96
LBGDC(R, =4.0) | -2.45 | -0.43 | 1.53 | 3.38 | 5.00 { 6.31 | 7.31 | 8.04

BPAM 2.81 | 4.36 | 6.20 | 8.07 | 9.74 | 11.02 | 11.89 | 12.41
OPTA(L) 2.81 | 4.36 | 6.20 | 8.07 | 9.74 | 11.18 | 12.65 | 14.13
OPTA - | 7.27 | 896 | 10.53 | 11.97 | 13.35 | 14.79 | 16.26 | 17.74

Table C.10: Performance Results for the BDCE and LBGDC Systems; 1st-Order
Gauss-Markov Source, p = 0.9, L =2, K/L = 0.5.
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CSNR(dB)
—6.0-30] 00 | 30 | 60 | 9.0 | 120 | 15.0
BPLE(R, =1.0) | 4.47 | 5.88 | 7.35 | 8.63 | 9.70 | 10.45 | 10.90 | 11.16
BDCE(R, = 1.0) | 2.78 | 4.28 | 6.29 | 8.58 | 10.66 | 11.47 | 11.48 | 11.48
LBGDC(R, = 1.0) { -0.78 | 0.51 | 2.80 | 6.65 | 10.59 | 11.43 | 11.44 | 11.44

BPAM 453 | 6.11 | 7.94 | 10.1512.70 | 15.45 | 18.32 | 21.25
OPTA(L) 6.55 | 8.78 | 11.02 | 13.29 | 15.84 | 18.59 | 21.46 | 24.39
OPTA 7.83 | 9.90 | 11.97 | 14.19 | 16.74 | 19.49 | 22.36 | 25.29

Table C.11: Performance Results for the BPLE, BDCE and LBGDC Systems; 1st-
Order Gauss-Markov Source, p = 0.9, L = 8, K/L = 1.0.

CSNR(dB)
—6.0|-3.0] 0.0 | 3.0 | 6.0 | 9.0 | 120 | 15.0
BPLE(R, =1.0) | 447 | 5.88 | 7.35 | 8.63 | 9.71 | 10.44 | 10.87 | 11.11

BDCE(R, = 1.0) | 3.81 | 5.25 | 6.38 | 8.06 | 9.83 | 10.78 | 11.46 | 11.48
LBGDC(R, =1.0) | 0.71 | 2.17 | 3.63 | 5.49 | 8.21 |10.75 | 11.42 | 11.44

BPAM 453 | 6.11 | 7.90 | 9.72 | 11.31 | 12.52 | 13.31 | 13.78
OPTA(L) 595 | 7.76 | 9.46 | 11.01 | 12.45 | 13.89 | 15.36 | 16.84
OPTA ~ | 7.27 | 896 |10.53 | 11.97 | 13.35 | 14.79 | 16.26 | 17.74

Table C.12: Performance Results for the BPLE, BDCE and LBGDC Systems; 1st-
Order Gauss-Markov Source, p = 0.9, L =8, K/L = 0.5.
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CSNR(dB)
—6.0|-30]00 |30 60 | 90 | 120 | 150

BPLE(R, = 1.0) | 447 | 590 | 7.21 | 8.22 | 891 | 9.31 | 9.54 | 9.66
BDCE(R, =1.0) | 4.30 | 5.68 | 6.97 | 7.97 | 8.78 | 9.45 | 10.15 | 10.82
LBGDC(R, =1.0)1.55 | 2.93 | 4.09 | 5.06 | 595 | 6.93 | 8.27 | 9.94

BPAM 453 | 6.00 | 7.36 {8.43 | 9.14 | 9.56 | 9.80 | 9.93
OPTA(L) 5.14 | 6.51 | 7.75 | 8.87 | 9.85 | 10.74 | 11.55 | 12.32
OPTA 6.49 | 7.81 | 8.96 {9.98 |10.89 | 11.71 | 12.48 | 13.22

Table C.13: Performance Results for the BPLE, BDCE and LBGDC Systems; 1st-
Order Gauss-Markov Source, p = 0.9, L = 8, K/L = 0.25.
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